小学五年级下册数学奥数题
五年级下册奥数题
五年级下册奥数题一、填空题(只写答案即可,每题3分)1 一个数, 减去它的20%, 再加上5, 还比原来小3。
那么, 这个数是______________。
2. 甲数比乙数小16%, 乙数比丙数大20%, 甲、乙、丙三数中, 最小的数是_________数。
3. 时钟上六点十分时, 分针和时针组成的钝角是______________度。
4. 一个真分数, 如乘以3, 分子比分母小16, 如除以, 分母比分子小2, 这真分数是________。
5. 11 只李子的重量等于2只苹果和1只桃子的重量, 2只李子和1只苹果的重量等于1只桃子的重量, 那么, 一只桃子的重量等于__________只李子的重量。
6. A、B两数的和是, A数的倍与B数的两倍的和是16, A数是______________。
7. "六一"画展所参展的画中, 14幅不是六年级的, 17幅不是五年级的, 而五、六年级共展画21幅, 那么, 其它年级参展的画是___________幅。
8. 100克15%浓度的盐水中, 放进了盐8克, 为使溶液的浓度为20%, 那么, 还得再加进水_________克。
9. 甲、乙两厂生产的产品数量相等, 甲厂产品中正品的数量是乙厂次品数的3倍, 乙厂正品的数量是甲厂次品数量的4倍, 那么, 甲、乙两厂生产的正品的数量之比是__________。
10.1000只鸽子飞进50个巢,无论怎么飞,我们都能找到含鸽子最多的巢,它里面至少有__________只鸽子。
11.试卷上有4道题,每题有3个可供选择的答案,结果对于其中任何3人都有一道题目答案互不相同。
这个班有__________人。
12.悉尼与北京时差是3小时,例如:悉尼是12:00,北京就是9:00。
某日当悉尼是9:15时,小明和小红分别乘机从悉尼和北京同时出发去对方的所在地,小明于北京时间19:33到达北京。
小明和小红所用时间之比为7:6,那么当小红到达悉尼时,当地时间是__________。
五年级下册数学奥数题及答案
五年级下册数学奥数题及答案一、选择题1.下列数中,哪一个不能整除30? A. 5 B. 6 C. 10 D. 15答案:A2.小明买了3双袜子,每双袜子花费5元,他还剩下多少元? A. 10 B.12 C. 15 D. 18答案:C3.一个长方形的长是8cm,宽是4cm,它的面积是多少平方厘米? A.16 B. 20 C. 30 D. 32答案:D4.下列数字中,哪一个是奇数? A. 10 B. 15 C. 20 D. 24答案:B5.如果一个三角形的三条边长度分别是3cm、4cm和5cm,那么它是什么三角形? A. 等边三角形 B. 直角三角形 C. 锐角三角形 D. 钝角三角形答案:B二、填空题1. 5 × 6 = ____ 答案:302.下列数字中,最小的是____ 答案:03.7 ÷ 2 = ____ 答案:3.54. 2 + 4 × 3 = ____ 答案:145.12 ÷ 3 = ____ 答案:4三、解答题1. 计算题小明在商场购买了两本数学书,每本书的价格分别是35元和20元。
他付给售货员一张50元的钞票,请问他应该找给小明多少零钱?解答:两本书的总价格:35元+ 20元= 55元小明给了售货员50元的钞票,所以需要找给小明的零钱是:50元- 55元= -5元小明应该还需要给售货员5元。
2. 推理题一辆汽车前进了200公里,然后返回原点,再往前走100公里,最后又返回原点。
请问汽车最终所在的位置与原点的位置相比,是在原点的左边还是右边?解答:汽车前进了200公里,然后返回原点,所以汽车回到了原点。
再往前走100公里,又返回原点,所以汽车依然在原点。
因此,汽车最终所在的位置与原点的位置重合,即汽车最终位置与原点相同。
四、总结本文列出了五年级下册数学奥数题及答案。
选择题包括了求除数、数字判断、图形面积、奇偶数、三角形分类等题型。
填空题涵盖了乘法、最小数、除法以及复杂的运算顺序。
五年级奥数题练习及答案(55题)
五年级奥数题练习(55题)1、(1+2+8)÷(1+2+8)=2、奥运吉祥物中的5个“福娃”取“北京欢迎您”的谐音:贝贝、京京、欢欢、迎迎、妮妮。
如果在盒子中从左向右放5个不同的“福娃”,那么,有种不同的放法。
3、有一列数:1,1,3,8,22,60,164,448……其中的前三个数是1,1,3,从第四个数起,每个数都是这个数前面两个数之和的2倍。
那么,这列数中的第10个数是。
4、有一排椅子有27个座位,为了使后去的人随意坐在哪个位置都有人与他相邻,则至少要先坐人。
5、五年级一班共有36人,每人参加一个兴趣小组,共有A,B,C,D,E五个小组,若参加A组的有15人,参加B组的仅次于A组,参加C组、D组的人数相同。
参加E组的人数最少,只有4人,那么,参加B组的有人。
6、菜地里的西红柿获得丰收,摘了全部的2/5时,装满了3筐还多16千克。
摘完其余部分后,又装满6筐,则共收得西红柿千克。
7、工程队修一条公路,原计划每天修720米,实际每天比原计划多修80米。
因而提前3天完成任务。
这条路全长千米。
8、两个完全相同长方体的长、宽、高分别是5厘米、4厘米、3厘米,把它们拼在一起可组成一个新长方体,在这些长方体中,表面积最小的是平方厘米。
9、著名的哥德巴赫猜想:“任意一个大于4的偶数都可以表示为两个质数的和”。
如6=3+3,12=5+7,等。
那么自然数100可以写成种两个不同质数和的形式?请分别写出来(100=3+97和100=97+3算作同一种形式)10、号码分别为2005、2006、2007、2008的4名运动员进行乒乓球赛,规定每2人比赛的场数是他们号码的和被4除所得的余数。
那么2008号运动员比赛了场。
11、0.15÷2.1×56=12、15+115+1115+ (1111111115)13、一个自然数除以3,得余数2,用所得的商除以4.得余数3。
若用这个自然数除以6,得余数。
小学五年级下册奥数题精选
小学五年级下册奥数题精选1.小学五年级下册奥数题精选篇一1、一位少年短跑选手,顺风跑90米用了10秒钟。
在同样的风速下,逆风跑70米,也用了10秒钟。
问:在无风的时候,他跑100米要用多少秒?答案与解析:顺风时速度=90÷10=9(米/秒),逆风时速度=70÷10=7(米/秒)无风时速度=(9+7)×1/2=8(米/秒),无风时跑100米需要100÷8=12。
5(秒)2、李明、王宁、张虎三个男同学都各有一个妹妹,六个人在一起打羽毛球,举行混合双打比赛。
事先规定。
兄妹二人不许搭伴。
第一盘,李明和小华对张虎和小红;第二盘,张虎和小林对李明和王宁的妹妹。
请你判断,小华、小红和小林各是谁的妹妹。
解答:因为张虎和小红、小林都搭伴比赛,根据已知条件,兄妹二人不许搭伴,所以张虎的妹妹不是小红和小林,那么只能是小华,剩下就只有两种可能了。
第一种可能是:李明的妹妹是小红,王宁的妹妹是小林;第二种可能是:李明的妹妹是小林,王宁的妹妹是小红。
对于第一种可能,第二盘比赛是张虎和小林对李明和王宁的妹妹。
王宁的妹妹是小林,这样就是张虎、李明和小林三人打混合双打,不符合实际,所以第一种可能是不成立的,只有第二种可能是合理的。
所以判断结果是:张虎的妹妹是小华;李明的妹妹是小林;王宁的妹妹是小红。
2.小学五年级下册奥数题精选篇二1、一个长方形的周长是24厘米,长与宽的比是2:1,这个长方形的面积是多少平方厘米?2、一个长方体棱长总和为96厘米,长、宽、高的比是3∶2∶1,这个长方体的体积是多少?3、小明看一本故事书,第一天看了全书的'1/9,第二天看了24页,两天看了的页数与剩下页数的比是1:4,这本书共有多少页?4、某校参加电脑兴趣小组的有42人,其中男、女生人数的比是4∶3,男生有多少人?5、有两筐水果,甲筐水果重32千克,从乙筐取出20%后,甲乙两筐水果的重量比是4:3,原来两筐水果共有多少千克?参考答案:1、S=(2/3×24/2)×(1/3×24/2)=32平方厘米2、V=(3/6×96/4)×(2/6×96/4)×(1/6×96/4)=384立方厘米3、24÷(1/5-1/9)=45×6=270页4、男=4/7×42=24(人)5、32+32×3/4÷80%=62(千克)3.小学五年级下册奥数题精选篇三1、有一批苹果,如果每天吃掉其中的三分之一,需要几天才能吃完?2、一辆车以每小时60公里的速度行驶,行驶了5个小时后,还剩下240公里的路程,这辆车一共要行驶多少公里?3、小明有10元钱,他要买5个苹果和3个橙子,苹果每个1元,橙子每个2元,他还需要多少钱?4、一种药品的说明书上写着,每次服用2粒,每天服用3次,一盒药共有30粒,这盒药可以服用几天?5、甲、乙两人同时从A地出发,分别向B地和C地行驶,甲的速度是每小时40公里,乙的速度是每小时60公里,B、C两地的距离是120公里,甲、乙两人同时到达B、C两地,求他们出发的时间。
五年级奥数题及答案5篇
五年级奥数题及答案5篇1.五年级奥数题及答案篇一1、甲乙两码头相距560千米,一只船从甲码头顺水航行20小时到达乙码头,已知船在静水中每小时行驶24千米,问这船返回甲码头需几小时?答案与解析:船顺水航行20小时行560千米,可知顺水速度,而静水中船速已知,那么逆水速度可得,逆水航行距离为560千米,船返回甲船头是逆水而行,逆水航行时间可求。
顺水速度:560÷20=28(千米/小时)逆水速度:24-(28-24)=20(千米/小时)返回甲码头时间:560÷20=28(小时)2、甲、乙二人骑自行车从环形公路上同一地点同时出发,背向而行。
现在已知甲走一圈的时间是70分钟,如果在出发后45分钟甲、乙二人相遇,那么乙走一圈的时间是____分钟?答案与解析:甲行走45分钟,再行走70-45=25(分钟)即可走完一圈。
而甲行走45分钟,乙行走45分钟也能走完一圈。
所以甲行走25分钟的路程相当于乙行走45分钟的路程。
甲行走一圈需70分钟,所以乙需70÷25×45=126(分钟)。
即乙走一圈的时间是126分钟。
2.五年级奥数题及答案篇二1、一副纸牌共54张,最上面的一张是红桃K。
如果每次把最上面的12张牌移到最下面而不改变它们的顺序及朝向,那么,至少经过多少次移动,红桃K才会又出现在最上面?解:因为[54,12]=108,所以每移动108张牌,又回到原来的状况。
又因为每次移动12张牌,所以至少移动108÷12=9(次)。
2、爷爷对小明说:“我现在的年龄是你的7倍,过几年是你的6倍,再过若干年就分别是你的5倍、4倍、3倍、2倍。
”你知道爷爷和小明现在的年龄吗?解:爷爷70岁,小明10岁。
提示:爷爷和小明的年龄差是6,5,4,3,2的公倍数,又考虑到年龄的实际情况,取公倍数中最小的。
(60岁)3、某质数加6或减6得到的数仍是质数,在50以内你能找出几个这样的质数?并将它们写出来。
五年级小学生奥数题3篇
五年级小学生奥数题3篇【篇一】五年级小学生奥数题1、有两条各长30厘米的纸条, 粘贴在一起长56厘米, 粘贴在一起的部分长()厘米。
2、一条直线能将平面分为两部分, 两条直线最多能将平面分为4部分, 那么5条直线最多能将平面划分成()部分。
3、小华参加数学竞赛, 共有10道赛题。
规定答对一题给十分, 答错一题扣五分。
小华十题全部答完, 得了85分。
小华答对了几题?4、图书室有连环画28本, 文艺书36本, 买来的故事书比连环画和文艺书的总和少50本。
图书室有故事书多少本?5、用数字0, 1, 2, 3, 4中的任意三个数相加可以得到多少个不同的和。
6、钟鼓楼的钟打点报时, 5点钟打5下需要4秒钟。
问中午12点是打12下需要多少秒钟?7、二(2)班有44个同学划船, 大船每条可以坐6人, 租金10元, 小船每条可以坐4人, 租金8元, 如果你是领队, 要使租金最少, 租多少条大船, 多少条小船, 租金多少元。
8、小青比小李大5岁, 小李比小风大2岁, 小风比小云小4岁, 他们4人(), ()最小。
的比最小的大()岁。
9、有一个卖茶叶蛋的老太太, 第一次卖去锅内茶叶蛋的一半多2个, 第二次又卖去余下的一半多2个, 锅内还有1个茶叶蛋, 这个老太太原来一共有多少个茶叶蛋?10、3个空汽水瓶可以换1瓶汽水, 小花买18瓶汽水, 可以喝到多少瓶汽水?【篇二】五年级小学生奥数题1、两组学生进行跳绳比赛, 平均每人跳152下, 甲, 组有6人, 平均每人跳140下, 乙组平均每人跳160下, 乙组有多少人?2、甲、乙、丙三人的平均年龄为22岁, 如果甲、乙的平均年龄是18岁, 乙、丙的平均年龄是25岁, 那么乙的年龄是多少岁?3、五个数排一排, 平均数是9, 如果前四个数的平均数是7, 后四个数的平均数是10, 那么, 第一个数和第五个数是多少?4、甲、乙两个码头相距144千米, 汽船从乙码头逆水行驶8小时到达甲码头, 已知汽船在静不中每小时行驶21千米。
小学五年级奥数题及答案6篇
小学五年级奥数题及答案6篇1.小学五年级奥数题及答案一排椅子只有15个座位, 部分座位已有人就座, 乐乐来后一看, 他无论坐在哪个座位, 都将与已就座的人相邻。
问: 在乐乐之前已就座的最少有几人?将15个座位顺次编为1:15号。
如果2号位、5号位已有人就座, 那么就座1号位、3号位、4号位、6号位的人就必然与2号位或5号位的人相邻。
根据这一想法, 让2号位、5号位、8号位、11号位、14号位都有人就座, 也就是说, 预先让这5个座位有人就座, 那么乐乐无论坐在哪个座位, 必将与已就座的人相邻。
因此所求的答案为5人。
2.小学五年级奥数题及答案1.某工车间共有77个工人, 已知每天每个工人平均可加工甲种部件5个, 或者乙种部件4个, 或丙种部件3个。
但加工3个甲种部件, 一个乙种部件和9个丙种部件才恰好配成一套。
问应安排甲、乙、丙种部件工人各多少人时, 才能使生产出来的甲、乙、丙三种部件恰好都配套?解: 设加工后乙种部件有x个。
3/5X+1/4X+9/3X=77x=20甲: 0.6×20=12(人)乙: 0.25×20=5(人)丙: 3×20==60(人)2.哥哥现在的年龄是弟弟当年年龄的三倍, 哥哥当年的年龄与弟弟现在的年龄相同, 哥哥与弟弟现在的年龄和为30岁, 问哥哥、弟弟现在多少岁?解: 设哥哥现在的年龄为x岁。
x-(30-x)=(30-x)-x/3x=18弟弟30-18=12(岁)3.小学五年级奥数题及答案对任意两个不同的自然数, 将其中较大的数换成这两数之差, 称为一次变换。
如对18和42可进行这样的连续变换: 18, 42→18, 24→18, 6→12, 6→6, 6。
直到两数相同为止。
问: 对12345和54321进行这样的连续变换, 最后得到的两个相同的数是几?为什么?如果两个数的公约数是a, 那么这两个数之差与这两个数中的任何一个数的公约数也是a。
五年级下册奥数题
行程问题(2)例1 甲列车每秒行20米,乙列车每秒行14米,若两列车齐头并进,则甲车行40秒超过乙车,若两列车齐尾并进,则甲车行30秒超过乙,求甲列车和乙,列车各长多少米?例2 在平行的轨道上两列火车齐头并进。
快车长240米,每秒行28米,慢长320米,每秒行16米。
从起头并道到快车完全超过慢车要多少时间?例3 客、货两车同时从甲、乙两站相对开出,客车每小时行54千米,货车每小时行48千米,两车相遇后又以原速前进。
到达对方站后立即返回,两车再次相遇时客车比货车多行21,6千米。
甲、乙两站间的路程是多少千米?例4 A、B两车分别从东西两城同时相向而行,A车的速度是90千米/时,B车的速度为80千米/时,两车相遇后继续前进,分别到达东西两城后立即返回,两车又距中点60千米处再相遇。
东西两城相距多少千米?例5 甲、乙两人分别在圆周直径两端的A、B两点同时出发。
甲顺时针,乙逆时针,途中两人的速度不变。
第一次相遇地点C距B60米,第二次相遇地点D距B100米。
求这个圆一圈的长度。
[课堂练习]1. 铁路线旁边有一条沿铁路方向的公路,公路上一辆拖拉机正以20千米/时的速度行驶。
这时,一列火车以56千米/时的速度从后面开过来,火车从车头到车尾经过拖拉机身旁用了37秒。
求火车的全长。
2.两列在平行轨道上的火车齐尾并进。
快车长280米,每秒行28米,慢车长350米,每秒行21米。
从齐尾并进到快车完全超过慢车要多少时间?3.甲、乙两地相距216千米,客货两车同时从甲、乙两地相向而行。
已知客车每小时行58千米,货车每小时行50千米,到达对方出发点后立即返回两车第二次相遇时,客车比货车多行多少千米?4.海模比赛中,甲乙两船同时从池塘的东西两岸相对开出。
第一次在距东岸15米处相遇。
相遇后维续前进,到达对岸后立即返回,第二次相遇在离西岸8米处。
如果两路在行驶中速度不变,求池塘东西两岸的距离。
1.快车每秒行18米,慢车每秒行10米。
五年级下册数学最难的奥数题
五年级下册数学最难的奥数题1、一个筐子放进4篮苹果后,连筐共重28千克,当倒出3篮苹果后再称,连筐共重10千克,一个筐子重(4)千克2、一块正方形菜地,边长是12米。
如果要把它的面积扩大到原来的2倍,其中一条边增加4米,另一条边增长多少米?(写出过程)3、学校卖3把椅子和4张桌子共用元,未知卖2张桌子的钱可以卖5把椅子,一把椅子多少元?一张桌子多少元?(写下过程)4.一条路长米,从头到尾每隔10米栽1棵梧桐树,共栽多少棵树?5、12棵柳树排列成一排,在每两棵柳树中间种3棵桃树,共种多少棵桃树?6、一根厘米长的木条,要锯成10厘米长的小段,需要锯几次?7、.蚂蚁爬到树枝,每上时一节须要10秒钟,从第一节爬到至第13节须要多少分钟?8.在花圃的周围方式菊花,每隔1米放1盆花。
花圃周围共20米长。
需放多少盆菊花?9、从发电厂至闹市区一共存有根电线杆,每相连两根电线杆之间就是30米。
从发电厂至闹市区存有多离?10、.王老师把月收入的一半又20元留做生活费,又把剩余钱的一半又50元储蓄起来,这时还剩40元给孩子交学费书本费。
他这个月收入多少元?11.一个人沿着小骗走了全长的一半后,又跑了剩的一半,还剩1千米,问:小加全长多少千米?12.甲在加工一批零件,第一天加工了这堆零件的一半又10个,第二天又加工了剩下的一半又10个,还剩下25个没有加工。
问:这批零件有多少个?13.一条毛毛虫由幼虫短至成虫,每天短一倍,16天能长至16厘米。
反问它几天可以短至4厘米?14.一桶水,第一次倒出一半,然后倒回桶里30千克,第二次倒出桶中剩下水的一半,第三次倒出千克,桶中还剩下80千克。
桶里原来有水多少千克?15、甲、乙两书架共计图书本,甲书架的图书数比乙书架的3倍太少16本。
甲、乙两书架上各存有图书多少本?16、甲、乙、丙三人年龄之和是94岁,且甲的2倍比丙多5岁,乙2倍比丙多19岁,问:甲、乙、丙三人各多大?17.小明、小华捉住完鱼。
五年级下册,奥数题
五年级下册奥数题:
1.小明和小华在一个400米的环形跑道上练习跑步,两人同时从同一点出发,
同向而行,小明每秒跑3.5米,小华每秒跑5.5米。
经过多少秒,两人第三次相遇?
2.一辆公共汽车由起点站到终点站(这两站在内)共途经8个车站,已知前6
个车站共上车100人,除终点站外前面各站共下车80人,则从前六站上车而在终点站下车的乘客共有多少人。
3.在1997后面补上三个数字,组成一个七位数1997□□□,如果这七位数能
被4、5、6整除,那么补上的三个数字的和的最小可能值是多少?
4.已知两个数的最大公约数是4,最小公倍数是252,其中一个数是28,另一
个数是多少?
5.定义新运算a△b=ab-(a+b),则(4△3)+(3△4)=多少。
五年级下册数学奥数题(含答案) 小学五年级奥数题大全及答案(更新版)-通用版
五年级下册数学奥数题(含答案) 小学五年级奥数题大全及答案(更新版)-通用版1、一块草地,可以供24匹马吃6天,20匹马吃10天。
问12天时多少匹马可以吃尽这块草地?假设草地单位为“1”,所以24*6=144,20*10=200.因此每天草地长草14个单位“1”。
200-14*10=60,因此草地原有草60个单位"1"。
所以,60/12+14=19,即19匹马12天可以吃尽这块草地。
2、一块草地,可以供5只羊吃40天,6只羊吃30天。
如果4只羊吃30天后又增加2只羊一起吃,那么这块草地还可以再吃多少天?同理,40*5=200,30*6=180.因此每天草地长草2个单位“1”。
200-2*40=120是原有草。
120-(4-2)*30=60是剩余草。
因此,60/(6+2)=7.5,即再吃7.5天。
3、每小时有3000人到书店买书。
如果设一个售书口,每分钟可以让50人买完离开;如果设2个售书口,1小时后就没有人排队了。
那么如果设4个口,多长时间后就没有人排队了?每分钟有3000/60=50人来买书。
如果设一个售书口,每分钟可以卖出50本书。
因此,每分钟的人数和卖出的书数相等,不会有排队。
如果设2个售书口,每分钟可以卖出100本书。
因此,每分钟有50人来买书,需要排队等待。
但是,2个售书口可以同时处理,所以不会有排队。
同理,如果设4个售书口,每分钟可以卖出200本书。
因此,每分钟有100人来买书,需要排队等待。
但是,4个售书口可以同时处理,所以不会有排队。
4、一口井,用3部抽水机40分钟可以抽干;6部抽水机16分钟可以抽干。
那么5部同样的抽水机,多少分钟可以抽干?设5部抽水机可以在x分钟内抽干这口井。
则有3*40=6*16,即120=96.因此,每分钟5部抽水机可以抽干的水量为120/5=24.所以,用5部抽水机抽干这口井需要24x的时间。
又因为6部抽水机可以在16分钟内抽干,每分钟抽干的水量为120/16=7.5.因此,5部抽水机每分钟可以抽干的水量为7.5*5/6=6.25.所以,24x=120,即x=5,用5部抽水机可以在5分钟内抽干这口井。
五年级下册的简单奥数题90道
五年级下册的简单奥数题90道一、选择题1. 以下哪个数是一个完全平方数?A. 25B. 36C. 49D. 642. 一个数的平方是16,这个数是多少?A. 2B. 4C. 8D. 163. 一个数的平方是81,这个数是多少?A. 7B. 9C. 10D. 114. 以下哪个数是一个质数?A. 12B. 15C. 17D. 205. 以下哪个数是一个偶数?A. 13B. 16C. 21D. 25二、填空题6. 2的平方是____。
7. 3的平方是____。
8. 4的平方是____。
9. 5的平方是____。
10. 6的平方是____。
11. 7的平方是____。
12. 8的平方是____。
13. 9的平方是____。
14. 10的平方是____。
15. 11的平方是____。
三、计算题16. 12 + 8 = ____17. 15 - 6 = ____18. 7 × 3 = ____19. 18 ÷ 2 = ____20. 25 ÷ 5 = ____21. 4 × 9 = ____22. 16 ÷ 4 = ____23. 5 × 7 = ____24. 36 ÷ 6 = ____25. 9 × 8 = ____四、判断题26. 12是一个质数。
(对/错)27. 16是一个完全平方数。
(对/错)28. 25是一个奇数。
(对/错)29. 36是一个偶数。
(对/错)30. 49是一个质数。
(对/错)五、应用题31. 小明有12个苹果,他想把它们平均分给3个朋友,每个朋友能分到几个苹果?32. 一辆公交车上有36个座位,已经有24个人坐了下来,还有几个座位是空的?33. 一包糖有20颗,小红拿走了8颗,还剩下几颗?34. 一辆自行车的轮子有2个,一辆自行车有几个轮子?35. 一年有365天,一个星期有7天,那么一年有几个星期?六、解答题36. 请用算式表示:5的平方加上3的平方等于多少?37. 请用算式表示:8的平方减去4的平方等于多少?38. 请用算式表示:6乘以7等于多少?39. 请用算式表示:18除以3等于多少?40. 请用算式表示:25除以5等于多少?以上是五年级下册的简单奥数题90道,希望同学们能够认真思考,积极解答。
小学五年级下册数学奥数题带答案图文百度文库
小学五年级下册数学奥数题带答案图文百度文库一、拓展提优试题1.(12分)甲、乙两人从A地步行去B地.乙早上6:00出发,匀速步行前往;甲早上8:00才出发,也是匀速步行.甲的速度是乙的速度的2.5倍,但甲每行进半小时都需要休息半小时.甲出发后经过分钟才能追上乙.2.(15分)如图,正六边形ABCDEF的面积为1222,K、M、N分别AB,CD,EF的中点,那么三角形PQR的边长是.3.(7分)后羿朝三个箭靶分别射了三支箭,如图:他在第一个箭靶上得了29分,第二个箭靶上得了43分.请问他在第三个箭靶上得了分.4.用1,2,3,4,5,6,7,8这八个数字组成两个不同的四位数(每个数字只用一次)使他们的差最小,那么这个差是.5.小明带了30元钱去买文具,买了3个笔记本和5支笔,剩余的钱,如果再买2支笔还差0.4元,如果再买2个笔记本则还差2元,那么,笔记本每个元,笔每支元.6.小胖和小亚两人在生日都是在五月份,而且都是星期三.小胖的生日晚,又知两人的生日日期之和是38,小胖的生日是5月日.7.(8分)有一种细胞,每隔1小时死亡2个细胞,余下的每个细胞分裂成2个.若经过5小时后细胞的个数记为164.最开始的时候有个细胞.8.(8分)有四个人甲、乙、丙、丁,乙欠甲1元,丙欠乙2元,丁欠丙3元,甲欠丁4元.要想把他们之间的欠款结清,只因要甲拿出元.9.对于自然数N,如果在1﹣9这九个自然数中至少有七个数是N的因数,则称N是一个“七星数”,则在大于2000的自然数中,最小的“七星数”是.10.如图中,A、B、C、D为正六边形四边的中点,六边形的面积是16,阴影部分的面积是.11.将100按“加15,减12,加3,加15,减12,加3,…”的顺序不断重复运算,运算26步后,得到的结果是.(1步指每“加”或“减”一个数)12.(8分)6个同学约好周六上午8:00﹣11:30去体育馆打乒乓球,他们租了两个球桌进行单打比赛每段时间都有4 个人打球,另外两人当裁判,如此轮换到最后,发现每人都打了相同的时间,请问:每人打了分钟.13.(8分)在如图每个方框中填入一个数字,使得乘法竖式成立.那么,两个乘数的和是.14.观察下面数表中的规律,可知x=.15.(7分)如图,按此规律,图4中的小方块应为个.【参考答案】一、拓展提优试题1.解:法一:假设甲一小时走5米,乙一小时走2米,列表如下:时间甲(米)乙(米)时间甲(米)乙(米)0小时043小时7.5100.5小时 2.55 3.5小时10111小时 2.564小时10121.5小时57 4.5小时12.5132小时585小时12.5142.5小时7.59 5.5小时1515观察得5.5小时恰好追上(如果这时间超过了乙,就要用具体追及公式计算追及时间)法二:也可以设甲的速度为每小时10a(甲要休息,实际每小时走5a),乙的速度为每小时4a,因此要追8a.半小时内最多追3a,可以先从要追的8a中扣除3a,因为在此之前不可能追上(之前的距离差不止3a).之后再开始按每半小时列出,若不够半小时的话,用追及公式算.前面追的5a,相当于每小时追a,可以用5a÷(5a﹣4a)=5(小时)计算.之后,甲半小时再走2a,乙再走5a,加上还差的3a,正好追上.因此,要追5.5小时,即330分钟.故答案为:330.2.解:如图延长BA和EF交于点O,并连接AE,由正六边形的性质,我们可知S ABCM=S CDEN=S EF AK=六边形面积,根据容斥原理,重叠部分三个三角形面积和等于阴影部分面积,且因为对称,△AKP,△CMQ,△ENR三个三角形是一样的,有KP=RN,AP=ER,RP=PQ,=,则=,=,由鸟头定理可知道3×KP×AP=RP×PQ,综上可得:PR=2KP=RE,那么由三角形AEK是六边形面积的,且S△APK ,=S△AKES△APK=S ABCDEF=47,所以阴影面积为47×3=141故答案为141.3.【分析】这个箭靶共三个环,设最小的环为a分,中间环为b分,最外环为c分,得:第一个靶得分为:2b+c=29①第二个靶得分为:2a+c=43②第三个靶得分为:a+b+c③通过等量代换,解决问题.解:设最小的环为a分,中间环为b分,最外环为c分,得:第一个靶得分为:2b+c=29①第二个靶得分为:2a+c=43②第三个靶得分为:a+b+c③由①+②得:2a+2b+2c=29+43=72即a+b+c=36即第三个靶的得分为36分.答:他在第三个箭靶上得了36分故答案为:36.4.【分析】设这两个数为a,b.,且a<b.千位最小差只能是1.为了让差尽量小,只能使a其它位数最大,b的其它位数最小.所以要尽量使a的百位大于b的百位,a的十位大于b的十位,a的个位大于b的个位.因此分别是8和1,7和2,6和3,剩下的4,5分给千位.据此解答.解:设这两个数为a,b.,且a<b.千位最小差只能是1.根据以上分析,应为:5123﹣4876=247故答案为:247.5.解:根据题干分析可得:5个笔记本+5支笔=32元;则1个笔记本+1支笔=6.4(元),3个笔记本+3支笔+4支笔=30.4(元),所以4支笔=30.4﹣3×6.4=11.2(元),所以1支笔的价格是:11.2÷4=2.8(元),则每个笔记本的价钱是:6.4﹣2.8=3.6(元).答:每个笔记本3.6元,每支笔2.8元.故答案为:3.6;2.8.6.解:38=7+31=8+30=9+29=10+28=11+27=12+26=13+25=14+24=15+23=16+22,因为二人的生日都是星期三,所以他们的生日相差的天数是7的倍数;经检验,只有26﹣12=14,14是7的倍数,即小亚的生日是5月12日,小胖的生日是5月26日时它们相差14天,符合题意,答:小胖的生日是5月26日.故答案为:26.7.解:第5小时开始时有:164÷2+2=84(个)第4小时开始时有:84÷2+2=44(个)第3小时开始时有:44÷2+2=24(个)第2小时开始时有:24÷2+2=14(个)第1小时开始时有:14÷2+2=9(个)答:最开始的时候有 9个细胞.故答案为:9.8.解:根据分析,从甲开始,乙欠甲1元,故甲应得1元,甲欠丁4元,故甲应还4元;清算时,甲还应拿出4﹣1=3元,此时甲的账就结清了;再看看丁的账,丁得到甲的4元后,还给丙3元,即可结清;再看看丙的账,丙得到丁的3元后,还给乙2元,丙的账也清了;再看看乙的账,乙得到丙的2元后,还给甲1元,乙的账也结清;综上,甲只须先拿出4元还给丁,后得到乙的1元,故而甲总共只须拿出3元.故答案是:3.9.解:根据分析,在2000~2020之间排除掉奇数,剩下的偶数还可以排除掉不能被3整除的偶数,最后只剩下:2004、2010、2016,再将三个数分别分解质因数得:2004=2×2×3×167;2010=2×3×5×67;2016=2×2×2×2×2×3×3×7,显然2014和2010的质因数在1~9中不到7个,不符合题意,排除,符合题意的只有2016,此时2016的因数分别是:2、3、4、6、7、8、9.故答案是:2016.10.解:如图:连接正方形的一条对角线,延长DA,与最上边正六边形边的延长线交与一点,这样可得两个三角形①、②三角形①和三角形②是全等三角形,它们的面积相等,进而可得出阴影部分两侧的三角形可补到六边形的角上,这样就成了一个长方形,阴影部分的面积等于空白部分的面积,所以阴影部分的面积是正六边形面积的一半16÷2=8答:阴影部分的面积是8.故答案为:8.11.解:每一个计算周期运算3步,增加:15﹣12+3=6,则26÷3=8…2,所以,100+6×8+15﹣12=100+48+3=151答:得到的结果是 151.故答案为:151.12.解:6÷2=3(组)11时30分﹣8是=3时30分=210分210×2÷3=420÷3=140(分钟)答:每人打了140分钟.故答案为:140.13.解:依题意可知:结果的首位是2,那么在第二个结果中的首位还是2.再根据第一个结果中有一个1,那么就是有和数字5相乘以后数字1的进位同时十位数字是偶数才能满足条件,第一个乘数的个位数字只能是2或者3才能满足进位是1.当第一个乘数尾数是2时,首位数字无论是哪一个偶数都不能得到200多的结果.不满足题意.当第一个乘数尾数是3时,来看看偶数的情况.23×9=207.43,63,83无论乘以数字几都不能构成百位十位是20的结果.故是23×95=2185,那么23+95=118.故答案为:11814.解:根据分析可得,81=92,所以,x=9×5=45;故答案为:45.15.解:因为图1中小方块的个数为1+2×3=7个,图2中小方块的个数为1+(1+2)+3×4=16个,图3中小方块的个数为1+(1+2)+(1+2+3)+4×5=30个,所以图4中小方块的个数为1+(1+2)+(1+2+3)+(1+2+3+4)+5×6=50个,故答案为:50.。
小学五年级下册数学奥数题
一、填空题1、一个数, 减去它的20%, 再加上5, 还比原来小3。
那么, 这个数是________。
2、甲数比乙数小16%, 乙数比丙数大20%, 甲、乙、丙三数中, 最小的数是_________数。
3、时钟上六点十分时, 分针和时针组成的钝角是______________度。
4、一个真分数, 如乘以3, 分子比分母小16, 如除以3 , 分母比分子小2, 这真分数是________。
5、11 只李子的重量等于2只苹果和1只桃子的重量, 2只李子和1只苹果的重量等于1只桃子的重量, 那么, 一只桃子的重量等于__________只李子的重量。
6、A、B两数的和是, A数的倍与B数的两倍的和是16, A数是_____________。
7、"六一"画展所参展的画中, 14幅不是六年级的, 17幅不是五年级的, 而五、六年级共展画21幅, 那么, 其它年级参展的画是___________幅。
8、100克15%浓度的盐水中, 放进了盐8克, 为使溶液的浓度为20%, 那么, 还得再加进水_________克。
9、甲、乙两厂生产的产品数量相等, 甲厂产品中正品的数量是乙厂次品数的3倍, 乙厂正品的数量是甲厂次品数量的4倍, 那么, 甲、乙两厂生产的正品的数量之比是__________。
10、1000只鸽子飞进50个巢,无论怎么飞,我们都能找到含鸽子最多的巢,它里面至少有__________只鸽子。
11、试卷上有4道题,每题有3个可供选择的答案,结果对于其中任何3人都有一道题目答案互不相同。
这个班有__________人。
12、悉尼与北京时差是3小时,例如:悉尼是12:00,北京就是9:00。
某日当悉尼是9:15时,小明和小红分别乘机从悉尼和北京同时出发去对方的所在地,小明于北京时间19:33到达北京。
小明和小红所用时间之比为7:6,那么当小红到达悉尼时,当地时间是__________。
五年级奥数题及答案通用13篇
五年级奥数题及答案通用13篇五年级小学生奥数题篇一1、某厂有一批煤,原计划每天烧5吨,可以烧45天。
实际每天少烧0.5吨,这批煤可以烧多少天?2、学校买来150米长的塑料绳,先剪下7.5米,做3根同样长的跳绳。
照这样计算,剩下的塑料绳还可以做多少根?3、修一条水渠,原计划每天修0.48千米,30天修完。
实际每天多修0.02千米,实际修了多少天?4、王老师看一本书,如果每天看32页,15天看完。
现在每天看40页,可以提前几天看完?5、一辆汽车4小时行驶了260千米,照这样的速度,又行了2.4小时,前后一共行驶了多少千米?(用两种方法解答)五年级小学生奥数题篇二1、快车和慢车同时从两个城市相对开出,2.5小时后相遇。
快车每小时行42千米,慢车每小时行35千米。
两个城市相距多少千米?2、甲、乙二位同学合打一份资料,甲每分打18个字,乙每分打22个字,两人用了30分打完这份资料,这份资料一共有多少个字?3、甲乙两车分别从两地同时出发,相对开来,甲车每小时行40千米,乙车每小时行50千米,3小时后两车还相距25千米,两地相距多少千米?4、两地相距628千米,甲车每小时行60千米,乙车每小时行80千米。
两车同时从两地相向而行,4小时后两车相遇了吗?两车相距多少千米?5、甲乙两人合做一批零件。
甲每小时做124个,乙每小时做136个。
他们合做了8小时,超额完成120个。
他们原来打算合做多少个零件?6、上午10时一只货船从甲港开往乙港,下午1小时一只客船从乙港开往甲港。
客船开出4小时与货船相遇。
货船每小时行18千米,客船每小时行27千米。
两港相距多远?参考答案1、(42+35)×2.5=192.5(千米)2、(18+22)×30=12003、(50+40)×3+25=295(千米)4、没相遇。
(60+80)×4=560(千米)628-560=68(千米)5、(124+136)×8-120=1960(个)6、18×3+(18+27)×4=234(千米)五年级小学生奥数题篇三1、甲、乙、丙三人赛跑,同时从A地出发向B地跑,当甲跑到终点时,乙离B还有30米,丙离B还有70米;当乙跑到终点时,丙离B还有45米。
五年级奥数题100道及答案
五年级奥数题100道及答案1. 小明有5个苹果,他给小华2个,自己还剩下多少个苹果?答案:小明还剩下3个苹果。
2. 一个班级有40名学生,如果每2名学生组成一个小组,可以组成多少个小组?答案:可以组成20个小组。
3. 一个数的3倍是45,这个数是多少?答案:这个数是15。
4. 一个长方形的长是15厘米,宽是10厘米,它的周长是多少?答案:周长是50厘米。
5. 一个数加上12等于36,这个数是多少?答案:这个数是24。
6. 如果一个数的一半是18,那么这个数是多少?答案:这个数是36。
7. 一个数的4倍是64,这个数是多少?答案:这个数是16。
8. 一个正方形的边长是8厘米,它的面积是多少?答案:面积是64平方厘米。
9. 一个数的5倍是100,这个数是多少?答案:这个数是20。
10. 一个班级有50名学生,如果每5名学生组成一个小组,可以组成多少个小组?答案:可以组成10个小组。
11. 一个数的6倍是72,这个数是多少?答案:这个数是12。
12. 一个数减去15得到30,这个数是多少?答案:这个数是45。
13. 一个数的7倍是49,这个数是多少?答案:这个数是7。
14. 一个数的8倍是64,这个数是多少?答案:这个数是8。
15. 一个数的9倍是81,这个数是多少?答案:这个数是9。
16. 一个数的10倍是100,这个数是多少?答案:这个数是10。
17. 一个数的11倍是121,这个数是多少?答案:这个数是11。
18. 一个数的12倍是144,这个数是多少?答案:这个数是12。
19. 一个数的13倍是169,这个数是多少?答案:这个数是13。
20. 一个数的14倍是196,这个数是多少?答案:这个数是14。
21. 一个数的15倍是225,这个数是多少?答案:这个数是15。
22. 一个数的16倍是256,这个数是多少?答案:这个数是16。
23. 一个数的17倍是289,这个数是多少?答案:这个数是17。
小学五年级下册数学必考奥数题型汇总带答案(共10题)
1一项工程,甲独做10天完成,乙独做20完成,现在甲乙合作,甲休息一天,乙休息5天,完成这项工程要多少天?解:甲休息1天,乙休息5天,相当于甲乙休息1天后,乙又休息4天那么甲4天完成甲乙的工作效率和=那么剩下的需要完成全部工程需要4+5=9天2生产一批零件,甲每小时可做18个,乙单独做要12小时成。
现在由甲乙二人合做,完成任务时,甲乙生产的数量之比是3:5,甲一共生产零件多少个?解:乙的工作效率=完成任务时乙工作了小时那么甲一共生产18×=135个3一项工作,甲乙要4小时完成,乙丙要6小时完成。
现在甲丙合作2小时,剩下的乙7小时完成。
甲乙丙单独要多久完成?解:甲丙合作2小时,乙独做7小时相当于甲乙可做2小时,乙丙合作2小时,乙独做7-2-2=3小时那么乙独做完成乙的工作效率=甲的工作效率=丙的工作效率=甲单独完成需要乙单独完成需要丙单独完成需要4服装厂接到加工一批服装的任务,王师傅每天可以制作3套服装,李师傅每天可以制作5套服装,如果王师傅单独完成制作这批服装的任务,比李师傅单独完成制作这批服装的任务要多用4天,那么,要加工的这批服装共有多少套?解答:(3×4)÷(5-3)=6(天)6×5=30(套)王王王…… 王王王王王李李李……李如上图,王字和李字分别代表二人一天的工作量。
王师傅在前几天一定比李师傅少加工了一部分零件,所以还需要再工作4天才和李师傅的工作量一样多。
王四天加工3×4=12(件),说明说明前几天王比李多加工12件,又由于每天多加工2件。
所以李共加工6天(12÷2),共6×5=30(套)5一项工程甲乙合做需12天完成,若甲先做3天后,再由乙工作8天,共完成这项工作的,如果这件工作由甲单独做,需多少天完成?解:甲3天乙8天看作甲乙合作3天,乙独做8-3=5天这是解决问题的关键乙独做5天完成乙的工作效率=甲的工作效率=甲单独完成需要6甲乙两人分别生产同样多的零件,各工作16天后,甲还需64个,乙还需384个才能完成,乙比甲的工作效率少40%,求甲的效率?解:设甲的工作效率为a个/天,则乙为(1-40%)a=0.6a个/天根据题意16a+64=0.6a×16+38416×0.4a=3200.4a=20a=50甲的工作效率为50个/天算术法:乙比甲每天少做40%那么16天少做384-64=320个每天少做320/16=20个那么甲的工作效率=20/40%=50个/天7有一项工程要在规定日期内完成,如果甲工程队单独做正好如期完成,如果乙工程队单独做就要超过5天才能完成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五年级下册数奥试题
姓名班级得分
用简便方法计算下面各题。
20.36-7.98-5.02-4.36 117.8÷2.3-4.88÷023
9.56×4.18-7.34×4.18-0.26×4.18
1、有123名小朋友,把他们分成12人一组或7人一组,恰好分完,而无剩余。
又知总的组数在15组左右。
那么,12人的多少组?7人的有多少组?
2、张妮5次考试的平均成绩是88.5分,每次考试的满分是100分,为了使平均成绩尽快达到92分以上,那么张妮要再考多少次满分?
3、父亲与三个儿子年龄和是108岁,若再过6年,父亲的年龄正好等于三个儿子年龄的和。
问父亲现年多少岁?
4、加工一批零件,原计划每天加工80个,正好按期完成任务。
由于改进了生产技术,实际每天加工了100个,这样,不仅提前4天完成加工任务,而且还多加工了100个。
他们实际加工零件多少个?
5、一个水池能装8吨水,水池里装有一个进水管和一个出水管,两管齐开,20分钟能把一池水放完。
已知进水管每分钟往池里进水0.8吨,求出水管每分钟放水多少吨?
6、将一根电线截成15段。
一部分每段长8米,另一部分每段长5米。
长8米的总长度比长5米的总长度多3米。
这根铁丝全长多少米?
7、把一条大鱼分成鱼头、鱼身、鱼尾三部分,鱼尾重4千克,鱼头的重量等于鱼尾
的重量加鱼身一半的重量,而鱼身的重量等于鱼头的重量加上鱼尾的重量。
这条大鱼重多少千克?
8、体育室买回5个足球和4个篮球需要付287元,买2个足球和3个篮球需要付154元。
那么买一个足球、一个篮球各付多少元?
9、有5元的和10元的人民币共14张,共100元。
问5元币和10元币各多少张?
10、某人从A村翻过山顶到B村,共行30.5千米,用了7小时,他上山每小时行4千米,下山每小时行5千米。
如果上下山速度不变,从B村沿原路返回A村,要用多少时间?
11、甲、乙两人同时从A、B两地相向而行,甲骑车每小时行16千米,乙骑摩托车每小时行65千米。
甲离出发点62.4千米处与乙相遇。
AB两地相距多少千米?
12、乌龟与兔子赛跑,兔子每分钟跑35千米,乌龟每分钟爬10米,途中兔子睡了一觉,醒来时发现乌龟已经在自己前50米。
问兔子还需要多少长时间才能追上乌龟?
13、在一个600米长的环形跑道上,兄妹两人同时在同一起点都按顺时针方向跑步,每隔12分钟相遇一次。
若两人速度不变,还是在原出发点同时出发,哥哥改为按逆时针方向跑,则每隔4分钟相遇一次。
两人跑一圈各要几分钟?
14、静水中,甲乙两船的速度分别是每小时20千米和16千米,两船先后自某港顺水开出,乙比甲早出发2小时,若水速是每小时行4千米,甲开出后几小时追上乙?
15、一列火车通过440米的桥需要40秒,以同样的速度穿过310米的遂道需要30秒,这列火车的速度和本身长各是多少?
16、一个书架分上、下两层,上层的书的本数是下层的4倍。
从下层拿5本放入上层后,上层的本数正好是下层的5倍。
原来下层有几本书?
17、有1800千克的货物,分装在甲、乙、丙三辆车上。
已知甲车装的千克数正好是乙车的2倍,乙车比丙车多装200千克。
甲、乙、丙三辆车各装货物多少千克?
本文由作者精心整理,校对难免有瑕疵之处,欢迎批评指正,如有需要,请关注下载。