2021届高考数学圆锥曲线压轴题专题01 圆锥曲线与重心问题(通用版解析版)
高考数学复习----圆锥曲线压轴解答题常考套路归类专项练习题(含答案解析)
高考数学复习----圆锥曲线压轴解答题常考套路归类专项练习题(含答案解析)1.(2023春·福建泉州·高三阶段练习)如图,在平面直角坐标系中,已知点,直线:,为平面上的动点,过点作直线的垂线,垂足为点,分别以PQ ,PF 为直径作圆和圆,且圆和圆交于P ,R 两点,且.(1)求动点的轨迹E 的方程;(2)若直线:交轨迹E 于A ,B 两点,直线:与轨迹E 交于M ,D 两点,其中点M 在第一象限,点A ,B 在直线两侧,直线与交于点且,求面积的最大值.【解析】(1)设点,因为, 由正弦定理知,,解得, 所以曲线的方程为.(2)直线与曲线在第一象限交于点, 因为,所以, 由正弦定理得:,xOy ()1,0F l =1x −P P l Q 1C 2C 1C 2C PQR PFR ∠=∠P 1l x my a =+2l 1x =2l 1l 2l N MA BN AN MB ⋅=⋅MAB △(,)P x y PQR PFR ∠=∠||||PQ PF =|1|x =+24y x =E 24y x =1x =E (1,2)M ||||||||MA BN AN MB ⋅=⋅||||||||MA MB AN BN =sin sin sin sin ANM BNMAMN BMN∠∠=∠∠所以. 设, 所以, 得,所以, 所以直线方程为:,联立,得 由韦达定理得,又因为点在直线的上方,所以,所以, 所以又因为点到直线的距离为所以方法一:令,则,所以当时,单调递增,当时,单调递减,所以, 所以当时,面积最大,此时最大值为.方法二:最大值也可以用三元均值不等式,过程如下:, 当且仅当,即时,等号成立.AMN BMN ∠=∠()()1122,,,A x y B x y 12122212121222224411221144AM BM y y y y k k y y x x y y−−−−+=+=+=+=−−++−−124y y +=−2121222121124144AB y y y y k y y x x y y −−====−−+−1l x y a =−+24y xx y a ⎧=⎨=−+⎩2440,16(1)0,1y y a a a +−=∆=+>>−12124,4y y y y a +=−=−M 1l 21a >−+13a −<<12||AB y =−=M 1l d =11||22ABMSAB d ==⨯=2()(1)(3),13f a a a a =+−−<<()(31)(3)f a a a '=−−113a −<<()0,()f a f a '>133a <<()0,()f a f a '<max 1256()327f a f ⎛⎫== ⎪⎝⎭13a =ABM S ∆=ABM S △ABMS==223a a +=−13a =2.(2023·北京·高三专题练习)已知椭圆中心在原点,焦点在坐标轴上,,一个焦点为. (1)求椭圆的标准方程;(2)过点且不与坐标轴垂直的直线与椭圆相交于两点,直线分别与直线相交于两点,若为锐角,求直线斜率的取值范围. 【解析】(1)由题意知:椭圆的离心率因为一个焦点为,所以,则由可得:,所以椭圆的标准方程为. (2)设直线的方程为,, 联立方程组,整理可得:,则有, 由条件可知:直线所在直线方程为:, 因为直线与直线相交于 所以,同理可得:, 则, 若为锐角,则有, 所以 C O ()0,1F C F l ,A B ,OA OB 2y =,M N MON ∠l k C c e a ==()0,1F 1c =a 222a b c =+1b =C 2212y x +=l 1y kx =+1122(,),(,)A x y B x y 22112y kx y x =+⎧⎪⎨+=⎪⎩22(2)210k x kx ++−=12122221,22k x x x x k k −−+==++OA 11y y x x =OA 2y =M 112(,2)x M y 222(,2)xN y 112(,2)x OM y =222(,2)xON y =MON ∠0OM ON >121212212121212444444(1)(1)()1x x x x x x OM ON y y kx kx k x x k x x =+=+=++++++,则,解得:或, 所以或或, 故直线斜率的取值范围为. 3.(2023·青海海东·统考一模)已知函数.(1)求曲线在处的切线方程;(2)若在点处的切线为,函数的图象在点处的切线为,,求直线的方程.【解析】(1),,则,所以曲线在处的切线方程为,即.(2)设,令,则. 当时,; 当时,.所以在上单调递增,在上单调递减,所以在时取得最大值2,即.,当且仅当时,等号成立,取得最小值2. 因为,所以,得.2222142=412122k k k k k k −⨯++−−⨯+⨯+++22=41k +−22421k k −=−224201k k −>−212k <21k>k −<<1k >1k <−l k 22(,1)(,)(1,)22−∞−−+∞()32ln 13x f x x x x =−+−()y f x =1x =()y f x =A 1l ()e e x xg x −=−B 2l 12l l ∥AB ()11101133f =−+−=−()222ln 212ln 3f x x x x x =+−+=−+'()12f '=()y f x =1x =()1213y x +=−723y x =−()()1122,,,A x y B x y ()22ln 3h x x x =−+()()()21122x x h x x x x+−=−='01x <<()0h x '>1x >()0h x '<()h x ()0,1()1,+∞()22ln 3h x x x =−+1x =()2f x '…()e e 2x x g x −=+'…0x =()g x '12l l ∥()()122f x g x ''==121,0x x ==即,所以直线的方程为,即. 4.(2023春·重庆·高三统考阶段练习)已知椭圆的左右焦点分别为,右顶点为A ,上顶点为B ,O 为坐标原点,.(1)若的面积为的标准方程;(2)如图,过点作斜率的直线l 交椭圆于不同两点M ,N ,点M 关于x 轴对称的点为S ,直线交x 轴于点T ,点P 在椭圆的内部,在椭圆上存在点Q ,使,记四边形的面积为,求的最大值.【解析】(1),∴,,解得的标准方程为:. (2),∴,椭圆,令,直线l 的方程为:, 联立方程组: ,消去y 得,由韦达定理得,,()11,,0,03A B ⎛⎫− ⎪⎝⎭AB ()130010y x −−−=−−13y x =−22122:1(0)x y C a b a b+=>>12,F F ||2||OA OB =12BF F △1C (1,0)P (0)k k >1C SN OM ON OQ +=OMQN 1S 21OT OQ S k⋅−||2||OA OB =2a b =12122BF F S b c =⋅=△bc =222a b c =+4,2,a b c ===1C 221164x y +=||2||OA OB =2a b =22122:14x yC b b+=()()()()201012,,,,,,,0T M x y N x y Q x y T x (1)y k x =−222214(1)x y b b y k x ⎧+=⎪⎨⎪=−⎩22222(14)8440k x k x k b +−+−=2122814k x x k +=+221224414k b x x k −=+有 ,因为:,所以, , 将点Q 坐标代入椭圆方程化简得: , 而此时: . 令,所以直线 , 令得 , 由韦达定理化简得,,而, O 点到直线l 的距离, 所以:,,因为点P 在椭圆内部,所以 ,得,即令 ,求导得 ,当,单调递增; 当 ,即,单调递减.所以:,即5.(2023·全国·高三专题练习)已知椭圆C :的右顶点为,过左焦点F 的直线交椭圆于M ,N 两点,交轴于P 点,,,记,,(为C 的右焦点)的面积分别为.121222(2)14kyy k x x k −+=+−=+OM ON OQ +=202814k x k =+02214k y k −=+222414k b k=+()22222284(14)(44)480k k k b k ∆=−+−=>()11,S x y −122221:()y y SN y y x x x x +−=−−0y =()1212211212212112122(1)(1)(2)2T x x x x x y x y k x x k x x x y y k x x x x −+−+−===+++−+−24T x b =12OMN S S =△12MN x =−=d =1122S MN d =⨯⋅=2222243212814(14)k b k OQ OT k k ⋅==++2312280(14)OT OQ S k k k ⋅−=+214b <2112k >k >322()(14)k f k k =+222222423(41)(43)(43)()(14)(14)k k k k k f k k k −+−−−'==++213124k <<k <<()0f k '>()f k 234k >k >()0f k '<()f k max()f k f ==⎝⎭21maxOT OQ S k ⎛⎫⋅−=⎪⎝⎭22221(0)x y a b a b+=>>A 1(0)x ty t =−≠y PM MF λ=PN NF μ=OMN 2OMF △2ONF △2F 123,,S S S(1)证明:为定值;(2)若,,求的取值范围.【解析】(1)由题意得F ,,所以椭圆C 的标准方程为:.设,显然,令,,则,则,,由得,解得,同理. 联立,得. ,从而(定值) (2)结合图象,不妨设,,,, λμ+123S mS S μ=+42λ−≤≤−m a (1,0)1c −⇒=2221b a c =−=2212x y +=1122(,),(,)M x y N x y 0t ≠0x =1y t =10,P t ⎛⎫⎪⎝⎭111,PM x y t ⎛⎫=− ⎪⎝⎭()111,MF x y =−−−PM MF λ=11111(,)(1,)x y x y t λ−=−−−111ty λ+=211ty μ+=22121x y x ty ⎧+=⎪⎨⎪=−⎩22(2)210t y ty +−−=12122221,11t y y y y t t −+==++121212*********y y tty ty t y y t λμ++++=+=⋅=⋅=−−4λμ+=−120y y >>1121211122S y y y y =⋅⋅−=−()21111122S y y =⋅⋅=32211122S y y =⋅⋅=−由得 代入,有,则, 解得 ,,设,则,设,则,令,解得,解得,故在上单调递减,在上单调递增,则且,则,则. 6.(2023·四川成都·统考二模)已知椭圆的左、右焦点分别为,离心率,.(1)求椭圆的标准方程;(2)过点的直线与该椭圆交于两点,且的方程. 【解析】(1)由已知得,解得,,所求椭圆的方程为;(2)由(1)得.①若直线的斜率不存在,则直线的方程为,由得. 111ty λ+=21211111,,13y y y tt y λμμμλμ++++====+−−123S mS S μ=+()1212111222y y my y μ−=−1212y y my y μ−=−2222111811(1)17(3)133y y y m y y y μμμμμμ⎡⎤=−+=−−=−=−++−+⎢⎥+⎣⎦42λ−≤≤−31[1,3]μλ∴+=−−∈3u μ=+[]1,3u ∈()87h u u u ⎛⎫=−+ ⎪⎝⎭()228uh u u −'=()0h u '>1u <<()0h u '<3u <<()h u ()(()max 7h u =−()()412,33h h =−=()2,7h u ⎡∈−−⎣2,7m ⎡−−⎣∈22221(0)x y a b a b+=>>12,F F e =22a c =1F l M N 、2223F M F N +=l 22c a a c⎧=⎪⎪⎨⎪=⎪⎩1a c ==1b ∴∴2212x y +=()()121,01,0F F −、l l =1x −22112x x y =−⎧⎪⎨+=⎪⎩2y =设, ,这与已知相矛盾. ②若直线的斜率存在,设直线直线的斜率为,则直线的方程为,设,联立, 消元得,,,又,, 化简得,解得或(舍去)所求直线的方程为或.7.(2023·全国·高三专题练习)设分别是椭圆的左、右焦点,过作倾斜角为的直线交椭圆于两点,到直线的距离为3,连接椭圆的四个顶点得到的菱形面积为4. (1)求椭圆的方程;(2)已知点,设是椭圆上的一点,过两点的直线交轴于点,若,1,M N ⎛⎛−− ⎝⎭⎝⎭、()222,4,04F M F N ⎛⎛⎫∴+=−+−=−= ⎪ ⎪⎝⎭⎝⎭l l k l ()1y k x =+()()1122,,M x y N x y 、()22112y k x x y ⎧=+⎪⎨+=⎪⎩()2222124220k x k x k +++−=22121222422,1212k k x x x x k k −−∴+==++()121222212ky y k x x k ∴+=++=+()()2112221,,1,F M x y F N x y =−=−()2212122,F M F N xx y y ∴+=+−+(22F M F N x ∴+=424023170k k −−=21k =21740k =−1k ∴=±∴l 1y x =+=1y x −−12,F F 2222:1(0)x y D a b a b+=>>2F π3D ,A B 1F AB D D ()1,0M −E D ,E M l y C CE EM λ=求的取值范围;(3)作直线与椭圆交于不同的两点,其中点的坐标为,若点是线段垂直平分线上一点,且满足,求实数的值.【解析】(1)设的坐标分别为,其中; 由题意得的方程为. 因为到直线的距离为3,解得①因为连接椭圆的四个顶点得到的菱形面积为4,所以,即 ②联立①②解得: ,所求椭圆D 的方程为.(2)由(1)知椭圆的方程为,设,因为,所以所以,代入椭圆的方程, 所以,解得或.(3)由,设根据题意可知直线的斜率存在,可设直线斜率为,则直线的方程为,把它代入椭圆的方程,消去整理得: 由韦达定理得则,; 所以线段的中点坐标为. (i )当时,则,线段垂直平分线为轴,λ1l D ,P Q P ()2,0−()0,N t PQ 4NP NQ ⋅=t 12,F F ()(),0,,0c c −0c >AB )y x c −1F AB 3,=c =2223a b c −==D 12242a b ⨯⨯=2ab =2,1a b ==2214x y +=2214x y +=11(,),(0,)E x y C m CE EM λ=1111(,)(1,),x y m x y λ−=−−−11,11m x y λλλ=−=++22()1()141m λλλ−++=+2(32)(2)04m λλ++=≥23λ≥−2λ≤−()2,0P −11(,)Q x y 1l k 1l ()2y k x =+D y 2222(14)16(164)0k x k x k +++−=212162,14k x k −+=−+2122814k x k −=+112()4214k y k x k =+=+PQ 22282(,)1414k kk k −++0k =()2,0Q PQ y于是,由解得(ii )当时,则线段垂直平分线的方程为. 由点是线段垂直平分线的一点,令,得;于是由, 解得综上可得实数的值为8.(2023·全国·高三专题练习)如图所示,为椭圆的左、右顶点,焦距长为在椭圆上,直线的斜率之积为.(1)求椭圆的方程;(2)已知为坐标原点,点,直线交椭圆于点不重合),直线交于点.求证:直线的斜率之积为定值,并求出该定值. 【解析】(1)由题意,,设,,由题意可得,即,可得 (2,),(2,)NP t NQ t =−−=−244,NP NQ t ⋅=−+=t =±0k ≠PQ 222218()1414k ky x k k k −=−+++()0,N t PQ 0x =2614kt k =−+11(2,),(,)NP t NQ x y t =−−=−24211222224166104(16151)2()4141414(14)k k k k k NP NQ x t y t k k k k −++−⎛⎫⋅=−−−=+== ⎪++++⎝⎭k =2614k t k =−=+t ±,A B 2222:1(0)x yE a b a b+=>>P E ,PA PB 14−E O ()2,2C −PC E (,M M P ,BM OC G ,AP AG ()(),0,,0A a B a −()00,P x y 0000,PA PB y y k k x a x a==+−000014y y x a x a ⋅=−+−222014y x a =−−2202222222201111444x b a b a c x a a a ⎛⎫− ⎪−⎝⎭=−⇒=⇒=−又所以,椭圆的方程为;(2)由题意知,直线的斜率存在,设直线,且联立,得 由,得,所以, 设,由三点共线可得所以,直线的斜率之积为定值.9.(2023·全国·高三专题练习)已知,分别是椭圆的上、下焦点,直线过点且垂直于椭圆长轴,动直线垂直于点,线段的垂直平分线交于点,点的轨迹为.2c =c =2a =E 2214x y +=MP :MP y kx m =+()()112222,,,,k m P x y M x y =−+2214y kx m x y =+⎧⎪⎨+=⎪⎩()222148440k x kmx m +++−=Δ0>22410k m +−>2121222844,1414km m x x x x k k −−+==++(),G t t −,,G M B 222222222y y tt t x x y −=⇒=−−−+−11,22AG AP y tk k t x ==−++()()()()112121221212222221222AG AP y y y y y tk k t x x y x k x m x ⋅=⋅=−=−−+++−+⎡⎤++−+⎣⎦()()()()()())()()22212122212112121221222124y k x x km x x m y m x x m x m x m x x x x +++=−=−=−−++⎡⎤⎡⎤−+−+−+++⎣⎦⎣⎦()()()2222222222222222244844841414448144164161241414m kmk km m k m k m m k m k k m km m m km k m k k −−+⋅+−−++++=−=−⎡⎤⎡⎤−−−−−++⎣⎦−+⋅+⎢⎥++⎣⎦()()()()()()()2222222422141(2)818144144m k m k m k m k m m m m k m m m m km k −+−++−=−=−=−=−=−−−−−−−+,AP AG 14−F F '221:171617C x y +=1l F '2l 1l G GF 2l H H 2C(1)求轨迹的方程;(2)若动点在直线上运动,且过点作轨迹的两条切线、,切点为A 、B ,试猜想与的大小关系,并证明你的结论的正确性.【解析】(1),,椭圆半焦距长为,,,,动点到定直线与定点的距离相等,动点的轨迹是以定直线为准线,定点为焦点的抛物线,轨迹的方程是;(2)猜想证明如下:由(1)可设,,,则,切线的方程为:同理,切线的方程为: 联立方程组可解得的坐标为, 在抛物线外,,,2C P :20l x y −−=P 2C PA PB PFA ∠PFB ∠22171617x y +=∴2211716y x +=∴1410,4F ⎛⎫'− ⎪⎝⎭10,4F ⎛⎫ ⎪⎝⎭HG HF =∴H 11:4l y =−10,4F ⎛⎫⎪⎝⎭∴H 11:4l y =−10,4F ⎛⎫⎪⎝⎭∴2C 2x y =PFA PFB ∠=∠()211,A x x ()()22212,B x x x x ≠2y x =2y x '∴=112AP x x k y x =='=∴AP ()1221111220y x x x x y x x x −⇒−=−−=BP 22220x x y x −−=P 122P x x x +=12P y x x =P ∴||0FP ≠2111,4FA x x ⎛⎫=− ⎪⎝⎭12121,24x x FP x x +⎛⎫=− ⎪⎝⎭2221,4FB x x ⎛⎫=− ⎪⎝⎭22121121112122221112211111244444cos ||||||11||||4x x x x x x x x x x x FP FA AFP FP FA FP FP x x FP x +⋅−−+++⋅∴⎛⎫⎛⎫⎛⎫⎛⎫+⋅∠====+− ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫ ⎪ ⎝⎭⎝⋅+同理10.(2023春·江西·高三校联考阶段练习)已知椭圆+=1(a >b >0),右焦点F (1,0),,过F作两条互相垂直的弦AB ,CD .(1)求椭圆的标准方程;(2)求以A ,B ,C ,D 为顶点的四边形的面积的取值范围.【解析】(1)由题意知,,又,所以,所以,所以椭圆的标准方程为;(2)①当直线与中有一条直线的斜率为0时,另一条直线的斜率不存在,不妨设直线的斜率为0,的斜率不存在,则直线方程为,直线的方程为,联立可得所以联立可得所以所以四边形ADBC 的面积. ②当两条直线的斜率均存在且不为0时,设直线的方程为,1214cos ||||||x x FP FB BFP FP FB FP +⋅∠==cos cos AFP BFP ∴∠=∠PFA PFB ∴∠=∠22x a 22y b2c e a ==a 1c =a =222abc =+21b =2212x y +=AB CD AB CD AB 0y =CD 1x =22120x y y ⎧+=⎪⎨⎪=⎩0x y ⎧=⎪⎨=⎪⎩AB =22121x y x ⎧+=⎪⎨⎪=⎩1x y =⎧⎪⎨=⎪⎩CD =11||||222S AB CD =⋅=⨯AB (1)y k x =−则直线的方程为. 将直线的方程代入椭圆方程,整理得,方程的判别式,设, 所以, ∴, 同理可得, ∴四边形ADBC 的面积 , ∵,当且仅当时取等号,∴四边形ADBC 的面积,综上①②可知,四边形ADBC 的面积的取值范围为.11.(2023·全国·高三专题练习)如图,椭圆,经过点,且斜率为的直线与椭圆交于不同的两点P ,Q (均异于点,证明:直线AP 与AQ 的斜率之和为2.CD 1(1)y x k=−−AB ()2222124220k xk x k +−+−=()2222124220k x k x k +−+−=()()42221642122880k k k k ∆=−+−=+>()()1122,,,A x y B x y 22121222422,1212k k x x x x k k −+=⋅=++12||AB x −)22112kAB k +==+)2222111||1212k k CD k k⎫+⎪+⎝⎭==++⨯))22221111||||22122k k S AB CD k k ++=⋅=⨯⨯++()2222242144122252112121k k k k k k k k k ⎛⎫+ ⎪+⎝⎭===−++⎛⎫⎛⎫++++ ⎪ ⎪⎝⎭⎝⎭22121219k k ⎛⎛⎫++≥+= ⎪⎝⎭⎝1k =±16,29S ⎡⎫∈⎪⎢⎣⎭S 16,29⎡⎤⎢⎥⎣⎦22:12+=x E y (1,1)M k E (0,1)A −【解析】设,直线的方程为,两交点异于点,则 ,联立直线与椭圆方程,消去变量 并整理得,由已知,由韦达定理得,则所以可知直线与的斜率之和为2.12.(2023·全国·高三专题练习)已知椭圆的左右焦点分别为,,,,是椭圆上的三个动点,且,,若,求的值.【解析】由题可知,设,,,由,得, 满足,可得,()()1122,,,P x y Q x y PQ (1)1y k x =−+A 2k ≠y ()222221124(1)2402(1)1x y k x k k x k k y k x ⎧+=⎪⇒++−+−=⎨⎪=−+⎩0∆>21212224(1)24,1212k k k kx x x x k k −−+==++()()12121212121211AP AQ k x k x y y k k x x x x −+−++++=+=+()()12121212122(2)(2)2kx x k x x k x x k x x x x +−+−+==+222244122(2)1224k k k k k k k k−+=+−⋅⋅+−()2212k k =−−=AP AQ 22162x y +=1F 2F A B P 11PF F A λ=22PF F B μ=2λ=μ2226,2,4a b c ===()00,P x y 11(,)A x y 22(,)B x y 11PF F A λ=22PF F B μ=()1,0F c −0101101x x c y y λλλλ+⎧−=⎪⎪+⎨+⎪=⎪+⎩()010110x x c y y λλλ⎧+=−+⎨+=⎩满足,可得,由,可得, 所以,∴,, 又,∴, 同理可得, ∴, 所以,又,所以.13.(2023·全国·高三专题练习)已知椭圆的离心率为,且直线被椭圆. (1)求椭圆的方程;(2)以椭圆的长轴为直径作圆,过直线上的动点作圆的两条切线,设切点为,若直线与椭圆交于不同的两点,,求的取值范围.【解析】(1)直线,经过点,,被椭圆,可得.又,,解得:,,, ()2,0F c 0202101x x c y y μμμμ+⎧=⎪+⎪⎨+⎪=⎪+⎩()020210x x c y y μμμ⎧+=−+⎨+=⎩22002222112211x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩2200222222211221x y a b x y a b λλλ⎧+=⎪⎪⎨⎪+=⎪⎩()()()()010*******21x x x x y y y y abλλλλλ−+−++=−()()()()0101211x x x x a λλλλ−+=−+()()2011a x x cλλ−=−−()()011x x c λλ+=−+222202a c a c x c cλ−+=−222202a c a c x c c μ−+=−+()22222a c a c c cλμ−++=⋅2222210a c a cλμ++=⋅=−2λ=8μ=22122:1(0)x y C a b a b+=>>121:1x yl a b+=1C 1C 1C 2C 2:4l y =M 2C ,A B AB 1C C D ||||CD AB ⋅1:1x yl a b+=(,0)a (0,)b 1C 227a b +=12c a =222a b c =+24a =23b =1c =椭圆的方程为.(2)由(1)可得:圆的方程为:.设,则以为直径的圆的方程为:,与相减可得:直线的方程为:,设,,,,联立,化为:,,则,,故又圆心到直线的距离,令,则,可得,可得:14.(2023·全国·高三专题练习)已知椭圆的两个焦点,,动点在椭圆上,且使得的点恰有两个,动点到焦点的距离的最大值为∴1C22143x y+=2C224x y+=(2,4)M t OM222()(2)4x t y t−+−=+224x y+=AB2440tx y+−=1(C x1)y2(D x2)y222440143tx yx y+−=⎧⎪⎨+=⎪⎩22(3)480t x tx+−−=248(2)0t∆=+>12243tx xt+=+12283x xt=⋅−+||CDO AB d=||AB∴=||||AB CD∴⋅==23(3)t m m+=≥||||AB CD⋅==3m≥3233m≤−<||||AB CD⋅<22122:1(0)x yC a ba b+=>>1F2F P 1290F PF∠=︒P P1F2(1)求椭圆的方程;(2)如图,以椭圆的长轴为直径作圆,过直线作圆的两条切线,设切点分别为,,若直线与椭圆交于不同的两点,,求弦长的取值范围. 【解析】(1)设半焦距为,由使得的点恰有两个可得, 动点到焦点的距离的最大值为,可得所以椭圆的方程是. (2)圆的方程为,设直线的坐标为.设,连接OA ,因为直线为切线,故,否则直线垂直于轴,则与直线若,则,故, 故直线的方程为:, 整理得到:;当时,若,直线的方程为:;若,则直线的方程为:, 满足.故直线的方程为,同理直线的方程为, 又在直线和上,即,故直线的方程为.1C 1C 2C x =−T 2C A B AB 1C C D ||CD c 1290F PF ∠=︒P ,b c a =P 1F 22a c +=2,a c =1C 22142x y +=2C 224x y +=x =−T ()t −1122(,),(,)A x y B x y AT 10y ≠AT x AT x =−10x ≠11OA y k x =11AT x k y =−AT ()1111x y y x x y −=−−2211114x x y y x y +=+=10x =(0,2)A AT 2y =(0,2)A −AT =2y −114x x y y +=AT 114x x y y +=BT 224x x y y +=()t −AT BT 112244ty ty ⎧−+=⎪⎨−+=⎪⎩AB 4ty −+=联立,消去得,设,. 则, 从而, 又,从而,所以. 15.(2023·全国·高三专题练习)已知、分别为椭圆的左、右焦点,且右焦点的坐标为,点在椭圆上,为坐标原点.(1)求椭圆的标准方程(2)若过点的直线与椭圆交于两点,且的方程; (3)过椭圆上异于其顶点的任一点,作圆的两条切线,切点分别为,(,224142ty x y ⎧−+=⎪⎨+=⎪⎩x 22(16)8160t y ty +−−=33(,)C x y 44(,)D x y 343422816,1616t y y y y t t −+==++||CD 224(8)16t t +=+232416t −=++21616t +≥2322016t −−≤<+||[2,4)CD ∈1F 2F 2222:1(0)x yC a b a b+=>>2F (1,0)(P C O C 2F l C ,A B ||AB =l C Q 22:1O x y +=M N M不在坐标轴上),若直线在轴、轴上的截距分别为、,那么是否为定值?若是,求出此定值;若不是,请说明理由. 【解析】(1)椭圆的右焦点的坐标为,椭圆的左焦点的坐标为,由椭圆的定义得, 所以,由题意可得,即,即椭圆的方程为;(2)直线与椭圆的两个交点坐标为,, ①当直线垂直轴时,方程为:,代入椭圆可得,舍去;②当直线不垂直轴时,设直线联立,消得,,则,,恒成立., 又, N MN x y m n 2212m n+C 2F (1,0)∴C 1F (1,0)−12||||2PF PF a +=2a =a ∴=22a =1c =2221b ac =−=C 2212x y +=l C ()11,A x y ()22,B x y l x l 1x =y =||AB =l x :(1)l y k x =−2212(1)x y y k x ⎧+=⎪⎨⎪=−⎩y ()2222124220k x k x k +−+−=2122421k x x k +=+21222221k x x k −=+()()()()22222442122810k k k k ∆=−+−=+>22AB =()()22121214k x x x x ⎡⎤=++−⎣⎦()()22228121k k +=+||AB =()()222228132921k k +==+⎝⎭化简得,,即,解得或(舍去),所以,直线方程的方程为或. (3)是定值,定值为2.设点,,,连接,,,,则有,. ,不在坐标轴上,则,, 则,, 直线的方程为,即,① 同理直线的方程为,②,将点代入①②,得,显然,满足方程,直线的方程为,分别令,,得到,,,,又满足,,即.16.(2023·全国·高三专题练习)某同学在探究直线与椭圆的位置关系时发现椭圆的一个重要性427250k k −−=()()227510k k +−=21k =257k =−1k =±∴l 10x y −−=10x y +−=()00,Q x y ()33,M x y ()44,N x y OM ON 0M MQ ⊥ON NQ ⊥22331x y +=22441x y +=M N 33MO y k x =44NO y k x =331MQ MOx k k y =−=−441NQ NO x k k y =−=−∴MQ ()3333x y y x x y −=−−2233331xx yy x y +=+=⋯NQ 441xx yy +=⋯Q 0303040411x x y y x x y y +=⎧⎨+=⎩()33,M x y ()44,N x y 001xx yy +=∴MN 001xx yy +=0x =0y =01n x =01=m y 01y m ∴=01x n =()00,Q x y 2212x y +=∴221112m n +=22122m n +=质:椭圆在任意一点,处的切线方程为.现给定椭圆,过的右焦点的直线交椭圆于,两点,过,分别作的两条切线,两切线相交于点. (1)求点的轨迹方程;(2)若过点且与直线垂直的直线(斜率存在且不为零)交椭圆于,两点,证明:为定值. 【解析】(1)由题意F 为,设直线为,,,,, 易得在点处切线为,在点处切线为, 由得,又,,可得,故点的轨迹方程.(2)证明:联立的方程与的方程消去,得.由韦达定理,得,,所以,因为,直线MN 可设为,同理得, 所以.2222:1(0)x y C a b a b+=>>0(M x 0)y 00221xx yy a b +=22:143x y C +=C F l C P Q P Q C G G F l C M N 11||||PQ MN +()1,0PQ 1x ty =+1(P x 1)y 2(Q x 2)y P 11143x x y y +=Q 22143x x y y+=11221,431,43x xy yx x y y⎧+=⎪⎪⎨⎪+=⎪⎩1122124()y y x x y x y −=−111x ty =+221x ty =+4x =G 4x =l C 221143x ty x y =+⎧⎪⎨+=⎪⎩x 22(34)690t y ty ++−=122634t y y t +=−+122934y y t =−+2212(1)||34t PQ t +=+PQ MN ⊥11x y t =−+2222112(1)12(1)||13434t t MN t t++==+⋅+22221134347||||12(1)12(1)12t t PQ MN t t +++=+=++。
2021版新高考数学:圆锥曲线含答案
设M(x、y)、由已知得⊙M的半径为r=|x+2|、|AO|=2.
由于 ⊥ 、【关键点5:圆的几何性质向量化】
故可得x2+y2+4=(x+2)2、化简得M的轨迹方程为y2=4x.
因为曲线C:y2=4x是以点P(1、0)为焦点、以直线x=-1为准线的抛物线、所以|MP|=x+1.
因为|MA|-|MP|=r-|MP|=x+2-(x+1)=1、所以存在满足条件的定点P.
由题设知 =1、 =m、于是k=- .①
由于点M(1、m)(m>0)在椭圆 + =1内、
∴ + <1、解得0<m< 、故k<- .
(2)由题意得F(1、0).设P(x3、y3)、
则(x3-1、y3)+(x1-1、y1)+(x2-1、y2)=(0、0).
由(1)及题设得
x3=3-(x1+x2)=1、y3=-(y1+y2)=-2m<0.【关键点2、设出点P、借助向量的建立变量间的关系、达到设而不求的目的】
【点评】从本题可以看出、圆的几何性质与数量关系的转化涵盖在整个解题过程中、向量在整个其解过程中起了“穿针引线”的作用、用活圆的几何性质可以达到事半功倍的效果.
途径四 设而不求、化繁为简
高考示例
方法与思维
(20xx·全国卷Ⅲ)已知斜率为k的直线l与椭圆C: + =1交于A、B两点、线段AB的中点为M(1、m)(m>0).
所以l的方程为y=-x+ 、代入C的方程、并整理得7x2-14x+ =0.
故x1+x2=2、x1x2= 、
代入②解得|d|= .【关键点3:借用根与系数的关系、达到设而不求的目的】
所以该数列的公差为 或- .
【点评】本题(1)涉及弦的中点坐标、可以采用“点差法”求解、设出点A、B的坐标、代入椭圆方程并作差、再将弦AB的中点坐标代入所得的差、可得直线AB的斜率;对于(2)圆锥曲线中的证明问题、常采用直接法证明、证明时常借助等价转化思想、化几何关系为数量关系、然后借助方程思想给予解答.
2018-2021年高考真题圆锥曲线 解答题全集 (学生版+解析版)
2018-2021年高考真题圆锥曲线解答题全集 (学生版+解析版)1.(2021•新高考Ⅱ)已知椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0),右焦点为F (√2,0),且离心率为√63. (Ⅰ)求椭圆C 的方程;(Ⅱ)设M ,N 是椭圆C 上的两点,直线MN 与曲线x 2+y 2=b 2(x >0)相切.证明:M ,N ,F 三点共线的充要条件是|MN |=√3. 2.(2021•上海)已知Г:x 22+y 2=1,F 1,F 2是其左、右交焦点,直线l 过点P (m ,0)(m ≤−√2),交椭圆于A ,B 两点,且A ,B 在x 轴上方,点A 在线段BP 上. (1)若B 是上顶点,|BF 1→|=|PF 1→|,求m 的值; (2)若F 1A →•F 2A →=13,且原点O 到直线l 的距离为4√1515,求直线l 的方程; (3)证明:对于任意m <−√2,使得F 1A →∥F 2B →的直线有且仅有一条. 3.(2021•北京)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)过点A (0,﹣2),以四个顶点围成的四边形面积为4√5. (1)求椭圆E 的标准方程;(2)过点P (0,﹣3)的直线l 斜率为k ,交椭圆E 于不同的两点B ,C ,直线AB 、AC 交y =﹣3于点M 、N ,若|PM |+|PN |≤15,求k 的取值范围.4.(2021•天津)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,上顶点为B ,离心率为2√55,且|BF |=√5.(1)求椭圆的标准方程;(2)直线l 与椭圆有唯一的公共点M ,与y 轴的正半轴交于点N ,过N 与BF 垂直的直线交x 轴于点P .若MP ∥BF ,求直线l 的方程.5.(2021•浙江)如图,已知F 是抛物线y 2=2px (p >0)的焦点,M 是抛物线的准线与x 轴的交点,且|MF |=2. (Ⅰ)求抛物线的方程:(Ⅱ)设过点F 的直线交抛物线于A ,B 两点,若斜率为2的直线l 与直线MA ,MB ,AB ,x 轴依次交于点P ,Q ,R ,N ,且满足|RN |2=|PN |•|QN |,求直线l 在x 轴上截距的取值范围.6.(2021•甲卷)抛物线C 的顶点为坐标原点O ,焦点在x 轴上,直线l :x =1交C 于P ,Q 两点,且OP ⊥OQ .已知点M (2,0),且⊙M 与l 相切. (1)求C ,⊙M 的方程;(2)设A 1,A 2,A 3是C 上的三个点,直线A 1A 2,A 1A 3均与⊙M 相切.判断直线A 2A 3与⊙M 的位置关系,并说明理由.7.(2021•新高考Ⅰ)在平面直角坐标系xOy 中,已知点F 1(−√17,0),F 2(√17,0),点M 满足|MF 1|﹣|MF 2|=2.记M 的轨迹为C . (1)求C 的方程;(2)设点T 在直线x =12上,过T 的两条直线分别交C 于A ,B 两点和P ,Q 两点,且|TA |•|TB |=|TP |•|TQ |,求直线AB 的斜率与直线PQ 的斜率之和.8.(2021•乙卷)已知抛物线C :y 2=2px (p >0)的焦点F 到准线的距离为2. (1)求C 的方程;(2)已知O 为坐标原点,点P 在C 上,点Q 满足PQ →=9QF →,求直线OQ 斜率的最大值. 9.(2021•甲卷)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=2√2cos θ. (1)将C 的极坐标方程化为直角坐标方程;(2)设点A 的直角坐标为(1,0),M 为C 上的动点,点P 满足AP →=√2AM →,写出P 的轨迹C 1的参数方程,并判断C 与C 1是否有公共点.10.(2021•乙卷)已知抛物线C :x 2=2py (p >0)的焦点为F ,且F 与圆M :x 2+(y +4)2=1上点的距离的最小值为4. (1)求p ;(2)若点P 在M 上,P A ,PB 为C 的两条切线,A ,B 是切点,求△P AB 面积的最大值. 11.(2021•上海)(1)团队在O 点西侧、东侧20千米处设有A 、B 两站点,测量距离发现一点P 满足|P A |﹣|PB |=20千米,可知P 在A 、B 为焦点的双曲线上,以O 点为原点,东侧为x 轴正半轴,北侧为y 轴正半轴,建立平面直角坐标系,P 在北偏东60°处,求双曲线标准方程和P 点坐标.(2)团队又在南侧、北侧15千米处设有C 、D 两站点,测量距离发现|QA |﹣|QB |=30千米,|QC |﹣|QD |=10千米,求|OQ |(精确到1米)和Q 点位置(精确到1米,1°) 12.(2020•天津)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的一个顶点为A (0,﹣3),右焦点为F ,且|OA |=|OF |,其中O 为原点. (Ⅰ)求椭圆的方程;(Ⅱ)已知点C 满足3OC →=OF →,点B 在椭圆上(B 异于椭圆的顶点),直线AB 与以C 为圆心的圆相切于点P ,且P 为线段AB 的中点.求直线AB 的方程. 13.(2020•北京)已知椭圆C :x 2a 2+y 2b 2=1过点A (﹣2,﹣1),且a =2b .(Ⅰ)求椭圆C 的方程;(Ⅱ)过点B (﹣4,0)的直线l 交椭圆C 于点M ,N ,直线MA ,NA 分别交直线x =﹣4于点P ,Q .求|PB||BQ|的值.14.(2020•上海)已知双曲线Γ1:x 24−y 2b 2=1与圆Γ2:x 2+y 2=4+b 2(b >0)交于点A (x A ,y A )(第一象限),曲线Γ为Γ1、Γ2上取满足x >|x A |的部分. (1)若x A =√6,求b 的值;(2)当b =√5,Γ2与x 轴交点记作点F 1、F 2,P 是曲线Γ上一点,且在第一象限,且|PF 1|=8,求∠F 1PF 2; (3)过点D (0,b 22+2)斜率为−b2的直线l 与曲线Γ只有两个交点,记为M 、N ,用b表示OM →•ON →,并求OM →•ON →的取值范围.15.(2020•江苏)在平面直角坐标系xOy 中,已知椭圆E :x 24+y 23=1的左、右焦点分别为F 1、F 2,点A 在椭圆E 上且在第一象限内,AF 2⊥F 1F 2,直线AF 1与椭圆E 相交于另一点B .(1)求△AF 1F 2的周长;(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求OP →•QP →的最小值; (3)设点M 在椭圆E 上,记△OAB 与△MAB 的面积分别为S 1,S 2,若S 2=3S 1,求点M 的坐标.16.(2020•浙江)如图,已知椭圆C 1:x 22+y 2=1,抛物线C 2:y 2=2px (p >0),点A 是椭圆C 1与抛物线C 2的交点,过点A 的直线l 交椭圆C 1于点B ,交抛物线C 2于点M (B ,M 不同于A ).(Ⅰ)若p =116,求抛物线C 2的焦点坐标;(Ⅱ)若存在不过原点的直线l 使M 为线段AB 的中点,求p 的最大值.17.(2020•海南)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点M (2,3),点A 为其左顶点,且AM 的斜率为12.(1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值.18.(2020•山东)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为√22,且过点A (2,1). (1)求C 的方程;(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得|DQ |为定值.19.(2020•新课标Ⅱ)已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |. (1)求C 1的离心率;(2)若C 1的四个顶点到C 2的准线距离之和为12,求C 1与C 2的标准方程. 20.(2020•新课标Ⅱ)已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合,过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |. (1)求C 1的离心率;(2)设M 是C 1与C 2的公共点.若|MF |=5,求C 1与C 2的标准方程. 21.(2020•新课标Ⅰ)已知A ,B 分别为椭圆E :x 2a 2+y 2=1(a >1)的左、右顶点,G 为E的上顶点,AG →•GB →=8.P 为直线x =6上的动点,P A 与E 的另一交点为C ,PB 与E 的另一交点为D . (1)求E 的方程;(2)证明:直线CD 过定点. 22.(2020•新课标Ⅲ)已知椭圆C :x 225+y 2m 2=1(0<m <5)的离心率为√154,A ,B 分别为C 的左、右顶点. (1)求C 的方程;(2)若点P 在C 上,点Q 在直线x =6上,且|BP |=|BQ |,BP ⊥BQ ,求△APQ 的面积. 23.(2020•新课标Ⅰ)已知A ,B 分别为椭圆E :x 2a 2+y 2=1(a >1)的左、右顶点,G 为E的上顶点,AG →•GB →=8.P 为直线x =6上的动点,P A 与E 的另一交点为C ,PB 与E 的另一交点为D .(1)求E的方程;(2)证明:直线CD过定点.24.(2020•上海)已知抛物线y2=x上的动点M(x0,y0),过M分别作两条直线交抛物线于P、Q两点,交直线x=t于A、B两点.(1)若点M纵坐标为√2,求M与焦点的距离;(2)若t=﹣1,P(1,1),Q(1,﹣1),求证:y A•y B为常数;(3)是否存在t,使得y A•y B=1且y P•y Q为常数?若存在,求出t的所有可能值,若不存在,请说明理由.25.(2019•全国)已知点A1(﹣2,0),A2(2,0),动点P满足P A1与P A2的斜率之积等于−14,记P的轨迹为C.(1)求C的方程;(2)设过坐标原点的直线l与C交于M,N两点,且四边形MA1NA2的面积为2√2,求l的方程.26.(2019•江苏)如图,一个湖的边界是圆心为O的圆,湖的一侧有一条直线型公路l,湖上有桥AB(AB是圆O的直径).规划在公路l上选两个点P,Q,并修建两段直线型道路PB,QA,规划要求:线段PB,QA上的所有点到点O的距离均不小于...圆O的半径.已知点A,B到直线l的距离分别为AC和BD(C,D为垂足),测得AB=10,AC=6,BD =12(单位:百米).(1)若道路PB与桥AB垂直,求道路PB的长;(2)在规划要求下,P和Q中能否有一个点选在D处?并说明理由;(3)在规划要求下,若道路PB和QA的长度均为d(单位:百米),求当d最小时,P、Q两点间的距离.27.(2019•上海)已知椭圆x28+y24=1,F1,F2为左、右焦点,直线l过F2交椭圆于A,B两点.(1)若直线l垂直于x轴,求|AB|;(2)当∠F1AB=90°时,A在x轴上方时,求A、B的坐标;(3)若直线AF 1交y 轴于M ,直线BF 1交y 轴于N ,是否存在直线l ,使得S△F 1AB=S△F 1MN ,若存在,求出直线l 的方程;若不存在,请说明理由.28.(2019•天津)设椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,左顶点为A ,上顶点为B .已知√3|OA |=2|OB |(O 为原点). (Ⅰ)求椭圆的离心率;(Ⅱ)设经过点F 且斜率为34的直线l 与椭圆在x 轴上方的交点为P ,圆C 同时与x 轴和直线l 相切,圆心C 在直线x =4上,且OC ∥AP .求椭圆的方程. 29.(2019•天津)设椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,上顶点为B .已知椭圆的短轴长为4,离心率为√55. (Ⅰ)求椭圆的方程;(Ⅱ)设点P 在椭圆上,且异于椭圆的上、下顶点,点M 为直线PB 与x 轴的交点,点N 在y 轴的负半轴上.若|ON |=|OF |(O 为原点),且OP ⊥MN ,求直线PB 的斜率. 30.(2019•新课标Ⅲ)已知曲线C :y =x 22,D 为直线y =−12上的动点,过D 作C 的两条切线,切点分别为A ,B . (1)证明:直线AB 过定点.(2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求该圆的方程.31.(2019•新课标Ⅱ)已知F 1,F 2是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的两个焦点,P 为C上的点,O 为坐标原点.(1)若△POF 2为等边三角形,求C 的离心率;(2)如果存在点P ,使得PF 1⊥PF 2,且△F 1PF 2的面积等于16,求b 的值和a 的取值范围.32.(2019•浙江)如图,已知点F (1,0)为抛物线y 2=2px (p >0)的焦点.过点F 的直线交抛物线于A ,B 两点,点C 在抛物线上,使得△ABC 的重心G 在x 轴上,直线AC 交x 轴于点Q ,且Q 在点F 的右侧.记△AFG ,△CQG 的面积分别为S 1,S 2. (Ⅰ)求p 的值及抛物线的准线方程; (Ⅱ)求S 1S 2的最小值及此时点G 的坐标.33.(2019•新课标Ⅱ)已知点A (﹣2,0),B (2,0),动点M (x ,y )满足直线AM 与BM 的斜率之积为−12.记M 的轨迹为曲线C . (1)求C 的方程,并说明C 是什么曲线;(2)过坐标原点的直线交C 于P ,Q 两点,点P 在第一象限,PE ⊥x 轴,垂足为E ,连结QE 并延长交C 于点G . (i )证明:△PQG 是直角三角形; (ii )求△PQG 面积的最大值.34.(2019•北京)已知抛物线C :x 2=﹣2py 经过点(2,﹣1). (Ⅰ)求抛物线C 的方程及其准线方程;(Ⅱ)设O 为原点,过抛物线C 的焦点作斜率不为0的直线l 交抛物线C 于两点M ,N ,直线y =﹣1分别交直线OM ,ON 于点A 和点B .求证:以AB 为直径的圆经过y 轴上的两个定点.35.(2019•北京)已知椭圆C :x 2a 2+y 2b 2=1的右焦点为(1,0),且经过点A (0,1).(Ⅰ)求椭圆C 的方程;(Ⅱ)设O 为原点,直线l :y =kx +t (t ≠±1)与椭圆C 交于两个不同点P 、Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N .若|OM |•|ON |=2,求证:直线l 经过定点. 36.(2019•江苏)如图,在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的焦点为F 1(﹣1,0),F 2(1,0).过F 2作x 轴的垂线l ,在x 轴的上方,l 与圆F 2:(x ﹣1)2+y 2=4a 2交于点A ,与椭圆C 交于点D .连结AF 1并延长交圆F 2于点B ,连结BF 2交椭圆C 于点E ,连结DF 1.已知DF 1=52. (1)求椭圆C 的标准方程; (2)求点E 的坐标.37.(2019•新课标Ⅲ)已知曲线C :y =x 22,D 为直线y =−12上的动点,过D 作C 的两条切线,切点分别为A ,B . (1)证明:直线AB 过定点;(2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积.38.(2019•新课标Ⅰ)已知点A ,B 关于坐标原点O 对称,|AB |=4,⊙M 过点A ,B 且与直线x +2=0相切.(1)若A 在直线x +y =0上,求⊙M 的半径;(2)是否存在定点P ,使得当A 运动时,|MA |﹣|MP |为定值?并说明理由.39.(2019•新课标Ⅰ)已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若|AF |+|BF |=4,求l 的方程; (2)若AP →=3PB →,求|AB |.40.(2019•上海)已知抛物线方程y 2=4x ,F 为焦点,P 为抛物线准线上一点,Q 为线段PF 与抛物线的交点,定义:d(P)=|PF||FQ|. (1)当P(−1,−83)时,求d (P );(2)证明:存在常数a ,使得2d (P )=|PF |+a ;(3)P 1,P 2,P 3为抛物线准线上三点,且|P 1P 2|=|P 2P 3|,判断d (P 1)+d (P 3)与2d (P 2)的关系.41.(2018•全国)双曲线x 212−y 24=1,F 1、F 2为其左右焦点,C 是以F 2为圆心且过原点的圆.(1)求C 的轨迹方程;(2)动点P 在C 上运动,M 满足F 1M →=2MP →,求M 的轨迹方程.42.(2018•浙江)如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :y 2=4x 上存在不同的两点A ,B 满足P A ,PB 的中点均在C 上. (Ⅰ)设AB 中点为M ,证明:PM 垂直于y 轴;(Ⅱ)若P 是半椭圆x 2+y 24=1(x <0)上的动点,求△P AB 面积的取值范围.43.(2018•新课标Ⅲ)已知斜率为k 的直线l 与椭圆C :x 24+y 23=1交于A ,B 两点,线段AB 的中点为M (1,m )(m >0). (1)证明:k <−12;(2)设F 为C 的右焦点,P 为C 上一点,且FP →+FA →+FB →=0→.证明:|FA →|,|FP →|,|FB →|成等差数列,并求该数列的公差.44.(2018•江苏)如图,在平面直角坐标系xOy 中,椭圆C 过点(√3,12),焦点F 1(−√3,0),F 2(√3,0),圆O 的直径为F 1F 2. (1)求椭圆C 及圆O 的方程;(2)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标; ②直线l 与椭圆C 交于A ,B 两点.若△OAB 的面积为2√67,求直线l 的方程.45.(2018•新课标Ⅲ)已知斜率为k 的直线l 与椭圆C :x 24+y 23=1交于A ,B 两点,线段AB 的中点为M (1,m )(m >0). (1)证明:k <−12;(2)设F 为C 的右焦点,P 为C 上一点,且FP →+FA →+FB →=0→,证明:2|FP →|=|FA →|+|FB →|. 46.(2018•上海)设常数t >2.在平面直角坐标系xOy 中,已知点F (2,0),直线l :x =t ,曲线Γ:y 2=8x (0≤x ≤t ,y ≥0).l 与x 轴交于点A 、与Γ交于点B .P 、Q 分别是曲线Γ与线段AB 上的动点.(1)用t 表示点B 到点F 的距离;(2)设t =3,|FQ |=2,线段OQ 的中点在直线FP 上,求△AQP 的面积;(3)设t =8,是否存在以FP 、FQ 为邻边的矩形FPEQ ,使得点E 在Γ上?若存在,求点P 的坐标;若不存在,说明理由. 47.(2018•天津)设椭圆x 2a 2+y 2b 2=1(a >b >0)的右顶点为A ,上顶点为B .已知椭圆的离心率为√53,|AB |=√13. (Ⅰ)求椭圆的方程;(Ⅱ)设直线l :y =kx (k <0)与椭圆交于P ,Q 两点,直线l 与直线AB 交于点M ,且点P ,M 均在第四象限.若△BPM 的面积是△BPQ 面积的2倍,求k 的值. 48.(2018•天津)设椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,上顶点为B .已知椭圆的离心率为√53,点A 的坐标为(b ,0),且|FB |•|AB |=6√2. (Ⅰ)求椭圆的方程;(Ⅱ)设直线l :y =kx (k >0)与椭圆在第一象限的交点为P ,且l 与直线AB 交于点Q .若|AQ||PQ|=5√24sin ∠AOQ (O 为原点),求k 的值. 49.(2018•北京)已知椭圆M :x 2a 2+y 2b 2=1(a >b >0)的离心率为√63,焦距为2√2.斜率为k 的直线l 与椭圆M 有两个不同的交点A ,B . (Ⅰ)求椭圆M 的方程; (Ⅱ)若k =1,求|AB |的最大值;(Ⅲ)设P (﹣2,0),直线P A 与椭圆M 的另一个交点为C ,直线PB 与椭圆M 的另一个交点为D .若C ,D 和点Q (−74,14)共线,求k .50.(2018•新课标Ⅰ)设椭圆C :x 22+y 2=1的右焦点为F ,过F 的直线l 与C 交于A ,B两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:∠OMA =∠OMB .51.(2018•北京)已知抛物线C :y 2=2px 经过点P (1,2),过点Q (0,1)的直线l 与抛物线C 有两个不同的交点A ,B ,且直线P A 交y 轴于M ,直线PB 交y 轴于N . (Ⅰ)求直线l 的斜率的取值范围;(Ⅱ)设O 为原点,QM →=λQO →,QN →=μQO →,求证:1λ+1μ为定值.52.(2018•新课标Ⅱ)设抛物线C :y 2=4x 的焦点为F ,过F 且斜率为k (k >0)的直线l 与C 交于A ,B 两点,|AB |=8. (1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.53.(2018•新课标Ⅰ)设抛物线C :y 2=2x ,点A (2,0),B (﹣2,0),过点A 的直线l 与C 交于M ,N 两点.(1)当l 与x 轴垂直时,求直线BM 的方程; (2)证明:∠ABM =∠ABN .54.(2018•上海)已知a ∈R ,双曲线Γ:x 2a2−y 2=1(1)若点(2,1)在Γ上,求Γ的焦点坐标(2)若a =1,直线y =kx +1与Γ相交于A 、B 两点,且线段AB 中点的横坐标为1,求实数k 的值55.(2018•上海)利用“平行于圆锥母线的平面截圆锥面,所得截线是抛物线”的几何原理,某快餐店用两个射灯(射灯的光锥为圆锥)在广告牌上投影出其标识,如图1所示,图2是投影射出的抛物线的平面图,图3是一个射灯投影的直观图,在图2与图3中,点O、A、B在抛物线上,OC是抛物线的对称轴,OC⊥AB于C,AB=3米,OC=4.5米(1)求抛物线的焦点到准线的距离(2)在图3中,已知OC平行于圆锥的母线SD,AB、DE是圆锥底面的直径,求圆锥的母线与轴的夹角的大小(精确到0.01°)2018-2021年高考真题圆锥曲线解答题全集 (学生版+解析版)参考答案与试题解析1.(2021•新高考Ⅱ)已知椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0),右焦点为F (√2,0),且离心率为√63. (Ⅰ)求椭圆C 的方程;(Ⅱ)设M ,N 是椭圆C 上的两点,直线MN 与曲线x 2+y 2=b 2(x >0)相切.证明:M ,N ,F 三点共线的充要条件是|MN |=√3.【解答】(Ⅰ)解:由题意可得,椭圆的离心率ca =√63,又c =√2, 所以a =√3,则b 2=a 2﹣c 2=1, 故椭圆的标准方程为x 23+y 2=1;(Ⅱ)证明:先证明必要性,若M ,N ,F 三点共线时,设直线MN 的方程为x =my +√2, 则圆心O (0,0)到直线MN 的距离为d =√2√m +1=1,解得m 2=1,联立方程组{x =my +√2x 23+y 2=1,可得(m 2+3)y 2+2√2my −1=0,即4y 2+2√2my −1=0, 所以|MN|=√1+m 2⋅√8m 2+164=√2×√244=√3;所以必要性成立; 下面证明充分性,当|MN |=√3时,设直线MN 的方程为x =ty +m , 此时圆心O (0,0)到直线MN 的距离d =√t +1=1,则m 2﹣t 2=1,联立方程组{x =ty +mx 23+y 2=1,可得(t 2+3)y 2+2tmy +m 2﹣3=0, 则△=4t 2m 2﹣4(t 2+3)(m 2﹣3)=12(t 2﹣m 2+3)=24, 因为|MN|=√1+t 2⋅√24t 2+3=√3,所以t 2=1,m 2=2,因为直线MN 与曲线x 2+y 2=b 2(x >0)相切, 所以m >0,则m =√2,则直线MN 的方程为x =ty +√2恒过焦点F (√2,0), 故M ,N ,F 三点共线, 所以充分性得证.综上所述,M ,N ,F 三点共线的充要条件是|MN |=√3.2.(2021•上海)已知Г:x 22+y 2=1,F 1,F 2是其左、右交焦点,直线l 过点P (m ,0)(m ≤−√2),交椭圆于A ,B 两点,且A ,B 在x 轴上方,点A 在线段BP 上. (1)若B 是上顶点,|BF 1→|=|PF 1→|,求m 的值; (2)若F 1A →•F 2A →=13,且原点O 到直线l 的距离为4√1515,求直线l 的方程; (3)证明:对于任意m <−√2,使得F 1A →∥F 2B →的直线有且仅有一条. 【解答】解:(1)因为Г的方程:x 22+y 2=1,所以a 2=2,b 2=1, 所以c 2=a 2﹣b 2=1,所以F 1(﹣1,0),F 2(1,0), 若B 为Г的上顶点,则B (0,1), 所以|BF 1|=√1+1=√2,|PF 1|=﹣1﹣m , 又|BF 1|=|PF 1|, 所以m =−1−√2;(2)设点A (√2cos θ,sin θ),则F 1A →⋅F 2A →=(√2cosθ+1)(√2cosθ−1)+sin 2θ=2cos 2θ−1+sin 2θ=13, 因为A 在线段BP 上,横坐标小于0,解得cosθ=−√33,故A(−√63,√63),设直线l 的方程为y =kx +√63k +√63(k >0), 由原点O 到直线l 的距离为4√1515, 则d =|√63k+√63|√1+k =4√1515,化简可得3k 2﹣10k +3=0,解得k =3或k =13, 故直线l 的方程为y =13x +4√69或y =3x +4√63(舍去,无法满足m <−√2), 所以直线l 的方程为y =13x +4√69;(3)联立方程组{y =kx −kmx 22+y 2=1,可得(1+2k 2)x 2﹣4k 2mx +2k 2m 2﹣2=0,设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=4k 2m 1+2k2,x 1x 2=2k 2m 2−21+2k2,因为F 1A →∥F 2B →,所以(x 2﹣1)y 1=(x 1+1)y 2,又y =kx ﹣km , 故化简为x 1−x 2=−21+2k2,又|x 1−x 2|=√(x 1+x 2)2−4x 1x 2=√16k 2−8k 2m 2+81+2k2=|−21+2k2|,两边同时平方可得,4k 2﹣2k 2m 2+1=0, 整理可得k 2=−14−2m 2,当m <−√2时,k 2=−14−2m 2>0,因为点A ,B 在x 轴上方, 所以k 有且仅有一个解,故对于任意m <−√2,使得F 1A →∥F 2B →的直线有且仅有一条. 3.(2021•北京)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)过点A (0,﹣2),以四个顶点围成的四边形面积为4√5.(1)求椭圆E 的标准方程;(2)过点P (0,﹣3)的直线l 斜率为k ,交椭圆E 于不同的两点B ,C ,直线AB 、AC 交y =﹣3于点M 、N ,若|PM |+|PN |≤15,求k 的取值范围. 【解答】解:(1)因为椭圆E :x 2a 2+y 2b 2=1(a >b >0)过点A (0,﹣2),则b =2,又因为以四个顶点围成的四边形面积为4√5, 所以12×2a ×2b =4√5,解得a =√5,故椭圆E 的标准方程为x 25+y 24=1;(2)由题意,设直线l 的方程为y ﹣(﹣3)=k (x ﹣0),即y =kx ﹣3, 当k =0时,直线l 与椭圆E 没有交点,而直线l 交椭圆E 于不同的两点B ,C , 所以k ≠0,设B (x 1,y 1),C (x 2,y 2),联立方程组{y =kx −3x 25+y 24=1,可得(4+5k 2)x 2﹣30kx +25=0, 则△=(﹣30k )2﹣4×25(4+5k 2)>0,解得|k |>1, 所以x 1+x 2=30k 4+5k2,x 1x 2=254+5k2,则y 1y 2=(kx 1﹣3)(kx 2﹣3)=k 2x 1x 2﹣3k (x 1+x 2)+9=−20k 2+364+5k2,y 1+y 2=(kx 1﹣3)+(kx 2﹣3)=k (x 1+x 2)﹣6=−244+5k2,直线AB 的方程为y ﹣(﹣2)=y 1−(−2)x 1−0(x −0),即y =y 1+2x 1x −2,直线AC 的方程为y ﹣(﹣2)=y 2−(−2)x 2−0(x −0),即y =y 2+2x 2x −2,因为直线AB 交y =﹣3于点M , 所以令y =﹣3,则x M =−x 1y 1+2, 故M(−x 1y 1+2,−3), 同理可得N(−x2y 2+2,−3),注意到x 1x 2=254+5k2>0,所以x 1,x 2同号,因为y 1+2>0,y 2+2>0,所以x M ,x N 同号, 故|PM |+|PN |=|x M |+|x N |=|x M +x N |,则|PM |+|PN |=|x 1y 1+2+x2y 2+2|=|x 1(y 2+2)+x 2(y 1+2)(y 1+2)(y 2+2)| =|x 1(kx 2−3)+x 2(kx 1−3)+2(x 1+x 2)y 1y 2+2(y 1+y 2)+4|=|2kx 1x 2−(x 1+x 2)y 1y 2+2(y 1+y 2)+4|=|2k⋅254+5k 2−30k 4+5k2−20k 2+364+5k 2−484+5k2+4|=5|k |,故|PM |+|PN |=5|k |,又|PM |+|PN |≤15,即5|k |≤15,即|k |≤3,又|k |>1, 所以1<|k |≤3,故k 的取值范围为[﹣3,﹣1)∪(1,3]. 4.(2021•天津)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,上顶点为B ,离心率为2√55,且|BF |=√5.(1)求椭圆的标准方程;(2)直线l 与椭圆有唯一的公共点M ,与y 轴的正半轴交于点N ,过N 与BF 垂直的直线交x 轴于点P .若MP ∥BF ,求直线l 的方程. 【解答】解:(1)因为离心率e =2√55,|BF |=√5所以{c a =2√55a =√5a 2=b 2+c 2,解得a =√5,c =2,b =1,所以椭圆的方程为x 25+y 2=1.(2)设M (x 0,y 0), 则切线MN 的方程为x 0x 5+y 0y =1,令x =0,得y N =1y 0,因为PN ⊥BF , 所以k PN •k BF =﹣1,所以k PN •(−12)=﹣1,解得k NP =2,设P (x 1,0),则k NP =1y 00−x 1=2,即x 1=−12y 0,因为MP ∥BF , 所以k MP =k BF , 所以y 0x 0+12y 0=−12,即﹣2y 0=x 0+12y 0, 所以x 0=﹣2y 0−12y 0, 又因为x 025+y 02=1,所以4y 025+25+120y 02+y 02=1,解得y 0=±√66,因为y N >0, 所以y 0>0,所以y 0=√66,x 0=−√63−3√6=−5√66,所以−5√66x 5+√66y =1,即x ﹣y +√6=0.5.(2021•浙江)如图,已知F 是抛物线y 2=2px (p >0)的焦点,M 是抛物线的准线与x 轴的交点,且|MF |=2. (Ⅰ)求抛物线的方程:(Ⅱ)设过点F 的直线交抛物线于A ,B 两点,若斜率为2的直线l 与直线MA ,MB ,AB ,x 轴依次交于点P ,Q ,R ,N ,且满足|RN |2=|PN |•|QN |,求直线l 在x 轴上截距的取值范围.【解答】解:(Ⅰ)依题意,p =2,故抛物线的方程为y 2=4x ;(Ⅱ)由题意得,直线AB 的斜率存在且不为零,设直线AB :y =k (x ﹣1), 将直线AB 方程代入抛物线方程可得,k 2x 2﹣(2k 2+4)x +k 2=0, 则由韦达定理有,x A +x B =2+4k2,x A x B=1,则y A y B =﹣4,设直线AM :y =k 1(x +1),其中k 1=yA x A+1,设直线BM :y =k 2(x +1),其中k 2=yB x B +1,则k 1+k 2=y A x A+1+yBx B +1=y A x B +y A +y B x A +y B(x A +1)(x B +1)=k(x A −1)x B +k(x A −1)+k(x B −1)x A +k(x B −1)(x A +1)(x B +1)=0(x A +1)(x B +1)=0, k 1k 2=y A y B (x A +1)(x B +1)=−41+2+4k 2+1=−k21+k 2,设直线l :y =2(x ﹣t ),联立{y =2(x −t)y =k(x −1),可得x R =k−2t k−2,则|x R −t|=|k−2t k−2−t|=|k−kt k−2|,联立{y =2(x −t)y =k 1(x +1),可得x P =k 1+2t 2−k 1,则|x P −t|=|k 1+2t 2−k 1−t|=|k 1+k 1t 2−k 1|,同理可得,x Q =k 2+2t 2−k 2,|x Q −t|=|k 2+k 2t2−k 2|,又|RN |2=|PN |•|QN |,∴|k−kt k−2|2=|k 1+k 1t 2−k 1⋅k 2+k 2t 2−k 2|,即(k−kt k−2)2=k 2(1+t)23k 2+4,∴(1+t)2(t−1)2=3k2+4(k−2)2=3(k−2)2+12(k−2)+16(k−2)2=16(k−2)2+12k−2+3=(4k−2+32)2+3 4≥34(t≠1),∴4(t2+2t+1)≥3(t2﹣2t+1),即t2+14t+1≥0,解得t≥4√3−7或t≤−7−4√3(t≠1);当直线AB的斜率不存在时,则直线AB:x=1,A(1,2),B(1,﹣2),M(﹣1,0),∴直线MA的方程为y=x+1,直线MB的方程为y=﹣x﹣1,设直线l:y=2(x﹣t),则P(1+2t,2+2t),Q(2t−13,−2t+23),R(1,2﹣2t),N(t,0),又|RN|2=|PN|•|QN|,故(1−t)2+(2−2t)2=√(1+t)2+(2+2t)2⋅√(2t−13−t)2+(−2t+23)2,解得t满足(−∞,−7−4√3]∪[4√3−7,1)∪(1,+∞).∴直线l在x轴上截距的取值范围为(−∞,−7−4√3]∪[4√3−7,1)∪(1,+∞).6.(2021•甲卷)抛物线C的顶点为坐标原点O,焦点在x轴上,直线l:x=1交C于P,Q两点,且OP⊥OQ.已知点M(2,0),且⊙M与l相切.(1)求C,⊙M的方程;(2)设A1,A2,A3是C上的三个点,直线A1A2,A1A3均与⊙M相切.判断直线A2A3与⊙M的位置关系,并说明理由.【解答】解:(1)因为x=1与抛物线有两个不同的交点,故可设抛物线C的方程为:y2=2px(p>0),令x=1,则y=±√2p,根据抛物线的对称性,不妨设P在x轴上方,Q在X轴下方,故P(1,√2p),Q(1,−√2p),因为OP⊥OQ,故1+√2p×(−√2p)=0⇒p=1 2,抛物线C的方程为:y2=x,因为⊙M与l相切,故其半径为1,故⊙M:(x﹣2)2+y2=1.(2)设A1(x1,y1),A2(x2,y2),A3(x3,y3).当A1,A2,A3其中某一个为坐标原点时(假设A1为坐标原点时),设直线A1A2方程为kx﹣y=0,根据点M(2,0)到直线距离为1可得√1+k2=1,解得k=±√33,联立直线A 1A 2与抛物线方程可得x =3, 此时直线A 2A 3与⊙M 的位置关系为相切,当A 1,A 2,A 3都不是坐标原点时,即x 1≠x 2≠x 3,直线A 1A 2的方程为x −(y 1+y 2)y +y 1y 2=0, 此时有,12√1+(y 1+y 2)2=1,即(y 12−1)y 22+2y 1y 2+3−y 12=0,同理,由对称性可得,(y 12−1)y 32+2y 1y 3+3−y 12=0, 所以y 2,y 3是方程(y 12−1)t 2+2y 1t +3−y 12=0 的两根,依题意有,直线A 2A 3的方程为x −(y 2+y 3)y +y 2y 3=0,令M 到直线A 2A 3的距离为d ,则有d 2=(2+y 2y 3)21+(y 2+y 3)2=(2+3−y 12y 12−1)21+(−2y 1y 12−1)2=1,此时直线A 2A 3与⊙M 的位置关系也为相切, 综上,直线A 2A 3与⊙M 相切.7.(2021•新高考Ⅰ)在平面直角坐标系xOy 中,已知点F 1(−√17,0),F 2(√17,0),点M 满足|MF 1|﹣|MF 2|=2.记M 的轨迹为C . (1)求C 的方程;(2)设点T 在直线x =12上,过T 的两条直线分别交C 于A ,B 两点和P ,Q 两点,且|TA |•|TB |=|TP |•|TQ |,求直线AB 的斜率与直线PQ 的斜率之和.【解答】解:(1)由双曲线的定义可知,M 的轨迹C 是双曲线的右支,设C 的方程为x 2a 2−y 2b 2=1(a >0,b >0),x ≥1,根据题意{c =√172a =2c 2=a 2+b 2,解得{a =1b =4c =√17,∴C 的方程为x 2−y 216=1(x ≥1); (2)(法一)设T(12,m),直线AB 的参数方程为{x =12+tcosθy =m +tsinθ,将其代入C 的方程并整理可得,(16cos 2θ﹣sin 2θ)t 2+(16cos θ﹣2m sin θ)t ﹣(m 2+12)=0,由参数的几何意义可知,|TA |=t 1,|TB |=t 2,则t 1t 2=m 2+12sin 2θ−16cos 2θ=m 2+121−17cos 2θ,设直线PQ 的参数方程为{x =12+λcosβy =m +λsinβ,|TP |=λ1,|TQ |=λ2,同理可得,λ1λ2=m 2+121−17cos 2β,依题意,m 2+121−17cos 2θ=m 2+121−17cos 2β,则cos 2θ=cos 2β,又θ≠β,故cos θ=﹣cos β,则cos θ+cos β=0,即直线AB 的斜率与直线PQ 的斜率之和为0.(法二)设T(12,t),直线AB 的方程为y =k 1(x −12)+t ,A (x 1,y 1),B (x 2,y 2),设12<x 1<x 2,将直线AB 方程代入C 的方程化简并整理可得,(16−k 12)x 2+(k 12−2tk 1)x −14k 12+k 1t −t 2−16=0,由韦达定理有,x 1+x 2=k 12−2k 1t k 12−16,x 1x 2=−14k 12+k 1t−t 2−1616−k 12, 又由A(x 1,k 1x 1−12k 1+t),T(12,t)可得|AT|=√1+k 12(x 1−12), 同理可得|BT|=√1+k 12(x 2−12),∴|AT||BT|=(1+k 12)(x 1−12)(x 2−12)=(1+k 12)(t 2+12)k 12−16, 设直线PQ 的方程为y =k 2(x −12)+t ,P(x 3,y 3),Q(x 4,y 4),设12<x 3<x 4,同理可得|PT||QT|=(1+k 22)(t 2+12)k 22−16,又|AT ||BT |=|PT ||QT |,则1+k 12k 12−16=1+k 22k 22−16,化简可得k 12=k 22,又k 1≠k 2,则k 1=﹣k 2,即k 1+k 2=0,即直线AB 的斜率与直线PQ 的斜率之和为0. 8.(2021•乙卷)已知抛物线C :y 2=2px (p >0)的焦点F 到准线的距离为2. (1)求C 的方程;(2)已知O 为坐标原点,点P 在C 上,点Q 满足PQ →=9QF →,求直线OQ 斜率的最大值. 【解答】(1)解:由题意知,p =2, ∴y 2=4x .(2)由(1)知,抛物线C :y 2=4x ,F (1,0), 设点Q 的坐标为(m ,n ),则QF →=(1﹣m ,﹣n ), PQ →=9QF →=(9−9m ,−9n) ∴P 点坐标为(10m ﹣9,10n ), 将点P 代入C 得100n 2=40m ﹣36, 整理得m =100n 2+3640=25n 2+910, ∴K =nm =10n25n 2+9=1025n+9n≤13,当n =35时取最大值. 故答案为:13.9.(2021•甲卷)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=2√2cos θ. (1)将C 的极坐标方程化为直角坐标方程;(2)设点A 的直角坐标为(1,0),M 为C 上的动点,点P 满足AP →=√2AM →,写出P 的轨迹C 1的参数方程,并判断C 与C 1是否有公共点.【解答】解:(1)由极坐标方程为ρ=2√2cos θ,得ρ2=2√2ρcos θ, 化为直角坐标方程是x 2+y 2=2√2x ,即(x −√2)2+y 2=2,表示圆心为C (√2,0),半径为√2的圆. (2)设点P 的直角坐标为(x ,y ),M (x 1,y 1),因为A (1,0), 所以AP →=(x ﹣1,y ),AM →=(x 1﹣1,y 1), 由AP →=√2AM →, 即{x −1=√2(x 1−1)y =√2y 1,解得{x 1=√22(x −1)+1y 1=√22x ,所以M (√22(x ﹣1)+1,√22y ),代入C 的方程得[√22(x −1)+1−√2]2+(√22y)2=2,化简得点P 的轨迹方程是(x −3+√2)2+y 2=4,表示圆心为C 1(3−√2,0),半径为2 的圆;化为参数方程是{x =3−√2+2cosθy =2sinθ,θ为参数;计算|CC 1|=|(3−√2)−√2|=3﹣2√2<2−√2,所以圆C与圆C1内含,没有公共点.10.(2021•乙卷)已知抛物线C:x2=2py(p>0)的焦点为F,且F与圆M:x2+(y+4)2=1上点的距离的最小值为4.(1)求p;(2)若点P在M上,P A,PB为C的两条切线,A,B是切点,求△P AB面积的最大值.【解答】解:(1)点F(0,p2)到圆M上的点的距离的最小值为|FM|−1=p2+4−1=4,解得p=2;(2)由(1)知,抛物线的方程为x2=4y,即y=14x2,则y′=12x,设切点A(x1,y1),B(x2,y2),则易得l PA:y=x12x−x124,l PB:y=x22x−x224,从而得到P(x1+x22,x1x24),设l AB:y=kx+b,联立抛物线方程,消去y并整理可得x2﹣4kx﹣4b=0,∴△=16k2+16b>0,即k2+b>0,且x1+x2=4k,x1x2=﹣4b,∴P(2k,﹣b),∵|AB|=√1+k2⋅√(x1+x2)2−4x1x2=√1+k2⋅√16k2+16b,d p→AB=|2k2+2b|√k+1,∴S△PAB=12|AB|d=4(k2+b)32①,又点P(2k,﹣b)在圆M:x2+(y+4)2=1上,故k2=1−(b−4)24,代入①得,S△PAB=4(−b 2+12b−154)32,而y p=﹣b∈[﹣5,﹣3],∴当b=5时,(S△PAB)max=20√5.11.(2021•上海)(1)团队在O点西侧、东侧20千米处设有A、B两站点,测量距离发现一点P满足|P A|﹣|PB|=20千米,可知P在A、B为焦点的双曲线上,以O点为原点,东侧为x轴正半轴,北侧为y轴正半轴,建立平面直角坐标系,P在北偏东60°处,求双曲线标准方程和P点坐标.(2)团队又在南侧、北侧15千米处设有C、D两站点,测量距离发现|QA|﹣|QB|=30千米,|QC|﹣|QD|=10千米,求|OQ|(精确到1米)和Q点位置(精确到1米,1°)【解答】解:(1)由题意可得a=10,c=20,所以b2=300,所以双曲线的标准方程为x 2100−y 2300=1,直线OP :y =√33x ,联立双曲线方程,可得x =15√22,y =5√62, 即点P 的坐标为(15√22,5√62).(2)①|QA |﹣|QB |=30,则a =15,c =20,所以b 2=175, 双曲线方程为x 2225−y 2175=1;②|QC |﹣|QD |=10,则a =5,c =15,所以b 2=200, 所以双曲线方程为y 225−x 2200=1,两双曲线方程联立,得Q (√1440047,√297547),所以|OQ |≈19米,Q 点位置北偏东66°. 12.(2020•天津)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的一个顶点为A (0,﹣3),右焦点为F ,且|OA |=|OF |,其中O 为原点. (Ⅰ)求椭圆的方程;(Ⅱ)已知点C 满足3OC →=OF →,点B 在椭圆上(B 异于椭圆的顶点),直线AB 与以C 为圆心的圆相切于点P ,且P 为线段AB 的中点.求直线AB 的方程.【解答】解:(Ⅰ)由已知可得b =3,记半焦距为c ,由|OF |=|OA |可得c =b =3, 由a 2=b 2+c 2,可得a 2=18, ∴椭圆的方程为x 218+y 29=1,(Ⅱ):∵直线AB 与C 为圆心的圆相切于点P , ∴AB ⊥CP ,根据题意可得直线AB 和直线CP 的斜率均存在,设直线AB 的方程为y =kx ﹣3, 由方程组{y =kx −3x 218+y 29=1,消去y 可得(2k 2+1)x 2﹣12kx =0,解得x =0,或x =12k2k 2+1,依题意可得点B 的坐标为(12k 2k 2+1,6k 2−32k 2+1),∵P 为线段AB 的中点,点A 的坐标为(0,﹣3), ∴点P 的坐标为(6k2k 2+1,−32k 2+1),由3OC →=OF →,可得点C 的坐标为(1,0),故直线CP 的斜率为−32k 2+16k2k 2+1−1=32k 2−6k+1,∵AB ⊥CP , ∴k •32k 2−6k+1=−1,整理可得2k 2﹣3k +1=0, 解得k =12或k =1,∴直线AB 的方程为y =12x ﹣3或y =x ﹣3. 13.(2020•北京)已知椭圆C :x 2a 2+y 2b 2=1过点A (﹣2,﹣1),且a =2b .(Ⅰ)求椭圆C 的方程;(Ⅱ)过点B (﹣4,0)的直线l 交椭圆C 于点M ,N ,直线MA ,NA 分别交直线x =﹣4于点P ,Q .求|PB||BQ|的值.【解答】解:(Ⅰ)椭圆C :x 2a 2+y 2b 2=1过点A (﹣2,﹣1),且a =2b ,则{4a 2+1b 2=1a =2b,解得b 2=2,a 2=8,∴椭圆方程为x 28+y 22=1,(Ⅱ)由题意可得直线l 的斜率存在,设直线方程为y =k (x +4), 由{y =k(x +4)x 28+y 22=1,消y 整理可得(1+4k 2)x 2+32k 2x +64k 2﹣8=0, ∴△=﹣32(4k 2﹣1)>0, 解得−12<k <12,设M (x 1,y 1),N (x 2,y 2), ∴x 1+x 2=−32k21+4k2,x 1x 2=64k 2−81+4k2,则直线AM 的方程为y +1=y 1+1x 1+2(x +2),直线AN 的方程为y +1=y 2+1x 2+2(x +2),分别令x =﹣4, 可得y P =−2(y 1+1)x 1+2−1=−(2k+1)x 1+(8k+4)x 1+2,y Q =−(2k+1)x 2+(8k+4)x 2+2∴|PB |=|y P |=|(2k+1)x 1+(8k+4)x 1+2|,QB |=|y Q |=|(2k+1)x 2+(8k+4)x 2+2|,∴|PB||BQ|=|[(2k+1)x 1+(8k+4)](x 2+2)[(2k+1)x 2+(8k+4)](x 1+2)|=|(2k+1)x 1x 2+(4k+2)(x 1+x 2)+8(2k+1)+(4k+2)x 2(2k+1)x 1x 2+(4k+2)(x 1+x 2)+8(2k+1)+(4k+2)x 1|∵(2k +1)x 1x 2+(4k +2)(x 1+x 2)+8(2k +1)=32k 2(2k+1)1+4k2,∴|(2k+1)x 1x 2+(4k+2)(x 1+x 2)+8(2k+1)+(4k+2)x 2(2k+1)x 1x 2+(4k+2)(x 1+x 2)+8(2k+1)+(4k+2)x 1|=|(2k+1)(32k 24k 2+1+2x 2)(2k+1)(32k 24k 2+1+2x 1)|=|−(x 1+x 2)+2x 2−(x 1+x 2)+2x 1|=1,故|PB||BQ|=1.14.(2020•上海)已知双曲线Γ1:x 24−y 2b 2=1与圆Γ2:x 2+y 2=4+b 2(b >0)交于点A (x A ,y A )(第一象限),曲线Γ为Γ1、Γ2上取满足x >|x A |的部分. (1)若x A =√6,求b 的值;(2)当b =√5,Γ2与x 轴交点记作点F 1、F 2,P 是曲线Γ上一点,且在第一象限,且|PF 1|=8,求∠F 1PF 2; (3)过点D (0,b 22+2)斜率为−b2的直线l 与曲线Γ只有两个交点,记为M 、N ,用b表示OM →•ON →,并求OM →•ON →的取值范围.【解答】解:(1)由x A =√6,点A 为曲线Γ1与曲线Γ2的交点,联立{x A 24−y A 2b2=1x A 2+y A 2=4+b 2,解得y A =√2,b =2;(2)由题意可得F 1,F 2为曲线Γ1的两个焦点,由双曲线的定义可得|PF 1|﹣|PF 2|=2a ,又|PF 1|=8,2a =4,所以|PF 2|=8﹣4=4,因为b =√5,则c =√4+5=3, 所以|F 1F 2|=6,在△PF 1F 2中,由余弦定理可得cos ∠F 1PF 2=|PF 1|2+|PF 2|2−|F 1F 2|22|PF 1|⋅|PF 2|=64+16−362×8×4=1116,由0<∠F 1PF 2<π,可得∠F 1PF 2=arccos1116;(3)设直线l :y =−b2x +4+b22,可得原点O 到直线l 的距离d =|4+b 22|√1+b4=√4+b 2,所以直线l 是圆的切线,设切点为M ,所以k OM =2b ,并设OM :y =2bx 与圆x 2+y 2=4+b 2联立,可得x 2+4b2x 2=4+b 2, 可得x =b ,y =2,即M (b ,2),注意直线l 与双曲线的斜率为负的渐近线平行, 所以只有当y A >2时,直线l 才能与曲线Γ有两个交点,由{x A 24−y A 2b2=1x A 2+y A 2=4+b2,可得y A 2=b4a+b2,所以有4<b44+b2,解得b 2>2+2√5或b 2<2﹣2√5(舍去),因为OM →为ON →在OM →上的投影可得,OM →•ON →=4+b 2, 所以OM →•ON →=4+b 2>6+2√5, 则OM →•ON →∈(6+2√5,+∞).15.(2020•江苏)在平面直角坐标系xOy 中,已知椭圆E :x 24+y 23=1的左、右焦点分别为F 1、F 2,点A 在椭圆E 上且在第一象限内,AF 2⊥F 1F 2,直线AF 1与椭圆E 相交于另一点B .(1)求△AF 1F 2的周长;(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求OP →•QP →的最小值; (3)设点M 在椭圆E 上,记△OAB 与△MAB 的面积分别为S 1,S 2,若S 2=3S 1,求点M 的坐标.【解答】解:(1)由椭圆的标准方程可知,a 2=4,b 2=3,c 2=a 2﹣b 2=1, 所以△AF 1F 2的周长=2a +2c =6.(2)由椭圆方程得A (1,32),设P (t ,0),则直线AP 方程为y =321−t (x −t),椭圆的右准线为:x =a 2c =4,所以直线AP 与右准线的交点为Q (4,32•4−t 1−t),OP →•QP →=(t ,0)•(t ﹣4,0−32•4−t1−t)=t 2﹣4t =(t ﹣2)2﹣4≥﹣4, 当t =2时,(OP →⋅QP →)min =﹣4.(3)若S 2=3S 1,设O 到直线AB 距离d 1,M 到直线AB 距离d 2,则12×|AB |×d 2=12×|AB |×d 1,即d 2=3d 1,A (1,32),F 1(﹣1,0),可得直线AB 方程为y =34(x +1),即3x ﹣4y +3=0,所以d 1=35,d 2=95,由题意得,M 点应为与直线AB 平行且距离为95的直线与椭圆的交点,设平行于AB 的直线l 为3x ﹣4y +m =0,与直线AB 的距离为95,所以√9+16=95,即m =﹣6或12,当m =﹣6时,直线l 为3x ﹣4y ﹣6=0,即y =34(x ﹣2),联立{y =34(x −2)x 24+y 23=1,可得(x ﹣2)(7x +2)=0,即{x M =2y N =0或{x M =−27y M =−127,所以M (2,0)或(−27,−127).当m =12时,直线l 为3x ﹣4y +12=0,即y =34(x +4),联立{y =34(x +4)x 24+y 23=1,可得214x 2+18x +24=0,△=9×(36﹣56)<0,所以无解,综上所述,M 点坐标为(2,0)或(−27,−127). 16.(2020•浙江)如图,已知椭圆C 1:x 22+y 2=1,抛物线C 2:y 2=2px (p >0),点A 是椭圆C 1与抛物线C 2的交点,过点A 的直线l 交椭圆C 1于点B ,交抛物线C 2于点M (B ,M 不同于A ). (Ⅰ)若p =116,求抛物线C 2的焦点坐标; (Ⅱ)若存在不过原点的直线l 使M 为线段AB 的中点,求p 的最大值.【解答】解:(Ⅰ)p =116,则p 2=132,则抛物线C 2的焦点坐标(132,0), (Ⅱ)直线l 与x 轴垂直时,此时点M 与点A 或点B 重合,不满足题意, 设直线l 的方程为y =kx +t ,A (x 1,y 1),B (x 2,y 2),M (x 0,y 0),由{x 22+y 2=1y =kx +t,消y 可得(2k 2+1)x 2+4ktx +2t 2﹣2=0, ∴△=16k 2t 2﹣4(2k 2+1)(2t 2﹣2)>0,即t 2<1+2k 2, ∴x 1+x 2=−4kt 1+2k2,∴x 0=12(x 1+x 2)=−2kt 1+2k 2,∴y 0=kx 0+t =t 1+2k2,∴M (−2kt 1+2k2,t1+2k 2),∵点M 在抛物线C 2上,∴y 2=2px ,∴p =y 22x =t 2(1+2k 2)22⋅−2kt 1+2k2=t −4k(1+2k 2), 联立{y 2=2px y =kx +t ,解得x 1=t(1+2k 2)−2k 3,y 1=t −2k2, 代入椭圆方程可得t 2(1+2k 2)28k 6+t 24k 4=1,解得t 2=8k6(1+2k 2)2+2k2。
(完整word版)圆锥曲线压轴解答题22题(含详细答案,可直接打印)
圆锥曲线压轴22题及答案一.解答题(共22小题)1.已知抛物线C :y 2=2px (p >0)的焦点是椭圆M :+=1(a >b >0)的右焦点,且两曲线有公共点(,).(1)求椭圆M 的方程;(2)O 为坐标原点,A ,B ,C 是椭圆M 上不同的三点,并且O 为△ABC 的重心,试探究△ABC 的面积是否为定值.若是,求出这个定值;若不是,请说明理由. 2.已知直线11:ax ﹣y+1=0,直线12:x+5ay+5a=0.(1)直线11与l 2的交点为M,当a 变化时,求点M 的轨迹C 的方程:(2)已知点D (2,0),过点E (﹣2,0)的直线1与C 交于A ,B 两点,求△ABD 面积的最大值. 3.已知椭圆C:+=1(a >b >0)的四个顶点围成的菱形的面积为4,点M 与点F 分别为椭圆C 的上顶点与左焦点,且△MOF 的面积为(点O 为坐标原点).(1)求C 的方程;(2)直线l 过F 且与椭圆C 交于P ,Q 两点,点P 关于O 的对称点为P′,求△PP′Q 面积的最大值.4.如图所示,椭圆C 1:+y 2=1,抛物线C 2:y=x 2﹣1,其中C 2与y 轴的交点为M,过坐标原点O的直线l 与C 2相交于点A ,B,直线MA ,MB 分别与C 1相交于点D ,E . (Ⅰ)证明:MA ⊥MB;(Ⅱ)记△MAB ,△MDE 的面积分别是S 1,S 2.问:是否存在直线l ,使得=.若存在,求出直线l 的方程,若不存在,请说明理由.5.已知椭圆C1:的左右顶点是双曲线的顶点,且椭圆C1的上顶点到双曲线C2的渐近线距离为.(1)求椭圆C1的方程;(2)点F为椭圆的左焦点,不垂直于x轴且不过F点的直线l与曲线C1相交于A、B两点,若直线FA、FB的斜率之和为0,则动直线l是否一定经过一定点?若存在这样的定点,则求出该定点的坐标;若不存在这样的定点,请说明理由.6.椭圆的离心率是,过点P(0,1)的动直线l与椭圆相交于A,B 两点,当直线l与x轴平行时,直线l被椭圆C截得的线段长为.(1)求椭圆C的方程;(2)在y轴上是否存在异于点P的定点Q,使得直线l变化时,总有∠PQA=∠PQB?若存在,求出点Q的坐标;若不存在,请说明理由.7.已知椭圆,点在椭圆C上,椭圆C的四个顶点的连线构成的四边形的面积为.(1)求椭圆C的方程;(2)设点A为椭圆长轴的左端点,P、Q为椭圆上异于椭圆C长轴端点的两点,记直线AP、AQ斜率分别为k1、k2,若k1k2=2,请判断直线PQ是否过定点?若过定点,求该定点坐标,若不过定点,请说明理由.8.已知椭圆Γ:=1(0<b<2)的左右焦点分别为F1、F2,上顶点为B,O为坐标原点,且向量与的夹角为.(1)求椭圆Γ的方程;(2)设Q(1,0),点P是椭圆Γ上的动点,求的最大值和最小值;(3)设不经过点B的直线l与椭圆Γ相交于M、N两点,且直线BM、BN的斜率之和为1,证明:直线l过定点.9.椭圆E:的左、右焦点分别为、,过F1且斜率为的直线与椭圆的一个交点在x轴上的射影恰好为F2.(Ⅰ)求椭圆E的标准方程;(Ⅱ)设直线与椭圆E交于A,C两点,与x轴交于点H,设AC的中点为Q,试问|AQ|2+|QH|2是否为定值?若是,求出定值;若不是,请说明理由.10.椭圆E:的左、右焦点分别为、,过F1且斜率为的直线与椭圆的一个交点在x轴上的射影恰好为F2.(Ⅰ)求椭圆E的标准方程;(Ⅱ)设直线与椭圆E交于A、C两点,以AC为对角线作正方形ABCD,记直线l与x 轴的交点为H,试问|BH|是否为定值?若是,求出定值;若不是,请说明理由.11.设椭圆M:+=1(a>b>0)经过点P(,),F1,F2是椭圆M的左、右焦点,且△PF1F2的面积为.(1)求椭圆M的方程;(2)设O为坐标原点,过椭圆M内的一点(0,t)作斜率为k的直线l与椭圆M交于A,B两点,直线OA,OB的斜率分别为k1,k2,若对任意实数k,存在实m,使得k1+k2=mk,求实数m的取值范围. 12.已知椭圆经过点,离心率为,过右焦点F 且与x 轴不垂直的直线l 交椭圆于P ,Q 两点. ( I )求椭圆C 的方程; ( II )当直线l 的斜率为时,求△POQ 的面积;( III )在椭圆C 上是否存在点M ,使得四边形OPMQ 为平行四边形?若存在,求出直线l 的方程;若不存在,请说明理由. 13.已知F 1、F 2是椭圆C :(a >b >0)的左、右焦点,过F 2作x 轴的垂线与C 交于A 、B两点,F 1B 与y 轴交于点D ,AD ⊥F 1B ,且|OD|=1,O 为坐标原点. (1)求C 的方程;(2)设P 为椭圆C 上任一异于顶点的点,A 1、A 2为C 的上、下顶点,直线PA 1、PA 2分别交x 轴于点M 、N .若直线OT 与过点M 、N 的圆切于点T .试问:|OT|是否为定值?若是,求出该定值;若不是,请说明理由. 14.已知椭圆C :+=1的两个焦点分别是F 1(﹣,0),F 2(,0),点E(,)在椭圆C 上.(Ⅰ)求椭圆C 的方程;(Ⅱ)设P 是y 轴上的一点,若椭圆C 上存在两点M ,N 使=2,求以F 1P 为直径的圆面积取值范围. 15.已知椭圆的右焦点为F ,离心率为,平行于x 轴的直线交椭圆于A ,B 两点,且.(I )求椭圆C 的方程;(Ⅱ)过点F 且斜率不为零的直线l 与椭圆C 交于M ,N 两点,在x 轴上是否存在定点E ,使得是定值?若存在,请求出该点的坐标;若不存在,请说明理由. 16.已知椭圆C :(a >b >0)的离心率,抛物线E :的焦点恰好是椭圆C的一个顶点.(1)求椭圆C 的标准方程;(2)过点P (0,1)的动直线与椭圆C 交于A,B 两点,设O 为坐标原点,是否存在常数λ,使得恒成立?请说明理由.17.在平面直角坐标系中,点F 1、F 2分别为双曲线C :的左、右焦点,双曲线C 的离心率为2,点(1,)在双曲线C 上.不在x 轴上的动点P 与动点Q 关于原点O 对称,且四边形PF 1QF 2的周长为.(1)求动点P 的轨迹方程;(2)在动点P 的轨迹上有两个不同的点M (x 1,y 1)、N (x 2,y 2),线段MN 的中点为G ,已知点(x 1,x 2)在圆x 2+y 2=2上,求|OG |•|MN |的最大值,并判断此时△OMN 的形状. 18.已知抛物线C :y 2=2px (p >0),其内接△ABC 中∠A=90°. (I)当点A 与原点重合时,求斜边BC 中点M 的轨迹方程;(II )当点A 的纵坐标为常数t 0(t 0∈R )时,判断BC 所在直线是否过定点?过定点求出定点坐标;不过定点,说明理由. 19.如图,已知F 1,F 2分别是椭圆的左、右焦点,点P (﹣2,3)是椭圆C上一点,且PF 1⊥x 轴. (1)求椭圆C 的方程;(2)设圆M :(x ﹣m )2+y 2=r 2(r >0).①设圆M 与线段PF 2交于两点A,B ,若,且AB=2,求r 的值;②设m=﹣2,过点P 作圆M 的两条切线分别交椭圆C 于G ,H 两点(异于点P ).试问:是否存在这样的正数r,使得G,H 两点恰好关于坐标原点O 对称?若存在,求出r 的值;若不存在,请说明理由.20.己知椭圆在椭圆上,过C 的焦点且与长轴垂直的弦的长度为.(1)求椭圆C 的标准方程;.(2)过点A (﹣2,0)作两条相交直线l 1,l 2,l 1与椭圆交于P ,Q 两点(点P 在点Q 的上方),l 2与椭圆交于M ,N 两点(点M 在点N 的上方),若直线l 1的斜率为,,求直线l 2的斜率.21.在平面直角坐标系xOy 中,抛物线C :x 2=2py (p >0),直线y=x 与C 交于O ,T 两点,|OT |=4.(Ⅰ)求C 的方程; (Ⅱ)斜率为k (0)的直线l 过线段OT 的中点,与C 交于A,B 两点,直线OA,OB 分别交直线y=x ﹣2于M ,N 两点,求|MN|的最大值.22.已知椭圆C的中心在原点,焦点在x轴上,焦距为4,离心率为.(1)求椭圆C的方程;(2)已知直线l经过点P(0,﹣1),且与椭圆交于A,B两点,若,求直线l的方程.参考答案与试题解析一.解答题(共22小题)1.已知抛物线C:y2=2px(p>0)的焦点是椭圆M:+=1(a>b>0)的右焦点,且两曲线有公共点(,).(1)求椭圆M的方程;(2)O为坐标原点,A,B,C是椭圆M上不同的三点,并且O为△ABC的重心,试探究△ABC的面积是否为定值.若是,求出这个定值;若不是,请说明理由.【解答】解:(1)抛物线C:y2=2px(p>0)的焦点是椭圆M:+=1(a>b>0)的右焦点,∴=c,∵两曲线有公共点(,),∴=2p•,+=1,解得p=2,∴c=1,∴c2=a2﹣b2=1,∴a2=4,b2=3,∴椭圆的方程为+=1;(2)设直线AB的方程为y=kx+m,代入椭圆方程3x2+4y2=12,可得(3+4k2)x2+8kmx+4m2﹣12=0,设A(x1,y1),B(x2,y2),则x1x2=,x1+x2=﹣,y1+y2=k(x1+x2)+2m=,由O为△ABC的重心,可得=﹣(+)=(,﹣),由C在椭圆上,则有3()2+4(﹣)2=12,化简可得4m2=3+4k2,|AB|=•=•=•==,C到直线AB的距离d═,S△ABC=|AB|•d=••=.当直线AB的斜率不存在时,|AB|=3,d=3,S△ABC=|AB|•d=.综上可得,△ABC的面积为定值.2.已知直线11:ax﹣y+1=0,直线12:x+5ay+5a=0.(1)直线11与l2的交点为M,当a变化时,求点M的轨迹C的方程:(2)已知点D(2,0),过点E(﹣2,0)的直线1与C交于A,B两点,求△ABD面积的最大值.【解答】解:(1)由题意设M(x,y),M满足直线11、直线12:可得,消去a,可得x2+5y2=5,即点M的轨迹C的方程为:(2)设直线l的方程x=my﹣2.E(﹣2,0)在M的轨迹C内.ED=4,直线1与C交于A,B两点,A(x1,y1).B(x2,y2)∴,可得(m2+5)y2﹣4my﹣1=0.∴y1+y2=.y1y2=∴△ABD面积s=×|y1﹣y2|•|ED=×4×=2×==2×≤2×=2×=,当且仅当m=时,表达式取得最大值.△ABD面积的最大值:.3.已知椭圆C:+=1(a>b>0)的四个顶点围成的菱形的面积为4,点M与点F分别为椭圆C的上顶点与左焦点,且△MOF的面积为(点O为坐标原点).(1)求C的方程;(2)直线l过F且与椭圆C交于P,Q两点,点P关于O的对称点为P′,求△PP′Q面积的最大值.【解答】解:(1)∵△MOF的面积为,∴bc=,即bc=.又∵椭圆C的四个顶点围成的菱形的面积为4,∴=4,即ab=2.∴==,∴=,∴a=2,b=,∴C的方程为:=1.(2)由题意可知,点O为PP′的中点,则=2S△POQ.设直线l的方程为:x=my﹣1,P(x1,y1),Q(x2,y2),联立,可得(3m2+4)y2﹣6my﹣9=0,∴y1+y2=,y1y2=,∴|y1﹣y2|===,∴S△POQ =|OF|•|y1﹣y2|=.设=t≥1,=.∵函数g(t)=在[1,+∞)上单调递减,∴当t=1时,△PP′Q面积取得最大值=3.4.如图所示,椭圆C1:+y2=1,抛物线C2:y=x2﹣1,其中C2与y轴的交点为M,过坐标原点O的直线l与C2相交于点A,B,直线MA,MB分别与C1相交于点D,E.(Ⅰ)证明:MA⊥MB;(Ⅱ)记△MAB,△MDE的面积分别是S1,S2.问:是否存在直线l,使得=.若存在,求出直线l的方程,若不存在,请说明理由.【解答】解:(Ⅰ)证明:由题得,直线l 的斜率存在,设为k,则直线l 的方程为:y=kx, 由y=kx 和y=x 2﹣1,得x 2﹣kx ﹣1=0.设A(x 1,y 1),B(x 2,y 2), 于是x 1+x 2=k ,x 1•x 2=﹣1,又点M 的坐标为(0,﹣1). 所以k MA •k MB =•====﹣1.故MA ⊥MB ,即MD ⊥ME;(Ⅱ)设直线MA 的斜率为k 1,则直线MA 的方程为y=k 1x ﹣1. 联立y=x 2﹣1可得或则点A 的坐标为(k 1,k 12﹣1). 又直线MB 的斜率为﹣,同理可得点B 的坐标为(﹣,﹣1).于是S 1=|MA |•|MB |=|k 1|•••|﹣|•=.由椭圆方程x 2+4y 2=4和y=k 1x ﹣1, 得(1+4k 12)x 2﹣8k 1x=0,解得,或,则点D的坐标为(,).又直线ME的斜率为﹣,同理可得点E的坐标为(﹣,).于是S2=|MD|•|ME|=.故=(4k12++17)=,解得k12=4,或k12=.又由点A,B的坐标得,k==k1﹣.所以k=±.故满足条件的直线l存在,且有两条,其方程为y=±x.5.已知椭圆C1:的左右顶点是双曲线的顶点,且椭圆C1的上顶点到双曲线C2的渐近线距离为.(1)求椭圆C1的方程;(2)点F为椭圆的左焦点,不垂直于x轴且不过F点的直线l与曲线C1相交于A、B两点,若直线FA、FB的斜率之和为0,则动直线l是否一定经过一定点?若存在这样的定点,则求出该定点的坐标;若不存在这样的定点,请说明理由.【解答】解:(1)由题意可知:a=2……………………………………1分又椭圆的上顶点为(0,b)双曲线的渐近线为:2y±x=0由点到直线的距离公式有:得……………………3分所以椭圆的方程为.……………………4分(2)设直线线l的方程为y=kx+m,A(x1,y1)、B(x2,y2)联立得(3+4k2)x2+8kmx+4m2﹣12=0……………………5分则……………………7分由已知直线FA、FB的斜率之和为0,有,2kx1x2+(k+m)(x1+x2)+2m=0…………………9分所以化简得m=4k………………11分此时△=(8km)2﹣4×(3+4k2)(4m2﹣12)=(32k2)2﹣4×(3+4k2)(64k2﹣12)=16×64k4﹣16(4k2+3)(16k2﹣3)=16×9(1﹣4k2)显然△=16×9(1﹣4k2)>0有机会成立.所以直线l的方程为:y=kx+m=k(x+4)所以存在这样的定点(﹣4,0)符合题意.…………12分6.椭圆的离心率是,过点P(0,1)的动直线l与椭圆相交于A,B两点,当直线l与x轴平行时,直线l被椭圆C截得的线段长为.(1)求椭圆C的方程;(2)在y 轴上是否存在异于点P 的定点Q,使得直线l 变化时,总有∠PQA=∠PQB?若存在,求出点Q 的坐标;若不存在,请说明理由. 【解答】解:(1)∵,∴a 2=2c 2=b 2+c 2,b=c,a 2=2b 2,椭圆方程化为:,由题意知,椭圆过点,∴,解得b 2=4,a 2=8,所以椭圆C 的方程为:;(2)当直线l 斜率存在时,设直线l 方程:y=kx+1, 由得(2k 2+1)x 2+4kx ﹣6=0,△=16k 2+24(2k 2+1)>0,设,假设存在定点Q (0,t)符合题意,∵∠PQA=∠PQB ,∴k QA =﹣k QB , ∴=,∵上式对任意实数k 恒等于零,∴4﹣t=0,即t=4,∴Q (0,4),当直线l 斜率不存在时,A ,B 两点分别为椭圆的上下顶点(0,﹣2),(0,2), 显然此时∠PQA=∠PQB ,综上,存在定点Q (0,4)满足题意. 7.已知椭圆,点在椭圆C 上,椭圆C 的四个顶点的连线构成的四边形的面积为.(1)求椭圆C 的方程;(2)设点A 为椭圆长轴的左端点,P 、Q 为椭圆上异于椭圆C 长轴端点的两点,记直线AP 、AQ 斜率分别为k 1、k 2,若k 1k 2=2,请判断直线PQ 是否过定点?若过定点,求该定点坐标,若不过定点,请说明理由. 【解答】解:(1)由点在椭圆C 上可得:,整理为:9a 2+4b 2=4a 2b 2, 由椭圆C 的四个顶点的连接线构成的四边形的面积为可得:,即,可得,由a >b >0可解得:,故椭圆C 的方程为:.(2)设点P 、Q 的坐标分别为(x 1,y 1),(x 2,y 2),点A 的坐标为(﹣2,0), 故,可得y 1y 2=2(x 1+2)(x 2+2),设直线PQ 的方程为y=kx+m (直线PQ 的斜率存在), 可得(kx 1+m)(kx 2+m )=2(x 1+2)(x 2+2), 整理为:,联立,消去y 得:(4k 2+3)x 2+8kmx+(4m 2﹣12)=0,由△=64k 2m 2﹣4(4k 2+3)(4m 2﹣12)=48(4k 2﹣m 2+3)>0,有4k 2+3>m 2, 有,,故有:,整理得:44k 2﹣32km+5m 2=0,解得:m=2k 或,当m=2k 时直线PQ 的方程为y=kx+2k,即y=k(x+2),过定点(﹣2,0)不合题意, 当时直线PQ 的方程为,即,过定点.8.已知椭圆Γ:=1(0<b <2)的左右焦点分别为F 1、F 2,上顶点为B ,O 为坐标原点,且向量与的夹角为.(1)求椭圆Γ的方程;(2)设Q (1,0),点P 是椭圆Γ上的动点,求的最大值和最小值;(3)设不经过点B 的直线l 与椭圆Γ相交于M 、N 两点,且直线BM 、BN 的斜率之和为1,证明:直线l 过定点. 【解答】解:(1)椭圆Γ:=1(0<b <2)的a=2,向量与的夹角为,可得|BF 1|=|BF 2|=a==2b=2,即b=1,则椭圆方程为+y 2=1;(2)设P (m ,n ),可得+n 2=1,即n 2=1﹣,•=(1﹣m ,﹣n )•(﹣m ,﹣n )=m 2﹣m+n 2=m 2﹣m+1=(m ﹣)2+,由﹣2≤m ≤2可得m=时,上式取得最小值;m=﹣2时,取得最大值6, 则•的范围是[,6];(3)证明:当直线l 的斜率不存在时,设M (x 1,y 1),N(x 2,y 2), 由k BM +k BN =+==1,x 1=x 2,y 1=﹣y 2,得x 1=﹣2,此时M ,N 重合,不符合题意;设不经过点P 的直线l 方程为:y=kx+m ,M (x 1,y 1),N (x 2,y 2), 由得(1+4k 2)x 2+8ktx+4t 2﹣4=0,x 1+x 2=﹣,x 1x 2=,k BM +k BN =+==1,⇒(kx1﹣1+t)x2+(kx2﹣1+t)x1=x1x2⇒(2k﹣1)x1x2+(t﹣1)(x1+x2)=0⇒(t﹣1)(2k﹣t﹣1)=0,∵t≠1,∴t=2k﹣1,∴y=k(x+2)﹣1,直线l必过定点(﹣2,﹣1).9.椭圆E:的左、右焦点分别为、,过F1且斜率为的直线与椭圆的一个交点在x轴上的射影恰好为F2.(Ⅰ)求椭圆E的标准方程;(Ⅱ)设直线与椭圆E交于A,C两点,与x轴交于点H,设AC的中点为Q,试问|AQ|2+|QH|2是否为定值?若是,求出定值;若不是,请说明理由.【解答】(本小题满分12分)解:(Ⅰ)过且斜率为的直线方程为,﹣﹣﹣﹣﹣﹣﹣(1分)令,则y=1﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2分)由题意可得,解得a2=16,b2=4,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)所以椭圆E的标准方程.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)(Ⅱ)由可得x2+2mx+2m2﹣8=0,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)设A(x1,y1),C(x2,y2)则有,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(7分)∴,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)又,∵Q为AC的中点,∴﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(9分)直线l与x轴的交点为H(﹣2m,0),所以,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)=,所以|AQ|2+|HQ|2为定值10.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)10.椭圆E:的左、右焦点分别为、,过F1且斜率为的直线与椭圆的一个交点在x轴上的射影恰好为F2.(Ⅰ)求椭圆E的标准方程;(Ⅱ)设直线与椭圆E交于A、C两点,以AC为对角线作正方形ABCD,记直线l与x 轴的交点为H,试问|BH|是否为定值?若是,求出定值;若不是,请说明理由.【解答】(本小题满分12分)解:(Ⅰ)过且斜率为的直线方程为,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(1分)令,则y=1﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2分)由题意可得,解得a2=16,b2=4,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)所以椭圆E的标准方程.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)(Ⅱ)由可得x2+2mx+2m2﹣8=0,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)设A(x1,y1),C(x2,y2)则有,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(7分)∴,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)又,设AC的中点为Q,则﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(9分)直线l与x轴的交点为H(﹣2m,0),所以,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)=,所以|BH|为定值.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)11.设椭圆M:+=1(a>b>0)经过点P(,),F1,F2是椭圆M的左、右焦点,且△PF1F2的面积为.(1)求椭圆M的方程;(2)设O为坐标原点,过椭圆M内的一点(0,t)作斜率为k的直线l与椭圆M交于A,B两点,直线OA,OB的斜率分别为k1,k2,若对任意实数k,存在实m,使得k1+k2=mk,求实数m的取值范围.【解答】解:(1)设M的焦点F1(﹣c,0),F2(c,0),∵,△PF1F2面积为,∴,∴c=1,由,得∴椭圆M的方程为.(2)设直线l的方程为y=kx+t,由•得(3+4k2)x2+8ktx+4t2﹣12=0,设A(x1•y2),B(x2•y2),则..由k1+k2=mk对任意k成立,得,∴,又(0,t)在椭圆内部,∴0≤t2<3,∴m≥2,即m∈[2,+∞).12.已知椭圆经过点,离心率为,过右焦点F且与x轴不垂直的直线l交椭圆于P,Q两点.( I)求椭圆C的方程;( II)当直线l的斜率为时,求△POQ的面积;( III)在椭圆C上是否存在点M,使得四边形OPMQ为平行四边形?若存在,求出直线l的方程;若不存在,请说明理由.【解答】解:(I) 根据题意,解得,故椭圆C的方程为.…(5分)( II) 根据题意,直线l的方程为.设P(x1,y1),Q(x2,y2).由得15x2﹣24x=0.解得.法一:.法二:,原点O到直线l的距离.所以…(10分)( III)设直线l的方程为y=k(x﹣1)(k≠0).设P(x1,y1),Q(x2,y2),由得(3+4k2)x2﹣8k2x+4k2﹣12=0.由韦达定理得,.所以PQ 的中点.要使四边形OPMQ 为平行四边形,则N 为OM 的中点,所以.要使点M 在椭圆C 上,则,即12k 2+9=0,此方程无解.所以在椭圆C 上不存在点M ,使得四边形OPMQ 为平行四边形.….(14分) 13.已知F 1、F 2是椭圆C :(a >b >0)的左、右焦点,过F 2作x 轴的垂线与C 交于A 、B 两点,F 1B 与y 轴交于点D ,AD ⊥F 1B ,且|OD |=1,O 为坐标原点. (1)求C 的方程;(2)设P 为椭圆C 上任一异于顶点的点,A 1、A 2为C 的上、下顶点,直线PA 1、PA 2分别交x 轴于点M 、N .若直线OT 与过点M 、N 的圆切于点T .试问:|OT |是否为定值?若是,求出该定值;若不是,请说明理由.【解答】解:(1)如图:AF 2⊥x 轴,|OD|=1, ∴AB ∥OD,∵O 为F 1F 2为的中点, ∴D 为BF 1的中点, ∵AD ⊥F 1B ,∴|AF 1|=|AB |=2|AF 2|=4|OD |=4, ∴2a=|AF 1|+|AF 2|=4+2=6, ∴a=3, ∴|F 1F 2|==2,∴c=,a=3,∴b2=a2﹣c2=6,∴+=1,(2)由(1)可知,A1(0,),A2(0,﹣).设点P(x0,y),直线PA1:y﹣=x,令y=0,得xM=;直线PA2:y+=x,令y=0,得xN=;|OM|•|ON|=,∵+=1,∴6﹣y02=x2,∴|OM|•|ON|=.由切割线定理得OT2=OM•ON=.∴OT=,即线段OT的长度为定值.14.已知椭圆C :+=1的两个焦点分别是F 1(﹣,0),F 2(,0),点E (,)在椭圆C 上.(Ⅰ)求椭圆C 的方程;(Ⅱ)设P 是y 轴上的一点,若椭圆C 上存在两点M,N 使=2,求以F 1P 为直径的圆面积取值范围.【解答】解:(Ⅰ)由已知,c=, ∴2a=|EF 1|+|EF 2|=+=4,∴a=2,∴b 2=a 2﹣c 2=8﹣2=6, ∴椭圆方程为+=1,(Ⅱ)设点P 的坐标为(0,t),当直线MN 的斜率不存在时,可得M,N 分别是椭圆的两端点,可得t=±,当直线MN 的斜率存在时,设直线MN 的方程为y=kx+t ,M(x 1,y 1),N (x 2,y 2), 则由=2可得x 1=﹣2x 2,①,由,消y 可得(3+4k 2)x 2+8ktx+4t 2﹣24=0,由△>0,可得64k 2t 2﹣4(3+4k 2)(4t 2﹣24)>0,整理可得t 2<8k 2+6,由韦达定理可得x 1+x 2=﹣,x 1x 2=,②,由①②,消去x 1,x 2可得k 2=,由,解得<t 2<6, 综上得≤t 2<6,又以F 1P 为直径的圆面积S=π•,∴S 的范围为[,2π).15.已知椭圆的右焦点为F ,离心率为,平行于x 轴的直线交椭圆于A,B 两点,且.(I)求椭圆C 的方程;(Ⅱ)过点F 且斜率不为零的直线l 与椭圆C 交于M ,N 两点,在x 轴上是否存在定点E ,使得是定值?若存在,请求出该点的坐标;若不存在,请说明理由. 【解答】解:(Ⅰ)由题意可得:,∵平行于x 轴的直线交椭圆于A ,B 两点,且.∴,a=,∴c=2,b 2=a 2=﹣c 2=2. ∴椭圆C 的方程为(Ⅱ)设直线l 的方程为y=k (x ﹣2), 代入椭圆C 的方程,得(3k 2+1)x 2﹣12k 2x+12k 2﹣6=0,设M(x3,y3),N(x4,y4),则,,x3x4=.根据题意,假设x轴上存在定点E(t,0),使得是为定值,=(x3﹣t,y3)•(x4﹣t,y4)=(x3﹣t)•(x4﹣t)+y3y4,=(x3﹣t)•(x4﹣t)+k2(x3﹣2)•(x4﹣2),=(k2+1)x3x4﹣(2k2+t)(x3+x4)+4k2+t2,=要使上式为定值,即与k无关,则应3t2﹣12t+10=3(t2﹣6),即t=,故当点E的坐标为(,0)时,使得为定值.16.已知椭圆C:(a>b>0)的离心率,抛物线E:的焦点恰好是椭圆C 的一个顶点.(1)求椭圆C的标准方程;(2)过点P(0,1)的动直线与椭圆C交于A,B两点,设O为坐标原点,是否存在常数λ,使得恒成立?请说明理由.【解答】解:(1)由抛物线E:的焦点(0,),椭圆的C的焦点在x轴,由题意可知:b=,椭圆的离心率e===,则a=2,∴椭圆的标准方程:;(2)当直线AB的斜率存在时,设直线AB的方程为y=kx+1,A,B的坐标分别为(x1,y1),(x2,y2).联立,整理得(4k 2+3)x 2+8kx ﹣8=0.其判别式△>0,x 1+x 2=﹣,x 1x 2=﹣.∴•+λ•=x 1x 2+y 1y 2+λ[x 1x 2+(y 1﹣1)(y 2﹣1)],=(1+λ)(1+k 2)x 1x 2+k (x 1+x 2)+1==﹣2λ﹣3,当λ=2时,﹣2λ﹣3=﹣7,即•+λ•=﹣7为定值. 当直线AB 斜率不存在时,直线AB 即为直线CD ,此时•+λ•=•+2•=﹣3﹣4=﹣7,故存在常数λ=2,使得•+λ•为定值﹣7.17.在平面直角坐标系中,点F 1、F 2分别为双曲线C :的左、右焦点,双曲线C 的离心率为2,点(1,)在双曲线C 上.不在x 轴上的动点P 与动点Q 关于原点O 对称,且四边形PF 1QF 2的周长为.(1)求动点P 的轨迹方程;(2)在动点P 的轨迹上有两个不同的点M (x 1,y 1)、N (x 2,y 2),线段MN 的中点为G,已知点(x 1,x 2)在圆x 2+y 2=2上,求|OG |•|MN|的最大值,并判断此时△OMN 的形状. 【解答】解:(1)设F 1,F 2分别为(﹣c ,0),(c ,0) 可得,b 2=c 2﹣a 2=3a 2,又点(1,)在双曲线C 上,∴,解得,c=1.连接PQ ,∵OF 1=OF 2,OP=OQ ,∴四边形PF 1QF 2的周长为平行四边形. ∴四边形PF 1+PF 2=2>2,∴动点P 的轨迹是以点F 1、F 2分别为左右焦点的椭圆(除左右顶点),∴动点P 的轨迹方程(y ≠0);(2)∵x 12+x 22=2,,∴y 12+y 22=1.∴|OG |•|MN|=•=•=.∴当3﹣2x 1x 2﹣2y 1y 2=3+2x 1x 2+2y 1y 2⇒x 1x 2+y 1y 2=0时取最值, 此时OM ⊥ON ,△OMN 为直角三角形.18.已知抛物线C:y 2=2px (p >0),其内接△ABC 中∠A=90°. (I )当点A 与原点重合时,求斜边BC 中点M 的轨迹方程;(II)当点A 的纵坐标为常数t 0(t 0∈R )时,判断BC 所在直线是否过定点?过定点求出定点坐标;不过定点,说明理由. 【解答】解:(I )设B (,y 1),C (,y 2),∵AB ⊥AC ,∴+y 1y 2=0,∴y 1y 2=﹣4p 2.∴设BC 的中点M (x ,y ),则=x ,y 1+y 2=2y ,∵y 12+y 22=(y 1+y 2)2﹣2y 1y 2, ∴px=4y 2+8p 2,∴M 的轨迹方程为:y 2=(x ﹣8p ). (II )A (,t 0),设直线BC 的方程为y=kx+b,B (,y 1),C (,y 2),∴k AB ==,k AC ==,∵AB⊥AC,∴•=﹣1.即y1y2+t(y1+y2)+t2+4p2=0.联立方程组,消去x可得y2﹣y+=0,∴y1y2=,y1+y2=,∴+t0+t2+4p2=0.解得b=﹣t﹣﹣2pk,∴直线BC的方程为:y=kx﹣t0﹣﹣2pk=k(x﹣2p﹣)﹣t,∴直线BC过定点(2p+,﹣t).19.如图,已知F1,F2分别是椭圆的左、右焦点,点P(﹣2,3)是椭圆C上一点,且PF1⊥x轴.(1)求椭圆C的方程;(2)设圆M:(x﹣m)2+y2=r2(r>0).①设圆M与线段PF2交于两点A,B,若,且AB=2,求r的值;②设m=﹣2,过点P作圆M的两条切线分别交椭圆C于G,H两点(异于点P).试问:是否存在这样的正数r,使得G,H两点恰好关于坐标原点O对称?若存在,求出r的值;若不存在,请说明理由.【解答】解:(1)因点P(﹣2,3)是椭圆C上一点,且PF1⊥x轴,所以椭圆的半焦距c=2,由,得,所以,……(2分)化简得a2﹣3a﹣4=0,解得a=4,所以b2=12,所以椭圆C的方程为.……(4分)(2)①因,所以,即,所以线段PF2与线段AB的中点重合(记为点Q),由(1)知,……(6分)因圆M与线段PF2交于两点A,B,所以,所以,解得,……(8分)所以,故.……(10分)②由G,H两点恰好关于原点对称,设G(x0,y),则H(﹣x,﹣y),不妨设x<0,因P(﹣2,3),m=﹣2,所以两条切线的斜率均存在,设过点P与圆M相切的直线斜率为k,则切线方程为y﹣3=k(x+2),即kx﹣y+2k+3=0,由该直线与圆M相切,得,即,……(12分)所以两条切线的斜率互为相反数,即kGP =﹣kHP,所以,化简得x0y=﹣6,即,代入,化简得,解得x=﹣2(舍),,所以,……(14分)所以,,所以,所以.故存在满足条件的,且.……(16分)20.己知椭圆在椭圆上,过C的焦点且与长轴垂直的弦的长度为.(1)求椭圆C的标准方程;.(2)过点A(﹣2,0)作两条相交直线l1,l2,l1与椭圆交于P,Q两点(点P在点Q的上方),l2与椭圆交于M,N两点(点M在点N的上方),若直线l1的斜率为,,求直线l2的斜率.【解答】解:(1)由已知得:,…………………………(2分)解得a=6,b=1.故椭圆C的方程为.………………………(4分)(2)由题设可知:l1的直线方程为x=﹣7y﹣2.联立方程组,整理得:85y2+28y﹣32=0..…………………………(6分)∴.…………………………………………(7分)∵,∴,即.…………………………………………(8分)设l2的直线方程为x=my﹣2(m≠0).将x=my﹣2代入+y2=1得(m2+36)y2﹣4my﹣32=0.设M(x1,y1),N(x2,y2),则.……………………………………(10分)又∵,∴.解得m2=4,∴m=±2.故直线l2的斜率为.………………………(12分)21.在平面直角坐标系xOy中,抛物线C:x2=2py(p>0),直线y=x与C交于O,T两点,|OT|=4.(Ⅰ)求C的方程;(Ⅱ)斜率为k(0)的直线l过线段OT的中点,与C交于A,B两点,直线OA,OB分别交直线y=x﹣2于M,N两点,求|MN|的最大值.【解答】解:(Ⅰ)由方程组得x2﹣2px=0,解得x1=0,x2=2p,所以O(0,0),T(2p,2p),则|OT|=2p,又|OT|=2p=4,所以p=2.故C的方程为x2=4y.(Ⅱ)由(Ⅰ)O(0,0),T(4,4),则线段OT的中点坐标(2,2).故直线l的方程为y﹣2=k(x﹣2).由方程组得x2﹣4kx+8k﹣8=0.设A(x1,x12),B(x2,x22),则x1+x2=4k,x1x2=8k﹣8,直线OA的方程y=x,代入y=x﹣2,解得x=,所以M(,),同理得N(,),所以|MN|=•|﹣|=||=×|=4•因为0<k≤,所以8<|MN|≤4.当k=时,|MN|取得最大值4.22.已知椭圆C的中心在原点,焦点在x轴上,焦距为4,离心率为.(1)求椭圆C的方程;(2)已知直线l经过点P(0,﹣1),且与椭圆交于A,B两点,若,求直线l的方程.【解答】(本小题满分12分)解:(1)依题意可设椭圆方程为(a>b>0),由2c=4,c=2,e==,则a=2,b2=a2﹣c2=4,∴椭圆C的方程为:.(2)由题意可知直线l的斜率存在,设l的方程为:y=kx﹣1,A(x1,y1),B(x2,y2),由,整理得(2k2+1)x2﹣4kx﹣6=0,且△>0,则x1+x2=,x1x2=﹣,由,即(﹣x1,﹣1﹣y1)=2(x2,y2+1),x1=﹣2x2,,消去x2并解关于k的方程得:k=±,∴l的方程为:y=±x﹣1.。
2021新高考——圆锥曲线大题(最值范围问题)解析版
圆锥曲线综合问题第一讲 最值、范围问题1.圆锥曲线中常见的最值问题及其解法(1)两类最值问题①涉及距离、面积的最值以及与之相关的一些问题;①求直线或圆锥曲线中几何元素的最值以及这些元素存在最值时确定与之有关的一些问题.(2)两种常见解法①几何法,若题目的条件和结论能明显体现几何特征及意义,则考虑利用图形性质来解决;①代数法,若题目的条件和结论能体现一种明确的函数关系,则可先建立起目标函数,再求这个函数的最值,最值常用基本不等式法、配方法及导数法求解.【例1】已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的两个焦点与短轴的一个端点是等边三角形的三个顶点,且长轴长为4.(1)求椭圆E 的方程;(2)若A 是椭圆E 的左顶点,经过左焦点F 的直线l 与椭圆E 交于C ,D 两点,求△OAD 与△OAC 的面积之差的绝对值的最大值.(O 为坐标原点)解析:(1)由题意得2a =4,即a =2,2c =a ,即c =1,又b 2=a 2-c 2,∴b 2=3.故椭圆E 的方程为x 24+y 23=1. (2)设△OAD 的面积为S 1,△OAC 的面积为S 2,直线l 的方程为x =ky -1,C (x 1,y 1),D (x 2,y 2),由⎩⎪⎨⎪⎧ x =ky -1,x 24+y 23=1,整理得(3k 2+4)y 2-6ky -9=0, 由根与系数的关系可知y 1+y 2=6k 3k 2+4,∴|S 1-S 2|=12×2×||y 1|-|y 2||=|y 1+y 2|=6|k |3k 2+4. 当k =0时,|S 1-S 2|=0,当k ≠0时,|S 1-S 2|=63|k |+4|k |≤62 3|k |·4|k |=32,当且仅当3|k |=4|k |,即k =±233时等号成立.∴|S 1-S 2|的最大值为32.【变式训练】 1.已知椭圆x 2a 2+y 2b2=1(a >b >0),F 1,F 2为它的左、右焦点,P 为椭圆上一点,已知∠F 1PF 2=60°,S △F 1PF 2=3,且椭圆的离心率为12. (1)求椭圆方程;(2)已知T (-4,0),过T 的直线与椭圆交于M ,N 两点,求△MNF 1面积的最大值.解 (1)由已知,得|PF 1|+|PF 2|=2a ,①|PF 1|2+|PF 2|2-2|PF 1||PF 2|cos 60°=4c 2,即|PF 1|2+|PF 2|2-|PF 1||PF 2|=4c 2,①12|PF 1||PF 2|sin 60°=3,即|PF 1||PF 2|=4,① 联立①①①解得a 2-c 2=3.又c a =12,①c 2=1,a 2=4, b 2=a 2-c 2=3,椭圆方程为x 24+y 23=1. (2)根据题意可知直线MN 的斜率存在,且不为0.设M (x 1,y 1),N (x 2,y 2),直线MN 的方程为x =my -4,代入椭圆方程,整理得(3m 2+4)y 2-24my +36=0,则Δ=(24m )2-4×36×(3m 2+4)>0,所以m 2>4.y 1+y 2=24m 3m 2+4,y 1y 2=363m 2+4, 则①MNF 1的面积S ①MNF 1=|S ①NTF 1-S ①MTF 1|=12|TF 1|·|y 1-y 2|=32(y 1+y 2)2-4y 1y 2 =32431444324222+-⎪⎭⎫ ⎝⎛+m m m =18m 2-44+3m 2 =6×1m 2-4+163m 2-4=6×1m 2-4+163m 2-4≤62163=334. 当且仅当m 2-4=163m 2-4,即m 2=283时(此时适合Δ>0的条件)取得等号. 故①MNF 1面积的最大值为334.2.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,P 在椭圆上(异于椭圆C 的左、右顶点),过右焦点F 2作①F 1PF 2的外角平分线L 的垂线F 2Q ,交L 于点Q ,且|OQ |=2(O 为坐标原点),椭圆的四个顶点围成的平行四边形的面积为43.(1)求椭圆C 的方程;(2)若直线l :x =my +4(m ①R )与椭圆C 交于A ,B 两点,点A 关于x 轴的对称点为A ′,直线A ′B 交x 轴于点D ,求当①ADB 的面积最大时,直线l 的方程.解 (1)由椭圆的四个顶点围成的平行四边形的面积为4×12ab =43,得ab =23. 延长F 2Q 交直线F 1P 于点R ,因为F 2Q 为①F 1PF 2的外角平分线的垂线,所以|PF 2|=|PR |,Q 为F 2R 的中点,所以|OQ |=|F 1R |2=|F 1P |+|PR |2=|F 1P |+|PF 2|2=a , 所以a =2,b =3,所以椭圆C 的方程为x 24+y 23=1. (2)联立⎩⎪⎨⎪⎧ x =my +4,x 24+y 23=1,消去x ,得(3m 2+4)y 2+24my +36=0, 所以Δ=(24m )2-4×36×(3m 2+4)=144(m 2-4)>0,即m 2>4.设A (x 1,y 1),B (x 2,y 2),则A ′(x 1,-y 1),由根与系数的关系,得y 1+y 2=-24m 3m 2+4,y 1y 2=363m 2+4, 直线A ′B 的斜率k =y 2-(-y 1)x 2-x 1=y 2+y 1x 2-x 1, 所以直线A ′B 的方程为y +y 1=y 1+y 2x 2-x 1(x -x 1), 令y =0,得x D =x 1y 2+x 2y 1y 1+y 2=(my 1+4)y 2+y 1(my 2+4)y 1+y 2=2my 1y 2y 1+y 2+4, 故x D =1,所以点D 到直线l 的距离d =31+m 2, 所以S ①ADB =12|AB |·d =32(y 1+y 2)2-4y 1y 2=18·m 2-43m 2+4. 令t =m 2-4(t >0),则S ①ADB =18·t 3t 2+16=183t +16t≤1823×16=334, 当且仅当3t =16t ,即t 2=163=m 2-4,即m 2=283>4,m =±2213时,①ADB 的面积最大, 所以直线l 的方程为3x +221y -12=0或3x -221y -12=0.【例2】在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点P (2,1),且离心率e =32.(1)求椭圆C 的方程;(2)直线l 的斜率为12,直线l 与椭圆C 交于A ,B 两点,求△P AB 的面积的最大值. 解 (1)因为e 2=c 2a 2=a 2-b 2a 2=34,所以a 2=4b 2. 又椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点P (2,1), 所以4a 2+1b 2=1.所以a 2=8,b 2=2. 故所求椭圆方程为x 28+y 22=1. (2)设l 的方程为y =12x +m ,点A (x 1,y 1),B (x 2,y 2), 联立⎩⎨⎧y =12x +m ,x 28+y 22=1消去y 整理得x 2+2mx +2m 2-4=0. 所以x 1+x 2=-2m ,x 1x 2=2m 2-4.又直线l 与椭圆相交,所以Δ=4m 2-8m 2+16>0,解得|m |<2.则|AB |=1+14×(x 1+x 2)2-4x 1x 2=5(4-m 2). 点P 到直线l 的距离d =|m |1+14=2|m |5. 所以S ①P AB =12d |AB |=12×2|m |5×5(4-m 2)=m 2(4-m 2)≤m 2+4-m 22=2. 当且仅当m 2=2,即m =±2时,①P AB 的面积取得最大值为2.【变式训练】1.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)与双曲线x 23-y 2=1的离心率互为倒数,且直线x -y -2=0经过椭圆的右顶点.(1)求椭圆C 的标准方程;(2)设不过原点O 的直线与椭圆C 交于M ,N 两点,且直线OM ,MN ,ON 的斜率依次成等比数列,求△OMN 面积的取值范围.解:(1)①双曲线的离心率为233, ①椭圆的离心率e =c a =32. 又①直线x -y -2=0经过椭圆的右顶点,①右顶点为点(2,0),即a =2,c =3,b =1,①椭圆方程为x 24+y 2=1. (2)由题意可设直线的方程为y =kx +m (k ≠0,m ≠0),M (x 1,y 1),N (x 2,y 2).联立⎩⎪⎨⎪⎧ y =kx +m ,x 24+y 2=1, 消去y ,并整理得(1+4k 2)x 2+8kmx +4(m 2-1)=0,则x 1+x 2=-8km 1+4k 2,x 1x 2=4(m 2-1)1+4k 2, 于是y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+km (x 1+x 2)+m 2.又直线OM ,MN ,ON 的斜率依次成等比数列,故y 1x 1·y 2x 2=k 2x 1x 2+km (x 1+x 2)+m 2x 1x 2=k 2, 则-8k 2m 21+4k 2+m 2=0.由m ≠0得k 2=14,解得k =±12. 又由Δ=64k 2m 2-16(1+4k 2)(m 2-1)=16(4k 2-m 2+1)>0,得0<m 2<2,显然m 2≠1(否则x 1x 2=0,x 1,x 2中至少有一个为0,直线OM ,ON 中至少有一个斜率不存在,与已知矛盾).设原点O 到直线的距离为d ,则S ①OMN =12|MN |d =12·1+k 2·|x 1-x 2|·|m |1+k 2=12|m |(x 1+x 2)2-4x 1x 2=-(m 2-1)2+1. 故由m 的取值范围可得①OMN 面积的取值范围为(0,1).2.在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,且点⎪⎭⎫ ⎝⎛213,在椭圆C 上. (1)求椭圆C 的方程;(2)设椭圆E :x 24a 2+y 24b2=1,P 为椭圆C 上任意一点,过点P 的直线y =kx +m 交椭圆E 于A ,B 两点,射线PO 交椭圆E 于点Q .①求|OQ ||OP |的值; ②求△ABQ 面积的最大值.解 (1)由题意知3a 2+14b 2=1.又a 2-b 2a =32, 解得a 2=4,b 2=1.所以椭圆C 的方程为x 24+y 2=1. (2)由(1)知椭圆E 的方程为x 216+y 24=1. ①设P (x 0,y 0),|OQ ||OP |=λ(λ>0),由题意知Q (-λx 0,-λy 0). 因为x 204+y 20=1,又(-λx 0)216+(-λy 0)24=1,即λ24⎪⎪⎭⎫ ⎝⎛+20204y x =1, 所以λ=2,即|OQ ||OP |=2 ①设A (x 1,y 1),B (x 2,y 2).将y =kx +m 代入椭圆E 的方程,可得(1+4k 2)x 2+8kmx +4m 2-16=0,由Δ>0,可得m 2<4+16k 2,(*)则有x 1+x 2=-8km 1+4k 2,x 1x 2=4m 2-161+4k 2.所以|x 1-x 2|=416k 2+4-m 21+4k 2. 因为直线y =kx +m 与y 轴交点的坐标为(0,m ),所以①OAB 的面积S =12|m ||x 1-x 2|=216k 2+4-m 2|m |1+4k 2=2(16k 2+4-m 2)m 21+4k 2=2 222241414k m k m +⎪⎪⎭⎫ ⎝⎛+-. 设m 21+4k 2=t ,将y =kx +m 代入椭圆C 的方程, 可得(1+4k 2)x 2+8kmx +4m 2-4=0,由Δ≥0,可得m 2≤1+4k 2.(**)由(*)和(**)可知0<t ≤1,因此S =2(4-t )t =2-t 2+4t ,故0<S ≤23,当且仅当t =1,即m 2=1+4k 2时取得最大值23.由①知,①ABQ 的面积为3S ,所以①ABQ 面积的最大值为63.【例3】已知动圆E 经过点F (1,0),且和直线l :x =-1相切.(1)求该动圆圆心E 的轨迹G 的方程;(2)已知点A (3,0),若斜率为1的直线l ′与线段OA 相交(不经过坐标原点O 和点A ),且与曲线G 交于B ,C 两点,求△ABC 面积的最大值.解 (1)由题意可知点E 到点F 的距离等于点E 到直线l 的距离,①动点E 的轨迹是以F (1,0)为焦点,直线x =-1为准线的抛物线,故轨迹G 的方程是y 2=4x .(2)设直线l ′的方程为y =x +m ,其中-3<m <0,C (x 1,y 1),B (x 2,y 2),联立得方程组⎩⎪⎨⎪⎧y =x +m ,y 2=4x 消去y ,得x 2+(2m -4)x +m 2=0,Δ=(2m -4)2-4m 2=16(1-m )>0恒成立.由根与系数的关系得x 1+x 2=4-2m ,x 1·x 2=m 2,①|CB |=42(1-m ),点A 到直线l ′的距离d =3+m 2, ①S ①ABC =12×42(1-m )×3+m 2=21-m ×(3+m ), 令1-m =t ,t ①(1,2),则m =1-t 2,①S ①ABC =2t (4-t 2)=8t -2t 3,令f (t )=8t -2t 3,①f ′(t )=8-6t 2,令f ′(t )=0,得t =23(负值舍去). 易知y =f (t )在⎪⎪⎭⎫ ⎝⎛32,1上单调递增,在⎪⎪⎭⎫ ⎝⎛2,32上单调递减. ①y =f (t )在t =23,即m =-13时取得最大值为3239. ①①ABC 面积的最大值为3239.【变式训练】1.如图,已知抛物线x 2=y ,点A ⎪⎭⎫ ⎝⎛-41,21,B ⎪⎭⎫ ⎝⎛4923,,抛物线上的点P (x ,y )⎪⎭⎫ ⎝⎛<<-2321x .过点B 作直线AP 的垂线,垂足为Q .(1)求直线AP 斜率的取值范围;(2)求|P A |·|PQ |的最大值.解析 (1)设直线AP 的斜率为k ,则k =x 2-14x +12=x -12. 因为-12<x <32,所以直线AP 斜率的取值范围是(-1,1). (2)联立直线AP 与BQ 的方程可得⎩⎨⎧ kx -y +12k +14=0,x +ky -94k -32=0,解得点Q 的横坐标是x Q =-k 2+4k +32(k 2+1). 因为|P A |=1+k 2⎪⎭⎫ ⎝⎛+21x =1+k 2(k +1), |PQ |=1+k 2(x Q -x )=-(k -1)(k +1)2k 2+1, 所以|P A |·|PQ |=-(k -1)(k +1)3.令f (k )=-(k -1)(k +1)3=-k 4-2k 3+2k +1,因为f ′(k )=-(4k -2)(k +1)2,所以f (k )在区间⎪⎭⎫ ⎝⎛-21,1上单调递增,在区间⎪⎭⎫ ⎝⎛1,21上单调递减. 因此当k =12时,|P A |·|PQ |取得最大值2716.2.设抛物线y 2=4x 的焦点为F ,过点12,0的动直线交抛物线于不同两点P ,Q ,线段PQ 中点为M ,射线MF 与抛物线交于点A .(1)求点M 的轨迹方程;(2)求①APQ 的面积的最小值.解:(1)设直线PQ 方程为x =ty +12,代入y 2=4x ,得y 2-4ty -2=0. 设P (x 1,y 1),Q (x 2,y 2),则y 1+y 2=4t ,y 1y 2=-2,x 1+x 2=t (y 1+y 2)+1=4t 2+1,所以M 2t 2+12,2t . 设M (x ,y ),由⎩⎪⎨⎪⎧ x =2t 2+12,y =2t消去t ,得中点M 的轨迹方程为y 2=2x -1. (2)设F A →=λFM →(λ<0),A (x 0,y 0),又F (1,0),M 2t 2+12,2t , 则(x 0-1,y 0)=λ⎪⎭⎫ ⎝⎛-t t 2,2122,即⎩⎪⎨⎪⎧ x 0=2λt 2-12λ+1,y 0=2λt .由点A 在抛物线y 2=4x 上,得4λ2t 2=8λt 2-2λ+4,化简得(λ2-2λ)t 2=-12λ+1. 又λ<0,所以t 2=-12λ. 因为点A 到直线PQ 的距离d =|4λt 2-λ+2-4λt 2-1|21+t 2=|λ-1|21+t 2, |PQ |=1+t 2|y 1-y 2|=2(1+t 2)(4t 2+2).所以①APQ 的面积S =12·|PQ |·d =222t 2+1|λ-1|=22 (λ-1)3λ.设f (λ)=(λ-1)3λ,λ<0,则f ′(λ)=(λ-1)2(2λ+1)λ2, 由f ′(λ)>0,得λ>-12; 由f ′(λ)<0,得λ<-12, 所以f (λ)在-∞,-12上是减函数,在-12,0上是增函数,因此,当λ=-12时,f (λ)取到最小值. 所以①APQ 的面积的最小值是364.2.解决圆锥曲线中范围问题的方法圆锥曲线的有关几何量的取值范围问题一直是高考的热点,解决这类问题的基本途径:先要恰当地引入变量(如点的坐标、角、斜率等),建立目标函数,然后利用函数的有关知识和方法进行求解.一般有五种思考方法:(1)利用判别式来构造不等式,从而确定参数的取值范围;(2)利用已知参数的取值范围,求新参数的取值范围,解决这类问题的关键是在两个参数之间建立起相应的联系;(3)利用隐含的不等关系建立不等式,从而求参数的取值范围;(4)利用已知不等关系构造不等式,从而求参数的取值范围;(5)利用函数的值域,确定参数的取值范围.【例3】已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,短轴长为2. (1)求椭圆C 的标准方程;(2)设直线l :y =kx +m 与椭圆C 交于M ,N 两点,O 为坐标原点,若k OM ·k ON =54,求原点O 到直线l 的距离的取值范围.解 (1)由题知e =c a =32,2b =2,又a 2=b 2+c 2,①b =1,a =2, ①椭圆C 的标准方程为x 24+y 2=1. (2)设M (x 1,y 1),N (x 2,y 2),联立方程⎩⎪⎨⎪⎧y =kx +m ,x 24+y 2=1,得(4k 2+1)x 2+8kmx +4m 2-4=0,依题意,Δ=(8km )2-4(4k 2+1)(4m 2-4)>0,化简得m 2<4k 2+1,①x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-44k 2+1, y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+km (x 1+x 2)+m 2.若k OM ·k ON =54,则y 1y 2x 1x 2=54,即4y 1y 2=5x 1x 2, ①(4k 2-5)x 1x 2+4km (x 1+x 2)+4m 2=0,①(4k 2-5)·4(m 2-1)4k 2+1+4km ·⎪⎭⎫ ⎝⎛+-1482k km +4m 2=0, 即(4k 2-5)(m 2-1)-8k 2m 2+m 2(4k 2+1)=0,化简得m 2+k 2=54,① 由①①得0≤m 2<65,120<k 2≤54. ①原点O 到直线l 的距离d =|m |1+k 2,①d 2=m 21+k 2=54-k 21+k 2=-1+94(1+k 2), 又120<k 2≤54,①0≤d 2<87,①原点O 到直线l 的距离的取值范围是⎪⎪⎭⎫⎢⎢⎣⎡71420,. 【变式训练】1.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (1,0),且点P ⎪⎭⎫ ⎝⎛231,在椭圆C 上,O 为坐标原点. (1)求椭圆C 的标准方程;(2)设过定点T (0,2)的直线l 与椭圆C 交于不同的两点A ,B ,且∠AOB 为锐角,求直线l 的斜率k 的取值范围.解析:(1)由题意,得c =1, 所以a 2=b 2+1.因为点P ⎪⎭⎫ ⎝⎛231,在椭圆C 上, 所以1a 2+94b 2=1,所以a 2=4,b 2=3. 则椭圆C 的标准方程为x 24+y 23=1. (2)设直线l 的方程为y =kx +2,点A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x 24+y 23=1,y =kx +2得(4k 2+3)x 2+16kx +4=0. 因为Δ=48(4k 2-1)>0,所以k 2>14, 由根与系数的关系,得x 1+x 2=-16k 4k 2+3,x 1x 2=44k 2+3. 因为∠AOB 为锐角,所以OA →·OB →>0,即x 1x 2+y 1y 2>0.所以x 1x 2+(kx 1+2)(kx 2+2)>0,即(1+k 2)x 1x 2+2k (x 1+x 2)+4>0,所以(1+k 2)·44k 2+3+2k ·-16k 4k 2+3+4>0, 即-12k 2+164k 2+3>0, 所以k 2<43. 综上可知14<k 2<43, 解得-233<k <-12或12<k <233. 所以直线l 的斜率k 的取值范围为⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛--332,2121,332 .2.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的两焦点分别是F 1(-2,0),F 2(2,0),点E ⎪⎪⎭⎫ ⎝⎛2332,在椭圆C 上. (1)求椭圆C 的方程;(2)设P 是y 轴上的一点,若椭圆C 上存在两点M ,N 使得MP →=2PN →,求以F 1P 为直径的圆的面积的取值范围.解:(1)由题意知,半焦距c =2,2a =|EF 1|+|EF 2|=8+92+322=42, 所以a =22,所以b 2=a 2-c 2=8-2=6, 所以椭圆C 的方程是x 28+y 26=1. (2)设点P 的坐标为(0,t ),当直线MN 的斜率不存在时,可得M ,N 分是是短轴的两端点,得到t =±63. 当直线MN 的斜率存在时,设直线MN 的方程为y =kx +t ,M (x 1,y 1),N (x 2,y 2),则由MP →=2PN →得x 1=-2x 2, ①联立,得⎩⎪⎨⎪⎧y =kx +t ,x 28+y 26=1,整理得(3+4k 4)x 2+8ktx +4t 2-24=0, 由Δ>0得64k 2t 2-4(3+4k 2)(4t 2-24)>0,整理得t 2<8k 2+6.由根与系数的关系得x 1+x 2=-8kt 3+4k 2,x 1x 2=4t 2-243+4k 2,② 由①②,消去x 1,x 2得k 2=-t 2+612t 2-8,由⎩⎪⎨⎪⎧ -t 2+612t 2-8≥0,t 2<8·-t 2+612t 2-8+6,得23<t 2<6. 综上23≤t 2<6. 因为以F 1P 为直径的圆的面积S =π. ·2+t 24,所以S 的取值范围是⎪⎭⎫⎢⎣⎡ππ2,32.3.已知椭圆C 1:y 2a 2+x 2b 2=1(a >b >0)与抛物线C 2:x 2=2py (p >0)有一个公共焦点,抛物线C 2的准线l 与椭圆C 1有一交点坐标是(2,-2).(1)求椭圆C 1与抛物线C 2的方程;(2)若点P 是直线l 上的动点,过点P 作抛物线的两条切线,切点分别为A ,B ,直线AB 与椭圆C 1分别交于点E ,F ,求OE →·OF →的取值范围.[解析] (1)抛物线C 2的准线方程是y =-2,所以-p 2=-2,即p =4,所以抛物线C 2的方程为x 2=8y . 椭圆C 1:y 2a 2+x 2b 2=1(a >b >0)的焦点坐标分别是(0,-2),(0,2),所以c =2. 2a =2+0+2+(2+2)2=42,解得a =22,则b =2,所以椭圆C 1的方程为y 28+x 24=1. (2)设点P (t ,-2),A (x 1,y 1),B (x 2,y 2),E (x 3,y 3),F (x 4,y 4),抛物线方程可化为y =18x 2,求导得y ′=14x , 所以AP 的方程为y -y 1=14x 1(x -x 1), 将P (t ,-2)代入,得-2-y 1=14x 1t -2y 1,即y 1=14tx 1+2. 同理,BP 的方程为y 2=14tx 2+2,所以直线AB 的方程为y =14tx +2. 由⎩⎨⎧ y =14tx +2,y 28+x 24=1消去y ,整理得(t 2+32)x 2+16tx -64=0,则Δ=256t 2+256(t 2+32)>0,且x 3+x 4=-16t t 2+32,x 3x 4=-64t 2+32所以OE →·OF →=x 3x 4+y 3y 4=(1+t 216)x 3x 4+t 2(x 3+x 4)+4=-8t 2+64t 2+32=320t 2+32-8. 因为0<320t 2+32≤10,所以OE →·OF →的取值范围是(-8,2].4.已知椭圆C :x 23+y 22=1,直线l :y =kx +m (m ≠0),设直线l 与椭圆C 交于A ,B 两点.(1)若|m |>3,求实数k 的取值范围;(2)若直线OA ,AB ,OB 的斜率成等比数列(其中O 为坐标原点),求△OAB 的面积的取值范围.[解](1)联立方程x 23+y 22=1和y =kx +m , 得(2+3k 2)x 2+6kmx +3m 2-6=0,所以Δ=(6km )2-4(2+3k 2)(3m 2-6)>0,所以m 2<2+3k 2,所以2+3k 2>3,即k 2>13,解得k >33或k <-33. 所以实数k 的取值范围为⎪⎪⎭⎫ ⎝⎛-∞-33,∪⎪⎪⎭⎫ ⎝⎛∞+,33. (2)设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-6km 2+3k 2,x 1x 2=3m 2-62+3k 2. 设直线OA ,OB 的斜率分别为k 1,k 2,因为直线OA ,AB ,OB 的斜率成等比数列,所以k 1k 2=y 1y 2x 1x 2=k 2,即(kx 1+m )(kx 2+m )x 1x 2=k 2(m ≠0), 化简得2+3k 2=6k 2,即k 2=23. 因为|AB |=1+k 2|x 1-x 2|=⎪⎭⎫ ⎝⎛-223635m , 点O 到直线l 的距离h =|m |1+k 2=35|m |, 所以S △OAB =12|AB |·h =66·⎪⎭⎫ ⎝⎛-2223623m m ≤66×2622362322=⎪⎭⎫ ⎝⎛-+m m ,当m =±2时,直线OA 或OB 的斜率不存在,等号取不到,所以△OAB 的面积的取值范围为⎪⎪⎭⎫ ⎝⎛260,.【课后巩固】1.已知点P 是圆O :x 2+y 2=1上任意一点,过点P 作PQ ⊥y 轴于点Q ,延长QP 到点M ,使QP →=PM →.(1)求点M 的轨迹E 的方程;(2)过点C (m,0)作圆O 的切线l ,交(1)中的曲线E 于A ,B 两点,求△AOB 面积的最大值.解 (1)设M (x ,y ),①QP →=PM →,①P 为QM 的中点,又有PQ ①y 轴,①P ⎪⎭⎫ ⎝⎛y x ,2, ①点P 是圆O :x 2+y 2=1上的点,①22⎪⎭⎫ ⎝⎛x +y 2=1, 即点M 的轨迹E 的方程为x 24+y 2=1. (2)由题意可知直线l 与y 轴不垂直,故可设l :x =ty +m ,t ①R ,A (x 1,y 1),B (x 2,y 2),①l 与圆O :x 2+y 2=1相切, ①|m |t 2+1=1,即m 2=t 2+1,① 由⎩⎪⎨⎪⎧x 2+4y 2=4,x =ty +m 消去x ,并整理得(t 2+4)y 2+2mty +m 2-4=0,其中Δ=4m 2t 2-4(t 2+4)(m 2-4)=48>0,①y 1+y 2=-2mt t 2+4,y 1y 2=m 2-4t 2+4.① ①|AB |=(x 1-x 2)2+(y 1-y 2)2=t 2+1(y 1+y 2)2-4y 1y 2,将①①代入上式得|AB |=t 2+1 4m 2t 2(t 2+4)2-4(m 2-4)t 2+4=43|m |m 2+3,|m |≥1, ①S ①AOB =12|AB |·1=12·43|m |m 2+3 =23|m |+3|m |≤2323=1, 当且仅当|m |=3|m |,即m =±3时,等号成立, ①①AOB 面积的最大值为1.2.已知椭圆C 的方程为x 24+y 22=1,A 是椭圆上的一点,且A 在第一象限内,过A 且斜率等于-1的直线与椭圆C 交于另一点B ,点A 关于原点的对称点为D .(1)证明:直线BD 的斜率为定值;(2)求△ABD 面积的最大值.【解】 (1)证明:设D (x 1,y 1),B (x 2,y 2),则A (-x 1,-y 1),直线BD 的斜率k =y 2-y 1x 2-x 1, 由⎩⎨⎧x 214+y 212=1,x 224+y 222=1,两式相减得y 2-y 1x 2-x 1=-12×x 1+x 2y 1+y 2, 因为k AB =y 1+y 2x 1+x 2=-1,所以k =y 2-y 1x 2-x 1=12,故直线BD 的斜率为定值12. (2)连接OB ,因为A ,D 关于原点对称,所以S △ABD =2S △OBD ,由(1)可知BD 的斜率k =12,设BD 的方程为y =12x +t , 因为D 在第三象限,所以-2<t <1且t ≠0,O 到BD 的距离d =|t |1+14=2|t |5, 由⎩⎨⎧y =12x +t ,x 24+y 22=1,整理得3x 2+4tx +4t 2-8=0, 所以x 1+x 2=-4t 3,x 1x 2=4(t 2-2)3, 所以S △ABD =2S △OBD =2×12×|BD |×d =52(x 1+x 2)2-4x 1x 2·2|t |5=|t|·(x1+x2)2-4x1x2=|t|·96-32t23=423·t2(3-t2)≤2 2.所以当且仅当t=-62时,S△ABD取得最大值2 2.3.如图,已知抛物线C 1:x 2=4y 与椭圆C 2:x 2a 2+y 2b 2=1(a >b >0)交于点A ,B ,且抛物线C 1在点A 处的切线l 1与椭圆C 2在点A 处的切线l 2互相垂直.(1)求椭圆C 2的离心率;(2)设l 1与C 2交于点P ,l 2与C 1交于点Q ,求△APQ 面积的最小值.解:(1)设点A (x 0,y 0),B (-x 0,y 0),其中x 0>0,y 0>0,则抛物线C 1在点A 处的切线方程为l 1:x 0x =2(y 0+y ),椭圆C 2在点A 处的切线方程为l 2:x 0x a 2+y 0y b2=1. 由题意可知,l 1⊥l 2,则有x 02·⎪⎪⎭⎫ ⎝⎛-0202y a x b =-1, 且x 20=4y 0,所以a 2=2b 2,从而椭圆C 2的离心率e =c a =1-b 2a 2=22. (2)由椭圆C 2的离心率为22,可设椭圆方程为x 22b 2+y 2b2=1, 设A (2t ,t 2),l 1:y =tx -t 2,联立⎩⎪⎨⎪⎧y =tx -t 2,x 2+2y 2=2b 2,得(1+2t 2)x 2-4t 3x +2t 4-2b 2=0, 所以|AP |=1+t 2·|x P -x A |=t 2+1t tt 22122++, 设l 2:y =-1tx +t 2+2,同理可得|AQ |=1+1t 2·|x Q -x A |=1+1t 2·t t t 242++, 所以S △APQ =12|AP ||AQ |=221⎪⎭⎫ ⎝⎛+t t ·4t +4t 31+2t 2=8(t 2+1)3(1+2t 2)t. 令f (t )=(t 2+1)3(1+2t 2)t ,t >0,则f ′(t )=(t 2+1)2(2t 2-1)(3t 2+1)(1+2t 2)2t 2.令f ′(t )=0,得t =22,所以函数f (t )在⎪⎪⎭⎫ ⎝⎛220,上单调递减, 在⎪⎪⎭⎫ ⎝⎛∞+,22上单调递增.所以f (t )≥f ⎪⎪⎭⎫ ⎝⎛22=2782, 所以S ①APQ ≥2722. 故①APQ 面积的最小值为2722. 4.已知抛物线E :y 2=2px (p >0)的焦点为F ,过点F 且倾斜角为π4的直线l 被E 截得的线段长为8. (1)求抛物线E 的方程;(2)已知点C 是抛物线上的动点,以C 为圆心的圆过点F ,且圆C 与直线x =-12相交于A ,B 两点,求|F A |·|FB |的取值范围.解析:(1)由题意,直线l 的方程为y =x -p 2. 联立⎩⎪⎨⎪⎧y =x -p 2,y 2=2px ,消去y 整理得x 2-3px +p 24=0. 设直线l 与抛物线E 的交点的横坐标分别为x 1,x 2,则x 1+x 2=3p ,故直线l 被抛物线E 截得的线段长为x 1+x 2+p =4p =8,得p =2,∴抛物线E 的方程为y 2=4x .(2)由(1)知,F (1,0),设C (x 0,y 0),则圆C 的方程是(x -x 0)2+(y -y 0)2=(x 0-1)2+y 20.令x =-12,得y 2-2y 0y +3x 0-34=0. 又∵y 20=4x 0,∴Δ=4y 20-12x 0+3=y 20+3>0恒成立.设A ⎪⎭⎫ ⎝⎛-3,21y ,B ⎪⎭⎫ ⎝⎛-4,21y ,则y 3+y 4=2y 0,y 3y 4=3x 0-34. ∴|F A |·|FB |= y 23+94· y 24+94= (y 3y 4)2+94(y 23+y 24)+8116= 1681433244943302020+⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛-x y x =9x 20+18x 0+9=3|x 0+1|.∵x 0≥0,∴|F A |·|FB |∈[3,+∞).5.设圆x 2+y 2+2x -15=0的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过点B 作AC 的平行线交AD 于点E .(1)证明EB EA +为定值,并写出点E 的轨迹方程;(2)设点E 的轨迹方程为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围。
重难点专题 圆锥曲线离心率压轴题(含二级结论)十九大题型汇总(学生版)
重难点专题 圆锥曲线离心率压轴题(含二级结论)十九大题型汇总题型1直接型题型2二级结论之通径型题型3双曲线渐近线相关题型4坐标法题型5二级结论之焦点弦定比分点题型6二级结论之焦点已知底角题型7焦点三角形已知顶角型题型8焦点三角形双余弦定理题型9利用图形求离心率题型10利用椭圆双曲线的对称性求离心率题型11点差法题型12二级结论之中点弦问题题型13角平分线相关题型14圆锥曲线与圆相关题型15内切圆相关题型16与立体几何相关题型17二级结论之切线方程题型18正切公式的运用题型19圆锥曲与内心结合题型1直接型椭圆与双曲线的离心率公式为:e =ca,注意椭圆的离心率范围(0,1),双曲线的离心率范围(1,+♾)1(2021·江西南昌·统考模拟预测)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 2的直线l 交C 的右支于A ,B 两点,且AB ⋅AF 1 =0,12|AB |=5|AF 1|,则C 的离心率为1(2021·全国·高三开学考试)设F 1,F 2分别是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,过点F 1的直线交椭圆E 于A ,B 两点,|AF 1|=3|BF 1|,若cos ∠AF 2B =35,则椭圆E 的离心率为.2(2021·河北秦皇岛·统考二模)椭圆C :x 2a 2+y 2b2=1(a >b >0)的左右焦点分别为F 1,F 2,过点F 1的直线l 交椭圆C 于A ,B 两点,已知AF 2 +F 1F 2 ⋅AF 1 =0,AF 1 =43F 1B,则椭圆C 的离心率为()A.57B.22C.53D.133(2023·江西九江·二模)青花瓷又称白地青花瓷,常简称青花,中华陶瓷烧制工艺的珍品,是中国瓷器的主流品种之一,属釉下彩瓷.如图为青花瓷大盘,盘子的边缘有一定的宽度且与桌面水平,可以近似看成由大小两个椭圆围成.经测量发现两椭圆的长轴长之比与短轴长之比相等.现不慎掉落一根质地均匀的长筷子在盘面上,恰巧与小椭圆相切,设切点为P ,盘子的中心为O ,筷子与大椭圆的两交点为A 、B ,点A 关于O 的对称点为C .给出下列四个命题:①两椭圆的焦距长相等;②两椭圆的离心率相等;③PA =PB ;④BC 与小椭圆相切.其中正确的个数是()A.1B.2C.3D.44(22·23下·恩施·模拟预测)已知F 1,F 2分别为双曲线C :x 24-y 2b2=1b >0 的左右焦点,且F 1到渐近线的距离为1,过F 2的直线l 与C 的左、右两支曲线分别交于A ,B 两点,且l ⊥AF 1,则下列说法正确的为()A.△AF 1F 2的面积为2B.双曲线C 的离心率为2C.AF 1 ⋅BF 1=10+46D.1AF 2 +1BF 2=6+2题型2二级结论之通径型椭圆与双曲线的半通径是b 2a , 通径是2b 2a1(2023·重庆·模拟预测)如图,椭圆C :x 2a 2+y 2b2=1a >b >0 的左焦点为F 1,右顶点为A ,点Q 在y 轴上,点P 在椭圆上,且满足PQ ⊥y 轴,四边形F 1APQ 是等腰梯形,直线F 1P 与y 轴交于点N 0,34b,则椭圆的离心率为( ).A.14B.32C.22D.121(23·24高三上·湖北·阶段练习)已知A ,B 是椭圆x 2a 2+y 2b2=1(a >b >0)的左右顶点,P 是双曲线x 2a 2-y 2b 2=1在第一象限上的一点,直线PA ,PB 分别交椭圆于另外的点M ,N .若直线MN 过椭圆的右焦点F ,且tan ∠AMN =3,则椭圆的离心率为.2(2023·湖北武汉·三模)已知椭圆C :x 2a 2+y 2b2=1a >b >0 ,点A ,B 分别为椭圆C 的左右顶点,点F 为椭圆C 的右焦点,Р为椭圆上一点,且PF 垂直于x 轴.过原点О作直线PA 的垂线,垂足为M ,过原点О作直线PB 的垂线,垂足为N ,记S 1,S 2分别为△MON ,△PAB 的面积.若S 2S 1=409,则椭圆C 的离心率为.3(22·23·赣州·二模)已知双曲线E :x 2a 2-y 2b2=1(a >0,b >0)的左右焦点分别为F 1,F 2,点P 在E 上,满足△F 1PF 2为直角三角形,作OM ⊥PF 1于点M (其中O 为坐标原点),且有PM =2MF1,则E 的离心率为.4(2023·河北保定·统考二模)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F ,B 为虚轴上端点,M 是BF 中点,O 为坐标原点,OM 交双曲线右支于N ,若FN 垂直于x 轴,则双曲线C 的离心率为() A.2B.2C.3D.233题型3双曲线渐近线相关双曲线的渐近线求离心率可以直接使用公式:e =1+b 2a2,1(2023·山东潍坊·二模)已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左,右焦点分别为F 1,F 2,O 为坐标原点,过F 1作C 的一条浙近线的垂线,垂足为D ,且DF 2 =22OD ,则C 的离心率为()A.2B.2C.5D.31(2022·贵州毕节·统考模拟预测)已知F 1,F 2是双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点,点A 是C 的左顶点,过点F 2作C 的一条渐近线的垂线,垂足为P ,过点P 作x 轴的垂线,垂足为M ,O 为坐标原点,且PO 平分∠APM ,则C 的离心率为()A.2B.2C.3D.32(多选)(2023·山东潍坊·三模)函数y =ax +bx(ab >0)的图象是双曲线,且直线x =0和y =ax 是它的渐近线.已知函数y =33x +1x,则下列说法正确的是()A.x ≠0,y ≥243B.对称轴方程是y =3x ,y =-33x C.实轴长为23D.离心率为2333(2020上·广西桂林·高三广西师范大学附属中学校考阶段练习)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F ,左顶点为A ,过F 作C 的一条渐近线的垂线,垂足为M ,若tan ∠MAF =12,则C 的离心率为.4(2022·陕西咸阳·统考二模)已知双曲线C :(a >0,b >0)的左焦点为F ,过F 且与双曲线C 的一条渐近线垂直的直线l 与另一条渐近线交于点P ,交y 轴于点A ,若A 为PF 的中点,则双曲线C 的离心率为 .5(多选)(2023·河北唐山·模拟预测)已知双曲线C :x 2a2-y 24=1(a >0)的左、右焦点分别为F 1,F 2,过F 2作直线y =2a x 的垂线,垂足为P ,O 为坐标原点,且∠F 1PO =π6,过P 作C 的切线交直线y =-2ax 于点Q ,则()A.C 的离心率为213B.C 的离心率为133C.△OPQ 的面积为23D.△OPQ 的面积为43题型4坐标法相对运算较麻烦的一种方法,可以通过联立方程,求出点的坐标,构造等式求出离心率1(2023·河南·模拟预测)已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左顶点为A ,P 为C 的一条渐近线上一点,AP 与C 的另一条渐近线交于点Q ,若直线AP 的斜率为1,且A 为PQ 的三等分点,则C 的离心率为.1(2023·山东潍坊·模拟预测)已知双曲线E :x 2a 2-y 2b2=1(a >0,b >0)的左焦点为F ,过F 的直线交E 的左支于点P ,交E 的渐近线于点M ,N ,且P ,M 恰为线段FN 的三等分点,则双曲线E 的离心率为()A.2B.52C.5D.32(24·25高三上·浙江·开学考试)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为F ,过点F 作倾斜角为π4的直线交椭圆C 于A 、B 两点,弦AB 的垂直平分线交x 轴于点P ,若PF AB=14,则椭圆C 的离心率e =.3(2023·湖北襄阳·模拟预测)如图,已知有公共焦点P 1(-c ,0)、P 2(c ,0)的椭圆C 1和双曲线C 2相交于A 、B 、C 、D 四个点,且满足OA =OB =OC =OD =c ,直线AB 与x 轴交于点P ,直线CP 与双曲线C 2交于点Q ,记直线AC 、AQ 的斜率分别为k 1、k 2,若k 1⋅k 2=2,则椭圆C 1的离心率为.4(22·23高三上·河南洛阳·阶段练习)已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点分别为F 1-c ,0 ,F 2c ,0 ,过点F 1的直线l 与双曲线C 的左支交于点A ,与双曲线C 的一条渐近线在第一象限交于点B ,且F 1F 2 =2OB (O 为坐标原点).下列四个结论正确的是()①BF 1 =4c 2-BF 2 2;②若AB =2F 1A ,则双曲线C 的离心率1+102;③BF 1 -BF 2 >2a ;④c -a <AF 1 <2c -a .A.①②B.①③C.①②④D.①③④5(22·23高三上·河北石家庄·期中)椭圆C :x 2a 2+y 2b2=1a >b >0 的左、右焦点分别为F 1,F 2,过F 1的直线交C 于A ,B 两点,若3OF 1 =OA +2OB ,AB =BF 2,其中O 为坐标原点,则椭圆的离心率为题型5二级结论之焦点弦定比分点1.点F 是椭圆的焦点,过F 的弦AB 与椭圆焦点所在轴的夹角为θ,θϵ0,π2,k 为直线AB 的斜率,且AF =λFB (λ>0),则e =1+k 2λ-1λ+1当曲线焦点在y 轴上时,e =1+1k 2λ-1λ+1注:λ=AF BF 或者λ=BF AF ,而不是AF AB 或者BFAB点F 是双曲线焦点,2.过F 弦AB 与双曲线焦点所在轴夹角为θ,θϵ0,π2,k 为直线AB 斜率,且AF =λFB (λ>0),则e =1+k 2λ-1λ+1当曲线焦点在y 轴上时,e =1+1k 2λ-1λ+1 1(23·24高三上·云南·阶段练习)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,过点F 2且倾斜角为60°的直线l 与C 交于A ,B 两点.若△AF 1F 2的面积是△BF 1F 2面积的2倍,则C 的离心率为.1(2022上·辽宁鞍山·高三鞍山一中校考期中)已知椭圆C :x 2a 2+y 2b2=1的左焦点为F ,过F 斜率为3的直线l 与椭圆C 相交于A 、B 两点,若AF BF =32,则椭圆C 的离心率e =.2(2022·全国·高三专题练习)已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的右焦点为F ,过F 且斜率为3的直线交C 于A 、B 两点,若AF =4FB,则C 的离心率为()A.58B.65C.75D.953(2023·浙江温州·乐清市知临中学校考二模)已知椭圆x 2a 2+y 2b2=1的右焦点为F 2,过右焦点作倾斜角为π3的直线交椭圆于G ,H 两点,且GF 2 =2F 2H ,则椭圆的离心率为()A.12B.22C.23D.324(2023·贵州·统考模拟预测)椭圆C :x 2a 2+y 2b2=1(a >b >0)的上顶点为A ,F 是C 的一个焦点,点B 在C 上,若3AF +5BF =0,则C 的离心率为()A.12B.35C.22D.32题型6二级结论之焦点已知底角1. 已知椭圆方程为x 2a 2+y 2b2=1(a >b >0),两焦点分别为F 1,F 2,设焦点三角形PF 1F 2,∠PF 1F 2=α,∠PF 2F 1=β,则椭圆的离心率e =c a =sin (α+β)sin α+sin β2. 已知双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0)两焦点分别为F 1,F 2,设焦点三角形PF 1F 2,∠PF 1F 2=α,∠PF 2F 1=β,则e =ca =sin α+sin β|sin α-sin β|,1(2008·全国·高考真题)设△ABC 是等腰三角形,∠ABC =120°,则以A ,B 为焦点,且过点C 的双曲线的离心率为()A.1+22 B.1+32C.1+2D.1+31(2022秋·山东青岛·高二山东省青岛第五十八中学校考期中)椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,焦距为2c ,若直线y =3(x +c )与椭圆C 的一个交点M 满足∠MF 1F 2=2∠MF 2F 1,则该椭圆的离心率等于()A.3-1B.2-1C.32D.222(2020秋·贵州贵阳·高二统考期末)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左右焦点分别为F 1,F 2,焦距为2c .若直线y =33x +c 与椭圆的一个交点M 满足∠MF 2F 1=2∠MF 1F 2,则该椭圆的离心率等于()A.3-5B.5-3C.3+1D.3-13(2023·全国·高二专题练习)已知椭圆E 的两个焦点分别为F 1,F 2,点Р为椭圆上一点,且tan ∠PF 1F 2=23,tan ∠PF 2F 1=2,则椭圆E 的离心率为 .4(2023秋·江西吉安·高三吉安一中校考开学考试)点P 是双曲线C 1:x 2a 2-y 2b2=1(a >0,b >0)和圆C 2:x 2+y 2=a 2+b 2的一个交点,且2∠PF 1F 2=∠PF 2F 1,其中F 1,F 2是双曲线C 1的两个焦点,则双曲线C 1的离心率为.5(2023秋·湖南衡阳·高三衡阳市八中校考阶段练习)已知F 1,F 2分别是双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,点A 是双曲线C 的右顶点,点P 在过点A 且斜率为334的直线上,△PF 1F 2为等腰三角形,∠PF 2F 1=120°,则双曲线的离心率为.题型7焦点三角形已知顶角型可以通过焦点三角形的特征进行解决1(20·21高二上·吉林白城·阶段练习)已知F 1,F 2是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且∠F 1PF 2=π3,椭圆的离心率为e 1,双曲线的离心率e 2,则1e 21+3e 22=.1(2021·重庆·校联考三模)已知双曲线C :x 2a 2-y 2b 2=1a >0,b >0 的左右焦点分别为F 1,F 2,过F 1的直线交双曲线C 的左支于P ,Q 两点,若PF 2 2=PF 2 ⋅QF 2,且△PQF 2的周长为12a ,则双曲线C 的离心率为() A.102B.3C.5D.222(2021·山东烟台·统考二模)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,点A 在C 的右支上,AF 1与C 交于点B ,若F 2A ⋅F 2B =0,且|F 2A |=|F 2B|,则C 的离心率为()A.2B.3C.6D.73(2021·浙江·模拟预测)已知F 1,F 2分别是双曲线E :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点,直线y =kx 与E 交于A ,B 两点,且∠F 1AF 2=60°,四边形F 1AF 2B 的周长C 与面积S 满足163S =C 2,则E 的离心率为()A.62B.52C.32D.34(2023·上海崇明·一模)已知椭圆Γ1与双曲线Γ2的离心率互为倒数,且它们有共同的焦点F 1、F 2,P是Γ1与Γ2在第一象限的交点,当∠F 1PF 2=π6时,双曲线Γ2的离心率等于 .5(2022上·江苏南京·高三南京师大附中校考期中)已知F 1,F 2分别为双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左,右焦点,过点F 2且斜率为1的直线l 与双曲线C 的右支交于P ,Q 两点,若△F 1PQ 是等腰三角形,则双曲线C 的离心率为.题型8焦点三角形双余弦定理1(22·23高二下·河南安阳·开学考试)已知F 1,F 2是椭圆C :x 2a 2+y 2b2=1(a >b >0)的两个焦点,过F 1的直线与椭圆C 交于M ,N 两点,MF 2 -MF 1 =a ,MF 1 +NF 1 =NF 2 ,则椭圆C 的离心率为()A.25B.105C.155D.641(22·23上·河南·模拟预测)双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左,右焦点分别为F 1,F 2,过F 2的直线与C 交于A ,B 两点,且AF 2 =2F 2B,∠ABF 1=60°,则双曲线C 的离心率为()A.73B.2C.53D.432(2023·浙江·一模)已知双曲线C :x 2a 2-y 2b2=1的左右焦点分别为F 1,F 2,O 为坐标原点,A ,B 为C 上位于x 轴上方的两点,且AF 1⎳BF 2,∠AF 1F 2=60°.记AF 2,BF 1交点为P ,过点P 作PQ ⎳AF 1,交x 轴于点Q .若OQ =2PQ ,则双曲线C 的离心率是.3(23·24高三上·江苏淮安·开学考试)椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,上顶点为A ,直线AF 1与椭圆C 交于另一点B ,若∠AF 2B =120°,则椭圆C 的离心率为.4(22·23高三下·山东菏泽·开学考试)已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左右焦点分别为F 1,F 2,点A 在C 上,点B 在y 轴上,F 1A ⋅F 1B =0,BF 2 =35BA,则C 的离心率为.5(2023·湖南株洲·一模)已知椭圆C :x 2a 2+y 2b2=1a >b >0 的左右焦点为F 1,F 2,过F 1的直线交椭圆C 于P ,Q 两点,若PF 1 =43F 1Q ,且PF 2 =F 1F 2,则椭圆C 的离心率为.题型9利用图形求离心率1(2023·安徽安庆·二模)在平面直角坐标系xOy 中,已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 1的直线与双曲线C 的右支相交于点P ,过点O ,F 2作ON ⊥PF 1,F 2M ⊥PF 1,垂足分别为N ,M ,且M 为线段PN 的中点,ON =a ,则双曲线C 的离心率为()A.2B.5+12C.3+12D.1321(22·23·包头·二模)双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的两个焦点为F 1-c ,0 ,F 2c ,0 ,以C 的虚轴为直径的圆记为D ,过F 1作D 的切线与C 的渐近线y =-b a x 交于点H ,若△F 1HO 的面积为24ac ,则C 的离心率为.2(2023秋·江西宜春·高三江西省宜丰中学校考阶段练习)双曲线C :x 2a 2-y 2b2=1a ,b >0 的左焦点为F ,直线FD 与双曲线C 的右支交于点D ,A ,B 为线段FD 的两个三等分点,且OA =OB =22a (O为坐标原点),则双曲线C 的离心率为.3(2023·湖南邵阳·邵阳市第二中学校考模拟预测)已知F 1,F 2是椭圆C :x 2a 2+y 2b2=1a >b >0 的左、右焦点,A 是C 的上顶点,点P 在过A 且斜率为23的直线上,△PF 1F 2为等腰三角形,∠PF 1F 2=120°,则C 的离心率为()A.1010B.714C.39D.144(2023·海南省直辖县级单位·文昌中学校考模拟预测)已知椭圆T :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,左顶点为A ,上顶点为B ,点P 是椭圆上位于第一象限内的点,且△ABO ∼△F 1PF 2,O 为坐标原点,则椭圆的离心率为.题型10利用椭圆双曲线的对称性求离心率1(22·23高二下·湖南·期末)如图,已知F 1,F 2是双曲线C :x 2a 2-y 2b2=1的左、右焦点,P ,Q 为双曲线C 上两点,满足F 1P ∥F 2Q ,且F 2Q =F 2P =3F 1P ,则双曲线C 的离心率为()A.105B.52C.153D.1021(2023·河南商丘·模拟预测)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,点M ,N 是C 的一条渐近线上的两点,且MN =2MO(O 为坐标原点),MN =F 1F 2 .若P 为C 的左顶点,且∠MPN =135°,则双曲线C 的离心率为()A.3B.2C.5D.72(2023·福建宁德·模拟预测)已知椭圆C :x 2a 2+y 2b2=1a >b >0 的右焦点是F ,直线y =kx 交椭圆于A ,B 两点﹐直线AF 与椭圆的另一个交点为C ,若OA OF=AF2CF =1,则椭圆的离心率为.3(23·24高三上·山西大同·阶段练习)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,过点P (3c ,0)作直线l 交椭圆C 于M ,N 两点,若PM =2NM ,F 2M =4F 2N则椭圆C 的离心率为4(2022·全国·校联考模拟预测)已知双曲线C :x 2a 2-y 2b 2=1a >0,b >0 的左、右焦点分别是F 1,F 2,过F 2的直线l 交双曲线C 于P ,Q 两点且使得PF 2 =λF 2Q 0<λ<1 .A 为左支上一点且满足F 1A +F 2P=0 ,F 1F 2 =23AF 2 +13AQ ,△AF 2P 的面积为b 2,则双曲线C 的离心率为()A.33B.2C.102D.35(2021下·山西·高三校联考阶段练习)如图,O 是坐标原点,P 是双曲线E :x 2a 2-y 2b2=1(a >0,b >0)右支上的一点,F 是E 的右焦点,延长PO ,PF 分别交E 于Q ,R 两点,已知QF ⊥FR ,且|QF |=2|FR |,则E 的离心率为()A.174B.173C.214D.213题型11点差法1.根与系数关系法:联立直线方程和椭圆(或双曲线)方程构成方程组,消去一个未知数,利用一元二次方程根与系数的关系以及中点坐标公式解决;2.点差法:利用交点在曲线上,坐标满足方程,将交点坐标分别代入椭圆(或双曲线)方程,然后作差,构造出中点坐标和斜率的关系,具体如下:已知A (x 1,y 1),B (x 2,y 2)是椭圆x 2a 2+y 2b2=1(a >b >0)上的两个不同的点M (x 0,y 0)是线段AB 的中点,x 21a 2+y 21b 2=1,=1\*GB 3\*MERGEFORMAT ①x 22a 2+y 22b 2=1,=2\*GB 3\*MERGEFORMAT ② 由①-②,得1a 2(x 21-x 22)+1b 2(y 21-y 22)=0,变形得y 1-y 2x 1-x 2=-b 2a 2·x 1+x 2y 1+y 2=-b 2a 2·x 0y 0,(x 1-x 2≠0,x 1+x 2≠0)1(22·23·吉安·一模)椭圆E :x 2a 2+y 2b2=1a >b >0 的内接四边形ABCD 的对角线AC ,BD 交于点P 1,1 ,满足AP =2PC ,BP =2PD ,若直线AB 的斜率为-14,则椭圆的离心率等于()A.14B.32C.12D.131(2023·湖北·模拟预测)设椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率e ≠22,C 的左右焦点分别为F 1,F 2,点A 在椭圆C 上满足∠F 1AF 2=π2.∠F 1AF 2的角平分线交椭圆于另一点B ,交y 轴于点D .已知AB =2BD ,则e =.2(2022下·云南昭通·高二校联考期末)已知双曲线E :x 2a 2-y 2b2=1(a >0,b >0)斜率为-18的直线与E 的左右两支分别交于A ,B 两点,P 点的坐标为(-1,2),直线AP 交E 于另一点C ,直线BP 交E 于另一点D ,如图1.若直线CD 的斜率为-18,则E 的离心率为()A.2B.72C.62D.523(22·23·河北·模拟预测)已知斜率为-2的直线l 1与双曲线E :x 2a 2-y 2b2=1a >0,b >0 的左、右两支分别交于点A ,B ,l 2⎳l 1,直线l 2与E 的左、右两支分别交于点D ,C ,AC 交BD 于点P ,若点P 恒在直线l :y =-3x 上,则E 的离心率为.4(2023·云南·统考模拟预测)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点F (c ,0)(b >c )和上顶点B ,若斜率为65的直线l 交椭圆C 于P ,Q 两点,且满足FB +FP +FQ =0 ,则椭圆的离心率为.5(2020上·重庆沙坪坝·高三重庆八中校考阶段练习)如图,过原点O 的直线AB 交椭圆C :x 2a 2+y 2b2=1(a >b >0)于A ,B 两点,过点A 分别作x 轴、AB 的垂线AP ,AQ 分别交椭圆C 于点P ,Q ,连接BQ 交AP 于一点M ,若AM =34AP,则椭圆C 的离心率是.题型12二级结论之中点弦问题1.椭圆或者双曲线,已知中点时,当椭圆或双曲线的焦点在x 轴,K AB ∙K OM =e 2-12.P 为椭圆上一点,e 为离心率,①A 1,A 2为两个顶点,则k PA 1⋅k PA 2=e 2-1;②A 1,A 2为关于原点对称的两点,则k PA 1⋅k PA 2=e 2-1;以上结论也适用于双曲线.1(22·23上·徐州·期末)已知椭圆C :x 2a 2+y 2b2=1a >b >0 ,经过原点O 的直线交C 于A ,B 两点.P 是C 上一点(异于点A ,B ),直线BP 交x 轴于点D .若直线AP ,BP 的斜率之积为49,且∠BDO =∠BOD ,则椭圆C 的离心率为.1(22·23下·安徽·一模)已知直线l 与椭圆E :x 2a 2+y 2b2=1(a >b >0)交于M ,N 两点,线段MN 中点P 在直线x =-1上,且线段MN 的垂直平分线交x 轴于点Q -34,0 ,则椭圆E 的离心率是 .2(2023·贵州·模拟预测)设О为坐标原点,A 为椭圆C :x 2a 2+y 2b2=1a >b >0 上一个动点,过点A 作椭圆C 内部的圆E :x 2-2mx +y 2=0m >0 的一条切线,切点为D ,与椭圆C 的另一个交点为B ,D 为AB 的中点,若OD 的斜率与DE 的斜率之积为2,则C 的离心率为.3(2021·全国·模拟预测)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的短轴长为4,上顶点为B ,O 为坐标原点,点D 为OB 的中点,双曲线E :x 2m 2-y 2n2=1(m >0,n >0)的左、右焦点分别与椭圆C 的左、右顶点A 1,A 2重合,点P 是双曲线E 与椭圆C 在第一象限的交点,且A 1,P ,D 三点共线,直线PA 2的斜率k PA 2=-43,则双曲线E 的离心率为()A.355B.32C.810-105D.5+41094(22·23下·南通·阶段练习)已知两点A ,M 在双曲C :x 2a 2-y 2b2=1(a >0,b >0)的右支上,点A 与点B 关于原点对称,BM 交y 轴于点N ,若AB ⊥AM ,且ON 2+8OA ⋅ON=0,则双曲线C 的离心率为()A.5B.6C.7D.22题型13角平分线相关1.角平分线“拆”面积:S △ABC =S △ACD +S △ABD2.角平分线定理性质:AB BD =ACCD1(22·23下·山西·模拟预测)已知双曲线E :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点分别为F 1,F 2,P 是双曲线E 上一点,PF 2⊥F 1F 2,∠F 1PF 2的平分线与x 轴交于点Q ,S △PF 1Q S △PF 2Q=53,则双曲线E 的离心率为()A.2B.2C.52D.31(22·23下·湖北·模拟预测)已知F 1,F 2分别是双曲线Γ:x 2a 2-y 2b 2=1a >0,b >0 的左、右焦点,过F 1的直线分别交双曲线左、右两支于A ,B 两点,点C 在x 轴上,CB =3F 2A,BF 2平分∠F 1BC ,则双曲线Γ的离心率为()A.7B.5C.3D.22(22·23高三·云南·阶段练习)已知椭圆C :x 2a 2+y 2b2=1a >b >0 的左、右顶点分别为A ,B ,右焦点为F ,P 为椭圆上一点,直线AP 与直线x =a 交于点M ,∠PFB 的角平分线与直线x =a 交于点N ,若PF ⊥AB ,△MAB 的面积是△NFB 面积的6倍,则椭圆C 的离心率是.3(2023·山东烟台·校考模拟预测)设椭圆C :x 2a 2+y 2b2=1(a >b >0)的焦点为F 1-c ,0 ,F 2c ,0 ,点P 是C 与圆x 2+y 2=c 2的交点,∠PF 1F 2的平分线交PF 2于Q ,若PQ =12QF 2 ,则椭圆C 的离心率为()A.33B.2-1C.22D.3-14(2023春·江西赣州·高三统考阶段练习)已知椭圆C :x 2a 2+y 2b2=1a >b >0 的左、右焦点分别为F 1,F 2.椭圆C 在第一象限存在点M ,使得MF 1 =F 1F 2 ,直线F 1M 与y 轴交于点A ,且F 2A 是∠MF 2F 1的角平分线,则椭圆C 的离心率为()A.6-12B.5-12C.12D.3-12题型14圆锥曲线与圆相关1(2023·福建漳州·模拟预测)已知椭圆C :x 2a 2+y 2b2=1a >b >0 的左、右焦点分别为F 1、F 2,以F 2为圆心的圆与x 轴交于F 1,B 两点,与y 轴正半轴交于点A ,线段AF 1与C 交于点M .若BM 与C 的焦距的比值为313,则C 的离心率为()A.3-12B.12C.3+14D.7-121(23·24高三上·福建福州·开学考试)已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点分别为F 1、F 2,以F 2为圆心的圆与x 轴交于F 1,B 两点,与y 轴正半轴交于点A ,线段AF 1与C 交于点M .若BM与C 的焦距的比值为313,则C 的离心率为()A.3+12B.32C.5+12D.7+122(2023·全国·二模)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左,右顶点分别是A 1,A 2,圆x 2+y 2=a 2与C 的渐近线在第一象限的交点为M ,直线A 1M 交C 的右支于点P .设△MPA 2的内切圆圆心为I ,A 2I ⊥x 轴,则C 的离心率为()A.2B.2C.3D.53(22·23·马鞍山·三模)已知F 1 , F 2分别是双曲线C :x 2a 2-y 2b2=1 (a >0 , b >0)的左,右焦点,点M 在双曲线上,MF 1⊥MF 2,圆O :x 2+y 2=32(a 2+b 2),直线MF 1与圆O 相交于A ,B 两点,直线MF 2与圆O 相交于P ,Q 两点,若四边形APBQ 的面积为27b 2,则C 的离心率为()A.62B.324C.32D.984(22·23上·全国·阶段练习)已知圆C 1:x 2+y -2332=163过双曲线C 2:x 2a 2-y 2b 2=1a >0,b >0 的左、右焦点F 1,F 2,曲线C 1与曲线C 2在第一象限的交点为M ,若MF 1 ⋅MF 2 =12,则双曲线C 2的离心率为()A.2B.3C.2D.3题型15内切圆相关1(22·23高三下·江西·阶段练习)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2.点P 在C 上且位于第一象限,圆O 1与线段F 1P 的延长线,线段PF 2以及x 轴均相切,△PF 1F 2的内切圆为圆O 2.若圆O 1与圆O 2外切,且圆O 1与圆O 2的面积之比为9,则C 的离心率为()A.12B.35C.22D.321(2023·山东潍坊·模拟预测)已知双曲线C 1:x 2a 2-y 2b2=1a >0,b >0 的左,右焦点分别为F 1,F 2,点F 2与抛物线C 2:y 2=2px p >0 的焦点重合,点P 为C 1与C 2的一个交点,若△PF 1F 2的内切圆圆心的横坐标为4,C 2的准线与C 1交于A ,B 两点,且AB =92,则C 1的离心率为()A.94B.54C.95D.742(22·23下·宁波·阶段练习)已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,P 为椭圆上不与顶点重合的任意一点,I 为△PF 1F 2的内心,记直线OP ,OI 的斜率分别为k 1,k 2,若k 1=32k 2,则椭圆E 的离心率为() A.13B.12C.33D.223(23·24高三上·云南昆明·期中)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的两个焦点为F 1-c ,0 ,F 2c ,0(c >0),过F 1作倾斜角为π4的直线交椭圆于A ,B 两点,若△ABF 2的内切圆半径r =26c ,则该椭圆的离心率为.4(2023·山西·二模)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1(-c ,0),F 2(c ,0),点M x 0,y 0 x 0>c 是C 上一点,点A 是直线MF 2与y 轴的交点,△AMF 1的内切圆与MF 1相切于点N ,若|MN |=2F 1F 2 ,则椭圆C 的离心率e =.5(22·23·红河·一模)已知双曲线E :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点分别为F 1、F 2,若E 上存在点P ,满足OP =12F 1F 2 ,(O 为坐标原点),且△PF 1F 2的内切圆的半径等于a ,则E 的离心率为.题型16与立体几何相关1(2023·安徽安庆·一模).如图是数学家Ger min al Dandelin 用来证明一个平面截圆锥得到的截口曲线是椭圆的模型(称为“Dandelin 双球”);在圆锥内放两个大小不同的小球,使得它们分别与圆锥的侧面、截面相切,设图中球O 1,球O 2的半径分别为4和1,球心距O 1O 2 =6,截面分别与球O 1,球O 2切于点E ,F ,(E ,F 是截口椭圆的焦点),则此椭圆的离心率等于()A.339B.63C.22D.161(22·23高三下·河北衡水·阶段练习)已知F 1,F 2分别是双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,过点F 2作直线AB ⊥F 1F 2交C 于A ,B 两点. 现将C 所在平面沿直线F 1F 2折成平面角为锐角α的二面角,如图,翻折后A ,B 两点的对应点分别为A ,B ,且∠A F 1B =β⋅若1-cos α1-cos β=2516,则C 的离心率为()A.3B.22C.3D.322(2023·云南大理·模拟预测)某同学所在的课外兴趣小组计划用纸板制作一个简易潜望镜模型(图甲),该模型由两个相同的部件拼接粘连制成,每个部件由长方形纸板NCEM (图乙)沿虚线裁剪后卷一周形成,其中长方形OCEF 卷后为圆柱O 1O 2的侧面.为准确画出裁剪曲线,建立如图所示的以O 为坐标原点的平面直角坐标系,设P x ,y 为裁剪曲线上的点,作PH ⊥x 轴,垂足为H .图乙中线段OH 卷后形成的圆弧OH (图甲),通过同学们的计算发现y 与x 之间满足关系式y =3-3cos x3(0≤x <6π),现在另外一个纸板上画出曲线y =1-cos x2(0≤x <4π),如图丙所示,把沿虚线裁剪后的长方形纸板卷一周,求该裁剪曲线围成的椭圆的离心率为()A.255B.55C.12D.533(2022·辽宁沈阳·一模)如图,在底面半径为1,高为6的圆柱内放置两个球,使得两个球与圆柱侧面相切,且分别与圆柱的上下底面相切.一个与两球均相切的平面斜截圆柱侧面,得到的截线是一个椭圆.则该椭圆的离心率为.4(22·23下·辽宁·阶段练习)如图所示圆锥,C 为母线SB 的中点,点O 为底面圆心,AB 为底面圆的直径,且SC ,OB ,SB 的长度成等比数列,一个平面过A ,C ,与圆锥面相交的曲线为椭圆,若该椭圆的短轴与圆锥底面平行,则该椭圆的离心率为.5(多选)(2023·江苏南通·模拟预测)如图,已知圆锥PO 的轴PO 与母线所成的角为α,过A 1的平面与圆锥的轴所成的角为ββ>α ,该平面截这个圆锥所得的截面为椭圆,椭圆的长轴为A 1A 2,短轴为B 1B 2,长半轴长为a ,短半轴长为b ,椭圆的中心为N ,再以B 1B 2为弦且垂直于PO 的圆截面,记该圆与直线PA 1交于C 1,与直线PA 2交于C 2,则下列说法正确的是()A.当β<α时,平面截这个圆锥所得的截面也为椭圆B.|NC 1|⋅|NC 2|=a 2sin β+α sin β-αcos 2αC.平面截这个圆锥所得椭圆的离心率e =cos βcos αD.平面截这个圆锥所得椭圆的离心率e =sin αsin β题型17二级结论之切线方程圆锥曲线切线方程的常用结论【结论1】(1)经过圆x 2+y 2=r 2上一点M x 0,y 0 的切线方程为x 0x +y 0y =r 2.(2)当M x 0,y 0 在圆外时,过M 点引切线有且只有两条,过两切点的弦所在直线方程为x 0x +y 0y =r 2.【结论2】(1)若圆心不在原点,圆的方程:x -a 2+y -b 2=r 2,若M x 0,y 0 为圆上一点,则过M x 0,y 0 切线方程:x 0-a x -a +y 0-b y -b =r2(2)若M x 0,y 0 在圆外,过M 点切线有两条:切点弦所在直线方程:x 0-a x -a +y 0-b y -b =r2方便记忆,求切线和切点弦的方法,统一称为“代一留一”.【结论3】(1)过圆x 2a 2+y 2b 2=1a >b >0 上一点M x 0,y 0 切线方程为x 0x a 2+y 0y b2=1;(2)当M x 0,y 0 在椭圆x 2a 2+y 2b 2=1的外部时,过M 引切线有两条,过两切点的弦所在直线方程为x 0x a2+y 0yb 2=1.(3)设过椭圆x 2a 2+y 2b2=1a >b >0 外一点M x 0 , y 0 引两条切线,切点分别为A x 1,y 1 ,B x 2,y 2 .由(1)可知过A , B 两点的切线方程分别为:x 1xa 2+y 1yb 2=1,x 2x a 2+y 2y b2=1.又因M x 0,y 0 是两条切线的交点,∴有x 1x 0a 2+y 1y 0b 2=1,x 2x 0a 2+y 2y 0b 2=1.观察以上两个等式,发现A x 1,y 1 ,B x 2,y 2 满足直线x 0xa2+y 0y b 2=1,∴过两切点A , B 两点的直线方程为x 0xa 2+y 0yb 2=1.同理可得焦点在y 轴上的情形.【结论4】(1)过圆y 2a 2+x 2b 2=1a >b >0 上一点M x 0,y 0 切线方程为y 0y a 2+x 0x b2=1;(2)当M x 0,y 0 在椭圆y 2a 2+x 2b2=1a >b >0 的外部时,过M 引切线有两条,过两切点的弦所在直线方程为y 0y a 2+x 0xb2=1.【结论5】(1)过双曲线x 2a 2-y 2b 2=1a >0,b >0 上一点M x 0,y 0 处的切线方程为x 0x a 2-y 0y b2=1;(2)当M x 0,y 0 在双曲线x 2a 2-y 2b 2=1的外部时,过M 引切线有两条,过两切点的弦所在直线方程为:x 0x a2-y 0yb2=1.(3)设过双曲线x 2a 2-y 2b2=1a >0,b >0 外一点M x 0,y 0 引两条切线,切点分别为A x 1,y 1 、B x 2,y 2 .由(1)可知过A , B 两点的切线方程分别为:x 1xa 2-y 1yb 2=1 , x 2x a 2-y 2y b2=1.又因M x 0,y 0 是两条切线的交点,∴有x 1x 0a 2-y 1y 0b 2=1 , x 2x 0a 2-y 2y 0b 2=1.观察以上两个等式,发现A x 1,y 1 ,B x 2,y 2 满足直线x 0xa2-y 0y b 2=1,∴过两切点A , B 两点的直线方程为x 0x a 2-y 0y b 2=1.同理可得焦点在y 轴上的情形.【结论6】(1)过双曲线y 2a 2-x 2b 2=1a >0,b >0 上一点M x 0,y 0 处的切线方程为y 0y a 2-x 0x b2=1;(2)当M x 0,y 0 在双曲线y 2a 2-x 2b2=1a >0,b >0 的外部时,过M 引切线有两条,过两切点的弦所在直线方程为:y 0y a 2-x 0xb2=1.1(2023·重庆·模拟预测)已知F 1,F 2分别为双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点,点A x 1,y 1 为双曲线C 在第一象限的右支上一点,以A 为切点作双曲线C 的切线交x 轴于点B ,若cos ∠F 1AF 2=12,且F 1B =2BF 2 ,则双曲线C 的离心率为()A.22B.5C.2D.31(22·23高三上·全国·阶段练习)已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 上的一点M (异于顶点),过点M 作双曲线C 的一条切线l .若双曲线C 的离心率e =233,O 为坐标原点,则直线OM 与l 的斜率之积为()A.13B.23C.32D.32(2022·全国·统考二模)已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 与椭圆x 24+y 23=1.过椭圆上一点P -1,32作椭圆的切线l ,l 与x 轴交于M 点,l 与双曲线C 的两条渐近线分别交于N 、Q ,且N 为MQ的中点,则双曲线C 的离心率为()。
2021年新高考卷I圆锥曲线压轴题的解法
圆锥曲线内容虽以具体曲线类型与具体数据在高考试题中呈现,但对其进行深入研究,往往能得到圆锥曲线的普遍性质.本文以2021年新高考卷I第21题为例,将对其进行解法探究,并对命题进行变式引申拓展,揭示一般规律,以分享给大家.1试题呈现在平面直角坐标系xOy中,已知点F1(-17,0),F2(17,0),点M满足||MF1-||MF2=2,记M的轨迹为C.(1)求C的方程;(2)设点T在直线x=12上,过T的两条直线分别交C于A,B两点和P,Q两点,且||TA||TB=||TP||TQ.求直线AB的斜率与直线PQ的斜率之和.2解法探究(1)解x2-y216=1()x 1(此略);(2)解法1:利用韦达定理.设直线AB与PQ的方程分别为y=k1x+b1与y=k2x+b2()k1≠k2,A()x1,y1,B()x2,y2,C()x3,y3,D()x4,y4,Tæèöø12,y0,则ìíîïïy0=12k1+b1y0=12k2+b2.由ìíîïïy=k1x+b1x2-y216=1,得(16-k21)x2-2k1b1x-b21-16=0,则ìíîïïïïïïïï16-k21≠0Δ>0x1+x2=2k1b116-k21x1x2=-b21+1616-k21.∴||TA||TB=1+k21||||||x1-12·1+k21||||||x2-12=(1+k21)||||||x1x2-12(x1+x2)+14=(1+k21)(y2+12)||16-k21.同理||TP||TQ=()1+k22()y2+12||16-k22.又||TA||TB= ||TP||TQ,所以(1+k21)(y2+12)||16-k21=(1+k22)(y2+12)||16-k22,即k21=k22.因为k1≠k2,所以k1=-k2,即k1+k2=0,故直线AB的斜率与直2021年新高考卷I圆锥曲线压轴题的解法探究与变式推广广东省梅县东山中学钟国城514017摘要:本文给出了一道高考题的4种解法,进而给出了试题的变式和推广.关键词:高考试题;圆锥曲线;变式;推广··56线PQ 的斜率之和为0.评注:此法是解决直线与圆锥曲线位置关系的通法,其难点就是计算量较大,需要有细心与耐心,同时在平时训练中需多总结一些计算技巧,以尽量避免失误.解法2:利用直线的参数方程.设直线AB 与PQ 的倾斜角分别为θ,αæèöøθ,α≠π2,θ≠α,T æèöø12,y 0,则直线AB 与PQ 的参数方程分别为ìíîïïx =12+t cos θy =y 0+t sin θ,ìíîïïx =12+t cos αy =y 0+t sin α()t 为参数,||TA ,||TB ,||TP ,||TQ 对应的参数分别为t 1,t 2,t 3,t 4.把直线AB 的参数方程带入曲线C 的方程,得(15cos 2θ+1)t 2+(16cos θ-2y 0sin θ)t -(12+y 20)=0,所以t 1t 2=-12+y2015cos 2θ+1.同理,t 3t 4=-12+y 2015cos 2α+1.又||TA ||TB =||TP ||TQ ,所以||t 1t 2=||t 3t 4,即12+y 2015cos 2θ+1=12+y 2015cos 2α+1,故cos 2θ=cos 2α.又θ,α≠π2,θ≠α,所以θ+α=π,故tan θ+tan α=0,于是直线AB 的斜率与直线PQ 的斜率之和为0.评注:虽然新高考对参数方程不做要求,但掌握此法既能开拓视野、提升思维,又能准确快速地解决问题,达到事半功倍的效果.解法3:利用曲线系方程.∵||TA ||TB =||TP ||TQ ,∴||TA ||TQ =||TP ||TB .又∠ATP =∠QTB ,所以△ATP ∽△QTB ,故∠TAP =∠TQB .∵∠TAP +∠PAB =π,∴∠TQB +∠PAB =π,即∠PQB +∠PAB =π,所以A ,B ,P ,Q 四点共圆.设T æèöø12,y 0,直线AB 与PQ 的方程分别为y -y 0=k 1⋅æèöøx -12与y -y 0=k 2æèöøx -12(k 1≠k 2),即k 1x -y +y 0-12k 1=0与k 2x -y +y 0-12k 2=0.又A ,B ,P ,Q 四点在曲线C 上,所以过四点的曲线系方程为æèöøk 1x -y +y 0-12k 1(k 2x -y +y 0)-12k 2+λæèçöø÷x 2-y 216-1=0,即()k 1k 2+λx 2+æèöø1-λ16y 2-()k 1+k 2xy +()k 1y 0+k 2y 0-k 1k 2x -æèçöø÷2y 0-k 1+k 22y +æèçöø÷y 0-k 12æèçöø÷y 0-k 22-λ=0.因为该曲线为圆,所以k 1+k 2=0,故直线AB 的斜率与直线PQ 的斜率之和为0.评注:此法的关键在于证得A ,B ,P ,Q 四点共圆,进而建立起过A ,B ,P ,Q 四点的曲线系方程,根据圆的一般方程的特点得到直线AB 与PQ 斜率之间的关系.解法4:先猜后证.设T æèöø12,y 0,直线AB 与PQ 的方程分别为y -y 0=k 1æèöøx -12与y -y 0=k 2æèöøx -12,(k 1≠k 2).当y 0=0时,根据||TA ||TB =||TP ||TQ ,结合对称性可知,此时直线AB 与PQ 关于x 轴对称,则k 1+k 2=0,故直线AB 的斜率与直线PQ 的斜率之和为0.以下过程只需说明当y 0≠0时,k 1+k 2=0.以下同解法1.评注:此法虽与解法1无异,但通过对特殊情况进行分析得到答案,使得在解决一般情况时目标明确,从而更有针对性地求解问题,能减少一些不必要的计算.3变式探究变式探究的过程是促进数学知识结构完善的过程,也是形成创新性思维品质的有··57效方法,更是揭示数学内容本质、提升学生数学核心素养能力的重要手段.因此,本文对这道高考题第(2)问进行了一些变式.限于篇幅,仅列举部分并简要分析如下.变式1若直线AB 的斜率与直线PQ 的斜率之和为0,求证:||TA ||TB =||TP ||TQ .证明:设直线AB 与PQ 的方程分别为y =kx +b 1与y =-kx +b 2,A ()x 1,y 1,B ()x 2,y 2,C (x 3,y 3),D (x 4,y 4),T æèöø12,y 0,则ìíîïïy 0=12k +b 1y 0=-12k +b 2.由ìíîïïy =kx +b 1x 2-y 216=1,得(16-k 2)x 2-2kb 1x -b 21-16=0,则ìíîïïïïïïïï16-k 2≠0Δ>0x 1+x 2=2kb 116-k 2x 1x 2=-b 21+1616-k 2.∴||TA ||TB =1+k 2·||||||x 1-12·1+k 2||||||x 2-12=()1+k 2|||x 1x 2-12(x 1+|||x 2)+14=()1+k 2()y 20+12||16-k 2.同理,||TP ||TQ =()1+k 2()y 20+12||16-k 2.所以||TA ||TB =||TP ||TQ .评注:变式1实质是该高考试题第(2)问的逆命题,此处只用韦达定理进行证明,进一步说明通法在解决问题的重要作用,当然也可以用其他方法进行证明.变式2若直线AB 的斜率与直线PQ 的斜率之和为0,求证:A ,B ,P ,Q 四点共圆.证明:同变式1证明,得||TA ||TB =||TP ⋅||TQ ,即||TA ||TQ =||TP ||TB .又∠ATP =∠QTB ,所以△ATP ∽△QTB ,故∠TAP =∠TQB .∵∠TAP +∠PAB =π,∴∠TQB +∠PAB =π,即∠PQB +∠PAB =π.所以A ,B ,P ,Q 四点共圆.评注:变式2实质是变式1的进一步拓展,也可以用其他方法进行证明.4结论拓展根据上述试题及变式,可以得到以下两个结论.结论1已知双曲线x 2a 2-y 2b2=±1(a >0,b >0)上有不同四点A ,B ,P ,Q ,且直线AB与PQ 交于点T ,若||TA ||TB =||TP ||TQ (或A ,B ,P ,Q 四点共圆),则直线AB 的斜率与直线PQ 的斜率之和为0.点评:此结论实质是高考试题的一般情形,其证明方法与高考试题的解答无异,在此不再赘述.结论2已知双曲线x 2a 2-y 2b2=±1(a >0,b >0)上有不同四点A ,B ,P ,Q ,且直线AB与PQ 交于点T ,若直线AB 的斜率与直线PQ 的斜率之和为0,则||TA ||TB =||TP ||TQ (或A ,B ,P ,Q 四点共圆).点评:此结论是结论1的逆命题,其证明方法与变式探究的解答一样,由此可见上述两个结论构成一个充要条件.5类比拓广事实上,可以将上述结论进行类比拓广,可以得到圆锥曲线中的一条性质:已知圆锥曲线(椭圆、双曲线、抛物线)上有不同四点A ,B ,P ,Q ,若直线AB 与PQ 交于点T ,则A ,B ,P ,Q 四点共圆的充要条件是直线AB 的斜率与直线PQ 的斜率之和为0.这是圆锥曲线的一个通性,也是上述高考试题的背景.基金项目:本文系广东省教育科学规划课题“中学生数学核心素养培养途径与策略研究”(课题批准号:2019ZQJK031)的阶段性研究成果.··58。
高考数学圆锥曲线专题练习及答案解析
X = —½距离为6,点P,Q是椭圆上的两个动点©
C
(1)求椭圆C的方程;
(2)若直线AP丄40,求证:直线P0过泄点R,并求出R点的坐标。
【例二・】已知一动圆经过点M(2,0),且在y轴上截得的弦长为4,设该动圆圆心的轨迹为曲 线C。
(1)求曲线C的方程;
(2)过点N(1,O)任意作两条互相垂直的直线∕1,∕2,分别交曲线C于不同的两点A,B和
的焦点,直线4F的斜率为少,O为坐标原点。
3
(1)求E方程;
(2)设过点A的直线/与E相交于PQ两点,当AOP0的面积最大时,求/的方
程。
专题练习
1•在平面直角坐标系XOy中,已知点A(O,—OB点在直线y = -3±, M点满足
MB//QA,莎•亦=屁•鬲M点的轨迹为曲线C。
(1)求C的方程:
(2)P为C上的动点,/为C在P点处的切线,求O点到/距离的最小值。
10.抛汤钱屮阿基来德三角形鲂纟见般质及疝用
11.(S傩曲钱屮的戒切後龜哩
锥曲线中的求轨迹方程问题
解题技巧
求动点的轨迹方程这类问题可难可易是高考中的髙频题型,求轨迹方程的主要方法有直译法、
相关点法、泄义法、参数法等。它们的解题步骤分别如下:
1.直译法求轨迹的步骤:
(1)设求轨迹的点为P(χ,y);
(2)由已知条件建立关于x,y的方程;
D,Q设线段ABQE的中点分别为几。・
①求证:直线P0过左点R,并求出泄点/?的坐标;
②求PGl的最小值。
专题练习
1.设椭圆E:丄y+ =y=l(α> b > 0)的右焦点到直线x-y + 2√z2=0的距离为3,且过点Cr Ir
I
2021年新高考数学专题复习-圆锥曲线专项练习(含答案解析)
2021年新高考数学专题复习-圆锥曲线专项练习1.已知椭圆22221(0)x y a b a bΓ+=>>:过点(02),,其长轴长、焦距和短轴长三者的平方依次成等差数列,直线l 与x 轴的正半轴和y 轴分别交于点Q P 、,与椭圆Γ相交于两点M N 、,各点互不重合,且满足12PM MQ PN NQ λλ==,. (1)求椭圆Γ的标准方程; (2)若直线l 的方程为1y x =-+,求1211λλ+的值;(3)若123,试证明直线l 恒过定点,并求此定点的坐标.2.已知动点M 到直线20x +=的距离比到点(1,0)F 的距离大1. (1)求动点M 所在的曲线C 的方程;(2)已知点(1,2)P ,A B 、是曲线C 上的两个动点,如果直线PA 的斜率与直线PB 的斜率互为相反数,证明直线AB 的斜率为定值,并求出这个定值;(3)已知点(1,2)P ,A B 、是曲线C 上的两个动点,如果直线PA 的斜率与直线PB 的斜率之和为2,证明:直线AB 过定点.3.已知椭圆2222:1(0)x y C a b a b +=>>经过点1,2P ⎛⎫ ⎪ ⎪⎝⎭,且离心率2e =. (1)求椭圆C 的标准方程;(2)若斜率为k 且不过点P 的直线l 交C 于,A B 两点,记直线PA ,PB 的斜率分别为1k ,2k ,且120k k +=,求直线l 的斜率k .4.如图,已知圆A :22(1)16x y ++=,点()10B ,是圆A 内一个定点,点P 是圆上任意一点,线段BP 的垂直平分线1l 和半径AP 相交于点Q .当点P 在圆上运动时,点Q 的轨迹为曲线C .(1)求曲线C 的方程;(2)设过点()4,0D 的直线2l 与曲线C 相交于,M N 两点(点M 在,D N 两点之间).是否存在直线2l 使得2DN DM =?若存在,求直线2l 的方程;若不存在,请说明理由.5.已知双曲线C 的方程为:22186x y -=,其左右顶点分别为:1A ,2A ,一条垂直于x轴的直线交双曲线C 于1P ,2P 两点,直线11A P 与直线22A P 相交于点P .(1)求点P 的轨迹E 的方程;(2)过点)Q的直线,与轨迹E 交于A ,B 两点,线段AB 的垂直平分线交x 轴于M 点,试探讨ABMQ是否为定值.若为定值,求出定值,否则说明理由. 6.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为1F ,2F ,过点2F 作直线l 交椭圆C 于M ,N 两点(l 与x 轴不重合),1F MN △,12F F M △的周长分别为12和8. (1)求椭圆C 的方程;(2)在x 轴上是否存在一点T ,使得直线TM 与TN 的斜率之积为定值?若存在,请求出所有满足条件的点T 的坐标;若不存在,请说明理由.7.已知椭圆C :22221x y a b +=(0a b >>)的离心率e =10x +-=被以椭圆C . (1)求椭圆C 的方程;(2)过点(4,0)M 的直线l 交椭圆于A ,B 两个不同的点,且||||||||MA MB MA MB λ+=⋅,求λ的取值范围.8.已知抛物线C :24y x =的焦点为F ,直线l :2y x a =+与抛物线C 交于A ,B 两点.(1)若1a =-,求FAB 的面积;(2)若抛物线C 上存在两个不同的点M ,N 关于直线l 对称,求a 的取值范围. 9.如图,直线l 与圆22:(1)1E x y ++=相切于点P ,与抛物线2:4C x y =相交于不同的两点,A B ,与y 轴相交于点(0,)(0)T t t >.(1)若T 是抛物线C 的焦点,求直线l 的方程;(2)若2||||||TE PA PB =⋅,求t 的值.10.在平面直角坐标系中,己知圆心为点Q 的动圆恒过点(1,0)F ,且与直线1x =-相切,设动圆的圆心Q 的轨迹为曲线Γ. (Ⅰ)求曲线Γ的方程;(Ⅱ)过点F 的两条直线1l 、2l 与曲线Γ相交于A 、B 、C 、D 四点,且M 、N 分别为AB 、CD 的中点.设1l 与2l 的斜率依次为1k 、2k ,若121k k +=-,求证:直线MN 恒过定点.11.已知椭圆()2222:10x y C a b a b +=>>的离心率为2,且直线1x y a b +=与圆222x y +=相切.(1)求椭圆C 的方程;(2)设直线l 与椭圆C 相交于不同的两点A ﹐B ,M 为线段AB 的中点,O 为坐标原点,射线OM 与椭圆C 相交于点P ,且O 点在以AB 为直径的圆上.记AOM ,BOP △的面积分别为1S ,2S ,求12S S 的取值范围. 12.已知抛物线2:2(0)E x py p =>的焦点为,F 点Р在抛物线E 上,点Р的横坐标为2,且2PF =.(1)求抛物线E 的标准方程;(2)若,A B 为抛物线E 上的两个动点(异于点P ),且AP AB ⊥,求点B 的横坐标的取值范围.13.如图,已知点F 为抛物线E :y 2=2px (p >0)的焦点,点A (2,m )在抛物线E 上,且|AF |=3.(1)求抛物线E 的方程;(2)已知点G (-1,0),延长AF 交抛物线E 于点B ,证明:GF 为∠AGB 的平分线.14.已知椭圆C :22221(0)x y a b a b +=>>的短轴长为2.(∠)求椭圆C 的方程;(∠)设过定点()02T ,的直线l 与椭圆C 交于不同的两点A 、B ,且∠AOB 为锐角,求直线l 的斜率k 的取值范围.参考答案1.(1)221124x y +=;(2)83-;(3)证明见解析,(2,0). 【分析】(1)由题意,得到2b =和222(2)(2)2(2)a b c +=,结合222a b c =+,求得2a 的值,即可求得椭圆Γ的标准方程;(2)由直线l 的方程为1y x =-+,根据12PM MQ PN NQ λλ==,,求得12121211x x x x λλ==--,,得到121212112x xx x λλ++=-,联立方程组,结合根与系数的关系,即可求解;(3)设直线l 的方程为()()0y k x m m =->,由1PM MQ ,得到111x m x λ=-和222xm xλ=-,联立方程组,结合根与系数的关系和123,求得2m =,得到直线l 的方程,即可求解. 【详解】(1)由题意,因为椭圆22221(0)x y a b a bΓ+=>>:过点(02),,可得2b =, 设焦距为2c ,又由长轴长、焦距和短轴长三者的平方依次成等差数列, 可得222(2)(2)2(2)a b c +=,即2222a b c +=又因为222a b c =+,解得212a =,所以椭圆Γ的标准方程为221124x y +=.(2)由直线l 的方程为1y x =-+,可得而(01)(10)P Q ,,,,设1122()()M x y N x y ,,,,因为12PM MQ PN NQ λλ==,,可得1111122222(1)(1)(1)(1)x y x y x y x y λλ-=---=--,,,,,, 从而111222(1)(1)x x x x λλ=-=-,,于是12121211x x x x λλ==--,,所以12121212111122x x x x x x λλ++=+-=-,由2211241x y y x ⎧+=⎪⎨⎪=-+⎩,整理得24690x x --=,可得12123924x x x x +==-,,所以1212121211118223x x x x x x λλ++=+-=-=-. (3)显然直线l 的斜率k 存在且不为零,设直线l 的方程为()()0y k x m m =->,1122()()M x y N x y ,,,,可得(0,)(,0)P km Q m -,,由1PMMQ ,可得11111()()x y km m x y λ+=--,,, 所以()111x x m λ=-,从而111x m x λ=-,同理222x m x λ=-, 又123,∠212122()30x x m x x m -++=①,联立221124()x y y k x m ⎧+=⎪⎨⎪=-⎩,得22222(13)63120k x k mx k m +-+-=, 则()42222222364(13)(312)121240k m k k m k k m -∆=+-=+->②,且2221212226312,1313k m k m x x x x k k -+==++③∠代入∠得2222222231263122300131313k m k m m m m k k k ---⋅+=⇒=+++,∠2m =,(满足∠)故直线l 的方程为()2y k x =-,所以直线l 恒过定点(20),. 2.(1)24y x =;(2)证明见解析,定值1-;(3)证明见解析.【分析】(1)根据题意转化为动点M 到直线1x =-的距离和到点(1,0)F 的距离相等,结合抛物线的定义,即可求得曲线C 的方程;(2)由:2(1)PA l y k x -=-和2(1)PB l y k x -=--:,分别联立方程组,求得()22242,k k A k k ⎛⎫-- ⎪ ⎪⎝⎭和()22242,k k B k k ⎛⎫+-- ⎪ ⎪⎝⎭,结合斜率公式,即可求解; (3)由::2(1)PA l y k x -=-,2(1)PB l y k x -=--:,分别联立方程组()22242,k k A k k ⎛⎫--⎪ ⎪⎝⎭和()222,22k k B k k ⎛⎫ ⎪ ⎪--⎝⎭,求得2(2)22AB k k k k k -=-+,求得直线AB l 的方程,即可求解. 【详解】(1)已知动点M 到直线20x +=的距离比到点(1,0)F 的距离大1,等价于动点M 到直线1x =-的距离和到点(1,0)F 的距离相等,由抛物线的定义可得曲线C 的轨迹时以(1,0)F 为焦点,以直线1x =-为准线的方程,且2p =,所以曲线C 的方程为24y x =.(2)设直线PA 的斜率为k ,因为直线PA 的斜率与直线PB 的斜率互为相反数,所以直线PB 的斜率为k -,则:2(1)PA l y k x -=-,2(1)PB l y k x -=--:联立方程组22(1)4y k x y x-=-⎧⎨=⎩,整理得24480ky y k --+=, 即()()2420ky k y +--=⎡⎤⎣⎦,可得()22242,k k A k k ⎛⎫-- ⎪ ⎪⎝⎭联立方程组22(1)4y k x y x-=--⎧⎨=⎩,整理得24480ky y k +--=,即()()2+420ky k y +-=⎡⎤⎣⎦,可得()22242,k k B k k ⎛⎫+-- ⎪ ⎪⎝⎭所以()()22224242122ABk kk k k k k k k ----==-+--,即直线AB 的斜率为定值1-. (3)设直线PA 的斜率为k ,所以直线PB 的斜率为2k -, 则2(1)PA l y k x -=-:,2(1)PB l y k x -=--:两类方程组22(1)4y k x y x-=-⎧⎨=⎩,整理得24480ky y k --+=, 即()()2420ky k y +--=⎡⎤⎣⎦,可得()22242,k k A k k ⎛⎫-- ⎪ ⎪⎝⎭, 联立方程组()222(1)4y k x y x⎧-=--⎨=⎩,可得()22440k y y k --+=,即()()2220k y k y ---=⎡⎤⎣⎦,可得()222,22k k B k k ⎛⎫⎪ ⎪--⎝⎭所以()()22222242(2)22222ABk kk k k k k k k k k k k ----==-+---, 所以()2222(2)2222AB k k k k l y x k k k k ⎛⎫--=- ⎪ ⎪--+-⎝⎭:,整理得()2(2)122k k y x k k -=+-+ 所以直线AB 恒过()1,0-.3.(1)2212x y +=;(2. 【分析】(1)由题意可得222221112a b c e a a b c ⎧+=⎪⎪⎪==⎨⎪=+⎪⎪⎩,解方程组即可求得,,a b c 的值,进而可得椭圆C 的标准方程;(2))设直线PA的方程为()112y k x -=-,()11,A x y ,()22,B x y ,与椭圆方程联立消元可得关于x 的一元二次方程,由韦达定理可得1x ,因为120k k +=,所以21k k =-,同理可得2x ,再利用1212y y k x x -=-即可求得直线l 的斜率k .【详解】(1)因为1,2P ⎛ ⎝⎭在椭圆C 上,所以221112a b +=,又2c e a ==,222a b c =+,由上述方程联立可得22a =,21b =,所以椭圆的标准方程为2212x y +=.(2)设直线PA的方程为()112y k x -=-, 设()11,A x y ,()22,B x y ,由122(1)12y k x x y ⎧=-⎪⎪⎨⎪+=⎪⎩消y 得: ())222111111222210k xk k x k +++--=,所以21112121112k x k --⨯=+,因为120k k +=,所以21k k =-,同理可得21122121112k x k +-⋅=+,因为2112214212k x x k -+=+,1122112x x k --=+,所以()111121112112121212222k x k k x k k x x k y y k x x x x x x ⎛-+--++ +--⎝⎭===---2242212k k k k --+=== 4.(1)22143x y+=(2)存在,(4)6y x =-或4)6y x =--.【分析】(1)结合垂直平分线的性质和椭圆的定义,求出椭圆C 的方程.(2)设出直线2l 的方程,联立直线2l 的方程和椭圆方程,写出韦达定理,利用2DN DM =,结合向量相等的坐标表示,求得直线2l 的斜率,进而求得直线2l 的方程.方法一和方法二的主要曲边是直线2l 的方程的设法的不同. 【详解】(1)因为圆A 的方程为22(1)16x y ++=,所以(1,0)A -,半径4r =.因为1l 是线段AP 的垂直平分线,所以||||QP QB =. 所以||||||||||4AP AQ QP AQ QB =+=+=.因为4||AB >,所以点Q 的轨迹是以(1,0)A -,(1,0)B 为焦点,长轴长24a =的椭圆.因为2a =,1c =,2223b a c =-=,所以曲线C 的方程为22143x y +=.(2)存在直线2l 使得2DN DM =.方法一:因为点D 在曲线C 外,直线2l 与曲线C 相交,所以直线2l 的斜率存在,设直线2l 的方程为(4)y k x =-.设112212(,),(,)()M x y N x y x x >,由22143(4)x y y k x ⎧+=⎪⎨⎪=-⎩ 得2222(34)32(6412)0k x k x k +-+-=. 则21223234k x x k +=+, ① 2122641234k x x k-=+, ② 由题意知2222(32)4(34)(6412)0k k k ∆=--+->,解得1122k -<<. 因为2DN DM =,所以2142(4)x x -=-,即2124x x =-. ③把③代入①得21241634k x k +=+,22241634k x k-+=+ ④ 把④代入②得2365k =,得6k =±,满足1122k -<<.所以直线2l的方程为:(4)6y x =-或4)6y x =--. 方法二:因为当直线2l 的斜率为0时,(2,0)M ,(2,0)N -,(6,0)DN =-,(2,0)DM =-此时2DN DM ≠.因此设直线2l 的方程为:4x ty =+.设112212(,),(,)()M x y N x y x x >,由221434x y x ty ⎧+=⎪⎨⎪=+⎩得22(34)24360t y ty +++=. 由题意知22(24)436(34)0t t ∆=-⨯+>,解得2t <-或2t >,则1222434ty y t +=-+, ① 1223634y y t =+, ②因为2DN DM =,所以212y y =. ③把③代入①得12834t y t =-+,221634ty t =-+ ④ 把④代入②得2536t =,t =±2t <-或2t >. 所以直线2l的方程为4)y x =-或4)y x =-. 5.(1)22186x y +;(2)为定值,4.【分析】(1)设直线为:0x x =,()100,P x y ,()200,P x y -,以及(),P x y,利用三点共线得到==,两式相乘化简得22022088y y x x =---,再利用点1P 在双曲线上代入整理即可得到答案;(2)显然直线l 不垂直x 轴,①当0k =时,易证4ABMQ=,②当0k ≠时,利用点斜式设出直线l 方程,联立直线l 与椭圆的方程消y ,得到关于x 的一元二次方程,利用韦达定理以及弦长公式求出AB ,求出AB 的中点坐标,利用点斜式求出线段AB 的垂直平分线的方程,求出点M 的坐标,利用两点间的距离公式求解MQ ,即可得出答案. 【详解】(1)由题意知:()1A -,()2A ,设直线为:0x x =,()100,P x y ,()200,P x y -,以及(),P x y , 由11,,A P P 三点以及22,,A P P 三点共线,则==,两式相乘化简得:22022088y y x x =---, 又2200186x y -=, 代入上式得轨迹E 的方程:22186x y +.(2)显然直线l 不垂直x 轴,①当0k =时,直线l 的方程为:0y =,线段AB 为椭圆的长轴,线段AB 的垂直平分线交x 轴于M 点,则AB =,()0,0M,MQ =所以4ABMQ=; ②当0k ≠时,设方程为:(y k x =,联立方程得(22186y k x x y ⎧=⎪⎨⎪+=⎩,化简整理得:()2222348240kxx k +-+-=,设()11,A x y ,()22,B x y ,212221223482434x x k k x x k ⎧+=⎪⎪+⎨-⎪=⎪+⎩,)2122143k AB x k +=-==+,线段AB的中点的坐标为222,3434P k k ⎛⎫- ⎪ ⎪++⎝⎭,线段AB的垂直平分线的方程为:22213434y x k k k ⎛⎫+=-- ⎪ ⎪++⎝⎭, 令0y =,则M ⎫⎪⎪⎝⎭,)22134k MQ k +==+,∴4ABMQ=. 综上:4ABMQ=. 6.(1)22198x y ;(2)存在,坐标为(3,0)-和(3,0).【分析】(1)由1F MN △,12F F M △的周长分别为12和8,可求椭圆基本量,进一步确定方程. (2)设直线代入消元,韦达定理整体代入定点满足的关系,探求恒成立的条件. 【详解】(1)设椭圆C 的焦距为2(0)c c >,由题意可得412228a a c =⎧⎨+=⎩,解得31a c =⎧⎨=⎩,所以b =因此椭圆C 的方程为22198x y .(2)因为直线l 过点2(1,0)F 且不与x 轴重合,所以设l 的方程为1x my =+,联立方程221198x my x y =+⎧⎪⎨+=⎪⎩,消去x 并整理得()228916640m y my ++-=,设()11,M x y ,()22,N x y ,则12212216896489m y y m y y m ⎧+=-⎪⎪+⎨⎪=-⎪+⎩,所以()1212218289x x m y y m +=++=+, ()()()2212121212272911189m x x my my m y y m y y m -+=++=+++=+. 设(,0)T t ,则直线TM 与TN 的斜率分别为11TM y k x t =-,22TN y k x t=-, 则()()1212TM TN y y k k x t x t ⋅=--()2122221212226489729188989y y m m x x t x x t t t m m -+==-+-++-⋅+++ ()222648729189t m t t -=-+-+.所以当28720t -=,即当3t =-时,m ∀∈R ,49TM TN k k ⋅=-; 当3t =时,m ∀∈R ,169TM TN k k ⋅=-. 因此,所有满足条件的T 的坐标为(3,0)-和(3,0).7.(1)2214x y +=;(2)2]3.【分析】(1)由直线与圆的位置关系可得1b =.由椭圆的离心率可得2a =,则椭圆C 的方程为2214x y +=. (2)当直线l 的斜率为0时,求出MA ,MB ,当直线l 的斜率不为0时,设直线l 方程为4x my =+,()11A x y ,,()22B x y ,,联立方程可得()2248120m y my +++=,满足题意时212m >,结合韦达定理以及弦长公式,化简整理,结合不等式的性质,据此即可所求范围. 【详解】(1)因为原点到直线10x +-=的距离为12,所以22212b ⎛⎫+= ⎪⎝⎭⎝⎭(0b >),解得1b =. 又22222314c b e a a ==-=,得2a =所以椭圆C 的方程为2214x y +=.(2)当直线l 的斜率为0时,12MA MB ⋅=,268MA MB +=+=,所以||||82||||123MA MB MA MB λ+===⋅,当直线l 的斜率不为0时,设直线l :4x my =+,()11A x y ,,()22B x y ,,联立方程组22414x my x y =+⎧⎪⎨+=⎪⎩,得()2248120m y my +++=, 由()22=644840m m ∆-+>,得212m >,所以122124y y m =+,12284my y m +=-+,()21221214m MA MB y y m +⋅==+,1212MA MB y y y +=+=+284mm =+,||||||||121MA MB MA MB m λ+====⋅+由212m >,得211113121m ∴<-<+,所以2233λ<<.23λ<≤,即2]3.8.(12)12a <- 【分析】(1)联立直线与抛物线,根据弦长公式求出||AB ,根据点到直线的距离公式求出点F 到直线的距离,根据三角形面积公式可求得结果;(2)设直线MN 的方程为12y x m =-+代入抛物线,利用判别式大于0可得2m >-, 根据韦达定理求出MN 的中点坐标,将其代入直线l 得到m 与a 的关系式,根据m 的范围可得a 的范围. 【详解】抛物线C :24y x =的焦点为F (1,0),(1)当1a =-时,直线:21l y x =-,联立2214y x y x=-⎧⎨=⎩,消去y 得21204x x -+=, 设11(,)A x y ,22(,)B x y ,则122x x +=,1214x x =,所以||AB ===点F 到直线:21l y x =-的距离d ==,所以FAB的面积为11||22AB d ==. (2)因为点M ,N 关于直线l 对称,所以直线MN 的斜率为12-, 所以可设直线MN 的方程为12y x m =-+, 联立2124y x m y x⎧=-+⎪⎨⎪=⎩,消去y 并整理得22(416)40x m x m -++=, 由22(416)160m m ∆=+->,得2m >-,设33(,)M x y ,44(,)N x y ,所以34416x x m +=+,所以343411()2(416)2822y y x x m m m +=-++=-⨯++=-, 所以MN 的中点为(28,4)m +-,因为点M ,N 关于直线l 对称,所以MN 的中点(28,4)m +-在直线:2l y x a =+上,所以42(28)m a -=++,得420a m =--,因为2m >-,所以12a <-.9.(1)1y =+;(2)12. 【分析】(1)由(0,)(0)T t t >为抛物线焦点,即可设直线l 的方程为1y kx =+,根据直线l 与圆相切可求k 值,写出直线方程.(2)设直线l 的方程为y kx t =+,()00,P x y ,()11,A x y ,()22,B x y ,由直线上两点距离公式可知()()0022||||14PA PB kxy ⋅==+-,根据直线l 与圆相切、2||||||TE PA PB =⋅求0y ,切线性质:直线l 与PE 互相垂直及00t y kx =-即可求t 的值.【详解】(1)因为(0,)(0)T t t >是抛物线2:4C x y =的焦点,所以1t =,即(0,1)T ,设直线l 的方程为1y kx =+,由直线l 与圆E1=,即k =,所以,直线l的方程为1y =+.(2)设直线l 的方程为y kx t =+,()00,P x y ,()11,A x y ,()22,B x y ,由24y kx tx y=+⎧⎨=⎩,得2440x kx t --=,124x x k +=,124x x t ⋅=-,∴1020||||PA PB x x ⋅=-⋅-()()221201201kx xx x x x ⎡⎤=+-++⎣⎦()()220014k x kx t ⎡⎤=+-+⎣⎦()()220014k x y =+-. 由直线l 与圆E1=,即221(1)k t +=+.由||1TE t =+,2||||||TE PA PB =⋅,得()()2220014(1)kxy t +-=+.所以20041x y -=,又()220011x y ++=,解得03y =-+.由直线l 与PE 互相垂直,得0011PE xk k y =-=-+, 200001i x t y kx y y =-=++220000001112x y y y y y ++-===++. 10.(Ⅰ)24y x =;(Ⅱ)证明见解析.【分析】(Ⅰ)设(,)Q x y,根据题意得到|1|x +=Γ的方程;(Ⅱ)设1l ,2l 的方程为12(1),(1)y k x y k x =-=-,联立方程组分别求得2121122,k M k k ⎛⎫+ ⎪⎝⎭,和2222222,k N k k ⎛⎫+ ⎪⎝⎭,进而得出MN k ,进而得出()111MN k k k =+,得出直线MN 的方程,即可判定直线MN 恒过定点. 【详解】(Ⅰ)由题意,设(,)Q x y ,因为圆心为点Q 的动圆恒过点(1,0)F ,且与直线1x =-相切,可得|1|x +=24y x =.(Ⅱ)设1l ,2l 的方程分别为1(1)y k x =-,2(1)y k x =-,联立方程组12(1)4y k x y x=-⎧⎨=⎩,整理得()2222111240k x k x k -++=, 所以21122124k x x k ++=,则2121122,k M k k ⎛⎫+ ⎪⎝⎭,同理2222222,k N k k ⎛⎫+ ⎪⎝⎭ 所以121222121222122222MNk k k k k k k k k k k -==+++-, 由121k k +=-,可得()111MN k k k =+,所以直线MN 的方程为()2111211221k y k k x k k ⎛⎫+-=+- ⎪⎝⎭ 整理得()1121(1)y k k x +=+-,所以直线MN 恒过定点(1,2)-.11.(1)22163x y +=;(2),33⎣⎦. 【分析】(1)依题意得到c a ==,再根据222c b a +=解方程即可;(2)由M 为线段AB 的中点,可得12OM S S OP=,对直线l 的斜率的斜率存在与否分两种情况讨论,当直线l 的斜率存在时,设直线():0l y kx m m =+≠,()11,A x y ,()22,B x y .联立直线与椭圆方程,消元列出韦达定理,根据0OA OB ⋅=,即可得到12120x x y y +=,从而得到m 与k 的关系,即可求出面积比的取值范围; 【详解】解:(1)∵椭圆的离心率为2,∴2c a =(c 为半焦距). ∵直线1x y a b+=与圆222x y +==.又∵222c b a +=,∴26a =,23b =.∴椭圆C 的方程为22163x y +=.(2)∵M 为线段AB 的中点,∴12AOM BOP OMS S S S OP==△△. (ⅰ)当直线l 的斜率不存在时,由OA OB ⊥及椭圆的对称性,不妨设OA 所在直线的方程为y x =,得22A x =.则22M x =,26P x =,∴123OM S S OP ==. (ⅱ)当直线l 的斜率存在时,设直线():0l y kx m m =+≠,()11,A x y ,()22,B x y .由22163y kx mx y =+⎧⎪⎨+=⎪⎩,消去y ,得()222214260k x kmx m ++-=+. ∴()()()2222221682138630k m k m k m ∆=-+-=-+>,即22630k m -+>.∴122421km x x k +=-+,21222621m x x k -=+. ∵点O 在以AB 为直径的圆上,∴0OA OB ⋅=,即12120x x y y +=. ∴()()221212121210x x y y kx xkm x x m +=++++=. ∴()22222264102121m km k km m k k -⎛⎫++-+= ⎪++⎝⎭. 化简,得2222m k =+.经检验满足0∆>成立.∴线段AB 的中点222,2121kmm M k k ⎛⎫-⎪++⎝⎭. 当0k =时,22m =.此时123S S ==. 当0k ≠时,射线OM 所在的直线方程为12y x k=-.由2212163y x k x y ⎧=-⎪⎪⎨⎪+=⎪⎩,消去y ,得2221221P k x k =+,22321P y k =+. ∴M P OM y OP y == ∴12S S ==12,33S S ⎛∈ ⎝⎭. 综上,12S S的取值范围为33⎣⎦.12.(1)24x y =;(2)[)(,)610--⋃∞+∞,. 【分析】()1由抛物线的定义可得022p y =-,再代入可求得p ,可得抛物线E 的标准方程为24x y =.()2由直线垂直的条件建立关于点A 、B 的坐标的方程,由根的判别式可求得范围.【详解】解:()1依题意得0,,2p F ⎛⎫ ⎪⎝⎭设()002,,22p P y y =-, 又点Р是E 上一点,所以4222p p ⎛⎫=-⎪⎝⎭,得2440p p -+=,即2p =, 所以抛物线E 的标准方程为24x y =.()2由题意知()2,1P , 设221212,,,,44x x A x B x ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭则()2111114224APx k x x -==+-,因为12x ≠-,所以142AB k x =-+,AB 所在直线方程为()2111442x y x x x --=-+,联立24x y =. 因为1x x ≠,得11(216(0))x x x +++=,即()21122160x x x x ++++=,因为()224216)0(x x ∆=+-+≥,即24600x x --≥,故10x ≥或6x ≤-经检验,当6x =-时,不满足题意.所以点B 的横坐标的取值范围是[)(,)610--⋃∞+∞,. 13.(1)y 2=4x ;(2)证明见解析. 【分析】(1)利用抛物线定义,由|AF |=2+2p=3求解. (2)根据点A (2,m )在抛物线E 上,解得m ,不妨设A (2,),直线AF 的方程为y(x -1),联立)214y x y x⎧=-⎪⎨=⎪⎩,然后论证k G A +k G B =0即可 【详解】(1)由抛物线定义可得|AF |=2+2p=3,解得p =2. ∠抛物线E 的方程为y 2=4x .(2)∠点A (2,m )在抛物线E 上, ∠m 2=4×2,解得m,由抛物线的对称性,不妨设A (2,),由A (2,,F (1,0),∠直线AF 的方程为y (x -1),由)214y x y x⎧=-⎪⎨=⎪⎩ 得2x 2-5x +2=0,解得x =2或12,∠B 1,2⎛ ⎝.又G (-1,0),∠k G A =3,k G B =3-∠k G A +k G B =0, ∠∠AGF =∠BGF . ∠GF 为∠AGB 的平分线. 【点睛】关键点点睛:由GF 为∠AGB 的平分线,即∠AGF =∠BGF ,转化为 k G A +k G B =0结合韦达定理证明.14.(∠)23x +y 2=1;(∠)11k ⎛⎫⎛∈-⋃ ⎪ ⎪ ⎝⎭⎝⎭. 【分析】(∠)根据椭圆短轴长公式、离心率公式,结合椭圆中,,a b c 的关系进行求解即可;(∠)根据平面向量数量积公式,结合一元二次方程根与系数关系、根的判别式进行求解即可. 【详解】(∠)由已知得 2b =2,所以1b =,又因为c a =所以有:2223c a =,而222c a b =-, 解得23a =,即椭圆C 的方程为23x +y 2=1.(∠)直线l 方程为y =kx +2,将其代入23x +y 2=1,得(3k 2+1)x 2+12kx +9=0,设A (x 1,y 1),B (x 2,y 2),∴△=(12k )2﹣36(1+3k 2)>0,解得k 2>1,由根与系数的关系,得x 1+x 2=21213kk -+,x 1x 2=2913k + ∵∠AOB 为锐角, ∴OA ⋅OB >0, ∴x 1x 2+y 1y 2>0,∴x 1x 2+(kx 1+2)(kx 2+2)>0, ∴(1+k 2)x 1x 2+2k (x 1+x 2)+4>0,化简得2213313k k -+>0,解得2133k <,由21k >且2133k <,解得1133k ⎛⎫⎛∈--⋃ ⎪ ⎪ ⎝⎭⎝⎭,.。
2021高考数学押题专练圆锥曲线(解析版)
由两圆方程作差即② ①得: 4x py 0 .
所以,切点弦 QR 所在直线的方程为 4x py 0 .
法二(求 Q、R 均满足的同一直线方程切点弦方程):
设 D 1, 0 , Q x1, y1 , R x2, y2 .
由 DQ PQ ,可得 Q 处的切线上任一点 T (x, y) 满足 QT DQ 0 (如图),
则 QR 恒过坐标原点 O 0, 0 .
4x py 0,
由 x 12 y2
消去 x 并整理得 4
16
p2
y2 8 py 48 0 .
设 Q x1,
y1
,
R x2,
y2
,则
y1
y2
8p 16 p2
.
点N
纵坐标
yN
y1 2
y2
4p 16 p2
.
因为 p 0 ,显然 yN 0 ,
由圆的性质,可得 DN QR ,即 DN ON (如图).
所以点
N
在以
OD
为直径的圆上,圆心为
G
1 2
,
0
,半径
r
1 2
.
因为直线 3x 4 y 6 分别与 x 轴、 y 轴交于点 E 、 F ,
所以
E
2,
0
,
F
0,
3 2
,
EF
5
.
2
又圆心
G
1 2
,
0
到直线
3x
4
y
6
0
的距离
d
【模拟专练】
21.(2021·山东高三二模)已知椭圆 C
:
x2 a2
y2 b2
1(a
2021年高考数学理试题分类汇编:圆锥曲线(含答案)
2021年高考数学理试题分类汇编:圆锥曲线(含答案)2021年高考数学理试题分类汇编——圆锥曲线一、选择题1.【2021年四川高考】设O为坐标原点,P是以F为焦点的抛物线y=2px(p>0)上任意一点,M是线段PF上的点,且PM=2MF,那么直线OM的斜率的最大值为?答案】C2.【2021年天津高考】双曲线x^2/a^2-y^2/b^2=1(b>0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A、B、C、D四点,四边形ABCD的面积为2b,那么双曲线的方程为?答案】D3.【2021年全国I高考】方程x^2/4-y^2/n^2=1表示双曲线,且该双曲线两焦点间的距离为4,那么n的取值范围是?答案】A4.【2021年全国I高考】以抛物线C的顶点为圆心的圆交C于A、B两点,交C的准线于D、E两点,|AB|=42,|DE|=25,那么C的焦点到准线的距离为?答案】B5.【2021年全国II高考】圆x+y-2x-8y+13=0的圆心到直线ax+y-1=0的距离为1,那么a=?答案】A6.【2021年全国II高考】圆F_1,F_2是双曲线E: x^2/4-y^2/9=1的左、右焦点,点M在E上,MF_1与x轴垂直,F_1F_2=b/a*sin∠MF_1F_2,那么E的离心率为?答案】A7.【2021年全国III高考】O为坐标原点,F是椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的左焦点,A、B分别为C的左、右顶点。
P为C上一点,且PF⊥x轴。
过点A的直线l与线段PF交于点M,与y轴交于点E。
假设直线BM经过OE的中点,那么C的离心率为?答案】A8.【2021年浙江高考】椭圆C_1: x^2/4+y^2/m^2=1(m>1)与双曲线C_2: x^2/4-y^2/n^2=1(n>0)的焦点重合,e_1,e_2分别为C_1,C_2的离心率,且e_1>e_2,那么m、n的大小关系是?答案】m>n2y-1由AN·BM = (x-a)(y-b)(x+c)(y+c) = (x+c)(y+c)得证。
圆锥曲线(解析版)--2024年高考真题和模拟题数学好题汇编
圆锥曲线1(新课标全国Ⅱ卷)已知曲线C :x 2+y 2=16(y >0),从C 上任意一点P 向x 轴作垂线段PP ,P 为垂足,则线段PP 的中点M 的轨迹方程为()A.x 216+y 24=1(y >0)B.x 216+y 28=1(y >0)C.y 216+x 24=1(y >0)D.y 216+x 28=1(y >0)【答案】A【分析】设点M (x ,y ),由题意,根据中点的坐标表示可得P (x ,2y ),代入圆的方程即可求解.【详解】设点M (x ,y ),则P (x ,y 0),P (x ,0),因为M 为PP 的中点,所以y 0=2y ,即P (x ,2y ),又P 在圆x 2+y 2=16(y >0)上,所以x 2+4y 2=16(y >0),即x 216+y 24=1(y >0),即点M 的轨迹方程为x 216+y 24=1(y >0).故选:A2(全国甲卷数学(理))已知双曲线C :y 2a 2-x 2b 2=1(a >0,b >0)的上、下焦点分别为F 10,4 ,F 20,-4 ,点P -6,4 在该双曲线上,则该双曲线的离心率为()A.4B.3C.2D.2【答案】C【分析】由焦点坐标可得焦距2c ,结合双曲线定义计算可得2a ,即可得离心率.【详解】由题意,F 10,-4 、F 20,4 、P -6,4 ,则F 1F 2 =2c =8,PF 1 =62+4+4 2=10,PF 2 =62+4-4 2=6,则2a =PF 1 -PF 2 =10-6=4,则e =2c 2a =84=2.故选:C .3(新高考天津卷)双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1、F 2.P 是双曲线右支上一点,且直线PF 2的斜率为2.△PF 1F 2是面积为8的直角三角形,则双曲线的方程为()A.x 28-y 22=1B.x 28-y 24=1C.x 22-y 28=1D.x 24-y 28=1【答案】C【分析】可利用△PF 1F 2三边斜率问题与正弦定理,转化出三边比例,设PF 2 =m ,由面积公式求出m ,由勾股定理得出c ,结合第一定义再求出a .【详解】如下图:由题可知,点P 必落在第四象限,∠F 1PF 2=90°,设PF 2 =m ,∠PF 2F 1=θ1,∠PF 1F 2=θ2,由k PF 2=tan θ1=2,求得sin θ1=25,因为∠F 1PF 2=90°,所以k PF 1⋅k PF 2=-1,求得k PF 1=-12,即tan θ2=12,sin θ2=15,由正弦定理可得:PF 1 :PF 2 :F 1F 2 =sin θ1:sin θ2:sin90°=2:1:5,则由PF 2 =m 得PF 1 =2m ,F 1F 2 =2c =5m ,由S △PF 1F 2=12PF 1 ⋅PF 2 =12m ⋅2m =8得m =22,则PF 2 =22,PF 1 =42,F 1F 2 =2c =210,c =10,由双曲线第一定义可得:PF 1 -PF 2 =2a =22,a =2,b =c 2-a 2=8,所以双曲线的方程为x 22-y 28=1.故选:C4(新课标全国Ⅰ卷)(多选)造型可以做成美丽的丝带,将其看作图中曲线C 的一部分.已知C 过坐标原点O .且C 上的点满足横坐标大于-2,到点F (2,0)的距离与到定直线x =a (a <0)的距离之积为4,则()A.a =-2B.点(22,0)在C 上C.C 在第一象限的点的纵坐标的最大值为1D.当点x 0,y 0 在C 上时,y 0≤4x 0+2【答案】ABD【分析】根据题设将原点代入曲线方程后可求a,故可判断A的正误,结合曲线方程可判断B的正误,利用特例法可判断C的正误,将曲线方程化简后结合不等式的性质可判断D的正误.【详解】对于A:设曲线上的动点P x,y,则x>-2且x-22+y2×x-a=4,因为曲线过坐标原点,故0-22+02×0-a=4,解得a=-2,故A正确.对于B:又曲线方程为x-22+y2×x+2=4,而x>-2,故x-22+y2×x+2=4.当x=22,y=0时,22-22×22+2=8-4=4,故22,0在曲线上,故B正确.对于C:由曲线的方程可得y2=16x+22-x-22,取x=32,则y2=6449-14,而6449-14-1=6449-54=256-24549×4>0,故此时y2>1,故C在第一象限内点的纵坐标的最大值大于1,故C错误.对于D:当点x0,y0在曲线上时,由C的分析可得y20=16x0+22-x0-22≤16x0+22,故-4x0+2≤y0≤4x0+2,故D正确.故选:ABD.【点睛】思路点睛:根据曲线方程讨论曲线的性质,一般需要将曲线方程变形化简后结合不等式的性质等来处理.5(新课标全国Ⅱ卷)(多选)抛物线C:y2=4x的准线为l,P为C上的动点,过P作⊙A:x2+(y-4)2=1的一条切线,Q为切点,过P作l的垂线,垂足为B,则()A.l与⊙A相切B.当P,A,B三点共线时,|PQ|=15C.当|PB|=2时,PA⊥ABD.满足|PA|=|PB|的点P有且仅有2个【答案】ABD【分析】A选项,抛物线准线为x=-1,根据圆心到准线的距离来判断;B选项,P,A,B三点共线时,先求出P 的坐标,进而得出切线长;C选项,根据PB=2先算出P的坐标,然后验证k PA k AB=-1是否成立;D选项,根据抛物线的定义,PB=PF,于是问题转化成PA=PF的P点的存在性问题,此时考察AF的中垂线和抛物线的交点个数即可,亦可直接设P点坐标进行求解.【详解】A选项,抛物线y2=4x的准线为x=-1,⊙A的圆心(0,4)到直线x=-1的距离显然是1,等于圆的半径,故准线l和⊙A相切,A选项正确;B选项,P,A,B三点共线时,即PA⊥l,则P的纵坐标y P=4,由y2P=4x P,得到x P=4,故P(4,4),此时切线长PQ=PA2-r2=42-12=15,B选项正确;C选项,当PB=2时,xP=1,此时y2P=4x P=4,故P(1,2)或P(1,-2),当P(1,2)时,A(0,4),B(-1,2),k PA=4-20-1=-2,k AB=4-20-(-1)=2,不满足k PA k AB=-1;当P(1,-2)时,A(0,4),B(-1,2),k PA=4-(-2)0-1=-6,k AB=4-(-2)0-(-1)=6,不满足k PA k AB=-1;于是PA⊥AB不成立,C选项错误;D选项,方法一:利用抛物线定义转化根据抛物线的定义,PB=PF,这里F(1,0),于是PA=PB时P点的存在性问题转化成PA=PF时P点的存在性问题,A(0,4),F(1,0),AF中点12,2,AF中垂线的斜率为-1kAF =14,于是AF的中垂线方程为:y=2x+158,与抛物线y2=4x联立可得y2-16y+30=0,Δ=162-4×30=136>0,即AF的中垂线和抛物线有两个交点,即存在两个P点,使得PA=PF,D选项正确.方法二:(设点直接求解)设Pt24,t,由PB⊥l可得B-1,t,又A(0,4),又PA=PB,根据两点间的距离公式,t416+(t-4)2=t24+1,整理得t2-16t+30=0,Δ=162-4×30=136>0,则关于t的方程有两个解,即存在两个这样的P点,D选项正确.故选:ABD6(新课标全国Ⅰ卷)设双曲线C:x2a2-y2b2=1(a>0,b>0)的左右焦点分别为F1、F2,过F2作平行于y轴的直线交C于A,B两点,若|F1A|=13,|AB|=10,则C的离心率为.【答案】3 2【分析】由题意画出双曲线大致图象,求出AF2,结合双曲线第一定义求出AF1,即可得到a,b,c的值,从而求出离心率.【详解】由题可知A ,B ,F 2三点横坐标相等,设A 在第一象限,将x =c 代入x 2a 2-y 2b 2=1得y =±b 2a ,即A c ,b 2a ,B c ,-b 2a ,故AB =2b 2a =10,AF 2 =b 2a=5,又AF 1 -AF 2 =2a ,得AF 1 =AF 2 +2a =2a +5=13,解得a =4,代入b 2a=5得b 2=20,故c 2=a 2+b 2=36,,即c =6,所以e =c a =64=32.故答案为:327(新高考北京卷)已知抛物线y 2=16x ,则焦点坐标为.【答案】4,0【分析】形如y 2=2px ,p ≠0 的抛物线的焦点坐标为p2,0,由此即可得解.【详解】由题意抛物线的标准方程为y 2=16x ,所以其焦点坐标为4,0 .故答案为:4,0 .8(新高考北京卷)已知双曲线x 24-y 2=1,则过3,0 且和双曲线只有一个交点的直线的斜率为.【答案】±12【分析】首先说明直线斜率存在,然后设出方程,联立双曲线方程,根据交点个数与方程根的情况列式即可求解.【详解】联立x =3与x 24-y 2=1,解得y =±52,这表明满足题意的直线斜率一定存在,设所求直线斜率为k ,则过点3,0 且斜率为k 的直线方程为y =k x -3 ,联立x 24-y 2=1y =k x -3 ,化简并整理得:1-4k 2x 2+24k 2x -36k 2-4=0,由题意得1-4k 2=0或Δ=24k 2 2+436k 2+4 1-4k 2 =0,解得k =±12或无解,即k =±12,经检验,符合题意.故答案为:±12.9(新高考天津卷)(x -1)2+y 2=25的圆心与抛物线y 2=2px (p >0)的焦点F 重合,A 为两曲线的交点,则原点到直线AF 的距离为.【答案】45/0.8【分析】先求出圆心坐标,从而可求焦准距,再联立圆和抛物线方程,求A 及AF 的方程,从而可求原点到直线AF 的距离.【详解】圆(x -1)2+y 2=25的圆心为F 1,0 ,故p2=1即p =2,由x -12+y 2=25y 2=4x可得x 2+2x -24=0,故x =4或x =-6(舍),故A 4,±4 ,故直线AF :y =±43x -1 即4x -3y -4=0或4x +3y -4=0,故原点到直线AF 的距离为d =45=45,故答案为:4510(新高考上海卷)已知抛物线y 2=4x 上有一点P 到准线的距离为9,那么点P 到x 轴的距离为.【答案】42【分析】根据抛物线的定义知x P =8,将其再代入抛物线方程即可.【详解】由y 2=4x 知抛物线的准线方程为x =-1,设点P x 0,y 0 ,由题意得x 0+1=9,解得x 0=8,代入抛物线方程y 2=4x ,得y 20=32,解得y 0=±42,则点P 到x 轴的距离为42.故答案为:42.11(新课标全国Ⅰ卷)已知A (0,3)和P 3,32 为椭圆C :x 2a 2+y 2b 2=1(a >b >0)上两点.(1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且△ABP 的面积为9,求l 的方程.【答案】(1)12(2)直线l 的方程为3x -2y -6=0或x -2y =0.【分析】(1)代入两点得到关于a ,b 的方程,解出即可;(2)方法一:以AP 为底,求出三角形的高,即点B 到直线AP 的距离,再利用平行线距离公式得到平移后的直线方程,联立椭圆方程得到B 点坐标,则得到直线l 的方程;方法二:同法一得到点B 到直线AP 的距离,再设B x 0,y 0 ,根据点到直线距离和点在椭圆上得到方程组,解出即可;法三:同法一得到点B 到直线AP 的距离,利用椭圆的参数方程即可求解;法四:首先验证直线AB 斜率不存在的情况,再设直线y =kx +3,联立椭圆方程,得到点B 坐标,再利用点到直线距离公式即可;法五:首先考虑直线PB 斜率不存在的情况,再设PB :y -32=k (x -3),利用弦长公式和点到直线的距离公式即可得到答案;法六:设线法与法五一致,利用水平宽乘铅锤高乘12表达面积即可.【详解】(1)由题意得b=39a2+94b2=1,解得b2=9a2=12,所以e=1-b2a2=1-912=12.(2)法一:k AP=3-320-3=-12,则直线AP的方程为y=-12x+3,即x+2y-6=0,AP=0-32+3-3 22=352,由(1)知C:x212+y29=1,设点B到直线AP的距离为d,则d=2×9352=1255,则将直线AP沿着与AP垂直的方向平移1255单位即可,此时该平行线与椭圆的交点即为点B,设该平行线的方程为:x+2y+C=0,则C+65=1255,解得C=6或C=-18,当C=6时,联立x212+y29=1x+2y+6=0,解得x=0y=-3或x=-3y=-32,即B0,-3或-3,-3 2,当B0,-3时,此时k l=32,直线l的方程为y=32x-3,即3x-2y-6=0,当B-3,-3 2时,此时k l=12,直线l的方程为y=12x,即x-2y=0,当C=-18时,联立x212+y29=1x+2y-18=0得2y2-27y+117=0,Δ=272-4×2×117=-207<0,此时该直线与椭圆无交点.综上直线l的方程为3x-2y-6=0或x-2y=0.法二:同法一得到直线AP的方程为x+2y-6=0,点B到直线AP的距离d=125 5,设B x0,y0,则x0+2y0-65=1255x2012+y209=1,解得x0=-3y0=-32或x0=0y0=-3,即B0,-3或-3,-3 2,以下同法一.法三:同法一得到直线AP的方程为x+2y-6=0,点B到直线AP的距离d=125 5,设B 23cos θ,3sin θ ,其中θ∈0,2π ,则有23cos θ+6sin θ-6 5=1255,联立cos 2θ+sin 2θ=1,解得cos θ=-32sin θ=-12或cos θ=0sin θ=-1,即B 0,-3 或-3,-32,以下同法一;法四:当直线AB 的斜率不存在时,此时B 0,-3 ,S △PAB =12×6×3=9,符合题意,此时k l =32,直线l 的方程为y =32x -3,即3x -2y -6=0,当线AB 的斜率存在时,设直线AB 的方程为y =kx +3,联立椭圆方程有y =kx +3x 212+y 29=1,则4k 2+3 x 2+24kx =0,其中k ≠k AP ,即k ≠-12,解得x =0或x =-24k 4k 2+3,k ≠0,k ≠-12,令x =-24k 4k 2+3,则y =-12k 2+94k 2+3,则B -24k 4k 2+3,-12k 2+94k 2+3同法一得到直线AP 的方程为x +2y -6=0,点B 到直线AP 的距离d =1255,则-24k4k 2+3+2×-12k 2+94k 2+3-65=1255,解得k =32,此时B -3,-32 ,则得到此时k l =12,直线l 的方程为y =12x ,即x -2y =0,综上直线l 的方程为3x -2y -6=0或x -2y =0.法五:当l 的斜率不存在时,l :x =3,B 3,-32,PB =3,A 到PB 距离d =3,此时S △ABP =12×3×3=92≠9不满足条件.当l 的斜率存在时,设PB :y -32=k (x -3),令P x 1,y 1 ,B x 2,y 2 ,y =k (x -3)+32x 212+y 29=1 ,消y 可得4k 2+3 x 2-24k 2-12k x +36k 2-36k -27=0,Δ=24k 2-12k 2-44k 2+3 36k 2-36k -27 >0,且k ≠k AP ,即k ≠-12,x 1+x 2=24k 2-12k 4k 2+3x 1x 2=36k 2-36k -274k 2+3,PB =k 2+1x 1+x 2 2-4x 1x 2=43k 2+13k 2+9k +2744k 2+3 ,A 到直线PB 距离d =3k +32k 2+1,S △PAB =12⋅43k 2+13k 2+9k +2744k 2+3⋅3k +32 k 2+1=9,∴k =12或32,均满足题意,∴l :y =12x 或y =32x -3,即3x -2y -6=0或x -2y =0.法六:当l 的斜率不存在时,l :x =3,B 3,-32,PB =3,A 到PB 距离d =3,此时S △ABP =12×3×3=92≠9不满足条件.当直线l 斜率存在时,设l :y =k (x -3)+32,设l 与y 轴的交点为Q ,令x =0,则Q 0,-3k +32,联立y =kx -3k +323x 2+4y 2=36,则有3+4k 2 x 2-8k 3k -32x +36k 2-36k -27=0,3+4k 2x 2-8k 3k -32x +36k 2-36k -27=0,其中Δ=8k 23k -322-43+4k 2 36k 2-36k -27 >0,且k ≠-12,则3x B =36k 2-36k -273+4k 2,x B =12k 2-12k -93+4k 2,则S =12AQ x P -x B =123k +32 12k +183+4k 2=9,解的k =12或k =32,经代入判别式验证均满足题意.则直线l 为y =12x 或y =32x -3,即3x -2y -6=0或x -2y =0.12(新课标全国Ⅱ卷)已知双曲线C :x 2-y 2=m m >0 ,点P 15,4 在C 上,k 为常数,0<k <1.按照如下方式依次构造点P n n =2,3,... ,过P n -1作斜率为k 的直线与C 的左支交于点Q n -1,令P n 为Q n -1关于y 轴的对称点,记P n 的坐标为x n ,y n .(1)若k =12,求x 2,y 2;(2)证明:数列x n -y n 是公比为1+k1-k的等比数列;(3)设S n 为△P n P n +1P n +2的面积,证明:对任意的正整数n ,S n =S n +1.【答案】(1)x 2=3,y 2=0(2)证明见解析(3)证明见解析【分析】(1)直接根据题目中的构造方式计算出P 2的坐标即可;(2)根据等比数列的定义即可验证结论;(3)思路一:使用平面向量数量积和等比数列工具,证明S n 的取值为与n 无关的定值即可.思路二:使用等差数列工具,证明S n 的取值为与n 无关的定值即可.【详解】(1)由已知有m =52-42=9,故C 的方程为x 2-y 2=9.当k =12时,过P 15,4 且斜率为12的直线为y =x +32,与x 2-y 2=9联立得到x 2-x +322=9.解得x =-3或x =5,所以该直线与C 的不同于P 1的交点为Q 1-3,0 ,该点显然在C 的左支上.故P 23,0 ,从而x 2=3,y 2=0.(2)由于过P n x n ,y n 且斜率为k 的直线为y =k x -x n +y n ,与x 2-y 2=9联立,得到方程x 2-k x -x n +y n 2=9.展开即得1-k 2 x 2-2k y n -kx n x -y n -kx n 2-9=0,由于P n x n ,y n 已经是直线y =k x -x n +y n 和x 2-y 2=9的公共点,故方程必有一根x =x n .从而根据韦达定理,另一根x =2k y n -kx n 1-k 2-x n =2ky n -x n -k 2x n1-k 2,相应的y =k x -x n +y n =y n +k 2y n -2kx n1-k 2.所以该直线与C 的不同于P n 的交点为Q n2ky n -x n -k 2x n 1-k 2,y n +k 2y n -2kx n1-k 2,而注意到Q n 的横坐标亦可通过韦达定理表示为-y n -kx n 2-91-k 2x n ,故Q n 一定在C 的左支上.所以P n +1x n +k 2x n -2ky n 1-k 2,y n +k 2y n -2kx n1-k 2.这就得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n1-k 2.所以x n +1-y n +1=x n +k 2x n -2ky n 1-k 2-y n +k 2y n -2kx n1-k 2=x n +k 2x n +2kx n 1-k 2-y n +k 2y n +2ky n 1-k 2=1+k 2+2k 1-k2x n -y n =1+k 1-k x n -y n .再由x 21-y 21=9,就知道x 1-y 1≠0,所以数列x n -y n 是公比为1+k 1-k 的等比数列.(3)方法一:先证明一个结论:对平面上三个点U ,V ,W ,若UV =a ,b ,UW =c ,d ,则S △UVW =12ad -bc .(若U ,V ,W 在同一条直线上,约定S △UVW =0)证明:S △UVW =12UV ⋅UW sin UV ,UW =12UV ⋅UW 1-cos 2UV ,UW =12UV⋅UW 1-UV ⋅UWUV ⋅UW 2=12UV 2⋅UW 2-UV ⋅UW 2=12a 2+b 2c 2+d 2-ac +bd2=12a 2c 2+a 2d 2+b 2c 2+b 2d 2-a 2c 2-b 2d 2-2abcd =12a 2d 2+b 2c 2-2abcd =12ad -bc2=12ad -bc .证毕,回到原题.由于上一小问已经得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n 1-k 2,故x n +1+y n +1=x n +k 2x n -2ky n 1-k 2+y n +k 2y n -2kx n 1-k 2=1+k 2-2k 1-k 2x n +y n=1-k1+k x n +y n .再由x 21-y 21=9,就知道x 1+y 1≠0,所以数列x n +y n 是公比为1-k 1+k 的等比数列.所以对任意的正整数m ,都有x n y n +m -y n x n +m=12x n x n +m -y n y n +m +x n y n +m -y n x n +m -12x n x n +m -y n y n +m -x n y n +m -y n x n +m =12x n -y n x n +m +y n +m -12x n +y n x n +m -y n +m =121-k 1+k m x n -y n x n +y n-121+k 1-k mx n +y n x n -y n =121-k 1+k m -1+k 1-k m x 2n -y 2n=921-k 1+k m -1+k 1-k m .而又有P n +1P n =-x n +1-x n ,-y n +1-y n ,P n +1P n +2=x n +2-x n +1,y n +2-y n +1 ,故利用前面已经证明的结论即得S n =S △P n P n +1P n +2=12-x n +1-x n y n +2-y n +1 +y n +1-y n x n +2-x n +1 =12x n +1-x n y n +2-y n +1 -y n +1-y n x n +2-x n +1 =12x n +1y n +2-y n +1x n +2 +x n y n +1-y n x n +1 -x n y n +2-y n x n +2=12921-k 1+k -1+k 1-k +921-k 1+k -1+k 1-k -921-k 1+k 2-1+k 1-k 2.这就表明S n 的取值是与n 无关的定值,所以S n =S n +1.方法二:由于上一小问已经得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n 1-k 2,故x n +1+y n +1=x n +k 2x n -2ky n 1-k 2+y n +k 2y n -2kx n 1-k 2=1+k 2-2k 1-k2x n +y n =1-k1+k x n +y n .再由x 21-y 21=9,就知道x 1+y 1≠0,所以数列x n +y n 是公比为1-k1+k的等比数列.所以对任意的正整数m ,都有x n y n +m -y n x n +m=12x n x n +m -y n y n +m +x n y n +m -y n x n +m -12x n x n +m -y n y n +m -x n y n +m -y n x n +m =12x n -y n x n +m +y n +m -12x n +y n x n +m -y n +m =121-k 1+k m x n -y n x n +y n-121+k 1-k mx n +y n x n -y n =121-k 1+k m -1+k 1-k m x 2n -y 2n =921-k 1+k m -1+k 1-k m.这就得到x n +2y n +3-y n +2x n +3=921-k 1+k -1+k1-k=x n y n +1-y n x n +1,以及x n +1y n +3-y n +1x n +3=921-k 1+k 2-1+k 1-k 2=x n y n +2-y n x n +2.两式相减,即得x n +2y n +3-y n +2x n +3 -x n +1y n +3-y n +1x n +3 =x n y n +1-y n x n +1 -x n y n +2-y n x n +2 .移项得到x n +2y n +3-y n x n +2-x n +1y n +3+y n x n +1=y n +2x n +3-x n y n +2-y n +1x n +3+x n y n +1.故y n +3-y n x n +2-x n +1 =y n +2-y n +1 x n +3-x n .而P n P n +3 =x n +3-x n ,y n +3-y n ,P n +1P n +2 =x n +2-x n +1,y n +2-y n +1 .所以P n P n +3 和P n +1P n +2平行,这就得到S △P n P n +1P n +2=S △P n +1P n +2P n +3,即S n =S n +1.【点睛】关键点点睛:本题的关键在于将解析几何和数列知识的结合,需要综合运用多方面知识方可得解.13(全国甲卷数学(理)(文))设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,点M 1,32 在C 上,且MF ⊥x 轴.(1)求C 的方程;(2)过点P 4,0 的直线与C 交于A ,B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q ,证明:AQ ⊥y 轴.【答案】(1)x 24+y 23=1(2)证明见解析【分析】(1)设F c ,0 ,根据M 的坐标及MF ⊥x 轴可求基本量,故可求椭圆方程.(2)设AB :y =k (x -4),A x 1,y 1 ,B x 2,y 2 ,联立直线方程和椭圆方程,用A ,B 的坐标表示y 1-y Q ,结合韦达定理化简前者可得y 1-y Q =0,故可证AQ ⊥y 轴.【详解】(1)设F c ,0 ,由题设有c =1且b 2a =32,故a 2-1a =32,故a =2,故b =3,故椭圆方程为x 24+y 23=1.(2)直线AB 的斜率必定存在,设AB :y =k (x -4),A x 1,y 1 ,B x 2,y 2 ,由3x 2+4y 2=12y =k (x -4) 可得3+4k 2 x 2-32k 2x +64k 2-12=0,故Δ=1024k 4-43+4k 2 64k 2-12 >0,故-12<k <12,又x 1+x 2=32k 23+4k 2,x 1x 2=64k 2-123+4k 2,而N 52,0 ,故直线BN :y =y 2x 2-52x -52 ,故y Q =-32y 2x 2-52=-3y 22x 2-5,所以y 1-y Q =y 1+3y 22x 2-5=y 1×2x 2-5 +3y 22x 2-5=k x 1-4 ×2x 2-5 +3k x 2-42x 2-5=k 2x 1x 2-5x 1+x 2 +82x 2-5=k2×64k 2-123+4k 2-5×32k 23+4k 2+82x 2-5=k128k 2-24-160k 2+24+32k 23+4k 22x 2-5=0,故y 1=y Q ,即AQ ⊥y 轴.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为x 1,y 1 ,x 2,y 2 ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,注意Δ的判断;(3)列出韦达定理;(4)将所求问题或题中的关系转化为x 1+x 2、x 1x 2(或y 1+y 2、y 1y 2)的形式;(5)代入韦达定理求解.14(新高考北京卷)已知椭圆方程C :x 2a 2+y 2b 2=1a >b >0 ,焦点和短轴端点构成边长为2的正方形,过0,t t >2 的直线l 与椭圆交于A ,B ,C 0,1 ,连接AC 交椭圆于D .(1)求椭圆方程和离心率;(2)若直线BD 的斜率为0,求t .【答案】(1)x 24+y 22=1,e =22(2)t =2【分析】(1)由题意得b =c =2,进一步得a ,由此即可得解;(2)说明直线AB 斜率存在,设AB :y =kx +t ,t >2 ,A x 1,y 1 ,B x 2,y 2 ,联立椭圆方程,由韦达定理有x 1+x 2=-4kt 1+2k 2,x 1x 2=2t 2-42k 2+1,而AD :y =y 1-y 2x 1+x 2x -x 1 +y 1,令x =0,即可得解.【详解】(1)由题意b =c =22=2,从而a =b 2+c 2=2,所以椭圆方程为x 24+y 22=1,离心率为e =22;(2)显然直线AB 斜率存在,否则B ,D 重合,直线BD 斜率不存在与题意不符,同样直线AB 斜率不为0,否则直线AB 与椭圆无交点,矛盾,从而设AB :y =kx +t ,t >2 ,A x 1,y 1 ,B x 2,y 2 ,联立x 24+y 22=1y =kx +t ,化简并整理得1+2k 2x 2+4ktx +2t 2-4=0,由题意Δ=16k 2t 2-82k 2+1 t 2-2 =84k 2+2-t 2 >0,即k ,t 应满足4k 2+2-t 2>0,所以x 1+x 2=-4kt 1+2k 2,x 1x 2=2t 2-42k 2+1,若直线BD 斜率为0,由椭圆的对称性可设D -x 2,y 2 ,所以AD :y =y 1-y 2x 1+x 2x -x 1 +y 1,在直线AD 方程中令x =0,得y C =x 1y 2+x 2y 1x 1+x 2=x 1kx 2+t +x 2kx 1+t x 1+x 2=2kx 1x 2+t x 1+x 2 x 1+x 2=4k t 2-2 -4kt +t =2t =1,所以t =2,此时k 应满足4k 2+2-t 2=4k 2-2>0k ≠0 ,即k 应满足k <-22或k >22,综上所述,t =2满足题意,此时k <-22或k >22.15(新高考天津卷)已知椭圆x 2a 2+y 2b 2=1(a >b >0)椭圆的离心率e =12.左顶点为A ,下顶点为B ,C 是线段OB 的中点,其中S △ABC =332.(1)求椭圆方程.(2)过点0,-32的动直线与椭圆有两个交点P ,Q .在y 轴上是否存在点T 使得TP ⋅TQ ≤0恒成立.若存在求出这个T 点纵坐标的取值范围,若不存在请说明理由.【答案】(1)x 212+y 29=1(2)存在T 0,t -3≤t ≤32,使得TP ⋅TQ ≤0恒成立.【详解】(1)因为椭圆的离心率为e =12,故a =2c ,b =3c ,其中c 为半焦距,所以A -2c ,0 ,B 0,-3c ,C 0,-3c 2 ,故S △ABC=12×2c ×32c =332,故c =3,所以a =23,b =3,故椭圆方程为:x 212+y 29=1.(2)若过点0,-32 的动直线的斜率存在,则可设该直线方程为:y =kx -32,设P x 1,y 1 ,Q x 2,y 2 ,T 0,t ,由3x 2+4y 2=36y =kx -32可得3+4k 2 x 2-12kx -27=0,故Δ=144k 2+1083+4k 2 =324+576k 2>0且x 1+x 2=12k 3+4k 2,x 1x 2=-273+4k 2,而TP =x 1,y 1-t ,TQ=x 2,y 2-t ,故TP ⋅TQ =x 1x 2+y 1-t y 2-t =x 1x 2+kx 1-32-t kx 2-32-t =1+k 2 x 1x 2-k 32+t x 1+x 2 +32+t 2=1+k 2 ×-273+4k 2-k 32+t ×12k 3+4k 2+32+t 2=-27k 2-27-18k 2-12k 2t +332+t 2+3+2t 2k 23+4k 2=3+2t2-12t -45 k 2+332+t 2-273+4k 2,因为TP ⋅TQ ≤0恒成立,故3+2t 2-12t -45≤0332+t 2-27≤0,解得-3≤t ≤32.若过点0,-32的动直线的斜率不存在,则P 0,3 ,Q 0,-3 或P 0,-3 ,Q 0,3 ,此时需-3≤t ≤3,两者结合可得-3≤t ≤32.综上,存在T 0,t-3≤t ≤32 ,使得TP ⋅TQ ≤0恒成立.【点睛】思路点睛:圆锥曲线中的范围问题,往往需要用合适的参数表示目标代数式,表示过程中需要借助韦达定理,此时注意直线方程的合理假设.16(新高考上海卷)已知双曲线Γ:x 2-y 2b2=1,(b >0),左右顶点分别为A 1,A 2,过点M -2,0 的直线l 交双曲线Γ于P ,Q 两点.(1)若离心率e =2时,求b 的值.(2)若b =263,△MA 2P 为等腰三角形时,且点P 在第一象限,求点P 的坐标.(3)连接OQ 并延长,交双曲线Γ于点R ,若A 1R ⋅A 2P=1,求b 的取值范围.【答案】(1)b =3(2)P 2,22 (3)0,3 ∪3,303【详解】(1)由题意得e =c a =c1=2,则c =2,b =22-1=3.(2)当b =263时,双曲线Γ:x 2-y 283=1,其中M -2,0 ,A 21,0 ,因为△MA 2P 为等腰三角形,则①当以MA 2为底时,显然点P 在直线x =-12上,这与点P 在第一象限矛盾,故舍去;②当以A 2P 为底时,MP =MA 2 =3,设P x ,y ,则 x 2-3y 28=1(x +2)2+y 2=9, 联立解得x =-2311y =-81711 或x =-2311y =81711或x =1y =0 ,因为点P 在第一象限,显然以上均不合题意,舍去;(或者由双曲线性质知MP >MA 2 ,矛盾,舍去);③当以MP 为底时,A 2P =MA 2 =3,设P x 0,y 0 ,其中x 0>0,y 0>0,则有x 0-1 2+y 20=9x 20-y 2083=1,解得x 0=2y 0=22,即P 2,22 .综上所述:P 2,22 .(3)由题知A 1-1,0 ,A 21,0 , 当直线l 的斜率为0时,此时A 1R ⋅A 2P=0,不合题意,则k l ≠0,则设直线l :x =my -2,设点P x 1,y 1 ,Q x 2,y 2 ,根据OQ 延长线交双曲线Γ于点R ,根据双曲线对称性知R -x 2,-y 2 , 联立有x =my -2x 2-y 2b2=1⇒b 2m 2-1 y 2-4b 2my +3b 2=0,显然二次项系数b 2m 2-1≠0,其中Δ=-4mb 2 2-4b 2m 2-1 3b 2=4b 4m 2+12b 2>0,y 1+y 2=4b 2m b 2m 2-1①,y 1y 2=3b 2b 2m 2-1②,A 1R =-x 2+1,-y 2 ,A 2P=x 1-1,y 1 ,则A 1R ⋅A 2P=-x 2+1 x 1-1 -y 1y 2=1,因为P x 1,y 1 ,Q x 2,y 2 在直线l 上,则x 1=my 1-2,x 2=my 2-2,即-my 2-3 my 1-3 -y 1y 2=1,即y 1y 2m 2+1 -y 1+y 2 3m +10=0,将①②代入有m 2+1 ⋅3b 2b 2m 2-1-3m ⋅4b 2m b 2m 2-1+10=0,即3b 2m 2+1 -3m ⋅4b 2m +10b 2m 2-1 =0化简得b 2m 2+3b 2-10=0,所以 m 2=10b 2-3, 代入到 b 2m 2-1≠0, 得 b 2=10-3b 2≠1, 所以 b 2≠3,且m 2=10b 2-3≥0,解得b 2≤103,又因为b >0,则0<b 2≤103,综上知,b 2∈0,3 ∪3,103 ,∴b ∈0,3 ∪3,303.【点睛】关键点点睛:本题第三问的关键是采用设线法,为了方便运算可设l :x =my -2,将其与双曲线方程联立得到韦达定理式,再写出相关向量,代入计算,要注意排除联立后的方程得二次项系数不为0.一、单选题1(2024·福建泉州·二模)若椭圆x 2a 2+y 23=1(a >0)的离心率为22,则该椭圆的焦距为()A.3B.6C.26或3D.23或6【答案】D【分析】分焦点在x 轴或y 轴两种情况,求椭圆的离心率,求解参数a ,再求椭圆的焦距.【详解】若椭圆的焦点在x 轴,则离心率e =a 2-3a =22,得a 2=6,此时焦距2c =26-3=23,若椭圆的焦点在y 轴,则离心率e =3-a 23=22,得a 2=32,此时焦距2c =23-32=6,所以该椭圆的焦距为23或6.故选:D2(2024·河北衡水·三模)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0),圆O 1:(x -2)2+y 2=4与圆O 2:x 2+(y -1)2=1的公共弦所在的直线是C 的一条渐近线,则C 的离心率为()A.3B.2C.5D.6【答案】C【详解】因为O 1:(x -2)2+y 2=4,O 2:x 2+(y -1)2=1,所以两圆方程相减可得y =2x ,由题意知C 的一条渐近线为y =2x ,即ba =2,双曲线C 的离心率e =c a =c 2a 2=a 2+b 2a 2=1+b 2a2=5.故选:C .3(2024·北京·三模)已知双曲线E :3mx 2-my 2=3的一个焦点坐标是0,2 ,则m 的值及E 的离心率分别为()A.-1,233B.-1,2C.1,2D.102,10【答案】A【详解】依题意,双曲线E :3mx 2-my 2=3化为:y 2-3m -x 2-1m=1,则-3m +-1m =22,解得m =-1,双曲线y 23-x 2=1的离心率e =23=233.故选:A4(2024·贵州贵阳·三模)过点A (-3,-4)的直线l 与圆C :(x -3)2+(y -4)2=9相交于不同的两点M ,N ,则线段MN 的中点P 的轨迹是()A.一个半径为10的圆的一部分B.一个焦距为10的椭圆的一部分C.一条过原点的线段D.一个半径为5的圆的一部分【答案】D【详解】设P (x ,y ),根据线段MN 的中点为P ,则CP ⊥MN ,即CP ⊥AP ,所以CP ⋅AP =0,又A (-3,-4),C (3,4),AP =(x +3,y +4),CP =(x -3,y -4),所以(x +3)(x -3)+(y +4)(y -4)=0,即x 2+y 2=25,所以点P 的轨迹是以(0,0)为圆心,半径为5的圆在圆C 内的一部分,故选:D .5(2024·湖南·模拟预测)已知点A 1,0 ,点B -1,0 ,动点M 满足直线AM ,BM 的斜率之积为4,则动点M 的轨迹方程为()A.x 24-y 2=1B.x 24-y 2=1(x ≠±1)C.x 2-y 24=1D.x 2-y 24=1(x ≠±1)【答案】D【详解】设动点M (x ,y )由于A 1,0 ,B -1,0 ,根据直线AM 与BM 的斜率之积为4.整理得y x +1⋅y x -1=4,化简得:x 2-y 24=1(x ≠±1).故选:D6(2024·陕西榆林·三模)在平面直角坐标系xOy 中,把到定点F 1-a ,0 ,F 2a ,0 距离之积等于a 2(a >0)的点的轨迹称为双纽线.若a =2,点P x 0,y 0 为双纽线C 上任意一点,则下列结论正确的个数是()①C 关于x 轴不对称②C 关于y 轴对称③直线y =x 与C 只有一个交点④C 上存在点P ,使得PF 1 =PF 2 A.1个 B.2个C.3个D.4个【答案】C【详解】①设M x ,y 到定点F 1-2,0 ,F 22,0 的距离之积为4,可得(x +2)2+y 2.(x -2)2+y 2=4,整理得x 2+y 2 2=8x 2-y 2 ,即曲线C 的方程为x 2+y 2 2=8x 2-y 2 ,由x 用-x 代换,方程没变,可知曲线C 关于y 轴对称,由y 用-y 代换,方程没变,可知曲线C 关于x 轴对称,由x 用-x 代换,y 用-y 同时代换,方程没变,可知曲线C 关于原点对称,图象如图所示:所以①不正确,②正确;③联立方程组x 2+y 2 2=8x 2-y 2y =x,可得x 4=0,即x =0,所以y =0,所以直线y =x 与曲线C 只有一个交点O (0,0),所以③正确.④原点O 0,0 满足曲线C 的方程,即原点O 在曲线C 上,则OF 1 =OF 2 ,即曲线C 上存在点P 与原点O 重合时,满足PF 1 =PF 2 ,所以④正确.故选:C .7(2024·福建泉州·二模)双曲线C :x 2a 2-y 2b 2=1(a >0,b >0),左、右顶点分别为A ,B ,O 为坐标原点,如图,已知动直线l 与双曲线C 左、右两支分别交于P ,Q 两点,与其两条渐近线分别交于R ,S 两点,则下列命题正确的是()A.存在直线l ,使得BQ ⎳OSB.当且仅当直线l 平行于x 轴时,|PR |=|SQ |C.存在过(0,b )的直线l ,使得S △ORB 取到最大值D.若直线l 的方程为y =-22(x -a ),BR =3BS ,则双曲线C 的离心率为3【答案】D【详解】解:对于A 项:与渐近线平行的直线不可能与双曲线有两个交点,故A 项错误;对于B 项:设直线l :y =kx +t ,与双曲线联立y =kx +tx 2a2-y 2b2=1,得:b 2-a 2k 2 x 2-2a 2ktx -a 2t 2+a 2b 2 =0,其中b 2-a 2k 2≠0,设P x 1,y 1 ,Q x 2,y 2 ,由根与系数关系得:x 1+x 2=2a 2kt b 2-a 2k 2,x 1x 2=-a 2b 2+a 2t 2b 2-a 2k 2,所以线段PQ 中点N x 1+x 22,y 1+y 22 =a 2kt b 2-a 2k 2,a 2k 2tb 2-a 2k2+t,将直线l :y =kx +t ,与渐近线y =b a x 联立得点S 坐标为S at b -ak ,btb -ak,将直线l :y =kx +t 与渐近线y =-b a x 联立得点R 坐标为R -at b +ak ,btb +ak ,所以线段RS 中点M a 2kt b 2-a 2k 2,a 2k 2tb 2-a 2k2+t,所以线段PQ 与线段RS 的中点重合.所以,对任意的直线l ,都有|PR |=|PQ |-|RS |2=|SQ |,故B 项不正确;对于C 项:因为|OB |为定值,当k 越来越接近渐近线y =-b a x 的斜率-ba 时,S △ORB 趋向于无穷,所以S △ORB 会趋向于无穷,不可能有最大值,故C 项错误;对于D 项:联立直线l 与渐近线y =bax ,解得Sa 22b +a ,ab2b +a,联立直线l 与渐近线y =-b a x ,解得R a 2-2b +a ,ab2b -a由题可知,BR =3BS ,3y S =y R +2y B ,3ab2b +a =ab2b -a ,解得b =2a ,所以e =1+b 2a2=1+(2a )2a 2=3,故D 项正确.故选:D .【点睛】方法点睛:求解椭圆或双曲线的离心率的三种方法:①定义法:通过已知条件列出方程组,求得a ,c 得值,根据离心率的定义求解离心率e ;②齐次式法:由已知条件得出关于a ,c 的二元齐次方程,然后转化为关于e 的一元二次方程求解;③特殊值法:通过取特殊值或特殊位置,求出离心率.8(2024·河南·二模)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左,右焦点分别为F 1,F 2,O 为坐标原点,焦距为82,点P 在双曲线C 上,OP =OF 2 ,且△POF 2的面积为8,则双曲线的离心率为()A.2B.22C.2D.4【答案】C【详解】因为△POF 2的面积为8,所以△PF 1F 2的面积为16.又OP =OF 2 ,所以OP =OF 2 =OF 1 =12F 1F 2,所以△PF 1F 2为直角三角形,且PF 1⊥PF 2.设PF 1 =m ,PF 2 =n ,所以m -n =2a ,m 2+n 2=4c 2,所以mn =m 2+n 2 -(m -n )22=4c 2-4a 22=2b 2,所以S △PF 1F 2=12mn =b 2=16,又b >0,所以b =4.焦距为2c =82,所以c =42,则a 2=c 2-b 2=(42)2-16=16,所以a =4,则离心率e =424=2.故选:C .9(2024·重庆·三模)已知抛物线y 2=4x 的焦点为F ,过点F 的直线l 交抛物线于A ,B 两点,点A 在第一象限,点O 为坐标原点,且S △AOF =2S △BOF ,则直线l 的斜率为()A.22B.3C.1D.-1【答案】A 【详解】如图:设直线倾斜角为α,抛物线的准线l :x =-1作AM ⊥l 于M ,根据抛物线的定义,AM =AF =DF +AF ⋅cos α=2+AF ⋅cos α,所以|AF |=21-cos α,类似的|BF |=21+cos α.由S △AOF =2S △BOF 知|AF |=2|BF |,得cos α=13,故k =tan α=22.故选:A10(2024·黑龙江齐齐哈尔·三模)设F 为抛物线C :y =ax 2的焦点,若点P (1,2)在C 上,则|PF |=()A.3B.52C.94D.178【答案】D【详解】依题意,2=a ×12,解得a =2,所以C :x 2=y 2的准线为y =-18,所以|PF |=2+18=178,故选:D .11(2024·山东泰安·二模)设抛物线x 2=4y 的焦点为F ,过抛物线上点P 作准线的垂线,设垂足为Q ,若∠PQF =30°,则PQ =()A.43B.433C.3D.233【答案】A【详解】如图所示:设 M 为准线与x 轴的交点,因为∠PQF =30°,且PF =PQ ,所以∠PFQ =30°,∠QPF =120°,因为FM ⎳PQ ,所以∠QFM =30°,而在Rt△QMF中,QF=FMcos30°=232=433,所以PF=PQ=QF2÷cos30°=233÷32=43.故选:A.二、多选题12(2024·江西·模拟预测)已知A-2,0,B2,0,C1,0,动点M满足MA与MB的斜率之积为-3 4,动点M的轨迹记为Γ,过点C的直线交Γ于P,Q两点,且P,Q的中点为R,则()A.M的轨迹方程为x24+y23=1B.MC的最小值为1C.若O为坐标原点,则△OPQ面积的最大值为32D.若线段PQ的垂直平分线交x轴于点D,则R点的横坐标是D点的横坐标的4倍【答案】BCD【详解】对于选项A,设M x,y,因为A-2,0,B2,0,所以k MA⋅k MB=yx+2⋅yx-2=-34,化简得x24+y23=1x≠±2,故A错误;对于选项B,因为x24+y23=1x≠±2,则a=2,b=3,则c=a2-b2=1,所以C1,0为椭圆的右焦点,则MCmin=a-c=2-1=1,故B正确;对于选项C,设PQ的方程 x=my+1,代入椭圆方程,得3m2+4y2+6my-9=0,设P x1,y1,Q x2,y2,则y1+y2=-6m3m2+4,y1y2=-93m2+4,Δ=36m2+363m2+4>0,所以S△OPQ=12OCy1-y2=12y1+y22-4y1y2=12-6m3m2+42+363m2+4=6m2+13m2+4,令m2+1=t≥1,则S△OPQ=6t3t2+1=63t+1t,令g t =3t+1tt≥1,则S△OPQ=6g t,t≥1,g t =3-1t2=3t2-1t2>0,g t 在1,+∞为增函数,g t ≥g1 =4,g t min=4,所以S△OPQmax=64=32,当且仅当t=1时即m=0等号成立,故C正确;对于选项D,因为Rx1+x22,y1+y22,x1+x22=m y1+y22+1=-3m23m2+4+1=43m2+4,y1+y22=-3m3m2+4,所以R43m2+4,-3m3m2+4,则x R=43m2+4,设D x D ,0 ,则k PQ ⋅k RD =1m ⋅3m3m 2+4x D -43m 2+4=-1,则x D =13m 2+4,所以x R x D=43m 2+413m 2+4=4,则R 点的横坐标是D 点的横坐标的4倍,故D 正确.故选:BCD .【点睛】关键点点睛:本题求解的关键有两个:一是利用面积公式得出面积表达式,结合导数得出最值;二是根据垂直平分得出点之间的关系.13(2024·江苏常州·二模)双曲线具有光学性质:从双曲线一个焦点发出的光线经过双曲线镜面反射,其反射光线的反向延长线经过双曲线的另一个焦点.如图,双曲线E :x 24-y 26=1的左、右焦点分别为F 1,F 2,从F 2发出的两条光线经过E 的右支上的A ,B 两点反射后,分别经过点C 和D ,其中AF 2 ,BF 2共线,则()A.若直线AB 的斜率k 存在,则k 的取值范围为-∞,-62 ∪62,+∞ B.当点C 的坐标为210,10 时,光线由F 2经过点A 到达点C 所经过的路程为6C.当AB ⋅AD =AB 2时,△BF 1F 2的面积为12D.当AB ⋅AD =AB 2时,cos ∠F 1F 2A =-1010【答案】ABD【详解】如图所示,过点F 2分别作E 的两条渐近线的平行线l 1,l 2,则l 1,l 2的斜率分别为62和-62,对于A 中,由图可知,当点A ,B 均在E 的右支时,k <-62或k >62,所以A 正确;对于B 中,光线由F 2经过点A 到达点C 所经过的路程为F 2A +AC =F 1A -2a +AC =F 1C -2a =(210+10)2+(10-0)2-4=6,所以B 正确;对于C 中,由AB ⋅AD =AB 2,得AB ⋅AD -AB =0,即AB ⋅BD=0,所以AB ⊥BD ,设BF 1 =n ,则BF 2 =n -2a =n -4,因为∠ABD =π2,所以n 2+(n -4)2=(2c )2=40,整理得n 2-4n -12=0,解得n =6或n =-2(舍去),所以BF 1 =6,BF 2 =2,所以△BF 1F 2的面积S =12BF 1 ⋅BF 2 =6,所以C 错误;对于D 项,在直角△F 1BF 2中,cos ∠F 1F 2B =BF 2 F 1F 2=2210=1010,所以cos ∠F 1F 2A =-cos ∠F 1F 2B =-1010,所以D 正确.故选:ABD .14(2024·重庆·三模)已知双曲线C :x 2a 2-y 216=1(a >0)的左,右焦点分别为F 1,F 2,P 为双曲线C 上点,且△PF 1F 2的内切圆圆心为I (3,1),则下列说法正确的是()A.a =3B.直线PF 1的斜率为14C.△PF 1F z 的周长为643D.△PF 1F 2的外接圆半径为6512【答案】ACD【详解】如图1,由条件,点P 应在双曲线C 的右支上,设圆I 分别与△PF 1F 2的三边切于点M 、N 、A ,则由题A 3,0 ,且PM =PN ,F 1M =F 1A ,F 2N =F 2A ,又∵PF 1 -PF 2 =F 1M -F 2N =AF 1 -F 2A =x A +c -c -x A =2x A =2a ∴a =x A =3,A 选项正确;由选项A 得F 1-5,0 ,F 25,0 ,连接IF 1、IF 2、IA ,则tan ∠IF 1A =IA AF 1=18,所以k PF 1=tan ∠PF 1A =tan2∠IF 1A =2tan ∠IF 1A 1-tan 2∠IF 1A=1663,B 选项错误;同理,tan ∠PF 2A =tan2∠IF 2A =43,∴tan ∠F 1PF 2=-tan ∠PF 1A +∠PF 2A =-125,∴⇒tan∠F 1PF 22=32,所以由焦三角面积公式得S △F 1PF 2=b 2tan∠F 1PF 22=323,又S △F 1PF 2=PF 1+PF 2+F 1F 2 r2,故得PF 1 +PF 2 +F 1F 2 =643,∴△PF 1F 2的周长为643,C 选项正确;由tan ∠F 1PF 2=-125⇒sin ∠F 1PF 2=1213,由正弦定理F 1F 2sin ∠F 1PF 2=2R 得R =6512,D 选项正确.故选:ACD .【点睛】关键点睛:求直线PF 1的斜率、△PF 1F z 的周长、△PF 1F 2的外接圆半径的关键是根据已知条件F 1A 、F 2A 、IA 以及与各个所需量的关系即可求出∠PF 1A =2∠IF 1A 、∠PF 2A =2∠IF 2A 和∠F 2PF 1.15(2024·湖北襄阳·二模)抛物线C :x 2=2py 的焦点为F ,P 为其上一动点,当P 运动到(t ,1)时,|PF |=2,直线l 与抛物线相交于A 、B 两点,下列结论正确的是()A.抛物线的方程为:x 2=8yB.抛物线的准线方程为:y =-1。
圆锥曲线(选填题)压轴题系列专题(一):圆锥曲线与“四心”问题(第4讲)(解析版)
专题一:圆锥曲线与四心问题(内心、重心、垂心、外心)从近几年圆锥曲线的命题风格看,既注重知识又注重能力,既突出圆锥曲线的本质特征。
而现在圆锥曲线中面积、弦长、最值等几乎成为研究的常规问题。
“四心”问题进入圆锥曲线,让我们更是耳目一新。
因此在高考数学复习中,通过让学生研究三角形的“四心”与圆锥曲线的结合问题,快速提高学生的数学解题能力,增强学生的信心,备战高考.专题目录:第1讲、圆锥曲线与内心问题第2讲、圆锥曲线与重心问题第3讲、圆锥曲线与垂心问题第4讲、圆锥曲线与外心问题第4讲、圆锥曲线与外心问题:三角形的外心:三角形三条垂直平分线的交点 知识储备:(1)、O 是ABC ∆的外心||||||OC OB OA ==⇔(或222OC OB OA ==);(2)、若点O 是ABC △的外心,则()()()OA OB AB OB OC BC OA OC AC +⋅=+⋅=+⋅=0.(3)、若O 是ABC ∆的外心,则sin 2sin 2B sin 02A OA OB C OC ⋅+⋅+⋅=; (4)、多心组合:ABC ∆的外心O 、重心G 、垂心H 共线,即OG ∥OH 经典例题例1.(2019年成都七中半期16题)1F ,2F 分别为双曲线22221(,0)x y a b a b-=>的左、右焦点,点P 在双曲线上,满足120PF PF ⋅=,若12PF F ∆的内切圆半径与外接圆半径之比为12,则该双曲线的离心率为_______ .1 【解析】∵120PF PF ⋅=,∴12PF PF ⊥,即12PF F ∆为直角三角形,∴222212124PF PF F F c +==,122PF PF a -=,则()()2222212121224PF PF PF PF PF PF c a ⋅=+--=-,()()2222121212484PFPF PFPF PF PF c a +=-+⋅=-.所以12PF F ∆内切圆半径12122PF PF F F r c +-==,外接圆半径R c =,=,整理得24c a ⎛⎫=+ ⎪⎝⎭1e =. 【点睛】本小题主要考查双曲线的定义,考查向量数量积为零的意义,考查双曲线离心率的求法,考查方程的思想,考查运算求解能力,属于中档题.例2.(2018全国高中数学联赛(湖北预赛))已知点P 的双曲线()222210,0x y a b a b-=>>上,12F F 、为双曲线的两个焦点,且210PF PF ⋅=,则12PF F ∆的内切圆半径r 与外接圆半径R 之比为____.1- 【解析】由120PF PF ⋅=,知1290PPF ∠=︒.设12,PF m PF n ==, 又122F F c =,则可得()1,22R c r m n c ==+-, 2224m n c +=, ① 2m n a -=. ②设rk R=,则()122r kR kc m n c ===+-,即有()22m n k c +=+. ③由①②③可得()22222248k c a c ++=,所以()22222213122c a k c e -+==-=,解得1k =-.故12PF F ∆的内切圆半径r 与外接圆半径R1- 例3.(2020年河南省质量检测(二)改编)已知椭圆22143x y +=的左、右焦点分别为12,F F ,过2F 的直线l 交椭圆C 于,A B 两点,过A 作x 轴的垂线交椭圆C 与另一点Q (Q 不与,A B 重合).设ABQ ∆的外心为G ,则2ABGF 的值为 .【答案】4【解析】由题意知,直线AB 的斜率存在,且不为0,设直线AB 为1x my =+, 代入椭圆方程得()2234690m y my ++-=. 设()()1122,,,A x y B x y ,则12122269,3434m y y y y m m --+==++, 所以AB 的中点坐标为2243,3434m m m -⎛⎫⎪++⎝⎭,所以()212221213434m AB y m m +=-=-++. 因为G 是ABQ ∆的外心,所以G 是线段AB 的垂直平分线与线段AQ 的垂直平分线的交点,AB 的垂直平分线方程为22343434m y m x m m ⎛⎫+=-- ⎪++⎝⎭,令0y =,得2134x m =+,即21,034G m ⎛⎫⎪+⎝⎭,所以222213313434m GF m m +=-=++,所以()22222121||1234433334m AB m m GF m ++===++,所以2||AB GF 值为4. 【点睛】本题主要考查了椭圆的标准方程,直线与椭圆的位置关系,属于难题.例4.(2020年湖北省宜昌市高三调研12题)设(),0F c 为双曲线2222:1(0,0)x y E a b a b-=>>的右焦点,以F 为圆心,b 为半径的圆与双曲线在第一象限的交点为P ,线段FP 的中点为D ,∆POF 的外心为I ,且满足()0OD OI λλ=≠,则双曲线E 的离心率为( ) ABC .2D【答案】D【解析】由题,因为()0OD OI λλ=≠,所以O 、D 、I 三点共线,因为点D 为线段FP 的中点,∆POF 的外心为I ,所以DI PF ⊥,即OD PF ⊥, 设双曲线的左焦点为(),0F c '-,则点O 为线段F F '的中点,则在PFF '中,//PF OD ',即PF PF '⊥,所以PFF '是直角三角形,所以222F F F P PF ''=+,因为PF b =,由双曲线定义可得2PF PF a '-=,所以2PF a b '=+, 则()()22222c a b b =++,因为222c a b =+,整理可得2b a =,所以c =,则ce a==,故选:D 【点睛】本题考查求双曲线的离心率,考查双曲线的定义的应用.例5.(2019年衡水中学联考12题)已知坐标平面xOy 中,点1F ,2F 分别为双曲线222:1x C y a-=(0a >)的左、右焦点,点M 在双曲线C 的左支上,2MF 与双曲线C 的一条渐近线交于点D ,且D 为2MF 的中点,点I 为2OMF △的外心,若O 、I 、D 三点共线,则双曲线C 的离心率为( )AB .3CD .5【答案】C【解析】不妨设点M 在第二象限,设(,)M m n ,2(,0)F c ,由D 为2MF 的中点,O 、I 、D 三点共线知直线OD 垂直平分2MF ,则:1OD y x a=,故有n a m c =--,且1122m c n a +⋅=⋅,解得21a m c-=,2n a c =, 将212,a a M c c ⎛⎫-⎪⎝⎭,即2222,a c a c c ⎛⎫- ⎪⎝⎭,代入双曲线的方程可得()2222222241aca a c c--=,化简可得225c a =,即e =当点M 在第三象限时,同理可得e =故选:C.【点睛】本题主要考查双曲线的标准方程,双曲线的简单性质的应用,运用平面几何的知识分析出直线OD 垂直平分2MF ,并用a c ,表示出点M 的坐标是解决此题的难点,属于中档题.例6.(2019云南省曲靖市二模16题)已知斜率为1的直线与抛物线24y x =交于,A B 两点,若OAB ∆的外心为(M O 为坐标原点),则当AB MO最大时,AB =____.【答案】.【解析】由题意知,MO 为OAB 外接圆的半径,在OAB 中,由正弦定理可知,2sin AB R AOB=∠(R 为OAB 外接圆的半径),当sin 1AOB ∠=,即90AOB ∠=︒时,AB MO取得最大值2.设()11,A x y ,()22,B x y ,易知10y ≠,20y ≠,则12120x x y y +=,得221212016y y y y ⋅+=,即12160y y +=.设直线AB 的方程为y x t =+,即x y t =-,代入24y x =得,2440y y t -+=,则124y y +=,124y y t =,所以4160t +=,解得4t =-.故12AB y y =-==.故答案为:【点睛】本题主要考查了正弦定理,直线与抛物线的关系,弦长公式,属于中档题.课后训练:变式1.P 为双曲线()2222:1,0x y C a b a b-=>上一点,12,F F 分别为C 的左、右焦点,212PF F F ⊥,若12PF F ∆外接圆半径与其内切圆半径之比为52,则C 的离心率为( ) AB .2CD .2或3【答案】D【解析】不妨设P 为右支上的点,则122PF PF a -=,设双曲线的半焦距为c ,则22b PF a=,212b PF a a =+,又12Rt PF F 外接圆半径为21122b PF a a=+. 12Rt PF F 内切圆的半径为222222-22b bc ac a a a r c a+---===, 因为12PF F ∆外接圆半径与其内切圆半径之比为52,故252=2b aac a +-, 故22560c ac a -+=,所以2c a =或3c a =,即2e =或3e =.故选:D.【点睛】圆锥曲线中的离心率的计算,关键是利用题设条件构建关于,,a b c 的一个等式关系.而离心率的取值范围,则需要利用坐标的范围、几何量的范围或点的位置关系构建关于,,a b c 的不等式或不等式组.变式2.(2018上海市高三模拟)已知椭圆22116x y m +=和双曲线221412x y m-=-,其中012m <<,若两者图像在第二象限的交点为A ,椭圆的左右焦点分别为B 、C ,T 为△ABC 的外心,则•AT BC 的值为_____. 【答案】16.【解析】已知椭圆22116x y m +=和双曲线221412x y m-=-,焦距相等所以焦点相同,设(,0),(,0),B c C c c -=A 为两曲线在第二象限的交点,||||AB AC <,84AB AC AB AC ⎧+=⎪⎨-=-⎪⎩,||2AB =, 设000(,),42A x y x -<<-,220016m y m x =-,||AB ==0424c x ===+=,08x c ∴=-,因为O 为BC 中点,△ABC 的外心T 在y 轴上,0OT BC ⋅=,08()(,)(2,0•)16AT B OT OA BC OA BC y c cC =-⋅=-⋅=--⋅=【点睛】本题考查求椭圆与双曲线交点的坐标,考查向量数量积运算,考查计算求解能力,属于中档题.变式3. P 为双曲线()2222:10,0x y C a b a b-=>>右支上的一点,12,F F 分别为左、右焦点,212PF F F ⊥,若12PF F ∆的外接圆半径是其内切圆半径的3倍,则双曲线C 的离心率为( )A.3 B.4 C.3或3 D.4或4-【答案】C【解析】212PF F F ⊥,∴点P 的坐标为2,b c a ⎛⎫ ⎪⎝⎭22b PF a =,则212b PF a a =+12PF F ∆的外接圆半径21122PF b r a a==+ 其内切圆半径222222b bc a a a r c a +--==- 12PF F ∆的外接圆半径是其内切圆半径的3倍,123r r ∴=,即()232b a c a a+=-化简可得22670c ac a --=即2670e e --=解得3e =±C【点睛】本题主要考查了计算双曲线的离心率,结合题意先计算出外接圆和内切圆的半径,然后结合数量关系求出结果,属于中档题.变式4.(2018年四川省棠湖中学三诊16题)已知点1(,0)F c -,2(,0)(0)F c c >是椭圆22221(0)x y a b a b+=>>的左、右焦点,点P 是这个椭圆上位于x 轴上方的点,点G 是12PF F ∆的外心,若存在实数λ,使得120GF GF GP λ++=,则当12PF F ∆的面积为8时,a 的最小值为__________. 【答案】4【解析】由G 是△PF 1F 2的外心,则G 在y 轴的正半轴上,120GF GF GP λ++=, 则1212()GP GF GF GO λλ=-+=-,则P ,G ,O 三点共线,即P 位于上顶点,则△PF 1F 2的面积S=12×b×2c=bc=8,由a 2=b 2+c 2≥2bc=16,则a ≥4,当且仅当时取等号, ∴a 的最小值为4,故答案为4.【点睛】(1)本题主要考查平面向量的共线定理和基本不等式,意在考查学生对这些知识的掌握水平和分析推理能力.(2)解答本题的关键是分析出1212()GP GF GF GO λλ=-+=-,得到P ,G ,O 三点共线,即P 位于上顶点.变式5.F 1,F 2分别为双曲线22221x y a b-=(a ,b >0)的左、右焦点,点P 在双曲线上,满足12PF PF ⋅=0,若△PF 1F 2的内切圆半径与外接圆半径之比为13,则该双曲线的离心率为_____.【答案】2【解析】120PF PF =,12PF PF ∴⊥.∴12PF F ∆的外接圆半径为1212F F c =,∴12PF F ∆的内切圆的半径为3c.设12PF F ∆的内切圆的圆心为M ,过M 作x 轴的垂线MN ,连接1MF ,2MF ,则3cMN =,设1NF m =,2NF n =,则2m n c +=,①不妨设P 在第一象限,由双曲线的定义可知122PF PF m na -=-=,② 由①②可得m a c =+,n c a =-,12PF PF ⊥,且1MF ,2MF 分别是12PF F ∠,21PF F ∠的角平分线,12214MF F MF F π∴∠+∠=,又121tan 33()MN c c MF F NF m a c ∠===+,2123()MN cMF F NF c a ∠==-, ∴2223()3()119()c c c a c a c c a ++-=--,化简可得2292a c =,故292e =,32e ∴=.故答案为:322.【点睛】本题考查了双曲线的性质,直线与圆的位置关系,属于中档题变式6. 数学家欧拉在1765年提出定理:三角形的外心、重心、垂心,依次在同一条直线上,且重心到外心的距离是重心到垂心距离的一半,这条直线后人称为三角形的欧拉线.已知ABC ∆的顶点)4,0(),0,2(B A ,若其欧拉线方程为02=+-y x ,则顶点C 的坐标是 .【答案】()4,0-【解析】设(),C m n ,由重心坐标公式得,ABC ∆的重心为24,33m n ++⎛⎫⎪⎝⎭, 代入欧拉线方程得:242033m n++-+=,整理得:40m n -+= ① AB 的中点为()1,2,40202AB k -==--,AB 的中垂线方程为()1212y x -=-,即230x y -+=. 联立23020x y x y -+=⎧⎨-+=⎩,解得11x y =-⎧⎨=⎩..ABC ∴∆的外心为()1,1-.则()()22221131m n ∴++-=+,整理得:22228m n m n ++-= ②联立①②得:4,0m n =-=或0,4m n ==.当0,4m n ==时,B C 重合,舍去.∴顶点C 的坐标是()4,0-. 考点:1新概念问题;2三角形的外心,重心,垂心.。
圆锥曲线高考真题浙江卷(解析版)-2021年高考数学圆锥曲线中必考知识专练
专题21:圆锥曲线高考真题浙江卷(解析版)一、单选题1.渐近线方程为0x y ±=的双曲线的离心率是( )A .2B .1CD .2【答案】C【分析】 本题根据双曲线的渐近线方程可求得a b =,进一步可得离心率.容易题,注重了双曲线基础知识、基本计算能力的考查.【详解】根据渐近线方程为x ±y =0的双曲线,可得a b =,所以c =则该双曲线的离心率为 e c a ==, 故选C .【点睛】理解概念,准确计算,是解答此类问题的基本要求.部分考生易出现理解性错误.2.已知点O (0,0),A (–2,0),B (2,0).设点P 满足|PA |–|PB |=2,且P 为函数y =图像上的点,则|OP |=( )A .2B .5C D【答案】D【分析】根据题意可知,点P 既在双曲线的一支上,又在函数y =的图象上,即可求出点P 的坐标,得到OP 的值.【详解】因为||||24PA PB -=<,所以点P 在以,A B 为焦点,实轴长为2,焦距为4的双曲线的右支上,由2,1c a ==可得,222413b c a =-=-=,即双曲线的右支方程为()22103y x x -=>,而点P还在函数y =的图象上,所以,由()22103y x x y ⎧⎪⎨->==⎪⎩,解得22x y ⎧=⎪⎪⎨⎪=⎪⎩,即OP == 故选:D.【点睛】本题主要考查双曲线的定义的应用,以及二次曲线的位置关系的应用,意在考查学生的数学运算能力,属于基础题.3.椭圆2x 9+2y 4=1的离心率是( ) A.3 B.3 C .23 D .59【答案】B【解析】 椭圆22194x y +=中22222945a b c a b ===-=,,.离心率e c a ==,故选B. 4.双曲线221 3x y -=的焦点坐标是( ) A.(),) B .()2,0-,()2,0C.(0,,(D .()0,2-,()0,2 【答案】B【分析】 根据双曲线方程确定焦点位置,再根据222c a b =+求焦点坐标.【详解】 因为双曲线方程为2213x y -=,所以焦点坐标可设为(,0)c ±, 因为222314,2c a b c =+=+==,所以焦点坐标为(20),选B.【点睛】。
2021年高考数学理试题分类汇编:圆锥曲线(含答案)
2021年高考数学理试题分类汇编圆锥曲线一、选择题1、〔2021年四川高考〕设O 为坐标原点,P 是以F 为焦点的抛物线22(p 0)y px => 上任意一点,M 是线段PF 上的点,且PM =2MF ,那么直线OM 的斜率的最大值为〔A 〔B 〕23〔C 〕2 〔D 〕1 【答案】C2、〔2021年天津高考〕双曲线2224=1x y b -〔b >0〕,以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A 、B 、C 、D 四点,四边形的ABCD 的面积为2b ,那么双曲线的方程为〔 〕〔A 〕22443=1y x -〔B 〕22344=1y x -〔C 〕2224=1x y b -〔D 〕2224=11x y - 【答案】D3、〔2021年全国I 高考〕方程x 2m 2+n –y 23m 2–n =1表示双曲线,且该双曲线两焦点间的距离为4,那么n 的取值范围是〔A 〕(–1,3) 〔B 〕(–1,3) 〔C 〕(0,3) 〔D 〕(0,3)【答案】A4、〔2021年全国I 高考〕以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点.|AB |=|DE|=C 的焦点到准线的距离为〔A 〕2 〔B 〕4 〔C 〕6 〔D 〕8 【答案】B5、〔2021年全国II 高考〕圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为1,那么a=〔 〕〔A 〕43- 〔B 〕34- 〔C 〔D 〕2 【答案】A6、〔2021年全国II 高考〕圆12,F F 是双曲线2222:1x y E a b-=的左,右焦点,点M 在E 上,1MF 与x 轴垂直,211sin 3MF F ∠=,那么E 的离心率为〔 〕〔A 〔B 〕32〔C 〔D 〕2【答案】A7、〔2021年全国III 高考〕O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C 的左,右顶点.P为C 上一点,且PF x ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .假设直线BM 经过OE 的中 点,那么C 的离心率为〔A 〕13〔B 〕12〔C 〕23〔D 〕34【答案】A8、〔2021年浙江高考〕 椭圆C 1:22x m +y 2=1(m >1)与双曲线C 2:22x n–y 2=1(n >0)的焦点重合,e 1,e 2分别为C 1,C 2的离心率,那么A .m >n 且e 1e 2>1B .m >n 且e 1e 2<1C .m <n 且e 1e 2>1D .m <n 且e 1e 2<1 【答案】A二、填空题1、〔2021年北京高考〕双曲线22221x y a b-=〔0a >,0b >〕的渐近线为正方形OABC 的边OA ,OC 所在的直线,点B 为该双曲线的焦点,假设正方形OABC 的边长为2,那么a =_______________. 【答案】22、〔2021年山东高考〕双曲线E :22221x y a b-= 〔a >0,b >0〕,假设矩形ABCD 的四个顶点在E 上,AB ,CD 的中点为E 的两个焦点,且2|AB |=3|BC |,那么E 的离心率是_______. 【答案】2【解析】由题意c 2=BC ,所以3c =AB ,于是点),23(c c 在双曲线E 上,代入方程,得1492222=b c -a c , 在由2c b a =+22得E 的离心率为2==ace ,应填2.3、〔2021年上海高考〕平行直线012:,012:21=++=-+y x l y x l ,那么21,l l 的距离_______________【答案】2554、〔2021年浙江高考〕假设抛物线y 2=4x 上的点M 到焦点的距离为10,那么M 到y 轴的距离是_______. 【答案】95、(2021江苏省高考)如图,在平面直角坐标系xOy 中,F 是椭圆22221()x y a b a b+=>>0 的右焦点,直线2b y = 与椭圆交于B ,C两点,且90BFC ∠= ,那么该椭圆的离心率是 ▲ .(第10题)63三、解答题1、〔2021年北京高考〕 椭圆C :22221+=x y a b〔0a b >>〕的离心率为32 ,(,0)A a ,(0,)B b ,(0,0)O ,OAB ∆的面积为1.〔1〕求椭圆C 的方程;〔2〕设P 的椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N. 求证:BM AN ⋅为定值. 【解析】⑴由,31122c ab a ==,又222a b c =+, 解得2,1, 3.a b c ===∴椭圆的方程为2214x y +=. ⑵方法一:设椭圆上一点()00,P x y ,那么220014x y +=.直线PA :()0022y y x x =--,令0x =,得0022M y y x -=-. ∴00212y BM x =+- 直线PB :0011y y x x -=+,令0y =,得001N x x y -=-. ∴0021x AN y =+- 0000000000220000000000221122222214448422x y AN BM y x x y x y x y x y x y x y x y x y ⋅=+⋅+--+-+-=⋅--++--+=--+将220014x y +=代入上式得=4AN BM ⋅故AN BM ⋅为定值.方法二:设椭圆 上一点()2cos ,sin P θθ,直线PA:()sin 22cos 2y x θθ=--,令0x =,得sin 1cos M y θθ=-. ∴sin cos 11cos BM θθθ+-=-直线PB :sin 112cos y x θθ-=+,令0y =,得2cos 1sin N x θθ=-. ∴2sin 2cos 21sin AN θθθ+-=-2sin 2cos 2sin cos 11sin 1cos 22sin 2cos 2sin cos 21sin cos sin cos 4AN BM θθθθθθθθθθθθθθ+-+-⋅=⋅----+=--+=故AN BM ⋅为定值.2、〔2021年山东高考〕平面直角坐标系xOy 中,椭圆C :()222210x y a b a b+=>> 的离心率是32,抛物线E :22x y =的焦点F 是C 的一个顶点.〔I 〕求椭圆C 的方程;〔II 〕设P 是E 上的动点,且位于第一象限,E 在点P 处的切线l 与C 交与不同的两点A ,B ,线段AB 的中点为D ,直线OD 与过P 且垂直于x 轴的直线交于点M . 〔i 〕求证:点M 在定直线上;〔ii 〕直线l 与y 轴交于点G ,记PFG △的面积为1S ,PDM △的面积为2S ,求12S S的最大值及取得最大值时点P 的坐标.【解析】(Ⅰ) 由离心率是23,有224=b a , 又抛物线y x 2=2的焦点坐标为)21,0(F ,所以21=b ,于是1=a , 所以椭圆C 的方程为1=4+22y x .(Ⅱ) 〔i 〕设P 点坐标为)0>(),2m m ,P 2m (, 由y x 2=2得x y =′,所以E 在点P 处的切线l 的斜率为m , 因此切线l 的方程为2=2m mx -y ,设),(),,(2211y x B y x A ,),(00y x D ,将2=2m mx -y 代入1=4+22y x ,得0=1+4)4+12322-m x m -x m (.于是23214+14=+m m x x ,232104+12=2+=m m x x x , 又)4+1(2=2=22200m -m m -mx y ,于是 直线OD 的方程为x m-y 41=. 联立方程x m -y 41=与m x =,得M 的坐标为)41M(m,-. 所以点M 在定直线41=y -上.〔ii 〕在切线l 的方程为2=2m mx -y 中,令0=x ,得2m =y 2-,即点G 的坐标为)2m G (0,-2,又)2m P(m,2,)21F(0,, 所以4)1+(=×21=S 21m m GF m ;再由)1)+2(4m -m ,1+4m 2m D(2223,得 )1+4(8)1+2(=1+4+2×41+2×21=S 2222322m m m m m m m 于是有 222221)1+2()1+)(1+4(2=S S m m m . 令1+2=2m t ,得222111+2=)1+)(21(2=S S t -t t t t - 当21=1t时,即2=t 时,21S S 取得最大值49.此时21=2m ,22=m ,所以P 点的坐标为)41,22P(. 所以21S S 的最大值为49,取得最大值时点P 的坐标为)41,22P(.3、〔2021年上海高考〕 有一块正方形菜地EFGH ,EH 所在直线是一条小河,收货的蔬菜可送到F 点或河边运走。
2021年高考数学圆锥曲线的综合问题
2021年高考数学圆锥曲线的综合问题解析几何是数形结合的典范,是高中数学的主要知识板块,是高考考查的重点知识之一,在解答题中一般会综合考查直线、圆、圆锥曲线等.试题难度较大,多以压轴题出现.解答题的热点题型有:(1)直线与圆锥曲线位置关系;(2)圆锥曲线中定点、定值、最值及范围的求解;(3)圆锥曲线中的判断与证明.第1课时 圆锥曲线中的最值、范围、证明问题考点一 圆锥曲线中的最值问题[例1] (2019·全国卷Ⅱ)已知点A (-2,0),B (2,0),动点M (x ,y )满足直线AM 与BM的斜率之积为-12.记M 的轨迹为曲线C . (1)求C 的方程,并说明C 是什么曲线;(2)过坐标原点的直线交C 于P ,Q 两点,点P 在第一象限,PE ⊥x 轴,垂足为E ,连接QE 并延长交C 于点G .①证明:△PQG 是直角三角形;②求△PQG 面积的最大值.(2019·河北省九校第二次联考)已知抛物线C :y 2=2px (p >0)的焦点为F ,若过点F 且斜率为1的直线与抛物线相交于M ,N 两点,且|MN |=8.(1)求抛物线C 的方程;(2)设直线l 为抛物线C 的切线,且l ∥MN ,P 为l 上一点,求PM ―→·PN ―→的最小值.考点二 圆锥曲线中的范围问题[例2] (2019·安徽五校联盟第二次质检)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的焦点坐标分别为F 1(-1,0),F 2(1,0),P 为椭圆C 上一点,满足3|PF 1|=5|PF 2|且cos ∠F 1PF 2=35. (1)求椭圆C 的标准方程;(2)设直线l :y =kx +m 与椭圆C 交于A ,B 两点,点Q ⎝⎛⎭⎫14,0,若|AQ |=|BQ |,求k 的取值范围.1.(2019·洛阳模拟)已知A ,B 是x 轴正半轴上两点(A 在B 的左侧),且|AB |=a (a >0),过A ,B 分别作x 轴的垂线,与抛物线y 2=2px (p >0)在第一象限分别交于D ,C 两点.(1)若a =p ,点A 与抛物线y 2=2px 的焦点重合,求直线CD 的斜率;(2)若O 为坐标原点,记△OCD 的面积为S 1,梯形ABCD 的面积为S 2,求S 1S 2的取值范围.2.已知A ,B 分别为曲线C :x 2a 2+y 2=1(y ≥0,a >0)与x 轴的左、右两个交点,直线l 过点B 且与x 轴垂直,M 为l 上位于x 轴上方的一点,连接AM 交曲线C 于点T .(1)若曲线C 为半圆,点T 为AB ︵的三等分点,试求出点M 的坐标.(2)若a >1,S △MAB =2,当△TAB 的最大面积为43时,求椭圆的离心率的取值范围.考点三 圆锥曲线中的证明问题[例3] (2018·全国卷Ⅰ)设椭圆C :x 22+y 2=1的右焦点为F ,过F 的直线l 与C 交于A ,B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程;(2)设O 为坐标原点,证明:∠OMA =∠OMB .(2019·福州市第一学期抽测)已知点A ⎝⎛⎭⎫1,-32在椭圆C :x 2a 2+y 2b 2=1(a >b >0)上,O 为坐标原点,直线l :x a 2-3y 2b 2=1的斜率与直线OA 的斜率乘积为-14. (1)求椭圆C 的方程;(2)不经过点A 的直线y =32x +t (t ≠0且t ∈R )与椭圆C 交于P ,Q 两点,P 关于原点的对称点为R (与点A 不重合),直线AQ ,AR 与y 轴分别交于两点M ,N ,求证:|AM |=|AN |.【课后专项练习】1.(2019·湖南省五市十校联考)已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为22,右焦点为F,以原点O为圆心,椭圆C的短半轴长为半径的圆与直线x-y+2=0相切.(1)求椭圆C的方程;(2)如图,过定点P(2,0)的直线l交椭圆C于A,B两点,连接AF并延长交C于M,求证:∠PFM=∠PFB.2.(2019·广东六校第一次联考)已知椭圆D :x 2a 2+y 2b 2=1(a >b >0)的离心率为e =22,点(-2,1)在椭圆D 上.(1)求椭圆D 的方程;(2)过椭圆D 内一点P (0,t )的直线l 的斜率为k ,且与椭圆D 交于M ,N 两点,设直线OM ,ON (O 为坐标原点)的斜率分别为k 1,k 2,若对任意k ,存在实数λ,使得k 1+k 2=λk ,求实数λ的取值范围.3.已知抛物线C :y 2=2px (p >0)的准线l 1与x 轴交于点M ,直线l 2:4x -3y +6=0与抛物线C 没有公共点,动点P 在抛物线C 上,点P 到l 1,l 2的距离之和的最小值等于2.(1)求抛物线C 的方程;(2)过点M 的直线与抛物线C 交于两个不同的点A ,B ,设MA ―→=λMB ―→ ⎝⎛⎭⎫13≤λ<1,求|AB |的取值范围.4.(2019·重庆七校联考)椭圆C:x2a2+y2b2=1(a>b>0)的离心率为12,其左焦点到点P(2,1)的距离为10.不经过原点O的直线l与椭圆C相交于A,B两点,且线段AB被直线OP 平分.(1)求椭圆C的方程;(2)求△ABP的面积取最大值时,直线l的方程.第2课时 圆锥曲线中的定点、定值、探索性问题考点一 定点问题[例1] (2019·郑州市第一次质量预测)设M 点为圆C :x 2+y 2=4上的动点,点M 在x轴上的投影为N .动点P 满足2PN ―→=3MN ―→,动点P 的轨迹为E .(1)求E 的方程;(2)设E 的左顶点为D ,若直线l :y =kx +m 与曲线E 交于A ,B 两点(A ,B 不是左、右顶点),且满足|DA ―→+DB ―→|=|DA ―→-DB ―→|,求证:直线l 恒过定点,并求出该定点的坐标.1.(2019·北京高考)已知抛物线C:x2=-2py经过点(2,-1).(1)求抛物线C的方程及其准线方程;(2)设O为原点,过抛物线C的焦点作斜率不为0的直线l交抛物线C于两点M,N,直线y=-1分别交直线OM,ON于点A和点B.求证:以AB为直径的圆经过y轴上的两个定点.2.(2019·安徽省考试试题)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的上顶点为P ,右顶点为Q ,直线PQ 与圆x 2+y 2=45相切于点M ⎝⎛⎭⎫25,45. (1)求椭圆C 的方程;(2)若不经过点P 的直线l 与椭圆C 交于A ,B 两点,且P A ―→·PB ―→=0,求证:直线l 过定点.考点二定值问题[例2]已知椭圆C:x2a2+y2b2=1(a>b>0),过A(2,0),B(0,1)两点.(1)求椭圆C的方程及离心率;(2)设P为第三象限内一点且在椭圆C上,直线P A与y轴交于点M,直线PB与x轴交于点N,求证:四边形ABNM的面积为定值.如图所示,已知点M(a,3)是抛物线y2=4x上一定点,直线AM,BM的斜率互为相反数,且与抛物线另交于A,B两个不同的点.(1)求点M到其准线的距离;(2)求证:直线AB的斜率为定值.考点三探索性问题[例3](2019·重庆市学业质量调研)如图,已知椭圆C:x2a2+y2b2=1(a>b>0),其左、右焦点分别为F1(-2,0)及F2(2,0),过点F1的直线交椭圆C于A,B两点,线段AB的中点为G,AB的中垂线与x轴和y轴分别交于D,E两点,且|AF1|,|F1F2|,|AF2|构成等差数列.(1)求椭圆C的方程;(2)记△GF 1D的面积为S1,△OED(O为坐标原点)的面积为S2.试问:是否存在直线AB,使得S1=S2?请说明理由.(2019·广州市调研测试)已知动圆C过定点F(1,0),且与定直线x=-1相切.(1)求动圆圆心C的轨迹E的方程;(2)过点M(-2,0)的任一条直线l与轨迹E交于不同的两点P,Q,试探究在x轴上是否存在定点N(异于点M),使得∠QNM+∠PNM=π?若存在,求点N的坐标;若不存在,请说明理由.【课后专项练习】1.(2019·开封模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,上顶点为M ,△MF 1F 2为等腰直角三角形,且其面积为1.(1)求椭圆C 的方程;(2)过点M 分别作直线MA ,MB 交椭圆C 于A ,B 两点,设这两条直线的斜率分别为k 1,k 2,且k 1+k 2=2,证明:直线AB 过定点.2.(2019·南昌市第一次模拟测试)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,离心率为12,P 是C 上的一个动点,且△F 1PF 2面积的最大值为4 3. (1)求C 的方程;(2)设C 的左、右顶点分别为A ,B ,若直线P A ,PB 分别交直线x =2于M ,N 两点,过点F 1作以MN 为直径的圆的切线,证明:切线长为定值,并求该定值.3.(2019·福州市质量检测)已知抛物线C 1:x 2=2py (p >0)和圆C 2:(x +1)2+y 2=2,倾斜角为45°的直线l 1过C 1的焦点,且l 1与C 2相切.(1)求p 的值;(2)动点M 在C 1的准线上,动点A 在C 1上,若C 1在A 点处的切线l 2交y 轴于点B ,设MN ―→=MA ―→+MB ―→,求证:点N 在定直线上,并求该定直线的方程.4.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1(-1,0),F 2(1,0),点A ⎝⎛⎭⎫1,22在椭圆C 上.(1)求椭圆C 的标准方程;(2)是否存在斜率为2的直线,使得当直线与椭圆C 有两个不同交点M ,N 时,能在直线y =53上找到一点P ,在椭圆C 上找到一点Q ,满足PM ―→=NQ ―→?若存在,求出直线的方程;若不存在,说明理由.已知F 为椭圆C :x 24+y 23=1的右焦点,M 为C 上的任意一点. (1)求|MF |的取值范围;(2)P ,N 是C 上异于M 的两点,若直线PM 与直线PN 的斜率之积为-34,证明:M ,N 两点的横坐标之和为常数.。
高考数学压轴题突破训练——圆锥曲线(含详解)
(Ⅰ)若当点P的坐标为 时, ,求双曲线的方程;
(Ⅱ)若 ,求双曲线离心率 的最值,并写出此时双曲线的渐进线方程.
15. 若F 、F 为双曲线 的左右焦点,O为坐标原点,P在双曲线的左支上,点M在右准线上,且满足; .
(1)求该双曲线的离心率;
(Ⅱ)若直线 与(Ⅰ)中所求点Q
的轨迹交于不同两点F,H,O是坐标原点,
且 ,求△FOH的面积的取值范围。
18. 如图所示,O是线段AB的中点,|AB|=2c,以点A为圆心,2a为半径作一圆,其中 。
(1)若圆A外的动点P到B的距离等于它到圆周的最短距离,建立适当坐标系,求动点P的轨迹方程,并说明轨迹是何种曲线;
(2)D分有向线段 的比为 ,A、D同在以B、C为焦点的椭圆上,
当 ―5≤ ≤ 时,求椭圆的离心率e的取值范围.
29.在直角坐标平面中, 的两个顶点 的坐标分别为 , ,平面内两点 同时满足下列条件:
① ;② ;③ ∥
(1)求 的顶点 的轨迹方程;
(2)过点 的直线 与(1)中轨迹交于 两点,求 的取值范围
由 消去 得: ①
,
而
由方程①知 > <
, < < , .
7.解:解:令
则 即
即
又∵ ∴
所求轨迹方程为
(Ⅱ)解:由条件(2)可知OAB不共线,故直线AB的斜率存在
设AB方程为
则
∵OAPB为矩形,∴OA⊥OB
∴ 得
所求直线方程为 …
8.解:(I)由题意,抛物线顶点为(-n,0),又∵焦点为原点∴m>0
高考数学压轴题突破训练:圆锥曲线
1. 如图,直线l1与l2是同一平面内两条互相垂直的直线,交点是A,点B、D在直线l1上(B、D 位于点A右侧),且|AB|=4,|AD|=1,M是该平面上的一个动点,M在l1上的射影点是N,且|BN|=2|DM|.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题1、圆锥曲线与重心问题从近几年圆锥曲线的命题风格看,既注重知识又注重能力,既突出圆锥曲线的本质特征。
而现在圆锥曲线中面积、弦长、最值等几乎成为研究的常规问题。
“四心”问题进入圆锥曲线,让我们更是耳目一新。
因此在高考数学复习中,通过让学生研究三角形的“四心”与圆锥曲线的结合问题,快速提高学生的数学解题能力,增强学生的信心,备战高考.三角形的重心:三角形三条中线的交点。
知识储备:(1)G 是ABC ∆的重心0GA GB GC ⇔++=;重心坐标(,)33A B C A B Cx x x y y y G ++++;(2)G 为ABC ∆的重心,P 为平面上任意点,则1(+)3PG PA PB PC =+;(3)重心是中线的三等分点;重心到顶点的距离与重心到对边中点的距离之比是2:1;(4)重心与三角形的3个顶点组成的3个三角形的面积相等,即重心到3条边的距离与3条边的长成反比; 经典例题例1、(2019成都市树德中学高三二诊12题)抛物线2:4C y x =的焦点为F ,点P 、Q 、R 在C 上,且PQR ∆的重心为F ,则PF QF +的取值范围为( ) A .993,,522⎛⎫⎛⎤ ⎪ ⎥⎝⎭⎝⎦ B .994,,522⎡⎫⎛⎤⎪ ⎢⎥⎣⎭⎝⎦ C .()93,44,2⎛⎫⎪⎝⎭D .[]3,5【答案】A【解析】由题意知,抛物线C 的焦点为()1,0F ,设点(),P P P x y 、(),Q Q Q x y 、(),R R R x y ,由重心的坐标公式得1303P Q RP Q R x x x y y y ++⎧=⎪⎪⎨++⎪=⎪⎩,()3R P Q x x x ∴=-+,()R P Q y y y =-+,设直线PQ 的方程为x ky m =+,由24x ky m y x=+⎧⎨=⎩,消去x 得2440y ky m --=,()221616160k m k m ∆=+=+>,由韦达定理得4P Q y y k +=,4P Q y y m =-,所以,()()()2242P Q P Q P Q x x ky m ky m k y y m k m +=+++=++=+,故()23342R P Q x x x k m =-+=--,()4R P Q y y y k =-+=-,将点R 的坐标代入抛物线C 的方程得()22164342k k m =⨯--,得2238m k =-, 则()()228228360k m k∆=+=->,得2102k≤<, 则(]222422543,5P Q PF QF x x k m k +=++=++=-∈.()1,0F 不在直线PQ 上,则1m ≠,此时,218k ≠,则92PF QF +≠. 因此,PF QF +的取值范围是993,,522⎛⎫⎛⎤⎪ ⎥⎝⎭⎝⎦.故选:A. 【点睛】考查抛物线与直线的综合,求距离的取值范围,重心坐标的计算,属于难题.例2.(2020·浙江高三月考)已知()11,0F -,21,0F ,M 是第一象限内的点,且满足124MF MF +=,若I 是12MF F △的内心,G 是12MF F △的重心,记12IF F △与1GF M △的面积分别为1S ,2S ,则( ) A .12S S > B .12S SC .12S S <D .1S 与2S 大小不确定【答案】B【分析】作出图示,根据,I G 的特点分别表示出1S ,2S ,即可判断出12,S S 的大小关系.【详解】因为121242MF MF F F +=>=,所以M 的轨迹是椭圆22143x y +=在第一象限内的部分,如图所示:因为I 是12MF F △的内心,设内切圆的半径为r ,所以()12121222MMFMF F F rF F y ++⋅⋅=,所以3M y r =,所以12121223I M F F y F F r y S ⋅⋅===, 又因为G 是12MF F △的重心,所以:1:2OG GM =,所以12112221133323M M MOF F OF F F yy S S S ⋅===⋅=,所以12S S ,故选:B . 【点睛】本题考查椭圆的定义,其中涉及到三角形的内心和重心问题,对学生分析图形中关系的能力要求较高,难度一般.例3.(2020·湖南长郡中学高三期中)已知1F 、2F 为椭圆()222210x y a b a b+=>>的左、右焦点,P 的椭圆上一点(左右顶点除外),G 为12PF F △为重心.若1223F GF π∠≤恒成立,则椭圆的离心率的取值范围是( ) A .10,3⎛⎤ ⎥⎝⎦B .10,2⎛⎤ ⎥⎝⎦C .11,32⎡⎤⎢⎥⎣⎦D .1,12⎡⎫⎪⎢⎣⎭【答案】B【分析】根据P 的椭圆上一点,且1223F GF π∠≤恒成立,不妨设点P 为上顶点,再根据G 为12PF F △为重心,由111tan 336GO PO b F O π==≥=求解. 【详解】因为P 的椭圆上一点,且1223F GF π∠≤恒成立,不妨设点P 为上顶点,如图所示:因为G 为12PF F △为重心,所以1133GO PO b ==,而1tan6GO FO π≥,即1GO O ≥,所以13b ≥,所以223b c ≥,所以2223a c c -≥,即214e ≤,解得102e <≤.故选:B 【点睛】本题主要考查椭圆的几何性质以及焦点三角形的应用,还考查了数形结合的思想和运算求解的能力,属于中档题.例4.(2020·全国高二单元测试)已知A 、B 分别是双曲线22:12y C x -=的左、右顶点,P 为C 上一点,且P 在第一象限.记直线PA ,PB 的斜率分别为1k ,2k ,当122k k +取得最小值时,PAB △的重心坐标为( ) A .(1,1) B .41,3⎛⎫⎪⎝⎭C .4,13⎛⎫⎪⎝⎭D .44,33⎛⎫⎪⎝⎭【答案】B【分析】由双曲线的性质可得点()1,0A -,()10B ,,设点()(,),1,0P x y x y >>,则122k k =,再由基本不等式可得1222k k ==,进而可得点(3,4)P ,即可求得重心坐标.【详解】由题意点()1,0A -,()10B ,,设点()(,),1,0P x y x y >>, 则10k >,20k >,2212222(1)21111y y y x k k x x x x -=⋅===+---,所以1224k k +≥=,当且仅当1222k k ==时取等号,所以221112yx y x ⎧=⎪⎪+⎨⎪-=⎪⎩,解得34x y =⎧⎨=⎩,所以点(3,4)P , 则PAB △重心坐标为113004,33-++++⎛⎫⎪⎝⎭即41,3⎛⎫⎪⎝⎭.故选:B. 【点睛】本题考查了直线斜率的求解及双曲线的应用,考查了基本不等式的应用及运算求解能力,属于中档题.例5.已知椭圆22:14x y C m+=的右焦点为()1,0F ,上顶点为B ,则B 的坐标为_____________,直线MN与椭圆C 交于M ,N 两点,且BMN △的重心恰为点F ,则直线MN 斜率为_____________.【答案】【分析】空1:由椭圆的标准方程结合右焦点的坐标,直接求出a , c ,再根据椭圆中a ,b ,c 之间的关系求出m 的值,最后求出上顶点B 的坐标;空2:设出直线MN 的方程,与椭圆联立,消去一个未知数,得到一个一元二次方程,利用一元二次方程根与系数的关系,结合中点坐标公式求出弦MN 的中点的坐标,再利用三角形重心的性质,结合平面向量共线定理进行求解即可.【详解】空1:因为22:14x y C m+=右焦点为()1,0F ,所以有40m >>且2,1a b c ===,而222a b c =+,所以413m m =+⇒=,因此椭圆上顶点的坐标为:; 空2:设直线MN 的方程为:y kx m =+,由(1)可知:椭圆的标准方程为:22143x y+=,直线方程与椭圆方程联立:22143x y y kx m⎧+=⎪⎨⎪=+⎩,化简得: 222(34)84120k x kmx m +++-=,设1122(,),(,)M x y N x y ,线段MN 的中点为D ,于是有:122834km x x k -+=+,121226()234m y y k x x m k +=++=+,所以D 点坐标为:2243()3434km mk k -++, 因为BMN △的重心恰为点F ,所以有2BF FD =,即2243(1,2(1,)3434km mk k -=-++,因此有:22224432(1)1(1)343423623434km km k k m m k k --⎧⎧-==⎪⎪⎪⎪++⇒⎨⎨⎪⎪⋅==⎪⎪++⎩⎩,(1)(2)÷得:k =MN斜率为4.故答案为:;4【点睛】本题考查了求椭圆上顶点的坐标,考查了直线与椭圆的位置关系的应用,考查了三角形重心的性质,考查了数学运算能力.例6.(2020·上海高三专题练习)已知直线L 交椭圆 2212016x y +=于M N 、两点,椭圆与y 轴的正半轴交于点B ,若BMN ∆的重心恰好落在椭圆的右焦点F 上,则直线L 的方程是__________. 【答案】65280x y --=【分析】结合重心坐标公式推导出弦中点坐标,可设()()1122,,,M x y N x y ,采用点差法,求出直线斜率,采用点斜式即可求出直线方程【详解】由题可知,()0,4B ,()2,0F ,设()()1122,,,M x y N x y ,由重心坐标得1212042,033x x y y ++++==, 所以弦MN 的中点坐标为12123,222x x y y ++==-,即()3,2-, 又()()1122,,,M x y N x y 在椭圆上,故221122221201612016x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩, 作差得()()()()12121212450x x x x y y y y +-++-= 将中点坐标代入得212165y y k x x -==-,所以直线L 的方程为:()6325y x =--,即65280x y --= 故答案为:65280x y --=【点睛】本题考查重心坐标公式,点差法的应用,点斜式的用法,属于中档题例7、(2020年石家庄高三模拟12题)已知抛物线C :28y x =的焦点为F ,()111,P x y ,()222,P x y ,()333,P x y 为抛物线C 上的三个动点,其中123x x x <<且20y <,若F 为123PP P △的重心,记123PP P △三边12P P ,13P P ,23P P 的中点到抛物线C 的准线的距离分别为1d ,2d ,3d ,且满足1322d d d +=,则13P P 所在直线的斜率为( ) A .1 B .32C .2D .3【答案】C【解析】由题意知12313321222;;2222x x x x x x d d d +++=+++=;带入1322d d d +=中,得到:()123132;2x x x x x +++=即2132x x x =+; 又F 为123PP P △的重心,则有1231232;033x x x y y y ++++==,即2226x x =-,得到222,4x y ==-,因此有134y y +=,故13P P 的中点坐标为(2,2). 所以直线的斜率为:13131382y y k x x y y -===-+;故答案为2.例8、(2019年衡水中学高三半期11题)在双曲线C :22221(0,0)x y a b a b-=>>的右支上存在点A ,使得点A与双曲线的左、右焦点1F ,2F 形成的三角形的内切圆P 的半径为a ,若12AF F ∆的重心G 满足12//PG F F ,则双曲线C 的离心率为( ) ABC .2 D【答案】C【解析】如图,由PG 平行于x 轴得G P y y a ==,则33A G y y a ==, 所以12AF F △的面积1232S c a =⋅⋅121(||||2)2AF AF c a =⋅++⋅,又12||||2AF AF a -=, 1||2AF c a =+则,2||2AF c a =-,由焦半径公式1||A AF a ex =+,2A x a =得,因此(23)A a a ,,代入椭圆方程得2222491a a a b-=,b =可得,2c a ==, 2.ce a==即故选C .例9、(2020年绵阳南山中学高三月考16题)已知P 为双曲线C :221412x y -=上一点,1F 、2F 为双曲线C 的左、右焦点,M 、I 分别为12PF F △的重心、内心,若M I x ⊥轴,则12PF F △内切圆的半径为 。