中考数学一轮复习第4讲二次根式教案

合集下载

【名师面对面】2015中考数学总复习 第1章 第4讲 二次根式及其运算课件

【名师面对面】2015中考数学总复习 第1章 第4讲 二次根式及其运算课件

4.已知 x=2- 3,y=2+ 3,求 x2-xy+y2 的值.
∵x=2- 3,y=2+ 3,∴x+y=(2- 3)+(2+ 3)=4, xy=(2- 3)×(2+ 3)=1,∴x2-xy+y2=(x+y)2-3xy= 42-3=13
二次根式综合计算与化简问题,一般先化简再代入 求值,最后的结果要化为分母不含根号的数或者是 最简二次根式;也可以利用所给条件整体考虑.
原式=a2+6a,当 a= 2-1 时,原式=4 2-3
二次根式的概念和性质
1.(2014· 武汉)若 x-3在实数范围内有意义,则 x 的取值范 围是( C ) A.x>0 有意义( A ) A.-2 B.1 C .2 D.3 【解析】第1题根据二次根式有意义的条件得出关于x的不等 式;第2题二次根式的被开方数是非负数,可以逐个代入, 也可以先判断x的取值范围. B.x>3 C.x≥3 D.x≤3
利用二次根式有意义的条件求字母的取值范围时,
首先考虑被开方数为非负数,其次还要考虑其他
限制条件,如分母不等于0等,往往转化为不等式 (组)解决.
二次根式的简单计算
1.(2014· 孝感)下列二次根式中,不能与 2合并的是( C ) A. 1 2 B. 8 C. 12 D. 18
2.(2014· 济宁)如果 ab>0,a+b<0,那么下面各式:
第4讲 二次根式及其运算
1.了解二次根式、最简二次根式的概念.
2.了解二次根式加、减、乘、除运算法则,会
用它们进行有关实数的简单四则运算.
二次根式的知识点是新课标的基本考查内容之一,常常以
填空题、选择题形式出现. 1.二次根式的基本运算要求熟练掌握,二次根式的运算以 整式的运算为基础,其法则、公式都与整式类似,特别是二 次根式的加减,没有提出同类二次根式的概念,完全参照合

二次根式教案(优秀8篇)

二次根式教案(优秀8篇)
(二)、探索新知:
本环节通过1个引题,2个例题的活动达到让学生学会从实际问题中抽象出中心对称的基本性质,并会用二次根式的加减法则解决有关实际问题。既培养了学生的观察能力,又培养了学生的有理有据的作图能力。
(三)、巩固练习:
在此环节中,利用课后的练习和选取的课外习题来巩固二次根式的加减,来达到突出重点的目的。
(三)教学手段
采用多媒体教学,通过直观演示图象,更好地教会学生“二次根式的加减的研究方法,同时通过多媒体辅助手段展示教学内容,扩大课堂容量,提高教学效率。
六、说教学过程的设计:
本课共分为五个环节:
(一)、复习引入新课:
利用"同类二次根式的"引入,激发学生好奇心和求知欲,创设情景,旨在引出新课题。既达到了复习的目的,又引出了新课。
(注:合作学习阶段与集体讲授阶段可以根据授课内容进行适当调整次序或交叉进行)
三、课后作业(课后作业见附件2)
教师发放根据本节课所学内容制定的针对性作业,以帮助学生进一步巩固提高课堂所学。
四、板书设计
课题:二次根式(1)
二次根式概念例题例题
二次根式性质
反思:
次根式教案篇六
第十六章二次根式
代数式用运算符号把数和表示数的字母连接起来的式子叫代数式①式子中不能出现“=,≠,≥,≤,”;②单个的数字或单个的字母也是代数式
2、会运用积和商的算术平方根的性质,把一个二次根式化为最简二次根式。
教学重点
最简二次根式的定义。
教学难点
一个二次根式化成最简二次根式的方法。
教学过程
一、复习引入
1、把下列各根式化简,并说出化简的根据:
2、引导学生观察考虑:
化简前后的根式,被开方数有什么不同?
化简前的被开方数有分数,分式;化简后的被开方数都是整数或整式,且被开方数中开得尽方的因数或因式,被移到根号外。

2024中考数学一轮复习专题精练专题04 二次根式(学生版)

2024中考数学一轮复习专题精练专题04 二次根式(学生版)

知识点01:二次根式的基本性质与化简【高频考点精讲】1.二次根式有意义的条件(1)二次根式中的被开方数必须是非负数;(2)如果所给式子中含有分母,那么除了保证被开方数为非负数外,还必须保证分母不为零。

2.二次根式的基本性质(1)≥0;a≥0(双重非负性)。

(2)()2=a(a≥0)(任何一个非负数都可以写成一个数的平方的形式)。

(3)=a=3.二次根式的化简(1)利用二次根式的基本性质进行化简。

(2)利用积的算术平方根的性质和商的算术平方根的性质进行化简。

=•(a≥0,b≥0)=(a≥0,b>0)知识点02:同类二次根式及分母有理化【高频考点精讲】1.同类二次根式(1)一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,那么把这几个二次根式叫做同类二次根式。

(2)合并同类二次根式的方法:只合并根式外的因式,即系数相加减,被开方数和根指数不变。

2.分母有理化(1)分母有理化是指把分母中的根号化去,分母有理化是乘二次根式本身(分母只有一项)或与原分母组成平方差公式。

①==;②==.(2)两个含二次根式的代数式相乘时,它们的积不含二次根式,这样的两个代数式互为有理化因式。

知识点03:二次根式混合运算与化简求值【高频考点精讲】1.二次根式的混合运算顺序:先乘方再乘除,最后加减,有括号的先算括号里面的。

2.在运算中每个根式可以看做是一个“单项式”,多个不同类的二次根式的和可以看作“多项式”。

3.二次根式的运算结果要化为最简二次根式。

四、二次根式的应用【高频考点精讲】二次根式的应用主要是在解决实际问题的过程中用到有关二次根式的概念,性质和运算方法。

检测时间:90分钟试题满分:100分难度系数:0.61一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2023•烟台)下列二次根式中,与是同类二次根式的是()A.B.C.D.2.(2分)(2023•西宁)下列运算正确的是()A.B.C.D.3.(2分)(2023•通辽)二次根式在实数范围内有意义,则实数x的取值范围在数轴上表示为()A.B.C.D.4.(2分)(2023•巴中)下列运算正确的是()A.x2+x3=x5B.×=C.(a﹣b)2=a2﹣b2D.|m|=m5.(2分)(2022•广州)代数式有意义时,x应满足的条件为()A.x≠﹣1 B.x>﹣1 C.x<﹣1 D.x≤﹣16.(2分)(2023•济宁)若代数式有意义,则实数x的取值范围是()A.x≠2 B.x≥0 C.x≥2 D.x≥0且x≠27.(2分)(2023•内蒙古)不等式x﹣1<的正整数解的个数有()A.3个B.4个C.5个D.6个8.(2分)(2023•内蒙古)下列运算正确的是()A.+2=2B.(﹣a2)3=a6C.+=D.÷=9.(2分)(2021•荆门)下列运算正确的是()A.(﹣x3)2=x5B.=xC.(﹣x)2+x=x3D.(﹣1+x)2=x2﹣2x+110.(2分)(2020•呼伦贝尔)已知实数a在数轴上的对应点位置如图所示,则化简|a﹣1|﹣的结果是()A.3﹣2a B.﹣1 C.1 D.2a﹣3二.填空题(共10小题,满分20分,每小题2分)11.(2分)(2023•哈尔滨)计算的结果是.12.(2分)(2022•济宁)若二次根式有意义,则x的取值范围是.13.(2分)(2021•哈尔滨)计算﹣2的结果是.14.(2分)(2023•绥化模拟)古希腊几何学家海伦和我国宋代数学家秦九韶都曾提出利用三角形的三边求面积的公式,称为海伦﹣秦九韶公式:如果一个三角形的三边长分别是a,b,c,记,那么三角形的面积为.如果在△ABC中,∠A,∠B,∠C所对的边分别记为a,b,c,若a=5,b=6,c=7,则△ABC的面积为.15.(2分)(2023•池州模拟)要使式子有意义,则x的取值范围为.16.(2分)(2023•内蒙古)实数m在数轴上对应点的位置如图所示,化简:=.17.(2分)(2023•潍坊)从﹣,,中任意选择两个数,分别填在算式(□+〇)2÷里面的“□”与“〇”中,计算该算式的结果是.(只需写出一种结果)18.(2分)(2023•临汾模拟)计算:=.19.(2分)(2023•锦江区校级模拟)已知实数m=﹣1,则代数式m2+2m+1的值为.20.(2分)(2023•大同模拟)计算()()的结果等于.三.解答题(共8小题,满分60分)21.(6分)(2023•陕西)计算:.22.(6分)(2023•金昌)计算:÷×2﹣6.23.(8分)(2023•龙岩模拟)(1)计算:;(2)解不等式组:.24.(8分)(2023•晋城模拟)高空抛物严重威胁着人们的“头顶安全”,即便是常见小物件,一旦高空落下,也威力惊人,而且用时很短,常常避让不及.据研究,高空抛物下落的时间t(单位:s)和高度h(单位:m)近似满足公式t=(不考虑风速的影响,g≈10m/s2).(1)求从60m高空抛物到落地的时间.(结果保留根号)(2)已知高空坠物动能(单位:J)=10×物体质量(单位:kg)×高度(单位:m),某质量为0.2kg 的玩具被抛出后经过3s后落在地上,这个玩具产生的动能会伤害到楼下的行人吗?请说明理由.(注:伤害无防护人体只需要65J的动能)25.(8分)(2023•张家界)阅读下面材料:将边长分别为a,a+,a+2,a+3的正方形面积分别记为S1,S2,S3,S4.则S2﹣S1=(a+)2﹣a2=[(a+)+a]•[(a+)﹣a]=(2a+)•=b+2a例如:当a=1,b=3时,S2﹣S1=3+2根据以上材料解答下列问题:(1)当a=1,b=3时,S3﹣S2=,S4﹣S3=;(2)当a=1,b=3时,把边长为a+n的正方形面积记作S n+1,其中n是正整数,从(1)中的计算结果,你能猜出S n+1﹣S n等于多少吗?并证明你的猜想;(3)当a=1,b=3时,令t1=S2﹣S1,t2=S3﹣S2,t3=S4﹣S3,…,t n=S n+1﹣S n,且T=t1+t2+t3+…+t50,求T的值.26.(8分)(2023•晋城模拟)阅读与思考请仔细阅读下列材料,并完成相应的任务.=,===3+像上述解题过程中,与、﹣与+相乘,积不含有二次根式,我们可将这两个式子称为互为有理化因式,上述解题过程被称为分母有理化.任务:(1)的有理化因式;﹣2的有理化因式是.(2)写出下列式子分母有理化的结果:①=;②=.(3)计算:+……+.27.(8分)(2023•晋城模拟)问题:先化简,再求值:2a+,其中a=3.小宇和小颖在解答该问题时产生了不同意见,具体如下.小宇的解答过程如下:解:2a+=2a+……(第一步)=2a+a﹣5……(第二步)=3a﹣5.……(第三步)当a=3时,原式=3×3﹣5=4.……(第四步)小颖为验证小宇的做法是否正确,她将a=3直接代入原式中:2a+=6+=6+2=8.由此,小颖认为小宇的解答有错误,你认为小宇的解答错在哪一步?并给出完整正确的解答过程.28.(8分)(2023•天山区校级模拟)计算:(1);(2).。

2019年中考数学《二次根式》复习教案

2019年中考数学《二次根式》复习教案

二次根式复习复习目标:1.了解二次根式的定义,掌握二次根式有意义的条件和性质。

2.会根据公式2)(a =a (a ≥0)∣a ∣进行计算。

3.熟练进行二次根式的乘除法运算。

4.了解最简二次根式的定义,能运用相关性质化简二次根式。

复习重点:二次根式有意义的条件和性质,二次根式的计算和化简。

复习难点:正确依据二次根式相关性质计算和化简。

复习过程:一.知识结构:三个概念:二次根式 最简二次根式 同类二次根式三个性质:二次根式的双重非负性 2)(a =a (a ≥∣a ∣ 四种运算:加.减.乘.除 二.复习过程1.二次根式的概念(1).二次根式的定义: 形如a (a ≥0)的式子叫做二次根式 2.二次根式的识别: (1).被开方数a ≥0 (2).根指数是2例.下列各式中哪些是二次根式?哪些不是?为什么?①②③④⑤⑥⑦⑧3.二次根式的性质 (1).双重非负性:a ≥0(a ≥0)(2).2)(a =a (a ≥0)(3)∣a ∣题型1:确定二次根式中被开方数所含字母的取值范围 (1).当X_____时,x-3有意义。

(2).求下列二次根式中字母的取值范围x315x --+说明:二次根式被开方数不小于0,所以求二次根式中字母的取值范围常转化为不等式(组) 题型2.求下列各式的值(1)2(3)2(4)4.二次根式的乘除(1).二次根式的乘法法则)0,0(≥≥=⋅b a ab b a例1.化简8116)1(⨯ 2000)2(例2.计算 721)1(⋅15253)2(⋅)521(154)3(-⋅-xy x 11010)4(-⋅ (2).二次根式的除法法则)0,0(>≥=b a b aba例3、计算4540)1(245653)2(n m n m ÷5.最简二次根式的两个条件: (1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式;抢答:判断下列二次根式是否是最简二次根式,并说明理由。

二次根式教案(实用7篇)

二次根式教案(实用7篇)

二次根式教案(实用7篇)二次根式教案第1篇一、教学目标1.理解分母有理化与除法的关系.2.掌握二次根式的分母有理化.3.通过二次根式的分母有理化,培养学生的运算能力.4.通过学习分母有理化与除法的关系,向学生渗透转化的数学思想二、教学设计小结、归纳、提高三、重点、难点解决办法1.教学重点:分母有理化.2.教学难点:分母有理化的技巧.四、课时安排1课时五、教具学具准备投影仪、胶片、多媒体六、师生互动活动设计复习小结,归纳整理,应用提高,以学生活动为主七、教学过程【复习提问】二次根式混合运算的步骤、运算顺序、互为有理化因式.例1 说出下列算式的运算步骤和顺序:(1)(先乘除,后加减).(2)(有括号,先去括号;不宜先进行括号内的运算).(3)辨别有理化因式:有理化因式:与,与,与…不是有理化因式:与,与…化简一个式子,如果分母是二次根式,采用分子、分母同乘以分母的有理化因式的方法(依据分式的基本性质).例如:等式子的化简,如果分母是两个二次根式的和,应该怎样化简?引入新课题.【引入新课】化简式子,乘以什么样的式子,分母中的根式符号可去掉,结论是分子与分母要同乘以的有理化因式,而这个式子就是,从而可将式子化简.例2 把下列各式的分母有理化:(1);(2);(3)解:略.注:通过例题的讲解,使学生理解和掌握化简的步骤、关键问题、化简的依据.式子的化简,若分子与分母可分解因式,则可先分解因式,再约分,使化简变得简单.二次根式教案第2篇1.教学目标(1)经历二次根式的乘法法则和积的算术平方根的性质的形成过程;会进行简单的二次根式的乘法运算;(2)会用公式化简二次根式.2.目标解析(1)学生能通过计算发现规律并对其进行一般化的推广,得出乘法法则的内容;(2)学生能利用二次根式的乘法法则和积的算术平方根的性质,化简二次根式.教学问题诊断分析本节课的学习中,学生在得出乘法法则和积的算术平方根的性质后,对于何时该选用何公式简化运算感到困难.运算习惯的养成与符号意识的养成、运算能力的形成紧密相关,由于该内容与以前学过的实数内容有较多的联系,例如,整式中的乘法公式在二次根式的运算中也成立,在教学中,要多从联系性上下力气.,培养学生良好的运算习惯.在教学时,通过实例运算,对于将一个二次根式化为最简二次根式,一般有两种情况:(1)如果被开方数是分数或分式(包括小数),可以采用直接利用分式的性质,结合二次根式的性质进行化简(例见教科书例6解法1),也可以先写成算术平方根的商的形式,再利用分式的性质处理分母的根号(例见教科书例6解法2);(2)如果被开方数不含分母,可以先将它分解因数或分解因式,然后吧开得尽方的因数或因式开出来,从而将式子化简.本节课的教学难点为:二次根式的性质及乘法法则的正确应用和二次根式的化简.教学过程设计1.复习引入,探究新知我们前面已经学习了二次根式的概念和性质,本节课开始我们要学习二次根式的乘除.本节课先学习二次根式的乘法.问题1 什么叫二次根式?二次根式有哪些性质?师生活动学生回答。

专题04二次根式的核心知识点精讲(讲义)(原卷版)中考数学一轮复习

专题04二次根式的核心知识点精讲(讲义)(原卷版)中考数学一轮复习

专题04 二次根式的核心知识点精讲1.了解二次根式的概念及其有意义的条件.2.了解最简二次根式的概念,并会把二次根式化成最简二次根式.3.掌握二次根式(根号下仅限于数)加、减、乘、除、乘方运算法则,会用它们进行有管的简单四则运算.【题型1:二次根式有意义的条件】【典例1】(2023•济宁)若代数式有意义,则实数x的取值范围是()A.x≠2B.x≥0C.x≥2D.x≥0且x≠21.(2023•金华)要使有意义,则x的值可以是()A.0B.﹣1C.﹣2D.22.(2023•通辽)二次根式在实数范围内有意义,则实数x的取值范围在数轴上表示为()A.B.C.D.3.(2023•湘西州)若二次根式在实数范围内有意义,则x的取值范围是.【题型2:二次根式的性质】【典例2】(2023•泰州)计算等于()A.±2B.2C.4D.1.(2021•苏州)计算()2的结果是()A.B.3C.2D.92.(2023•青岛)下列计算正确的是()A.B.C.D.3.(2021•娄底)2、5、m是某三角形三边的长,则+等于()A.2m﹣10B.10﹣2m C.10D.44.(2022•遂宁)实数a、b在数轴上的位置如图所示,化简|a+1|﹣+=2.【题型3:二次根式的运算】【典例3】(2023•金昌)计算:÷×2﹣6.1.(2023•聊城)计算:(﹣3)÷=.2.(2023•山西)计算:的结果为.3.(2023•兰州)计算:.4.(2023•陕西)计算:.1.(2023秋•福鼎市期中)下列各数不能与合并的是()A.B.C.D.2.(2023秋•云岩区校级期中)下列式子中,属于最简二次根式的是()A.B.C.D.3.(2022秋•泉州期末)若二次根式有意义,则x的取值范围是()A.x<3B.x≠3C.x≤3D.x≥3 4.(2023秋•龙泉驿区期中)下列运算中,正确的是()A.B.C.D.5.(2023秋•锦江区校级期中)若a>b>0,则的结果是()A.a B.2b﹣a C.a﹣2b D.﹣a6.(2023春•河东区期中)把x根号外的因数移到根号内,结果是()A.B.C.﹣D.﹣7.(2023春•铁岭县期末)计算:的结果是()A.2B.0C.﹣2D.﹣8.(2023春•抚顺月考)二次根式的计算结果是()A.B.C.±D.9.(2023春•西丰县期中)已知a=+2,b=﹣2,则a﹣b的值是()A.2B.4C.2+4D.2﹣410.(2023春•工业园区期末)下列各组二次根式中,是同类二次根式的是()A.与B.与C.与D.与11.(2023春•武昌区校级期中)若是整数,则满足条件的最小正整数n的值为.12.(2023春•固镇县月考)计算=.13.(2023春•高安市期中)化简计算:=.14.(2023秋•高新区校级期中)计算:(1)×;(2).15.(2023秋•秦都区校级期中)计算:﹣×.1.(2022秋•鼓楼区校级期末)实数a在数轴上的位置如图所示,则化简结果为()A.7B.﹣7C.2a﹣15D.无法确定2.(2023春•新郑市校级期末)若=在实数范围内成立,则x的取值范围是()A.x≥1B.x≥4C.1≤x≤4D.x>43.(2023秋•西安校级月考)若x,y都是实数,且,则xy的值是()A.0B.4C.2D.不能确定4.(2023•商水县一模)我国南宋时期数学家秦九韶曾提出利用三角形的三边求面积的公式,此公式与古希腊几何学家海伦提出的公式如出一辙,即三角形的三边长分别为a,b,c,记,则其面积,这个公式也被称为海伦一秦九韶公式.若p=5,c=2,则此三角形面积的最大值为()A.B.C.D.55.(2023秋•闵行区期中)计算:=.6.(2023春•科左中旗校级期末)观察下列等式:第1个等式:a1==﹣1,第2个等式:a2==,第3个等式:a3==2﹣,第4个等式:a4==﹣2,…按上述规律,计算a1+a2+a3+…+a n=.7.(2023春•中江县月考)已知的值是.8.(2023春•禹州市期中)如图,在数学课上,老师用5个完全相同的小长方形在无重叠的情况下拼成了一个大长方形,已知小长方形的长为,宽为,则这个大长方形的周长为.9.(2023春•宿豫区期末)计算的结果为.10.(2023秋•双流区校级期中)已知a=3+,b=3﹣,分别求下列代数式的值:(1)a2﹣b2;(2)a2﹣3ab+b2.11.(2023春•双柏县期中)阅读下面问题:==﹣1;==﹣;==﹣2.(1)求的值;(2)计算:+++…++.12.(2023秋•二七区校级月考)阅读材料:我们来看看完全平方公式在无理数化简中的作用.问题提出:该如何化简?建立模型:形如的化简,只要我们找到两个数a,b,使a+b=m,ab=n,这样()2+()2=m,•=.那么便有:(a>b),问题解决:化简:,解:首先把化为,这里m=7,n=12,由于4+3=7,4×3=12,即,.∴,模型应用1:利用上述解决问题的方法化简下列各式:(1);(2).模型应用2:(3)在Rt△ABC中,∠C=90°,AB=4﹣,AC=,那么BC边的长为多少?(直接写出结果,结果化成最简).1.(2022•桂林)化简的结果是()A.2B.3C.2D.22.(2022•内蒙古)实数a在数轴上的对应位置如图所示,则+1+|a﹣1|的化简结果是()A.1B.2C.2a D.1﹣2a3.(2022•河北)下列正确的是()A.=2+3B.=2×3C.=32D.=0.7 4.(2022•湖北)下列各式计算正确的是()A.B.C.D.5.(2022•青岛)计算(﹣)×的结果是()A.B.1C.D.36.(2022•安顺)估计(+)×的值应在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间7.(2023•绵阳)若式子在实数范围内有意义,则x的最小值为.8.(2023•丹东)若代数式在实数范围内有意义,则实数x的取值范围是.9.(2022•武汉)计算的结果是.10.(2023•内蒙古)实数m在数轴上对应点的位置如图所示,化简:=.11.(2022•荆州)若3﹣的整数部分为a,小数部分为b,则代数式(2+a)•b的值是.12.(2022•泰安)计算:•﹣3=.13.(2022•济宁)已知a=2+,b=2﹣,求代数式a2b+ab2的值.。

中考数学第一轮复习教学案 第4课时 二次根式

中考数学第一轮复习教学案 第4课时 二次根式

的值为 3 ,则输出的数值为______。
▲6. 下面与 2 是同类二次根式的是( )
A. 3 B. 12 C. 8 D. 2 1 ▲7.(08,重庆)计算 8 2 的结果是( )
15.把二次根式 x 1 1 中根号外的因式移
1 x
到根号内,结果是__________。
A.6 B. 6
C.2 D. 2
) B.7 到 8 之间 D.9 到 10 之间
▲12(. 08,大连)若 x a b, y a b ,
(2) 3 +(5- 3 )=________ _.
则 xy 的值为 ( )
▲3.(08,黄冈)化简 5 x -2 x =__ ____。
▲4.(08,中山)下列根式中不是最简二次根式 的是( )
. ▲27.(08,长沙)已知 a、b 为两个连续整数,且
▲20.(08,宁夏)计算:5 2 8 =

▲21.二次根式 1 a 中,字母 a 的取值范围是 A. a 1 B.a≤1 C.a≥1 D. a 1
a< 7 <b,则 a b =
.
28.(07,烟台)观察下列各式:
1 1 2 1 , 2 1 3 1 , 3 1 4 1 ,....
33
44
55
▲22.函数 y 1 自变量 x 的取值范围是_ _. 1 x
▲23.下列各组二次根式中是同类二次根式的是
A. 12与 1 2
B. 18与 27
C. 3与 1 3
D. 45与 54
▲24.(07,邵阳)下列计算正确的是(

第3页
请你将发现的规律用含自然数 n(n≥1)的等式
表示出来_______________
29.(08,宁波)若实数 x,y 满足

《二次根式》教学教案

《二次根式》教学教案

《二次根式》教学教案《二次根式》教学教案(精选6篇)《二次根式》教学教案篇1一、内容和内容解析1、内容二次根式的概念。

2、内容解析本节课是在学生学习了平方根、算术平方根、立方根的概念,会用根号表示数的平方根、立方根,知道开方与乘方互为逆运算的基础上,来学习二次根式的概念。

它不仅是对前面所学知识的综合应用,也为后面学习二次根式的性质和四则运算打基础。

教材先设置了三个实际问题,这些问题的结果都可以表示成二次根式的形式,它们都表示一些正数的算术平方根,由此引出二次根式的定义。

再通过例1讨论了二次根式中被开方数字母的取值范围的问题,加深学生对二次根式的定义的理解。

本节课的教学重点是:了解二次根式的概念;二、目标和目标解析1、教学目标(1)体会研究二次根式是实际的需要。

(2)了解二次根式的概念。

2、教学目标解析(1)学生能用二次根式表示实际问题中的数量和数量关系,体会研究二次根式的必要性。

(2)学生能根据算术平方根的意义了解二次根式的概念,知道被开方数必须是非负数的理由,知道二次根式本身是一个非负数,会求二次根式中被开方数字母的取值范围。

三、教学问题诊断分析对于二次根式的定义,应侧重让学生理解“ 的双重非负性,”即被开方数≥0是非负数,的算术平方根≥0也是非负数。

教学时注意引导学生回忆在实数一章所学习的有关平方根的意义和特征,帮助学生理解这一要求,从而让学生得出二次根式成立的条件,并运用被开方数是非负数这一条件进行二次根式有意义的判断。

本节课的教学难点为:理解二次根式的双重非负性。

四、教学过程设计1、创设情境,提出问题问题1你能用带有根号的的式子填空吗?(1)面积为3 的正方形的边长为_______,面积为S 的正方形的边长为_______。

(2)一个长方形围栏,长是宽的2 倍,面积为130?,则它的宽为______。

(3)一个物体从高处自由落下,落到地面所用的时间t(单位:s)与开始落下的高度h(单位:)满足关系 h =5t?,如果用含有h 的式子表示 t ,则t= _____。

二次根式示例数学教案

二次根式示例数学教案

二次根式示例数学教案标题:二次根式的教学案例设计一、教学目标:1. 知识与技能:学生能够理解并掌握二次根式的概念,了解其性质和运算规则,并能灵活运用解决实际问题。

2. 过程与方法:通过观察、思考、讨论和实践,培养学生分析问题和解决问题的能力,以及自主学习和合作学习的能力。

3. 情感态度与价值观:培养学生对数学的兴趣和热爱,养成严谨的逻辑思维习惯,形成良好的学习态度和科学精神。

二、教学内容:1. 二次根式的概念:一个数的平方根如果是一个正数或0,那么这个数叫做二次根式。

例如√9=3,√4=2,√0=0。

2. 二次根式的性质:(a) √a² = |a| (b) √ab = √a * √b (c) √a/b = √a / √b (d) (√a)^2 = a (e) √(a^n) = a^(n/2)3. 二次根式的运算:包括加法、减法、乘法、除法和开方运算。

三、教学过程:1. 引入新课:通过一些实际生活中的例子,如测量物体的长度、面积等,引出二次根式的基本概念。

2. 讲解新知:讲解二次根式的定义和性质,引导学生理解和记忆。

3. 实践操作:让学生进行二次根式的计算练习,包括基本的加减乘除和开方运算。

4. 解决问题:给出一些涉及二次根式的问题,让学生尝试解决,然后进行讨论和分享。

5. 小结巩固:总结本节课的主要内容和重点难点,让学生回顾和复习。

6. 布置作业:布置一些相关的习题,让学生在课后进行自我检测和巩固。

四、教学反思:在教学过程中,教师要注意观察学生的反应和理解程度,及时调整教学策略。

同时,也要鼓励学生提问和发表自己的观点,培养他们的主动性和创新性。

此外,教师还可以通过各种形式的评价和反馈,帮助学生发现自己的优点和不足,提高他们的学习效果。

五、教学评估:通过课堂观察、作业检查和测试成绩等方式,对学生的学习情况进行评估。

主要考察他们对二次根式概念的理解程度,对二次根式性质和运算规则的掌握程度,以及应用二次根式解决实际问题的能力。

专题04二次根式(讲练)-2023年中考一轮复习(原卷版)

专题04二次根式(讲练)-2023年中考一轮复习(原卷版)

2023年中考数学总复习一轮讲练测()第一单元 数与式专题04二次根式(讲练)1.了解二次根式和最简二次根式的概念,知道二次根式a 中被开方数a 为非负数并且a 也是非负数.2.了解二次根式的加、减、乘、除运算法则并掌握二次根式的性质.3.能根据二次根式的运算法则及性质进行二次根式的加、减、乘、除和综合运算.1.(2021•杭州)下列计算正确的是( )A 2=B 2=-C 2±D 2=±2.(2022有意义,x 的取值范围是( ) A .5x B .5x ≠ C .5x > D .5x3.(2022有意义,x 的取值范围是( ) A .5x B .9x ≠ C .59x D .59x <4.(2022秋•上城区校级期中)实数a ,b ,c 在数轴上的对应点如图所示,化简||a b a -+-( )A.b c-+D.2a b ca b c++-C.222--B.c b5.(2022=;2(2)-=.6.(2021x的值可以是.(写出一个即可)7.(2021春•鹿城区校级期中)当3a==.8.(2021秋•鄞州区校级期末)已知3y,则xy的值为.9.(2021秋•诸暨市期末)如图1,以Rt ABC∆各边为边分别向外作等边三角形,编号为①、②、③,将②、①如图2所示依次叠在③上,已知四边形EMNB与四边形MPQN的面积分别为,则Rt ABC∆的斜边长AB=.10.(20201|-.11.(2022春•拱墅区期中)计算(1(2)12.(2022春•柯桥区月考)化简:(1;(2)22)+.13.(2022春•椒江区校级期中)阅读下列材料,并回答问题:把形如a +a a -、b 为有理数且0b >,m 为正整数且开方开不尽)的两个实数称为共轭实数.(1)请你举出一对共轭实数: 和 ;(2)-a 、b 的值;(3)若两个共轭实数的和是10,差的绝对值是,请求出这两个共轭实数.1.二次根式的有关概念:(1)二次根式:式子 叫做二次根式.(2)最简二次根式需满足两个条件:①被开方数 .②被开方数中 的因数或因式.2.二次根式的性质:(1)(a )2= (a ≥0).(2)a 2= =⎩⎪⎨⎪⎧a (a >0),0(a =0),-a (a <0). (3)ab = (a ≥0,b ≥0).(4)ab = (a ≥0,b >0).二次根式的双重非负性是指它的被开方数与结果均为非负数.3.二次根式的运算:(1)二次根式加减法的实质是合并同类二次根式. (2)二次根式的乘法:a ·b = (a ≥0,b ≥0).(3)二次根式的除法:a b= (a ≥0,b >0). 运算结果中的二次根式,一般都要化成最简二次根式或整式.考点一、 二次根式中字母的取值范围例1.(2021春•长兴县月考)求下列二次根式中字母的取值范围:(1)√2k −1.(2)√1k+1.【变式训练】1.(2022春•安吉县期末)若√x是二次根式,则x的值可以是()A.1B.﹣1C.﹣2D.﹣3 2.(2022春•乐清市期末)当a=5时,二次根式√4+a的值是()A.3B.2C.1D.﹣1 3.(2022春•仙居县期中)下列的式子中是二次根式的是()A.√−1B.√3−πC.√83D.√3 4.(2022春•钱塘区期末)下列二次根式中字母a的取值范围是全体实数的是()A.√a B.√a−1C.√1a+1D.√(a−1)25.(2022秋•南湖区校级期中)已知y=√x−2+√2−x+4,y x的平方根是()A.16B.8C.±4D.±2考点二、二次根式的性质例2.(2021春•邗江区月考)计算:(1)已知实数a,b,c在数轴上的对应点如图所示,化简√a2+|c﹣a|+√(b−c)2;(2)已知x、y满足y=√x2−9+√9−x2+1x−3,求5x+6y的值.【变式训练】1.(2022秋•南湖区校级期中)下列计算正确的是()A.√(−2)2=±2B.√(−2)2=−2C.√−83=2D.√12=2√32.(2022春•金东区期中)下列计算正确的是()A.√9=±3B.√22+32=5C.√4=2D.√(−3)2=−33.(2022春•长兴县期中)二次根式√50的化简结果正确的是()A.5√2B.2√5C.10√5D.5√104.(2022秋•海曙区校级期中)已知数a,b,c在数轴上的位置如图所示,化简:√a2−|a+c|−√(c−b)2−|−b|的结果是()A.2c﹣2b B.﹣2c C.﹣2a﹣2c D.05.(2022•谷城县二模)计算:√(1−√2)2=.6.(2022•钱塘区二模)已知√(3+a)2=−3−a ,则a 的取值范围 . 考点三 、二次根式的运算例3.(2022春•滨江区校级期中)计算:(1)√12−√43;(2)(√5−√3)2+(√5+√3)(√5−√3). 【变式训练】1.(2022春•鹿城区校级期中)下列计算正确的是( )A .√3√2=√62B .√(−2)2=−2C .(√2)2=4D .√4916=2342.(2022春•婺城区期末)下列计算正确的是( )A .3+√3=3√3B .2√3+√3=3√3C .2√3−√3=2D .√3+√2=√53.(2022春•长兴县月考)已知a =2020×2022﹣2020×2021,b =√20232−4×2022,c =√20212−1,则a ,b ,c 的大小关系是( )A .a <b <cB .b <a <cC .a <c <bD .b <c <a4.(2022春•长兴县月考)(√6+√5)2021×(√6−√5)2022= .5.(2022•江北区开学)若a +6√3=(m +n √3)2,当a ,m ,n 均为正整数时,则√a 的值为 .6.(2022春•富阳区期中)计算:(1)√8×√18;(2)(7+4√3)(7−4√3)+(√5−1)2.7.(2022春•南湖区校级期中)计算:(1)12√12−√27−9√13 (2)(√15−4)2021×(√15+4)2022考点四 、二次根式的化简求值及应用例4.(2022春•拱墅区期中)已知a =√7+√6,b =√7−√6,试求:(1)ab ;(2)a 2+b 2﹣5+2ab .1.(2022•瑞安市校级三模)当a =√3+1时,代数式(a ﹣1)2﹣2a +2的值为 .2.(2022春•东阳市期末)设a =√7+√6,b =√7−√6,则a 2021b 2022的值是 .3.(2022春•拱墅区期中)已知a=√7+√6,b=√7−√6,试求:(1)ab;(2)a2+b2﹣5+2ab.4.(2022春•义乌市月考)小芳在解决问题:已知a=2+√3,求2a2﹣8a+1的值.他是这样分析与解的:a=12+√3=2−√3(2+√3)(2−√3)=2−√3,∴a=2−√3,∴(a﹣2)2=3,a2﹣4a+4=3,∴a2﹣4a=﹣1,∴2a2﹣8a+1=2(a2﹣4a)+1=2×(﹣1)+1=﹣1.请你根据小芳的分析过程,解决如下问题:(1)计算:√2+1+√3+√2+√4+√3+⋯+√2022+√2021.(2)若a=1√2−1.①求4a2﹣8a﹣1的值;②求3a3﹣12a2+9a﹣12的值.5.(2022春•余杭区期中)如图是一张等腰直角三角形彩色纸,AC=BC=20√2cm.要裁出几张宽度相等的长方形纸条,宽度都为5√2cm,用这些纸条为一幅正方形照片EFGH镶边(纸条不重叠).图1和图2是两种不同裁法的示意图.(1)求两种裁法最多能得到的长方形纸条的条数;(2)分别计算两种裁法得到长方形纸条的总长度;(3)这两种裁法中,被镶边的正方形照片EFGH的最大面积为多少?。

四川省攀枝花市仁和区布德中小学中考数学 第4课 二次根式复习学案(无答案)

四川省攀枝花市仁和区布德中小学中考数学 第4课 二次根式复习学案(无答案)

姓名:班级:第4课二次根式一、知识点1:二次根式的概念及条件:a⇔≥2:二次根式的性质) a b-------;,)a b--------=;2()a a---=;()()a aa a----------⎧=⎨-⎩3:二次根式的化简(1)最简二次根式满足条件:(2)根式的化简结果要化成最简二次根式二、基础练习:(1)16的平方根是_______,-27的立方根是________,36的算术平方根是_________. (2)化简:24=________,2)2(-=_______,312=________,321-=________. (3)A、24B、12C、23D、18(4x的取值范围是__________.(5)已知n-12是正整数,则实数n的最大值为()A.12 B.11 C.8 D.3(6)下列根式中属最简二次根式的是()(73a=-,则a与3的大小关系是( )A.3a< 8.3a≤ C.3a> D.3a≥(8)方程0|84|=--+-myxx,当0>y时,m的取值范围是(9)计算:=+-3)23(2。

(10)已知a) A .a B .a - C .1- D .0(11)已知mn ﹤0,化简-----=(12)已知4423+-=+x x x x ,求x 的范围是三.例题精讲: 例1.计算:⎛÷ ⎝例2、(2010 四川绵阳)要使1213-+-x x 有意义,则x 应满足( ). A .21≤x ≤3 B .x ≤3且x ≠21 C .21<x <3 D .21<x ≤3 例3.计算:先化简,再求值:24)2122(+-÷+--x x x x ,其中34 +-=x . 例4.计算:化简:012009|3.14π| 3.1412cos 451)(1)2-⎛⎫-+÷+-++- ⎪ ⎪⎝⎭°四、随堂演练:1、(2010 福建德化)下列计算正确的是( )A 、20=102B 、632=⋅ C 、224=- D3=- 2、下列运算错误的是( )= B==2(2=3、(2010湖北襄樊)下列说法错误的是( )A2BC是有理数 D.2是分数 4、(2011山东威海3分)在实数0、2-中,最小的是( )5、(2011山东临沂3分)计算221-631+8的结果是( ) A .32-23 B .5-2C .5-3D .226、(2011上海4分)下列二次根式中,最简二次根式是( ).. 7、下列式子中最简二次根式的个数有( ) ⑴31;⑵3-;⑶12+-x ;⑷38;⑸2)31(- A .2个 B .3个 C .4个 D .5个8、(2010安徽芜湖)要使式子a +2a有意义,a 的取值范围是( ) A .a ≠0 B .a >-2且a ≠0 C .a >-2或a ≠0 D .a ≥-2且a ≠09、(2010广东广州3分)若a <11=( )A .a ﹣2B .2﹣aC .aD .﹣a10、(2010年山西)估算231-的值( )A .在1和2之间B .在2和3之间C .在3和4之间D .在4和5之间11、(2010江苏南京)如图,下列各数中,数轴上点A 表示的可能是( )A.4的算术平方根B.4的立方根 C.8的算术平方根 D.8的立方根12、(2011山东菏泽,4,3分)实数a在数轴上的位置如图所示,化简后为( )A . 7B . -7C . 2a -15D . 无法确定132()x y =+,则x -y 的值为( ) A .-1 B .1 C .2 D .314、(2011江苏南京)计算1)(2=_______________.计算的结果是 .15、(2011内蒙古乌兰察布4分)()0201112=-++y x 则yx = 三、解答题1、(2011四川绵阳)计算:(12)-2 - |22-3 | +382、计算:0(3)1-. 3、计算:0023)20094(45sin 2)52()21(π-++-+--4、(2010浙江绍兴)先化简,再求值: 6)6()3)(3(2+---+a a a a ,其中12-=a5、 先化简,再求值:1112221222-++++÷--x x x x x x ,其中12+=x6、(2010四川攀枝花)先化简,再求值:(6分)(x —1+x x )÷(1+112-x ),其中x =3—1。

二次根式教案四篇

二次根式教案四篇

二次根式教案四篇二次根式教案篇11、知识与技能:了解二次根式的概念,能求根号内字母范围,理解二次根式的双重非负性,并能应用它解决相关问题。

2、过程与方法:进一步体会分类讨论的数学思想。

3、情感、态度与价值观:通过小组合作学习,体验在合作探索中学习数学的乐趣。

1、重点:准确理解二次根式的概念,并能进行简单的计算。

2、难点:准确理解二次根式的双重非负性。

课本第2— 3页一、课前准备(预习学案见附件1)学生在家中认真阅读理解课本中相关内容的知识,并根据自己的理解完成预习学案。

二、课堂教学(一)合作学习阶段。

教师出示课堂教学目标及引导材料,各学习小组结合本节课学习目标,根据课堂引导材料中得内容,以小组合作的形式,组内交流、总结,并记录合作学习中碰到的问题。

组内各成员根据课堂引导材料的要求在小组合作的前提下认真完成课堂引导材料。

教师在巡视中观察各小组合作学习的情况,并进行及时的引导、点拨,对普遍存在的问题做好记录。

(二)集体讲授阶段。

(15分钟左右)1. 各小组推选代表依次对课堂引导材料中的问题进行解答,不足的本组成员可以补充。

2. 教师对合作学习中存在的.普遍的不能解决的问题进行集体讲解。

3. 各小组提出本组学习中存在的困惑,并请其他小组帮助解答,解答不了的由教师进行解答。

(三)当堂检测阶段为了及时了解本节课学生的学习效果,及对本节课进行及时的巩固,对学生进行当堂检测,测试完试卷上交。

(注:合作学习阶段与集体讲授阶段可以根据授课内容进行适当调整次序或交叉进行)三、课后作业(课后作业见附件2)教师发放根据本节课所学内容制定的针对性作业,以帮助学生进一步巩固提高课堂所学。

四、板书设计课题:二次根式(1)二次根式概念例题例题二次根式性质反思:二次根式教案篇2一、内容和内容解析1.内容二次根式的除法法则及其逆用,最简二次根式的概念。

2.内容解析二次根式除法法则及商的算术平方根的探究,最简二次根式的提出,为二次根式的运算指明了方向,学习了除法法则后,就有比较丰富的运算法则和公式依据,将一个二次根式化成最简二次根式,是加减运算的基础.基于以上分析,确定本节课的教学重点:二次根式的除法法则和商的算术平方根的性质,最简二次根式.二、目标和目标解析1.教学目标(1)利用归纳类比的方法得出二次根式的除法法则和商的算术平方根的性质;(2)会进行简单的二次根式的除法运算;(3) 理解最简二次根式的概念.2.目标解析(1)学生能通过运算,类比二次根式的乘法法则,发现并描述二次根式的除法法则;(2)学生能理解除法法则逆用的意义,结合二次根式的概念、性质、乘除法法则,对简单的二次根式进行运算.(3)通过观察二次根式的运算结果,理解最简二次根式的特征,能将二次根式的运算结果化为最简二次根式.三、教学问题诊断分析本节内容主要是在做二次根式的除法运算时,分母含根号的处理方式上,学生可能会出现困难或容易失误,在除法运算中,可以先计算后利用商的算术平方根的性质来进行,也可以先利用分式的性质,去掉分母中的'根号,再结合乘法法则和积的算术平方根的性质来进行.二次根式的除法与分式的运算类似,如果分子、分母中含有相同的因式,可以直接约去,以简化运算.教学中不能只是列举题型,应以各级各类习题为载体,引导学生把握运算过程,估计运算结果,明确运算方向.本节课的教学难点为:二次根式的除法法则与商的算术平方根的性质之间的关系和应用.四、教学过程设计1.复习提问,探究规律问题1 二次根式的乘法法则是什么内容?化简二次根式的一般步骤怎样?师生活动学生回答。

中考数学第一轮复习(第4讲--数的开方与二次根式)

中考数学第一轮复习(第4讲--数的开方与二次根式)
第十六 ,共44 。
【例题1】 (2012·浙江宁波)下列计算正确的是( ). A.a6÷a2=a3 B.(a3)2=a5
解析 根据同底数幂的除法,幂的乘方,算术平方根,立方根运算
法则逐一计算作出判断:
A.a6÷a2=a6-2=a4≠a3,故本选项错误; B.(a3)2=a3×2=a6≠a5,故本选项错误;
第三十五 ,共44 。
【预测1】 下列计算:
答案 C
第三十六 ,共44 。
【预测2】 下列运算正确的是
( ).
答案 C
第三十七 ,共44 。
易 错防 范
第三十八 ,共44 。
数的开方、二次根式常见错误
第三十九 ,共44 。
【典型例题】
第四十 ,共44 。
第四十一 ,共44 。
第二十八 ,共44 。
A.a≠0
C.a>-2或a≠0
B.a>-2且a≠0 D.a≥-2且a≠0
答案 D
第二十九 ,共44 。
【预测3】 下列二次根式中,最简二次根式是( ).
答案 B
第三十 ,共44 。
答案 C
第三十一 ,共44 。
解析 考查二次根式和绝对值等非负数的性质,由已知得,x= -3,y=2 013,所以x+y=-3+2 013=2 010.
(3)混合运算:与实数的混合运算顺序相同.
状元笔记 (1)加减运算:需先化简,再合并;
(2)乘除运算:可先乘除,后化简.
第十四 ,共44 。
对 接中 考
第十五 ,共44 。
对接点一:平方根、立方根及算数平方根
常考角度
1. 平方根、算术平方根与立方根的概念; 2. 求一个数的平方根、算术平方根与立方根.

中考数学一轮教材梳理复习课件:第4课二次根式

中考数学一轮教材梳理复习课件:第4课二次根式

首页
下一页
最简二次根式3】(2019·河池)下列式子中,为最简二次根式的 是( B )
1 A. 2
B. 2
C. 4
D. 12
首页
下一页
10.(2020·上海)下列二次根式中,与 3 是同类二 次根式的是( C )
A. 6
B. 9
C. 12
D. 18
首页
下一页
首页
下一页
5.(2020·济宁)下列各式是最简二次根式 的是( A )
A. 13
B. 12
C. a3
D.
5 3
首页
下一页
5.二次根式的性质与运算
(1)双重非负性: a ≥0 且 a≥0;
(2)( a )2=a(a≥0), a2 =|a| (a 取全体实数);
(3) ab = a · b (a≥0,b≥0);
(4)
a b

a b
(a≥0,b>0).
首页
下一页
6. (1)计算:
52 =___5___;( 5 )2=___5___;
(-5)2 =__5____.
(2)计算:
1 2
×
8 =___2____.
(3)计算: 63 ÷ 7 =____3____.
首页
下一页
考点精炼
二次根式有意义的条件(7 年 6 考)
【例 1】(2020·武汉)式子 x-2 在实数范围内有
意义,则 x 的取值范围是( D )
A.x≥0
B.x≤2
C.x≥-2
D.x≥2
首页
下一页
7.(2020·常德)若代数式
2 在实数范围内有 2x-6
意义,则 x 的取值范围是___x_>_3___.

二次根式教案(优秀5篇)

二次根式教案(优秀5篇)

二次根式教案(优秀5篇)次根式教案篇一目标1.熟练地运用二次根式的性质化简二次根式;2.会运用二次根式解决简单的实际问题;3.进一步体验二次根式及其运算的实际意义和应用价值。

教学设想本节课的重点是:二次根式及其运算的实际应用;难点是:例7涉及多方面的知识和综合运用,思路比较复杂。

教学程序与策略一、预习检测:1、解决节前问题:如图,架在消防车上的云梯AB长为15m,AD:BD=1 :0.6,云梯底部离地面的距离BC为2m。

你能求出云梯的顶端离地面的距离AE吗?归纳:在日常生活和生产实际中,我们在解决一些问题,尤其是涉及直角三角形边长计算的问题时经常用到二次根式及其运算。

二、合作交流:1、:如图,扶梯AB的坡比(BE与AE的长度之比)为1:0.8,滑梯CD的坡比为1:1.6,AE= 米,BC= CD。

一男孩从扶梯走到滑梯的顶部,然后从滑梯滑下,他经过了多少路程(结果要求先化简,再取近似值,精确到0.01米)让学生有充分的时间阅读问题,并结合图形分析问题:(1)所求的路程实际上是哪些线段的和?哪些线段的长是已知的?哪些线段的长是未知的?它们之间有什么关系?(2)列出的算式中有哪些运算?能化简吗?注意解题格式教学程序与策略三、巩固练习:完成课本P17、1,组长检查反馈;四、拓展提高:1:如图是一张等腰三角形彩色纸,AC=BC=40cm,将斜边上的高CD四等分,然后裁出3张宽度相等的长方形纸条。

(1)分别求出3张长方形纸条的长度。

(2)若用这些纸条为一幅正方形美术作品镶边(纸条不重叠),如右图,正方形美术作品的面积最大不能超过多少cm。

师生共同分析解题思路,请学生写出解题过程。

五、课堂小结:1、谈一谈:本节课你有什么收获?2、运用二次根式解决简单的实际问题时应注意的的问题六、堂堂清1: 作业本(2)2:课本P17页:第4、5题选做。

次根式教案篇二一、教学目标1、使学生知道什么是最简二次根式,遇到实际式子能够判断是不是最简二次根式。

2024年中考第一轮复习 数的开方与二次根式 课件

2024年中考第一轮复习 数的开方与二次根式  课件
A. 16=±4
3
B. -8=2
( D )
C.-a
1

=
-
D.- 64=-8
■ 知识梳理
正数 a
平方根
0
负数 b
等于其本身的数
0
没有
0

0
没有
0,1
0± (一正一来自)算术平方根立方根
3
3

0,1,-1
考点二
二次根式的相关概念及性质
4.[2020·济宁]下列各式是最简二次根式的是 ( A )
个数据应是 -3 (结果需化简).
7.[2020·湖州]计算: 8+| 2-1|.
解:原式=2 2 + 2-1=3 2-1.
最简二
(1)被开方数中的因数是整数,因式是整式;
次根式
(2)被开方数中不含开得尽方的因数或因式
(1) ≥0,a≥0(双重非负性);
二次根式
(3)
2 =|a|=
的性质
② a ( ≥ 0),
(4) =④
③ -a ( < 0);

(5)

=⑤

(2)( )2=① a

(a≥0,b>0)
(a≥0);
求百以内整数(对应的负整数)的立方根,会用计算器求平方根和立方根.
4.能用有理数估计一个无理数的大致范围.
考点一
平方根与立方根
1.[2020·南京]3 的平方根是
A.9
( D )
B. 3
2.[2020·常州]8 的立方根是
C.- 3
D.± 3
( C )
A.2 2
B.±2 2
C.2
D.±2

中考数学第一轮总复习数的开方与二次根式

中考数学第一轮总复习数的开方与二次根式

数的开方与二次根式主备人 刘敖川 审核人 张丽丽【考点链接】1.式子)0(≥a a 叫做二次根式.注意被开方数a 只能是 .2. 的二次根式,叫做最简二次根式.3.化成最简二次根式后,被开方数 几个二次根式,叫做同类二次根式.4.二次根式的性质 :⑴ ; ⑵ ()=2a (a ≥0); ⑶=2a ;(4)=ab (0,0≥≥b a ); (5)=b a (0,0>≥b a ). 【典例精析】例1 (1x 取值范围是________.(2)已知a例2: )A C D例3:若a ,b 分别表示10的整数部分与小数部分,求41++b a 的值【中考演练】1_______, -164的立方根为_______.2x 的取值范围是 ( )A .13x >B .13x >- C . 13x ≥ D .13x ≥-3.(10上海)计算:2=__________.4. 若无理数a 满足不等式14<<a ,请写出两个符合条件的无理数_____________.5.(10长春)计算:(1)54-= _____________.(2)=_________.6.下列叙述中正确的是( )A .正数的平方根不可能是负数B .无限小数都是无理数C .实数和实数上的点一一对应D .带根号的数是无理数7.(10年福州市)下列各式中属于最简二次根式的是( )A C D8.(10年恩施自治州)若m 的值为( ) A .20511315 (326)88B C D9.(10海淀) )A B C D 10.估算31-2的值( )A .在1和2之间B .在2和3之间C .在3和4之间D .在4和5之间11.若ab<0,化简二次根式321b a a-的结果是:( ). A.b b B.-b b C. b b - D. -b b -【课后作业】1.函数y=11+x 的自变量的取值范围是 . A.x≥-1 B. x>-1 C. x≠1 D. x≠-12.函数2-=x y 中,自变量x 的取值范围是 .3.(2010·绵阳)要使1213-+-x x 有意义,则x 应满足( ). A .21≤x ≤3 B .x ≤3且x ≠21 C .21<x <3 D .21<x ≤34.(2010有意义,a 的取值范围是( ) A .a≠0 B .a>-2且a≠0C .a>-2或a≠0D .a≥-2且a≠0 5.(2010年常州)下列运算错误的是( ).A = B. = = D.2(2=6.下列各组中的两个根式是同类二次根式的是( )A .52x 和3xB .12ab 和13abC .x 2y 和xy 2D . a 和1a 27.下列二次根式中,是最简二次根式的是( )A .8xB .x 2-3C .x -y x D .3a 2b 8.在27 .112 .112中与 3 是同类二次根式的个数是( ) A .0 B .1 C .2 D .39.(2010年安徽)计算:=-⨯263_____:;=+312______10=___ __.11.(2010的的算术平方根是 .13.(10年永州) 下列判断正确的是( )A . 23<3<2 B . 2<2+3<3 C . 1<5-3<2 D . 4<3·5<514.(2007=== 请你将发现的规律用含自然数n (n ≥1)的等式表示出来__________________________. 在实数范围内因式分解:x x 53-= ;15.计算(1)8132182+- (2)2543122÷⨯(3))92913(25523x x x x +- (4))622554(83--⨯(5)301007)6t a n 30)3-⎛⎫- ⎪⎝⎭(6)计算:|345tan |32)31()21(10-︒-⨯+--。

人教版初中数学中考复习 一轮复习-数的开方与二次根式

人教版初中数学中考复习 一轮复习-数的开方与二次根式
C 2
伦﹣秦九韶公式.若p=5,c=4,则此三角形面积的最大值为( )
A. 5
B.4
C.2 5
D.5
知识点四、二次根式-二次根式的运算
解:p a b c a b 4 5
2
2
所以a b 6, a 6 b
s pp ap bp c 55 a5 b5 4
55 (6 b)5 b1 5 b 15 b
3 的结果是______.
3 12
解: 3 1 1 1 3 12 1 4 1 2 3
5. 化简: 1 1 49
解: 1 1 9 4 13 13 4 9 36 36 36 6
知识点三、二次根式-二次根式的性质
D 1.[2019·济宁]下列计算正确的是 ( )
A. 3 2 3
解:原式 9 — 1 8 22
9 2 — 1 2 2 2 22 22
3 2 — 2 2 2 22
3 — 1 2 2 2 2
3 2
知识点四、二次根式-二次根式的运算
2、(2021. 铜仁)计算( 27 — 18)( 3 — 2)
解:原式 (3 3 - 3 2)( 3 - 2) 9-3 6 -3 6 6 15- 6 6
一轮复习
数的开方与二次根式
课标要求
1. 了解平方根、算术平方根、立方根的概念,会用根号表示数的平方根、算术平方 根 、 .立方根。 2. 了解乘方与开方互为逆运算,会用平方运算求百以内整数的平方根,会用立方运算求
百以内整数(对应的负整数)的立方根,会用计算器求平方根和立方根. 3. 能用有理数估计一个无理数的大致范围. 4. 了解二次根式、最简二次根式的概念,了解二次根式(根号下仅限于数)加、减、乘、
5 4 b3 2

中考数学 第4讲 二次根式复习教案1 北师大版(2021学年)

中考数学 第4讲 二次根式复习教案1 北师大版(2021学年)

中考数学第4讲二次根式复习教案1 (新版)北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(中考数学第4讲二次根式复习教案1 (新版)北师大版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为中考数学第4讲二次根式复习教案1 (新版)北师大版的全部内容。

课题:二次根式教学目标:1.了解二次根式的概念及其有意义的条件.2.了解最简二次根式的概念,并会把二次根式化成最简二次根式.3.掌握二次根式(根号下仅限于数)加、减、乘、除、乘方运算法则,会用它们进行有管的简单四则运算.教学重难点:熟练掌握二次根式的计算.课前准备:多媒体课件.教学过程:一、课前热身,知识回现活动内容:题组训练热身1.x的取值范围是()A.x≥-12B.x≥12C.x≤-12D.x≤122.下列根式中是最简二次根式的是( )ABCD3.下列运算正确的是( )A=C.21)31=- D.1=4.计算:=.处理方式:课前利用3~5分钟时间进行练习,学生结合导学案独立完成,然后公布答案,教师通过统计测试结果,针对学生出现的问题,适当调整本节课的复习侧重点.进行4道简单的题目测试,期中,第1题为“理解二次根式有意义的条件”,第2题为“理解最简二次根式的概念",第3、4题为“了解二次根式加、减、乘、除运算法则,会用它们进行有管简单的四则运算”.设计意图:意在突出三方面作用:一、让学生对本节课所要回顾的内容有初步的感受,并引导学生根据自我认知情况构建知识体系;二、教师通过测试结果的反馈,及时了解学情并调整复习的侧重点;三、引出下列复习目标.二、目标引领,考纲解读1.了解二次根式的概念及其有意义的条件.2.了解最简二次根式的概念,并会把二次根式化成最简二次根式.3.掌握二次根式(根号下仅限于数)加、减、乘、除、乘方运算法则,会用它们进行有管的简单四则运算.处理方式:多媒体显示,找学生朗读.其余学生默读目标.然后结合知识网络图建构知识.设计意图:站在中考的高度,让学生明确本课的考试要求,这样既引起了学生的重视,又能给学生起到很好的导航作用,复习就有了明确的目标.三、考点剖析,知识再现活动内容:以题引知识点知识点1:二次根式的有关概念及其有意义的条件课前测试:1x 的取值范围是( )A .x ≥-12 B.x ≥12 C.x≤-12 D.x ≤12一般地, 形如 ( )的形式叫做二次根式.知识点2:最简二次根式的概念课前测试2.下列根式中是最简二次根式的是( )B C D .最简二次根式需满足以下两个条件:被开方数不含 ;被开方数不含 的因数或因式.知识点3:二次根式的运算课前测试3.下列运算正确的是( ) = B =C.21)31=- D.1=4.= .二次根式的运算法则:2= (a ≥0);=ab (0,0≥≥b a ); =b a(0,0>≥b a )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学一轮复习第4讲二次根式教
第4讲:二次根式
一、复习目标
1.掌握二次根式有意义的条件和基本性质2=a(a≥0).
2=|a|来化简根式.
3.能识别最简二次根式、同类二次根式.
4.能根据运算法则进行二次根式的加减乘除运算以及混合运算.
二、课时安排
1课时
三、复习重难点
1.掌握二次根式有意义的条件和基本性质( a )2=a(a≥0).
2.能根据运算法则进行二次根式的加减乘除运算以及混合运算.
四、教学过程
(一)知识梳理
二次根式概念
1.形如________的式子叫做二次根式.
2.二次根式有意义的条件
要使二次根式a有意义,则a 0.
3、最简二次根式、同类二次根式
概念
我们把满足被开方数不含分母,被开方数中不含能开得尽方的______或______的二次根式,叫做最简二次根式.
同类二次根式的概念
几个二次根式化成________________以后,如果被开方数相同,那么这几个二次根式就叫做同类二次根式.
二次根式的性质
1.(a)2=a(______).
2.a2=|a|=⎩⎪⎨⎪⎧ ,
3.ab =______(a≥0,b≥0). 4.a b
=______(a≥0,b >0). 二次根式的运算
1.二次根式的加减法
合并同类二次根式:在二次根式的加减运算中,把几个二次根式化为最简二次根式后,若有同类二次根式,可把同类二次根式合并成一个二次根式.
2.二次根式的乘除法
(1)二次根式的乘法:a ·b =____(a≥0,b≥0).
(2)二次根式的除法:a
b =____(a≥0,b >0).
3、把分母中的根号化去掉
(1)1
a = (2)1
a +
b = (二)题型、方法归纳
考点1 二次根式概念
技巧归纳:此类有意义的条件问题主要是根据:①二次根式的被开方数大于或等于零;②分式的分母不为零等列不等式组,转化为求不等式组的解集.
考点2 二次根式的性质
技巧归纳:1. 2.
3、比较两个二次根式大小时要注意:(1)负号不能移到根号内;(2)根号外的正因数要平方后才能从根号外移到根号内.
考点3 二次根式的运算
技巧归纳:1、二次根式的性质,两个重要公式,积的算术平方根,商的算术平方根;2、二次根式的加减乘除运算.2、此类分式与二次根式综合计算与化简问题,一般先化简再代入求值;最后的结果要化为分母没有根号的数或者是最简二次根式.
(三)典例精讲
例1 有意义的x 的取值范围是_____
[解析]要使有意义,则1-x≥0,所以x≤1.
点析:此类有意义的条件问题主要是根据:①二次根式的被开方数大于或等于零;②分式的分母不为零等列不等式组,转化为求不等式组的解集.
例2 已知实数x ,y 满||x -4+y -8=,则以x ,y 的值为两边长的等腰三角形的周长是( )
A. 20或16 B .20 C .16 D .以上答案均不对
解析:根据题意 x-4=0,y+8=0 解得x=4,y=8
(1)若4是腰长,则三角形的三边长为4、4、8,不能组成三角形;
(2)若4是底边长,则三角形的三边长为4、8、8,能组成三角形,周长为4+8+8=20故选B ; 例3、 12的负的平方根介于( )
A .-5与-4之间
B .-4与-3之间
C .-3与-2之间
D .-2与-1之间
答案:B
例4计算48÷3-12
×12+24 解析:先做二次根式的乘除运算,并化为最简二次根式,再合并同类二次根式. 解:48÷3-12×12+24=16-6+24=4-6+26=4+ 6. 点析:利用二次根式的性质,先把每个二次根式化简,然后进行运算;在中考中二次根式常与零指数、负指数结合在一起考查.
例5 先化简,再求值⎝ ⎛⎭⎪⎫1x -1x +1·x x 2+2x +1()x +12-()x -12其中x =12
解:原式=1x ()x +1·x ||x +14x =||x +14x ()
x +1. ①当x +1>0时,原式=14x ②当x +1<0时,原式=-14x
. ∵当x =12时,x +1>0,∴原式=12
. 点析:此类分式与二次根式综合计算与化简问题,一般先化简再代入求值;最后的结果要化为分母没有根号的数或者是最简二次根式.
例6 50-1
5+220-45+22
解:原式=52-
55+45-35+22 =⎝ ⎛⎭⎪⎫52+22+⎝ ⎛⎭
⎪⎫45-35-55 =1122+455
. (四)归纳小结
本部分内容要求熟练掌握二次根式概念、性质及二次根式的运算。

(五)随堂检测
1、下列根式中,不是..
最简二次根式的是( ) A 、
B 、
C 、
D 、 2
) A 、
B
C
D 、
3、已知
) A 、 B 、 C 、- 1 D 、 0
4、使代数式有意义的x 的取值范围是( )
A 、x>3
B 、x≥3
C 、 x>4
D 、x≥3且x≠4
5的值在下列哪两个数之间 (
) A 、1和2 B 、2和3 C 、3和4 D 、4和5
6、若为实数,且,则的值为( )
A 、1
B 、
C 、2
D 、 五、板书设计
概念 性质 运算规律
六、作业布置
二次根式课时作业
七、教学反思
借助多媒体形式,使同学们能直观感受本模块内容,以促进学生对所学知识的充分理解与掌握。

采用启发、诱思、讲解和讨论相结合的方法使学生充分掌握知识。

进行多种题型的训练,使同学们
73122-a a a -43--x x 2x y ,20x +=2009x y ⎛⎫ ⎪⎝
⎭1-2-
能灵活运用本节重点知识。

相关文档
最新文档