火蔓延模型(翻译)
消防工程-专业英语词汇
消防专业英语词汇表A部分<1> abandonment 离弃(指见死不救的行为)<2> abatement of smoke 消减烟雾(法)<3> ABC extinguisher [消]ABC灭火器(能用来扑灭A、B、C类火灾的灭火器)<4> ABC method 心肺复苏法<5> ABC powder extinguishing agent [消]ABC 干粉灭火剂(适用于扑救A类、B类和C类火灾的干粉灭火剂)<6> ablation characteristics 烧蚀特征<7> ablation of melting body 熔融物体的烧蚀<8> ablation-product radiation 烧蚀生成物的辐射<9> abnormal combustion 异常燃烧(发动机爆震,早燃等不正常的总称)<10> abnormal condition 反常情况,不正常状态,非正常状态<11> absolute temperature 绝对温度<12> absolute temperature scale 绝对温标<13> absorbed gas 吸收状态气体(或瓦斯)<14> absorbent for confining spills 限制溢出物蔓延的吸收性材料<15> Acceptance check and reception systems of plant 设备验收交接制度<16> Acceptance regulation of equipment repair quality 设备修理质量验收制度<17> Accessible Means of Egress 易通行的疏散通道<18> Accident due to quality 质量事故<19> Accident management regulation of plant 设备事故管理制度<20> Accommodation stairway 简易楼梯<21> acousto-optic effect 声光效应<22> Added value rate of plant assets 设备资产增值率<23> Addressable alarm system 可编程(址)报警系统<24> Adjustable piston valve 活动式汽阀<25> Adjustable pressure limiting valve 可调限压阀<26> Adjustable retrictor valve 可调节流阀<27> Aerial extinguisher 航空灭火装置<28> Aerial ladder fire truck 云梯消防车<29> Afterbirth-like crystal 胞状晶<30> Agricultural fire pump 农用消防泵<31> Air inlet 进风口<32> Air lift pump 气泡泵<33> Air pressure balance for fire control 均压防灭火<34> Air-foam fire branch 空气泡沫枪<35> Air-lift pump 气升泵<36> Airport crash fire vehicle 机场消防车<37> Alarm 报警<38> Alarm (in control room) (控制室内)报警<39> Alarm and protection system 报警保护系统<40> Alarm device 报警装置<41> Alarm display panel 报警显示器<42> Alarm for voltage 电压报警器<43> Alarm gamma ray survey 报警器伽玛测量<44> Alarm of fire 火灾警报<45> Alarm pressure 报警压力<46> Alarm signal 报警信号<47> Alarm system 报警系统<48> Alarm unit 报警单元<49> Alcohol resistant foam concentrate 抗溶泡沫液<50> Alert data 报警数据<51> Amino group powder 氨基干粉<52> An1quan2fang1mian4de5wei1xian3 安全方面的危险<53> Analog warning accuracy 模拟报警精度<54> analog warning test 模拟报警试验<55> analogue detection and alarm system 模拟量探测报警系统<56> Ancient and rare trees 古树名木<57> Annular pressure loss 环空泵压损失<58> Anti-burning mechanical draft cooling tower 阻燃型冷却塔<59> Anti-collision warning device 防碰报警装置<60> Appliance carrying fire vehicle 器材消防车<61> Aqueous film forming foam concentrate 水成膜泡沫液<62> arc resistance 耐电弧性<63> Area of Refuge 避难区域<64> Areal (departmental) repair center 地区(部门)修理中心<65> Arson 放火<66> Automatic explosion suppression system 自动抑爆系统<67> Automatic fire a1arm system 火灾自动报警系统<68> Automatic fire alarm system 火灾自动报警系统<69> automatic fire equipment 自动消防设备<70> Automatic fire signa1 自动火灾信号<71> automatic light control 自动光强控制装置<72> Automatic sprinkling fire extinguishing system 自动喷水灭火系统<73> Auxiliary fire vehicle 后援消防车<74> average deviation 平均偏差<75> Average pump pressure 平均泵压<76>a.a.r against all risk 综合险,保一切险,保全险<77>AA auto-alarm 自动报警<78>AAB Aircraft Accident Board 飞行事故调查委员会<79>AAC automat and automatical control 自动装置与自动控制<80>AACC American automatic control council 美国自动控制委员会<81>AACC American Association for Contamination control 美国控制污染协会<82>AAE American Association of Engineers 美国工程师协会<83>AAEC Australian Atomic Energy commission 澳大利亚原子能委员会<84>AAEE American Association of Electrical Engineers 美国电气工程师委员会<85>AAJ Architectural Association of Japan 日本建筑协会<86>AAR aircraft accident report 飞机事故报告<87>AAS American Association for the advancement of Science 美国科学促进协会<88>Ab air-breaker 空气断路器B部分<1> baby Bangor [消]小拉梯〈一种没有绳索和滑轮的拉梯,主要用于建筑物内部〉<2> back flame [消]复燃火焰〈熄灭后再燃的火焰〉<3> back pack [消]背包式灭火器〈背负的五加仑灭火器,内装泵,用于扑救草地和灌木丛〉<4> back pack pump tank 背负式带泵灭火器<5> back pack pump tank fire extinguisher [消]小型背负泵式灭火器<6> back pressure valve 止回阀,背压阀<7> back scattering 反向(后向)散射<8> back stair 后楼梯,辅助楼梯<9> back staircase 后楼梯,辅助楼梯间<10> back step [消](消防车的)后踏板<11> back stopping [矿]上向梯段回采<12> back strack 由原路退回<13> back stretch [消]反向铺设水带<14> back up 1、备用的,候补的2、倒转,回退<15> back-up battery 备用电源<16> back-up breaker 备用断路器<17> Back-up safety functions 辅助安全功能<18> baffle 1、隔板 2、[消]水箱隔板 3、隔火板 4、缓冲板 5、导流叶片 6、遮护物<19> balanced system 1、[消]均衡系统 2、均衡系统,对称系统<20> Balancing pressure on stopping 均压防灭火<21> ball blanket [消]塑料球覆盖层<22> ball cock 浮球阀<23> ball hydrant [消]球形消防栓<24> ballast tank 1、压载水枪 2、压载舱<25> ball-float liquid-level meter 球形浮子液面计<26> Base injection foam extinguishing system 液下喷射泡沫灭火系统<27> Beat fireproof 建防火带<28> Bell character 报警字符<29> Biological Chip 生物芯片<30> biplane butterfly valve 平板蝶阀<31> Blower extinguishment 风机灭火<32> Blow-off valve seat 放水阀座<33> Boiler safety valve 安全阀<34> Boilor check valve seat 止回阀座<35> Branch crystal 树枝晶<36> Budget of installation 安装预算<37> bulk range 喷射距离<38> Burn (Verb) 燃烧(动词)<39> Burning behaviour 燃烧性能<40> Bursting 爆裂<41> butterfly valve 蝴蝶阀<42> by-pass valve 旁通阀C部分<0> Cabinet extinguishing equipment 柜式灭火装置<1> Cabinet foam extinguishing eguipment 柜式泡沫灭火装置<2> cabinet foam extinguishing equipment [消]柜式泡沫灭火装置<3> cabinet type hose washing machine [消]柜式洗水带机<4> cable line-type fixed temperature detector [消]缆式线型定温探测器〈采用缆式线结构的线型定温探测器〉<5> cable tray fire break 电缆槽盒阻火物<6> cable vault 电缆进线室<7> cable-tray penetration 电缆槽盒穿透(度)<8> cable-tray temperature sensor 缆式温度传感器<9> calamity damage insurance 火灾保险<10> calculation of probabilities [林]可能性推算<11> calibration criterion 校准标准<12> call back 1、[消]火灾报警箱 2、[英]公用电话亭 3、[消]召回<13> Calorific potential 潜热能<14> camp boss [林]营地管理员〈负责建立和管理一个消防营地的人〉<15> campaign fire [林]战役火灾〈要花一天以上才能扑灭的森林火灾〉<16> campfire [林]营火<17> camshaft 凸轮轴,分配轴<18> can [口][消]灭火器<19> Canadian Association of fire Chiefs 加拿大消防长官协会<20> Canadian Association of fire Investigators 加拿大火灾调查委员会<21> Canadian Automotive Rescue Society 加拿大汽车救援协会<22> Canadian Centre for Emergency Preparedness 加拿大应急准备中心<23> Candela 坎德拉<24> Capital investment recovery period of plant 设备投资产出比<25> Carbon dioxide extinguishing agent 二氧化碳灭火剂<26> Carbon dioxide extinguishing system 二氧化碳灭火系统<27> Carbon dioxide fire extinguisher 二氧化碳灭火器<28> Carbon dioxide fire vehicle 二氧化碳消防车<29> casting-state structure 铸态组织<30> Catchpit 集流坑<31> Ceiling screen 挡烟垂壁<32> Central alarm station 中央报警站<33> Central fire alarm control unit 集中火灾报警控制器<34> Centralized maintenance 集中维修<35> centrifugal pump 离心泵<36> Centrifugal pump drainage 离心泵排水<37> Centrifugal water pump 离心式水泵<38> Check point 检测点<39> Check valve 止回阀<40> Chemical foam 化学泡沫<41> Chemical reaction extinguisher 化学反应式灭火器<42> Chemical reaction fire extinguisher 化学反应式灭火器<43> Chimney effect 烟囱效应<44> Chip 芯片<45> Chute rail smoke extinguishing system 滑道架式烟雾灭火系统<46> CIF of imported equipment 进口设备到岸价<47> city fire station 城镇消防站<48> city path for fire wehicles 城镇消防通道<49> Claims for equipment 设备索赔<50> Class A A类火<51> Class B B类火<52> Class C C类火<53> Class D D类火<54> class of safety protection 安全防护等级<55> Classified management of plant 设备分级管理<56> CO&sub2; fire extinguishing system 二氧化碳灭火<57> Cocrystallization 共晶体<58> Coefficient of pump pressure 泵压系数<59> Coercionary service system 强制保养制<60> coercive force 矫顽力<61> Combination of design, manufacturing and operation 设计、制造与使用相结合<62> combination of professional management and mass management 专业管理与群众管理相结合<63> Combination of repair, modernization and renewal 修理、改造与更新相结合<64> Combination of service and planned maintenance 维护与计划检修相结合<65> combination of technical management and economic management 技术管理与经济管理相结合<66> Combination type fire detector 复合式火灾探测器<67> Combined agent extinguishing system 混合灭火系统<68> Combined extinguishing 综合灭火<69> Combined maintenance 混合维修<70> Combined smoke and powder extinguishing system 烟雾干粉联用灭火系统<71> combustibility 可燃性<72> Combustiblc 可燃的<73> Combustion 燃烧<74> Command and communication fire vehicle 通讯指挥消防车<75> Commodity inspection 商检(商品检验)<76> complete discharge 完全喷射<77> Complete set of plant 设备的成套性<78> Complexity coefficient of repair 修理复杂系数<79> Comprehensive utilization ratio of plant 设备综合利用率<80> Compressed air pump drainage 压气泵排水<81> Constitution ratio of plant 设备构成比<82> containment spray system 安全壳喷淋系统[压水堆]<83> contract change and cancellation 合同变更与解除<84> control valve 调节阀<85> Coordinate Bond 配价键<86> Coordination Compound 配位化合物<87> Copper 铜<88> core spray system 堆芯喷淋系统[沸水堆]<89> Corridor 走廊<90> cost for re-building the historical and cultural relics 文物建筑重建费<91> Criticality alarm system 临界报警系统<92> crystal boundary 晶界<93> Crystal particle 晶粒<94> ctric spark 电火花<95> Current consumption at alarm 报警电流<96> current density 电流密度<97> cyindrical plug valve 圆柱形转阀<98> cylindrical crystal 柱状晶<99> cylindrical valve 圆筒阀<100>CAFS compressed air foam system [消]压缩空气泡沫系统D部分<0> dabo 护墙板,墙裙<1> Dahill hoist 达希尔升降机〈一种以压缩气体为动力的升降机〉<2> daily burning cycle [林]日火烧周期〈24小时的燃烧周期,从上午10算起〉<3> daily activity level [林]日常活动等级<6> damage 损害,损失<7> damage area [消]1、烧毁面积 2、受损地区,毁坏地区<8> damage control tender [消]防损车〈用于预防或减少灭火战斗中水渍等损失的消防车〉<9> damage length 烧毁长度〈烧毁面积在特定的方向的最大距离〉<10> damagerous articles package 危险品包装<11> Damkohler number 丹姆克尔数<12> damming 修筑隔墙<13> damp atmosphere 湿大气<14> damp down fire (用沙子灭等)灭火,消火<15> damped 被(瓦斯)窒息的<16> damper control 风门控制装置<17> damposcope 爆炸瓦斯指示器<18> danger index [林]火险指数<19> danger meter [林]火险尺(法)<20> Dangerous Chemical Substances or Hazardous Chemicals 化学危险物品<21> data processing system security 数据处理系统安全性<22> Data security 数据安全<23> Date of residual magnetism 剩磁数据<24> dead air 1、含有大量CO2的空气。
【计算机专业文献翻译】用分子扩散运动过程来解释火以及其他气态的现象
用分子扩散运动过程来解释火以及其他气态的现象Jos StamEugene Fiume多伦多大学计算机学院摘要构建出一个视觉上合理的关于火,烟和其他气态现象的模型,是属于电脑绘图中最难也是最有吸引力的难题。
我们已经创造出一个能使广阔范围的气态现象更生动并且比以前用的更少的 primitives 的新方法,它包括特别细小的烟和蒸汽的模型。
其中一个非常重要的革新就是对于由偏离无定形物组成的密度的平流——分子运动等式的重新组织和解答。
这些无定形物更加准确的演示出气体被风量平流传递影响后所经历的变形偏离。
我们也介绍了火的火焰及它的速度的一个简单的模型。
最后,我们提出了一个关于在气体和火面前的球形光源的高效的陈述和实施方案。
我们的模型是为允许一个相当深度的使用者控制气体现象演变过程而特别设计的。
序言光线与气体,气雾和灰尘的相互影响是自然现象中可见的最微小的也极易爆炸的物质,在过去的是十年里,对于这些现象的描述已成为电脑绘图中最有吸引力的部分,并且它们在电脑动画方面的应用是很明显的。
任何电脑制图的气态现象的模型必须包含三个要素,气体的代表物,它在空间上的一个模型,和一个能够决定他的外形的一个光亮源的模型。
对于气态现象,电脑绘图的模型分为两种。
一种模型是气体的代表物与它成为立体结构移动的结合。
这是用绘制变化的气体参数要素来实现的。
由于非物质属性的参数和观看到这些立体结构的耗费,用这些方法获得合理的气体移动变得很困难。
这些参数是相对的,但这是对于湍流的统计学模型来说的。
我们更青睐与另一种方法。
这种方法保持了三个要素的统一,并且用风量来动画演示气体。
最早的与电脑绘图相关的工作是Reeves做的,那是粒子系统是用来描绘很多种包括火在内的可见的现象。
近期的工作集中于一些具体现象的描述,例如蒸汽,雾,云或者火。
风量既能平流传递也能扩散减小无定形物的密度,所以一个眼前的好处就是气体的移动能实时的被看到。
然而,规则形状的无定形物常使气体看起来像人造的。
火灾烟雾扩散模型与人员疏散模拟
实际应Байду номын сангаас与案例分析
实际应用场景与案例选择
火灾烟雾扩散模型:用于预测火灾烟雾的扩散速度和范围,为消防部门提供决策支持
人员疏散模拟:用于模拟火灾发生时人员的疏散行为,为消防部门提供疏散策略
实际应用场景:商场、办公楼、住宅楼等建筑物 案例选择:选择具有代表性的火灾案例进行分析,如2010年上海胶州路大火、2011年天津港 爆炸等
火灾烟雾扩散模型与人员疏散 模拟的关系
烟雾扩散对人员疏散的影响
烟雾扩散速度:影响人员疏 散时间和距离
烟雾浓度:影响人员呼吸和 视线,影响疏散速度和方向
烟雾毒性:影响人员健康和 安全,可能导致人员伤亡
烟雾扩散方向:影响人员疏 散路径和疏散效率
人员疏散对烟雾扩散的反馈
人员疏散过程中产 生的气流会影响烟 雾的扩散方向和速 度
添加标题
通风系统:建筑物的 通风系统类型和运行 状态
添加标题
人员疏散路径:人员 疏散的路线和速度
添加标题
安全出口:建筑物的 安全出口位置和数量
添加标题
火灾报警系统:火灾 报警系统的类型和运 行状态
模型验证与应用
模型验证:通过实验和实际火灾数据进行验证 应用领域:消防、建筑设计、应急管理等 应用方法:模拟火灾烟雾扩散过程,预测人员疏散路径 应用效果:提高火灾救援效率,减少人员伤亡和财产损失
THANK YOU
XXX
案例分析过程与方法
选取典型案例:选择具有代表性的火 灾案例进行分析
数据收集与整理:收集火灾发生时的 烟雾扩散数据、人员疏散数据等
模型建立与验证:建立火灾烟雾扩散 模型,并进行验证
模拟分析:利用模型进行人员疏散模 拟,分析疏散效果
林火蔓延模型研究综述
林火蔓延模型研究综述作者:周靖来源:《科学与财富》2018年第29期摘要:为更好研究林火蔓延行为,预测林火蔓延趋势,仿真与模拟林火蔓延及实现蔓延的可视化问题,本文重要搜集和整理林火蔓延的各类模型,整理和分析国内外先进林火蔓延算法,并分析了国内外林火蔓延模型发展趋势,讨论了林火蔓延模型和蔓延模拟的发展前景。
关键词:森林防火;蔓延模型;Rothermel1 引言森林是大自然的重要组成部分,是人类可持续发展的基础。
森林火灾是失去人为控制,在林地内自由蔓延和扩展,对森林、森林生态系统和人类带来一定危害和损失的林火行为。
发生森林火灾即发生林火,林火蔓延是持续毁灭森林的根本动力。
因此,了解和掌握林火蔓延模型,预测林火蔓延趋势,可视化林火蔓延研究将最大限度地减少森林火灾造成的损失,具有极其重要的作用。
林火蔓延是多组分可燃物在温度、湿度、风向和风力等各种气象条件和地形影响下的燃烧和复杂运动现象。
多年来,大多研究者对林火的蔓延还仅停留于现场观察和实验室实验条件下,抓住其中某些重要因素,按照统计的或物理的规律,以此建立相应的数学模型,从而估计林火蔓延趋势。
从1946 年 W. R. Fons 首先提出林火蔓延的数学模以来,世界上许多国家都提出了自己的林火蔓延模型,主要包括 RothermeI 模型[1]、 McArthur 模型、加拿大林火蔓延模型[2] 以及王正非林火蔓延模型等。
根据模型建立的方法以及对林火蔓延本质的认识程度,模型可分为统计模型、半物理模型、物理模型三类。
统计模型是指不涉及任何物理机制,纯粹从统计的角度来描述火行为,模型把有多个变量相互关系的复杂问题,在形式上作简单的处理。
由于其建立在大量实际森林火灾和计划火烧的资料基础上,置信度高,材料充足等,因此该公式的计算结果与实际情况基本符合。
物理模型主要由Fons最早提出,Fons将模型种燃料床理想化,且假定燃料达到着火的温度即着火,因此,造成模型与实际相距较大,使得模型表达式复杂,物理参数较多,参数不确定等因素。
建筑火灾蔓延的动态模型
Dynamic modeling offire spread in buildingHao Cheng a,b,n,George V.Hadjisophocleous aa Department of Civil and Environmental Engineering,Carleton University,1125Colonel By Drive,Ottawa,ON,Canada K1S5B6b Fire Protection Program,Human Resources&Skills Development Canada—Labour,165Hotel de Ville Street,Gatineau,QC,Canada K1A0J2a r t i c l e i n f oArticle history:Received17December2009Received in revised form11February2011Accepted11February2011Available online5March2011Keywords:Fire spreadDynamic modelBayesian networkTime effectProbabilityBuildinga b s t r a c tModelingfire spread in a building is a key factor of afire risk analysis used forfire safety designs of largebuildings.In this paper,a dynamic model offire spread consideringfire spread in both horizontal andvertical directions is described.The algorithms for simulating thefire spread process in buildings andcalculating dynamic probability offire spread for each compartment at each time step of simulation areproposed.The formulae used in calculating the input data for the dynamicfire spread model are derived.The dynamicfire spread model can easily be applied for any building including high-rise buildings.A detailed example of calculation offire spread in a two-storey office building is described.&2011Elsevier Ltd.All rights reserved.1.IntroductionFires in buildings pose a significant risk to building occupantsand cause property damage.Traditionally,prescriptive-based build-ing codes have been used infire safety design of buildings.Suchcodes prescribe in detail what is required for afire-safe building.Because of the limitations inherent in prescriptive-based buildingcodes,such as not beingflexible and inhibiting innovation,perfor-mance-based building codes are being adopted and used in moreand more countries.To achieve the goals required by performance-based building codes,it is necessary to undertake afire-riskassessment andfire safety evaluation,especially for large buildings.A lot of research has been conducted in recent decades tounderstand the mechanisms offire spread in large buildings.Because of the difficulty of including all factors affectingfiregrowth andfire spread in the input data forfire-spread models,these studies have often been carried out using a probabilisticapproach.Ramachanandran[1,2]summarized the earlier studiesof stochasticfire-spread modeling from recent decades.In the earlier studies,epidemic theory[3,4],random walktheory[5,6],Markov processes[7–9],percolation processes[10,11]and probabilistic networks[12,13]have been used tomodelfire spread.These models can successfully describe certainaspects offire spread in buildings.But there are somedisadvantages when simulating thefire spread process usingthese models.The epidemic theory cannot modelfire spread,due to radiation,combustible materials or compartments that arefar away from thefire origin and unable to be directly reached byflames.The random walk theory[5,6]and percolation pro-cesses[10,11]can simulatefire spread from afire compartmentto one of its adjacent compartments,and then from thisfirecompartment to another adjacent compartment.But they are notgood at simulating scenarios wherebyfire may spread from afirecompartment to multiple adjacent compartments orfires frommultiplefire compartments spreading to adjacent compartments.The transition probability in the Markov process[7–9]is notreally the probability offire spread from thefire compartment toadjacent compartments,which are affected by thefire severityand time.It only represents the relative probability thatfirewould spread from thefire compartment to an adjacent compart-ment,i.e.if there are two similar compartments on each sideof afire compartment,the transition probability offire spread toeach compartment will always be equal to50%,regardless of theseverity of thefire and how long thefire lasts in the compartment.In addition,thefire spread process from one compartment tomultiple compartments or from multiple compartments to theiradjacent compartments at the same time cannot be described bythe Markov process.Ling and Williamson[12]first presented a probabilistic net-work approach to study room-to-roomfire spread.An exampleof modeling a network forfire spread in a buildingfloor wasillustrated.This model did not consider barrier failure due toradiation.This network approach was complicated,each time theContents lists available at ScienceDirectjournal homepage:/locate/firesafFire Safety Journal0379-7112/$-see front matter&2011Elsevier Ltd.All rights reserved.doi:10.1016/j.firesaf.2011.02.003n Corresponding author at:Department of Civil and Environmental Engineering,Carleton University,1125Colonel By Drive,Ottawa,ON,Canada K1S5B6.E-mail addresses:haocheng5@,ChengHao@labour-travail.gc.ca(H.Cheng).Fire Safety Journal46(2011)211–224compartment of fire origin was changed,a new network had to be developed.Platt et al.[13]developed a simple and clear model in which an event tree was used to determine the probability of fire spreading from the fire compartment to other compartments.This model was very good in expressing the fire spread process for small buildings,but it is hard to develop a fire-spread event tree for large buildings.If the initial fire compartment was changed,a new event tree would have to be developed,even for the same building,which makes the model difficult to program.The digraph (directed graph)approach was used as the fire-spread sub-model of the fire risk evaluation and cost assessment model (FiRECAM)[14].Fire spread from the fire compartment to a compartment on the floor above through the pathway of window to window due to external flames out of a window was not included in this model.To simplify the problem,all compartments of the same type,such as rooms,corridors,stairwells on one floor were combined as a single node of the network.The developed algorithm searched all possible path-ways for fire to spread from one node to another.In this paper,a dynamic model of fire spread in buildings is presented.It was developed based on the static model of fire spread in buildings using the Bayesian Network theory proposed by Cheng and Hadjisophocleous [15],which can overcome thedisadvantages of the earlier models.Some basic concepts intro-duced in [15]are not repeated in this paper.The dynamic fire-spread model considers both horizontal and vertical fire spread in a building.In this model,the algorithms of simulating the fire spread process have been developed and corresponding codes have been written.Therefore,the probability of fire spread from the compartment of fire origin to any other compartment,the time of ignition and the time to flashover in each compartment can be calculated.In addition,the formulae calculating the input data for the dynamic fire spread model were derived.The dynamic fire spread model can easily be applied to any building,including high-rise buildings.2.Fundamentals of fire development in compartment and fire spread in buildingIn order to build a fire spread dynamic model simulating fire spread in buildings,it is important to review some of the fundamentals of fire development in a compartment and fire spread from the fire compartment to its adjacent compartments in buildings.H.Cheng,G.V.Hadjisophocleous /Fire Safety Journal 46(2011)211–2242122.1.Fundamental of fire development in compartmentIf a fire occurs in a compartment,the compartment fire may undergo the phases of growth,development and decay as shown in Fig.1:(1)Dormant phaseThe phase during which no fire or ignition occurs in the compartment.(2)Fire growth phaseOnce ignition occurs in the compartment,fire might grow up to a fully sustained fiually the t 2fire [19]is used to characterized the fire in the fire growth phase_Q¼a ðt Àt ig Þ2ð1Þwhere _Qis the heat release rate (kW);t ig the ignition time in the compartment (s);a the growth coefficient for t 2fire (kW/s 2).The value of fire growth parameter is shown in Table 1.The fire in the growth phase in the compartment might transition to flashover.One criterion for flashover occurring in a compartment is that the heat release rate of the fire must reach a critical value [20]._Q fo ¼750A o ffiffiffiffiffiffiH o p ð2Þwhere _Q fo if the critical value of heat release rate of fire for flashover (kW),A o ffiffiffiffiffiffiH o p the ventilation factor (m 5/2),A o the area of the ventilation opening (m 2),and H o the height of the ventilation opening (m).a.Fire can flashover in a compartmentThe fire growth phase ends when heat released rate (HRR)of fire in fire growth phase reaches the critical value for flashover,which depends on the ventilation condition;therefore,_Q fo ¼a ðt fo Àt ig Þ2¼a ðt foÞ2¼750A o ffiffiffiffiffiffiH o p ð3Þwhere t fo is the duration of fire growth phase from ignition to flashover (s)and t fo the flashover time in the compartment (s).Therefore the duration from ignition to flashover t fo canbe calculated byt fo ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi750A o ffiffiffiffiffiffiH op as ð4Þb.Criterion for flashover in a compartmentIf the heat release rate (or temperature)in a compart-ment during the fire growth phase cannot reach the critical value for flashover,this fire would not cause flashover to occur.Assume all fuels in the compartment would burn out during the fire growth phase.The total heat that can be released by fuels in a compartment can be calculated.Q ¼w f A F H ch ¼Zt ig þt max gr t ig_Q ðt Þdt ¼Zt ig þt max gr t iga ðt Àt ig Þ2dt ¼Z t maxgra ðt Àt ig Þ2dt ¼1a ðt max gr Þ3ð5Þwhere Q is the total heat released of fuels (kJ),w f the fuel density of equivalent wood in compartment (kg/m 2),A F the floor area of the compartment (m 2),H ch the heat of combustion of fuel (kJ/kg),t max grthe maximum duration of fire growth phase when all fuel would be burnt in fire growth phase (s).Therefore,the maximum duration of fire growth phase could be calculated byt maxgr ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi3w f A F H ch a3r ð6ÞCriterion to check whether flashover can occur in acompartment If t max gr r t fo ,there is no flashover in a compartment. If t max gr 4t fo ,flashover can occur in a compartment.(3)Fully developed fire phaseImmediately after flashover,the compartment fire becomes a fully developed fire.During the fully developed fire phase,the heat release rate of the fire reaches its greatest value.The fully developed fire might be ventilation controlled or fuel controlled.The criterion used to distinguish the two regimes of post-flashover compartment fire proposed by Harmathy [21,22]are as follows.Ventilation controlled fire r 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffigA o ffiffiffiffiffiffiH op A fs o 0:263ð7a ÞFuel surface controlled fire r 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffigA o ffiffiffiffiffiffiH op A fs Z 0:263ð7b Þwhere r 0is the density of air (kg/m 3),g the acceleration due to gravity (m/s 2),and A f the surface area of the fuel (m 2).Harmathy [23]suggested that the surface area of the fuel can be expressed as A f ¼j W F ¼j w f A Fð8Þwhere W f is the total mass of equivalent wood in a compart-ment (kg),j the specific surface of fuel,0:1o j o 0:4ðm 2=kg Þ[21],w f the fuel density of equivalent wood in a compartment (kg/m 2),and A F the floor surface area of a compartment (m 2).t (time)T e m p e r a t u r e /H R Rig fode exFig.1.The phases of enclosure fire development.Table 1fire growth parameter.Fire growth rateFire growthparameter a (kW/s 2)Time (s)(when _Q ¼1MW)Slow 0.0029600Medium 0.012300Fast0.047150Ultra fast0.18875H.Cheng,G.V.Hadjisophocleous /Fire Safety Journal 46(2011)211–224213Substituting r 0¼1:2kg =m 3,g ¼9:81m =s 2and Eq.(8)into Eq.(7a)and (7b),then the criterion of two regimes of post-flashover compartment fire becomes Ventilation controlled fire A 0ffiffiffiffiffiffiH 0p A f ¼A 0ffiffiffiffiffiffiH 0p j w A F o 0:07m À1=2ð9a ÞFuel surface controlled fire A 0ffiffiffiffiffiffiH 0p A f ¼A 0ffiffiffiffiffiffiH 0p j wA FZ 0:07m À1=2ð9b ÞFor a wide range of conventional furniture j ¼0:13ðm 2=kg Þ[23]a.Duration of fully developed fire phaseHarmathy [23]presented following equations to calculate the duration of fully developed fire phase t fd Ventilation controlled firet fd ¼W f r 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffigA 0ffiffiffiffiffiffiH 0p q ¼10:6W f A 0ffiffiffiffiffiffiH 0p ðs Þð10a ÞFuel surface controlled firet fd ¼151jðs Þð10b ÞFor a ventilation controlled fire,its duration depends on both the amount of fuel in the compartment and the size and shape of the opening of the compartment.For a fuel surface controlled fire,its duration is independent of the fuel load in the compartment and only depends on the specific surface of fuel:(a)For a fuel surface controlled fire,the fire will becontained in the compartment and flames will not come out of the compartment openings.(b)If a fire is ventilation controlled,flames will projectoutside of the compartment through openings such as windows or open doors.The flame height above the soffit of the opening is given by [24]z ¼12:8_mv W o2=3ÀH oð11Þwhere z is the flame height above the soffit of the opening(m),_mv the fuel burning rate during fully developed fire phase for ventilation controlled fire (kg/s),and W o the width of the ventilation opening (m).For the ventilation controlled fire,the burning rate at fully developed fire phase [25]is_mv ¼0:18ð1Àe À0:036O ÞA 0ffiffiffiffiffiffiH 0p ffiffiffiffiffiffiffiffiffiffiffiD =W p ð12Þwhere D is the depth of the fire compartment (m)and W the width of the fire compartment (m)O ¼Coefficient ,O ¼A T A o ffiffiffiffiffiffiH op where A T is the total area of fire compartment enclosing surface (m 2).(4)Decay phaseDecay occurs as fuels are consumed by the fire and the HRR begins to decline.During this phase,the fire in the compart-ment changes from a ventilation controlled fire to a fuel surface controlled fire.2.2.Fundamentals of fire spread in a buildingThe main reason for fire spread from the compartment of fireorigin to its adjacent compartments is that the barriers between the compartments fail to contain the fire.The heat in the fire compartment penetrates the barrier and may ignite the combus-tible materials in the adjacent compartments.After ignition,the fire in the adjacent compartments may grow and develop to a fully developed fire.The failure of a barrier to contain the fire depends on three factors:The fire severity. Fire duration.Fire resistance of the barrier.Fire severity is usually expressed in terms of the heat release rate or temperature in the fire compartment.As shown in Fig.1,the heat release rate or temperature during the fire growth phase is much smaller than that of the fully developed phase;therefore,it can be assumed that fire spread can only occur after flashover,during the fully developed fire phase.The duration of a fully developed fire mainly depends on the amount of fire load in the compartment and the fire burning rate.Fire spread from the fire compartment to its adjacent com-partments always occurs via the weakest parts of the barriers,such as doors,windows or other openings.In buildings,fire may spread from the fire compartment to adjacent compartments both in the horizontal direction and in the vertical direction2.2.1.Fire spread in the Horizontal directionThe possible pathways for fire to spread from the fire compart-ment to its adjacent compartments in a horizontal direction are:through a wall connecting two compartments,through a closed door connecting two compartments, through an open door connecting two compartments, through a window connecting two compartments,andfrom one compartment to another compartment separated by a corridor (4different door opening scenarios).The mechanisms of fire spread between two compartments in the horizontal direction are:Conduction:the heat in the fire compartment is conductedthrough walls or closed doors separating the two compart-ments,causing an increase of the temperature on the unex-posed side and igniting combustible materials in the adjacent compartment.Convection:hot gases or flames flow through openings such as open doors,windows or cracks to the adjacent compartment and ignite combustible materials in it.Radiation:radiative heat flux from the fire compartment transfers to compartments across the corridor and ignites combustible materials in these compartments.2.2.2.Fire spread in the vertical directionThe possible pathways for fire to spread from the fire compart-ment to compartments on the floor above:through a ceiling connecting two compartments,through an opening such as stairwell connecting two compart-ments,andby outside flames projecting out of windows in the fire compartment entering windows in the compartment above.H.Cheng,G.V.Hadjisophocleous /Fire Safety Journal 46(2011)211–224214The mechanisms causing the fire to spread from the fire compartment to compartments above in vertical direction are:Conduction:conduction of heat from the fire compartmentthrough the ceiling or floor,causing an increase of the temperature on the unexposed side and igniting combustible materials in the compartment at the upper or lower floor. Convection:immediately after flashover in the fire compart-ment,hot gases flow to the compartment above through openings and ignite combustible materials inside.Radiation and convection:heat flux from the flames projecting out of the windows of the fire compartment could break glass windows of the compartments on the upper floor,penetrate the windows,and ignite combustible materials in the upper compartment.3.Fundamentals of the dynamic Bayesian network [16,17,18]Bayesian networks cannot model temporal relationships among variables since Bayesian networks do not provide a mechanism for representing temporal dependencies.Therefore,it cannot represent how the value of some variables may be related to their values and the values of other variables at a previous point in time.However,fire spread in a building is a dynamic process.Time is a critical factor in modeling the fire spread process in a building because the fire severity in the fire room and the fire resistance of the barriers are functions of time.To capture the dynamic aspects of the problem,a dynamic Bayesian network (DBN)is used to build the dynamic fire spread model for buildings.Let X ¼{X 1,X 2,y ,X m }denote the variables in a Bayesian net-work.Assume that the variables in X are ordered ancestrally,or in a topological ordering.That is,for every node X i A X;the index of its ancestor X j has the property j o i .A dynamic Bayesian network is a Bayesian network with explicitly represented temporal variables.A DBN structure can be treated as having twodimensions:the time line and the variable line,represented in Fig.2on the horizontal axis and vertical axis,respectively.On the time line,the time mission T (from t 0¼0to t n ¼T )is divided into n intervals.Each time step (t 0,t 1,t 2,y t n )is called a time-slice.The relationships between variables in the same time slice are represented by the intra-slice arcs.The edges representing the relationships between variables in the different time slices are called inter-slice arcs or temporal arcs.Each variable on the time line forms a sequence X i (t )¼{X i (t 0),X i (t 1),y ,X i (t n )}called a temporal variable sequence.The temporal variables measured at the same time slice form a contemporaneous variable set X(t i )¼{X 1(t i ),X 2(t i ),y ,X m (t i )}.The joint probability distribution of DBN over all variables can be stated asP ðX ðt 0Þ,X ðt 1Þ,X ðt 2Þ,...,X ðt n ÞÞ¼P ðX ðt 0ÞÞU P ðX ðt 1Þ9X ðt 0ÞÞU P ðX ðt 2Þ9X ðt 0Þ,X ðt 1ÞÞ...P ðX ðt n Þ9X ðt 0Þ,X ðt 1Þ,X ðt 2Þ,...,X ðt n À1ÞÞð13ÞIt is assumed that the time slices are chosen so that the states of the DBN satisfy the Markov condition;that is,the state of a DBN at time t i depends only on its immediate past state (the state at time t i À1).Therefore,the state of a variable of a DBN at time t i depends on its previous state at time t i À1and the current states of its parent’s variables of the DBN at time t i .Then the joint probability distribution of DBN over all variables can be written as P ðX ðt 0Þ,X ðt 1Þ,X ðt 2Þ,...,X ðt n ÞÞ¼P ðX ðt 0ÞÞX n i ¼1P ðX ðt i Þ9X ðt i À1ÞÞð14ÞIn Fig.3,there is a transition network G -containing thevariables in X (t i )[X (t i +1).Its transition probability distribution is P -ðX ðt j þ1Þ9X ðt j ÞÞ¼Y m À1j ¼1P -ðX j ðt j þ1Þ9pa ðX j ðt j þ1ÞÞÞð15Þwhere pa(x j (t i +1))denotes the value of the parent node setof x j (t i +1).t=0t t t =Ttimen321Fig.2.A DBN with first-order Markov property.H.Cheng,G.V.Hadjisophocleous /Fire Safety Journal 46(2011)211–2242154.Dynamic modeling of fire spread in buildingsThe dynamic modeling of fire spread in buildings is based on the static modeling of fire spread in buildings using the Bayesian networks derived by Cheng and Hadjisophocleous [15].To sim-plify the problem,following assumptions have been made.4.1.Basic assumptions for dynamic fire spread modelFire spread in the building is subject to the Markov condition.That is,the state of a variable of a DBN at time t i depends on its previous state at time t i À1and the current states of its parents’variables of the DBN at time t i .If a fully developed fire has occurred in a compartment,fire cannot return to the compartment that has already burnt out since there are no combustibles remaining in this compart-ment to support fire ignition and fire growth.Once ignition occurs in a compartment,fire will develop in this compartment independently;that is,the fire development in a compartment will not be subjected to the influence of the fire conditions in its adjacent compartments.Fire in a compartment can only spread to its adjacent compart-ments in the horizontal direction and adjacent compartments on the upper floor;it is assumed that fire spread to compart-ments on the lower floor can be ignored.The probability of fire spread from a corridor to adjacent compartments can be ignored since the fuel density in the corridor is low.Therefore the duration of a fully developed fire is not long enough for heat to penetrate the barrier to an adjacent compartment and ignite the combustible inside.When two compartments are separated just by an open door,open window or there is no barrier between them,if flashover occurs in one of the compartments,the fire will immediately spread to the other compartment.For a large compartment such as a hall in a building,the large compartment can be considered consisting of several virtual compartments without boundary barriers between them.When the doors of two compartments are separated by a corridor,the fire can spread from the fire compartment to the othercompartment opposite the corridor through the doors of these two compartments by radiation heat flux from the hot gases in the corridor or in the room.If the door of a compartment is far away from the position perpendicular to the door of fire compart-ment,the radiant heat flux from the fire compartment could be too small to ignite the combustible materials in other compart-ment since the two doors could be diagonally far away from each other across the corridor.If flashover could occur in a compartment such as stairwell,elevator shaft,or duct,the fire would immediately spread to its upper compartment.The common glass of windows in a compartment is assumed to break and fall off once flashover occurs in the compartment.4.2.The probability of fire spreadFire spread from the fire compartment to its adjacent com-partment includes two processes:(a)Heat overcomes the fire resistance of the barrier between thetwo compartments,is transferred to the adjacent compart-ment,and ignites combustible material inside it.(b)After ignition,the fire in the adjacent compartment couldgrow to a fully developed fire.Therefore,the probability of fire spread from compartment B to compartment A could be written as P ða 9b Þ¼P ða 9a 0ÞP ig ða 09b Þð16a ÞP ig ða 09b Þ¼P ða 09b ÞP ðb Þð16b Þwhere P (a 9b )is the probability of fire spread from compartment B to compartment A,P (a 9a 0)the probability of fire growth from ignition to a fully developed fire in compartment A,P ig (a 09b )the probability of fire ignition in compartment A due to heat transfer from the fire compartment B,P (a 09b )the probability of barrier failure indicating the probability that heat is transferred from the fire compartment B to the adjacent compartment A and ignites the combustible materials in compartment A,P (b )the probability of fully developed fire occurred in compartment B.In this paper,it is assumed that both the probability of barrier failure and the probability of fire growth to a fully developed fire follow the properties of a normal distribution (m ,s ).The purpose of this assumption is only to show one kind of calculation of the cumulative probability of barrier failure and the probability of fire growth to a fully developed fire,both of which are needed in the fire spread dynamic model.If the probability of barrier failure and the probability of fire growth to a fully developed fire follow another kind of probability distribution,the results of the cumulative probability of barrier failure and the probability of fire growth to a fully developed fire could also be used as inputs in the dynamic fire spread model.The means and standard deviations of the probability of barrier failure and the probability of fire growth could change according to different properties of buildings and other factors such as the presence of a fire suppression system.The probabilities of barrier failure mainly depend on the severity of fire and structures,materials and geometry of the building.The probabilities of fire growth to a fully developed fire mainly depend on fuel load,ventilation,duration of the fully devel-oped fire phase and on whether fire suppression systems are installed or not.If a room has several adjacent fire compartments,heat could be transferred to this room simultaneously from all adjacentfireThe transition network G →The prior networkFig.3.The prior network and transition network.(a)The prior network.(b)The transition network G -.H.Cheng,G.V.Hadjisophocleous /Fire Safety Journal 46(2011)211–224216compartments,which will increase the probability of ignition of the combustible materials in the room considering the interaction of heat transfer to this room from more than one barrier.Assume the compartment A has two adjacent fire compartments B and C.The probability of fire spread to compartment A due to fire compartments B and C is P ða 9b ,c Þ¼P ða 9a 0ÞP ig ða 09b ,c Þð17a ÞP ig ða 09b ,c Þ¼P ða 09b ÞP ðb ÞþP ða 09c ÞP ðc ÞÀP ða 09b ÞP ða 09c ÞP ðb ÞP ðc Þð17b Þwhere P (a 9b ,c )is the probability of fire spread from the firecompartments B and C to compartment A,P ig (a 09b ,c )the prob-ability of fire ignition in compartment A due to heat transfer from the fire compartments B and C.4.2.1.Probability of barrier failureThere are four principal ways by which fire spreads between compartments:Radiation through a window.If two windows are alignedvertically and the flame projecting out of the lower window is high enough to reach to the window of the compartment on the upper floor,fire may spread to the upper compartment. Conduction through a wall,ceiling or closed door.Convection through an open door,or window.For example,if the door connecting two rooms is open,the fire would spread to the other room immediately after flashover occurs in one of the rooms.Radiation and convection between rooms connected by a corridor.The probability density function of barrier failure at the time t can be written as p bf ðt Þ¼1s bf ffiffiffiffiffiffi2pp exp ðÀ½ðt Àt fo ÞÀm bf 2=2s 2bf Þð18ÞThe cumulative probability of barrier failure at time t is P bf ðt Þ¼Zt t fo1bf ffiffiffiffiffiffi2p exp ðÀ½ðt Àt fo ÞÀm bf 2=2s 2bf Þdt ð0r t Àt fo r t fd Þð19Þwhere t fo is the time of flashover in the fire compartment,m bf the mean of duration of a barrier failure linking the fire compartment to an adjacent compartment,s bf the standard deviation of dura-tion of a barrier failure linking the fire compartment to an adjacent compartment;t fd the duration of the fully developed fire phase in the fire compartment.The calculation of the time of barrier failureMehaffey [26]used a Japanese fire model to assess the fire resistance of assemblies exposed to a post-flashover fire by expressing the severity of the fire in terms of the standard ISO 834fire.The duration of the standard ISO 834fire that is equivalent in severity to the duration of the fully developed ventilation controlled fire ist eq ¼b3=2t fdð20Þwhere t eq is the equivalent duration of the standard fire test in severity,t fd the duration of the fully developed ventilation controlled fire,b the parameter of the Japanese Parametric model for compartment boundaries (Ks À1/6).The parameter b of the Japanese Parametric model could be written asb ¼3:0T 0A o ffiffiffiffiffiffiH o p A T ffiffiffiffiffiffiffiffik rc p !1=3ð21ÞA T ffiffiffiffiffiffiffiffik r c q ¼X iA T ,i ffiffiffiffiffiffiffiffiffiffiffiffik i r i c iq ð22ÞA offiffiffiffiffiffiH o p ¼X iA o ,i ffiffiffiffiffiffiffiffiH o ,iq ð23Þwhere k i is the thermal conductivity of boundary material i ,ðkW =ðm K ÞÞ,r i the density of the boundary material i (kg/m 3),c i the specific heat of the boundary material i ðkJ =ðkgK ÞÞT 0the ambient temperature (K).In fire safety design,the fire resistance ratings of assemblies tested to the standard ISO 834fire are usually prescribed by the building codes.From this,the fire resistance of the assembly to fully developed fire can be calculated byt bf ,i ¼t FRR ,iðb =230Þ3=2ð24Þwhere t FRR ,i is the duration of fire-resistance ratings to the standard ISO 834fire for assembly i ,t bf ,i the duration of fire-resistance to a fully developed fire for assembly i .Based on Eq.(24),the mean and standard deviation of fire resistance to a fully developed compartment fire for an assembly can be calculatedm bf ,i ¼m FRR ,iðb =230Þð25a Þs bf ,i ¼s FRR ,iðb =230Þ:ð25b Þwhere m FRR ,i is the mean of the duration of fire resistance ratings to the standard ISO 834fire for assembly i ,s FRR ,i the standard deviation of the duration of fire resistance ratings to the standard ISO 834for assembly i ,m bf ,i the mean of the duration of fire resistance to a fully developed compartment fire for assembly i ,and s bf ,i the standard deviation of the duration of fire resistance to a fully developed compartment fire for assembly i .4.2.2.Probability of fire growth to a fully developed fireOnce ignition occurs in a compartment,the fire may grow up to a fully developed fire.The probability of fire growth to a fully developed fire depends on the following factors:(a)The fuel load:fuel amount and fuel types in the compartment.(b)The geometry of the compartment and its ventilationconditions.(c)The availability of a fire suppression system.If the maximum heat release rate of the fire in a compartment during the fire growth phase is less than the critical value forflashover in the compartment;that is a ðt max gr Þ2o 750A o ffiffiffiffiffiffiH o p ,flashover would not be expected to occur in the compartment.Therefore,the probability of fire growth to a fully developed fire in the compartment is zero.Otherwise,flashover can occur in the compartment.The density function of the probability of fire growth to a fully developed fire in the compartment at time t is p fd ðt Þ¼1s fo ffiffiffiffiffiffi2pp exp ðÀ½ðt Àt ig ÞÀm fo 2=2s 2fo Þð26ÞThe probability of fire growth to a fully developed fire at time t can be calculated by Eq.(27a)–(27d)H.Cheng,G.V.Hadjisophocleous /Fire Safety Journal 46(2011)211–224217。
Example3.3 野火蔓延模型
3.3 野火蔓延模型野火蔓延模型中,植被被构建为网状栅格单元——离散空间中的智能体。
一个单元的燃烧时间是与其单元内的可燃物数量成比例的。
可燃物数量在模型开始时会被随机生成。
当一个单元燃烧的时候,该单元会点燃临近的单元。
你可以通过点击一个单元来引燃最初的火源。
当然,火源也可以由飞机投下的炸弹点燃——该飞机飞行于与离散空间重叠的二维连续空间。
该模型的目的是为了展示两种不同类型的空间如何联结。
该模型计算速度非常快,因为其没有时间步长,飞机和植被的行为是通过状态图的形式构建。
点击菜单栏:文件——新建——模型模型名称:输入将创建文件名称,此处输入——Wildfire Model位置:点击选择你文件需要保存的位置点击完成,完成模型创建创建智能体:点击左边选项卡——面板——智能体,拖曳到Main编辑界面。
这时会弹出对话框。
◆第一步点击population of agents(智能体群)——下一步◆第二步智能体类型:不使用模板——智能体类名——GridCell,智能体对象名默认为gridCells◆第三步智能体形象选择none,可以后面自行绘制◆第四步直接选择下一步,可以后面自行设定◆第五步设定智能体数量为40000◆第六步选择空间类型离散完成设定回到Main编辑页面,点击空白处,右边出现main的属性选项卡,下拉滚动条,在智能体环境中,设定环境变量列:200行:200宽度:600高度:600布局类型:排列点击GridCell智能体,可以切换到GridCell 的编辑界面,点击左侧面板,演示,双击矩形,可以在中间编辑界面绘制智能体的矩形演示图。
点击矩形,可以设定矩形的属性,坐标,宽度和高度,此处设定为宽:3高:3X:-2Y:-2回到main界面,单击gridcells智能体,查看其属性,点击高级选项单,选择show presentation,使主界面能够显示agent的动画点击左侧工程选项卡,点击simulation,点击右侧属性中的最大可用内存,选择512M,可以增大模型运行计算容量进入Gridcell的编辑界面,点击面板,拖曳参数到编辑界面,修改名称为Fuel回到main的编辑界面,点击面板,拖曳函数到编辑界面,修改名称为makeUpInitialFuel。
(整理)消防专业用语
消防专业词汇英语翻译F32006-8-13 05:50firehouse dog 消防狗firelight 炉火firemain system 消防管路系统fireman 消防员fireman's axe 消防斧fireman's cabin 井下消防站fireman's carry 抢救背负<营救受伤者的一种背负术fireman's escape 安全梯出口fireman's lift 抢救背负fireman's outfit 消防员装备fireman's red 消防红fireman's switch 消防开关<装在大楼外面fireman's uniform 消防员制服firemanic 消防工作的firemanship 消防实践〔技能Firemaster 100 阻燃剂<六溴环十二烷Firemaster 836 卤化磷酸酯<阻燃剂Firemaster BPAA 阻燃剂BPAAFiremaster CA 阻燃剂CAFiremaster TT 阻燃剂TTFIREMEN = fire resistant material engineering 防火材料工程firemen's boots 消防靴firemen's equipment cabinet 消防员装备橱firemen's lift 消防专用梯Firemen's Memorial Sunday 殉职消防队员纪念日firepath = fire path 火灾蔓延通道fireplace insert 装在壁炉里的火炉fireplace stove 壁炉式火炉fireplace unit 壁炉整套装置firepractice 消防演习fireproof agent 防燃剂fireproof aggregate 耐火集料fireproof bay = fire-proof bay 防火舱fireproof bulkhead = fire-proof bulkhead 防火壁fireproof cast stone 耐火铸石fireproof dying 防火染色法fireproof line 耐火绳fireproof lining 耐火盖层fireproof material = fire-proof material 耐火材料fireproof suit 防火服fireproof tank = fire-proof tank 防火油箱fireproofed paper 防火纸fireproofed wood=fire proofed wood 耐火木材fireproofing installation 防火设施fireproofing of cable 电缆的防火fireproofing plywood 耐火胶合板fireproofing protection 消防措施fireproofing pump 消防泵fireproofing tile 耐火砖fireproofing wood 防火木材fireproofness 耐火漆fireproof=fire-proof 防火耐火firer 点火者FIRERO = Joint Fire Research Organization 联合防火研组织fireseal breakline 防火封严框接缝处fireseal mount ring 防火隔框FIREST = fire information retrieval system techniques 火灾情报检索系统技术firetrap = fire trap 无太平门建筑firewater system 消防用水系统firewire control unit 火灾报警缆线控制装置firewire electrical cable 缆式火灾探测器firewire sensing element 缆式火灾探测器敏感元件firework display 放焰火FIREX = fire extinguisher 灭火器FIREX =fire excerise 消防演习firing behavior 燃烧行为firing boss 点火领班firing brick 耐火砖firing button 引爆按钮firing cable 引火线firing charge 点火药firing crack 烧裂firing effect 燃烧效果firing equipment 明火加热设备firing level 燃烧面firing of mine 矿井着火firing out 放火烧除firing point 起燃点firing pot 明火加热罐firing pressure 燃烧压力firing range 着火范围;引火点范围;烧成温度范围firing rate 燃料用量firing shield 隔热板firing shrinkage 烧缩firing technique 点火技术firing temperature 点火温度firing time test 燃烧速度试验firing time 燃烧时间firing unit 燃烧装置firing up 点火升温firing zone 燃烧区firing 灼烧FIRS = fire inspection reporting system 防火检查报告系统first access point 第一入口处first aid box = first-aid box 急救箱first aid carbines 急救箱first aid injury 急救创伤first aid treatment 急救first aid 急救first aider 急救员first alarm assignment 第一出动first alarm 一级火警<首次火警first arrival first attack 初期灭火first arrival 最先到达火场的消防车first attendance 头车first due 头车first fire 起爆器first floor ladder 单梯first floor 二楼;底楼first fly section 拉梯的第一节first growth 原始林first in 最先到达火场的人员和设备first investigation 直接调查first line 执勤队的战斗力量first night watch 第一个夜班first responder 第一出动人员<发生危险品事故时首先到达现场的人员first response district 责任区first unlocked door 太平门first water 一出水first work period 第一工作日first-aid extinguishing 自救灭火first-aid hose 小口径胶管水带first-aid outfit 小型水罐消防车first-aid post 急救站first-aid supply 急救材料first-aid-to-the-injured appliance 伤员急救用品first-degree burn 一度烧伤first-in officer 最先到达火场的消防官员FIRTO = Fire Insurers' Research And Testing Organization 火灾保险商研究与试验组织fish plate 接合板fission fragment 裂变碎片fission material 裂变物质fission product 裂变产物fission yield 裂变产物产额fission 裂变fissionable material 核分裂性物质fissionable 可分裂的fit out 装备fitting 装配fix 定位点fixed air 固定空气;二氧化碳fixed carbon 固定碳fixed dry chemical system 固定式干粉灭火系统fixed extinguishing system 固定式灭火系统<由固定安装的灭火剂供应源fixed fire escape 固定太平梯fixed fire extinguisher 固定式灭火器fixed fire extinguishing system 固定式灭火系统fixed fire suppression system 固定式灭火系统fixed gas 固定气体fixed guide way transit system 有轨快速客运系统fixed ladder 固定梯fixed monitor 固定式消防炮fixed point detection 固定点火灾探测fixed pressure detector 定压式爆炸探测器fixed radio station 固定无线电台fixed sprinkler system 固定喷水灭火系统fixed suction installation 固定吸水设施fixed system 固定系统fixed temperature detector using fusible alloy 易熔合金定温火灾探测器fixed temperature detector using mercury contacts 水银接点定温探测器fixed temperature detector using thermocouple 热电偶定温火灾探测器fixed temperature detector using timetable strips 双金属定温火灾探测器fixed temperature detector with heat sensitive resistance 热敏电阻定温火灾探测器fixed temperature detector 定温探测器fixed temperature heat detector 固定温度感温式火灾探测器fixed water spray system 固定喷雾灭火系统fixed-wing base manager 固定翼飞机基地经理fixture 夹具FI=fire insurance 火灾保险FL = fire launch 消防船Fl = flame 火焰flag marking the control point 指挥部标志旗flag signal 旗语flagpoles 条状信号flail 扑火器flake 水带的带束叠装flaked hose 带束叠装的水带flame - proof motor 防爆电动机flame ablation 溶化烧蚀flame absorption 火焰的吸收flame accelerator 促燃剂flame adjustment 火焰调节flame analysis 火焰分析flame anchor 火苗flame angle 火焰角flame arc lamp 焰弧灯flame arc 焰弧flame arch 焰弧flame area 火焰面积flame arrester for oil-tanker 油船用阻火器flame arrester for petroleum tank 石油储罐阻火器flame arrester for pipe 管道阻火器flame arrester 阻火器;消焰器flame attenuation 火焰吹拉flame augmentation 火焰加强flame axis 焰轴flame background 火焰背景flame band 火焰带flame base 焰底flame black 炭黑flame blow-off velocity 熄火速度flame blow-off 火焰吹灭flame body 焰体flame break point 火焰断裂点flame breakdown 火焰中断flame breakthrough 烧穿flame bridge 焰桥flame bush 火焰舌flame cap 焰晕flame chamber 火焰室flame characteristics 火焰特性flame checking 阻燃整理flame chemilumine sence detection 火焰化学发光检测flame chilling 火焰熄灭flame chipping 火焰熄灭flame coal 长焰煤flame color 焰色flame coloration 焰色flame combustion 有焰燃烧flame cone 焰心flame contact ignition 火焰接触点火flame contact 火焰控制flame covered area 火焰覆盖面积flame cross - section 火焰横截面flame cutting 火焰切割flame damper 灭火器flame depth 火焰深度flame desiccating 喷焰除鳞flame detection apparatus 火源检测仪flame detection device 火焰探测装置flame detector 火焰探测器flame distribution 火焰分布flame drip 燃烧溶滴flame drop-back 火焰后缩flame duration 燃烧时间flame dyke 挡火墙flame ejaculation 火焰喷射flame emission 火焰发射flame emissivity 火焰发射率flame envelope 火焰的包围物flame equation 火焰方程flame exposure test 暴露于火焰试验flame extension 火焰扩展flame extinction time 灭火时间flame extinction 火焰熄灭flame extinguishing ability 灭火能力flame extinguishing concentration 灭火浓度flame failure control device 火焰中断控制器flame flash-back 火焰通路;火焰闪灭;逆燃;回火flame flicker detector 火焰闪烁探测器flame formation 火焰的形成flame forth 烧起来flame fringe 火焰边缘flame front area 火焰前锋面积flame front velocity 火焰前锋的速度flame front 火焰峰flame fuel 火焰燃料flame gas 火焰气flame generated turbulence 火焰产品的紊流flame gun 喷灯flame heat transfer 火焰热传递flame height 火焰高度flame holder 火焰稳定器flame igniter 引燃或点火装置flame impingement 火焰冲击flame inhibitor 消焰剂flame intensity 火焰强度flame ionization 火焰电离flame kernel 火焰中心flame lamp 火焰灯flame length 火焰长度flame let 小火舌flame lighter 点火器flame mechanism 火焰机理flame monitor 火焰监测器flame movement 火焰的移动flame of combustion 燃烧的火焰flame of shot 射击火焰flame out 燃烧flame over 窜火flame pass 火焰通路flame path 火道flame pattern 火焰图谱flame penetration 火焰穿透flame photometer 火焰光度计flame picture 火焰图象flame plane 火焰平面flame proof = flame-proof 防火的flame proof finish 耐火涂装flame proofing initiator 防火引发剂flame proofing organic fiber 防火有机纤维flame proofing polymer 防火聚合物flame proofing 防火处理flame propagation mode 火焰传播方式flame propagation rate 火焰传播速率flame propagation speed 火焰传播速度flame propagation test 火焰传播试验flame propagation theory 火焰传播理论flame propagation velocity 火焰传播速度flame propagation 火焰蔓延;火焰传播flame protection shield 防火遮护板flame protection 防爆flame radiation 火焰辐射flame reaction 火焰反应;焰色反应flame repellent 拒燃的flame resistance rubber 耐火橡胶flame resistance 耐燃性flame resistant cable 耐火电缆flame resistant composition 耐火组合flame resistant fiber 耐火纤维flame resistant treatment = flame-resistant treatment 耐火处理flame resistant 抗燃的耐火的;耐燃性flame resistivity 耐火性flame retardancy 阻燃性flame retardant = flame-resistant 阻燃的flame retardant agent 阻燃剂flame retardant bed 阻火层flame retardant chemical 阻燃化学品flame retardant coated paper 阻燃塑料壁纸flame retardant coating = flame-retardant coating 阻燃涂料;阻燃涂层flame retardant finish fabric 阻燃整理织物flame retardant glass fiber reinforced plastic 阻燃玻璃钢flame retardant lubricant 阻燃滑润剂flame retardant material 阻燃材料flame retardant of plastic 塑料的阻燃flame retardant paint 阻燃漆flame retardant plastic 阻燃塑料flame retardant property 阻燃性能flame retardant rating 阻燃等级flame retardant resistance 阻燃性flame retardant RTP 阻燃性增强热塑性塑料flame retardant rubber 阻燃橡胶flame retardant treatment 阻燃处理flame retardant wood 阻燃木材flame retarded 阻燃的flame retarding polymer 阻燃聚合物flame retarding reaction 阻燃反应flame retarding 阻燃性flame rod 火柱flame safeguard system 火焰防护系统flame safety lamp 保险灯flame sealing 火焰封焊flame sensing fire detector 感火焰火灾探测器flame sensitivity 火焰灵敏度flame sensor 火焰传感器flame sheath 火焰覆盖层flame sheet model 火焰面模型flame shield 耐火墙flame smoke suppressant 焰烟抑制剂flame source 焰源flame space 火焰空间flame spectrophotometer 火焰分光光度计flame spectroscopy 火焰光谱学flame spectrum 火焰光谱flame speed factor 火焰速度系数flame speed rate 火焰传播速率<单位时间火焰传播的距离flame speed 火焰速度flame spray coating 火焰喷敷层flame spray 火焰喷涂flame spread classification 火焰蔓延分类flame spread index = flame-spread index 火焰蔓延指数flame spread rate 火焰蔓延速率flame spread rating 火焰蔓延额定值flame spread test 火焰蔓延试验flame spread time 火焰蔓延时间flame spread 火焰传播flame spreading = flame spray coating 火焰涂布flame stability 火焰稳定性flame state 感温器flame strength 火焰强度flame stretch 火焰扩张flame structure 火焰结构flame suppression 火焰抑制flame system 火焰系统flame temperature 火焰温度flame test apparatus 火焰测定仪flame tight 不透火的flame tip 焰舌flame transmission 火焰传播flame trap 火花捕捉器flame trapping 火焰传播flame travel 火焰的移动flame treating 火焰处理flame tube 燃烧管flame tunnel 排火道flame velocity 火焰速度flame ware 耐火器皿flame zone 火焰带〔区flame 火焰flame-exposure device 点火装置flame-front propagation 火焰锋面传播flame-front thickness 焰锋厚度flame-out protection device 熄火保护装置flame-photometry 火焰光谱法flame-proof cable 防火电缆flame-proof casing 隔爆外壳flame-proof diesel locomotive 防火内燃机车flame-proof electric motor 防爆电动机flame-proof enclosure 隔爆外壳flame-proof luminary 防爆灯具flame-proof material 耐火材料flame-proof mine locomotive 防火矿用机车flame-proof packaging 防燃包装flame-proof switch 防爆开关flame-proof terminal box 防爆型终端盒flame-proof transformer 防爆变压器flame-proofer 耐焰剂flame-proofing agent 耐火焰剂flame-proofness 耐焰性flame-protected lamp 火焰安全灯flame-quenching polymer 自熄性聚合物flame-resistance test 耐火性试验flame-resistant foam 耐燃泡沫flame-resistant glass 防火玻璃flame-resistant polyester resin 耐火聚酯树脂flame-resistant resin = flame resistant resin 耐火树脂flame-resisting treatment 抗燃处理flame-resisting 耐火的flame-retardant additive 阻燃添加剂flame-retardant adhesive 阻燃粘合剂flame-retardant clothing 阻燃服flame-retardant composite board 阻燃复合板flame-retardant elastomer 阻燃弹性材料flame-retardant fiber board 阻燃纤维板flame-retardant fiber 阻燃纤维flame-retardant finishing 阻燃整理flame-retardant foam 阻燃泡沫flame-retardant mechanism 阻燃机理flame-retardant plasticizer 阻燃性增塑剂flame-retardant polymer 阻燃聚合物flame-retardant rayon 阻燃人造丝织物flame-retardant resin 阻燃树脂flame-retardant textile 阻燃织物flame-retardant variant 阻燃变性flame-retarded resin 阻燃树脂flameless combustion 无焰燃烧flameless explosive 无焰火药flameless surface combustion 无焰表面燃烧flameless 无焰的flameout 燃烧中断flameproof apparatus 防爆装置flameproof battery loco 防爆蓄电池机车flameproof bulkhead 防火壁flameproof canister 耐燃罐flameproof circuit breaker 防爆断路器flameproof compound 耐燃剂flameproof fabric 防燃织物flameproof fiber 防燃纤维flameproof fluorescent lamp fitting 防爆荧光灯具flameproof glass 防火玻璃flameproof lamp 防爆灯flameproof machine 防爆电动机flameproof mining transformer 矿用隔爆变压器flameproof paint 耐火漆flameproof starter 防爆型起动器flameproof textile 防火布flameproof ware 耐热器皿flameproof wire 耐火绝缘导线flameproofness 防燃flamer 空中被击中起火的飞机flameretardant grade 阻燃剂等级flaming arc 焰弧flaming coal 火焰煤flaming combustion 有焰燃烧flaming front 火头flaming phase 有焰燃烧阶段flaming surface combustion 有焰表面燃烧flaming time 燃烧时间flaming 有焰燃烧flammability classification 易燃性分级flammability fabric 易燃性织物flammability hazard 易燃性危险flammability index 易燃性指数flammability indexing test 易燃性指数试验flammability limit 易燃极限flammability of a dust cloud 煤尘易燃性flammability peak 发火峰值flammability point 燃点flammability range 发火范围flammability rating 易燃性等级flammability resistance 抗着火性flammability standard 易燃性标准flammability temperature limit 发火温度极限flammability test 易燃性试验flammability tester 易燃测定仪flammability testing 易燃性试验flammability 易燃性flammable aerosol 易燃烟雾剂flammable anesthetic atmosphere 易燃麻醉空气flammable anesthetic 易燃麻醉剂flammable cargo 易燃货物flammable compressed gas 易燃压缩气体flammable fabric 易燃性织物Flammable Fabrics Act 易燃织物条例flammable fluid 易燃液体flammable fringe 燃烧态区域flammable gas detector 易燃气体探测器flammable gas fire 易燃气体火灾flammable gas 易燃性气体flammable inhibitor 发火抑制剂flammable limit 易燃极限<有最稀flammable liquid hazard 危险易燃液体flammable liquid 易燃液体<闪点在37.8 0C以下flammable liquids training 易燃液训练flammable material 易燃材料flammable mixture 易燃混合物flammable range 可燃范围flammable roof covering 易燃屋面覆盖层flammable solid 易燃固体flammable solvent 易燃溶剂flammable space 易燃物资储存区flammable storage space 易燃物储藏区flammable storage tank 易燃物贮槽flammable storage warehouse 易燃品储存仓库flammable vapor 易燃性蒸气flammable 易燃的flammation 燃烧flanged fitting 法兰式接头flank fire 侧风火<沿火灾控制线点燃的火允许与风成直角flank of a fire 火灾侧翼flank 侧翼flanking attack 侧击灭火flap 火拍flare back 回火flare point 燃烧点flare stack 废气燃烧烟道flare up fire 火焰信号flare up 骤燃flare 火舌flare-up lamp 闪光灯flare-up light 应急灯flaring 骤燃flash and fire point test 引燃及燃点试验flash and flare triangulation 闪燃光三角测量flash and ground protecting relay 闪燃和接地保护继电器flash arc 火花弧flash area 闪光区flash arrester 火焰消除装置flash burn 电弧灼伤flash burning 闪燃flash compound 起火剂flash cup 闪点杯flash drying 急骤干燥flash fire extinguisher 暴燃灭火器flash fire propensity 闪光倾向flash fire retardant-type flame arrester 阻暴燃型阻火器flash fire 急骤燃烧flash freezing 闪冻flash fuel 轻燃料flash gas 闪蒸气体flash gasoline 闪蒸气体flash heat 加速加热flash hide 消焰器;灭火帽flash point apparatus 闪点测定仪flash point in closed cup 闭杯闪点flash point in open cup 开杯闪点flash point test 闪点试验flash point tester 闪点测定仪flash process 闪蒸过程flash proof suit 防闪燃服flash propagation 火舌回闪传播<越过泡沫表面全部或大部分的火舌回闪flash resistance 耐着火性flash suppressor 环火抑制器flash temperature 闪蒸温度flash test 瞬间高压试验flash tester 闪点测试器flash testing equipment 瞬时试验机flash time 闪光时间flash vaporization 闪蒸flash wall 隔墙flash welding 火花〔电弧flash 闪燃<在液体表面上能产生足够的可燃气flash-back chamber 回火水封室flash-back fire 反闪火焰flash-light 手电筒flash-over = flash over 轰燃<在一限定空间内flash-over capacity 飞弧能力flash-over characteristic 轰燃特性flash-over tendency 诱爆性flash-point 闪点<在规定的试验条件下flash-suppressing agent 火焰抑制剂flashback = flash-back 火舌回闪;逆燃;反闪flashback arrester 回火制止器;回火保险器flashback performance 耐烧性能<阻火器耐受表面火flashback voltage 逆弧电压flashbulb 闪光灯flashing beacon 闪光标灯flashing indication 闪光信号flashing indicator light 闪烁指示灯flashing indicator 闪光指示器flashing lamp 闪光灯flashing light alarm 闪光报警flashing light 闪光灯flashing over of spark 火花飞弧flashing pill 起火剂flashing point 闪点flashing signal 闪光信号flashing test 闪点测定flashing unit 闪光标灯flashing warning lamp 闪光警报灯flashover potential 轰燃可能性flashover probability 轰燃概率flashover strength 轰燃强度flashover voltage 击穿电压flat flame 平焰flat hose load 平叠的水带flat raise 平竖梯flat root 平屋顶flat spray sprinkler 齐平型洒水喷头flat truck 平板车flat weave casing 平织水带外层flat 楼房的一层flatcar 平板车flathead ax 消防斧flaw detection 探伤检验flaw detector 探伤仪flaw 裂缝fleet management 车队管理flexible cord 软线flexible coupling 挠性管接头flexible shaft 软轴flexion method 折射法flexor 屈肌flexural strength 抗弯强度flexure 弯曲flick 容易扑灭的小火flicker effect 闪烁效应flicker frequency 闪烁频率flicker rate 闪烁率flicker 闪烁〔变flight accident 飞行事故flight chart 航空地图flight raise 梯段步高flight run 梯段步距flight 楼梯段FLIR = forward looking infrared 前视红外仪floatation reagent 浮选剂floatation 浮floating barrage 浮式水坝floating dust 浮游尘末floating fire fighting pump 浮式消防泵floating roof tank 浮顶储罐floating roof 浮顶floating suction header 浮动的吸水集水器floating-point computer 浮点计算机floc 蓬松物质flocculation 絮凝flood light 探照灯flood 淹灭<用大量的水淹火灾flooding time 淹没时间flooding volume 淹没体积floodlight apparatus 照明车floodlight truck 照明车floodlight unit 照明车floor area of building 建筑楼层面积floor area 建筑楼层面积floor beam 楼板梁floor board 地板floor boarding 铺地板floor burst 底板瓦斯喷发floor ceiling assembly 楼板平顶组合构件floor collapse 楼板倒塌floor construction 楼板结构floor covering chamber test 楼面覆盖面层燃烧试验floor covering 楼面覆盖层floor current 沿地板面气流floor drain 楼面排水floor exit 楼层出口floor finish 地板装修floor flock 地板上絮状沉淀floor framing system 楼板结构系统floor furnace 地板炉floor girder 楼板主梁floor heating 楼板暖气floor hole 楼板孔洞floor indicator 楼层显示器floor joist 楼板搁栅floor joists spacing 楼板搁栅间距floor lining 楼板衬料floor load 楼面荷重floor opening 楼板洞孔floor plan 楼层平面图floor plug 地板电门插座floor register 楼面通风板floor saw 消防锯floor sill 地面门坎floor stop 门挡floor temperature 楼面温度floor ventilation 地板通风floor 楼层flooring radiant panel test 楼面材料辐射板试验flooring 铺地面floppy disc cartridge 软磁盘floppy disc operating system 软盘操作系统floppy disc 软磁盘floppy disk 软磁盘floppy driver 软盘驱动器floppy formatting 软盘信息安排floppy 软磁盘flotsam 飘浮的残骸flow alarm 水流警报装置flow analysis 流程分析flow back valve 单向阀flow board = shifting board 泄水控制盘flow capacity 泄水能力flow characteristic 流动特性flow chart 流程图flow coated machine 流涂机flow coating 流涂flow coefficient 流量系数flow detector 水流指示器flow direction vane 风向仪flow field 流场flow formula 流量公式flow measurement 流量测量flow point 流动点flow rate 流速flow separation 流动分离flow switch 流量开关flow test 流量试验flow 流动FLP drill transformer 隔爆变压器。
火灾烟气扩散模型与预测方法
火灾烟气扩散模型与预测方法火灾是一种常见的灾害事件,它会给人们的生命财产带来巨大的危害。
火灾事件发生后,烟气是致命因素之一,往往造成火灾事故的严重后果。
这时候,火灾烟气扩散模型与预测方法就成为了必要的研究方向。
1. 火灾烟气扩散模型火灾烟气扩散模型是在建筑火灾过程中烟气产生途径、烟气传播规律及行为等方面的物理机理基础上,通过分析每一时刻的烟气质量特性和运动特征,通过数学模型计算,来预测火灾烟气扩散的过程和烟气浓度分布情况。
火灾烟气扩散模型通常可以分为两类,即解析模型和数值模型。
解析模型主要通过对建筑物内部空气运动的解析求解、流体力学方程、对流扩散方程等来建立模型;数值模型则是在计算机辅助下,通过离散化、求解数值方程组来模拟火灾烟气扩散的过程。
2. 火灾烟气预测方法火灾烟气预测是在火灾发生后,通过已有的火灾烟气扩散模型及烟气浓度监测设备,进行烟气浓度分布的预测,并根据预测结果制定合理的疏散、灭火和救援措施的方法。
火灾烟气预测方法的实现需要既有专业的软硬件工具的支持,又需要丰富的经验以及实地的检验。
一些常用的火灾烟气预测方法包括利用天气数据和风向确定烟气扩散的方向及范围,利用火灾烟气扩散模型,通过计算预测烟气浓度分布情况等。
3. 火灾烟气扩散模型与预测方法的应用火灾烟气扩散模型与预测方法广泛应用于建筑、隧道、车站、地下商场、公共场所等场所的火灾防控领域。
烟气浓度的预测可以有效地增加火灾消防救援员的安全,为行动提供一定的支持,同时可以帮助公共场所管理者合理制定应急预案,降低火灾造成伤亡及财产损失。
4. 火灾烟气扩散模型与预测方法的发展趋势随着计算机技术与运算速度的提高,现有的火灾烟气扩散模型与预测方法在实时性、准确度及可靠性方面将得到更进一步的提升,可以在很短时间内完成从火灾烟气扩散预测到疏散、灭火、救援等各种应急预案的策略制定和实施。
此外,火灾烟气扩散模型和预测方法也将面临更多的现实场景的测试考验,期待能够更好地提高其在实际应急情况下的响应和应用效果。
山地火蔓延模型的计算与实验研究
山地火蔓延模型的计算与实验研究火灾能够摧毁大片荒野,同时也能够点燃景观的重生。
近年来,随着世界范围内不断放火、放火数量的增多、不断变化的天气势力,以及人类活动的不断扩大,山地火灾的爆发几乎成为不可避免的。
研究山地火灾蔓延的各种模型,除了能够提供山地火灾的预警信息外,还能够为火灾的预防和控制提供帮助。
山地火蔓延模型(RIM)基于物理学原理,通过对火势扩散、热释放以及气体放出等过程实施了数学证明,然后建立起模型来评估山地火蔓延的规律。
在传统的火蔓延模型中,火势扩散的计算仅考虑火焰的热传承,未考虑其它的影响因素。
但在山地火蔓延模型中,除了物理热传承影响之外,还考虑了火风、山地地形、火场面积等影响因素,充分考虑了多种影响因素,保证了模型的准确性和可靠性。
山地火蔓延模型包括三个主要部分:热传承模型、火风模型和山地地形模型。
其中,热传承模型是模型计算的核心,也是对火势扩张最关键的因素,主要用于描述火场的温度分布;火风模型是用于模拟火中烟气的运动的,它是山地火灾蔓延过程中不可或缺的一个因素;山地地形模型模拟火势在山地地形的蔓延趋势,它是山地火灾的一个重要的影响因素,也是山地火灾蔓延研究的重要内容。
通过对山地火蔓延模型的研究,研究者建立了计算机模型,以模拟山地火灾蔓延过程,从而更加准确地预测并分析山地火灾的蔓延趋势及其影响。
此外,研究者还对山地火灾现场进行实验,并通过实验结果与模型计算结果对比,加强对山地火灾蔓延模型的认识,更好地利用这种模型来预测、控制和预防山地火灾。
至今,山地火蔓延模型已被广泛用于山地火灾预报、火场活动量估算、可燃物效应分析等研究领域,取得了良好的效果。
但是,山地火蔓延模型作为一个相对较新的模型,仍然存在一些潜在问题,比如模型的准确性和可靠性,以及模型的灵活度和适用性等,这些问题仍有待深入研究。
总之,山地火蔓延模型是一种有效和可靠的山地火灾预警工具,其研究不仅能够提供山地火灾的预警信息,而且能够为火灾的预防和控制工作提供重要的参考。
森林救火模型
森林救火模型问题提出:森林失火了,消防队接到报警后应派多少消防队员去救火 呢?一、问题分析:派出的队员越多,森林损失越小,但是救援开支会越多,所以需要综合考虑森林的损失费和救援费与队员人数之间的关系,以总费用最少来决定派出队员的数目。
损失费通常正比于森林烧毁面积,而烧毁面积与失火、灭火时间有关,灭火时间又取决于消防队员数目,队员越多,灭火时间越短。
而救援费既与消防队员人数有关,又与灭火时间长短有关。
记失火时刻为0=t ,开始救火时刻为1t t =,设在时刻t 森林烧毁面积为)(t B ,则造成损失的森林烧毁面积为)(2t B ,建模要对函数)(t B 的形式作出合理的简单假设。
研究dt dB 比)(t B 更为直接和方便,dtdB 是单位时间烧毁面积,表示火势蔓延的程度。
在消防队员到达之前,即21t t t ≤≤时,火势越来越大,即dt dB 随t 的增加而增加;开始救火后,即21t t t ≤≤,如果消防队员救火能力足够强,火势会越来越小,即dtdB 应该减小,并且当2t t =时,有0dtdB =。
救援费可以分为两个部分:一部分是灭火材料的损耗和消防队员的薪金等,与队员数量及灭火时间有关;另外一部分是运送队员一次性支出,只与消防队员人数有关。
二、模型假设:1、森林中树木分布均匀,而且火灾是在无风条件下发生的。
2、损失费与森林烧毁面积)(2t B 成正比,比例系数1c 为单位烧毁面积 的损失费。
3、从失火到开始救火这段时间(10t t ≤≤)内,火势蔓延程度dtdB 与时间t 成正比,比例系数β为火势蔓延速度,即:4、派出消防队员x 名,开始救火后(1t t ≥),火势蔓延速度降为x λβ-,其中λ为每个队员的平均灭火速度,显然有x λβ<。
因 为要扑灭森林大火,灭火速度必须大于火势蔓延速度,否则火 势 将难以控制。
5、每个消防队员单位时间费用为2c (包括灭火材料的消耗及消防队员的薪金等),救火时间为12t t -;每个队员的一次性支出为3c (运 送队员、器材一次性支出)。
farsite模型原理
farsite模型原理
Farsite模型是一种用于模拟森林火灾传播的计算机模型,它可以帮助森林管理者和消防人员预测火灾的发展趋势和可能的影响,从而制定更有效的应对措施。
下面将介绍Farsite模型的原理。
Farsite模型基于物理学和数学原理,将森林火灾传播过程分解为多个步骤,并对每个步骤进行建模和计算。
具体来说,Farsite模型包括以下几个主要部分:
1.火源模型:Farsite模型首先需要确定火源的位置、大小和强度等参数,以及火源周围的环境条件,如风速、风向、地形等。
这些参数将影响火灾的传播速度和方向。
2.火灾传播模型:Farsite模型采用了一种称为“扩散-燃烧”模型的方法,将火灾传播过程分为两个阶段。
第一阶段是火灾的扩散阶段,即火焰和热量向周围空气和物体传播的过程。
第二阶段是火灾的燃烧阶段,即燃烧物质的燃烧过程,包括燃烧产生的热量和烟雾等。
3.环境模型:Farsite模型还需要考虑环境因素对火灾传播的影响,如风向、风速、地形、植被类型和密度等。
这些因素将影响火灾的传播速度和方向。
4.预测模型:Farsite模型可以根据当前的火灾状态和环境条件,预测火灾的发展趋势和可能的影响。
这些预测结果可以帮助森林管理者和消防人员制定更有效的应对措施,如疏散人员、调配资源等。
总之,Farsite模型是一种基于物理学和数学原理的计算机模型,可以帮助森林管理者和消防人员预测火灾的发展趋势和可能的影响,从而制定更有效的应对措施。
fireFoam表面火蔓延模型
⎛ ⎛ νt ρ D + ⎜ ⎜ ⎜ Prt ⎝ ⎝ ⎞ ∂Z ⎟ ⎠ ∂x j
⎛ ⎛ ν ρ⎜D+ t ⎜ ⎜ Prt ⎝ ⎝
T = ho Y h + ∑ f ,k k ∫ ∑ Cpk (τ )Yk dτ k T0 k
(
)
Chemical enthalpy
Sensible enthalpy
Validation 2: Fire Plumes
• B. J. McCaffrey,1979 • 30 cm x 30 cm square burner • 5 Methane flames (scaling)
Q [kW] Q* 14 0.19 22 0.29 23 0.44 45 0.60 58 0.77
Thermal Plume: Summary
• FireFOAM capable of model buoyancy-driven turbulent
– Centerline temperature and velocity follow theoretical decay rate – High turbulent fluctuations captured – Self-similarity observed in both mean and fluctuation quantities
Centerline Mean Temperature Velocity
β c ΔTc = 9.4 F
0.5
2/3 0
( y − y0 )
−5/3
/g
2.0 1.8 1.6 1.4 1.2
Vc = 3.4 F01/ 3 ( y − y0 )
−1 / 3
林火蔓延模型建立
林火蔓延的数学模型及其GIS应用一、模型说明1、该模型是建立在王正飞林火蔓延模型的基础上,并参考了其它文献和数据(参考文献见附录)2、模型变量说明VF2.1V影响林火蔓延的风速V2.2H林火蔓延的速度V平2.3H平原草地时火势蔓延的速度K2.41火速在不同可燃物类型中的修正系数K2.52火速在不同坡度条件下的修正系数2.6S林火燃烧面积■2.7为燃烧场地的风向(按右手直角坐标系)为初始蔓延速度3、模型假设条件1.1林火的影响因素很多,该模型只考虑风速、可燃物类型、地形坡度三个主要的影响因素,其余影响因素(如湿度,空气对流等)不考虑。
1.2该模型主要是为了在SUPMAP软件作图使用,因此对于等高线内的坡度进行重分类,因此等高线内坡度值相等,可按均值计算其坡度。
1.3为了提高模型的使用价值,避免因模型低估而造成的经济损失和人员伤亡,模型中的各影响因数均按最大值取。
二、模型建立1、根据王正非提出的林火蔓延模型进行改正与简化V=V平KKHH122、建立可燃物类型为草甸,地形为平地时的风速火速经验公式在可燃物类型为草甸,坡度为零,风力等级为1一12条件下,收集一组风速价}、火速(VH)数据。
表1风速火速数据风力等级1234567891011122 V F/ms i 3.6 5.47.49.812.314.917.720.824.227.829.838以V平/m mi#H1813.8550.64.5583.33144.33250.00353.55500.00559.02625.00833.00取指数函数为经验回归方程类型,利用一元回归的方法得到风速火速的经验公式。
V平=14.1895e0.1547V尸H样本相关系数;=0.9348,高度相关。
3、火速在不同可燃物类型中的修正系数在不同的可燃物类型中林火的蔓延速度是不相同的,为使预测简便易行,将泰安林区可燃物类型划分为草甸类、人工林类、油松类三个等级。
参考郑焕能教授的研究结果,火速在不同可燃物类型中的修正系数可由下表给出。
Rothermel林火蔓延模型应用研究
Rothermel林火蔓延模型应用研究作者:梁娱涵黄丽丽熊珂熊琦婧来源:《现代企业文化·理论版》2009年第09期摘要:文章查阅了大量的国内国外文献,综合分析了国内外林火蔓延研究的发展状况和影响火蔓延的相关因子,全面系统地综述了Rothermel蔓延模型的原理、参数获取、构建与求解。
以计算机图形学、林火科学、燃烧学等理论为指导,结合计算机仿真技术、地理信息系统和数学模型技术,选取试验林地进行模型的构建、求解和可视化。
关键词:Rothermel模型;林火蔓延模拟;数据分析;可视化中图分类号:S762 文献标识码:A文章编号:1674-1145(2009)14-0013-03一、引言森林是人类赖以生存的重要自然资源,而今年来森林火灾频繁发生。
火情发生后,及时地依据林火蔓延模型对林火行为进行预测和模拟,能够有效地减少给森林和生态环境带来的伤害,同时也能保障扑救人员的人身安全。
林火行为是指森林可燃物从点燃开始,直至熄灭的整个过程中所表现出来的特性。
林火蔓延模型是指在各种简化条件下进行数学上的处理,导出林火行为与各种参数(如可燃物的物理、化学性质、气象因子以及地形因子等)间的定量关系式。
二、模拟的原理与方法(一)Rothermel林火蔓延模型Rothermel模型的基本思想是:林火的蔓延过程实际上是火焰前方未燃可燃物被连续点燃的过程。
火焰区以辐射、对流、传导的方式向前方未燃物传热,当未燃的可燃物吸热升温达到燃点时,这些可燃物就被引燃,火焰前锋也就蔓延到该处。
依据能量守恒定律,在无风且平地的条件下,Rothermel给出了火蔓延的速率为R0==(1)其中,IP0为无风、无坡条件下的热通量,IR火焰反映强度(kJ·min-1·m-2),为林火的蔓延率(无因次),Pb为可燃物密度(kg·m-3),为有效热系数(无因次),Qig为预燃热,即点燃单位质量的可燃物所需的热量(kJ·kg-1)考虑火场中地形坡度对林火蔓延速度的影响,引入坡度修正系数,使得林火蔓延的速度变为:R=R0(1+s)(2)其中,s=5.275()-0.3(tan)2 (3)最后考虑风速对林火蔓延的影响。
林火蔓延模型及其动态模拟初探_武乐清
林火蔓延模型及其动态模拟初探武乐清(国家林业局调查规划设计院,北京100714)摘要:森林着火之后,火向四周和上下不断蔓延,使大片森林发生火灾,给森林生态系统和人类带来一定的损失。
结合我国的实际情况,本文采用林火蔓延的椭圆模型和遍历各点的林火蔓延模型对林火行为进行动态模拟,旨在推动林火蔓延的研究工作从定性的理论分析向定量化的研究方向发展,从而为森林防火、救火部门提供科学依据。
关键词:林火蔓延模型;动态模拟;森林防火中图分类号:S711;S762;T P39 文献标识码:B 文章编号:1002-6622(2003)05-0069-03Forest Fire Spread Models and Dynamic SimulationWu Leqing(Academy of For est Inventory and Plann ing ,S tate Forestry A dministr ation ,Beijing 100714,China )A bstract :A forest fire ,after it breaks out ,w ill spread speedily and burn a large area of forest if it is not killed timely ,thus ,causing losses to both the fo rest ecosystem and the m ankind .This paper ,based on the study of the realistic conditions in China ,gives a description to the forest fire spread el -lipse model and dy namic simulation of forest fire behavio rs .One of this paper 's purposes is to promote the research work on forest fire spread and behaviors from qualitatine theory to quantitatine study so as to provide scientific basis to the forest fire control departments .Key words :forest ecosy stem ,fo rest fire spread ,simulation ,forest fire control 收稿日期:2003-03-27作者简介:武乐清(1968-),男,辽宁省北票市人,硕士,从事遥感、地理信息系统应用方面的工作。
火蔓延模型(翻译)
火蔓延模型(翻译)火蔓延模型总结逆风火蔓延逆风火蔓延指的是火在自然对流条件下或者风速与火蔓延速率相反条件下的蔓延(Figure 1a)。
由于逆风条件不利于火焰前方的热传递,火在这种条件下蔓延速率通常较小。
由于逆风火蔓延实验研究相对简单,现在已有大量逆风火蔓延的实验数据。
文献中现有的理论模型是传热模型。
在这些模型中,火蔓延速率即为材料在火焰和外界热源作用下表面温度从初始值升到指定温度的速率。
这个指定的温度通常认为是固体材料的蒸发温度。
燃料的热解过程通常是不考虑的,且假设材料在温度达到蒸发温度后立马蒸发。
这一过程可以用固相的能量守恒来进行分析,气固界面的初始条件由实验测量(Parker 1972; Hirano, Noreikis, and Waterman 1973)获得(热流密度和加热长度)。
这些模型不求解气相方程,因此并不能正确的模拟火蔓延过程,但给定一个气相边界条件后就能独立运算预测火蔓延。
(De Ris 1969)和(Wichman and Williams 1983)的传热模型更精确些,他们对气相和固相耦合的能量方程进行了求解。
为了简化计算,他们在求解气相能量和物质守恒方程时采用气体匀速运动(Oseen 近似流)和火焰面假设(无限化学反应速率)。
这些假设条件使得方程获得解析解并且能够获得有限厚度材料火蔓延速率的显式表达式。
(De Ris 1969)提出的热薄材料和热厚材料的火蔓延模型是最复杂的模型。
这个模型具有自适应性,能很好的预测化学反应不是主控因素的火蔓延(如氧气浓度高和风速较低的条件)(Pizzo et al. 2009; Fernandez-Pello, Ray, and Glassman 1981; Altenkirch, Eichhorn, and Rizvi 1983)。
(Wichman and Williams 1983)对于热厚材料的分析假设火焰面在材料表面且Lewis不是1。
林火蔓延模型及其应用概述
地形 是 紧密 相关 的。林 火蔓 延模 型就是 建 立在 这
然后 ,世界 上许 多 其他 国家开 始建 立 数学 模 型进 些基 础 之上 的 。因此预 测 一个 地 区 的林 火 蔓延 应 建立 与 之相 应 的蔓 延模 型 。火 蔓延 模 拟可 以用 来 行火 行 为 的 预测模 拟 和 定 量 分析 。 自 2 O世 纪 7 O 比如研 究火 蔓延 速 度有 多 快 、 年代 以来 , 增 长 模 型 不 断 得 到发 展 , 导 致 了 重 现 或 预测 火行 为 , 火 也
是外部的传热方式 ,它们使热量传递到可燃物的 火参数相似情况下的火行为,较充分地揭示林火 表面 , 促进林火蔓延 , 而热传导则是可燃物在其内 这种 复杂 现象 的作 用规 律 。它 的缺 点是 这类 模 型
部 的传热 方式 。林 火 发生 后 , 热空 气会 向上 运动 , 周 围 的冷 空气 就 随着 不 断补充 , 因此产 生热 对流 , 且火 场 有部分 热 能转 变 为动能 ,推 动热 空气 上 升
等 级 系统采 用加 拿大 林火 蔓延 模 型 。根据 加拿 大
2 林 火蔓延模 型
火 增长 模 型是 基于 可燃 物燃 烧过 程 中 的传 热
过程 及试 验 和观测 结果 建立 起来 的。与 火蔓 延相
植 被 状况 , 可燃 物 可划 分 为 5大类 : 叶林 、 叶 针 阔
林 、 交林 、 混 采伐 迹地 和草 地 , 细分 为 l 并 6个代 表 林型。 通过 20次火 观察 , 9 总结 出多数可 燃物 蔓延 速 度方 程 。加拿 大林 火 蔓延模 型不考 虑火 行 为 的
一种改进的林火蔓延模型及其实现
一种改进的林火蔓延模型及其实现张菲菲;解新路【期刊名称】《测绘与空间地理信息》【年(卷),期】2012(035)002【摘要】This study integrates the existed mathematical model and cellular automata to develop a new fire behavior model. The developed model expresses the main factors performing in the cellular space, such as forest fuel, temperature, humidity, slope, wind speed and direction, etc. And in this model the expressions of the rate of fire spread to eight neighboring cells in the Moore neighborhood are deduced, so the rules that update the cells in the lattice are proposed. Finally, the proposed model is expressed as computer algorithm by using secondary development technology of geographic information system, to realize fire behavior simulations which are under the different conditions.%为了研究林火蔓延的动态模拟问题,结合元胞自动机原理,对现有的林火蔓延数学模型进行改进,提出一种新的模拟林火蔓延模型。
该模型充分表达了可燃物类型、温度、湿度、坡度、风速和风向等林火蔓延影响因子在元胞空间中的作用形式,通过求解出燃烧元胞向摩尔(Moore)型邻域中八个方向元胞的林火蔓延速度,来确定元胞状态演变规则函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
火蔓延模型(翻译)火蔓延模型总结逆风火蔓延逆风火蔓延指的是火在自然对流条件下或者风速与火蔓延速率相反条件下的蔓延(Figure 1a)。
由于逆风条件不利于火焰前方的热传递,火在这种条件下蔓延速率通常较小。
由于逆风火蔓延实验研究相对简单,现在已有大量逆风火蔓延的实验数据。
文献中现有的理论模型是传热模型。
在这些模型中,火蔓延速率即为材料在火焰和外界热源作用下表面温度从初始值升到指定温度的速率。
这个指定的温度通常认为是固体材料的蒸发温度。
燃料的热解过程通常是不考虑的,且假设材料在温度达到蒸发温度后立马蒸发。
这一过程可以用固相的能量守恒来进行分析,气固界面的初始条件由实验测量(Parker 1972; Hirano, Noreikis, and Waterman 1973)获得(热流密度和加热长度)。
这些模型不求解气相方程,因此并不能正确的模拟火蔓延过程,但给定一个气相边界条件后就能独立运算预测火蔓延。
(De Ris 1969)和(Wichman and Williams 1983)的传热模型更精确些,他们对气相和固相耦合的能量方程进行了求解。
为了简化计算,他们在求解气相能量和物质守恒方程时采用气体匀速运动(Oseen 近似流)和火焰面假设(无限化学反应速率)。
这些假设条件使得方程获得解析解并且能够获得有限厚度材料火蔓延速率的显式表达式。
(De Ris 1969)提出的热薄材料和热厚材料的火蔓延模型是最复杂的模型。
这个模型具有自适应性,能很好的预测化学反应不是主控因素的火蔓延(如氧气浓度高和风速较低的条件)(Pizzo et al. 2009; Fernandez-Pello, Ray, and Glassman 1981; Altenkirch, Eichhorn, and Rizvi 1983)。
(Wichman and Williams 1983)对于热厚材料的分析假设火焰面在材料表面且Lewis不是1。
有意思的是当Lewis数是1时得出的表达式与(De Ris 1969)的结果一致。
上述文献中的作者认为deRis将材料表面燃料浓度的边界条件线性化事实上也迫使火焰面贴在材料表面。
更有意思的是当忽略气相和固相的纵向扩散时(抛物线方程)分析结果与椭圆形方程的表达式一样。
由此得出结论,这些传热模型中火蔓延速率由火焰产生的热量和下游对流作用带走热量之间的整体热平衡决定的。
材料表面(火焰)对气相和固相的传热都是通过法线方向的热传导实现的。
因此,热平衡事实上是法线方向的热传导和纵向的对流之间的平衡。
在(Wichman and Williams 1983)更进一步的研究中,Oseen近似流改进为线性分布。
虽然线性分布更贴近真实气流,但应用于动量方程后使得问题更难求解,只能获得方程的近似解。
(Wichman, Williams, and Glassman 1982)证明引入线性变化的速度分布获得的解与实验值更贴近,然而这种方法的能否从总体上改进模型还不明确。
下文中将提到,当模型中考虑气相动力学时线性速率分布会产生很多不同的结果,这是因为燃料表面向上游的传热和传质在火蔓延过程中起很重要的作用。
图1. 火蔓延模式(1a)逆风模式(1b)顺风模式上面介绍的模型用一个给定的蒸发温度来定义火焰前锋的位置,由此推算火蔓延速率,但这个方法一直以来都有争议。
(Sirignano 1972)指出这种方法是错误的,蒸发温度取决于燃料和气体的特性,化学动力学常数等。
(Williams 1977)证明使用一个固定的蒸发温度可行,但是必须要取合理的值,即必须考虑到实验时的动力学环境。
(Fernandez-Pello and Hirano 1983)提出在不同实验条件下将蒸发温度,气相化学动力学效应作为经验系数代入传热模型预测火蔓延速率。
然而,虽然上述方法在实际应用中取得了较好的效果,但要建立一个更精确且能自适应的模型就必须要考虑到化学反应的作用。
为了避免用到常值蒸发温度,(Sirignano 1974),(OHKI and TSUGÉ 1974)提出了考虑燃料与空气界面间化学反应的模型。
在(OHKI and TSUGÉ 1974)的分析中,表面化学反应随着火焰面进行。
虽然模型是自适应性的,但是他们只能应用于表面反应的燃料和静止环境。
最近的实验研究表明在大多数条件下火蔓延发生在接近熄灭的条件(大气或者受污染的环境),要获得精确的模型就必须考虑气相化学反应动力学。
一些学者在模型中已经考虑了有限的化学反应(Tarifa, Del Notario, and Torralbo 1969; Zhu, Lu, and Wang 2015; Lastrina, Magee, and McAlevy 1971; Annamalai and Sibulkin 2007)。
常用的假设条件有:使用边界层近似来描述气体流动;预混气体在材料蒸发温度会发生自燃从而导致火蔓延。
蒸发温度通过表面热通量和材料热解的能量守恒计算获得。
第一个假设忽略了气流方向的传热和传质,因此只适用于固相热传导主控的条件。
第二个假设虽然包括了有限化学反应,但不符合火蔓延的真实情况,真正的火蔓延过程应该是燃料热解气体在外部热流下强迫点燃。
Figures 2a,2b和2c分别表示自由燃烧竖直表面的速度,温度和物质分布图。
从图中可以看出由于材料表面的边界条件是无滑移的,表面附近的低速率使得这个区域有大量热和质量向上游传递。
对于强迫通风条件来说,随着风速增加,火焰渐渐向表面靠近,向上游的热扩散减少。
(Wichman and Williams 1983)提出了一个新的热厚材料逆风火焰传播模型,模型中认为由燃料向上游扩散引起的预混火焰会使下游燃烧表面的扩散火焰熄灭。
他们认为气体流动的速度梯度为常数,考虑了有限化学反应速率且模型同时适用于化学反应主控(预混火焰/小Damkohler数)和热传导主控(火焰面/大Damkohler数)。
为了获得解析解,作者做了一系列近似和假设,其中一个假设是将火焰前锋区域看做半圆预混火焰,温度和浓度场认为呈圆形对称分布。
圆形对称假设与(Wichman and Williams 1983)的实验结果和(Frey and James 1979)的模拟结果定性相符,将能量和物质守恒方程转化为非线性常微分方程,因此降低了求解难度。
但是,由于分析中引入了大量假设和近似,作者必须经常改变未知参数的数值使得Damkohler数趋近于无穷大时得到的火蔓延速率方程与之前的模型相同。
以上分析过程难度大,有局限性且难以获得火蔓延速率的独立表达式。
由此说明获得火蔓延问题的解析表达式十分困难。
上文中所述的理论模型通常会忽略火焰热辐射或者用经验系数表征辐射的影响。
对于竖直向下火蔓延或者火焰在逆风作用下贴近材料表面的蔓延,未燃区域相对于火焰的视角系数比较小,忽略辐射的影响较为合理。
然而,对于水平火蔓延或者对于尺度较大的火焰来说,除非火焰中无碳黑,否则必须考虑火焰辐射的作用。
虽然很多现象分析中已经考虑到了辐射的作用,但真正把辐射加入到数值方程求解中却很难,并且大大增加方程计算的难度。
首先,火焰的辐射特性尚不清楚,它取决于烟颗粒分布,发射率,温度,气体温度以及光学厚度。
其次,要想求得视角因子必须精确刻画火焰的形状。
当火焰随时间变大时,视角因子与火焰的空间位置和时间相关。
另外,能量方程中加入辐射项将引入一个非线性项,极大增加求解难度。
近些年来扩散火焰的烟颗粒分布研究取得了一些进展,这将有利于对火焰辐射的研究。
顺风火蔓延在顺风模式下气体流动方向与火蔓延的方向相同(见图1b )。
风会加强火焰对未燃区域的热传递进而促进火蔓延由于顺风火蔓延实验较难做(非稳态速图2. 自然对流环境下火蔓延结构图(2a )速度度较大),上世纪末人们才开始关注顺风火蔓延的研究。
在顺风火蔓延中,只有点火源附近刚开始的一段是层流,热对流起主控作用,之后的蔓延大多是在湍流状态下发生,火焰对表面的热辐射作用不可忽略。
除此之外,在实际应用中可燃材料是可碳化材料,火蔓延与材料和瞬时状态相关。
辐射,湍流,碳化材料的燃烧引入了较多的未知参数。
因此,现有文献的理论模型常常简化为非碳化材料,无火焰辐射和层流。
图3. 1.25cm 厚的PMMA 在不同氧气浓度和风速条件下的火蔓延速率虽然有限的化学反应对顺风火蔓延的影响较小,但复杂的传质过程增加了建模难度。
在顺风模式下,火蔓延由下游火焰对未燃区域的热传递主控。
火焰贴近未燃区域表面,一旦燃料开始热解,燃料蒸汽进入扩散火焰区形成火焰。
火蔓延可以看做热解或燃烧前锋的蔓延,火蔓延的速率取决于固体材料表面温度升到热解或蒸发温度的速度。
(Loh and Fernandez-Pello 1985)研究了热解前锋的速率与风速和氧气浓度之间的关系。
火在平板流作用下在热厚PMMA 材料上顺风蔓延的实验结果见图3。
由图中看出不同工况下热解前锋的蔓延速率可以写成一个无量纲的形式(const 22p v i f v V T -T )/u (T -T )∞⎡⎤=⎣⎦。
p V 是热解前锋速率,u ∞ 是气流速率,T v 是PMMA 的热解温度,T f 是绝热火焰温度,T i 是材料的初始温度。
上面的关系式表明在该实验条件下火蔓延过程是由热传递主控,关系式中没有出现有限的化学反应项。
更重要的是关系式表明在顺风条件下火蔓延速率是火焰产生的热与固相和气相带走的热相互平衡的结果。
现有的大多数顺风火蔓延理论模型与实验的定性结果相似。
例如,多数理论模型(Orloff, De Ris, and Markstein 1975; Sibulkin and Kim 1976; Tsai 2009)都得出固体竖直向上火蔓延的蔓延速率与热解长度或热解时间有这样的关系:n m p p V l t :: ,且实验也证实了上述关系式的正确性。
类似的,顺风火蔓延的理论模型(Fernandez-Pello and Mao 1981)得出火蔓延速率与风速成正比的关系(图3)。
顺风火蔓延的数学模型大多只考虑固相能量守恒方程,表面热流是固气交界面的初始边界条件。
因为固相法线方向的温度梯度比轴向方向的温度梯度大得多,所以一维瞬态方程足够表征固相的变化,其中的不确定因素是可燃物的碳化。
碳化行为导致材料的物理性质随时间变化,且为碳化机制的描述引入了很多不确定因素。
(Carrier, Fendell, and Fink 1983)的模型是第一个考虑了碳化行为的模型。
他们假设碳化材料和原材料有不同的密度,原材料达到固定温度后发生气化。
炭和原材料的交界面随时间发生变化,在能量方程中引入瞬时效应。
虽然文中的分析不能准确的表述碳化行为,但却是可碳化材料火蔓延的第一次尝试。