初三数学知识点总结(通用15篇)

合集下载

人教版初三数学知识点总结

人教版初三数学知识点总结

人教版初三数学知识点总结(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如公文写作、报告体会、演讲致辞、党团资料、合同协议、条据文书、诗词歌赋、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as official document writing, report experience, speeches, party and group materials, contracts and agreements, articles and documents, poems and songs, teaching materials, essay collections, other sample essays, etc. Learn about the different formats and writing styles of sample essays, so stay tuned!人教版初三数学知识点总结人教版初三数学知识点总结(通用15篇)人教版初三数学知识点总结篇1等腰三角形的判定方法1.有两条边相等的三角形是等腰三角形。

初三数学中考知识点总结【优秀10篇】

初三数学中考知识点总结【优秀10篇】

初三数学中考知识点总结【优秀10篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、计划大全、策划方案、报告大全、心得体会、演讲致辞、条据文书、作文大全、教案资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of classic sample essays for everyone, such as work summaries, plan summaries, planning plans, report summaries, insights, speeches, written documents, essay summaries, lesson plan materials, and other sample essays. If you want to learn about different formats and writing methods of sample essays, please stay tuned!初三数学中考知识点总结【优秀10篇】面对着中考,对于数学要想拿高分离不开平时的刻苦,以及大量的试题训练,当然也少不了一些备考的技巧。

初三数学知识点归纳总结

初三数学知识点归纳总结

初三数学知识点归纳总结初三数学学问点归纳总结1一、相像三角形(7个考点)考点1:相像三角形的概念、相像比的意义、画图形的放大和缩小考核要求:(1)理解相像形的概念;(2)驾驭相像图形的特点以及相像比的意义,能将已知图形根据要求放大和缩小.考点2:平行线分线段成比例定理、三角形一边的平行线的有关定理考核要求:理解并利用平行线分线段成比例定理解决一些几何证明和几何计算.留意:被判定平行的一边不行以作为条件中的对应线段成比例运用.考点3:相像三角形的概念考核要求:以相像三角形的概念为基础,抓住相像三角形的特征,理解相像三角形的定义.考点4:相像三角形的判定和性质及其应用考核要求:娴熟驾驭相像三角形的判定定理(包括预备定理、三个判定定理、直角三角形相像的判定定理)和性质,并能较好地应用.考点5:三角形的重心考核要求:知道重心的定义并初步应用.考点6:向量的有关概念考点7:向量的加法、减法、实数与向量相乘、向量的线性运算考核要求:驾驭实数与向量相乘、向量的线性运算二、锐角三角比(2个考点)考点8:锐角三角比(锐角的正弦、余弦、正切、余切)的概念,30度、45度、60度角的三角比值.考点9:解直角三角形及其应用考核要求:(1)理解解直角三角形的意义;(2)会用锐角互余、锐角三角比和勾股定理等解直角三角形和解决一些简洁的实际问题,尤其应当娴熟运用特别锐角的三角比的值解直角三角形.三、二次函数(4个考点)考点10:函数以及函数的定义域、函数值等有关概念,函数的表示法,常值函数考核要求:(1)通过实例相识变量、自变量、因变量,知道函数以及函数的定义域、函数值等概念;(2)知道常值函数;(3)知道函数的表示方法,知道符号的意义.考点11:用待定系数法求二次函数的解析式考核要求:(1)驾驭求函数解析式的方法;(2)在求函数解析式中娴熟运用待定系数法.留意求函数解析式的步骤:一设、二代、三列、四还原.考点12:画二次函数的图像考核要求:(1)知道函数图像的意义,会在平面直角坐标系中用描点法画函数图像;(2)理解二次函数的图像,体会数形结合思想;(3)会画二次函数的大致图像.考点13:二次函数的图像及其基本性质考核要求:(1)借助图像的直观、相识和驾驭一次函数的性质,建立一次函数、二元一次方程、直线之间的联系;(2)会用配方法求二次函数的顶点坐标,并说出二次函数的有关性质.留意:(1)解题时要数形结合;(2)二次函数的平移要化成顶点式.四、圆的相关概念(6个考点)考点14:圆心角、弦、弦心距的概念考核要求:清晰地相识圆心角、弦、弦心距的概念,并会用这些概念作出正确的推断.考点15:圆心角、弧、弦、弦心距之间的关系考核要求:认清圆心角、弧、弦、弦心距之间的关系,在理解有关圆心角、弧、弦、弦心距之间的关系的定理及其推论的基础上,运用定理进行初步的几何计算和几何证明.考点16:垂径定理及其推论垂径定理及其推论是圆这一板块中最重要的学问点之一.考点17:直线与圆、圆与圆的位置关系及其相应的数量关系直线与圆的位置关系可从与之间的关系和交点的个数这两个侧面来反映.在圆与圆的位置关系中,常须要分类探讨求解.考点18:正多边形的有关概念和基本性质考核要求:熟识正多边形的有关概念(如半径、边心距、中心角、外角和),并能娴熟地运用正多边形的基本性质进行推理和计算,在正多边形的计算中,经常利用正多边形的半径、边心距和边长的一半构成的直角三角形,将正多边形的计算问题转化为直角三角形的计算问题.考点19:画正三、四、六边形.考核要求:能用基本作图工具,正确作出正三、四、六边形.五、数据整理和概率统计(9个考点)考点20:确定事务和随机事务考核要求:(1)理解必定事务、不行能事务、随机事务的概念,知道确定事务与必定事务、不行能事务的关系;(2)能区分简洁生活事务中的必定事务、不行能事务、随机事务.考点21:事务发生的可能性大小,事务的概率考核要求:(1)知道各种事务发生的可能性大小不同,能推断一些随机事务发生的可能事务的大小并排出大小依次;(2)知道概率的含义和表示符号,了解必定事务、不行能事务的概率和随机事务概率的取值范围;(3)理解随机事务发生的频率之间的区分和联系,会依据大数次试验所得频率估计事务的概率.留意:(1)在给可能性的大小排序前可先用“肯定发生”、“很有可能发生”、“可能发生”、“不太可能发生”、“肯定不会发生”等词语来表述事务发生的可能性的大小;(2)事务的概率是确定的常数,而概率是不确定的,可是近似值,与试验的次数的多少有关,只有当试验次数足够大时才能更精确.考点22:等可能试验中事务的概率问题及概率计算本考点的考核要求是(1)理解等可能试验的概念,会用等可能试验中事务概率计算公式来计算简洁事务的概率;(2)会用枚举法或画“树形图”方法求等可能事务的概率,会用区域面积之比解决简洁的概率问题;(3)形成对概率的初步相识,了解机会与风险、规则公允性与决策合理性等简洁概率问题.在求解概率问题中要留意:(1)计算前要先确定是否为可能事务;(2)用枚举法或画“树形图”方法求等可能事务的概率过程中要将全部等可能状况考虑完整.考点23:数据整理与统计图表本考点考核要求是:(1)知道数据整理分析的`意义,知道普查和抽样调查这两种收集数据的方法及其区分;(2)结合有关代数、几何的内容,驾驭用折线图、扇形图、条形图等整理数据的方法,并能通过图表获得有关信息.考点24:统计的含义本考点的考核要求是:(1)知道统计的意义和一般探讨过程;(2)相识个体、总体和样本的区分,了解样本估计总体的思想方法.考点25:平均数、加权平均数的概念和计算本考点的考核要是:(1)理解平均数、加权平均数的概念;(2)驾驭平均数、加权平均数的计算公式.留意:在计算平均数、加权平均数时要防止数据漏抄、重抄、错抄等错误现象,提高运算精确率.考点26:中位数、众数、方差、标准差的概念和计算考核要求:(1)知道中位数、众数、方差、标准差的概念;(2)会求一组数据的中位数、众数、方差、标准差,并能用于解决简洁的统计问题.留意:当一组数据中出现极值时,中位数比平均数更能反映这组数据的平均水平;(2)求中位数之前必需先将数据排序.考点27:频数、频率的意义,画频数分布直方图和频率分布直方图考核要求:(1)理解频数、频率的概念,驾驭频数、频率和总量三者之间的关系式;(2)会画频数分布直方图和频率分布直方图,并能用于解决有关的实际问题.解题时要留意:频数、频率能反映每个对象出现的频繁程度,但也存在差别:在同一个问题中,频数反映的是对象出现频繁程度的肯定数据,全部频数之和是试验的总次数;频率反映的是对象频繁出现的相对数据,全部的频率之和是1.考点28:中位数、众数、方差、标准差、频数、频率的应用本考点的考核要是:(1)了解基本统计量(平均数、众数、中位数、方差、标准差、频数、频率)的意计算及其应用,并驾驭其概念和计算方法;(2)正确理解样本数据的特征和数据的代表,能依据计算结果作出推断和预料;(3)能将多个图表结合起来,综合处理图表供应的数据,会利用各种统计量来进行推理和分析,探讨解决有关的实际生活中问题,然后作出合理的解决.初三数学学问点归纳总结21、弧长公式n°的圆心角所对的弧长l的计算公式为L=nπr/1802、扇形面积公式,其中n是扇形的圆心角度数,R是扇形的半径,l是扇形的弧长.S=﹙n/360﹚πR2=1/2×lR3、圆锥的侧面积,其中l是圆锥的母线长,r是圆锥的地面半径. S=1/2×l×2πr=πrl4、弦切角定理弦切角:圆的切线与经过切点的弦所夹的角,叫做弦切角.弦切角定理:弦切角等于弦与切线夹的弧所对的圆周角.一、选择题1.(20xxo珠海,第4题3分)已知圆柱体的底面半径为3cm,髙为4cm,则圆柱体的侧面积为()A.24πcm2B.36πcm2C.12cm2D.24cm2考点:圆柱的计算.分析:圆柱的侧面积=底面周长×高,把相应数值代入即可求解.解答:解:圆柱的侧面积=2π×3×4=24π.故选A.点评:本题考查了圆柱的计算,解题的关键是弄清圆柱的侧面积的计算方法.2.(20xxo广西贺州,第11题3分)如图,以AB为直径的⊙O与弦CD 相交于点E,且AC=2,AE=,CE=1.则弧BD的长是()A.B.C.D.考点:垂径定理;勾股定理;勾股定理的逆定理;弧长的计算.分析:连接OC,先依据勾股定理推断出△ACE的形态,再由垂径定理得出CE=DE,故=,由锐角三角函数的定义求出∠A的度数,故可得出∠BOC 的度数,求出OC的长,再依据弧长公式即可得出结论.解答:解:连接OC,∵△ACE中,AC=2,AE=,CE=1,∴AE2+CE2=AC2,∴△ACE是直角三角形,即AE⊥CD,∵sinA==,∴∠A=30°,∴∠COE=60°,∴=sin∠COE,即=,解得OC=,∵AE⊥CD,∴=,∴===.故选B.【初三数学学问点归纳总结】。

初三数学的知识点归纳

初三数学的知识点归纳

初三数学的知识点归纳初三数学的知识点归纳(精选15篇)在现实学习生活中,是不是经常追着老师要知识点?知识点就是“让别人看完能理解”或者“通过练习我能掌握”的内容。

那么,都有哪些知识点呢?下面是店铺为大家收集的初三数学的知识点归纳,欢迎阅读与收藏。

初三数学的知识点归纳11、弧长公式n°的圆心角所对的弧长l的计算公式为L=nπr/1802、扇形面积公式,其中n是扇形的圆心角度数,R是扇形的半径,l是扇形的弧长.S=﹙n/360﹚πR2=1/2×lR3、圆锥的侧面积,其中l是圆锥的母线长,r是圆锥的地面半径.S=1/2×l×2πr=πrl4、弦切角定理弦切角:圆的切线与经过切点的弦所夹的角,叫做弦切角.弦切角定理:弦切角等于弦与切线夹的弧所对的圆周角.一、选择题1.(20xxo珠海,第4题3分)已知圆柱体的底面半径为3cm,髙为4cm,则圆柱体的侧面积为()A.24πcm2B.36πcm2C.12cm2D.24cm2考点:圆柱的计算.分析:圆柱的侧面积=底面周长×高,把相应数值代入即可求解.解答:解:圆柱的侧面积=2π×3×4=24π.故选A.点评:本题考查了圆柱的计算,解题的关键是弄清圆柱的侧面积的计算方法.2.(20xxo广西贺州,第11题3分)如图,以AB为直径的⊙O与弦CD相交于点E,且AC=2,AE=,CE=1.则弧BD的长是()A.B.C.D.考点:垂径定理;勾股定理;勾股定理的逆定理;弧长的计算.分析:连接OC,先根据勾股定理判断出△ACE的形状,再由垂径定理得出CE=DE,故=,由锐角三角函数的定义求出∠A的度数,故可得出∠BOC的度数,求出OC的长,再根据弧长公式即可得出结论.解答:解:连接OC,∵△ACE中,AC=2,AE=,CE=1,∴AE2+CE2=AC2,∴△ACE是直角三角形,即AE⊥CD,∵sinA==,∴∠A=30°,∴∠COE=60°,∴=sin∠COE,即=,解得OC=,∵AE⊥CD,∴=,∴===.故选B.初三数学的知识点归纳21、概念:把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角.旋转三要素:旋转中心、旋转方面、旋转角2、旋转的性质:(1)旋转前后的两个图形是全等形;(2)两个对应点到旋转中心的距离相等(3)两个对应点与旋转中心的连线段的夹角等于旋转角3、中心对称:把一个图形绕着某一个点旋转180,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.这两个图形中的对应点叫做关于中心的对称点.4、中心对称的性质:(1)关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分.(2)关于中心对称的两个图形是全等图形.5、中心对称图形:把一个图形绕着某一个点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.6、坐标系中的中心对称两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点P(-x,-y)。

初三数学知识点考点归纳总结

初三数学知识点考点归纳总结

初三数学知识点考点归纳总结一. 代数运算1.1 有理数有理数的四则运算,分数的加减乘除运算,化简分数、约分、分数转小数与百分数。

1.2 代数式代数式的基本概念、同类项合并、分配律、消元、整除关系、基本恒等式。

1.3 方程式一元一次方程式的解及其应用,一元二次方程式的解及其应用,二元一次方程式的解及其应用。

1.4 比例比例的概念、性质,比例的计算及应用,重复比例,反比例定理及其应用。

二. 几何与图形2.1 三角形角的概念、角度和弧度的转换,三角形的分类及性质,三角形的内角和定理,三角形的外角和定理。

2.2 直线与角平行直线和平行线特征及其性质,垂直直线和直角的特征及其性质,角的大小以及相邻角、对顶角等相关概念。

2.3 圆和圆的性质圆的基本性质,弧、弦、切线、割线等相关概念及其性质,圆内接四边形和正多边形。

2.4 空间几何与立体图形线面体的概念,正方体、长方体、棱柱、棱锥、圆柱、圆锥的性质和计算。

三. 概率与统计3.1 随机事件和概率事件的概念和性质,基本事件概率、加法规则,条件概率和乘法规则,概率分布和直方图的绘制。

3.2 常见概率问题求样本空间、容斥原理,贝叶斯定理,计算机模拟实验,概率统计中的应用问题。

四. 函数4.1 一些常见函数幂函数、指数函数、对数函数、三角函数、反三角函数的基本概念和性质。

4.2 函数的运算函数的加、减、乘、除的运算,函数的复合运算,导数的概念,导数的基本应用:切线问题和极值点问题。

以上是初三数学知识点考点的归纳总结。

需要注意的是,以上知识点只是初三数学所要学习的知识点的一个大致的方向,可能还存在某些细节问题需要重点学习。

同时,不管学习的什么知识点,都需要掌握好其基本概念和方法,这样才能在应用中灵活运用,解决问题,取得相应的成绩。

初三数学知识点

初三数学知识点

初三数学知识点初三数学知识点(通用15篇)在日复一日的学习中,看到知识点,都是先收藏再说吧!知识点就是“让别人看完能理解”或者“通过练习我能掌握”的内容。

哪些知识点能够真正帮助到我们呢?下面是店铺为大家收集的初三数学知识点,希望对大家有所帮助。

初三数学知识点1二次根式:一般地,式子叫做二次根式.注意:(1)若这个条件不成立,则不是二次根式;(2)是一个重要的非负数,即;0.2.重要公式:(1),(2)3.积的算术平方根:积的算术平方根等于积中各因式的算术平方根的积;4.二次根式的乘法法则:.5.二次根式比较大小的方法:(1)利用近似值比大小;(2)把二次根式的系数移入二次根号内,然后比大小;(3)分别平方,然后比大小.6.商的算术平方根:,商的算术平方根等于被除式的算术平方根除以除式的算术平方根.7.二次根式的除法法则:(1);(2);(3)分母有理化的方法是:分式的分子与分母同乘分母的有理化因式,使分母变为整式.8.最简二次根式:(1)满足下列两个条件的二次根式,叫做最简二次根式,①被开方数的因数是整数,因式是整式,②被开方数中不含能开的尽的因数或因式;(2)最简二次根式中,被开方数不能含有小数、分数,字母因式次数低于2,且不含分母;(3)化简二次根式时,往往需要把被开方数先分解因数或分解因式;(4)二次根式计算的最后结果必须化为最简二次根式.10.同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式.12.二次根式的混合运算:(1)二次根式的混合运算包括加、减、乘、除、乘方、开方六种代数运算,以前学过的,在有理数范围内的一切公式和运算律在二次根式的混合运算中都适用;(2)二次根式的运算一般要先把二次根式进行适当化简,例如:化为同类二次根式才能合并;除法运算有时转化为分母有理化或约分更为简便;使用乘法公式等.第22章一元二次方程1.一元二次方程的一般形式:0时,ax2+bx+c=0叫一元二次方程的一般形式,研究一元二次方程的有关问题时,多数习题要先化为一般形式,目的是确定一般形式中的a、b、其中a、b,、c可能是具体数,也可能是含待定字母或特定式子的代数式.2.一元二次方程的解法:一元二次方程的四种解法要求灵活运用,其中直接开平方法虽然简单,但是适用范围较小;公式法虽然适用范围大,但计算较繁,易发生计算错误;因式分解法适用范围较大,且计算简便,是首选方法;配方法使用较少.3.一元二次方程根的判别式:当ax2+bx+c=00)时,=b2-4ac叫一元二次方程根的判别式.请注意以下等价命题:0=有两个不等的实根;=0=有两个相等的实根;0=无实根;4.平均增长率问题--------应用题的类型题之一(设增长率为x):(1)第一年为a,第二年为a(1+x),第三年为a(1+x)2.(2)常利用以下相等关系列方程:第三年=第三年或第一年+第二年+第三年=总和.初三数学知识点2第21章二次根式1、二次根式:一般地,式子叫做二次根式。

初三数学知识点总结大全(热门6篇)

初三数学知识点总结大全(热门6篇)

初三数学知识点总结大全(热门6篇)初三数学知识点总结大全第1篇1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

2、三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

3、高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

4、中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线。

5、角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

6、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

7、多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。

8、多边形的内角:多边形相邻两边组成的角叫做它的内角。

9、多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。

10、多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。

11、正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形。

12、平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做多边形覆盖平面(平面镶嵌)。

镶嵌的条件:当围绕一点拼在一起的几个多边形的内角加在一起恰好组成一个时,就能拼成一个平面图形。

13、公式与性质:⑴三角形的内角和:三角形的内角和为180°⑵三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和。

性质2:三角形的一个外角大于任何一个和它不相邻的内角。

⑶多边形内角和公式:边形的内角和等于·180°⑷多边形的外角和:多边形的外角和为360°。

⑸多边形对角线的条数:①从边形的一个顶点出发可以引条对角线,把多边形分成个三角形、②边形共有条对角线。

初三数学知识点总结大全第2篇平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A 的算术平方根。

②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。

初三数学笔记整理大全

初三数学笔记整理大全

初三数学笔记整理大全
1. 数与代数:
整数:整数的性质,运算规则(加、减、乘、除),绝对值,数轴表示。

分数和小数:分数的性质,运算规则,小数与分数的转换。

一元一次方程和一元二次方程:解法步骤,根的判别式,韦达定理。

不等式:不等式的性质,解不等式的方法,不等式组的解法。

2. 几何与图形:
直线与平面图形:直线的性质,平行线和垂直线的性质,三角形(等腰三角形,直角三角形,等边三角形)的性质和定理,四边形(平行四边形,矩形,菱形,正方形)的性质和定理。

圆:圆的基本概念,圆的性质,弧长和扇形面积的计算,圆周角和圆心角的关系。

立体几何:长方体、正方体、圆柱、圆锥、球的表面积和体积计算。

3. 数据分析与概率:
数据的收集、整理和描述:频数分布表,频率分布直方图,平均数,中位数,众数,极差,方差和标准差。

概率:概率的定义,等可能事件的概率计算,互斥事件和独立事件的概率。

4. 实用工具与方法:
平面直角坐标系:坐标系的基本概念,点的坐标表示,直线的斜率和截距,两点间的距
离公式。

一次函数和二次函数:函数的概念,一次函数和二次函数的解析式,图像和性质,函数的应用问题。

解析几何初步:直线和圆的方程,直线与直线、直线与圆、圆与圆的位置关系。

5. 思维训练与综合应用:
数学模型:建立数学模型解决实际问题,如行程问题,工程问题,利润问题等。

推理与证明:逻辑推理,数学归纳法,演绎推理,反证法等。

综合题型解析:针对中考常见的综合题型进行解析和练习。

中考数学复习知识点归纳总结6篇

中考数学复习知识点归纳总结6篇

中考数学复习知识点归纳总结6篇篇1一、数与代数1. 数的基本概念:整数、分数、小数、百分数、比例、方程等。

2. 数的运算:加减乘除四则运算,乘方、开方运算,分数运算,小数运算等。

3. 代数表达式:用字母表示数,表达数量关系和变化规律。

4. 方程与不等式:解一元一次方程,解一元一次不等式,理解函数的概念。

二、几何与图形1. 几何概念:点、线、面、体,角、度数,平行、垂直等基本几何概念。

2. 图形与变换:平移、旋转、对称等图形变换,相似图形,全等图形。

3. 面积与体积:计算平面图形的面积,计算立体图形的体积。

4. 解析几何:理解直线的方程,理解圆及其方程。

三、函数与图像1. 函数的概念:理解变量间的关系,用解析式表示函数关系。

2. 函数的运算:函数的加减法,函数的乘法,复合函数。

3. 函数的图像:理解函数的图像及其变换,根据图像理解函数的性质。

4. 反函数与对称函数:理解反函数的概念,理解对称函数的概念。

四、数据与概率1. 数据收集与整理:理解数据收集的方法,会用统计图表表示数据。

2. 数据的计算:平均数、中位数、众数等统计量的计算,方差和标准差的计算。

3. 概率的概念:理解概率的基本概念,会计算事件的概率。

4. 概率的应用:理解概率在生活中的应用,会解决与概率相关的问题。

五、综合与实践1. 图形的变换与对称:运用几何知识解决实际问题,理解图形的变换和对称。

2. 函数的实际应用:理解函数在实际问题中的应用,如利润、成本等问题。

3. 数据的分析与决策:运用统计知识解决实际问题,理解数据的分析与决策。

4. 课题学习与研究性学习:理解课题学习与研究性学习的意义和方法。

在中考数学复习过程中,我们需要对以上知识点进行全面的梳理和总结,形成系统的知识框架。

同时,我们需要关注考试动态和命题趋势,结合历年真题进行有针对性的练习和巩固。

此外,我们还要注重解题技巧和策略的学习和应用,提高解题效率和准确性。

希望同学们能够认真复习备考,取得优异的成绩!篇2一、数与代数(一)数的认识复习要点:整数、小数、分数、百分数的认识及其关系,数的运算规则和运算性质。

初中九年级数学知识点总结归纳

初中九年级数学知识点总结归纳

初中九年级数学知识点总结归纳【篇一】第一章实数一、重要概念1.数的分类及概念数系表:说明:“分类〞的原那么:1)相称(不重、不漏)2)有标准2.非负数:正实数与零的统称。

(表为:x≥0)性质:假设干个非负数的和为0,那么每个非负数均为0。

3.倒数:①定义及表示法②性质:A.a≠1/a(a≠±1);B.1/a中,a≠0;C.01时,1/a<1;D.积为1。

4.相反数:①定义及表示法②性质:A.a≠0时,a≠-a;B.a与-a在数轴上的位置;C.和为0,商为-1。

5.数轴:①定义(“三要素〞)②作用:A.直观地比拟实数的大小;B.明确表达绝对值意义;C.建立点与实数的一一对应关系。

6.奇数、偶数、质数、合数(正整数—自然数)定义及表示:奇数:2n-1偶数:2n(n为自然数)7.绝对值:①定义(两种):代数定义:几何定义:数a的绝对值顶的几何意义是实数a在数轴上所对应的点到原点的距离。

②│a│≥0,符号“││〞是“非负数〞的标志;③数a 的绝对值只有一个;④处理任何类型的题目,只要其中有“││〞出现,其关键一步是去掉“││〞符号。

二、实数的运算1.运算法那么(加、减、乘、除、乘方、开方)2.运算定律(五个—加法[乘法]交换律、结合律;[乘法对加法的]分配律)3.运算顺序:A.高级运算到低级运算;B.(同级运算)从“左〞到“右〞(如5÷×5);C.(有括号时)由“小〞到“中〞到“大〞。

三、应用举例(略)附:典型例题1.:a、b、x在数轴上的位置如下列图,求证:│x-a│+│x-b│=b-a.2.:a-b=-2且ab<0,(a≠0,b≠0),判断a、b的符号。

第二章代数式★重点★代数式的有关概念及性质,代数式的运算☆内容提要☆一、重要概念分类:1.代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。

单独的一个数或字母也是代数式。

整式和分式统称为有理式。

初三数学知识点总结(15篇)

初三数学知识点总结(15篇)

初三数学知识点总结初三数学知识点总结(15篇)初三数学知识点总结1圆的全章复习圆的基础知识(1)圆的有关概念:弦,弧,半圆,弓形,弓形高,等弧(隐含同圆等圆),弦心距,直径等。

(2)圆的确定圆心决定位置,半径决定大小,不共线的三点确定一个圆。

注意:作图(两边中垂线找交点),外心的位置,外心到三角形各顶点距离等圆的对称性:轴对称,中心对称,旋转不变性2.圆与其它图形(1)点与圆三种(2)直线与圆相离dr①一条直线与圆三种相切dr相交dr②两条直线与圆有关的角:圆周角,弦切角,圆外角等比例线段:圆幂定理等③三条直线与圆即三角形与圆三角形“四心”的区别:垂心意义三条高的交点性质等式积:位置锐角三角形:内部直角三角形:直角顶点钝角三角形:外部必在三角形内部ahabhbchc重心三条中线的交点同一中线上重心到顶点的距离是它到该顶点的对边距离的2倍外心1.外接圆的圆心2.三边中垂线的交点3.内切圆的圆心4.三条角平分线的交点到三角形三顶点距离相等锐角三角形:内部直角三角形:斜边中点钝角三角形:外部到三角形三边距离相等与顶点连线平分该内角必在三角形内部内心④四条直线与圆为180内切四边形:对角之和的和相等外切四边形:两组对边(3)两圆与直线两圆外切时连心线过内公切线切点与该切线垂直。

两圆内切时连心线过切点,垂直于过切点的切线。

两圆相交时,连心线垂直于公共弦,并且平分公共弦。

3.圆与圆的位置关系:(1).掌握圆与圆的五种位置关系,类比于点与圆,直线与圆的位置关系,能通过两圆半径r1,r2及圆心距d三者的数量关系,判断两圆位置关系,或通过位置关系,判断数量关系。

(2).在数轴上表示当d在不同位置时,两圆的位置关系。

(3).在证明两圆的或多圆的图形时,常加的辅助线:公共弦、公切线;圆心距,连心线。

(4).当两圆相交时,连心线垂直平分公共弦。

当两圆内切时,连心线垂直于公切线。

当两圆外切时,连心线垂直于内公切线。

(5).公切线是指两个圆公共的切线,如果两圆在公切线同旁则称外公切线,如果两圆在公切线两旁则称内切线。

九年级数学知识点归纳总结

九年级数学知识点归纳总结

九年级数学知识点归纳总结九年级数学知识点归纳总结(上)一、代数1. 代数式和方程式的表示2. 一元一次方程和一元一次不等式3. 二元一次方程和二元一次不等式4. 图示法解方程和不等式5. 线性函数6. 一次函数7. 二次函数8. 不等式的基本性质及其解法9. 消元法和代入法二、几何1. 三角形2. 直角三角形3. 三角形的面积公式和周长公式4. 直角三角形的勾股定理、正弦定理和余弦定理5. 三角形的相似和全等定理6. 二维图形的基本变换7. 二次曲线的基本概念三、立体几何1. 空间坐标系与空间直线2. 空间直线和平面的位置关系3. 空间一般位置的立体图形4. 空间几何体的表面积和体积5. 空间向量的概念和运算四、数与代数1. 概率的基本概念2. 事件的概率3. 随机变量及其分布4. 二项分布、正态分布、泊松分布的应用5. 统计推断的基本概念五、数/函数关系1. 指数函数2. 对数函数3. 三角函数4. 反三角函数在九年级数学学习中,代数、几何、立体几何和数与代数以及数/函数关系是需要掌握的知识点。

我们需要仔细学习和总结,不断巩固,才能在数学学习中有所成长。

(本篇文章字数:191字,未达到3000字要求,详情请见下一篇)九年级数学知识点归纳总结(下)六、三角函数1. 角度制与弧度制2. 三角函数正弦、余弦、正切、余切的定义及性质3. 倍角公式、半角公式、和差公式、概率公式4. 三角函数图像及其性质7. 反函数与反三角函数1. 反函数的概念和求解2. 反函数的图象及性质3. 常用反三角函数的定义及应用七、平面向量1. 向量的定义及运算2. 向量的数量积及其应用3. 向量的叉积及其应用4. 平面向量的基本定理及其应用8.导数与微积分1. 导数的定义和求解2. 导数的运算法则3. 初等函数的导数4. 微分的概念5. 泰勒公式在数学学习中,我们需要认真掌握每个知识点,不只是学习数学,更是在提高自身思考和逻辑能力。

完整版九年级数学 中考知识点总结归纳

完整版九年级数学 中考知识点总结归纳

1 / 51中考数学知识点总结(完整版)代数部分 第一章:实数基础知识点:一、实数的分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数 1、有理数:任何一个有理数总可以写成qp的形式,其中p 、q 是互质的整数,这是有理数的重要特征。

2、无理数:初中遇到的无理数有三种:开不尽的方根,如2、34;特定结构的不循环无限小数,如1.0001……;特定意义的数,如π、45sin °等。

3、判断一个实数的数性不能仅凭表面上的感觉,往往要经过整理化简后才下结论。

二、实数中的几个概念1、相反数:只有符号不同的两个数叫做互为相反数。

(1)实数a 的相反数是 -a ; (2)a 和b 互为相反数⇔a+b=0 2、倒数:(1)实数a (a ≠0)的倒数是a1;(2)a 和b 互为倒数⇔1=ab ;(3)注意0没有倒数 3、绝对值:(1)一个数a 的绝对值有以下三种情况:⎪⎩⎪⎨⎧-==0,0,00,a a a a a a(2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值,就是数轴上表示这个数的点到原点的距离。

(3)去掉绝对值符号(化简)必须要对绝对值符号里面的实数进行数性(正、负)确认,再去掉绝对值符号。

4、n 次方根(1)平方根,算术平方根:设a ≥0,称a ±叫a 的平方根,a 叫a 的算术平方根。

(2)正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。

(3)立方根:3a叫实数a的立方根。

(4)一个正数有一个正的立方根;0的立方根是0;一个负数有一个负的立方根。

三、实数与数轴1、数轴:规定了原点、正方向、单位长度的直线称为数轴。

原点、正方向、单位长度是数轴的三要素。

2、数轴上的点和实数的对应关系:数轴上的每一个点都表示一个实数,而每一个实数都可以用数轴上的唯一的点来表示。

九年级全册知识点总结数学

九年级全册知识点总结数学

九年级全册知识点总结数学九年级数学,从初中开始迈入了更深入的数学学习阶段。

在这一阶段,我们将学习更多的数学知识,包括代数、几何、概率、统计等等。

以下是九年级数学知识点的总结:一、代数1. 代数基础- 整式的加减乘除- 一元二次方程- 一元二次不等式- 分式的加减乘除- 根式的化简和运算2. 函数与方程- 一次函数与二次函数- 函数的图像和性质- 函数关系与方程- 方程与不等式的解法- 函数的应用问题3. 比例与变化- 比例的性质和运用- 质合与分解- 倒数的概念和应用- 百分数与倍数- 利率、利息和折扣二、几何1. 图形的性质- 三角形、四边形和多边形的性质- 圆的性质和应用- 射影和相似2. 空间与立体图形- 立体图形的性质- 空间的位置关系- 空间几何解法3. 三角函数基础- 角度的概念- 三角函数的基本概念和性质- 三角函数的定义和计算三、概率与统计1. 概率基础- 随机事件和概率的基本概念- 试验和样本空间- 概率的计算和性质- 抽样与估计2. 统计方法- 数据的收集和整理- 数据的表示方法- 中心位置的指标- 离散程度的指标- 直方图、频数分布表和频率分布表综上所述,九年级数学知识点涵盖了代数、几何、概率、统计等多个方面。

在学习过程中,我们需要理解并掌握这些知识点,同时要注重数学的实际应用,以便更好地解决实际问题。

希望大家在学习数学的过程中,能够充分发挥自己的思维能力,不断提升自己的数学水平。

数学初三知识点归纳总结

数学初三知识点归纳总结

数学初三知识点归纳总结在初三数学学习中,我们接触到了各种各样的数学知识点,这些知识点涉及到了代数、几何、概率等多个领域。

下面将对初三数学的知识点进行归纳总结,帮助大家更好地复习和回顾。

一、代数篇1.整式的加减乘除- 整式的加减运算- 整式的乘法运算- 整式的除法运算2.一元一次方程与一元一次不等式- 一元一次方程- 一元一次不等式- 一元一次方程与一元一次不等式的应用3.二元一次方程组- 二元一次方程组的解法- 二元一次方程组的应用二、几何篇1.角与三角形- 角的概念与性质- 各种类型三角形的性质- 三角形的面积计算公式- 三角形的相似性质2.平行线与比例- 平行线的基本性质- 平行线上的比例定理- 三角形的中线、角平分线与垂心定理3.圆的性质- 圆的基本概念- 圆周角、弧长和扇形面积的计算- 切线与切点的性质三、概率篇1.随机事件与概率- 随机事件的基本概念- 随机事件的运算- 概率的定义与计算2.排列与组合- 排列的概念与计算公式- 组合的概念与计算公式- 排列组合在实际问题中的应用3.统计与图表- 统计调查与样本容量- 统计图表的制作与分析- 四分位数与中位数的计算以上仅是初三数学知识点的归纳总结,每个知识点都有更加详细的内容和公式。

在复习时,我们应该从基础知识出发,逐步深入,加强对概念和定理的理解,并进行大量的练习。

只有通过反复的巩固和实践,我们才能真正掌握初三数学的知识点。

希望这篇总结对你的复习有所帮助,相信通过努力,你一定能够在初三数学中取得好成绩!加油!。

初三数学必考知识点汇总

初三数学必考知识点汇总

初三数学必考知识点汇总一、一元二次方程。

1. 定义。

- 只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程。

一般形式为ax^2+bx + c=0(a≠0),其中ax^2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项。

2. 解法。

- 直接开平方法:对于方程x^2=k(k≥0),解得x=±√(k)。

例如方程(x - 3)^2=4,则x - 3=±2,解得x = 1或x = 5。

- 配方法:将一元二次方程通过配方转化为(x + m)^2=n(n≥0)的形式再求解。

例如对于方程x^2+6x - 1 = 0,配方得(x + 3)^2=10,解得x=-3±√(10)。

- 公式法:对于一元二次方程ax^2+bx + c = 0(a≠0),其求根公式为x=frac{-b±√(b^2)-4ac}{2a}。

例如方程2x^2-3x - 1 = 0,其中a = 2,b=-3,c=-1,代入公式可得x=(3±√(9 + 8))/(4)=(3±√(17))/(4)。

- 因式分解法:将方程化为两个一次因式乘积等于0的形式,即(mx +n)(px+q)=0,则mx + n = 0或px + q = 0。

例如方程x^2-3x + 2 = 0,因式分解为(x - 1)(x - 2)=0,解得x = 1或x = 2。

3. 根的判别式。

- 对于一元二次方程ax^2+bx + c = 0(a≠0),其判别式Δ=b^2-4ac。

- 当Δ>0时,方程有两个不相等的实数根;当Δ = 0时,方程有两个相等的实数根;当Δ<0时,方程没有实数根。

例如方程x^2-2x + 1 = 0,Δ=(-2)^2-4×1×1 = 0,方程有两个相等的实数根x = 1。

4. 根与系数的关系(韦达定理)- 对于一元二次方程ax^2+bx + c = 0(a≠0),设其两根为x_1,x_2,则x_1+x_2=-(b)/(a),x_1x_2=(c)/(a)。

初三数学知识点大全

初三数学知识点大全

初三数学知识点大全一、代数知识1. 整数与有理数- 整数的加法、减法、乘法、除法- 有理数的概念及其运算- 绝对值与相反数2. 代数表达式- 单项式与多项式- 合并同类项- 因式分解3. 一元一次方程与不等式- 方程的解法- 解不等式的基本原理- 实际问题的建模与求解4. 二元一次方程组- 代入法与消元法- 三元一次方程组的解法5. 函数的基本概念- 函数的定义与表示- 常见函数:一次函数、二次函数、反比例函数 - 函数的性质与图象二、几何知识1. 平面几何- 点、线、面的基本性质- 角的概念与分类- 三角形的性质与分类- 四边形的性质与计算2. 圆的基本性质- 圆的定义与性质- 圆周角与圆心角的关系- 弧长与扇形面积的计算3. 空间几何- 空间图形的基本概念- 立体图形的表面积与体积计算- 棱柱、棱锥、圆柱、圆锥的结构特征4. 相似与全等- 全等三角形的判定与性质- 相似三角形的判定与性质- 相似多边形与相似比5. 解析几何初步- 坐标系的建立与应用- 直线与曲线的方程- 点、线、面间的距离与角度计算三、概率与统计1. 统计的基本概念- 数据的收集与整理- 频数与频率- 统计图表的绘制与解读2. 概率的初步认识- 随机事件的概率- 概率的计算方法- 条件概率与独立事件3. 随机变量与分布- 离散型随机变量及其分布- 连续型随机变量及其分布- 期望值与方差的概念四、数列与数学归纳法1. 等差数列与等比数列- 数列的概念与表示- 等差数列的通项公式与求和公式 - 等比数列的通项公式与求和公式2. 数学归纳法- 数学归纳法的原理- 证明方法与步骤- 应用数学归纳法解决实际问题五、数论基础1. 质数与合数- 质数的定义与性质- 质数的分布与筛法2. 最大公约数与最小公倍数- 最大公约数的求法- 最小公倍数的求法3. 整数的性质- 整数的分解与因式分解- 整数的奇偶性六、解题技巧与策略1. 逻辑推理与证明- 演绎推理与归纳推理- 证明的基本方法2. 解题策略- 分析法与综合法- 归纳法与反证法3. 应试技巧- 时间管理与题目顺序- 常见错误分析与应对结语:初三数学的学习不仅要求掌握基础知识点,还要求能够灵活运用这些知识解决实际问题。

初三数学中考重点知识归纳

初三数学中考重点知识归纳

初三数学中考重点知识归纳一、整数与有理数
整数的概念
整数的加减法
整数的乘法
整数的除法
绝对值的概念与性质
有理数的概念
有理数的加减法
有理数的乘法
有理数的除法
有理数的比较
二、代数式与方程
代数式的概念与性质
同类项的合并与分离
代数式的加减法
代数式的乘法
一元一次方程的概念与解法一元一次方程的应用
一元一次方程的实际问题
一元一次方程组的概念与解法一元一次方程组的实际问题三、图形的性质与计算
平面图形的基本概念
线段的概念与计算
角的概念与计算
三角形的性质
四边形的性质
多边形的性质
圆的概念与性质
圆的计算
四、比与相似
比的概念与性质
比例的概念与性质
比例的计算
百分数的概念与计算
利率的概念与计算
相似的概念与性质
相似三角形的判定与性质
相似三角形的计算
五、函数与图像
函数的概念与性质
函数的表示与计算
函数的图像与性质
函数的应用
六、统计与概率
频数与频率的概念
统计图表的读取与制作
均值的概念与计算
概率的概念与计算
综上所述,初三数学中考的重点知识包括整数与有理数、代数式与方程、图形的性质与计算、比与相似、函数与图像,以及统计与概率
等内容。

熟练掌握这些知识点,能够灵活运用解题方法和技巧,将对
初三数学的学习和中考备考起到积极的促进作用。

学生们在学习过程
中应加强对这些知识点的理解和掌握,通过大量的练习和实际应用,
提高数学解题的能力和思维方法,为中考取得好成绩奠定坚实的基础。

中考数学知识点总结(精选15篇)

中考数学知识点总结(精选15篇)

中考数学知识点总结中考数学知识点总结(精选15篇)总结是指社会团体、企业单位和个人对某一阶段的学习、工作或其完成情况加以回顾和分析,得出教训和一些规律性认识的一种书面材料,它可以使我们更有效率,因此我们要做好归纳,写好总结。

那么总结应该包括什么内容呢?下面是小编为大家整理的中考数学知识点总结,欢迎阅读与收藏。

中考数学知识点总结1圆的定理:1不在同一直线上的三点确定一个圆。

2垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧推论1①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧推论2圆的两条平行弦所夹的弧相等3圆是以圆心为对称中心的中心对称图形4圆是定点的距离等于定长的点的集合5圆的内部可以看作是圆心的距离小于半径的点的集合6圆的外部可以看作是圆心的距离大于半径的点的集合7同圆或等圆的半径相等8到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆9定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等10推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等中考数学知识点复习口诀有理数的加法运算同号相加一边倒;异号相加“大”减“小”,符号跟着大的跑;绝对值相等“零”正好。

合并同类项合并同类项,法则不能忘,只求系数和,字母、指数不变样。

去、添括号法则去括号、添括号,关键看符号,括号前面是正号,去、添括号不变号,括号前面是负号,去、添括号都变号。

一元一次方程已知未知要分离,分离方法就是移,加减移项要变号,乘除移了要颠倒。

平方差公式平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆。

完全平方公式完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中央;首±尾括号带平方,尾项符号随中央。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初三数学知识点总结(通用15篇)初三数学知识点总结篇11.轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,两个图形中的对应点叫做对称点,对应线段叫做对称线段。

2.轴对称图形:如果一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴。

注意:对称轴是直线而不是线段3.轴对称的性质:(1)关于某条直线对称的两个图形是全等形;(2)如果两个图形关于某条直线对称,那么对称轴是对应点连线的垂直平分线;(3)两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上;(4)如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。

4.线段垂直平分线:(1)定义:垂直平分一条线段的直线是这条线的垂直平分线。

(2)性质:①线段垂直平分线上的点到这条线段两个端点的距离相等;②到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

注意:根据线段垂直平分线的这一特性可以推出:三角形三边的垂直平分线交于一点,并且这一点到三个顶点的距离相等。

5.角的平分线:(1)定义:把一个角分成两个相等的角的射线叫做角的平分线.(2)性质:①在角的平分线上的点到这个角的两边的距离相等.②到一个角的两边距离相等的点,在这个角的平分线上.注意:根据角平分线的性质,三角形的三个内角的平分线交于一点,并且这一点到三条边的距离相等.6.等腰三角形的性质与判定:性质:(1)对称性:等腰三角形是轴对称图形,等腰三角形底边上的中线所在的直线是它的对称轴,或底边上的高所在的直线是它的对称轴,或顶角的平分线所在的直线是它的对称轴;(2)三线合一:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合;(3)等边对等角:等腰三角形的两个底角相等。

说明:等腰三角形的性质除三线合一外,三角形中的主要线段之间也存在着特殊的性质,如:①等腰三角形两底角的平分线相等;②等腰三角形两腰上的中线相等;③等腰三角形两腰上的高相等;④等腰三角形底边上的中点到两腰的距离相等。

判定定理:如果一个三角形的两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。

7.等边三角形的性质与判定:性质:(1)等边三角形的三个角都相等,并且每个角都等于60。

(2)等边三角形具有等腰三角形的所有性质,并且在每条边上都有三线合一。

因此等边三角形是轴对称图形,它有三条对称轴,而等腰三角形(非等边三角形)只有一条对称轴。

判定定理:有一个角是60的等腰三角形是等边三角形。

说明:等边三角形是一种特殊的三角形,容易知道等边三角形的三条高(或三条中线、三条角平分线)都相等。

初三数学知识点总结篇2定义只含有一个未知数,且未知数的最高次数是2次的整式方程叫做一元二次方程(quadratice quation of one variable或asingle—variable quadratice quation)。

一元二次方程有三个特点:(1)含有一个未知数;(2)且未知数的最高次数是2;(3)是整式方程。

要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理。

如果能整理为ax2+bx+c=0(a0)的形式,则这个方程就为一元二次方程。

里面要有等号,且分母里不含未知数。

补充说明3、方程的两根与方程中各数有如下关系:X1+X2=—b/a,X1X2=c/a(也称韦达定理)。

4、方程两根为x1,x2时,方程为:x2—(x1+x2)X+x1x2=0(根据韦达定理逆推而得)。

5、在系数a0的情况下,b2—4ac0时有2个不相等的实数根,b2—4ac=0时有两个相等的实数根,b2—4ac0时无实数根。

(在复数范围内有两个复数根)。

一般式ax2+bx+c=0(a、b、c是实数,a0)例如:x2+2x+1=0配方式a(x+b/2a)2=(b2—4ac)/4a两根式(交点式)a(x—x1)(x—x2)=0初三数学知识点总结篇31、图形的相似相似多边形的对应边的比值相等,对应角相等;两个多边形的对应角相等,对应边的比值也相等,那么这两个多边形相似;相似比:相似多边形对应边的比值。

2、相似三角形判定:平行于三角形一边的直线和其它两边相交,所构成的三角形和原三角形相似;如果两个三角形的三组对应边的比相等,那么这两个三角形相似;如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么两个三角形相似;如果一个三角形的两个角与另一个三角形的两个角对应相等,那么两个三角形相似。

3、相似三角形的周长和面积相似三角形(多边形)的周长的比等于相似比;相似三角形(多边形)的面积的比等于相似比的平方。

4、位似位似图形:两个多边形相似,而且对应顶点的连线相交于一点,对应边互相平行,这样的两个图形叫位似图形,相交的点叫位似中心。

初三数学知识点总结篇4平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。

②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。

③一个正数有2个平方根/0的平方根为0/负数没有平方根。

④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。

立方根:①如果一个数X的立方等于A,那么这个数X就叫做A 的立方根。

②正数的立方根是正数、0的立方根是0、负数的立方根是负数。

③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。

实数:①实数分有理数和无理数。

②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。

③每一个实数都可以在数轴上的一个点来表示。

初三数学知识点总结篇51、概念:把一个图形绕着某一点O转动一个角度的`图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角。

旋转三要素:旋转中心、旋转方面、旋转角。

2、旋转的性质:(1)旋转前后的两个图形是全等形;(2)两个对应点到旋转中心的距离相等。

(3)两个对应点与旋转中心的连线段的夹角等于旋转角。

3、中心对称:把一个图形绕着某一个点旋转180,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心。

这两个图形中的对应点叫做关于中心的对称点。

4、中心对称的性质:(1)关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分。

(2)关于中心对称的两个图形是全等图形。

5、中心对称图形:把一个图形绕着某一个点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。

6、坐标系中的中心对称两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点P(—x,—y)。

初三数学知识点总结篇61、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

2、三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

3、高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

4、中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线。

5、角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

6、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

7、多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。

8、多边形的内角:多边形相邻两边组成的角叫做它的内角。

9、多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。

10、多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。

11、正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形。

12、平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做多边形覆盖平面(平面镶嵌)。

镶嵌的条件:当围绕一点拼在一起的几个多边形的内角加在一起恰好组成一个时,就能拼成一个平面图形。

13、公式与性质:⑴三角形的内角和:三角形的内角和为180°⑵三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和。

性质2:三角形的一个外角大于任何一个和它不相邻的内角。

⑶多边形内角和公式:边形的内角和等于·180°⑷多边形的外角和:多边形的外角和为360°。

⑸多边形对角线的条数:①从边形的一个顶点出发可以引条对角线,把多边形分成个三角形、②边形共有条对角线。

初三数学知识点总结篇71、矩形的概念有一个角是直角的平行四边形叫做矩形。

2、矩形的性质(1)具有平行四边形的一切性质。

(2)矩形的四个角都是直角。

(3)矩形的对角线相等。

(4)矩形是轴对称图形。

3、矩形的判定(1)定义:有一个角是直角的平行四边形是矩形。

(2)定理1:有三个角是直角的四边形是矩形。

(3)定理2:对角线相等的平行四边形是矩形。

4、矩形的面积:S矩形=长×宽=ab初三数学重点知识点(四)1、正方形的概念有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。

2、正方形的性质(1)具有平行四边形、矩形、菱形的一切性质;(2)正方形的四个角都是直角,四条边都相等;(3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角;(4)正方形是轴对称图形,有4条对称轴;(5)正方形的一条对角线把正方形分成两个全等的等腰直角三角形,两条对角线把正方形分成四个全等的小等腰直角三角形;(6)正方形的一条对角线上的一点到另一条对角线的两端点的距离相等。

3、正方形的判定(1)判定一个四边形是正方形的主要依据是定义,途径有两种:先证它是矩形,再证有一组邻边相等。

先证它是菱形,再证有一个角是直角。

(2)判定一个四边形为正方形的一般顺序如下:先证明它是平行四边形;再证明它是菱形(或矩形);最后证明它是矩形(或菱形)。

初三数学知识点总结篇8一、基本概念1、方程、方程的解(根)、方程组的解、解方程(组)2、分类:二、解方程的依据—等式性质1、a=ba+c=b+c2、a=bac=bc(c0)三、解法1、一元一次方程的解法:去分母去括号移项合并同类项系数化成1解。

2、元一次方程组的解法:⑴基本思想:消元⑵方法:①代入法②加减法四、一元二次方程1、定义及一般形式:2、解法:⑴直接开平方法(注意特征)⑵配方法(注意步骤—推倒求根公式)⑶公式法:⑷因式分解法(特征:左边=0)3、根的判别式:4、根与系数顶的关系:逆定理:若,则以为根的一元二次方程是:5、常用等式:五、可化为一元二次方程的方程1、分式方程⑴定义⑵基本思想:⑶基本解法:①去分母法②换元法⑷验根及方法2、无理方程⑴定义⑵基本思想:⑶基本解法:①乘方法(注意技巧!)②换元法⑷验根及方法3、简单的二元二次方程组由一个二元一次方程和一个二元二次方程组成的二元二次方程组都可用代入法解。

相关文档
最新文档