初中数学复习资料
初中数学总复习(全册)知识点归纳
初中数学总复习(全册)知识点归纳初中数学总复(全册)知识点归纳初中数学是我们研究过程中的重要一环,通过全面复初中数学知识点,可以巩固基础,为进一步的研究打下坚实的基础。
下面是初中数学全册知识点的归纳总结:一、数与式1. 自然数、整数、有理数和无理数的定义及性质2. 分数的概念、分数的大小比较、分数的运算3. 正数、负数、零的概念及性质4. 整式的定义和计算,含有一个未知数的整式5. 一元一次方程及方程的解法6. 百分数与百分之一的关系,百分数的计算7. 有序数对的表示方法,平面直角坐标系的认识和性质二、代数中的图形1. 点、线、面的概念,直线与曲线的区别2. 多边形的定义,凸多边形和凹多边形的区别3. 四边形的性质及分类,正方形、矩形、平行四边形和菱形的性质4. 二维坐标系,点的坐标,坐标的符号三、方程与不等式1. 一元二次方程的定义及解法,解一元二次方程的方法2. 二次函数的定义,二次函数的图象,图象的性质与应用3. 不等式的概念,不等式的解及图示四、实数的运算1. 实数与有理数的关系,无理数的性质与运算2. 加减法的性质和运算法则,乘法的性质和运算法则3. 分数的乘除法,有理数的乘除法五、数据的处理和应用1. 数据的整理和分类,统计图表的制作与解读2. 平均数的计算与应用3. 频数分布和频数分布图的制作与应用4. 数据的收集、整理、分析和解释六、几何与变换1. 几何基本概念,点、线、面、角、距离、平行和垂直2. 直角三角形、等腰三角形和等边三角形的性质3. 平行四边形、矩形和正方形的性质4. 空间几何图形的认识和性质,立体图形的展开和拼接七、统计与概率1. 抽样调查、统计指标和数据的分析2. 事件与概率,用频率估计概率3. 连续性随机事件的概率计算这是初中数学总复习(全册)知识点的一个概括性归纳。
希望对你的学习有所帮助!。
2024初中数学知识点复习提纲
2024初中数学知识点复习提纲一、代数与函数1.一元一次方程与一元一次不等式•含有绝对值的一元一次不等式的解法•解一元一次方程和不等式时的变形方法•应用一元一次方程和不等式解决实际问题2.一次函数与一次函数图像•一次函数的定义、性质和图像表示•利用一次函数解决实际问题•一次函数和一元一次方程、不等式的关系3.二次根式•关于二次根式的定义、性质和化简方法•二次根式的运算和求值•应用二次根式解决实际问题4.整式的定义、性质和运算•多项式的基本概念、性质和表示方法•多项式的加、减、乘和整式除法运算•利用整式解决实际问题二、几何与测量1.平面几何初步•直线、线段、射线、角的基本概念及刻画方法•同位角、对顶角、内错角等角度关系•垂直、平行、相交、交错等线段关系•用角度关系和线段关系解决几何问题2.平面图形初步•三角形的基本性质、分类和判定方法•四边形、多边形、圆的定义和性质•识别和绘制各种平面图形•应用平面图形解决实际问题3.直线、角、面积测量•直线的测量方法和误差控制•利用角度测量解决几何问题•平面图形的面积计算及其应用4.立体几何•空间图形的基本概念、分类以及基本变换方法•立体图形的体积和表面积计算•应用立体几何解决实际问题三、数据与概率1.统计基础知识•数据和变量的定义、分类及其表示方法•统计描述性分析方法(频数、频率、中位数、平均数等)•数据图表的绘制和分析2.概率初步•随机事件和样本空间的定义、性质及表示方法•概率的定义、性质和计算方法•统计与概率的关系及其应用3.统计与概率的实际应用•利用统计和概率解决实际问题•假设检验及其应用以上是2024初中数学知识点复习提纲,希望对广大中学生有所帮助。
初中数学总复习
初中数学总复习初中数学总复资料1.数与代数1.1 数与式有理数:有限或循环小数(无理数:无限不循环小数)数轴:三要素相反数绝对值:│a│= a(a≥0)│a│=-a(a<0)倒数指数零指数:a=1(a≠0)负整指数:(a≠0,n是正整数)完全平方公式:(a±b)²=a²±2ab+b²平方差公式:(a+b)(a-b)=a²-b²幂的运算性质:am·an=am+nam÷an=am-nam)n=amnab)n=anbnan/n科学记数法:a×10n(1≤a<10,n是整数)算术平方根、平方根、立方根、1.2 方程与不等式一元二次方程定义及一般形式:ax²+bx+c=0(a≠0)解法:1.直接开平方法.2.配方法3.公式法:x1,2= (-b±√(b²-4ac))/2a4.因式分解法.根的判别式:Δ=b²-4ac>0,有两个解。
Δ=b²-4ac<0,无解。
Δ=b²-4ac=0,有1个解。
维达定理:x1+x2=-b/a,x1×x2=c/a常用等式:x1+x2=-b/a,x1×x2=c/a1.3 应用题1.行程问题:相遇问题、追及问题、水中航行:v顺=船速+水速;v逆=船速-水速2.增长率问题:起始数(1+X)=终止数3.工程问题:工作量=工作效率×工作时间(常把工作量看着单位“1”)。
4.几何问题1.4 分式方程(注意检验)由增根求参数的值:1.将原方程化为整式方程2.将增根带入化间后的整式方程,求出参数的值。
1.5 不等式的性质1.a>b→a+c>b+c2.a>b→ac>bc(c>0)3.a>b→ac<bc(c<0)4.a>b,b>c→a>c5.a>b,c>d→a+c>b+d.2.函数2.1 一次函数1.定义:y=kx+b(k≠0)2.图象:直线过点(0,b)—与y轴的交点和(-b/k,0)—与x轴的交点。
初中数学总复习提纲
初中数学总复习提纲一、数的性质和运算1.自然数、整数、有理数、实数和虚数的含义及其性质2.整数的运算规则:加法、减法、乘法、除法、绝对值运算3.有理数的运算规则:加法、减法、乘法、除法、混合运算4.指数与指数运算5.逻辑与集合二、代数式与方程式1.代数式的定义及其性质2.平方、完全平方、立方和完全立方的求解3.一元一次方程的解法4.一元一次方程组的解法5.一元二次方程的解法及其应用6.用方程表示实际问题并解决实际问题7.勾股定理及其应用三、数与图形1.二维图形的边、角、面及其性质2.三角形、四边形和多边形的性质及其关系3.三角形的线段、角、面积公式及应用4.三角形的相似性质及其应用5.圆的定义、性质及公式6.圆的面积和周长的计算7.空间几何体的计算四、函数与应用1.函数的概念和性质2.函数图像的平移、伸缩和反射3.一次函数、二次函数、三次函数及其图像4.绝对值函数、分段函数及其图像5.函数的复合、反函数和逆函数6.数据的收集、整理、统计和分析7.概率与统计五、单位换算与计算检验1.长度、面积、体积和质量的单位换算2.时间、速度、密度、温度、角度的单位换算3.百分数和比例的计算4.计算结果的检验5.合理估算的方法与应用六、解题方法与思维培养1.数学解题的基本方法2.算术平均数、几何平均数和均值不等式的应用3.推理与证明4.逻辑思维与数学思维的培养5.综合应用题的解决方法以上是初中数学总复习的提纲,根据这个提纲进行复习,可以全面复习初中数学知识,有助于提高数学应试能力。
每个模块都要结合习题进行巩固,多做一些实际应用题,提高解决问题的能力。
同时,要注重思维培养和解题方法的掌握,通过多思考、多讨论、多练习,培养学生的数学思维能力。
中考数学复习资料(7篇)
中考数学复习资料(7篇)中考数学复习资料(7篇)它是初中毕业证发放的必要条件,中国将这几科考试科目规定为国家课程的学科,全部列入初中学业水平考试的范围。
以下是小编为大家整理的中考数学复习重点,仅供参考,希望能够帮助大家。
中考数学复习重点1中考临近,考生在复习时数学如何才能抓住要点数学复习应该重点抓好数字式、方程(组)与不等式(组)、函数及其图像、统计与概率、几何的基本概念与三角形、四边形、相似图形、特直角三角形、圆及视图与投影等10大模块。
同时,于忠翠老师强调,考生应该以轻松自信的心态应对中考,发挥出自己的真实水平。
数字式以中、低档题居多“这一板块主要包括实数、整式、因式分解、分式及二次根式等内容,中考中多以填空选择的客观题形式出现,淡化了计算难度,主要以中、低档次的题居多。
”于忠翠说,随着课改的深入,这一板块的考察形式将会多样化,一些以实际生活题材为背景、结合当今社会热点的问题将会占据主流,近似数、有效数字、科学论证法、绝对值、因式分解、规律探究及阅读理解题成为近几年的热点题型。
方程与不等式难度不大、函数突出开放性单纯求解方程的不等式问题多以填空、选择的题型出现,一般难度不大。
对于应用方程(组)与不等式(组)解决实际问题,特别是与生产生活相联系的方案设计、决策应用等问题应是中考重点,尤其是方程与函数知识、几何知识的综合运用及不等式的实际运用问题是热点问题。
“函数题越来越突出开放性,单纯求函数解析式的题型越来越少,函数中的一些动点问题,尤其是设计新颖、贴近生产生活的函数最值问题、一些开放性探索题及图表信息题将会成为中考热点问题。
”于忠翠说。
统计概率以图表信息题为主统计与概率在中考试卷中所占分数一般在10分左右,这一板块在考察基础知识和基本技能的同时,多以图表信息题为主,考察学生利用图表的信息及所求概率的大小,解决现实生活中的问题。
对于几何与三角形,于忠翠表示,这一板块主要考察结合图形探索规律,特殊三角形在实际生活中的应用及利用旋转、轴对称等知识解决实际问题,淡化了传统的推理论证题。
初中数学知识点复习汇总(精选全面)
2、同类项 所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。几个常数项也是同 类项。
3、去括号法则 (1)括号前是“+”,把括号和它前面的“+”号一起去掉,括号里各项都不变号。 (2)括号前是“﹣”,把括号和它前面的“﹣”号一起去掉,括号里各项都变号。
第二章 代数式
整式的有关概念
1、代数式
用运算符号把数或表示数的字母连接而成的式子叫做代数式。单独的一个数或一个 字母也是代数式。
2、单项式
只含有数字与字母的积的代数式叫做单项式。
注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,
如 4 1 a 2b ,这种表示就是错误的,应写成 13 a 2b 。一个单项式中,所有
(3)有特定结构的数,如0.1010010001…等;
π+8等; 3
(4)某些三角函数,如sin60o等
实数的倒数、相反数和绝对值
1、相反数
实数与它的相反数是一对数(只有符号不同的两个数叫做互为相反数,零的 相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称, 如果a与b互为相反数,则有a+b=0,a=—b,反之亦成立。
2、绝对值
一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。零的绝对值时它 本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。正数大于 零,负数小于零,正数大于一切负数。两个负数,绝对值大的反而小。
3、倒数
如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。零 没有倒数。
初中数学总复习知识点整理(最全)
初中数学总复习知识点整理(最全)知识点分类
1. 整数
1.1 整数的概念
1.2 整数的进位与退位
1.3 整数的加减法
1.4 整数的乘法
1.5 整数的除法
2.分数
2.1 几个基本概念
2.2 分数的基本性质2.3 分数的加减法
2.4 分数的乘法
2.5 分数的除法
3. 小数
3.1 小数的概念
3.2 小数与分数的转化3.3 小数的加减法
3.4 小数的乘法
3.5 小数的除法
4.代数
4.1 代数式的概念和性质4.2 代数式的加减法
4.3 代数式的乘法
4.4 公式和方程
4.5 解一元一次方程
5. 轴对称与余弦定理5.1 轴对称的基本概念5.2 轴对称的性质
5.3 用轴对称解题
5.4 余弦定理的概念和性质
5.5 用余弦定理解题
6.勾股定理与三角函数
6.1 勾股定理的概念和性质
6.2 在平面直角坐标系中应用勾股定理6.3 用勾股定理解决实际问题
6.4 三角函数的定义和性质
6.5 用三角函数解决实际问题
知识点重点
- 整数的进位与退位
- 分数的加减法
- 代数式的乘法
- 解一元一次方程
- 用轴对称解题
- 用余弦定理解题
- 用勾股定理解决实际问题- 用三角函数解决实际问题知识点易错点
- 乘方与加减混淆
- 分数的错位相乘
- 代数式乘法计算错误
- 方程解错
- 三角函数概念混淆
- 勾股定理和余弦定理运用错误
- 计算精度不足
以上是初中数学的总复习知识点整理,祝您考试顺利!。
初中数学复习提纲
初中数学复习提纲一、有理数1.有理数的概念及性质:a.有理数的定义;b.有理数的比较大小;c.有理数的加法、减法、乘法、除法运算;d.有理数的化简及约分;e.有理数的负数及绝对值;f.有理数的十分制及百分制换算。
二、代数式1.代数式的基本概念:a.代数式的定义及元素的分类;b.代数式的值及求值;c.代数式的化简;d.代数式的展开与合并;e.代数式的因式分解;f.代数式的公式变形。
三、方程与不等式1.一元一次方程:a.一元一次方程的概念及解法;b.一元一次方程的应用。
2.一元一次不等式:a.一元一次不等式的概念及解法;b.一元一次不等式的应用。
3.二元一次方程组:a.二元一次方程组的概念及解法;b.二元一次方程组的应用。
四、几何1.直线、角、面的概念及性质:a.直线及直线的分类;b.角的概念及角的分类;c.角的性质;d.面的概念及面的分类;e.面的性质。
2.图形的周长与面积:a.三角形、矩形、正方形的周长与面积;b.圆的周长与面积;c.梯形、平行四边形的周长与面积;d.圆环的周长与面积。
3.合作与相似:a.合作的概念及性质;b.相似的概念及性质;c.相似三角形的应用。
五、统计与概率1.统计的基本概念及方法:a.数据的搜集、整理、分析;b.频数表、频率表与频率多角形;c.平均数、中位数与众数;d.极差与四分位数。
2.概率的基本概念及计算:a.随机事件与样本空间;b.事件的概率与计算;c.事件的互斥与相互独立;d.古典概型与加法定理;e.条件概率与乘法定理。
六、函数1.函数的概念及表示法:a.函数的定义及特点;b.函数的表示与自变量与因变量的关系。
2.一次函数与二次函数:a.一次函数的概念、性质与图像;b.一次函数的斜率与截距;c.二次函数的概念、性质与图像;d.二次函数的顶点与对称轴。
以上为初中数学复习提纲,涵盖了有理数、代数式、方程与不等式、几何、统计与概率、函数等重要知识点,每个知识点包括了基本概念、性质与解题方法,并且列举了一些常用的应用题目。
2023年初中数学毕业会考复习提纲(全套)
2023年初中数学毕业会考复习提纲(全套)
一、整数
1. 整数的概念和性质
2. 整数的相反数和绝对值
3. 整数的加减法运算
4. 整数的乘法运算
5. 整数的除法运算
6. 整数的混合运算
7. 整数的分数运算
二、代数式与方程
1. 代数式的概念
2. 代数式的加减法运算
3. 代数式的乘法运算
4. 代数式的混合运算
5. 方程的概念和性质
6. 一元一次方程的解法
7. 一元一次方程的应用
三、分数
1. 分数的概念和性质
2. 分数的化简
3. 分数的加减法运算
4. 分数的乘法运算
5. 分数的除法运算
6. 分数的混合运算
7. 分数和整数的转换
四、比例与相似
1. 比例和比例的性质
2. 比例的简化与扩大
3. 比例的四则运算
4. 等比例线段和相似比例线段的性质
5. 两位线段的比较
五、平面图形的认识
1. 直线、线段和射线的认识
2. 角和角的种类
3. 三角形的性质和判定
4. 四边形的性质和判定
5. 五边形、六边形和多边形的性质
六、数轴与坐标
1. 数轴的认识和使用
2. 点、有序数对和坐标的概念
3. 坐标的运算
4. 图形的平移
七、统计与概率
1. 数据的收集和整理
2. 统计图的绘制和分析
3. 概率的基本概念和计算
八、函数与图像
1. 函数的概念和性质
2. 函数的表示和运算
3. 函数的图像和性质
以上是2023年初中数学毕业会考复习的全套提纲,希望对你的复习有所帮助。
祝你取得好成绩!。
初中数学复习资料
中考数学常用公式定理1、整数(包括:正整数、0、负整数)和分数(包括:有限小数和无限环循小数)都是有理数.如:-3,,0.231,0.737373…,,.无限不环循小数叫做无理数.如:π,-,0.1010010001…(两个1之间依次多1个0).有理数和无理数统称为实数.2、绝对值:a≥0丨a丨=a;a≤0丨a丨=-a.如:丨-丨=;丨3.14-π丨=π-3.14.3、一个近似数,从左边笫一个不是0的数字起,到最末一个数字止,所有的数字,都叫做这个近似数的有效数字.如:0.05972精确到0.001得0.060,结果有两个有效数字6,0.4、把一个数写成±a×10n的形式(其中1≤a<10,n是整数),这种记数法叫做科学记数法.如:-40700=-4.07×105,0.000043=4.3×10-5.5、乘法公式(反过来就是因式分解的公式):①(a+b)(a-b)=a2-b2.②(a±b)2=a2±2ab+b2.③(a+b)(a2-ab+b2)=a3+b3.④(a-b)(a2+ab+b2)=a3-b3;a2+b2=(a+b)2-2ab,(a-b)2=(a+b)2-4ab.6、幂的运算性质:①a m×a n=a m+n.②a m÷a n=a m-n.③(a m)n=a mn.④(ab)n=a n b n.⑤()n=n.⑥a-n=1na,特别:()-n=()n.⑦a0=1(a≠0).如:a3×a2=a5,a6÷a2=a4,(a3)2=a6,(3a3)3=27a9,(-3)-1=-,5-2==,()-2=()2=,(-3.14)º=1,(-)0=1.7、二次根式:①()2=a(a≥0),②=丨a丨,③=×,④=(a>0,b≥0).如:①(3)2=45.②=6.③a<0时,=-a.④的平方根=4的平方根=±2.(平方根、立方根、算术平方根的概念)8、一元二次方程:对于方程:ax2+bx+c=0:①求根公式是x=242b b aca-±-,其中△=b2-4ac叫做根的判别式.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.注意:当△≥0时,方程有实数根.②若方程有两个实数根x1和x2,并且二次三项式ax2+bx+c可分解为a(x-x1)(x-x2).③以a和b为根的一元二次方程是x2-(a+b)x+ab=0.9、一次函数y=kx+b(k≠0)的图象是一条直线(b是直线与y轴的交点的纵坐标即一次函数在y轴上的截距).当k>0时,y随x的增大而增大(直线从左向右上升);当k<0时,y随x的增大而减小(直线从左向右下降).特别:当b=0时,y=kx(k≠0)又叫做正比例函数(y与x成正比例),图象必过原点.10、反比例函数y=(k≠0)的图象叫做双曲线.当k>0时,双曲线在一、三象限(在每一象限内,从左向右降);当k<0时,双曲线在二、四象限(在每一象限内,从左向右上升).因此,它的增减性与一次函数相反.11、统计初步:(1)概念:①所要考察的对象的全体叫做总体,其中每一个考察对象叫做个体.从总体中抽取的一部份个体叫做总体的一个样本,样本中个体的数目叫做样本容量.②在一组数据中,出现次数最多的数(有时不止一个),叫做这组数据的众数.③将一组数据按大小顺序排列,把处在最中间的一个数(或两个数的平均数)叫做这组数据的中位数. (2)公式:设有n 个数x 1,x 2,…,x n ,那么: ①平均数为:12......nx x x xn;②极差:用一组数据的最大值减去最小值所得的差来反映这组数据的变化范围,用这种方法得到的差称为极差,即:极差=最大值-最小值; ③方差:数据1x 、2x ……, n x 的方差为2s ,则2s =222121.....nx xx xx xn标准差:方差的算术平方根.数据1x 、2x ……, n x 的标准差s ,则s =222121.....nx xx xx xn一组数据的方差越大,这组数据的波动越大,越不稳定。
初中数学总复习提纲(全初中)
初中数学总复习提纲第一章 实数★重点★ 实数的有关概念及性质,实数的运算 ☆内容提要☆一、重要概念1.数的分类及概念 数系表:说明:“分类”的原则:1)相称(不重、不漏)2)有标准2.非负数:正实数与零的统称。
(表为:x ≥0) 常见的非负数有:性质:若干个非负数的和为0,则每个非负担数均为0。
3.倒数: ①定义及表示法②性质:A.a ≠1/a (a ≠±1);B.1/a 中,a ≠0;C.0<a <1时1/a >1;a>1时,1/a <1;D.积为1。
4.相反数: ①定义及表示法②性质:A.a ≠0时,a ≠-a;B.a 与-a 在数轴上的位置;C.和为0,商实数无理数(无限不循环小数)正分数 负分数 正整数0 负整数 (有限或无限循环性数) 整数分数 正无理数 负无理数 0 实数 负数 整数 分数 无理数有理数正数整数 分数 无理数有理数│a │2a a (a ≥0)(a 为一切实数)为-1。
5.数轴:①定义(“三要素”)②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。
6.奇数、偶数、质数、合数(正整数—自然数)定义及表示:奇数:2n-1偶数:2n (n 为自然数)7.绝对值:①定义(两种):代数定义:几何定义:数a 的绝对值顶的几何意义是实数a 在数轴上所对应的点到原点的距离。
②│a │≥0,符号“││”是“非负数”的标志;③数a 的绝对值只有一个;④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。
二、实数的运算1. 运算法则(加、减、乘、除、乘方、开方)2. 运算定律(五个—加法[乘法]交换律、结合律;[乘法对加法的] 分配律)3. 运算顺序:A.高级运算到低级运算;B.(同级运算)从“左” 到“右”(如5÷51×5);C.(有括号时)由“小”到“中”到“大”。
三、应用举例(略)附:典型例题1. 已知:a 、b 、x 在数轴上的位置如下图,求证:│x-a │+│x-b │ =b-a.2.已知:a-b=-2且ab<0,(a ≠0,b ≠0),判断a 、b 的符号。
初中数学资料排行榜
初中数学资料排行榜
以下是一些初中数学学习资料的推荐:
1. 《初中数学通解》:这是一本适合初中生的数学学习资料,它详细讲解了初中数学的所有知识点,并提供了大量的例题和练习题,可以帮助初中生系统地复习数学知识。
2. 《初中数学解题技巧与实战范例》:这本书针对初中数学的重点和难点,提供了大量的解题技巧和实战范例,可以帮助初中生提高解题能力和数学思维能力。
3. 《初中数学同步辅导》:这是一本与初中数学教材同步的辅导资料,它对每个章节进行了详细的讲解,并提供了丰富的练习题,可以帮助初中生更好地掌握数学知识。
4. 《初中数学考试指南》:这本书针对初中数学考试进行了全面的指南,包括考试技巧、题型分析、真题解析等,可以帮助初中生全面了解数学考试的要求和要点,提高应试能力。
以上是一些初中数学学习资料的推荐,但并不是绝对的“排行榜”,因为学习资料的优劣因人而异,不同的学生需要不同的学习资料。
建议根据自己的学习情况和需求选择适合自己的资料。
初三数学总复习资料_分专题试题及答案(90页)
(2) 已知| x | a(a 0) ,求 x 时,要注意 x a
考点 3 平方根与算术平方根
1、 若 x 2 a(a 0) ,则 x 叫 a 做的_________,记作______;正数 a 的__________叫做算术平 方根,0 的算术平方根是____。当 a 0 时, a 的算术平方根记作__________。
2
y
5、 实数 a, b, c 在数轴上对应点的位置如图 2 所示,下列式子中正确的有( )
c
ba
-2 -1 0 1 2 3
图2
① b c 0 ② a b a c ③ bc ac ④ ab ac
A.1 个
B.2 个 C.3 个 D.4 个
6、 ①数轴上表示-2 和-5 的两点之间的距离是______数轴上表示 1 和-3 的两点之间的距离是
用根号形式表示的数并不都是无理数(如 4 ),也不是所有的无理数都可以写成根号的形
式(如 )。
练习: 1、 把下列各数填入相应的集合内:
7.5,
15, 4,
8 ,
2 ,
3 8,
,
0.25,
0.1 5
13 3
有理数集{ 正实数集{
},无理数集{
}
}
2、 在实数 4, 3 , 0, 2
2 1,
64, 3 27 , 1 中,共有___ 27
2、 幂的运算法则:(以下的 m, n 是正整数)
(1)a m a n _____ ; (2)(a m )n ____ ; (3)(ab)n _____ ; (4)a m a n ______(a 0) ;
(5)(b )n ______ a
3、 乘法公式:
初中的数学总复习必备资料
初中的数学总复习必备资料每一门科目都有自己的学习方法,但其实都是万变不离其中的,数学作为最烧脑的科目之一,也是要记、要背、要讲技巧的。
下面是小编给大家整理的一些初中的数学总复习的学习资料,希望对大家有所帮助。
九年级上册数学复习资料知识点1:一元二次方程的基本概念1、一元二次方程3x2+5x-2=0的常数项是-2。
2、一元二次方程3x2+4x-2=0的一次项系数为4,常数项是-2。
3、一元二次方程3x2-5x-7=0的二次项系数为3,常数项是-7。
4、把方程3x(x-1)-2=-4x化为一般式为3x2-x-2=0。
知识点2:直角坐标系与点的位置1、直角坐标系中,点A(3,0)在y轴上。
2、直角坐标系中,x轴上的任意点的横坐标为0。
3、直角坐标系中,点A(1,1)在第一象限。
4、直角坐标系中,点A(-2,3)在第四象限。
5、直角坐标系中,点A(-2,1)在第二象限。
知识点3:已知自变量的值求函数值1、当x=2时,函数y=的值为1。
2、当x=3时,函数y=的值为1。
3、当x=-1时,函数y=的值为1。
知识点4:基本函数的概念及性质1、函数y=-8x是一次函数。
2、函数y=4x+1是正比例函数。
3、函数是反比例函数。
4、抛物线y=-3(x-2)2-5的开口向下。
5、抛物线y=4(x-3)2-10的对称轴是x=3。
6、抛物线的顶点坐标是(1,2)。
7、反比例函数的图象在第一、三象限。
知识点5:数据的平均数中位数与众数1、数据13,10,12,8,7的平均数是10。
2、数据3,4,2,4,4的众数是4。
3、数据1,2,3,4,5的中位数是3。
知识点6:特殊三角函数值1.cos30°=。
2.sin260°+cos260°=1。
3.2sin30°+tan45°=2。
4.tan45°=1。
5.cos60°+sin30°=1。
知识点7:圆的基本性质1、半圆或直径所对的圆周角是直角。
(完整版)人教版初中数学总复习资料doc
(完整版)人教版初中数学总复习资料doc①已知三边作三角形②已知两边及其夹角作三角形③已知两角及其夹边作三角形④已知底边及底边上的高作等腰三角形⑹过一点、两点和不在同一条直线上的三点作圆⒏视图与投影⑴直棱柱、圆柱、圆锥、球的三视图⑵轴对称图形:等腰三角形、矩形、菱形、等腰梯形、正多边形、圆⑶中心对称图形:矩形、圆、⑷图形的平移和旋转⑸图形的相似:(三)概率与统计⒈统计⑴重要概念①总体:考察对象的全体。
②个体:总体中每一个考察对象。
③样本:从总体中抽出的一部分个体。
④样本容量:样本中个体的数目。
⑤众数:一组数据中,出现次数最多的数据。
⑥中位数:将一组数据按大小依次排列,处在最中间位置的一个数(或最中间位置的两个数据的平均数)。
⑵扇形统计图、条形统计图、折线统计图⑶计算方法①平均数:某1(某1某2某n)n某②加权平均数:kfk某某1f1某2f2f1f2fnkn)③样本方差:⑴s1[(某1某)2(某2某)2(某n某)2]n④样本标准差:ss2⑤极差:最大的数减去最小的数⒉概率①列表法、画树状图法93同角或等角的补角相等4同角或等角的余角相等5过一点有且只有一条直线和已知直线垂直6直线外一点与直线上各点连接的所有线段中,垂线段最短7平行公理经过直线外一点,有且只有一条直线与这条直线平行8如果两条直线都和第三条直线平行,这两条直线也互相平行9同位角相等,两直线平行10内错角相等,两直线平行11同旁内角互补,两直线平行12两直线平行,同位角相等13两直线平行,内错角相等14两直线平行,同旁内角互补15定理三角形两边的和大于第三边16推论三角形两边的差小于第三边17三角形内角和定理三角形三个内角的和等于180°18推论1直角三角形的两个锐角互余19推论2三角形的一个外角等于和它不相邻的两个内角的和20推论3三角形的一个外角大于任何一个和它不相邻的内角21全等三角形的对应边、对应角相等22边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等23角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等24推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等25边边边公理(SSS)有三边对应相等的两个三角形全等26斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等27定理1在角的平分线上的点到这个角的两边的距离相等28定理2到一个角的两边的距离相同的点,在这个角的平分线上29角的平分线是到角的两边距离相等的所有点的集合30等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31推论1等腰三角形顶角的平分线平分底边并且垂直于底边32等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33推论3等边三角形的各角都相等,并且每一个角都等于60°34等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35推论1三个角都相等的三角形是等边三角形36推论2有一个角等于60°的等腰三角形是等边三角形37在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38直角三角形斜边上的中线等于斜边上的一半39定理线段垂直平分线上的点和这条线段两个端点的距离相等40逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41线段的垂直平分线可看作和线段两端点距离相等的所有点的集合1042定理1关于条直线对称的两个图形是全等形43定理2如果两个图形关于直线对称,那么对称轴是对应点连线的垂直平分线44定理3两个图形关于直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)某180°51推论任意多边的外角和等于360°52平行四边形性质定理1平行四边形的对角相等53平行四边形性质定理2平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3平行四边形的对角线互相平分56平行四边形判定定理1两组对角分别相等的四边形是平行四边形57平行四边形判定定理2两组对边分别相等的四边形是平行四边形58平行四边形判定定理3对角线互相平分的四边形是平行四边形59平行四边形判定定理4一组对边平行相等的四边形是平行四边形60矩形性质定理1矩形的四个角都是直角61矩形性质定理2矩形的对角线相等62矩形判定定理1有三个角是直角的四边形是矩形63矩形判定定理2对角线相等的平行四边形是矩形64菱形性质定理1菱形的四条边都相等65菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a某b)÷267菱形判定定理1四边都相等的四边形是菱形68菱形判定定理2对角线互相垂直的平行四边形是菱形69正方形性质定理1正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1关于中心对称的两个图形是全等的72定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过其中一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形1177角相等的梯形是等腰梯形78平行等分段定理如果一平行在一条直上截得的段相等,那么在其他直上截得的段也相等79推1梯形一腰的中点与底平行的直,必平分另一腰80推2三角形一的中点与另一平行的直,必平分第三81三角形中位定理三角形的中位平行于第三,并且等于它的一半82梯形中位定理梯形的中位平行于两底,并且等于两底和的一半L=(a+b)÷2S=L某h83 (1) 比例的基本性如果 a:b=c:d,那么 ad=bc 如果 ad=bc,那么a:b=c:d 84 (2) 合比性如果 a/ b=c/ d,那么(a ±b)/b=(c ±d)/d85(3)等比性如果a/b=c/d=?=m/n(b+d+?+n≠0),那么(a+c+?+m)/(b+d+?+n)=a/b86平行分段成比例定理三条平行截两条直,所得的段成比例87推平行于三角形一的直截其他两(或两的延),所得的段成比例88定理如果一条直截三角形的两(或两的延)所得的段成比例,那么条直平行于三角形的第三89平行于三角形的一,并且和其他两相交的直,所截得的三角形的三与原三角形三成比例90定理平行于三角形一的直和其他两(或两的延)相交,所构成的三角形与原三角形相似91相似三角形判定定理1两角相等,两三角形相似(ASA)92直角三角形被斜上的高分成的两个直角三角形和原三角形相似93判定定理2两成比例且角相等,两三角形相似(SAS)94判定定理3三成比例,两三角形相似(SSS)95定理如果一个直角三角形的斜和一条直角与另一个直角三角形的斜和一条直角成比例,那么两个直角三角形相似96性定理1相似三角形高的比,中的比与角平分的比都等于相似比97性定理2相似三角形周的比等于相似比98性定理3相似三角形面的比等于相似比的平方99任意角的正弦等于它的余角的余弦,任意角的余弦等于它的余角的正弦100任意角的正切等于它的余角的余切,任意角的余切等于它的余角的正切101是定点的距离等于定的点的集合102的内部可以看作是心的距离小于半径的点的集合12103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。
教资科三初中数学复习资料
教资科三初中数学复习资料初中数学是教育系统中的重要一环,对于教师资格证考试的科目三来说更是至关重要。
为了帮助广大考生备考,我整理了一些初中数学的复习资料,希望能对大家有所帮助。
一、数与代数在初中数学的学习中,数与代数是一个重要的基础。
在这个部分中,我们需要掌握整数、分数、小数、百分数等的基本概念和运算规则。
同时,还要了解代数中的变量、表达式、方程等概念,并能够进行简单的代数运算。
二、图形与几何图形与几何是初中数学中的另一个重要内容。
在这个部分中,我们需要熟悉各种常见图形的性质和计算方法,如直线、射线、线段、角等。
此外,还需要了解平行线、垂直线、相交线等概念,并能够应用相关的定理进行解题。
三、函数与方程函数与方程是初中数学中的一大难点。
在这个部分中,我们需要了解函数的定义、性质和图像,并能够根据函数的图像进行分析和解题。
同时,还要熟悉一元一次方程、一元二次方程等的解法,并能够应用到实际问题中。
四、数据与统计数据与统计是初中数学中的一个重要内容。
在这个部分中,我们需要学习如何收集、整理和分析数据,并能够应用统计方法进行推断和预测。
此外,还需要了解概率的基本概念和计算方法,并能够应用到实际问题中。
五、空间与形状空间与形状是初中数学中的另一个重要内容。
在这个部分中,我们需要学习如何描述和分析三维空间中的物体,并能够应用几何知识解决相关问题。
同时,还需要了解立体图形的性质和计算方法,并能够应用到实际问题中。
六、数学思维与方法数学思维与方法是初中数学学习的重点和难点。
在这个部分中,我们需要培养数学思维和解题能力,并学会运用不同的解题方法解决问题。
同时,还需要了解数学证明的基本方法和思路,并能够进行简单的证明。
综上所述,初中数学的复习资料主要包括数与代数、图形与几何、函数与方程、数据与统计、空间与形状以及数学思维与方法等内容。
通过系统的学习和练习,相信大家一定能够在教资科三数学考试中取得好成绩。
希望以上资料对大家有所帮助,祝愿大家考试顺利!。
初中数学总复习知识点非常全面
初中数学总复习知识点非常全面一、数的性质与关系1.整数、有理数、实数的概念、性质,R*的意义2.数轴的表示与意义3.绝对值的概念及性质二、整数的运算1.加减运算法则2.乘法法则、带余除法及整除的概念3.约数与倍数的概念4.公因数与最大公因数、公倍数与最小公倍数5.互质数的概念与判定法则三、有理数的运算1.有理数的概念与性质2.有理数的四则运算3.混合运算、带分数与有理数的比较与计算四、根与指数1.开方的概念与计算2.平方根、立方根的性质3.指数的概念与性质4.指数幂的运算与意义五、代数式及简单方程1.代数式的概念及常见形式2.代数式的四则运算3.一元一次方程的概念与解法4.解一元一次方程的三种基本方法六、分数与分数运算1.分数的概念、性质及表示方法2.分数的四则运算3.分数与小数的相互转化4.倒数、比例、直接与反比例关系七、平面图形的认识1.点、线、面、角的基本概念2.三角形、四边形、多边形的认识与性质3.平行线与垂直线的关系4.同位角、对顶角、内错角的性质八、相似与全等1.相似形的概念及性质2.相似三角形的判定、性质与计算3.勾股定理与勾股数的概念与应用4.三角形全等的判定、性质与计算九、圆的认识与应用1.圆的基本概念与性质2.圆周长与面积的计算3.弧的概念与计算4.扇形、梯形、菱形的面积计算十、平移与旋转1.平移的概念与性质2.旋转的概念与性质3.平移与旋转的运算与应用十一、统计与概率1.数据的搜集与整理2.数据图的绘制与分析3.概率的概念与计算十二、函数与方程1.函数的概念、图象与性质2.线性函数与非线性函数的概念与性质3.一元一次方程组的概念与解法4.一元一次不等式的概念与解法这些知识点涵盖了初中数学的主要内容,复习时应注意梳理思路,系统学习。
初中数学中考计算题复习最全含复习资料
一.解答题(共30小题)1.计算题:②解方程:.2.计算:+(π﹣2013)0.3.计算:|1﹣|﹣2cos30°+(﹣)0×(﹣1)2013.4.计算:﹣.5.计算:.7.计算:.8.计算:.9.计算:.10.计算:.11.计算:.12.计算:.14.计算:﹣(π﹣3.14)0+|﹣3|+(﹣1)2013+tan45°.15.计算:.16.计算或化简:(1)计算2﹣1﹣tan60°+(π﹣2013)0+|﹣|.(2)(a﹣2)2+4(a﹣1)﹣(a+2)(a﹣2)17.计算:(1)(﹣1)2013﹣|﹣7|+×0+()﹣1;18.计算:.(1)19.(2)解方程:.20.计算:(1)tan45°+sin230°﹣cos30°•tan60°+cos245°;21.(1)|﹣3|+16÷(﹣2)3+(2013﹣)0﹣tan60°(2)解方程:=﹣.(1)计算:.22.(2)求不等式组的整数解.(1)计算:23.(2)先化简,再求值:(﹣)÷,其中x=+1.24.(1)计算:tan30°(2)解方程:.25.计算:(1)(2)先化简,再求值:÷+,其中x=2+1.26.(1)计算:;(2)解方程:.27.计算:.28.计算:.29.计算:(1+)2013﹣2(1+)2012﹣4(1+)2011.30.计算:.1.化简求值:,选择一个你喜欢且有意义的数代入求值.2.先化简,再求值,然后选取一个使原式有意义的x值代入求值.3.先化简再求值:选一个使原代数式有意义的数代入中求值.4.先化简,再求值:,请选择一个你喜欢的数代入求值.5.(2010•红河州)先化简再求值:.选一个使原代数式有意义的数代入求值.6.先化简,再求值:(1﹣)÷,选择一个你喜欢的数代入求值.7.先化简,再求值:(﹣1)÷,选择自己喜欢的一个x求值.8.先化简再求值:化简,然后在0,1,2,3中选一个你认为合适的值,代入求值.9.化简求值(1)先化简,再求值,选择你喜欢的一个数代入求值.(2)化简,其中m=5.10.化简求值题:(1)先化简,再求值:,其中x=3.(2)先化简,再求值:,请选一个你喜欢且使式子有意义的数字代入求值.(3)先化简,再求值:,其中x=2.(4)先化简,再求值:,其中x=﹣1.11.(2006•巴中)化简求值:,其中a=.12.(2010•临沂)先化简,再求值:()÷,其中a=2.13.先化简:,再选一个恰当的x值代入求值.14.化简求值:(﹣1)÷,其中x=2.15.(2010•綦江县)先化简,再求值,,其中x=+1.16.(2009•随州)先化简,再求值:,其中x=+1.17.先化简,再求值:÷,其中x=tan45°.18.(2002•曲靖)化简,求值:(x+2)÷(x ﹣),其中x=﹣1.19.先化简,再求值:(1+)÷,其中x=﹣3.20.先化简,再求值:,其中a=2.21.先化简,再求值÷(x ﹣),其中x=2.22.先化简,再求值:,其中.23.先化简,再求值:(﹣1)÷,其中x .24.先化简代数式再求值,其中a=﹣2.25.(2011•新疆)先化简,再求值:(+1)÷,其中x=2.26.先化简,再求值:,其中x=2. 27.(2011•南充)先化简,再求值:(﹣2),其中x=2.28.先化简,再求值:,其中a=﹣2.29.(2011•武汉)先化简,再求值:÷(x ﹣),其中x=3.30.化简并求值:•,其中x=21.. 2。
初中数学复习大纲
初中数学考试大纲1.数与代数(一)数与式1、有理数2、实数3、代数式4、整式与分式(二)方程与不等式1、方程与方程组2、不等式与不等式组(三)函数1.函数2.一次函数3.反比例函数4.二次函数2.图形与几何(一)图形的认识1.点、线、面、角2.相交线与平行线3.三角形4.四边形5.圆6.尺规作图7.视图与投影(二)图形与变换1.图形的轴对称、图形的平移、图形的旋转2.图形的相似(三)图形与坐标(四)图形与证明3.统计与概率1.统计2.概率数与代数(一)数与式1、有理数考试要求:(1)理解有理数的意义,能用数轴上的点表示有理数,会比较有理数的大小。
(2)理解相反数和绝对值的意义,会求有理数的相反数与绝对值。
(3)理解乘方的意义,掌握有理数的加、减、乘、除、乘方的运算法则、运算律、运算顺序以及简单的有理数的混合运算。
(4)能用有理数的运算律简化有关运算,能用有理数的运算解决简单的问题。
2、实数考试要求:(1)了解平方根、算术平方根、立方根的概念,会用根号表示数的平方根、立方根。
(2)了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,会用立方运算求某些数的立方根,会用科学计算器求平方根和立方根。
(3)了解无理数和实数的概念,知道实数与数轴上的点一一对应。
(4)能用有理数估计一个无理数的大致范围。
(5)了解近似数与有效数字的概念,会按要求求一个数的近似数。
(6)了解二次根式的概念及其加、减、乘、除运算法则,会用运算法则进行有关实数的简单四则运算。
3、代数式考试要求:(1)理解用字母表示数的意义。
(2)能分析简单问题的数量关系,并用代数式表示。
(3)能解析一些简单代数式的实际背景或几何意义。
(4)会求代数式的值;能根据特定的问题查阅资料,找到所需要的公式,并会代入具体的值进行计算。
(5)掌握合并同类项的方法和去括号的法则,能进行同类项的合并。
4、整式与分式考试要求:(1)了解整数指数幂的意义和基本性质,会用科学记数法表示数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学常用公式定理1、整数(包括:正整数、0、负整数)和分数(包括:有限小数和无限环循小数)都是有理数.如:-3,,0.231,0.737373…,,.无限不环循小数叫做无理数.如:π,-,0.1010010001…(两个1之间依次多1个0).有理数和无理数统称为实数.2、绝对值:a≥0丨a丨=a;a≤0丨a丨=-a.如:丨-丨=;丨3.14-π丨=π-3.14.3、一个近似数,从左边笫一个不是0的数字起,到最末一个数字止,所有的数字,都叫做这个近似数的有效数字.如:0.05972精确到0.001得0.060,结果有两个有效数字6,0.4、把一个数写成±a×10n的形式(其中1≤a<10,n是整数),这种记数法叫做科学记数法.如:-40700=-4.07×105,0.000043=4.3×10-5.5、乘法公式(反过来就是因式分解的公式):①(a+b)(a-b)=a2-b2.②(a±b)2=a2±2ab+b2.③(a+b)(a2-ab+b2)=a3+b3.④(a-b)(a2+ab+b2)=a3-b3;a2+b2=(a+b)2-2ab,(a-b)2=(a+b)2-4ab.6、幂的运算性质:①a m×a n=a m+n.②a m÷a n=a m-n.③(a m)n=a mn.④(ab)n=a n b n.⑤()n=n.⑥a-n=1na,特别:()-n=()n.⑦a0=1(a≠0).如:a3×a2=a5,a6÷a2=a4,(a3)2=a6,(3a3)3=27a9,(-3)-1=-,5-2==,()-2=()2=,(-3.14)º=1,(-)0=1.7、二次根式:①()2=a(a≥0),②=丨a丨,③=×,④=(a>0,b≥0).如:①(3)2=45.②=6.③a<0时,=-a.④的平方根=4的平方根=±2.(平方根、立方根、算术平方根的概念)8、一元二次方程:对于方程:ax2+bx+c=0:①求根公式是x=242b b aca-±-,其中△=b2-4ac叫做根的判别式.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.注意:当△≥0时,方程有实数根.②若方程有两个实数根x1和x2,并且二次三项式ax2+bx+c可分解为a(x-x1)(x-x2).③以a和b为根的一元二次方程是x2-(a+b)x+ab=0.9、一次函数y=kx+b(k≠0)的图象是一条直线(b是直线与y轴的交点的纵坐标即一次函数在y轴上的截距).当k>0时,y随x的增大而增大(直线从左向右上升);当k<0时,y随x的增大而减小(直线从左向右下降).特别:当b=0时,y=kx(k≠0)又叫做正比例函数(y与x成正比例),图象必过原点.10、反比例函数y=(k≠0)的图象叫做双曲线.当k>0时,双曲线在一、三象限(在每一象限内,从左向右降);当k<0时,双曲线在二、四象限(在每一象限内,从左向右上升).因此,它的增减性与一次函数相反.11、统计初步:(1)概念:①所要考察的对象的全体叫做总体,其中每一个考察对象叫做个体.从总体中抽取的一部份个体叫做总体的一个样本,样本中个体的数目叫做样本容量.②在一组数据中,出现次数最多的数(有时不止一个),叫做这组数据的众数.③将一组数据按大小顺序排列,把处在最中间的一个数(或两个数的平均数)叫做这组数据的中位数. (2)公式:设有n 个数x 1,x 2,…,x n ,那么: ①平均数为:12......nx x x xn;②极差:用一组数据的最大值减去最小值所得的差来反映这组数据的变化范围,用这种方法得到的差称为极差,即:极差=最大值-最小值; ③方差:数据1x 、2x ……, n x 的方差为2s ,则2s =222121.....nx xx xx xn标准差:方差的算术平方根.数据1x 、2x ……, n x 的标准差s ,则s =222121.....nx xx xx xn一组数据的方差越大,这组数据的波动越大,越不稳定。
12、频率与概率:(1)频率=总数频数,各小组的频数之和等于总数,各小组的频率之和等于1,频率分布直方图中各个小长方形的面积为各组频率。
(2)概率①如果用P 表示一个事件A 发生的概率,则0≤P (A )≤1; P (必然事件)=1;P (不可能事件)=0;②在具体情境中了解概率的意义,运用列举法(包括列表、画树状图)计算简单事件发生的概率。
③大量的重复实验时频率可视为事件发生概率的估计值; 13、锐角三角函数:①设∠A 是Rt △ABC 的任一锐角,则∠A 的正弦:sin A =,∠A 的余弦:cos A =,∠A 的正切:tan A =.并且sin 2A +cos 2A =1.0<sin A <1,0<cos A <1,tan A >0.∠A 越大,∠A 的正弦和正切值越大,余弦值反而越小. ②余角公式:sin (90º-A )=cos A ,cos (90º-A )=sin A . ③特殊角的三角函数值:sin30º=cos60º=,sin45º=cos45º=,sin60º=cos30º=, tan30º=,tan45º=1,tan60º=.④斜坡的坡度:i =铅垂高度水平宽度=.设坡角为α,则i =tan α=.14、平面直角坐标系中的有关知识:(1)对称性:若直角坐标系内一点P (a ,b ),则P 关于x 轴对称的点为P 1(a ,-b ),P 关于y 轴对称的点为P 2(-a ,b ),关于原点对称的点为P 3(-a ,-b ).lα(2)坐标平移:若直角坐标系内一点P (a ,b )向左平移h 个单位,坐标变为P (a -h ,b ),向右平移h 个单位,坐标变为P (a +h ,b );向上平移h 个单位,坐标变为P (a ,b +h ),向下平移h 个单位,坐标变为P (a ,b -h ).如:点A (2,-1)向上平移2个单位,再向右平移5个单位,则坐标变为A (7,1). 15、二次函数的有关知识:1.定义:一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数. 2.抛物线的三要素:开口方向、对称轴、顶点.①a 的符号决定抛物线的开口方向:当0>a 时,开口向上;当0<a 时,开口向下;a 相等,抛物线的开口大小、形状相同.②平行于y 轴(或重合)的直线记作h x =.特别地,y 轴记作直线0=x .4.求抛物线的顶点、对称轴的方法(1)公式法:a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=,∴顶点是),(a b ac a b 4422--,对称轴是直线abx 2-=. (2)配方法:运用配方的方法,将抛物线的解析式化为()k h x a y +-=2的形式,得到顶点为(h ,k ),对称轴是直线h x =.(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,对称轴与抛物线的交点是顶点。
若已知抛物线上两点12(,)(,)、x y x y (及y 值相同),则对称轴方程可以表示为:122x x x +=9.抛物线c bx ax y ++=2中,c b a ,,的作用(1)a 决定开口方向及开口大小,这与2ax y =中的a 完全一样.(2)b 和a 共同决定抛物线对称轴的位置.由于抛物线c bx ax y ++=2的对称轴是直线a b x 2-=,故:①0=b 时,对称轴为y 轴;②0>ab(即a 、b 同号)时,对称轴在y 轴左侧;③0<ab(即a 、b 异号)时,对称轴在y 轴右侧. (3)c 的大小决定抛物线c bx ax y ++=2与y 轴交点的位置.当0=x 时,c y =,∴抛物线c bx ax y ++=2与y 轴有且只有一个交点(0,c ): ①0=c ,抛物线经过原点; ②0>c ,与y 轴交于正半轴;③0<c ,与y 轴交于负半轴. 以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在y 轴右侧,则 0<ab. 11.用待定系数法求二次函数的解析式(1)一般式:c bx ax y ++=2.已知图像上三点或三对x 、y 的值,通常选择一般式. (2)顶点式:()k h x a y +-=2.已知图像的顶点或对称轴,通常选择顶点式.(3)交点式:已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=. 12.直线与抛物线的交点(1)y 轴与抛物线c bx ax y ++=2得交点为(0, c ).(2)抛物线与x 轴的交点二次函数c bx ax y ++=2的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程02=++c bx ax 的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点⇔(0>∆)⇔抛物线与x 轴相交;②有一个交点(顶点在x 轴上)⇔(0=∆)⇔抛物线与x 轴相切; ③没有交点⇔(0<∆)⇔抛物线与x 轴相离. (3)平行于x 轴的直线与抛物线的交点同(2)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐 标为k ,则横坐标是k c bx ax =++2的两个实数根.(4)一次函数()0≠+=k n kx y 的图像l 与二次函数()02≠++=a c bx ax y 的图像G 的交点,由方程组cbx ax y n kx y ++=+=2的解的数目来确定:①方程组有两组不同的解时⇔l 与G 有两个交点; ②方程组只有一组解时⇔l 与G 只有一个交点;③方程组无解时⇔l 与G 没有交点.(5)抛物线与x 轴两交点之间的距离:若抛物线c bx ax y ++=2与x 轴两交点为()()0021,,,x B x A ,则12AB x x =-1、多边形内角和公式:n 边形的内角和等于(n -2)180º(n ≥3,n 是正整数),外角和等于360º2、平行线分线段成比例定理:(1)平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例。
如图:a ∥b ∥c ,直线l 1与l 2分别与直线a 、b 、c 相交与点A 、B 、C D 、E 、F ,则有,,AB DE AB DE BC EFBC EF AC DF AC DF===(2)推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例。