大学物理习题及解答(刚体力学)
大学物理习题册及解答_第二版_第四章_刚体的定轴转动
第四章 刚体定轴转动(一)
一.选择题
1.几个力同时作用在一个具有光滑固定转轴的刚体上,如果这几 个力的矢量和为零,则此刚体 (A) 必然不会转动. (B) 转速必然不变. (C) 转速必然改变. (D) 转速可能不变,也可能改变.
(1 )m m / 2 T mg m m m/2
k 1 k 2 2 1 2
4.质量为M,长为l的均匀细杆,可绕A端的水平轴自由转动,当 杆自由下垂时,有一质量为m的小球,在离杆下端的距离为a处垂 直击中细杆,并于碰撞后自由下落,而细杆在碰撞后的最大偏角 为,试求小球击中细杆前的速度。 解:球与杆碰撞瞬间,系统所受合外力矩为零,系 统碰撞前后角动量守恒
m (l a) J
1 J Ml 3
2
杆摆动过程机械能守恒
1 l J Mg (1 cos ) 2 2
2
解得小球碰前速率为
Ml 2 gl sin m(l a ) 3 2
5.一轻绳绕过一半径R,质量为M/4的滑轮。质量为M的人抓住绳 子的一端,而绳子另一端系一质量为M/2的重物,如图。求当人相 对于绳匀速上爬时,重物上升的加速度是多少? 解:选人、滑轮、与重物为系统,系统所受对滑轮轴的 外力矩为 1
1 d 13 即 MgR ( MR MRu) 2 dt 8
该题也可在地面参考系中分别对人和物体利用牛顿第二定 律,对滑轮应用转动定律求解。
一选择题
第四章 刚体定轴转动(二)
《大学物理》刚体力学练习题及答案解析
《大学物理》刚体力学练习题及答案解析一、选择题1.刚体对轴的转动惯量,与哪个因素无关 [ C ](A)刚体的质量(B)刚体质量的空间分布(C)刚体的转动速度(D)刚体转轴的位置2.有两个力作用在一个有固定轴的刚体上. [ B ](1)这两个力都平行于轴作用时,它们对轴的合力矩一定是零;(2)这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;(3)这两个力的合力为零时,它们对轴的合力矩也一定是零;(4)当这两个力对轴的合力矩为零时,它们的合力也一定是零.在上述说法中,(A)只有(1)是正确的;(B) (1)、(2) 正确, (3)、(4)错误;(C) (1)、(2)、(3)都正确, (4)错误;(D) (1)、(2)、(3)、(4)都正确.3.均匀细棒OA可绕通过其一端O而与棒垂直的水平固定光滑轴转动,今使棒从水平位置由静止开始自由下落,在棒摆动到竖立位置的过程中,下述说法哪一种是正确的[ A ](A) 角速度从小到大,角加速度从大到小;(B) 角速度从小到大,角加速度从小到大;(C) 角速度从大到小,角加速度从大到小;(D) 角速度从大到小,角加速度从小到大.4.如图所示,圆锥摆的小球在水平面内作匀速率圆周运动,小球和地球所组成的系统,下列哪些物理量守恒( C )(A)动量守恒,角动量守恒(B)动量和机械能守恒(C)角动量和机械能守恒(D)动量,角动量,机械能守恒5.一圆盘绕通过盘心且垂直于盘面的水平轴转动,轴间摩擦不计,如图射来两个质量相同,速度大小相同、方向相反并在一条直线上的子弹,它们同时射入圆盘并且留在盘内,在子弹射入后的瞬间,对于圆盘和子弹系统的角动量L以及圆盘的角速度ω则有( B )(A)L不变,ω增大(B)L不变,ω减小(C)L变大,ω不变(D)两者均不变6.一花样滑冰者,开始自转时,其动能为20021ωJ E =。
然后他将手臂收回,转动惯量减少为原来的1/3,此时他的角速度变为ω,动能变为E ,则下列关系正确的是( D ) (A )00,3E E ==ωω (B )003,31E E ==ωω (C )00,3E E ==ωω (D )003,3E E ==ωω1C 2.B ,3.A ,4.C ,5.B ,6.D二、填空1.当刚体受到的合外力的力矩为零时,刚体具有将保持静止的状态或_____________状态,把刚体的这一性质叫刚体___________。
大学物理练习册习题及答案4
习题及参考答案第3章 刚体力学参考答案思考题3-1刚体角动量守恒的充分而必要的条件是 (A )刚体不受外力矩的作用。
(B )刚体所受合外力矩为零。
(C)刚体所受的合外力和合外力矩均为零。
(D)刚体的转动惯量和角速度均保持不变。
答:(B )。
3-2如图所示,A 、B 为两个相同的绕着轻 绳的定滑轮。
A 滑轮挂一质量为M 的物体, B 滑轮受拉力F ,而且F =Mg 。
设A 、B 两 滑轮的角加速度分别为βA 和βB ,不计滑轮 轴的摩擦,则有(A )βA = βB (B )βA > βB(C )βA < βB (D )开始时βA = βB ,以后βA < βB 答:(C )。
3-3关于刚体对轴的转动惯量,下列说法中正确的是(A )只取决于刚体的质量,与质量的空间分布和轴的位置无关。
(B)取决于刚体的质量和质量的空间分布,与轴的位置无关。
(C )取决于刚体的质量、质量的空间分布和轴的位置。
(D)只取决于转轴的位置,与刚体的质量和质量的空间分布无 答:(C )。
3-4一水平圆盘可绕通过其中心的固定铅直轴转动,盘上站着一个人,初始时整个系统处于静止状态,当此人在盘上随意走动时,若忽略轴的摩擦,则此系统(A)动量守恒; (B)机械能守恒; (C)对转轴的角动量守恒;(D)动量、机械能和角动量都守恒; (E)动量、机械能和角动量都不守恒。
答:(C )。
3-5光滑的水平桌面上,有一长为2L 、质量为m 的匀质细杆,可绕过其中点o 且垂直于杆的竖直光滑固定轴自由转动,其转动惯量为213mL,起初杆静止,桌面上有两个质量均为m 的小球,各自在 垂直于杆的方向上,正对着杆的一端,以相同速率v 相向 运动,如图所示,当两小球同时与杆的两个端点发生完全非弹性碰撞后,就与杆粘在一起转动,则这一系统碰撞后的转动角速度应为AMF思考题3-2图v思考题3-5图(A)23L v (B)45L v (C)67L v (D)89L v (E)127L v答:(C )。
大物习题解答-大学物理习题答案(许瑞珍_贾谊明)-第3章 刚体力学
第三章 刚体力学3-1 一通风机的转动部分以初角速度ω0绕其轴转动,空气的阻力矩与角速度成正比,比例系数C 为一常量。
若转动部分对其轴的转动惯量为J ,问:(1)经过多少时间后其转动角速度减少为初角速度的一半?(2)在此时间内共转过多少转? 解:(1)由题可知:阻力矩ωC M -=,又因为转动定理 dtd JJ M ωβ== dtd JC ωω=-∴ dt JC d t ⎰⎰-=∴00ωωωω t JC-=0lnωω t JCe-=0ωω当021ωω=时,2ln CJt =。
(2)角位移⎰=tdt 0ωθ⎰-=2ln 00C J t JC dt eωCJ 021ω=,所以,此时间内转过的圈数为CJ n πωπθ420==。
3-2 质量面密度为σ的均匀矩形板,试证其对与板面垂直的,通过几何中心的轴线的转动惯量为)(1222b a ab J +σ=。
其中a ,b 为矩形板的长,宽。
证明一:如图,在板上取一质元dxdy dm σ=,对与板面垂直的、通过几何中心的轴线的转动惯量为 dm r dJ ⎰=2dxdy y x a a b b σ⎰⎰--+=222222)()(1222b a ab +=σ证明二:如图,在板上取一细棒bdx dm σ=,对通过细棒中心与棒垂直的转动轴的转动惯量为2121b dm ⋅,根据平行轴定理,对与板面垂直的、通过几何中心的轴线的转动惯量为22)2(121x adm b dm dJ -+⋅=dx x ab dx b 23)2(121-+=σσ 33121121ba a b dJ J σσ+==∴⎰)(1222b a ab +=σ3-3 如图3-28所示,一轻绳跨过两个质量为m 、半径为r 的均匀圆盘状定滑轮,绳的两端分别挂着质量为m 2和m 的重物,绳与滑轮间无相对滑动,滑轮轴光滑,求重物的加速度和各段绳中的张力。
解:受力分析如图ma T mg 222=- (1) ma mg T =-1 (2) βJ r T T =-)(2 (3) βJ r T T =-)(1 (4)βr a =,221mr J =(5) 联立求出g a 41=, mg T 811=,mg T 451=,mg T 232=3-4 如图3-29所示,一均匀细杆长为L ,质量为m ,平放在摩擦系数为μ的水平桌面上,设开始时杆以角速度0ω绕过细杆中心的竖直轴转动,试求:(1)作用于杆的摩擦力矩;(2)经过多长时间杆才会停止转动。
大学物理(第四版)课后习题及答案 刚体
题4.1:一汽车发动机曲轴的转速在s 12内由13min r 102.1-⋅⨯均匀的增加到13min r 107.2-⋅⨯。
(1)求曲轴转动的角加速度;(2)在此时间内,曲轴转了多少转?题4.1解:(1)由于角速度ω =2πn (n 为单位时间内的转数),根据角加速度的定义td d ωα=,在匀变速转动中角加速度为()200s rad 1.132-⋅=-=-=tn n t πωωα(2)发动机曲轴转过的角度为()t n n t t t 0020221+=+=+=πωωαωθ在12 s 内曲轴转过的圈数为 圈390220=+==t n n N πθ 题4.2:某种电动机启动后转速随时间变化的关系为)1(0τωωte --=,式中10s rad 0.9-⋅=ω,s 0.2=τ。
求:(1)s 0.6=t 时的转速;(2)角加速度随时间变化的规律;(3)启动后s 0.6内转过的圈数。
题4.2解:(1)根据题意中转速随时间的变化关系,将t = 6.0 s 代入,即得100s 6.895.01--==⎪⎪⎭⎫⎝⎛-=ωωωτte(2)角加速度随时间变化的规律为220s 5.4d d ---===tte e t ττωωα(3)t = 6.0 s 时转过的角度为 rad 9.36d 1d 60060=⎪⎪⎭⎫⎝⎛-==⎰⎰-s tst e t τωωθ 则t = 6.0 s 时电动机转过的圈数圈87.52==πθN 题4.3:如图所示,一通风机的转动部分以初角速度0ω绕其轴转动,空气的阻力矩与角速度成正比,比例系数C 为一常量。
若转动部分对其轴的转动惯量为J ,问:(1)经过多少时间后其转动角速度减少为初角速度的一半?(2)在此时间内共转过多少转?题4.3解:(1)通风机叶片所受的阻力矩为ωM C -=,由转动定律αM J =,可得叶片的角加速度为JC t ωωα-==d d (1) 根据初始条件对式(1)积分,有⎰⎰-=ωωω00d d d t t J C t由于C 和J 均为常量,得t JC e-=0ωω当角速度由0021ωω→时,转动所需的时间为2ln CJt = (2)根据初始条件对式(2)积分,有⎰⎰-=tt JC t e00d d ωθθ即CJ 20ωθ=在时间t 内所转过的圈数为 CJ N πωπθ420==题4.4:一燃气轮机在试车时,燃气作用在涡轮上的力矩为m N 1003.23⋅⨯,涡轮的转动惯量为2m kg 0.25⋅。
大学物理习题及解答(刚体力学)
1 如图所示,质量为m 的小球系在绳子的一端,绳穿过一铅直套管,使小球限制在一光滑水平面上运动。
先使小球以速度0v 。
绕管心作半径为r D 的圆周运动,然后向下慢慢拉绳,使小球运动轨迹最后成为半径为r 1的圆,求(1)小球距管心r 1时速度大小。
(2)由r D 缩到r 1过程中,力F 所作的功。
解 (1)绳子作用在小球上的力始终通过中心O ,是有心力,以小球为研究对象,此力对O 的力矩在小球运动过程中始终为零,因此,在绳子缩短的过程中,小球对O 点的角动量守恒,即10L L =小球在r D 和r 1位置时的角动量大小 1100r mv r mv = 100r r v v =(2)可见,小球的速率增大了,动能也增大了,由功能定理得力所作的功 ⎥⎦⎤⎢⎣⎡-=-=-=1)(21 21)(21 21212102020210202021r r mv mv r r mv mv mv W2 如图所示,定滑轮半径为r ,可绕垂直通过轮心的无摩擦水平轴转动,转动惯量为J ,轮上绕有一轻绳,一端与劲度系数为k 的轻弹簧相连,另一端与质量为m 的物体相连。
物体置于倾角为θ的光滑斜面上。
开始时,弹簧处于自然长度,物体速度为零,然后释放物体沿斜面下滑,求物体下滑距离l 时,物体速度的大小。
解 把物体、滑轮、弹簧、轻绳和地球为研究系统。
在物体由静止下滑的过程中,只有重力、弹性力作功,其它外力和非保守内力作功的和为零,故系统的机械能守恒。
设物体下滑l 时,速度为v ,此时滑轮的角速度为ω则 θωsin 2121210222mgl mv J kl -++= (1)又有 ωr v = (2) 由式(1)和式(2)可得 m r J kl mgl v +-=22sin 2θ本题也可以由刚体定轴转动定律和牛顿第二定律求得,读者不妨一试。
3 如右图所示,一长为l 、质量为m '的杆可绕支点O 自由转动,一质量为m 、速率为v 的子弹射入杆内距支点为a 处,使杆的偏转为︒30。
大学物理刚体力学中难题及解析
B
5
解 设杆的质量为m, 机械能守恒:
l 1 1 2 2 2 mg sin 0 sin m(vCx vCy ) I C 2 2 2 1 2 重力势能转化成质心平动动能和刚体转动动能 I C ml y A 12 l 运动学条件: vCx sin 2 C 质心速度沿 l 水平竖直方 v cos Cy 向分解 2 mg B x
16
正确解法:隔离,分别用角动量定理。 o
R1 f r t J11 J10 J2 R2 2 O2 对轮 2 : f r fr 1 R 1 R2 fr t J2 2 0 J1 O1
对轮1:
稳定条件:
1 R1 2 R 2
联立可得稳定后的角速度
J1 R J 1 R1 R2 1 0 , 2 0 2 2 2 2 J 1 R2 J 2 R1 J1 R2 J 2 R1 17
N maCt , f maCr
2 2
B
杆无滑动地绕圆环外侧运动,要求
f aCr (l 3r )r 4l ,因 r l 则 。 N f , a 2 R N Ct 24 lR
【9】质量为M,长度为 2l 的梯子上端靠在光 滑墙面上,下端放在粗糙地面上,地面与梯子 的静摩擦系数为 μ,一质量为 m 的人攀登到距 下端 l0 的位置,求梯子不滑动的条件。
0
f
R
vC 0
摩擦力的作用: 对质心的运动 vC
对绕质心的转动
当 vC 0, 而 0 时,乒乓球返回!
3
(2)前进一段后会自动返回的条件:
0
R
•质心运动定理: f maC
vc 0
刚体习题和答案
作业5 刚体力学♫刚体:在力的作用下不发生形变的物体⎰=-⇒=210t t dt dtd ωθθθω角速度⎰=-⇒=210t t dt dtd βωωωβ角加速度1、根底训练〔8〕绕定轴转动的飞轮均匀地减速,t =0时角速度为05rad s ω=,t =20s 时角速度为00.8ωω=,那么飞轮的角加速度β= -0.05 rad/s 2 ,t =0到 t =100 s 时间飞轮所转过的角度θ= 250rad . 【解答】飞轮作匀变速转动,据0t ωωβ=+,可得出:200.05rad s tωωβ-==-据2012t t θωβ=+可得结果。
♫定轴转动的转动定律:定轴转动的角加速度与它所受的合外力矩成正比,与刚体的转动惯量成反比.βJ M =质点运动与刚体定轴转动对照[C ]1、根底训练〔2〕一轻绳跨过一具有水平光滑轴、质量为M 的定滑轮,绳的两端分别悬有质量为m 1和m 2的物体(m 1<m 2),如下图.绳与轮之间无相对滑动.假设某时刻滑轮沿逆时针方向转动,那么绳中的力 (A) 处处相等. (B) 左边大于右边. (C) 右边大于左边. (D) 哪边大无法判断. 【解答】逆时针转动时角速度方向垂直于纸面向外, 由于(m 1<m 2),实际上滑轮在作减速转动,角加速m 2m 1 O度方向垂直纸面向,所以,由转动定律21()T T R J β-=可得:21T T >[C ] 2、自测提高〔2〕将细绳绕在一个具有水平光滑轴的飞轮边缘上,现在在绳端挂一质量为m 的重物,飞轮的角加速度为.如果以拉力2mg 代替重物拉绳时,飞轮的角加速度将(A) 小于. (B) 大于,小于2. (C) 大于2. (D) 等于2. 【解答】设飞轮的半径为R ,质量为m ,根据刚体定轴转动定律M J β=,当挂质量为m 的重物是:mg T maTR J a R ββ-=== 所以2mgRJ mRβ=+,当以2F mg =的拉力代替重物拉绳时,有: '2mgR J β=,2'mgRJβ=,比拟二者可得出结论。
大学物理习题答案03刚体运动学
⼤学物理习题答案03刚体运动学⼤学物理练习题三⼀、选择题1.⼀⼒学系统由两个质点组成,它们之间只有引⼒作⽤。
若两质点所受外⼒的⽮量和为零,则此系统(A) 动量、机械能以及对⼀轴的⾓动量都守恒。
(B) 动量、机械能守恒,但⾓动量是否守恒不能断定。
(C) 动量守恒,但机械能和⾓动量守恒与否不能断定。
(D) 动量和⾓动量守恒,但机械能是否守恒不能断定。
[ C ]解:系统=0合外F,内⼒是引⼒(保守内⼒)。
(1)021 F F,=0合外F ,动量守恒。
(2)2211r F r F A =合。
21F F,但21r r时0A 外,因此E不⼀定守恒。
(3)21F F,2211d F d F M =合。
两⼒对定点的⼒臂21d d 时,0 合外M,故L 不⼀定守恒。
2. 如图所⽰,有⼀个⼩物体,置于⼀个光滑的⽔平桌⾯上,有⼀绳其⼀端连结此物体,另⼀端穿过桌⾯中⼼的⼩孔,该物体原以⾓速度ω在距孔为R 的圆周上转动,今将绳从⼩孔往下拉。
则物体 (A) 动能不变,动量改变。
(B) 动量不变,动能改变。
(C) ⾓动量不变,动量不变。
(D) ⾓动量改变,动量改变。
(E)⾓动量不变,动能、动量都改变。
[ E ]解:合外⼒(拉⼒)对圆⼼的⼒矩为零,⾓动量O Rrmv L 守恒。
r 减⼩,v 增⼤。
因此p 、E k 均变化(m不变)。
3. 有两个半径相同,质量相等的细圆环A 和B 。
A 环的质量分布均匀,B 环的质量分布不均匀。
它们对通过环⼼并与环⾯垂直的轴的转动惯量分别为J A 和J B ,则(A)A J >B J (B) A J < B J(C) A J =B J (D) 不能确定A J 、B J 哪个⼤。
[ C ]解:2222mR dm R dm R dm r J, J 与m 的分布⽆关。
另问:如果是椭圆环,J 与质量分布有关吗?(是)4. 光滑的⽔平桌⾯上,有⼀长为2L 、质量为m 的匀质细杆,可绕过其中点且垂直于杆的竖直光滑固定轴O ⾃由转动,其转动惯量为31mL 2,起初杆静⽌。
最新大学物理(第四版)课后习题及答案 刚体
题4.1:一汽车发动机曲轴的转速在s 12内由13min r 102.1-⋅⨯均匀的增加到13min r 107.2-⋅⨯。
(1)求曲轴转动的角加速度;(2)在此时间内,曲轴转了多少转?题4.1解:(1)由于角速度ω =2πn (n 为单位时间内的转数),根据角加速度的定义td d ωα=,在匀变速转动中角加速度为 ()200s rad 1.132-⋅=-=-=tn n t πωωα(2)发动机曲轴转过的角度为 ()t n n t t t 0020221+=+=+=πωωαωθ在12 s 内曲轴转过的圈数为圈390220=+==t n n N πθ 题4.2:某种电动机启动后转速随时间变化的关系为)1(0τωωte --=,式中10s rad 0.9-⋅=ω,s 0.2=τ。
求:(1)s 0.6=t 时的转速;(2)角加速度随时间变化的规律;(3)启动后s 0.6内转过的圈数。
题4.2解:(1)根据题意中转速随时间的变化关系,将t = 6.0 s 代入,即得100s 6.895.01--==⎪⎪⎭⎫⎝⎛-=ωωωτte(2)角加速度随时间变化的规律为220s 5.4d d ---===tte e t ττωωα(3)t = 6.0 s 时转过的角度为 rad 9.36d 1d 60060=⎪⎪⎭⎫⎝⎛-==⎰⎰-s tst e t τωωθ 则t = 6.0 s 时电动机转过的圈数圈87.52==πθN 题4.3:如图所示,一通风机的转动部分以初角速度0ω绕其轴转动,空气的阻力矩与角速度成正比,比例系数C 为一常量。
若转动部分对其轴的转动惯量为J ,问:(1)经过多少时间后其转动角速度减少为初角速度的一半?(2)在此时间内共转过多少转?题4.3解:(1)通风机叶片所受的阻力矩为ωM C -=,由转动定律αM J =,可得叶片的角加速度为 JC t ωωα-==d d (1) 根据初始条件对式(1)积分,有⎰⎰-=ωωω00d d d t t J C t由于C 和J 均为常量,得t JC e-=0ωω当角速度由0021ωω→时,转动所需的时间为2ln CJt = (2)根据初始条件对式(2)积分,有⎰⎰-=tt JC t e00d d ωθθ即 CJ 20ωθ=在时间t 内所转过的圈数为CJ N πωπθ420==题4.4:一燃气轮机在试车时,燃气作用在涡轮上的力矩为m N 1003.23⋅⨯,涡轮的转动惯量为2m kg 0.25⋅。
大学物理刚体力学测试题答案
2
3 1 1 J mi ri m l m l m l 2 2 2 5 2 ml 4
2
对OX轴(垂直纸面向外)的转动惯量为 2 2 2 l
2
l 3
对OZ轴的转动惯量为
1
l O
y
2 2 1 1 1 2 x 2 J mi ri m l m l 0 ml 2 2 2
0 240 转动,则飞轮边缘上一点在飞轮转过 时的切向加速度 at
=
0.15m s
2
,法向加速度 a n =
0.4 m s2
。
4 角度需变为弧度计算 240 rad 3 4 2 1 2 4 2 16 2 3 t t 2 3 0.5 3
1.如图所示,一均匀圆盘,半径为 R,质量为 m,其中心轴装在光 滑的固定轴上,并与圆盘垂直。在圆盘边上绕一轻绳,绳的下端挂 ' 一质量为 m 的物体,求圆盘的角加速度和圆盘边缘各点切向加速度
4.长为 l 的均匀细棒可绕通过其一端并与之垂直的水平光滑轮转动。 0 3g 设棒从水平位置开始释放,转过 30 时棒的角速度为___________,角 2l 3 3g 。 加速度为__________ 1 4l
h
(1)质心下落高度为 1 h l sin 30 2 重力的功
30
2
l sin 30
1 A mg l sin 30 2
由刚体的动能定理, 1 1 1 1 2 2 mg l sin 30 J 0 ml 2 2 2 3
mg
3g 3g sin 30 l 2l
重力的力矩
1 重力力臂 d 2 l cos 30
大学物理2-1第四章(刚体力学)习题答案
习 题 四4-1 一飞轮的半径为2m ,用一条一端系有重物的绳子绕在飞轮上,飞轮可绕水平轴转动,飞轮与绳子无相对滑动。
当重物下落时可使飞轮旋转起来。
若重物下落的距离由方程2at x =给出,其中2s m 0.2=a 。
试求飞轮在t 时刻的角速度和角加速度。
[解] 设重物的加速度为t a ,t 时刻飞轮的角速度和角加速度分别为ω和β,则a txa 2d d 22t ==因为飞轮与绳子之间无相对滑动,所以 βR a =t则 2t rad/s 0.220.222=⨯===R a R a β 由题意知 t =0时刻飞轮的角速度00=ω 所以 rad 0.20t t t ==+=ββωω4-2 一飞轮从静止开始加速,在6s 内其角速度均匀地增加到200minrad,然后以这个速度匀速旋转一段时间,再予以制动,其角速度均匀减小。
又过了5s 后,飞轮停止转动。
若该飞轮总共转了100转,求共运转了多少时间 [解] 分三个阶段进行分析10 加速阶段。
由题意知 111t βω= 和 11212θβω= 得22111211t ωβωθ==20 匀速旋转阶段。
212t ωθ= 3制动阶段。
331t βω= 33212θβω= 22313213t ωβωθ== 由题意知 100321=++θθθ 联立得到πωωω210022312111⨯=++t t t所以 s 1836020025602002660200210022=⨯⨯⨯-⨯⨯-⨯=ππππt 因此转动的总时间 s 19418356321=++=++=t t t t4-3 历史上用旋转齿轮法测量光速的原理如下:用一束光通过匀速旋转的齿轮边缘的齿孔A ,到达远处的镜面反射后又回到齿轮上。
设齿轮的半径为5cm ,边缘上的齿孔数为500个,齿轮的转速,使反射光恰好通过与A 相邻的齿孔B 。
(1)若测得这时齿轮的角速度为600s r ,齿轮到反射镜的距离为500 m ,那么测得的光速是多大(2)齿轮边缘上一点的线速度和加速度是多大[解] (1) 齿轮由A 转到B 孔所需要的时间5103126005002⨯=⨯==ππωθt所以光速 s m 10310315002285⨯=⨯⨯==TL c(2) 齿轮边缘上一点的线速度s m 1088.1260010522⨯=⨯⨯⨯==-πωR v齿轮边缘上一点的加速度()25222s m 1010.71052600⨯=⨯⨯⨯==-πωR a4-4 刚体上一点随刚体绕定轴转动。
大学物理课后习题及答案刚体
题:一汽车发动机曲轴的转速在s 12内由13min r 102.1-⋅⨯均匀的增加到13min r 107.2-⋅⨯。
(1)求曲轴转动的角加速度;(2)在此时间内,曲轴转了多少转题解:(1)由于角速度2n (n 为单位时间内的转数),根据角加速度的定义t d d ωα=,在匀变速转动中角加速度为()200s rad 1.132-⋅=-=-=tn n t πωωα (2)发动机曲轴转过的角度为()t n n t t t 0020221+=+=+=πωωαωθ在12 s 内曲轴转过的圈数为圈390220=+==t n n N πθ 题:某种电动机启动后转速随时间变化的关系为)1(0τωωt e --=,式中10s rad 0.9-⋅=ω,s 0.2=τ。
求:(1)s 0.6=t 时的转速;(2)角加速度随时间变化的规律;(3)启动后s 0.6内转过的圈数。
题解:(1)根据题意中转速随时间的变化关系,将t s 代入,即得100s 6.895.01--==⎪⎪⎭⎫ ⎝⎛-=ωωωτt e(2)角加速度随时间变化的规律为220s 5.4d d ---===tt e e t ττωωα (3)t = s 时转过的角度为rad 9.36d 1d 60060=⎪⎪⎭⎫ ⎝⎛-==⎰⎰-s t s t et τωωθ 则t = s 时电动机转过的圈数圈87.52==πθN 题:如图所示,一通风机的转动部分以初角速度0ω绕其轴转动,空气的阻力矩与角速度成正比,比例系数C 为一常量。
若转动部分对其轴的转动惯量为J ,问:(1)经过多少时间后其转动角速度减少为初角速度的一半(2)在此时间内共转过多少转题解:(1)通风机叶片所受的阻力矩为ωM C -=,由转动定律αM J =,可得叶片的角加速度为J C t ωωα-==d d (1)根据初始条件对式(1)积分,有⎰⎰-=ωωω00d d d t t J C t 由于C 和J 均为常量,得t J C e -=0ωω 当角速度由0021ωω→时,转动所需的时间为 2ln CJ t = (2)根据初始条件对式(2)积分,有⎰⎰-=t t J C t e 000d d ωθθ即CJ 20ωθ= 在时间t 内所转过的圈数为CJ N πωπθ420== 题:一燃气轮机在试车时,燃气作用在涡轮上的力矩为m N 1003.23⋅⨯,涡轮的转动惯量为2m kg 0.25⋅。
大学物理学第二章刚体力学基础自学练习题
⼤学物理学第⼆章刚体⼒学基础⾃学练习题第⼆章刚体⼒学基础⾃学练习题⼀、选择题4-1.有两个⼒作⽤在有固定转轴的刚体上:(1)这两个⼒都平⾏于轴作⽤时,它们对轴的合⼒矩⼀定是零;(2)这两个⼒都垂直于轴作⽤时,它们对轴的合⼒矩可能是零;(3)当这两个⼒的合⼒为零时,它们对轴的合⼒矩也⼀定是零;(4)当这两个⼒对轴的合⼒矩为零时,它们的合⼒也⼀定是零;对上述说法,下述判断正确的是:()(A )只有(1)是正确的;(B )(1)、(2)正确,(3)、(4)错误;(C )(1)、(2)、(3)都正确,(4)错误;(D )(1)、(2)、(3)、(4)都正确。
【提⽰:(1)如门的重⼒不能使门转动,平⾏于轴的⼒不能提供⼒矩;(2)垂直于轴的⼒提供⼒矩,当两个⼒提供的⼒矩⼤⼩相等,⽅向相反时,合⼒矩就为零】4-2.关于⼒矩有以下⼏种说法:(1)对某个定轴转动刚体⽽⾔,内⼒矩不会改变刚体的⾓加速度;(2)⼀对作⽤⼒和反作⽤⼒对同⼀轴的⼒矩之和必为零;(3)质量相等,形状和⼤⼩不同的两个刚体,在相同⼒矩的作⽤下,它们的运动状态⼀定相同。
对上述说法,下述判断正确的是:()(A )只有(2)是正确的;(B )(1)、(2)是正确的;(C )(2)、(3)是正确的;(D )(1)、(2)、(3)都是正确的。
【提⽰:(1)刚体中相邻质元间的⼀对内⼒属于作⽤⼒和反作⽤⼒,作⽤点相同,则对同⼀轴的⼒矩和为零,因⽽不影响刚体的⾓加速度和⾓动量;(2)见上提⽰;(3)刚体的转动惯量与刚体的质量和⼤⼩形状有关,因⽽在相同⼒矩的作⽤下,它们的运动状态可能不同】3.⼀个⼒(35)F i j N =+v v v 作⽤于某点上,其作⽤点的⽮径为m j i r )34(-=,则该⼒对坐标原点的⼒矩为()(A )3kN m -?v ;(B )29kN m ?v ;(C )29kN m -?v ;(D )3kN m ?v。
【提⽰:(43)(35)4302092935i j kM r F i j i j k k k =?=-?+=-=+=v v v v v v v v v v v v v 】4-3.均匀细棒OA 可绕通过其⼀端O ⽽与棒垂直的⽔平固定光滑轴转动,如图所⽰。
《大学物理》刚体的转动练习题及答案
《大学物理》刚体的转动练习题及答案一、简答题:1、为什么刚体绕定轴转动的动能的改变只与外力矩有关,而与内力矩无关?答案:对刚体,由于刚体内各质点间相对位移始终为零,内力总是成对出现,每对内力大小相等,方向相反,在一直线上,故内力矩做功之和一定为零,故刚体绕定轴转动的动能的改变与内力矩无关。
2、简述刚体定轴转动的角动量守恒定律并给出其数学表达式?答案:刚体定轴转动时,若所受合外力矩为零或不受外力矩,则刚体的角动量保持不变。
3、下列物理量中,哪些量与原点的选择有关:(1) 速度,(2) 位矢,(3) 位移,(4) 角动量,(5) 动量 答案:与原点有关的物理量为:位矢,角动量。
4、质量、半径相同的两个圆盘,第一个质量分布均匀,第二个大部分质量分布在盘边缘,当它们以相同的角速度绕通过盘中心的轴转动时,哪个盘的转动动能大?为什么?答案:第二个盘的动能大。
因为由刚体转动动能221ωJ E k =知,在角速度一样时,转动惯量大的动能大;又因为2121mR J =,22mR J ≈,第二个转动惯量较大,所以转动动能较大。
5、在某一瞬时,刚体在一外力矩作用下,其角速度可以为零吗? 其角加速度可以为零吗?答案:由刚体转动定律αJ M =,知,在某一瞬时,刚体在一外力矩作用下,其角加速度不可以为零;由dtd ωα=,有⎰+=t dt 00αωω,可知其角速度此时可以为零。
6、写出刚体绕定轴转动的转动定律文字表达与数学表达式?答案:刚体绕定轴转动的转动定律:刚体绕定轴转动时,刚体的角加速度与它所受的合外力矩成正比,与刚体的转动惯量成反比。
表达式为:αJ M =。
7、简述刚体定轴转动时的特点有哪些, 常用哪些物理量来描述刚体的转动?答案:刚体定轴转动的特点:转轴相对参照系固定,刚体内所有点都具有相同的角位移、角速度、角加速度;质点在垂直转轴的平面内运动,且作圆周运动。
刚体的转动通常用转动惯量J 、力矩M 、角加速度α、角动量L 等来描述。
大学物理-刚体力学习题解答
1大学物理-刚体力学习题解答一、选择题1、 B,r v⨯=ω 2、 C, 3 、B, 4 、C, 5、 B, 平轴的力矩和为零,θθsin 2cos lmgNl =,所以2)tan (θmg N =。
6 、B, 7、 A, 32202mgR rdr R mrgrgdm M Rf μππμμ===⎰⎰ 8、 B ,在碰撞过程中,小球和摆对O 轴的角动量守恒,所以有1011sin 100mlv l v m=θ,220v v = 二、填空题1.t 108-==θω ,10-==θβ ,所以s rad s t 62.0==ω;22.010s rad s t -==β; s m R v m R s t 35.0,2.0====ω;()25.0,2.05s m R a m R s t -====βτ;()225.0,2.018s m R a m R s t n ====ω 2s m 18-⋅。
2.刚体对转轴转动惯性大小的量度;2I r dm =⎰;质量、质量分布、转轴的位置。
3.mLv 。
4.()()k t mgv j gt v i v j gt t v i t v v r L αααααcos 21sin cos 21sin cos 200020000-=-+⨯⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-+=⨯=;k t mgv dt L d αcos 00-=;k t mgv dtL d Mαcos 00-==。
5.角动量;04ω 。
6.同时到达。
7.32g。
8.20012I ω。
三、计算题,1、设1m 向下运动,2m 向上运动,对两物体应用牛顿定律列方程有:1111m g T m a -=,2222T m g m a -=,对鼓轮应用转动定律有:11220T r T r -= ,(因为鼓轮的质量忽略不计) 设鼓轮的角加速度为β,则有:11a r β= ,22a r β= 。
联立求解以上各式得:21122221122m r m r g m r m r β-=+ ;若1m 向上运动,2m 向下运动,则 2211221122m r m r g m r m r β-=+ 。
刚体力学基础习题解答
命题教师:郑永春试题审核人:张郡亮1、三个质量均为m 的质点,位于边长为a 的等边三角形的三个顶点上。
此系统对通过三角形中心并垂直于三角形平面的轴的转动惯量J 0=__ ma _,对通过三角形中心且平行于其一边的轴的转动惯量为J A = _丄口£_,对通过三角形— --- =—2—"中心和一个顶点的轴的转动惯量为匾(C ) 5、一圆盘正绕垂直于盘面的水平光滑固定轴 0转动,如图1射来两个质量 相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,衡水学院理工科专业 《大学物理B 》刚体力学基础习题2、两个质量分布均匀的圆盘 A 和B 的密度分别为设两圆盘对通过盘心且垂直于盘面的轴的转动惯量分别为3、一作定轴转动的物体,对转轴的转动惯量J =力矩M 12 N • m 当物体的角速度减慢到 =rad/s 时,物体已转过了角度P A 和P B ( P A > P B ),且两圆盘的总质量和厚度均相同。
J A 和 J B ,则有 J A < J B 。
4、 两个滑冰运动员的质量各为70 kg ,均以m/s 的速率沿相反的方向滑行,滑行路线间的垂直距离为10 m 当彼此交错时,各抓住一 10 m 长的绳索的一端,然后相对旋转,则抓住绳索之后各自对绳中心的角动量 L =__2275 kg -m 2-s 1 ;它们各自收拢绳索,到绳长为 5 m 时,各自的速率 =13 m-s 1。
5、 有一质量均匀的细棒,可绕垂直于棒的一端的水平轴转动。
如将此棒放在水平位置,然后任其下落,则在下落过程中的角速度大小将变大,角加速度大小将 变小。
、单项选择题(每小题2分)1、有两个力作用在一个有固定转轴的刚体上,下列说法正确的是: B. A.这两个力都平行于轴作用时,它们对轴的合力矩一定是零; 这两个力都垂直于轴作用时,它们对轴的合力矩一定是零; C. D.当这两个力的合力为零时,它们对轴的合力矩也一定是零; 当这两个力对轴的合力矩为零时,它们的合力也一定是2、 一轻绳绕在有水平轴的定滑轮上,滑轮的转动惯量为 J ,绳下端挂一物体。
大学物理刚体力学测试题答案
选择题答案及解析
• 答案:D
• 解析:根据刚体的转动惯量公式,对于一个质量均匀分布的细杆,其转动惯量与质量、长度和质心到转轴的距离有关。故 D选项正确。
选择题答案及解析
• 答案:A • 解析:根据刚体的动能定理,当刚
体受到的合外力矩不为零时,刚体 的角速度会发生变化。故A选项正 确。
填空题答案及解析
有挑战性
部分题目难度较大,需要学生具备较强的分 析问题和解决问题的能力。
测试题答案解析总结
要点一
详细解析
每道题目都附有详细的答案解析,帮助学生理解解题思路 和方法。
要点二
举一反三
答案解析中还提供了相关题型的解题技巧,有助于学生触 类旁通。
THANKS
感谢观看
难题
考查学生的综合运用能力和创新思维,难度较大,需要较高的解题技巧。
测试题目的目标
01
检验学生对刚体力学基本概念和公式的掌握程度。
02
评估学生对刚体力学知识的应用能力。
提高学生的综合运用能力和创新思维。
03
02
测试题内容选Leabharlann 题选择题1答案:C1
选择题2答案:B
2
选择题3答案:D
3
填空题
填空题1答案
• 答案
10 N·m
• 解析
根据刚体的转动动能公式,当刚体的转动惯量为1 kg·m²,角速度为10 rad/s时,其转 动动能为0.5×1×10²=50 J。由于题目中要求的是力矩,因此需要将动能转换为力矩,
即50 J=10 N·m。故填空题1的答案是10 N·m。
填空题答案及解析
• 答案
2 kg·m²
04
测试题总结
测试题特点总结
大学物理第3章-刚体力学习题解答
第3章 刚体力学习题解答3.13 某发动机飞轮在时间间隔t 内的角位移为):,:(43s t rad ct bt at θθ-+=。
求t 时刻的角速度和角加速度。
解:23212643ct bt ct bt a dt d dtd -==-+==ωθβω3.14桑塔纳汽车时速为166km/h ,车轮滚动半径为0.26m ,发动机转速与驱动轮转速比为0.909, 问发动机转速为每分多少转?解:设车轮半径为R=0.26m ,发动机转速为n 1, 驱动轮转速为n 2, 汽车速度为v=166km/h 。
显然,汽车前进的速度就是驱动轮边缘的线速度,909.0/2212Rn Rn v ππ==,所以:min/1054.1/1024.93426.014.3210166909.02909.013rev h rev n R v ⨯=⨯===⨯⨯⨯⨯π3.15 如题3-15图所示,质量为m 的空心圆柱体,质量均匀分布,其内外半径为r 1和r 2,求对通过其中心轴的转动惯量。
解:设圆柱体长为h ,则半径为r ,厚为dr 的薄圆筒的质量dm 为:2..dm h r dr ρπ=对其轴线的转动惯量dI z 为232..z dI r dm h r dr ρπ==212222112..()2r z r I h r r dr m r r ρπ==-⎰ 3.17 如题3-17图所示,一半圆形细杆,半径为 ,质量为 ,求对过细杆二端轴的转动惯量。
解:如图所示,圆形细杆对过O 轴且垂直于圆形细杆所在平面的轴的转动惯量为mR 2,根据垂直轴定理z x y I I I =+和问题的对称性知:圆形细杆对过轴的转动惯量为12mR 2,由转动惯量的可加性可求得:半圆形细杆对过细杆二端轴的转动惯量为:214AA I mR '=3.18 在质量为M ,半径为R 的匀质圆盘上挖出半径为r 的两个圆孔,圆孔中心在半径R 的中点,求剩余部分对过大圆盘中心且与盘面垂直的轴线的转动惯量。
大学物理习题参考解答物理习题参考解答刚体基本运动_转动定律_动能定理
选择题_03图示单元四 刚体基本运动 转动动能 1一 选择题01. 一刚体以每分钟60转绕z 轴做匀速转动(ω沿转轴正方向)。
设某时刻刚体上点P 的位置矢量为345r i j k =++,单位210m -,以210/m s -为速度单位,则该时刻P 点的速度为: 【 B 】(A) 94.2125.6157.0v i j k =++;(B) 25.118.8v i j =-+;(C) 25.118.8v i j =--;(D) 31.4v k =。
02. 轮圈半径为R ,其质量M 均匀布在轮缘上,长为R ,质量为m 的均质辐条固定在轮心和轮缘间,辐条共有2N 根。
今若将辐条数减少N 根但保持轮对通过轮心,垂直于轮平面轴的转动惯量保持不变,则轮圈的质量为 【 D 】(A)12N m M +; (B) 6N m M +; (C) 23N m M +; (D) 3Nm M +。
03. 如图所示,一质量为m 的均质杆长为l ,绕铅直轴OO '成θ角转动,其转动惯量为 【 C 】(A)2112ml ;(B) 221sin 4ml θ;(C) 221sin 3ml θ; (D) 213ml 。
04. 关于刚体对轴的转动惯量,下列说法中正确的是 【 C 】 (A) 只取决于刚体的质量,与质量的空间分布和轴的位置无关; (B) 取决于刚体的质量和质量的空间分布,与轴的位置无关; (C) 取决于刚体的质量、质量的空间分布和轴的位置;(D) 只取决于转轴的位置,与刚体的质量和质量的空间分布无关。
05. 两个匀质圆盘A 和B 的密度分别为A ρ和B ρ,若A B ρρ>,但两圆盘的质量与厚度相同,如两盘对通过盘心垂直于盘面轴的转动惯量各为A J 和B J ,则 【 B 】(A) A B J J >; (B) B A J J >;(C) A B J J =; (D) A J 和B J 哪个大,不能确定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 如图所示,质量为m 的小球系在绳子的一端,绳穿过一铅直套管,使小球限制在一光滑水平面上运动。
先使小球以速度0v 。
绕管心作半径为r D 的圆周运动,然后向下慢慢拉绳,使小球运动轨迹最后成为半径为r 1的圆,求(1)小球距管心r 1时速度大小。
(2)由r D 缩到r 1过程中,力F 所作的功。
解 (1)绳子作用在
小球上的力始终通过中
心O ,是有心力,以小球
为研究对象,此力对O 的
力矩在小球运动过程中
始终为零,因此,在绳子缩短的过程中,小球对O 点的角动量守恒,即
1
0L L =
小球在r D 和r 1位置时的角动量大小 1100r mv r mv = 1
00r r v v =
(2)可见,小球的速率增大了,动能也增大了,由功能定理得力所作的功 ⎥⎦⎤⎢⎣⎡-=-=-=1)(21 2
1)(21 2
1212102020210202021r r mv mv r r mv mv mv W
2 如图所示,定滑轮半径为r ,可绕垂直通过轮心的无摩擦水平轴转动,转动惯量为J ,轮上绕有一轻绳,一端与劲度系数为k 的轻弹簧相连,另一端与质量为m 的物体相连。
物体置于倾角为θ的光滑斜面上。
开始时,弹簧处于自然长度,物体速度为零,然后释放物体沿斜面下
滑,求物体下滑距离l 时,
物体速度的大小。
解 把物体、滑轮、弹簧、
轻绳和地球为研究系统。
在
物体由静止下滑的过程中,只有重力、弹性力作功,其它外力和非保守内力作功的和为零,故系统的机械能守恒。
设物体下滑l 时,速度为v ,此时滑轮的角速度为ω
则 θωsin 2121210222mgl mv J kl -++= (1)
又有 ωr v = (2) 由式(1)和式(2)可得 m r J kl mgl v +-=22
sin 2θ
本题也可以由刚体定轴转动定律和牛顿第二定律求得,读者不妨一试。
3 如右图所示,一长为l 、质量为m '的杆可绕支点O 自由转动,一质量为m 、速率为v 的子弹射入杆内距支点为a 处,使杆的偏转为︒30。
问子弹的初速率为多少?
解 把子弹和杆看作一个系统,系统所受的外力有重力和轴对细杆的约束力。
在子弹射入杆的极短时间里,重力和约束力均通过轴O ,因此它们对轴O 的力矩均为零,系统的角动量应当守恒。
于是有 ω⎪⎭⎫ ⎝⎛+'=2231 ma l m a mv (1)
子弹射入杆后,细杆在摆动过程中只有重力作功,故如以子弹、细杆和地球为一系统,则此系统机械能守恒。
于是有
()()︒-'+︒-=⎪⎭⎫ ⎝⎛+'30cos 1230cos 13121222l g m mga ma l m ω (2)
解式(1)和式(2),得 ()()(
)2
2323261ma l m ma l m g ma v +'+'-=
F T2 F T1 F T 4 如图所示,一轻绳跨过两个
质量为m 、半径均为R 的均匀圆盘状滑轮,绳的两端分别系着质量为m 和2m 的重物,系
统由静止释放,绳与两滑轮无
相对滑动,求重物的加速度和两滑轮间绳的张力。
解: 图示受力图
ma F mg 22T2=-
βI R F R F T T =-2
βI R F R F T T =-1
ma mg F =-T1
及 2
21mR I = 、βR a = 得 g a 4
1=
所以 mg I F F T T 8
111=+=β 5一汽车发动机曲轴的转速在12s 内由
1.2×103r .min -1均匀的增加到
2.7×103r .min -1。
(1)求曲轴转动的角加速度;
(2)在此时间内,曲轴转了多少转? 6一燃气轮机在试车时,燃气作用在涡轮上的力矩为m N 1003.23⋅⨯,涡轮的转动惯量为2m kg 0.25⋅。
当轮的转速由13min r 1080.2-⋅⨯增大到14min r 1012.1-⋅⨯时,所经历的时间为多少?
题6解1:在匀变速转动中,角加速度t 0
ωωβ-=,由转动定律βI M =,可得飞轮所经历
的时间 s .)n n (M I I M t 810200
=-=-=πωω
解2:飞轮在恒外力矩作用下,根据角动量定理,有
)(I Mdt t 00ωω-=⎰
则
s .)n n (M
I I M t 810200
=-=-=πωω 7.如图所示,质量kg 161=m 的实心圆柱体A ,
其半径为cm 15=r ,可以绕其固定水平轴转动,阻力忽略不计。
一条轻的柔绳绕在圆柱体上,其另一端系一个质量kg 0.82
=m 的物体B 。
求:
(1)物体由静止开始下降s 0.1后的距离;(2)绳的张力
解:(1)分别作两物体的受力分析图。
对实心圆柱体而言,由转动定律得 ββ2121r m I r F T == (1)
对悬挂物体而言,依据牛顿定律,有
a m F g m F P 2T 2T 2='-='- (2)
且T
T F F '=。
又由角量与线量的关系,得
β
r a =
解上述方程组,可得物体下落的加速度 21222m m g m a +=
在t = 1.0 s 时,B 下落的距离为
m 45.222121222=+==m m gt m at s
(2)由式(2)可得绳中的张力为
()N 2.3922121=+=-=g m m m m a g m F T
8. 在光滑的水平面上有一木杆,其质量为kg 0.11=m ,长为cm 40=l ,可绕通过其中点并与之垂直的轴转动,一质量为g 102=m 的子弹,以12s m 100.2-⋅⨯=v 的速度射入杆端,其方向与杆及轴正交。
若子弹陷入杆中,试求所得到的角速度。
解:根据角动量守恒定理
ωω'+=)I I (I 2
12 式中2222)l (m I =为子弹绕
轴的转动惯量,I 2ω为
子弹在陷入杆前的角动量,v 2=ω为子弹在此刻绕轴的角速度。
12211l m I =为杆绕轴的转动惯量,ω'是子弹陷入杆后它们一起绕轴的角速度。
可得杆的角速度为
()1212212s 1.2936-=+=+='l m m v m J J J ωω
9.一质量为kg 12.1,长为m 0.1的均匀细棒,支点在棒的上端点,开始时棒自由悬挂。
以N 100的力打击它的下端点,打击时间为s 02.0。
(1)若打击前棒是静止的,求打击时其角动量的变化;(2)棒的最大偏转角。
解:(1)在瞬间打击过程中,由刚体的角动量定理得
120s m kg 0.2d -⋅⋅=∆===∆⎰t Fl t M J L ω (1)
(2)在棒的转动过程中,取棒
和地球为一系统,并选O 处为重力势能零点。
在转动过程中,系统的机械能守恒,即 ()θωc o s 1212120-=m g l J (2) 由式(1)、(2)可得棒的偏转角度为
838831arccos 222'
=⎪⎪⎭⎫ ⎝⎛∆-= gl m t F θ。