一元一次不等式讲义.doc
(完整)一元一次不等式总复习讲义
一元一次不等式知识要点不等式用符号≤≥≠“<”(“”)“>”(“”)“”连接而成的式子,叫 比较等式与不等式的基本性质。
1、若kb ka -<-,则 b a > ( )2、若b a >,则 2323b a-<-( )3、若,,d c b a =<,则 bd ac < ( )4、若0<<b a ,则 b a > ( )5、对于实数若a ,总有 a a 23-> ( )6、若b a >,则22b a > ( )7、若b a >,0≠ab ,则ba 11< ( ) 8、若,1a a <则10<<a ( )一元一次不等式(组)解法解一元一次不等式的一般步骤: (1) 去分母(根据不等式的基本性质3) (2) 去括号(根据单项式乘以多项式法则) (3) 移项(根据不等式的基本性质2) (4) 合并同类项,得ax>b ,或ax 〈b (a≠0)(根据合并同类项法则) (5) 两边同除以a (或乘1/a )(根据不等式基本性质3)(注:若a<0,不等号反向) (6) 不等式的解在数轴上的表示 一、选择题1、 如果a >b ,c <0,那么下列不等式成立的是( ).(A) a +c >b +c ; (B ) c -a >c -b ; (C ) ac >bc ; (D ) a bc c> . 2、如果,2323,11--=++=+x x x x 那么x 的取值范围是( )A 、321-≤≤-xB 、1-≥xC 、32-≤xD 、132-≤≤-x3、已知a 、b 、c 为有理数,且a>b>c ,那么下列不等式中正确的是( )A 。
a+b 〈b+cB 。
a-b 〉b-c C.ab>bc D 。
a bc c>4、如果m<n 〈0那么下列结论中错误的是( )A 。
m —9〈n-9 B.-m 〉—n C 。
第6讲 一元一次不等式的应用八年级数学下册同步讲义(北师大版)
第6讲一元一次不等式的应用目标导航2.能够利用观察一次函数图象直接求出不等式的解.3.有关一元一次不等式与一次函数的实际应用方案问题,必须熟练掌握.知识精讲知识点01 由实际问题抽象出一元一次不等式用不等式表示不等关系时,要抓住题目中的关键词,如“大于(小于)、不超过(不低于)、是正数(负数)”“至少”、“最多”等等,正确选择不等号.因此建立不等式要善于从“关键词”中挖掘其内涵,不同的词里蕴含这不同的不等关系.【知识拓展1】(2020秋•海曙区期末)海曙区禁毒知识竞赛共有20道题,每一题答对得5分,答错或不答都扣2分,小明得分要超过80分,他至少要答对多少道题?如果设小明答对x道题,则他答错或不答的题数为20﹣x,根据题意得()A.5x﹣2(20﹣x)≥80B.5x﹣2(20﹣x)≤80C.5x﹣2(20﹣x)>80D.5x﹣2(20﹣x)<80【即学即练1】(2021春•高新区期末)一次环保知识竞赛共有20道选择题,答对一题得5分;答错或不答,每题扣1分.要使总得分不少于88分,则至少要答对几道题?若设答对x道题,可列出的不等式为()A.5x﹣(20﹣x)>88B.5x﹣(20﹣x)<88C.5x﹣x≥88D.5x﹣(20﹣x)≥88【即学即练2】(2021春•宜州区期末)在“建党百年”知识抢答赛中,共有20道题,对于每一题,答对得10分,答错或不答扣5分,则至少答对多少题,得分才不低于95分?设答对x题,则可列不等式为()A.10x﹣5(20﹣x)≥95B.10x+5(20﹣x)≥95C.10x﹣5(20﹣x)>95D.10x+5(20﹣x)>95【即学即练3】(2021•桂林模拟)某次数学竞赛共有16道题,评分办法是:每答对一道题得6分,每答错一道题扣2分,不答的题不扣分也不得分.已知某同学参加了这次竞赛,成绩超过了60分,且只有一道题未作答.设该同学答对了x道题,根据题意,下面列出的不等式正确的是()A.6x﹣2(16﹣1﹣x)≥60B.6x﹣2(16﹣1﹣x)>60C.6x﹣2(16﹣x)≥60D.6x﹣2(16﹣x)>60知识点02 一元一次不等式的应用(1)由实际问题中的不等关系列出不等式,建立解决问题的数学模型,通过解不等式可以得到实际问题的答案.(2)列不等式解应用题需要以“至少”、“最多”、“不超过”、“不低于”等词来体现问题中的不等关系.因此,建立不等式要善于从“关键词”中挖掘其内涵.(3)列一元一次不等式解决实际问题的方法和步骤:①弄清题中数量关系,用字母表示未知数.②根据题中的不等关系列出不等式.③解不等式,求出解集.④写出符合题意的解.【知识拓展1】(2021秋•西湖区校级期中)为鼓励居民使用天然气,某市天然气公司采用一种收费办法.若整个小区每户都安装,收整体初装费10000元,再对每户收费500元,某小区住户按这种收费方法全部安装天然气后,每户平均支付不足1000元,则这个小区的住户数()A.至少20户B.至多20户C.至少21户D.至多21户【即学即练1】(2021•梁园区校级一模)某学校为响应政府号召,需要购买一批分类垃圾桶,分为蓝色(可回收),绿色(易腐),红色(有害垃圾)和黑色(其他)四类,学校打算买其中蓝色和黑色共100个(两种都得有),黑色的50元/个,蓝色的60元/个,总费用不超过5060元,则不同的购买方式有()A.6种B.7种C.8种D.9种【即学即练2】(2021秋•虎林市期末)某次知识竞赛共有20道题,答对一题得10分,答错或不答均扣5分,小玉得分超过95分,他至少要答对()道题.A.12B.13C.14D.15【即学即练3】(2021秋•永定区期末)某商店为了促销一种定价为3元的商品,采取下列方式优惠销售:若一次性购买不超过5件,按原价付款;若一次性购买5件以上,超过部分按原价八折付款.如果小明有30元钱,那么他最多可以购买该商品()A.9件B.10件C.11件D.12件【知识拓展2】(2021秋•盐田区校级期末)超市要到厂家采购甲、乙两种工艺品共100个,付款总额不超(1)最多可采购甲种工艺品多少个?(2)若把100个工艺品全部以零售价售出,为使利润不低于2580元,则最少采购甲种工艺品多少个?【即学即练1】(2021秋•道里区期末)某班班主任对在某次考试中取得优异成绩的同学进行表彰.到商场购买了甲、乙两种文具作为奖品,若购买甲种文具12个,乙种文具18个,共花费420元;若购买甲种文具16个,乙种文具14个,共花费460元;(1)求购买一个甲种、一个乙种文具各需多少元?(2)班主任决定购买甲、乙两种文具共30个,如果班主任此次购买甲、乙两种文具的总费用不超过500元,求至多需要购买多少个甲种文具?【即学即练2】(2021秋•澧县期末)2021年冬季即将来临,德强学校准备组织七年级学生参观冰雪大世界.参观门票学生票价为160元,冰雪大世界经营方为学校推出两种优惠方案,方案一:“所有学生门票一律九折”;方案二:“如果学生人数超过100人,则超出的部分打八折”.(1)求参观学生为多少人时,两种方案费用一样.(2)学校准备租车送学生去冰雪大世界,如果单独租用45座的客车若干辆,则有15人没有座位;若租用同样数量的60座客车,则多出一辆,且其余客车恰好坐满,求我校七年级共有多少学生参观冰雪大世界?(司机不占用客车座位数)(3)在(2)的条件下,学校采用哪种优惠方案购买门票更省钱?【知识拓展3】(2021秋•上城区校级期中)我市某初中举行“八荣八耻”知识抢答赛,总共50道抢答题,抢答规定,抢答对1题得3分,抢答错1题扣1分,不抢答得0分,小军参加了抢答比赛,只抢答了其中的20道题,要使最后得分不少于50分,那么小军至少要答对()道题?A.17B.18C.19D.20【即学即练1】(2021秋•滨江区校级期中)某种商品进价为700元,标价1100元,由于该商品积压,商店准备打折销售,但要保证利润率不低于10%,则至多可以打()折.A.9B.8C.7D.6【即学即练2】(2021•嵊州市模拟)随看科技的进步,我们可以通过手机APP实时查看公交车到站情况.小明想乘公交车,可又不想静静地等在A站.他从A站往B站走了一段路,拿出手机查看了公交车到站情况,发现他与公交车的距离为720m(如图),此时有两种选择:(1)与公交车相向而行,到A公交站去乘车;(2)与公交车同向而行,到B公交站去乘车.假设小明的速度是公交车速度的,若要保证小明不会错过这辆公交车,则A,B两公交站之间的距离最大为()A.240m B.300m C.320m D.360m知识点03 一次函数与一元一次不等式(1)一次函数与一元一次不等式的关系从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.(2)用画函数图象的方法解不等式kx+b>0(或<0)对应一次函数y=kx+b,它与x轴交点为(﹣,0).当k>0时,不等式kx+b>0的解为:x>,不等式kx+b<0的解为:x<;当k<0,不等式kx+b>0的解为:x<,不等式kx+b<0的解为:x>.【知识拓展1】(2021秋•瑶海区期末)如图,直线y=kx+b(k≠0)经过点A(﹣3,2),则关于x的不等式kx+b<2解集为()A.x>﹣3B.x<﹣3C.x>2D.x<2【即学即练1】(2021秋•蜀山区期末)一次函数y=kx+b(k,b为常数且k≠0)的图象如图所示,且经过点(﹣2,0),则关于x的不等式kx+b>0的解集为.【即学即练2】(2021秋•槐荫区期末)如图,一次函数y=2x+8的图象经过点A(﹣2,4),则不等式2x+8>4的解集是()A.x<﹣2B.x>﹣2C.x<0D.x>0【即学即练3】(2021秋•龙凤区期末)一次函数y=mx﹣n(m,n为常数)的图象如图所示,则不等式mx ﹣n≥0的解集是()A.x≥2B.x≤2C.x≥3D.x≤3【即学即练4】直线y=kx+b交坐标轴于A(﹣2,0),B(0,3)两点,则关于x的不等式kx+b<0的解集是.【知识拓展2】(2021•滨江区校级三模)一次函数y1=ax﹣a+1(a为常数,且a≠0).(1)若点(﹣1,3)在一次函数y1=ax﹣a+1的图象上,求a的值;(2)若a>0,当﹣1≤x≤2时,函数有最大值5,求出此时一次函数y1的表达式;(3)对于一次函数y2=kx+2k﹣4(k≠0),若对任意实数x,y1>y2都成立,求k的取值范围.【即学即练1】(2021•龙岩模拟)对于平面直角坐标系xOy中第一象限内的点P(x,y)和图形W,给出如下定义:过点P作x轴和y轴的垂线,垂足分别为M,N,若图形W中的任意一点Q(a,b)满足a≤x 且b≤y,则称四边形PMON是图形W的一个覆盖,点P为这个覆盖的一个特征点.例:若M(1,3),N(4,3),则点P(5,4)为线段MN的一个覆盖的特征点.已知A(1,4),B(4,1),C(2,4),求解下列问题:(1)在P1(2,4),P2(4,4),P3(5,5)中,是△ABC的覆盖特征点的有P2,P3;(2)若在一次函数y=mx+6(m≠0)的图象上存在△ABC的覆盖的特征点,求m的取值范围.【即学即练2】(2020秋•丰都县期末)问题:探究函数y=|x+1|﹣2的图象和性质.小华根据学习函数的方法和经验,进行了如下探究,下面是小华的探究过程,请补充完整:(1)下表是y与x的几组对应值,请将表格补充完整:x…﹣5﹣4﹣3﹣2﹣10123…y…21m n﹣2﹣1012…表格中m的值为,n的值为.(2)如图,在平面直角坐标系中描点并画出此函数的图象;(提示:先用铅笔画图,确定后用签字笔画图)(3)进一步探究:观察函数的图象,可以得出此函数的如下结论:①当自变量时,函数y随x的增大而增大;②当自变量x的值为时,y=3;③解不等式|x+1|﹣2<0的结果为.能力拓展例1.(2020·黑龙江哈尔滨市·九年级一模)2020年初武汉爆发新冠肺炎疫情,使得口罩成为人们生活的必需品.爱民药店库存一批N95和普通医用两种类型口罩,N95口罩进价是普通医用口罩进价的5倍,药店把N95口罩和普通医用口罩在进价基础上分别加价40%、50%做为零售价.某人在爱民药店用84元购买一种口罩,发现买普通医用口罩的数量恰好比买N95口罩的数量4倍还多4个.(1)求两种口罩的进价分别是多少元?(2)随着疫情的进一步恶化,爱民药店的口罩很快被抢购一空.该药店再去厂家进货时发现,由于原材料上涨,N95口罩进价上涨20%,普通医用口罩进价上涨了30%.爱民药店购进这两种口罩共1500个,在零售时,N95口罩保持原售价不变,而普通医用口罩在原售价基础上上调20%,该药店要想在这批口罩全部售出后的利润不少于2000元(不考虑其它因素),则这次至少购进N95口罩多少个?例2.(2020·黑龙江哈尔滨市·九年级三模)某加工厂甲、乙二人制造同一种机械零件,已知甲每小时比乙多做6个,甲做90个所用的时间与乙作60个所用的时间相等.(1)求甲、乙每小时各做多少个机械零件.(2)该加工厂急需甲、乙二人制造该种机械零件228个,由于乙另有其它任务,所以先由甲工作若干小时后再由甲、乙共同完成剩余的任务,工厂要求必须不超过10小时完成任务,请你求出乙至少工作多少小时?【变式1】(2020·长沙市雅礼实验中学八年级月考)“四书五经”是中国的“圣经”,“四书五经”是《大学》、《中庸》、《论语》和《孟子》(四书)及《诗经》、《尚书》、《易经》、《礼记》、《春秋》(五经)的总称,这是一部被中国人读了几千年的教科书,包含了中国古代的政治理想和治国之道,是我们了解中国古代社会的一把钥匙.某学校计划分阶段引导学生读这些书,先购买《论语》和《孟子》供学生阅读.已知购进《孟子》和《论语》,已知一本《孟子》的进价与一本《论语》的进价的和为40元,用90元购进《孟子》的本数与用150元购进《论语》的本数相同.(1)求每本《孟子》、每本《论语》的进价分别是多少元?(2)今年《孟子》和《论语》的单价和去年相比保持不变,该学校计划购进《孟子》和《论语》共100本,但花费总额不超过1800元,求最少购进《孟子》多少本?【变式2】(2020·沙坪坝区·重庆八中八年级月考)受疫情影响,口罩价格不断走高.3月20日当天口罩的价格是年初的1.5倍;3月20日当天,王老师购买4盒口罩比年初多花了48元.(1)那么3月20日当天口罩的价格为每盒多少元?(2)3月20日,按照(1)中的口罩价格,某售卖点共卖出1000盒口罩.3月21日,政府决定投入储备口罩并规定其销售价在3月20日的基础上下调0.7%a出售.该售卖点按规定价出售一批储备口罩和非储备口罩,该售卖点的非储备口罩仍按3月20日的价格出售,3月21日当天的两种口罩总销量比3月20日增加了20%,且储备口罩的销量占总销量的56,两种口罩销售的总金额比3月20日至少提高了1%10a,求a的最大值.【变式3】(2020·和平县实验初级中学七年级月考)某班为了开展乒乓球比赛活动,准备购买一些乒乓球和乒乓球拍,通过去商店了解情况,甲乙两家商店出售同样品牌的乒乓球和乒乓球拍,乒乓球拍每副定价48元,乒乓球每盒定价12元,经商谈,甲乙两家商店给出了如下优惠措施:甲店每买一副乒乓球拍赠送一盒乒乓球,乙店全部按定价的9折优惠.现该班急需乒乓球拍5副,乒乓球x盒(不少于5盒).(1)请用含x的代数式表示:去甲店购买所需的费用;去乙店购买所需的费用.(结果要求化简)(2)当需要购买40盒乒乓球时,通过计算,说明此时去哪家商店购买较为合算;(3)试探究,当购买乒乓球的盒数x取什么值时,去哪家商店购买更划算?【变式4】(2020·浙江省杭州市萧山区高桥初级中学八年级期中)某商场计划经销A、B两种新型节能台灯共50盏,这两种台灯的进价、售价如表所示:(2)在每种台灯销售利润不变的情况下,若该商场销售这批台灯的总利润不少于1400元,问至少购进B 种台灯多少盏?【变式5】(2020·舟山市第一初级中学八年级期中)在抗击新冠肺炎疫情期间,我校购买酒精和消毒液两种消毒物资,供师生使用.第一次购买酒精和消毒液若干,酒精每瓶10元,消毒液每瓶5元,共花费了350元;第二次又购买了与第一次相同数量的酒精和消毒液,由于恰逢商城打折,酒精和消毒液每瓶价格分别打7折和8折,此次只花费了260元.(1)求每次购买的酒精和消毒液分别是多少瓶?(2)若按照第二次购买的价格再一次购买,根据需要,购买的酒精数量是消毒液数量的2倍,现有购买资金200元,则最多能购买消毒液多少瓶?【变式6】(2019·山西八年级期末)山西民间的雕刻艺术源远流长,主要以古代传统吉祥纹样为素材,以石雕、木雕砖雕等形式,来体现主人的高尚情操和文化修养以及人们的美好愿望.某木雕经销商购进“木象”和“木马”两种雕刻艺术品,购“木象”艺术品共用了2000元,“木马”艺术品共用了2400元已知“木马”每件的进价比“木象”每件的进价贵8元,且购进“木象”“木马”的数量相同.()1求每件“木象”、“木马”艺术品的进价;()2该经销商将购进的两种艺术品进行销售,“木象”的销售单价为60元,“木马”的销售单价为88元,销售过程中发现“木象”的销量不好,经销商决定:“木象”销售一定数量后,将剩余的“木象”按原销售单价的七折销售;“木马”的销售单价保持不变要使两种艺术品全部售完后共获利不少于2460元,问“木象”按原销售单价应至少销售多少件?题组A 基础过关练1.如图,一次函数y =kx+b (k ,b 为常数,且k ≠0)的图象过点A (0,﹣1),B (1,1),则不等式kx+b >1的解集为( )A .x >0B .x <0C .x >1D .x <12.如图,直线y =kx+b 与直线y =3x ﹣2相交于点(12,﹣12),则不等式3x ﹣2<kx+b 的解为( )A .x >12B .x <12C .x >﹣12D .x <﹣123.如图,一次函数y kx b =+(,k b 为常数,且0k ≠)的图像经过点(3,2)-,则关于x 的不等式2kx b +<的解集为( )A .3x >-B .3x <-C .2x >D .2x <分层提分4.如图,射线1l反映了某棉业有限公司的加工销售收入与销售量的之间的函数关系,射线2l反映了该公司的加工成本与销售量之间的关系,当该公司盈利时,销售量应为()A.大于3t B.等于4t C.小于6t D.大于6t5.(2021秋•澧县期末)目前新冠变异毒株“奥密克戎”肆虐全球,疫情防控形势严峻.体温T超过37.3℃的必须如实报告,并主动到发热门诊就诊.体温“超过37.3℃”用不等式表示为()A.T>37.3℃B.T<37.3℃C.T≤37.3℃D.T≤﹣37.3℃6.(2020秋•海曙区期末)海曙区禁毒知识竞赛共有20道题,每一题答对得5分,答错或不答都扣2分,小明得分要超过80分,他至少要答对多少道题?如果设小明答对x道题,则他答错或不答的题数为20﹣x,根据题意得()A.5x﹣2(20﹣x)≥80B.5x﹣2(20﹣x)≤80C.5x﹣2(20﹣x)>80D.5x﹣2(20﹣x)<807.(2021春•龙华区期末)某校拟用不超过2600元的资金在新华书店购买党史和改革开放史书籍共40套来供学生借阅,其中党史每套72元,改革开放史每套60元,那么学校最多可以购买党史书籍多少套?设学校可以购买党史书籍x套,根据题意得()A.72x+60(40﹣x)≤2600B.72x+60(40﹣x)<2600C.72x+60(40﹣x)≥2600D.72x+60(40﹣x)=26008.(2021秋•西湖区校级期中)为鼓励居民使用天然气,某市天然气公司采用一种收费办法.若整个小区每户都安装,收整体初装费10000元,再对每户收费500元,某小区住户按这种收费方法全部安装天然气后,每户平均支付不足1000元,则这个小区的住户数()A.至少20户B.至多20户C.至少21户D.至多21户9.(2021•梁园区校级一模)某学校为响应政府号召,需要购买一批分类垃圾桶,分为蓝色(可回收),绿色(易腐),红色(有害垃圾)和黑色(其他)四类,学校打算买其中蓝色和黑色共100个(两种都得有),黑色的50元/个,蓝色的60元/个,总费用不超过5060元,则不同的购买方式有( )A .6种B .7种C .8种D .9种.10.(2021•集美区模拟)小军到水果店买水果,他身上带的钱恰好可以购买15个苹果或21个橙子,若小军先买了9个苹果,则他身上剩下的钱最多可买橙子( )A .7个B .8个C .9个D .10个11.(2021春•无棣县期末)某种商品的进价为40元,出售时标价为60元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打( )折.A .7B .6C .8D .512.已知一次函数y kx b =+的图像如图所示,则关于x 的不等式320kx b ->的解集为_____.13.(2021秋•温州期中)全国文明城市创建期间,某校组织开展“垃圾分类”知识竞赛,共有25道题.答对一题记4分,答错(或不答)一题记﹣2分.小明参加本次竞赛得分要超过60分,他至少要答对 道题.14.(2021春•老河口市期末)某种商品的进价为1000元,出售时标价为1500元,由于该商品积压,商店决定打折出售,但要保证利润率不低于20%,则至多可打 折.15.(2021春•平罗县期末)在某次篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场扣1分,某队预计在2019﹣2020赛季全部32场比赛中最少得到48分,才有希望进入季后赛,则这个队至少胜 场才有希望进入季后赛.16.(2021春•榆阳区期末)为加快“智慧校园”建设,某市准备为试点学校采购A 、B 两种型号的一体机共1100套,已知去年每套A 型一体机1.2万元每套、B 型一体机1.8万元,经过调查发现,今年每套A 型一体机的价格比去年上涨25%,每套B 型一体机的价格不变,若购买B 型一体机的总费用不低于购买A 型一体机的总费用,则该市最多可以购买 套A 型一体机.17.某工厂计划生产A,B两种产品共10件,其生产成本和利润如表.(1)若工厂计划获利14万元,则A,B两种产品应分别生产多少件?(2)若工厂计划投入资金不多于44万元,且生产A产品x件,请列出不等式.18.(2021•福建模拟)疫情期间为了满足测温的需求,某学校决定购进一批额温枪.经了解市场,购买A 种品牌的额温枪每支300元,B种品牌的额温枪每支350元.经与商家协商,A种品牌的额温枪降价15%,B种品牌的额温枪打八折销售.若购买两种品牌的额温枪共50支且总费用不超过13000元,则至少要购买A种品牌的额温枪多少支?19.(2021春•淮阳区校级期末)某市要创建“全国文明城市”.其小区为了响应号召,计划购进A,B两种树苗共23棵.已知A种树苗每棵100元,B种树苗每棵80元.(1)若购进A,B两种树苗共花费了2100元,问购进A,B两种树苗各多少棵?(2)若购进A种树苗的数量不少于B种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用.题组B 能力提升练1.如图,一次函数y =kx +b(k ≠0)的图象经过点A(-2,4),则不等式kx +b >4的解集是( )A .x <-2B .x >-2C .x <0D .x >02.如图,若一次函数y =-2x +b 的图象与两坐标轴分别交于A ,B 两点,点A 的坐标为(0,3),则不等式-2x +b >0的解集为( )A .x >32B .x <32C .x >3D .x <33.若一次函数y =kx +b(k ,b 为常数,且k ≠0)的图象经过点A(0,-1),B(1,1),则不等式kx +b >1的解集为( )A .x <0B .x >0C .x <1D .x >14.如图,直线y =kx +b(k ≠0)经过点(-1,3),则不等式kx +b ≥3的解集为( )A .x >-1B .x <-1C .x ≥3D .x ≥-15.如图,直线y=kx-b与横轴、纵轴的交点分别是(m,0),(0,n),则关于x的不等式kx-b≥0的解集为( )A.x≥m B.x≤mC.x≥n D.x≤n6.如图,直线y=kx+b(k、b是常数k≠0)与直线y=2交于点A(4,2),则关于x的不等式kx+b<2的解集为___.7.如图,直线y=x+2与直线y=ax+c相交于点P(m,3),则关于x的不等式x+2≤ax+c的解集为____.8.一次函数y=ax+b与正比例函数y=kx在同一平面直角坐标系的图象如图所示,则关于x的不等式ax +b≥kx的解集为___.9.已知一次函数y1=kx+b与y2=x+a的图象如图所示,则下列结论:①k<0;②a>0;③b<0;④关于x的方程kx+b=x+a的解为x=3;⑤x>3时,y1<y2.其中正确的结论是____.(只填序号)10.在坐标系中作出函数y =2x +6的图象,利用图象解答下列问题:(1)求方程2x +6=0的解;(2)求不等式2x +6>-2的解集;(3)若2≤y ≤6,求x 的取值范围.11.如图,一次函数1: 22l y x =-的图像与x 轴交于点D ;一次函数2: l y kx b =+的图像与x 轴交于点A ,且经过点()3,1B ,两函数图像交于点(),2C m .(1)求m ,k ,b 的值;(2)根据图象,直接写出122kx b x <+<-的解集.12.某单位要制作一批宣传材料,甲公司提出:每份材料收费25元,另收2 000的设计费;乙公司提出:每份材料收费35,不收设计费.(1)请用含x 代数式分别表示甲乙两家公司制作宣传材料的费用;(2)试比较哪家公司更优惠?说明理由.13.为响应市政府“创建国家森林城市”的号召,某小区计划购进A ,B 两种树苗共17棵,已知A 种树苗每棵80元,B 种树苗每棵60元.(1)若购进A ,B 两种树苗刚好用去1 220元,问购进A ,B 两种树苗各多少棵?(2)若购买B 种树苗的数量少于A 种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用.14.如图,一次函数y kx b =+的图象经过点()1,5A -,与x 轴交于点B ,与正比例函数3y x =的图象交于点C ,点C 的横坐标为1(1)求AB 的函数表达式;(2)若点D 在y 轴负半轴,且满足13COD BOC S S =△△,求点D 的坐标; (3)若3kx b x +<,请直接写出x 的取值范围.题组C 培优拔尖练一.填空题(共6小题)1.一个工程队规定要在6天内完成300土方的工程,第一天完成了60土方,现在要比原计划至少提前两天完成任务,请列出以后几天平均每天至少要完成的土方数x 应满足的不等式为 . 2.(2021秋•江北区校级期中)据了解,受国庆节期间火爆上映的六部影片的影响,而其相关著作也受到广大书迷朋友的追捧.已知某网上书店《长津湖》的销售单价与《我和我的父辈》相同,《铁道英雄》的销售单价是《五个扑水的少年》单价的3倍,《长津湖》与《五个扑水的少年》的单价和大于50元且不超过60元;若自电影上映以来,《长津湖》与《五个扑水的少年》的日销售量相同,《我和我的父辈》的日销售量为《铁道英雄》日销售量的3倍,《长津湖》与《铁道英雄》的日销售量和为450本,且《长津湖》的日销售量不低于《铁道英雄》的日销售量的且小于230本,《长津湖》与《铁道英雄》的日销售额之和比《我和我的父辈》、《五个扑水的少年》的日销售额之和多2205元,则当《长津湖》、《铁道英雄》这两部小说日销售额之和最多时,《长津湖》的单价为 元.3.(2021春•许昌期末)为了提高学校的就餐效率,巫溪中学实践小组对食堂就餐情况进行调研后发现:在单位时间内,每个窗口买走午餐的人数和因不愿长久等待而到小卖部的人数各是一个固定值,并且发现若开一个窗口,45分钟可使等待的人都能买到午餐,若同时开2个窗口,则需30分钟.还发现,若能在15分钟内买到午餐,那么在单位时间内,去小卖部就餐的人就会减少80%.在学校总人数一定且人人都要就餐的情况下,为方便学生就餐,总务处要求食堂在10分钟内卖完午餐,至少要同时开多少 个窗口.4.(2019春•沙坪坝区校级期末)为迎接建国70周年,某商店购进A,B,C三种纪念品共若干件,且A,B,C三种纪念品的数量之比为8:7:9.一段时间后,根据销售情况,补充三种纪念品后,库存总数量比第一次多200件,且A,B,C三种纪念品的比例为9:10:10.又一段时间后,根据销售情况,再次补充三种纪念品,库存总数量比第二次多170件,且A,B,C三种纪念品的比例为7:6:6.已知第一次三种纪念品总数量不超过1000件,则第一次购进A种纪念品件.5.(2019•沙坪坝区校级二模)临近端午,某超市准备购进某品牌的白粽、豆沙粽、蛋黄粽,三种品种的粽子共1000袋(每袋均为同一品种的粽子),其中白粽每袋12个,豆沙粽每袋8个,蛋黄粽每袋6个.为了推广,超市还计划将三个品种的粽子各取出来,拆开后重新组合包装,制成A、B两种套装进行特价销售:A套装为每袋白粽4个,豆沙粽4个;B套装为每袋白粽4个,蛋黄粽2个,取出的袋数和套装的袋数均为正整数.若蛋黄粽的进货袋数不低于总进货袋数的,则豆沙粽最多购进袋.6.(2020秋•东阳市期末)已知直线y=x+2与函数y=图象交于A,B两点(点A在点B 的左边).(1)点A的坐标是;(2)已知O是坐标原点,现把两个函数图象水平向右平移m个单位,点A,B平移后的对应点分别为A′,B′,连接OA′,OB′.当m=时,|OA'﹣OB'|取最大值.二.解答题(共7小题)7.一次普法知识竞赛共有30道题,规定答对一题得4分,答错或不答倒扣1分,在这次竞赛中,小明获得80分以上,则小明至少答对多少道题?设小明答对x道题,用不等式表示题目中的不等关系.8.若一件商品的进价为500元,标价为750元,商店要求以利润率不低于5%的售价打折出售,问售货员最低打几折出售此商品设打x折,用不等式表示题目中的不等关系.。
一元一次不等式(公开课优秀课件)
实际应用中的一元一次不等式
一元一次不等式在实际生活中 有着广泛的应用,如购物、投 资、工程等领域的决策问题。
解决实际应用中的一元一次不 等式需要将问题转化为数学模 型,然后运用代数法和图像法 求解。
解决实际应用中的一元一次不 等式需要注意问题的实际情况 和限制条件,以及解的可行性 和最优性。
一元一次不等式(公开课优秀课件)
目 录
• 一元一次不等式的定义与性质 • 一元一次不等式的解法 • 一元一次不等式的应用 • 一元一次不等式的扩展
01 一元一次不等式的定义与 性质
一元一次不等式的定义
总结词
一元一次不等式是数学中一种简单的不等式,它只含有一个变量,且变量的指 数为1。
详细描述
一元一次不等式的一般形式为 ax + b > c 或 ax + b < c,其中 a、b、c 是常 数,a ≠ 0。这个不等式表示一个线性函数在某个区间内大于或小于另一个值。
在人口发展过程中,如何预测未来人 口数量,可以通过一元一次不等式来 建立数学模型。
交通流量问题
在道路交通中,如何合理规划红绿灯 时间,ห้องสมุดไป่ตู้保证交通流畅,可以通过一 元一次不等式来求解。
一元一次不等式与其他数学知识的结合
一元一次不等式与函数
一元一次不等式可以看作是函数的值大于或小于某个常数的情况, 因此可以结合函数的性质进行求解。
代数法解一元一次不等式的步骤 包括:去分母、去括号、移项、
合并同类项、化系数为1等。
代数法解一元一次不等式需要注 意不等式的性质,如不等式的可 加性、可乘性、可除性和同向不
八年级一元一次不等式(教师讲义带答案).
第四章一元一次不等式(组)考点一、不等式的概念(3分)1、不等式:用不等号表示不等关系的式子,叫做不等式。
2、不等式的解集:对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解。
3、对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集。
4、求不等式的解集的过程,叫做解不等式。
5、用数轴表示不等式的方法考点二、不等式基本性质(3-5分)1、不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。
2、不等式两边都乘以(或除以)同一个正数,不等号的方向不变。
3、不等式两边都乘以(或除以)同一个负数,不等号的方向改变。
4、说明:①在一元一次不等式中,不像等式那样,等号是不变的,是随着加或乘的运算改变。
②如果不等式乘以0,那么不等号改为等号所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立;考点三、一元一次不等式(6--8分)1、一元一次不等式的概念:一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式。
2、解一元一次不等式的一般步骤:(1)去分母(2)去括号(3)移项(4)合并同类项(5)将x项的系数化为1考点四、一元一次不等式组(8分)1、一元一次不等式组的概念:几个一元一次不等式合在一起,就组成了一个一元一次不等式组。
2、几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集。
3、求不等式组的解集的过程,叫做解不等式组。
4、当任何数x都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集。
5、一元一次不等式组的解法(1)分别求出不等式组中各个不等式的解集(2)利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集。
6、不等式与不等式组不等式:①用符号〉,=,〈号连接的式子叫不等式。
一元一次不等式综合讲义
一元一次不等式综合讲义地区:江苏教材版本:苏教版学生学习情况:一元一次不等式本节课的主要内容1.不等式的认识与不等式的解以及解集2.不等式的基本性质3.一元一次不等式以及一元一次不等式的解4.一元一次不等式组和解集以及不等式组的运用5.知识回顾6.本次作业【知识梳理1】不等式的认识与不等式的解以及解集1. 不等式:用“<”(或“≤”),“>”(或“≥”)等不等号表示大小关系的式子,叫做不等式.用“≠”表示不等关系的式子也是不等式.要点诠释:(1)不等号的类型:①“≠”读作“不等于”,它说明两个量之间的关系是不等的,但不能明确两个量谁大谁小;②“>”读作“大于”,它表示左边的数比右边的数大;③“<”读作“小于”,它表示左边的数比右边的数小;④“≥”读作“大于或等于”,它表示左边的数不小于右边的数;⑤“≤”读作“小于或等于”,它表示左边的数不大于右边的数;(2) 等式与不等式的关系:等式与不等式都用来表示现实世界中的数量关系,等式表示相等关系,不等式表示不等关系,但不论是等式还是不等式,都是同类量比较所得的关系,不是同类量不能比较。
(3) 要正确用不等式表示两个量的不等关系,就要正确理解“非负数”、“非正数”、“不大于”、“不小于”等数学术语的含义。
2.不等式的解:能使不等式成立的未知数的值,叫做不等式的解。
要点诠释:由不等式的解的定义可以知道,当对不等式中的未知数取一个数,若该数使不等式成立,则这个数就是不等式的一个解,我们可以和方程的解进行对比理解,一般地,要判断一个数是否为不等式的解,可将此数代入不等式的左边和右边利用不等式的概念进行判断。
3.不等式的解集:一般地,一个含有未知数的不等式的所有解,组成这个不等式的解集。
求不等式的解集的过程叫做解不等式。
如:不等式14<-x 的解集是5<x . 不等式的解集与不等式的解的区别:解集是能使不等式成立的未知数的取值范围,是所有解的集合,而不等式的解是使不等式成立的未知数的值.二者的关系是:解集包括解,所有的解组成了解集。
人教版七年级数学下册第9章。一元一次不等式组 知识点专题复习讲义
人教版七年级数学下册第9章。
一元一次不等式组知识点专题复习讲义一元一次不等式组知识点专题复讲义一、知识梳理1.知识结构图概念基本性质不等式的解法不等式的定义不等式的解集一元一次不等式的解法实际应用一元一次不等式组的解法二、知识点回顾1.不等式不等式是由不等号连接起来的式子。
常见的不等号有五种:“≠”、“>”、“<”、“≥”、“≤”。
2.不等式的解与解集不等式的解是使不等式成立的未知数的值。
不等式的解集是一个含有未知数的不等式的解的全体。
解集可以在数轴上直观的表示出来,具体表示方法是先确定边界点。
解集包含边界点,是实心圆点;不包含边界点,则是空心圆圈;再确定方向:大向右,小向左。
3.不等式的基本性质1) 不等式的两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。
2) 不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。
3) 不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。
4.一元一次不等式一元一次不等式只含有一个未知数,且未知数的次数是1.系数不等于的不等式叫做一元一次不等式。
其标准形式为:ax+b<或ax+b≤,ax+b>或ax+b≥0(a≠0)。
5.解一元一次不等式的一般步骤1) 去分母;2) 去括号;3) 移项;4) 合并同类项;5) 化系数为1.删除格式错误的段落。
对于每段话,进行小幅度的改写,使其更加通顺易懂。
解一元一次不等式和解一元一次方程类似。
不同的是,一元一次不等式两边同乘以(或除以)同一个负数时,不等号的方向必须改变。
这是解不等式时最容易出错的地方。
例如,解不等式:-2/3x-1≤1/3解:去分母,得(3x-1)-2(3x-1)≤2(不要漏乘!每一项都得乘)去括号,得3x-3-6x+2≤2(注意符号,不要漏乘!)移项,得3x-6x≤2+3-1(移项要变号)合并同类项,得-3x≤4(计算要正确)系数化为1,得x≥-4/3(同除负,不等号方向要改变,分子分母别颠倒了)一元一次不等式组是含有相同未知数的几个一元一次不等式所组成的不等式组。
北师大数学八年级下册第二章-含参数一元一次不等式(组)经典讲义
第03讲_含参数一元一次不等式(组)知识图谱含参数一元一次不等式(组)知识精讲含字母的一元一次不等式(组)未知数的系数含有字母或常数项含有字母的一元一次不等式(组) 未知数的系数含有字母若0a >,axb >的解为b x a >; 若0a <,ax b >的解为bx a<;若0a =,则当0b ≥时,ax b >无解, 当0b <时,ax b >的解为任何实数已知23a ≠,解关于x 的不等式()()14321a x a x ++<-- 原不等式化为:()()13214a x a x +--<--()325a x -<-(1)当320a ->时,即23a >时,不等式的解为523x a <-;(2)当320a -<,即23a <时,不等式的解为523x a >-参数取值范围首先把不等式的解集用含有字母的代数式表示出来,然后把它与已知解集联系起来求解,在求解过程中可以利用数轴进行分析.五.易错点1.注意参数取值范围导致的变号问题.2.分清参数和未知数,不要混淆.3.解连续不等式时要注意拆分为不等式组.三点剖析一.考点:含参的一元一次方程(组).二.重难点:参数与解集之间的关系,整数解问题,不等式与方程综合. 三.易错点:注意参数取值范围导致的变号问题.解含参一元一次不等式(组)例题1、 解关于x 的不等式:ax ﹣x ﹣2>0. 【答案】 当a ﹣1=0,则ax ﹣x ﹣2>0为空集,当a ﹣1>0,则x >21a -,当a ﹣1<0,则x <21a -【解析】 ax ﹣x ﹣2>0. (a ﹣1)x >2,当a ﹣1=0,则ax ﹣x ﹣2>0为空集,当a ﹣1>0,则x >21a -,当a ﹣1<0,则x <21a -.例题2、 已知a 、b 为常数,解关于x 的不等式22ax x b ->+ 【答案】 2a >时,()212b x a +>- 2a <时,()212b x a +<-2a =时,①如果10b +≥,不等式无解;②如果10b +<,则不等式的解为任何实数 【解析】 原不等式可化为()()221a x b ->+,(1)当20a ->,即2a >时,不等式的解为()212b x a +>-; (2)当20a -<,即2a <时,不等式的解为()212b x a +<-;(3)当20a -=,即2a =时,有 ①:如果10b +≥,不等式无解;②如果10b +<,则不等式的解为任何实数.例题3、 已知a 、b 为常数,若0ax b +>的解集为23x >,则0bx a -<的解集是( ) A.32x >B.32x <C.32x >-D.32x <-【答案】 C 【解析】 该题考查的是解不等式.0ax b +>的解集为23x >,化简得2=3b a - 且a>00bx a -<的解集为a x b >,32x >-.所以该题的答案是C .例题4、 已知23a ≠,解关于x 的不等式()()14321a x a x ++<--【答案】 当23a >时,不等式的解为523x a <-;当23a <时,不等式的解为523x a >-【解析】 原不等式化为:()()13214a x a x +--<-- ()325a x -<-,因为23a ≠,所以320a -≠,即32a -为正数或负数.(1)当320a ->时,即23a >时,不等式的解为523x a <-;(2)当320a -<,即23a <时,不等式的解为523x a>-例题5、 已知关于x 的不等式22m mx ->12x ﹣1.(1)当m=1时,求该不等式的解集;(2)m 取何值时,该不等式有解,并求出解集.【答案】 (1)x <2(2)当m≠﹣1时,不等式有解,当m >﹣1时,不等式解集为x <2;当x <﹣1时,不等式的解集为x >2【解析】 (1)当m=1时,不等式为22x ->2x﹣1,去分母得:2﹣x >x ﹣2, 解得:x <2;(2)不等式去分母得:2m ﹣mx >x ﹣2, 移项合并得:(m+1)x <2(m+1), 当m≠﹣1时,不等式有解,当m >﹣1时,不等式解集为x <2; 当m <﹣1时,不等式的解集为x >2.随练1、 解关于x 的不等式22241x x a a a-≥+.【答案】当2a >-且0a ≠时,有2x a ≤-;当2a =-时,x 为任意数不等式都成立; 当2a <-时,有2x a ≥-【解析】 因为0a ≠,所以20a >,将原不等式去分母,整理得()224a x a +≤-.当2a >-且0a ≠时,有2x a ≤-;当2a =-时,x 为任意数不等式都成立;当2a <-时,有2x a ≥-.随练2、 已知23a ≠,解关于x 的不等式()()14321a x a x ++<--.【答案】 当23a >时,不等式的解为523x a <-;当23a <时,不等式的解为523x a >-【解析】 原不等式化为:()325a x -<-,因为23a ≠,所以320a -≠,即32a -为正数或负数. (1)当320a ->时,即23a >时,不等式的解为523x a <-;(2)当320a -<,即23a <时,不等式的解为523x a >-随练3、 解下列关于x 的不等式组:()23262111x a x x x +⎧->⎪⎨⎪+>-⎩;【答案】 13a >时,32x a >+;13a ≤时,3x >【解析】 原不等式组可化为323x a x >+⎧⎨>⎩.当323a +>,即13a >时,不等式组的解集为32x a >+.当323a +≤,即13a ≤时,不等式组的解集为3x >随练4、 已知a ,b 为实数,若不等式ax +b <0的解集为12x >,则不等式b (x -1)-a <0的解集为( )A.x >-1B.x <-1C.a b x b +>D.a b x b+< 【答案】 B【解析】 暂无解析随练5、已知关于x 的不等式()2340a b x a b -+->的解集是1x >.则关于x 的不等式()4230a b x a b -+->的解集是____________.【答案】 13x <-【解析】 ()2340a b x a b -+->, 移项得:()232a b x a b ->-,由已知解集为1x >,得到20a b ->,变形得:322a bx a b ->-,可得:3212a ba b-=-,整理得:a b =, ()4230a a x a a ∴-+->,即0a >,∴不等式()4230a b x a b -+->可化为()4230a a x a a -+->. 两边同时除以a 得:31x ->,解得:13x <-.随练6、 已知实数a 是不等于3的常数,解不等式组2x 3311x 2a x 022-+-⎧⎪⎨-+⎪⎩≥()< ,并依据a 的取值情况写出其解集. 【答案】 当a >3时,不等式组的解集为x ≤3,当a <3时,不等式组的解集为x <a【解析】 2x 3311x 2a x 022-+-⎧⎪⎨-+⎪⎩≥(①②)<, 解①得:x ≤3,解①得:x <a ,∵实数a 是不等于3的常数,∴当a >3时,不等式组的解集为x ≤3, 当a <3时,不等式组的解集为x <a .随练7、 关于x 的不等式组2131x a x +>⎧⎨->⎩.(1)若不等式组的解集是1<x <2,求a 的值;(2)若不等式组无解,求a 的取值范围. 【答案】 (1)a=3;(2)a≤2【解析】 (1)解不等式2x+1>3得:x >1, 解不等式a ﹣x >1得:x <a ﹣1, ∵不等式组的解集是1<x <2,∴a ﹣1=2, 解得:a=3;(2)∵不等式组无解, ∴a ﹣1≤1, 解得:a≤2.参数与解集之间的关系例题1、 若关于x 的一元一次不等式组011x a x x ->⎧⎨->-⎩无解,则a 的取值范围是 .【答案】 a≥2.【解析】 由x ﹣a >0得,x >a ;由1﹣x >x ﹣1得,x <1, ∵此不等式组的解集是空集, ∴a≥1.例题2、 已知关于x 的不等式组301(2)342x a x x -≥⎧⎪⎨->+⎪⎩有解,求实数a 的取值范围,并写出该不等式组的解集.【答案】 a <﹣6,3a≤x <﹣2.【解析】 解不等式3x ﹣a≥0,得:x≥3a,解不等式12(x ﹣2)>3x+4,得:x <﹣2,由题意得:3a<﹣2,解得:a <﹣6,∴不等式组的解集为3a≤x <﹣2.例题3、 如果关于x 的不等式(a+1)x >a+1的解集为x <1,那么a 的取值范围是( ) A.a <﹣1 B.a <0 C.a >﹣1 D.a >0或a <﹣1 【答案】 A【解析】 (a+1)x >a+1, 当a+1>0时,x >1, 当a+1<0时,x <1, ∵解集为x <1, ∴a+1<0, a <﹣1. 故选:A .例题4、 当1≤x≤4时,mx ﹣4<0,则m 的取值范围是( ) A.m >1 B.m <1 C.m >4 D.m <4 【答案】 B【解析】 设y=mx ﹣4,由题意得,当x=1时,y <0,即m ﹣4<0, 解得m <4,当x=4时,y <0,即4m ﹣4<0, 解得,m <1,则m 的取值范围是m <1,例题5、 若不等式(a ﹣3)x >1的解集为x <13a -,则a 的取值范围是 .【答案】 a <3.【解析】 ∵(a ﹣3)x >1的解集为x <13a -, ∴不等式两边同时除以(a ﹣3)时不等号的方向改变, ∴a ﹣3<0, ∴a <3.故答案为:a <3.例题6、 如果关于x 的不等式()122a x a +>+的解集是2x <,则a 的取值范围是( ) A.0a < B.1a <-C.1a >D.1a >-【答案】 B【解析】 将原不等式与其解集进行比较,在不等式的变形过程中利用了不等式的性质三,因此有10a +<,故1a <-例题7、 若不等式组()322110b x x a -<--⎧⎨->⎩的解集为﹣2<x <4,求出a 、b 的值.【答案】 a=﹣10,b=3.【解析】 解不等式10﹣x <﹣(a ﹣2),得:x >a+8,解不等式3b ﹣2x >1,得:x <312b -,∵解集为﹣2<x <4, ∴314282a b ⎧⎪⎨-=+=-⎪⎩,解得:a=﹣10,b=3.随练1、 已知关于x 的不等式(m -2)x >2m -4的解集为x <2,则m 的取值范围是________. 【答案】 m <2【解析】 不等式(m -2)x >2m -4的解集为x <2, ∴m -2<0,m <2.随练2、 关于x 的不等式组()3141x x x m ⎧->-⎪⎨<⎪⎩的解集为x <3,那么m 的取值范围是 .【答案】 m≥3【解析】 ()3141x x x m ->-⋅⋅⋅⎧⎪⎨<⋅⋅⋅⎪⎩①②,解①得x <3,∵不等式组的解集是x <3, ∴m≥3.故答案是:m≥3.随练3、 若关于x 的一元一次不等式组202x m x m -<⎧⎨+>⎩有解,则m 的取值范围为( )A.23m >-B.23m ≤C.23m >D.23m ≤-【答案】 C【解析】 202x m x m -<⎧⎨+>⎩①②,解不等式①得,x <2m , 解不等式②得,x >2-m , ∵不等式组有解, ∴2m >2-m ,∴23m >.随练4、 若不等式组0422x a x x +⎧⎨->-⎩≥有解,则实数a 的取值范围是( )A.a≥-2B.a <-2C.a≤-2D.a >-2【答案】 D【解析】 0422x a x x +⎧⎨->-⎩≥,解不等式x +a≥0得,x≥-a ,由不等式4-2x >x -2得,x <2,∵不等式组:不等式组0422x a x x +⎧⎨->-⎩≥有解,∴a >-2,随练5、 已知不等式31(x ﹣m )>2﹣m . (1)若上面不等式的解集为x >3,求m 的值.(2)若满足x >3的每一个数都能使上面的不等式成立,求m 的取值范围. 【答案】 (1)23(2)m≥23 【解析】 (1)解不等式可得x >6﹣2m ,∵不等式的解集为x >3, ∴6﹣2m=3,解得m=23;(2)∵原不等式可化为x >6﹣2m ,满足x >3的每一个数都能使不等式成立, ∴6﹣2m≤3,解得m≥23.整数解问题例题1、 关于x 的不等式-1<x≤a 有3个正整数解,则a 的取值范围是________. 【答案】 3≤a <4【解析】 ∵不等式-1<x≤a 有3个正整数解, ∴这3个整数解为1、2、3, 则3≤a <4.例题2、 关于x 的不等式0x b ->恰有两个负整数解,则b 的取值范围是( ) A.32?b -<<- B.32?b -<≤- C.32b -≤≤- D.32b -≤<- 【答案】 D【解析】 本题主要考查一元一次不等式及其解法。
9.2 一元一次不等式(1).doc
9.2 一元一次不等式第1课时 一元一次不等式活动一. 知识点1.含有________个未知数,未知数的次数是________的不等式,叫做一元一次不等式.2.类比一元一次方程的解法步骤,掌握一元一次不等式的解法步骤:(1)去分母;(2)______;(3)移项;(4)合并同类项;(5)____________.活动二. 典例精讲知识点1:一元一次不等式的定义例1.下列不等式中哪一个不是一元一次不等式( )A .x >3B .-y +1>y C.1x>2 D .2x >1 知识点2:一元一次不等式的定义和其解法例2.若(m +1)x |m |+2>0是关于x 的一元一次不等式,则m 的取值是________,此不等式的解集为________.知识点3:解一元一次不等式例3.解不等式:(1) 3x -1>5+x . (2)3(x -1)>2x +2.练习:1.下列不等式中哪一个不是一元一次不等式( )A .3x -2>4B .2y >4C .2x<5 D .2<3x +17 2.若(m -2)x 2m +1-1>5是关于x 的一元一次不等式,则该不等式的解集为________.活动三 . 基础巩固1.下列不等式是一元一次不等式的是( )A .2(1-y )+y >4y +2B .x 2-2x -1<0C .12+13>16D .x +1<x +2 2.不等式2x <4的解集是( )A .x >2B .x <2C .x >-2D .x <-23.不等式12x +1<3的正整数解有( ) A .1个 B .2个 C .3个 D .4个4.关于x 的方程4x -2m +1=5x -8的解是负数,则m 的取值范围是( )A .m >92B .m <0C .m <92D .m >05.解不等式:(1)5x +3<3(2+x ). (2)2(x +1)-1≥3x +2.(3)5x +15>4x -1. (4)-2x +2<x +17.活动四. 课堂反馈6.不等式13(x -m )>2-m 的解集为x >2,则m 的值为( ) A .4 B .2 C .32 D .127.若12x 2m -1-8>5是关于x 的一元一次不等式,则m =________.8.不等式5x -12≤2(4x -3)的负整数解是____________.9.已知不等式12x -3≥2x 与不等式3x -a ≤0解集相同,则a =________.10.关于x 的方程ax =3x -5有负数解,则a 的取值范围是________.培优训练11.已知x =12是方程6(2x +m )=3m -6的解,求关于x 的不等式mx +2>m (1-2x )的解集.。
第5讲 一元一次不等式八年级数学下册同步讲义(北师大版)
第5讲一元一次不等式1.掌握不等式的基本性质并能正确运用它们将不等式变形;2.理解不等式的解,不等式的解集,解不等式的概念,掌握在数轴上表示不等式的解的集合的方法;3.掌握解一元一次不等式的方法和步骤并准确地求出不等式的解集.知识点01 不等式的相关概念1.不等式用不等号连接起来的式子叫做不等式.常见的不等号有五种:“≠”、“>” 、“<” 、“≥”、“≤”.2.不等式的解与解集不等式的解:使不等式成立的未知数的值,叫做不等式的解.不等式的解集:一个含有未知数的不等式的解的全体,叫做不等式的解集.不等式的解集可以在数轴上直观的表示出来,具体表示方法是先确定边界点:解集包含边界点,是实心圆点;不包含边界点,则是空心圆圈;再确定方向:大向右,小向左.3.解不等式求不等式的解集的过程或证明不等式无解的过程,叫做解不等式.要点诠释:不等式的解与一元一次方程的解是有区别的:不等式的解是不确定的,是一个范围,而一元一次方程的解则是一个具体的数值.【知识拓展】(2021春•萍乡期末)“实数x不小于6”是指()A.x≤6 B.x≥6 C.x<6 D.x>6【即学即练】(2021春•建平县期末)据天气预报,2021年7月5日建平县最高气温是25℃,最低气温是22℃,则当天我县气温t(℃)的变化范围是()A.t>25 B.t≤22 C.22<t<25 D.22≤t≤25知识点02 不等式的性质性质1:不等式两边加上(或减去)同一个数(或式子),不等号的方向不变,即如a>b,那么a±c>b±c.性质2:不等式两边乘以(或除以)同一个正数,不等号的方向不变,即如果a>b,c>0,那么ac>bc(或a c>bc).知识精讲目标导航性质3:不等式两边乘以(或除以)同一个负数,不等号的方向改变,即如果a >b ,c <0,那么ac <bc (或a c<b c). 要点诠释:(1)不等式的其他性质:①若a >b ,则b <a ;②若a >b ,b >c ,则a >c ;③若a ≥b ,且b ≥a ,•则a=b ;④若a 2≤0,则a=0;⑤若ab >0或0a b >,则a 、b 同号;⑥若ab <0或0ab<,则a 、b 异号. (2)任意两个实数a 、b 的大小关系:①a -b >O ⇔a >b ;②a -b=O ⇔a=b ;③a-b <O ⇔a <b .不等号具有方向性,其左右两边不能随意交换:但a <b 可转换为b >a ,c ≥d 可转换为d ≤c . 【知识拓展1】(2021春•饶平县校级期末)若2a +3b ﹣1>3a +2b ,试比较a ,b 的大小.【即学即练1】(2021•梁园区校级一模)若a >b >0,c >d >0,则下列式子不一定成立的是( ) A .a ﹣c >b ﹣dB .C .ac >bcD .ac >bd【即学即练2】(2021秋•澧县期末)若a >b ,则﹣2a ﹣2b .(用“<”号或“>”号填空) 【即学即练3】(2021春•万柏林区校级月考)利用不等式的性质,解答下列问题. (1)①如果a ﹣b <0,那么a b ; ②如果a ﹣b =0,那么a b ; ③如果a ﹣b >0,那么a b ; (2)比较2a 与a 的大小. (3)若a >b ,c >d . ①比较a +c 与b +d 的大小; ②比较a ﹣d 与b ﹣c 的大小.【即学即练4】(2021春•未央区校级月考)若m<n,且(a﹣5)m>(a﹣5)n,求a的取值范围.【即学即练5】(2021春•饶平县校级期末)根据要求,回答下列问题:(1)由2x>x﹣,得2x﹣x>﹣,其依据是;(2)由x>x﹣,得2x>6x﹣3,其依据是;(3)不等式x>(x﹣1)的解集为.【即学即练6】(2021•连州市模拟)已知a>b,则下列结论正确的是()A.﹣2a>﹣2b B.a+c>b+c C.3a<3b D.ac>bc【即学即练7】(2021春•潍坊期末)若a>b,则下列不等式一定成立的是.A.a+2>b+2 B.<C.﹣2a<﹣2b D.a2<b2【即学即练8】(2021•内江)已知非负实数a,b,c满足==,设S=a+2b+3c的最大值为m,最小值为n,则的值为.知识点03 一元一次不等式1.一元一次不等式的概念只含有一个未知数,且未知数的次数是1,系数不等于0的不等式叫做一元一次不等式.其标准形式:ax+b>0(a≠0)或ax+b≥0(a≠0) ,ax+b<0(a≠0)或ax+b≤0(a≠0).2.一元一次不等式的解法一元一次不等式的解法与一元一次方程的解法类似,•但要特别注意不等式的两边都乘以(或除以)同一个负数时,不等号要改变方向.解一元一次不等式的一般步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)化系数为1.要点诠释:解一元一次不等式和解一元一次方程类似.不同的是:一元一次不等式两边同乘以(或除以)同一个负数时,不等号的方向必须改变,这是解不等式时最容易出错的地方.【知识拓展1】(2021春•皇姑区校级期中)若x2m﹣1>5是关于x的一元一次不等式,则m=.【即学即练1】(2021春•饶平县校级期末)已知(b+2)x b+1<﹣3是关于x的一元一次不等式,试求b的值,并解这个一元一次不等式.【即学即练2】(2021春•平川区校级期末)在数学表达式:﹣4<0,2x+y>0,x=1,x2+2xy+y2,x≠5,x+2>y+3中,是一元一次不等式的有()A.1个B.2个C.3个D.4个【即学即练3】(2021•南岗区校级开学)下列各式中,是一元一次不等式的有()(1)x+2+x2<2x﹣5+x2;(2)2x+xy+y;(3)3x﹣4y≥0;(4)﹣5<x;(5)x≠0;(6)a2+1>5.A.1个B.2个C.3个D.4个【即学即练4】(2021春•甘孜州期末)下列不等式中,是一元一次不等式的是()A.x<y B.a2+b2>0 C.>1 D.<0【即学即练5】(2021春•冠县期末)若(m+1)x|m|+2>0是关于x的一元一次不等式,则m=.【知识拓展2】(2021秋•肇源县期末)若不等式组无解,则a的取值范围是.【即学即练1】(2021•滕州市一模)下列各数中,不是不等式2(x﹣3)+3<0的一个解的是()A.﹣3 B.C.D.2【即学即练2】(2021•河南模拟)用三个不等式x>﹣4,x<﹣1,x>1中的两个组成不等式组,其中有解集的个数为()A.0 B.1 C.2 D.3【即学即练3】(2021•新野县三模)已知关于x的不等式组有实数解,则m的取值范围是.【即学即练4】(2021春•沭阳县期末)如图,是关于x的不等式的解集示意图,则该不等式的解集为.【即学即练5】(2021春•陆河县校级期末)如图,此不等式的解集为.【即学即练6】(2021春•天津期末)分别用含x的不等式表示如图数轴中所表示的不等式的解集:②;②.【即学即练7】(2021•潮阳区模拟)把某个关于x的不等式的解集表示在数轴上如图所示,则该不等式的解集是()A.x≥﹣2 B.x>﹣2 C.x<﹣2 D.x≤﹣2【即学即练8】(2021春•抚州期末)在实数范围内规定新运算“*”,基本规则是a*b=a﹣2b,已知不等式x*m≤3的解集在数轴上表示如图所示,则m的值为.【即学即练9】(2021春•饶平县校级期末)解不等式7﹣2x>(1﹣)2,把它的解集在数轴上表示出来,并求出它的正整数解.【即学即练10】(2019•衢江区二模)如图,在数轴上,点A、B分别表示数1和﹣2x+3.(1)求x的取值范围;(2)将x的取值范围在数轴上表示出来.【知识拓展3】(2021秋•龙凤区校级期末)若不等式(3a﹣2)x+2<3的解集是x<2,那么a必须满足()A.a=B.a>C.a<D.a=﹣【即学即练1】(2021秋•济南期末)不等式﹣3x≤6的解集为.【即学即练2】(2021秋•鹿城区校级期中)若不等式(m﹣3)x>m﹣3,两边同除以(m﹣3),得x<1,则m的取值范围为.【即学即练3】(2021秋•肇源县期末)若关于x的方程x+k=2x﹣1的解是负数,则k的取值范围是()A.k>﹣1 B.k<﹣1 C.k≥﹣1 D.k≤﹣1【即学即练4】(2021•安徽模拟)解不等式≤.【即学即练5】(2021•永定区模拟)解不等式:7x﹣2≤5x,并把解集在数轴上表示出来.【即学即练6】(2021秋•清镇市期中)已知点M(﹣6,3﹣a)是第二象限的点,则a的取值范围是.【知识拓展4】(2021•陕西)求不等式﹣x+1>﹣2的正整数解.【即学即练1】(2021•长兴县模拟)整数x满足不等式2x+1<8,则x的值可能是.(写出一个符合的值即可)【即学即练2】(2021春•聊城期末)解不等式,并写出它的负整数解.【即学即练3】(2021春•鞍山期末)解不等式(1﹣2x )≥;并写出它所有的非负整数解.【即学即练4】(2021秋•朝阳区校级期中)不等式4(x ﹣2)<2x ﹣3的非负整数解的个数为( ) A .2个B .3个C .4个D .5个1.比较a b +和a b -的大小.2.等式()()52186117x x -+<-+的最小整数解是方程24x ax -=的解,求a 的值.3.解不等式:11315111x x x x ++>+-++.能力拓展分层提分题组A 基础过关练一.选择题(共4小题)1.(2021秋•龙凤区校级期末)若不等式(3a﹣2)x+2<3的解集是x<2,那么a必须满足()A.a=B.a>C.a<D.a=﹣2.(2021•锦江区校级开学)若a>b,则下列不等式不一定成立的是()A.﹣2a<﹣2b B.am<bm C.a﹣3>b﹣3 D.3.(2021秋•龙凤区期末)已知a<b,则下列不等式错误的是()A.a﹣7<b﹣7 B.ac2<bc2C.D.1﹣3a>1﹣3b4.(2021秋•杜尔伯特县期末)若m<n,则下列各式正确的是()A.﹣2m<﹣2n B.C.1﹣m>1﹣n D.m2<n2二.填空题(共6小题)5.(2021秋•肇源县期末)若不等式组无解,则a的取值范围是.6.(2021秋•瓯海区月考)根据“3x与5的和是负数”可列出不等式.7.(2021秋•青羊区校级期中)﹣<x<的所有整数的和是.8.(2021秋•济南期末)不等式﹣3x≤6的解集为.9.(2021秋•澧县期末)若a>b,则﹣2a﹣2b.(用“<”号或“>”号填空)10.(2020秋•开化县期末)若x<y,且(a﹣3)x≥(a﹣3)y,则a的取值范围是.三.解答题(共2小题)11.(2021春•澄城县期末)已知(k+3)x|k|﹣2+5<k﹣4是关于x的一元一次不等式,求这个不等式的解集.12.(2021春•秦都区月考)解不等式:3x ﹣4<4+2(x ﹣2).题组B 能力提升练一、单选题1.在数学表达式:30-<,+a b ,3x =,222x xy y ++,5x ≠,23x y +>+中,是一元一次不等式的有( ). A .1个B .2个C .3个D .4个2.不等式x ﹣3≤3x+1的解集在数轴上表示如下,其中正确的是( ) A .B .C .D .3.不等式2﹣3x≥2x﹣8的非负整数解有( ) A .1个B .2个C .3个D .4个4.如图,是关于x 的不等式2x ﹣a≤﹣1的解集,则a 的取值是( )A .a≤﹣1B .a≤﹣2C .a=﹣1D .a=﹣25.已知关于x 的不等式(1)2a x ->的解集为21x a<-,则a 的取值范围是( ) A .0a >B .1a >C .0a <D .1a <6.若方程3(1)1(3)5m x m x x ++=--的解是正数,则m 的取值范围是( )A .54m >B .54m <C .54m >-D .54m <-7.若关于x 的不等式mx m nx n +<-+的解集为23x >-,则关于x 的不等式2mx m nx n ->-的解集是( ) A .43x >B .43x <C .43x >-D .43x <-二、填空题8.不等式5x-9≤3(x+1)的解集是________.9.已知不等式3x -0a ≤的正整数解恰是1,2,3,4,那么a 的取值范围是_________________. 10.不等式112943x x ->+的正整数解的个数为___________________. 11.当x _____________时,21x -的值小于32x +的值. 12.不等式442x x ->-的最小整数解为_____. 13.(1)已知x a <的解集中的最大整数为3,则a 的取值范围是________. (2)已知x a >的解集中最小整数为-2,则a 的取值范围是________.14.若不等式2113x -≤中的最大值是m ,不等式317x --≤-中的最小值为n ,则不等式nx mn mx +<的解集是________. 三、解答题15.解一元一次不等式532122x x ++-<.16.解不等式,并把不等式的解集在数轴上表示出来. (1)6327x x ->-; (2)21123x x -+-≤.17.已知,关于x的不等式(2a-b)x+a-5b>0的解集为x<10 7.(1)求ba的值.(2)求关于x的不等式ax>b的解集.题组C 培优拔尖练1.列式计算:求使的值不小于的值的非负整数x.2.已知不等式5(x﹣2)﹣9>7(x﹣11)+36,它的最大整数解恰好是方程x﹣ax=20的解,求a的值.3.为了保护环境,池州海螺集团决定购买10台污水处理设备,现有H和G两种型号设备,其中每台价格及月处理污水量如下表:H G价格(万元/台)1512处理污水量(吨/月)250220经预算,海螺集团准备购买设备的资金不高于130万元.(1)请你设计该企业有几种购买方案?(2)哪种方案处理污水多?。
一元一次不等式知识要点及典型题目讲解-
一元一次不等式知识要点及典型题目讲解一、全章教学内容及要求1、理解不等式的概念和基本性质2、会解一元一次不等式,并能在数轴上表示不等式的解集3、会解一元一次不等式组,并能在数轴上表示不等式组的解集二、技能要求1、会在数轴上表示不等式的解集。
2、会运用不等式的基本性质(或不等式的同解原理)解一元一次不等式。
3、掌握一元一次不等式组的解法,会运用数轴确定不等式组的解集。
三、重要的数学思想:1、通过一元一次不等式解法的学习,领会转化的数学思想。
2、通过在数轴上表示一元一次不等式的解集与运用数轴确定一元一次不等式组的解集,进一步领会数形结合的思想。
四、主要数学能力1、通过运用不等式基本性质对不等式进行变形训练,培养逻辑思维能力。
2、通过一元一次不等式解法的归纳及一元一次方程解法的类比,培养思维能力。
3、在一元一次不等式,一元一次不等式组解法的技能训练基础上,通过观察、分析、灵活运用不等式的基本性质,寻求合理、简捷的解法,培养运算能力。
五、类比思想:把两个(或两类)不同的数学对象进行比较,如果发现它们在某些方面有相同或类似之处,那么就推断它们在其他方面也可能有相同或类似之处。
这种数学思想通常称为“类比”,它体现了“不同事物之间存在内部联系”的唯物辩证观点,是发现数学真理和解题方法的重要手段之一,在数学中有着广泛的运用。
在本章中,类比思想的突出运用有:1、不等式与等式的性质类比。
对于等式(例如a=b)的性质,我们比较熟悉。
不等式(例如a>b或a<b)与等式虽然是不同的式子,表达的也是不同的数量关系,但它们在形式上显然有某些相同或类似的地方,于是可推断在性质上两者也可能有某些相同或类似之处。
这就是“类比”思想的运用之一,它也是我们探索不等式性质的基本途径。
等式有两个基本性质:1、等式两边都加上(或减去)同一个数或同一个整式,等号不变。
(即两边仍然相等)。
2、等式两边都乘以(或除以)同一个不等于0的数,符号不变(即两边仍然相等)。
一元一次不等式和一元一次不等式组讲义
一元一次不等式和一元一次不等式组知识点一:不等式1、 不等式的基本性质性质1:不等式的两边同时加上(或减去)同一个数或同一个整式,不等号方向不改变。
若a>b ,则a+c>b+c (a-c>b-c )。
性质2:不等式的两边同时乘以(或除以)同一个正数,不等号方向不变。
若a>b 且c>0,则ac>bc 。
性质3:不等式的两边同时乘以(或除以)同一个负数,不等号方向改变。
若a>b 且c<0,则ac<bc 。
2、同解不等式:如果几个不等式的解集相同,那么这几个不等式称为同解不等式。
知识点二:一元一次不等式1、定义:像276x x -<,39x ≤等只含有一个未知数,且含未知数的式子是整式,未知数的次数是1,系数不为0,这样的不等式叫做一元一次不等式。
2、一元一次不等式的标准形式: 0ax b +>(0a ≠)或0ax b +<(0a ≠)。
3、一元一次不等式组的解集确定:若a>b则(1)当⎩⎨⎧>>b x a x 时,则a x >,即“大大取大” (2)当⎩⎨⎧<<bx a x 时,则b x <,即“小小取小”(3)当⎩⎨⎧><b x a x 时,则a x b <<,即“大小小大取中间”(4)当⎩⎨⎧<>b x a x 时,则无解,即“大大小小取不了” 知识点三:一元一次不等式组由含有同一未知数的几个一元一次不等式组合在一起,叫做一元一次不等式组。
如:, 。
要点诠释: 在理解一元一次不等式组的定义时,应注意两点:(1)不等式组里不等式的个数并未规定,只要不是一个,两个、三个、四个等都行;(2)在同一不等式组中的未知数必须是同一个,不能在这个不等式中是这个未知数,而在另一个不等式中是另一个未知数。
知识点四:一元一次不等式组的解集组成一元一次不等式组的几个不等式的解集的公共部分叫做一元一次不等式组的解集.(1)求几个一元一次不等式的解集的公共部分,通常是利用数轴来确定的,公共部分是指数轴上被各个不等式解集的区域都覆盖的部分。
2015-1-7一元一次不等式(组)基础讲义含答案
一元一次不等式(组)(讲义)一、知识点睛1. 不等式的概念:用符号>,<,≥,≤,≠连接的式子叫做不等式.“≥”叫大于或等于,也叫不小于;“≤”叫小于或等于,也叫不大于.2.不等式的基本性质:..4.①不等式的两边都加上(或减去)同一个代数式,不等号的方向不变; ②不等式的两边都乘以(或除以)同一个正数,不等号的方向不变; ③不等式的两边都乘以(或除以)同一个负数,不等号的方向要改变.3.不等式的解与不等式的解集:使不等式成立的未知数的值;,叫做不等式的解;含有未知数的不等式的所有解,组成这个不等式的解集,通常用“xa >”或“x a <”的形式表示.不等式的解集可以在数轴上表示,需要注意实心圆点和空心圆圈的区别.4.求不等式解集的过程叫做解不等式.5. 一元一次不等式:不等式的左右两边都是整式,只含有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式.6.一元一次不等式组及其解法.一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一个一元一次不等式组.一元一次不等式组中各个不等式的解集的公共部分,叫做这个不等式组的解集.求不等式组解集的过程,叫做解不等式组. 二、精讲精练.1. a 的5倍与3的差不小于10,用不等式表示为____________.2. 某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分.已知小明在这次竞赛中的成绩超过90分,设他答对了n 道题,则根据题意可列不等式_______________.3.判断正误. (1)2≤3;( ) (2)由2x >-6,得3x <-; ( )(3)由ac bc >,且c ≠0,得a b >;( ) (4)如果0a b <<,则1ab<.( ) 4.已知ab >,c ≠0,则下列关系一定成立的是( )A .ac bc >B .a bc c> C .c a c b ->- D .c a c b +>+5. 若x a =是不等式5x +125≤0的解,则a 的取值范围是_________________.6. 不等式10x +<的解集在数轴上表示正确的是( )A .B .C .D .7.若关于x的不等式0x a -≤的解集如图所示,则a =_______.8. 若关于x 的不等式325m x -<的解集是2x >,则m =______.9. 不等式x ≤1的非负整数解是____________;不等式1x >-的最小整数解是___________. 10. 解下列不等式,并把它们的解集分别表示在数轴上.(1)2125x x --<; (2)53432x x ++-≤; (3)69251332x x x +-+-≤; (4)532122x x ++->.11. 在不等式0ax b +>中,a ,b 是常数,且a ≠0,当______时,不等式的解集是bx a>-;当_______时,不等式的解集是b xa<-. 12. 不等式84632x x x+->+的非负整数解为________________.13. 若不等式x a <只有4个正整数解,则a 的取值范围是________________. 14. 若不等式x a ≥只有2个负整数解,则a 的取值范围是________________. 15. 解下列不等式组,并把它们的解集分别表示在数轴上.(1)213821x x x +>-⎧⎨--⎩≤; (2)239253x x x x+<-⎧⎨-<⎩; (3)211132x +-<-<; (4)513(1)2151132x x x x ->+⎧⎪-+⎨-⎪⎩≥;(5)273(1)234425533x x x x x x ⎧⎪-<-⎪+⎪<⎨⎪⎪--+⎪⎩≤.16. 若不等式组420x a x >⎧⎨->⎩的解集是12x -<<,则a =________.17. 如果不等式组2123x a x b -<⎧⎨->⎩的解集是11x -<<,那么(1)(1)a b +-=_____________.18. 如果一元一次不等式组>2>x x a ⎧⎨⎩的解集是2x >,那么a 的取值范围是( )A .2a >B .2a ≥C .2a ≤D .2a <19. 如果不等式组8>41x x x m+-⎧⎨⎩≤的解集是3x <,那么m 的取值范围是( )A .3m ≥B .3m ≤C .3m =D .3m <一元一次不等式(组(随堂测试)1. 解不等式组240312123x x x +⎧⎪+-⎨<⎪⎩≥,并把它的解集表示在数轴上.2. 不等式351222x x -++≤的最小整数解为_________. 3. 如果不等式组2223x a x b ⎧--⎪⎨⎪-⎩≤≤的解集是01x ≤≤,那么a b +的值为____________.一元一次不等式(组)基础(作业)20. 下列说法中,错误的是( )A .不等式2x <的正整数解有一个B .2-是不等式210x -<的一个解C .不等式39x ->的解集是3x >-D .不等式10x <的整数解有无数个 21. 若0a b >>,c ≠0,则下列式子一定成立的是( )A .a c b c -<-B .1a b <C .22a b ->-D .22a bc c>22. 已知点M (12m -,1m -)关于x 轴的对称点在第一象限,则m 的取值范围在数轴上表示正确的是( )A .B . C, D,23. 若一组数据3,4,6,8,x 的中位数是x ,且x 是满足不等式组3050x x -⎧⎨->⎩≥的整数,则这组数据的平均数是___________.24. 若不等式22x a -+≥的解集是1x ≤,则a 的值是_________.25. 若不等式20x a -≤只有4个正整数解,则a 的取值范围是________________.26. 若不等式组2>31<1x n x m +⎧⎨+-⎩的解集是12x -<<,则m n -=____.27. 若关于x 的不等式组8236x x x a +>+⎧⎨⎩≤的解集是2x <,则a 的取值范围是_________.28. 篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分.某队预计在2013~2014赛季全部32场比赛中至少得到48分,才有希望进入季后赛.若设这个队在将要举行的比赛中胜x 场,则x 应满足的关系式是_____________.29. 解下列不等式,并把它们的解集分别表示在数轴上.(1)521293x x --≤; (2)3221145x x --+≤; (3)321132x x -+<-;(4)326381236x x x -----≤.30. 解下列不等式组,并把它们的解集分别表示在数轴上.(1)73(1)5213122x x x x -+<-⎧⎪⎨-⎪⎩≥;(2)3(2)412>13x x x x --⎧⎪+⎨-⎪⎩≥;(3)4513777x -<--≤; (4)63315x xxx -⎧⎪-⎨<--⎪⎩≤.一元一次不等式(组)应用(讲义) 一、知识点睛1. 解一元一次不等式组的口诀:大大取大、小小取小、大小小大中间找、大大小小找不着.2.不等式应用题的三种常见类型①关键词型:不超过,至少,不低于,多于等;②不空不满型:不空也不满等;③方案设计型:原材料供应,容器容量. 二、精讲精练1.解下列不等式组.(1)42313(1)x x x x +⎧+⎪⎨⎪+<-⎩≥;(2)3(2)81213x x x x --⎧⎪+⎨>-⎪⎩≥; (3)523132x x x +⎧⎪+⎨>⎪⎩≥;(4)12(1)2235xx x x ⎧+>-⎪⎪⎨+⎪⎪⎩≥.2.如果一元一次不等式组213(1)x x x m->-⎧⎨⎩≤的解集是2x <,那么m 的取值范围是( )A .2m =B .2m >C .2m <D .2m ≥3.若关于x 的一元一次不等式组712x ax x >⎧⎨+<-⎩有解,则a 的取值范围是( )A .2a -≤B .2a >-C .12a<-D .12a -≤ 4.若关于x 的一元一次不等式组122x ax x <⎧⎨-<-⎩无解,则a 的取值范围是( )A .1a -≥B .1a >-C .1a ≤D .1a <5.若关于x 的一元一次不等式组721x mx <⎧⎨-<⎩的整数解共有3个,则m 的取值范围是( )A .67m <<B .67m <≤C .67m ≤≤D .67m <≤6.为鼓励学生参加体育锻炼,学校计划购买一批篮球和排球,已知篮球的单价为96元,排球的单价为64元,若用不超过 3 200元去购买篮球和排球共36个,且要求购买的篮球多于25个,则至少购买排球_______________个.7. 用若干辆载重量为8吨的汽车运一批货物,若每辆汽车只装4吨,则剩下20吨货物;若每辆汽车装满8吨,则最后一辆汽车不满也不空.那么汽车共有___________辆.8.“亚洲足球俱乐部冠军联赛”期间,河南球迷一行56人从旅馆乘车到天河球场为广州恒大加油.现有A ,B 两个车队,A 队比B 队少3辆车.若全部安排乘A 队的车,每辆坐5人,车不够,每辆坐6人,有的车未坐满;若全部安排乘B 队的车,每辆坐4人,车不够,每辆坐5人,有的车未坐满.则A 队有车___________辆.9.某工厂现有甲种原料360kg ,乙种原料290kg ,计划利用这两种原料生产A ,B 两种产品共50件.已知生产一件A ,B 产品所需原料如下表所示.(1)设生产x 件A 种产品,写出x 应满足的不等式组; (2)有哪几种符合题意的生产方案?请你帮助设计.10. 某工厂现有甲种布料70米,乙种布料52米,计划利用这两种布料生产A ,B 两种型号的时装共80套..利用现有布料,工厂能否完成任务?若能,请设计出所有可能的生产方案;若不能,请说明理由.11. 某仓库有甲种货物360吨,乙种货物290吨,计划用A ,B 两种货车共50辆将这批货物运往外地.若一辆A种货车能装载甲种货物9吨和乙种货物3吨;一辆B 种货车能装载甲种货物6吨和乙种货物8吨.则有哪几种运输方案?请设计出来.12. 在家电下乡活动中,某厂家计划将100台冰箱和54台电视机送到乡下.现租用甲、乙两种货车共8辆将这批家电全部运走,已知一辆甲种货车可同时装冰箱20台,电视机6台,一辆乙种货车可同时装冰箱8台,电视机8台.则将这批家电一次性运到目的地,有几种租用货车的方案?一元一次不等式(组)应用(随堂测试)4. 若关于x 的不等式组3352x x x a++⎧>⎪⎨⎪⎩≤的解集为3x <-,则a 的取值范围是( )A .3a =-B .3a >-C .3a <-D .3a -≥5. 某工厂现有甲种原料280kg ,乙种原料190kg ,计划利用这两种原料生产A ,B 两种产品50件.已知生产一件A 产品需甲种原料7kg ,乙种原料3kg ;生产一件B 产品需甲种原料3kg ,乙种原料5kg .则该工厂有哪几种生产方案?请你设计出来.一元一次不等式(组)应用(作业)31. 小美将某服饰店的促销活动内容告诉小明后,小明假设某件商品的定价为x元,并列出关系式0.3(2100) 1 000x -<,则下列哪个选项可能是小美告诉小明的内容?( )A 买两件相同价格的商品可减100元,再打3折,最后不到1 000元!B 买两件相同价格的商品可减100元,再打7折,最后不到1 000元!C 买两件相同价格的商品可打3折,再减100元,最后不到1 000元!D 买两件相同价格的商品可打7折,再减100元,最后不到1 000元!32. 把一些笔记本分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本.则共有学生( ) A .4人B .5人C .6人D .5人或6人33. 若一元一次不等式组9551x x x m +<+⎧⎨>+⎩的解集是1x >,则m 的取值范围是_______________.34. 若关于x 的一元一次不等式组4132x xx m+⎧>+⎪⎨⎪>⎩有解,则m 的取值范围是_______________.35. 若关于x 的一元一次不等式组2113x x a -⎧>⎪⎨⎪<⎩无解,则化简32a a -+-的结果为_________________.36. 若关于x 的一元一次等式组0321x a x ->⎧⎨->⎩的整数解共有4个,则a 的取值范围是___________.37. “3·12”植树节,市团委组织部分中学的团员去郊区植树.某校八年级(3)班团支部领到一批树苗,若每人植4棵树,还剩37棵;若每人植6棵树,最后一人有树植,但不足3棵.则这批树苗共有___________棵.38. 解下列不等式组:(1)201211233x x x -⎧⎪--⎨-<⎪⎩≤;(2)3(2)41213x x x x --⎧⎪+⎨>-⎪⎩≥; (3)331213(1)8x x x x -⎧++⎪⎨⎪--<-⎩≥; (4)311224(1)x x x +⎧-⎪⎨⎪->+⎩≥.39. 某工厂现有甲种原料400千克,乙种原料450千克,计划利用这两种原料生产A ,B 两种产品共60件.已知生产一件A 种产品,需用甲种原料9千克、乙种原料5千克;生产一件B 种产品,需用甲种原料4千克、乙种原料10千克.则有哪几种生产方案?请你设计出来.40. 某校组织学生到外地进行社会实践活动,共有680名学生参加,并携带300件行李,学校计划租用甲、乙两种型号的汽车共20辆.经了解,甲种汽车每辆最多能载40人和10件行李,乙种汽车每辆最多能载30人和20件行李.则如何安排甲、乙两种汽车,可一次性地将学生和行李全部运走?请你设计方案.1、【参考答案】 知识点睛1.>,<,≥,≤,≠.大于或等于,不小于;小于或等于,不大于. 2.①代数式,不变;②正数,不变;③负数,改变.3.使不等式成立的未知数的值;含有未知数的不等式的所有解.实心圆点和空心圆圈.4.求不等式解集的过程. 5.整式,未知数.6.关于同一未知数的几个一元一次不等式合在一起.一元一次不等式组中各个不等式的解集的公共部分.求不等式组解集的过程. 精讲精练1.5310a -≥ 2.105(20)90n n --> 3.(1)√;(2)×;(3)×;(4)×. 4.D5.25a -≤6.A7.1- 8.3 9.0,1;0. 10.(1)2x <; (2)2x -≤; (3)1x -≥; (4)12x <.解集在数轴上的表示略. 11.0a>;0a <.12.0,1,2,3. 13.45a <≤ 14.32a -<-≤ 15.(1)3x ≥; (2)52x -<<;(3)514x -<<; (4)无解; (5)46x -<<. 解集在数轴上的表示略. 16.1- 17.6-18.C 19.A2、【参考答案】1.21x -<-≤,解集在数轴上的表示略.2.2- 3.3-3、【参考答案1.C2.D3.A 4.55.46.810a <≤7.1-8.2a ≥9.23248x x +-≥10.(1)13x ≥; (2)2x -≤; (3)34x >-;(4)15x -≥. 解集在数轴上的表示略.11.(1)4x ≥;(2)1x ≤;(3)2255x <≤;(4)无解.解集在数轴上的表示略. 4、【参考答案知识点睛1.大大取大、小小取小、大小小大中间找、大大小小找不着. 2.①关键词型;②不空不满型;③方案设计型. 精讲精练1.(1)2x >;(2)1x -≤;(3)12x -<≤;(4)无解. 2.D 3.C 4.C 5.D 6.8 7.6 8.109.(1)94(50)360310(50)290x x x x +-⎧⎨+-⎩≤≤;(2)共有3种生产方案.方案一,生产A 种产品30件,B 种产品20件;方案二,生产A 种产品31件,B 种产品19件;方案三,生产A 种产品32件,B 种产品18件. 10.工厂能完成任务,共有5种生产方案.方案一,生产A 型号时装36套,B 型号时装44套;方案二,生产A 型号时装37套,B 型号时装43套;方案三,生产A 型号时装38套,B 型号时装42套; 方案四,生产A 型号时装39套,B 型号时装41套;方案五,生产A 型号时装40套,B 型号时装40套. 11.共有3种运输方案.方案一,A 种货车20辆,B 种货车30辆;方案二,A 种货车21辆,B 种货车29辆;方案三,A 种货车22辆,B 种货车28辆.12.共有3种租车方案.方案一,租用甲种货车3辆,乙种货车5辆;方案二,租用甲种货车4辆,乙种货车4辆;方案三,租用甲种货车5辆,乙种货车3辆. 5、【参考答案】1.D 2.共有3种生产方案.方案一,生产A 种产品30件,B 种产品20件;方案二,生产A 种产品31件,B 种产品19件;方案三,生产A 种产品32件,B 种产品18件. 6、【参考答案】1.A 2.C 3.0m ≤ 4.2m < 5.25a -+ 6.43a -<-≤7.1218.(1)2x ≥;(2)1x ≤;(3)21x -<≤;(4)无解.9.共有3种生产方案.方案一,生产A 种产品30件,B 种产品30件;方案二,生产A 种产品31件,B 种产品29件;方案三,生产A 种产品32件,B 种产品28件.10.共有3种方案.方案一,安排甲型汽车8辆,乙型汽车12辆;方案二,安排甲型汽车9辆,乙型汽车11辆; 方案三,安排甲型汽车10辆,乙型汽车10辆.。
一元一次不等式组(公开课课件)
形式
一元一次不等式组通常表 示为“{①,②,③...}”, 其中①,②,③...是一元 一次不等式。
特点
一元一次不等式组中至少 包含两个不等式,且每个 不等式只含有一个未知数 。
一元一次不等式组的解集
定义
满足一元一次不等式组中 所有不等式的未知数的取 值范围称为该不等式组的 解集。
性质
解集具有封闭性,即满足 所有不等式的解都在解集 中。
求法
通过解每个不等式,找出 满足所有不等式的解,再 确定解集。
一元一次不等式组的分类
分类标准
简单型
根据一元一次不等式组中不等式的个数和 形式,可以将一元一次不等式组分为简单 型、线性型、多项式型等。
由两个一元一次不等式组成的不等式组, 如“{2x > 3, x < 5}”。
线性型
多项式型
由两个或多个线性一元一次不等式组成的 不等式组,如“{3x + 2 > 0, 4x - 1 < 5}” 。
VS
解集关系
一元一次不等式组的解集与相应的一元一 次方程组的解集存在一定的包含关系,可 以根据方程组的解来推断不等式组的解。
一元一次不等式组在实际问题中的应用
资源分配问题
例如,在有限资源下如何分配任 务以达到最优效果。
最优化问题
例如,在一定条件下如何选择方案 以达到最优目标。
经济问题
例如,在预算限制下如何选择商品 或服务以实现最大效益。
生产问题
总结词
企业生产过程中的资源配置问题
详细描述
生产问题涉及到企业生产过程中的资源配置,如原材料、设备和人力资源的分配。一元 一次不等式组可以用来解决生产中的成本和效率问题,例如优化生产流程以降低成本和
一元一次不等式讲义
一元一次不等式讲义【精讲】一、知识点回顾一般地,用符号“<”、“≤”、“>”、“≥”、“≠”连接的式子叫做不等式。
注意:⑴要弄清不等式和等式的区别:等式有等号,而不等式没有。
⑵常用的不等号有:<、≤、>、≥、≠。
例:判断下列哪些式子是不等式,哪些不是不等式。
①32>-;②21x ≤;③21x -;④s vt =;⑤283m x <-;⑥124x x->-;⑦38x ≠;⑧5223x x -≈-+;⑨240x +>;⑩230xπ+>。
⑶列不等式是数学化与符号化的过程,它与列方程类似,列不等式注意找到问题中不等关系的词,如: “正数(>0)”, “负数(<0)”, “非正数(≤0)”, “非负数(≥0)”, “超过(>0)”, “不足(<0)”, “至少(≥0)”, “至多(≤0)”, “不大于(≤0)”, “不小于(≥0)”⑷除了⑶常见不等式所表示的基本语言与含义还有:①若a -b >0,则a 大于b ;②若a -b <0,则a 小于b ;③若a -b ≥0,则a 不小于b ;④若a -b ≤0,则a 不大于b ;⑤若ab >0或0a b >,则a 、b 同号;⑥若ab <0或0ab<,则a 、b 异号。
⑸不等号具有方向性,其左右两边不能随意交换:a <b 可转换为b >a ,c ≥d 可转换为d ≤c 。
例:规定一种新的运算:1a b a b a b Θ=⨯--+,比如:2323231Θ=⨯--+,请你比较:34Θ 43Θ,()34-Θ ()43Θ-。
(填不等号) 练习:1、用不等式表示:⑴a 是正数: ;⑵x 的平方是非负数: ;⑶a 不大于b : ;⑷x 的3倍与-2的差是负数: ;⑸长方形的长为x cm ,宽为10cm ,其面积不小于200cm 2: 。
2、试判断237a a -+与32a -+的大小。
3、如果0a b +<,0b >,则, , , a b a b --的从打到小的排序是: 。
一元一次不等式知识点
一元一次不等式知识点1. 一元一次不等式的定义一元一次不等式是指包含一个未知数,且未知数的最高次数为一的不等式。
其一般形式为 ax + b > c 或 ax + b < c,其中 a, b, c 是实数,a ≠ 0。
2. 基本性质一元一次不等式具有以下基本性质:- 不等式两边加(或减)同一个数(或式子),不等号的方向不变。
- 不等式两边乘(或除以)同一个正数,不等号的方向不变。
- 不等式两边乘(或除以)同一个负数,不等号的方向改变。
- 0 特殊性:0 不小于任何负数,不大于任何正数。
3. 解一元一次不等式的步骤- 移项:将含有未知数的项移到不等号的一边,常数项移到另一边。
- 合并同类项:将含有未知数的项系数化为1,同时将常数项相加减。
- 求解:根据系数化为1后的不等式,直接求出解集。
4. 特殊注意事项- 当系数化为1时,如果系数的分母为负数,需要改变不等号的方向。
- 解一元一次不等式时,需要注意不等式两边的运算顺序和运算规则。
5. 常见题型及解法- 直接求解:直接根据一元一次不等式的解法步骤求解。
- 应用题:将实际问题转化为一元一次不等式,然后求解。
- 系统求解:多个一元一次不等式组成的不等式组,需要找到满足所有不等式的解集。
6. 不等式组的解集- 同大取大:两个不等式都是大于号,取较大的那个数。
- 同小取小:两个不等式都是小于号,取较小的那个数。
- 大大小小中间找:一个不等式是大于号,另一个是小于号,取中间的数。
- 无解:一个不等式要求大于某个数,另一个要求小于同一个数,这种情况下无解。
7. 练习题- 解不等式 2x - 3 > 5,并表示在数轴上。
- 一个数的两倍减去5不小于10,求这个数的取值范围。
- 有两个房间,第一个房间的温度比第二个房间的温度高至少5度,如果第二个房间的温度是18度,求第一个房间的温度范围。
8. 总结一元一次不等式是初中数学的重要知识点,掌握其性质和解法对于解决实际问题和进一步学习数学都具有重要意义。
一元一次不等式讲义(一)
一元一次不等式单元讲义(一)[知识点梳理]:一.不等式中的关键词与不等号要明确“大于”、“小于"、“不大于”、“不小于”、“不超过"、“至多”、“至少"、“非负数”、“正数"、“负数”、“负整数”……这些描述不等关系的语言所对应的不等号各是什么。
大于——不大于、小于等于、至多、不超过()> ()≤小于--不小于、大于等于、至少、不低于()< ()≥正数——非正数 负数--非负数()0> ()0≤ ()0< ()0≥二.不等式的性质:1. 传递性:a b b c a c >>>若,,则2. 不等式两边加上(或减去)同一个数,不等式仍成立a b a c b c >+>+若,则3. 不等式两边乘以(或除以)同一个正数,不等式仍成立0a b a b c ac bc c c>>>>若,,则, 不等式两边乘以(或除以)同一个负数,不等式改变方向后仍成立0a b a b c ac bc c c><<<若,,则,三.一元一次不等式解法:(与一元一次方程解法类比)注:乘数或除数是负数时,解不等式时要改变不等号的方向。
四.用数轴表示不等式的解集小于向左画,大于向右画;有等画实心,无等画空心。
五.解一元一次不等式的简便方法与技巧(一)、凑整法例1.解不等式10.50.257.52x x +--> 分析:根据不等式性质,两边同乘以适当的数,将小数转化为整系数。
解:两边同乘以4-,得302x x +<--16x ∴<-(二)、化分母为整数例2.解不等式4 1.550.8 1.50.50.20.1x x x ----> 分析:根据分数基本性质,将两边分母化成整数。
解:原不等式变形,得 ()832541510x x x --->-714x ∴-> 即2x <-(三)、裂项法例3.解不等式2141411364x x x -++->- 分析:本题若采用去分母法,步骤较多,由除法意义,裂项相合并,过程简洁。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
至善教育宁波分部11.26
一元一次不等式讲义
【精讲】
一、知识点回顾
一般地,用符号“<”、“≤”、“>”、“≥”、“≠”连接的式子叫做不等式。
注意:⑴要弄清不等式和等式的区别:等式有等号,而不等式没有。
⑵常用的不等号有:<、≤、>、≥、≠。
例:判断下列哪些式子是不等式,哪些不是不等式。
①3 2 ;②2x 1 ;③2x 1 ;④s vt ;⑤2m 8x 3 ;⑥1
x
2 4x ;⑦3x 8 ;⑧
5x 2 2x 3 ;⑨ 2 4 0
x ;⑩2x
3 0 。
⑶列不等式是数学化与符号化的过程,它与列方程类似,列不等式注意找到问题中不等关系的词,如:“正数( >0) ”,“负数(<0)”,“非正数(≤0)”,“非负数(≥0)”,
“超过(>0) ”,“不足(<0)”,“至少(≥0)”,“至多(≤0)”,
“不大于(≤0)”,“不小于(≥0)”
⑷除了⑶常见不等式所表示的基本语言与含义还有:
①若a-b>0,则a大于b ;②若a-b<0,则a小于b ;③若a-b≥0,则a不小于 b ;④若a-b
≤0,则a不大于 b ;⑤若ab>0 或a 0
b
a
,则a、b 同号;⑥若ab<0 或0
b
,则a、b 异号。
⑸不等号具有方向性,其左右两边不能随意交换:a<b 可转换为b>a,c≥ d 可转换为d≤c。
例:规定一种新的运算: a b a b a b 1,比如: 2 3 2 3 2 3 1 ,请你比较:
3 4 4 3 , 3 4 4 3 。
(填不等号)
练习:1、用不等式表示:⑴ a 是正数:;⑵x 的平方是非负数:;
⑶a 不大于b:;⑷x 的3 倍与-2 的差是负数:;
⑸长方形的长为x cm,宽为10cm,其面积不小于200cm
2 :。
2、试判断 2 3 7
a a 与3a 2 的大小。
3、如果a b 0 ,b 0,则a, b, a, b 的从打到小的排序是:。
2、不等式的基本性质:
有时,为了更好的理解新旧知识之间的异同,便以表格形式将二者进行比较。
等式的基本性质不等式的基本性质一般形式
两边同时加上(或减去)同一个代性质1:两边都加上(或减去)同一个整式,若a b ,则数式所得结果仍是等式。
不等号的方向不变。
a c b c
两边同时乘以同一个数(或除以同一个不为0的数)所得结果
仍是等式。
性质2:两边都乘以(或除以)同一个正数,
不等号的方向不变。
性质3:两边都乘以(或除以)同一个负数,
不等号的方向改变。
若a b ,c 0 则
ac bc
若a b ,c 0 则
a c
b c
例:用最确切的不等号填空:
①若3<x,则x 3 ;②若-2 <x,则0x+2;③若-2a≥8,则a 4 ;④若x>y,则m
2 x m
2 x m
⑵关于x 的一元一次方程4x-2m+1=5x-8 的解是负数,则m的取值范围是。
2 y。
第1页共11 页
⑶如果m n 0 ,那么下列结论中错误的是()
A.m 9 n 9 B. m n C. 1
n
1
m
m
D. 1
n
3、不等式的解和不等式的解集的定义:
⑴能使不等式成立的未知数的值(一个或几个),叫做不等式的解。
⑵一个含有未知数的不等式的所有解,组成这个不等式的解集。
注意:不等式的解集,包含两方面的含义:
⑴未知数取解集中的任何一个值时,不等式都成立。
⑵未知数取解集外的任何一个值时,不等式都不成立。
⑶求不等式的解集的过程叫做解不等式。
⑷不等式的解集可在数轴上直观表示。
注意:用数轴表示不等式的解,应记住规律:
大于向右画,小于向左画,有等号( ≤、≥) 画实心点,无等号( <、>) 画空心圈。
例如:不等式x>5 的解集可以用数轴上表示 5 的点的右边部分来表示,在数轴上表示 5 的点的位置
上画空心圆圈,表示 5 不在这个解集内。
不等式x-5≤-1 的解集x≤ 4 可以用数轴上表示 4 的点及其左边部分
来表示,在数轴上表示 4 的点的位置画实心圆点,表示 4 在这个解集内。
例1:求不等式中字母的取值(实质仍是解不等式)
关于不等式2x a 2的解集如图所示, a 的值是()
A、0 B 、2 C 、-2 D 、-4
例2:不等式3x 5<3 x 的正整数解有( )
A.1 个
B.2 个
C.3 个
D.4 个
练习:⑴解下列不等式,并把它们的解集在数轴上表示出来。
①x 1 1;②2x 3 0
⑵填空题:①大于0 且小于π的整数是;②x 4 ,则x的最小整数是。
3
⑶李强同学用若干根长度相等的火柴棒在桌面上首尾相接地摆三角形,其中三角形的一边用了 3 根火
柴棒,另一边用了 6 根火柴棒,那么第三边最少用根火柴棒,最多用根火柴棒。
⑷不等式x 3的解集在数轴上表示为()。
【答案B】
A. B . C . D .
0 0 1 2 3 0 1 2 3 0 1 2 3
1 2 3
4、一元一次不等式的定义和解法:
⑴不等式的左右两边都是整式,只含有一个未知数,并且未知数的最高次数是1,这样的不等式叫一
元一次不等式。
其标准形式:ax+b<0 或ax+b≤0,ax+b>0 或ax+b≥0(a≠0) .
⑵解一元一次不等式的一般步骤:
x 1 3x 1
例:解不等式: 1
2 3
第2页共11 页
练习:⑴解下列不等式,并把解集在数轴上表示出来。
①
3 2 5 3x 12
x ;②
3 4
2x
3x
2
1 5 2x
3
⑵某商品原来的价格为6元/ 件,涨价x%后仍不高于9 元/ 件,求x 的最大值。
6、一元一次不等式组:
⑴关于同一个未知数的几个一元一次不等式合在一起就组成一个一元一次不等式组。
⑵一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。
⑶一元一次不等式组的解法:先解出各个不等式的解集,然后再找出它们的公共部分。
可以利用数轴来找。
一元一次不等式组解集图示语言表达
x x a
b
(a b)x b
a b
同大取大
x x a
b (
a b)x a
a b
同小取小
x x a
b (
a b) a x b
a b
大小小大中间
取
x x a
b (
a b)无解 a b
大大小小无解
答
2x 3 1
,①
例1:解不等式组,并将其解集在数轴上表示出来.
x 1
2≥x. ②
2
例2:求不等式组中字母的取值
已知不等式组3 2x 1
≥,
无解,求 a 的取值范围x a 0
第3页共11 页
至善教育宁波分部11.26
7、列不等式(组)解应用题的一般步骤:
①弄清题意和题中的数量关系,用字母表示未知数
②找出能表示题目全部含义的一个(多个)不等关系。
③根据这个不等关系列出所需要的代数式,从而列出不等式(组)
④解这个不等式(组),求出解集
⑤写出符合实际意义的解。
例1:将一箱苹果分给若干个小朋友,若每位小朋友分 5 个苹果,则还剩12 个苹果;若每个小朋友分8 个苹果,则有一个小朋友分不到 5 个苹果。
问有多少苹果多少小朋友?
例2:某工厂现有甲种原料280 kg ,乙种原料190 kg ,计划用这两种原料生产A、B 两种产品50 件,已知生产一件 A 产品需甲种原料7kg,乙种原料3kg,可获利400 元;生产一件 B 产品需甲种原料3kg,乙种原料5kg,可获利350 元;(1)请问工厂有哪几种生产方案?(2)选择哪种方案可获利最大,最大利润
是多少?
练习:1、解下列不等式组
x 1 2x 2x 5 3(x 2)
(1)x(2)
3 2
2 x 1 x 2 3
2、用若干辆载重量为8 吨的汽车运一批货物,若每辆汽车只装 4 吨,则剩下20 吨货物;若每辆汽车装满8 吨,则最后一辆汽车不满也不空。
请问:有多少辆汽车?
3、一群女生住若干间宿舍,每间住 4 人,剩19 人无房住;每房住 6 人,有一间住不满,则有宿舍多少间?学生有多少名?
第 4 页共11 页。