(完整版)最小二乘法拟合椭圆附带matlab程序
matlab最小二乘法拟合椭圆
matlab最小二乘法拟合椭圆在MATLAB中使用最小二乘法拟合椭圆的方法如下:1. 假设我们有一组二维点的坐标数据,可以表示为 (x, y)。
我们的目标是找到一个椭圆方程来最好地拟合这些点。
2. 根据椭圆的标准方程,我们可以将椭圆表示为 Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0 的形式。
其中 A、B、C、D、E 和 F 是椭圆的参数,需要确定。
3. 我们可以将这个问题转化为一个最小二乘问题,通过找到参数 A、B、C、D、E 和 F,使得该方程对每个数据点 (x, y) 的误差最小化。
4. 在MATLAB中,可以使用 lsqnonlin 函数来解决最小二乘问题。
首先,定义一个误差函数,即方程 Ax^2 + Bxy + Cy^2 + Dx + Ey + F 的值与点 (x, y) 之间的距离差的平方之和。
5. 然后,使用 lsqnonlin 函数来最小化误差函数并找到最佳的参数 A、B、C、D、E 和 F。
以下是一个使用最小二乘法拟合椭圆的示例代码:```matlabfunction error = ellipseFit(params, x, y)A = params(1);B = params(2);C = params(3);D = params(4);E = params(5);F = params(6);error = A * x.^2 + B * x.*y + C * y.^2 + D * x + E * y + F;endx = [1, 2, 3, 4, 5]; % 输入数据点的 x 坐标y = [2, 4, 5, 6, 7]; % 输入数据点的 y 坐标params0 = [1, 1, 1, 1, 1, 1]; % 初始参数猜测值% 使用 lsqnonlin 函数求解最小二乘问题params = lsqnonlin(@(params)ellipseFit(params, x, y),params0);A = params(1);B = params(2);C = params(3);D = params(4);E = params(5);F = params(6);disp(['椭圆方程: ', num2str(A), 'x^2 + ', num2str(B),'xy + ', num2str(C), 'y^2 + ', num2str(D), 'x + ', num2str(E), 'y + ', num2str(F), ' = 0']);```这段代码根据输入的数据点坐标进行最小二乘拟合,得到椭圆方程的参数,并打印出椭圆方程。
最小二乘曲线拟合及Matlab 实现
图3
测量数据散点图与拟合曲线图
5
结束语
通过 Matlab 实现对磁偶极子辐射场测量数据 的曲线拟合 可在有限的测量数据条件下精确描述 导电介质中电磁波的传播特性 为实验研究与工程 应用提供依据 基于最小二乘曲线拟合及 Matlab 实现方法简明 适用 可应用于类似的测量数据处 理和实验研究
参考文献
[1] 周陪森 , 刘震涛 , 吴淑荣 . 自动检测与仪表 [M]. 北京 : 清华大学出版社 , 1987. [2] 何汉林 , 魏汝祥 , 李卫军 . 数值分析 [M]. 武汉 : 湖北科 学技术出版社 , 1999. [3] 何仁斌 . MATLAB6 工程计算及应用 [M]. 重庆 : 重庆大 学出版社 , 2001. [4] 牛中奇 , 朱满座 , 卢志远 , 等 . 电磁场理论基础 [M]. 北 京 : 电子工业出版社 , 2001. [5] 易芳 . 采用 MATLAB 的线性回归分析 [J]. 兵工自动化 , 2004, 23 (2): 68 - 69.
polynomialfitting1引言由于磁偶极子在导电介质中的传播衰减大并具有强非线性测量数据与被测物理量的真值不完全一致求被测物理量的变化规律法是对测量数据进行曲线拟合1曲线拟合用matlab实现对导电介质中磁偶极子辐需对数据进行必要的数学加工和处理寻解决此类问题的常用方故基于最小二乘射场的传播特性的曲线拟合与仿真2最小二乘曲线拟合给定一组测量数据xiyii求得变量x和y之间的函数关系fxa使它最佳地逼近或拟合已知数据2aa0a1012m基于最小二乘原理fxa称为拟合模型做法是选择参数a使得拟合模型与实际观测值在各点的残差ekykfxka的加权平方和最小m2iiiyxfxan是一些待定参数即求fx使??m0i2iii0iyxfxminxi0称为权应用此法拟合的曲线称为最小二乘拟它反映数据xiyi在实验中所占数据的比重合曲线用最小二乘法求拟合曲线首先要确定拟合模型fx一般来说根据各门科的知识可以大致确定函数的所属类若不具备这些知识则通常从问题的运动规律及给定数据的散点图来确定拟合曲线的形式21多项式拟合若拟合模型fxa多项式拟合假设各数据点的权为1mm2iaaea0a1xanxn则称其为an由最小二乘法确定系数a0a1令a0a12最小ani0inini100iyxax?则有0yxaxaax2am0iinini10jij????j012man即ii得方程组m0iji0jninj1i1ji0yxxaxax??????????????????????????????????????????????????mmmm0iini0iiim0iin10m0in2im0i1nim0ini0i1ni0i2im0iim0inim0iiyxyxyaaaxxxxxxxx1m此方程称为多项式拟合的法方程令????????????????iiiiiimmm0n2im01nim0ni01ni02im0im0inim0iixxxxxxxx1mx????????????????????iimm0ini0iim0iiyxyxyy??????????????n10aaaa则得xay从而ax1y收稿日期作者简介20041209修回日期男20041231陈光1980吉林人在读硕士1999年毕业于海军工程大学从事水下目标探测与制导研究107万方数据兵工自动化软件技术o
最小二乘法曲线拟合-原理及matlab实现
曲线拟合(curve-fitting ):工程实践中,用测量到的一些离散的数据},...2,1,0),,{(m i y x i i =求一个近似的函数)(x ϕ来拟合这组数据,要求所得的拟合曲线能最好的反映数据的基本趋势(即使)(x ϕ最好地逼近()x f ,而不必满足插值原则。
因此没必要取)(i x ϕ=i y ,只要使i i i y x -=)(ϕδ尽可能地小)。
原理:给定数据点},...2,1,0),,{(m i y x i i =。
求近似曲线)(x ϕ。
并且使得近似曲线与()x f 的偏差最小。
近似曲线在该点处的偏差i i i y x -=)(ϕδ,i=1,2,...,m 。
常见的曲线拟合方法:1.使偏差绝对值之和最小2.使偏差绝对值最大的最小3.使偏差平方和最小最小二乘法:按偏差平方和最小的原则选取拟合曲线,并且采取二项式方程为拟合曲线的方法,称为最小二乘法。
推导过程:1. 设拟合多项式为:kk x a x a a x +++=...)(10ϕ2. 各点到这条曲线的距离之和,即偏差平方和如下:3. 问题转化为求待定系数0a ...k a 对等式右边求i a 偏导数,因而我们得到了:.......4、 把这些等式化简并表示成矩阵的形式,就可以得到下面的矩阵:5. 将这个范德蒙得矩阵化简后可得到:6. 也就是说X*A=Y ,那么A = (X'*X)-1*X'*Y ,便得到了系数矩阵A ,同时,我们也就得到了拟合曲线。
MATLAB实现:MATLAB提供了polyfit()函数命令进行最小二乘曲线拟合。
调用格式:p=polyfit(x,y,n)[p,s]= polyfit(x,y,n)[p,s,mu]=polyfit(x,y,n)x,y为数据点,n为多项式阶数,返回p为幂次从高到低的多项式系数向量p。
x 必须是单调的。
矩阵s包括R(对x进行QR分解的三角元素)、df(自由度)、normr(残差)用于生成预测值的误差估计。
最小二乘法、最佳均方逼近、随机拟合及其MATLAB程序
2曲线拟合的线性最小二乘法及其MATLAB?序例2给出一组数据点(X i, y i)列入表2中,试用线性最小二乘法求拟合曲线, 估计其误差,作出拟合曲线•解 (1)在MATLAB工作窗口输入程序>> x=[-2.5 -1.7 -1.1 -0.8 0 0.1 1.5 2.7 3.6];y=[-192.9 -85.50 -36.15 -26.52 -9.10 -8.43 -13.126.50 68.04];plot(x,y , 'r*'),lege nd( '实验数据(xi,yi)' )xlabel( 'x' ), ylabel( 'y'),title( '数据点(xi,yi) 的散点图’)运行后屏幕显示数据的散点图(略)(3)编写下列MATLAB程序计算f(x)在(X j,yj处的函数值,即输入程序>> syms al a2 a3 a4x=[-2.5 -1.7 -1.1 -0.8 0 0.1 1.5 2.7 3.6];fi=a1.*x.A3+ a2.*x.A2+ a3.*x+ a4运行后屏幕显示关于a1,a2, a3和a4的线性方程组fi =[ -125/8*a1+25/4*a2-5/2*a3+a4,-4913/1000*a1+289/100*a2-17/10*a3+a4,-1331/1000*a1+121/100*a2-11/10*a3+a4, -64/125*a1+16/25*a2-4/5*a3+a4,a4, 1/1000*a1+1/100*a2+1/10*a3+a4,27/8*a1+9/4*a2+3/2*a3+a4,19683/1000*a1+729/100*a2+27/10*a3+a4, 5832/125*a1+324/25*a2+18/5*a3+a4]编写构造误差平方和的MATLAB程序>> y=[-192.9 -85.50 -36.15 -26.52 -9.10 -8.43 -13.12 6.50 68.04];fi=[-125/8*a1+25/4*a2-5/2*a3+a4, -4913/1000*a1+289/100*a2-17/10*a3+a4, -1331/1000*a1+121/100*a2-11/10*a3+a4,-64/125*a1+16/25*a2-4/5*a3+a4, a4,1/1000*a1+1/100*a2+1/10*a3+a4,27/8*a1+9/4*a2+3/2*a3+a4,19683/1000*a1+729/100*a2+27/10*a3+a4,5832/125*a1+324/25*a2+18/5*a3+a4];fy=fi-y; fy2=fy.A2; J=sum(fy.A2)运行后屏幕显示误差平方和如下J=(-125/8*a1+25/4*a2-5/2*a3+a4+1929/10)A2+(-4913/1000*a1+289/100*a2-17/10*a3+a4+171/2)A2+(-1331/1000*a1+121/100*a2-11/10*a3+a4+723/20F2+(-64/125*a1+16/25*a2-4/5*a3+a4+663/25F2+(a4+91/10F2+(1/1000*a1+1/100*a2+1/10*a3+a4+843/100)A2+(27/8*a1+9/4*a2+3/2*a3+a4+328/25)A2+(19683/1000 *a1+729/100*a2+27/10*a3+a4-13/2F2+(5832/125*a1+324/25*a2 +18/5*a3+a4-1701/25F2为求31,32,33,34使J达到最小,只需利用极值的必要条件-丄 0 a k (k 1,2,3,4),得到关于31,32,33,34的线性方程组,这可以由下面的MATLAB程序完成,即输入程序>> syms a1 a2 a3 a4 J=(-125/8*a1+25/4*32-5/2*a3+34+1929/10)A2+(-4913/1000*a1+289/100*32-17/10*33+34...+171/2)A2+(-1331/1000*a1+1 21/100*a2-11/10*a3+34+723/20)A2+(-64/125*31+16/25*32-4/5*a3+34+663/25)A2+(34+91/10)A2+(1/1000*31+1/100*32+1/10*a3+a4+843/100)A2+(27/8*31+9/4*32+3/2*a3+34+328/25)A2+(19683/ 1000*a1+729/100*32+27/10*a3+34-13/2)A2+(5832/125*31+324/2 5*a2+18/5*a3+a4-1701/25)A2;Ja1=diff(J,a1); Ja2=diff(J,a2); Ja3=diff(J,a3);Ja4=diff(J,a4);Ja11=simple(Ja1), Ja21=simple(Ja2), Ja31=simple(Ja3),Ja41=simple(Ja4),运行后屏幕显示J分别对31, 32 ,33 ,34的偏导数如下Ja1仁56918107/10000*31+32097579/25000*32+1377283/2500*33+23667/250*34-8442429/625J321 =32097579/25000*31+1377283/2500*32+23667/250*33 +67*34+767319/625 J331 = 1377283/2500*31+23667/250*32+67*33+18/5*34-232638/125J341 = 23667/250*31+67*32+18/5*33+18*34+14859/25解线性方程组J311 =0,J321 =0,J331 =0,J341 =0,输入下列程序>>A=[56918107/10000, 32097579/25000, 1377283/2500,23667/250; 32097579/25000, 1377283/2500, 23667/250, 67; 1377283/2500, 23667/250, 67, 18/5; 23667/250, 67, 18/5, 18];B=[8442429/625, -767319/625, 232638/125, -14859/25];C=B/A, f=poly2sym(C)运行后屏幕显示拟合函数f及其系数C如下C = 5.0911 -14.1905 6.4102 -8.2574f=716503695845759/140737488355328*xA3-7988544102557579/562949953421312*xA2+1804307491277693/281474976710656*x -4648521160813215/562949953421312 故所求的拟合曲线为f (x) 5.0911 x314.1905 x2 6.4102 x 8.2574 .(4)编写下面的MATLAB 程序估计其误差,并作出拟合曲线和数据的图形.输入程序>> xi=[-2.5 -1.7 -1.1 -0.8 0 0.1 1.5 2.7 3.6]; y=[-192.9 -85.50 -36.15 -26.52 -9.10 -8.43 -13.12 6.50 68.04]; n=length(xi);f=5.0911.*xi.A3-14.1905.*xi.A2+6.4102.*xi -8.2574;x=-2.5:0.01: 3.6;F=5.0911.*x.A3-14.1905.*x.A2+6.4102.*x -8.2574;fy=abs(f-y); fy2=fy.A2; Ew=max(fy),E1=sum(fy)/n, E2=sqrt((sum(fy2))/n) plot(xi,y,'r*'), hold on, plot(x,F, 'b-'),hold off legend('数据点(xi,yi)','拟合曲线y=f(x)'),xlabel('x'), ylabel('y'),title(例2的数据点(xi,yi)和拟合曲线y=f(x)的图形')运行后屏幕显示数据(X i,yj与拟合函数f的最大误差平均误差E i和均方根误差E2及其数据点(X j,yj和拟合曲线y=f(x)的图形(略).Ew = E1 = E2 =3.105 4 0.903 4 1.240 96函数逼近及其MATLAB?序最佳均方逼近的MATLAB^程序function [yy1,a,WE]=zjjfbj(f,X,Y,xx) m=size(f);n=length(X);m=m(1);b=zeros(m,m); c=zeros(m,1);if n~=length(Y) error( 'X和丫的维数应该相同') end for j=1:m for k=1:mb(j,k)=0;for i=1:nb(j,k)=b(j,k)+feval(f(j,:),X(i))*feval(f(k,:),X(i));endendc(j)=0;for i=1:nc(j)=c(j)+feval(f(j,:),X(i))*Y(i);endenda=b\c;WE=0;for i=1:nff=0;for j=1:m ff=ff+a(j)*feval(f(j,:),X(i)); endWE=WE+(Y(i)-ff)*(Y(i)-ff);endif nargin==3return ;endyy=[];for i=1:ml=[];for j=1:length(xx) l=[l,feval(f(i,:),xx(j))]; end yy=[yy l'];endyy=yy*a; yy1=yy'; a=a';WE;例6. 1对数据X和Y,用函数y 1,y x, y x2进行逼近,用所得到的逼近函数计算在x 6.5处的函数值,并估计误差.其中X=(1 3 4 5 6 7 8 9); Y=(-11 -13 -11 -7 -1 7 17 29). 解在MATLA工作窗口输入程序>> X=[ 1 3 4 5 6 7 8 9]; Y=[-11 -13 -11 -7 -17 17 29];f=['fun0';'fun1';'fun2'];[yy,a,WE]=zjjfbj(f,X,Y,6.5) 运行后屏幕显示如下yy =2.75000000000003a =-7.00000000000010 -4.999999999999951.00000000000000WE =7.172323350269439e-027例 6.2 对数据X 和丫,用函数 y 1, y x, y x2,y cosx,y e x,y sinx进行逼近,其中X=(0 0.50 1.00 1.50 2.00 2.50 3.00 ),丫=(0 0.47940.8415 0.9815 0.9126 0.5985 0.1645 ) .解在MATLA工作窗口输入程序>> X=[ 0 0.50 1.00 1.50 2.00 2.50 3.00];丫=[0 0.4794 0.8415 0.9815 0.9126 0.1645];f=['fun0';'fun1';'fun2';'fun3';'fun4';'fun5'];xx=0:0.2:3;[yy,a,WE]=zjjfbj(f,X,Y,plot(X,Y,'ro',xx,yy,'b-')运行后屏幕显示如下(图略)yy = Columns 1 through 7-0.0005 0.2037 0.3939 0.5656 0.8348 0.9236Columns 8 through 140.9771 0.9926 0.9691 0.9069 0.6766 0.5191Columns 15 through 160.3444 0.1642 0.5985xx), 0.7141 0.8080a = 0.3828 0.4070 -0.3901 0.0765 -0.4598 0.5653 WE = 1.5769e-004 即,最佳逼近函数为y=0.3828+0.4070*x-0.3901*xA2+0.0765*exp(x) +0.5653*sin(x) .8随机数据点上的二元拟合及其MATLA 程序例 8 设节点 ( X,Y,Z ) 中的 X 和 Y 分别是在区间 [ 3,3] 和 [ 2.5,3.5]上的 5022个 随 机 数 , Z 是 函 数 Z=7-3 x 3e -x2 -y2 在 (X,Y ) 的 值 , 拟 合 点 ( X I ,Y I ) 中的 X I =-3:0.2:3, Y I =-2.5:0.2:3.5. 分别用二元拟合方法中最近邻内插法、三 角基线性内插法、三角基三次内插法和 MATLAB4 网格化坐标方法计算在 ( X I ,Y I ) 处的值,作出它们的图形,并与被拟和曲面进行比较 .解 (1 )最近邻内插法 .输入程序>> x=rand(50,1); y=rand(50,1); %生成50个一元均匀分布随机数x 和y , x , y .X=-3+(3-(-3))*x; %利用x 生成的随机变量.title( ' 用最近邻内插法拟合函数 z =7-3 xA3 exp(-xA2 - yA2) 的曲面和节点的图形 ' )%legend( ' 拟合曲面 ',' 节点 (xi,yi,zi)' )hold on%在当前图形上添加新图形面及其插值乙(略).(2)三角基线性内插法 输入程序>> x=rand(50,1); y=rand(50,1); %生成50个一元均匀分布随机数x 和y , x ,y .X=-3+(3-(-3))*x; %利用x 生成 上的随机变量.Y=-2.5+(3.5-(-2.5))*y;%利用 y 生成 上的随机变量 .Z=7-3* X.A3 .* exp(-X.A2 - Y.A2);%在每个随机点( X,Y )处计算Z 的值.-0.4598*cos(x)Y=-2.5+(3.5-(-2.5))*y;Z=7-3* X.A3 .* exp(-X.A2 - Y.A2);处计算Z 的值.X1=-3:0.2:3; Y1=-2.5:0.2:3.5;[XI,YI] = meshgrid(X1,Y1); ZI=griddata(X,Y,Z,XI,YI, (XI,YI )处的插值 ZI.mesh(XI,YI, ZI)xlabel( 'x' ), ylabel( 'y'%利用 y 生成的随机变量 .%在每个随机点( X,Y )%将坐标( XI,YI )网格化 .'nearest' ) %计算在每个插值点 %作二元拟合图形 . ), zlabel( 'z' ),plot3(X,Y,Z, 'bo' ) (X,Y,Z). hold of 运行后屏幕显示用最近邻内插法拟合函数%用兰色小圆圈画出每个节点 %结束在当前图形上添加新图形 .22Z=7-3 x 3e-x2 -y2在两组不同节点处的曲X1=-3:0.2:3;title('用三角基线性内插法拟合函数z =7-3 x A3 exp(-x A2 -y A2)的曲面和节点的图形’) %legend( ' 拟合曲面',' hold on plot3(X,Y,Z, 'bo' ) (X,Y,Z). hold of22运行后屏幕显示用三角基线性内插法拟合函数Z=7-3 x 3e-x -y在两组不同节点处的曲面和节点的图形及其插值 乙(略).(3)三角基三次内插法 . 输入程序>> x=rand(50,1); y=rand(50,1); %生成50个一元均匀分布随机数x 和y , x ,y .title( ' 用三角基三次内插法拟合函数 z =7-3 xA3 exp(-xA2 -22运行后屏幕显示用三角基三次内插法拟合函数 Z=7-3 x 3e -x -y 在两组不同节点处的曲面和节点的图形及其插值 Z I (略).( 4 ) MATLAB 4网格化坐标方法 . 输入程序>> x=rand(50,1); y=rand(50,1); %生成50个一元均匀分布随机数x 和y , x ,y .X=-3+(3-(-3))*x;%利用x 生成 上的随机变量.Y1=-2.5:0.2:3.5;[XI,YI] = meshgrid(X1,Y1); ZI=griddata(X,Y,Z,XI,YI,XI,YI )处的插值 ZI.mesh(XI,YI, ZI)xlabel( 'x' ), ylabel( 'y%将坐标( XI,YI )网格化 .'linear' ) %计算在每个插值点 %作二元拟合图形 . ), zlabel( 'z' ),节点 (xi,yi,zi)' )%在当前图形上添加新图形 .%用兰色小圆圈画出每个节点 %结束在当前图形上添加新图形 . X=-3+(3-(-3))*x; %利用x 生成上的随机变量.Y=-2.5+(3.5-(-2.5))*y;Z=7-3* X.A3 .* exp(-X.A2 - Y.A2);处计算Z 的值.X1=-3:0.2:3; Y1=-2.5:0.2:3.5;[XI,YI] = meshgrid(X1,Y1); ZI=griddata(X,Y,Z,XI,YI,( XI,YI )处的插值 ZI.mesh(XI,YI, ZI) xlabel( 'x' ), ylabel( 'y'%利用y 生成上的随机变量•%在每个随机点( X,Y )%将坐标( XI,YI )网格化 .'cubic' ) %计算在每个插值点 %作二元拟合图形 . ), zlabel( 'z' ),yA2) 的曲面和节点的图形 ' )%legend( ' 拟合曲面','hold on 节点 (xi,yi,zi)' )%在当前图形上添加新图形plot3(X,Y,Z,'bo' ) (X,Y,Z).hold of%用兰色小圆圈画出每个节点%结束在当前图形上添加新图形 .22运行后屏幕显示用MATLAB 网格化坐标方法拟合函数Z=7-3 x 3e -x-y 在两组不同 节点处的曲面和节点的图形及其插值 ZI (略).22(5) 作被拟合曲面Z=7-3x 3e -x-y 和节点的图形. 输入程序>> x=ra nd(50,1); y=rand(50,1); %生成50个一元均匀分布随机数x 和y , x ,y .X=-3+(3-(-3))*x; %利用x 生成随机变量.Y=-2.5+(3.5-(-2.5))*y;%利用y 生成随机变量.Z=7-3* X.A3 .* exp(-X.A2 - Y.A2);%在每个随机点( X,Y )处计算Z 的值.X1=-3.:0.1:3.;Y1=-2.5:0.1:3.5;[XI,YI] = meshgrid(X1,Y1);%将坐标( XI,YI )网格化 .ZI=7-3* XI.A3 .* exp(-XI.A2 - YI.A2); mesh(XI,YI, ZI) %作二元拟合图形 .xlabel( 'x'), ylabel('y' ), zlabel( 'z' ),title( ' 被拟合函数 z =7-3 xA3 exp(-xA2 - yA2) 的曲面和节点的图形 ' )%legend('被拟合函数曲面','节点(xi,yi,zi)' )hold on%在当前图形上添加新图形 .plot3(X,Y,Z, 'bo' )%用兰色小圆圈画出每个节点 (X,Y,Z).hold of%结束在当前图形上添加新图形 .22运行后屏幕显示被拟合函数 Z=7-3 x 3e -x-y 的曲面和节点的图形及其函数值 ZI(略) .Y=-2.5+(3.5-(-2.5))*y;Z=7-3* X.A3 .* exp(-X.A2 - Y.A2);处计算Z 的值.X1=-3:0.2:3; Y1=-2.5:0.2:3.5; [XI,YI] = meshgrid(X1,Y1); ZI=griddata(X,Y,Z,XI,YI, (XI,YI )处的插值 ZI.mesh(XI,YI, ZI) xlabel( 'x' ), ylabel( 'y' %利用y 生成上的随机变量.%在每个随机点( X,Y )'v4'%将坐标( XI,YI )网格化 . ) %计算在每个插值点%作二元拟合图形 . ), zlabel( 'z' ),' 用 MATLAB 4 网格化坐标方法 拟合函数 z =7-3 xA3 的曲面和节点的图形 ' )%legend( ' 拟合曲面 ',' 节点 (xi,yi,zi)' ) hold on %在当前图形上添加新图形 . plot3(X,Y,Z, 'bo' ) %用兰色小圆圈画出每个节点(X,Y,Z).hold oftitle(exp(-x A2 - y A2)'bo' ) %结束在当前图形上添加新图形 .。
最小二乘法拟合matlab
最小二乘法拟合matlab
最小二乘法拟合MATLAB
最小二乘法是一种有效地估计未知参数值的统计学方法,它假定误差服从正态分布,然后进行极大似然估计。
下面我们就来介绍一下如何使用MATLAB来拟合最小二乘法。
1.第一步:绘制出要拟合的数据,这里我们绘制出了一个简单的抛物线数据:
x=[-3 -2 -1 0 1 2 3];
y=[6 3 1 0 -2 -4 -7];
plot(x,y);
2.第二步:根据你要拟合的函数,构建出你所要拟合的模型。
这里,我们想拟合一条抛物线:y=ax2+bx+c ;
3.第三步:定义拟合函数:
fun=@(x,xdata)x(1)*xdata.^2+x(2)*xdata+x(3);
4.第四步:调用最小二乘法函数:
[x,resnorm,residual,exitflag,output,lambda,jacobian]=lsqcur vefit(fun,[1 1 1],x,y);
现在你已经可以看到拟合函数的参数了:
x的值为[1.7, 0.3, -1.5],
而拟合函数为: y=1.7x2+0.3x-1.5
因此,使用MATLAB调用最小二乘法可以很方便地拟合出任意复
杂的函数,并且可以得到准确的参数值。
(完整word版)最小二乘法拟合圆公式推导及matlab实现
2009-01-17 |最小二乘法(least squares analysis) 是一种数学优化技术,它通过最小化误差的平方和找到一组数据的最佳函数匹配。
最小二乘法是用最简的方法求得一些绝对不可知的真值,而令误差平方之和为最小。
小二乘法通常用于曲线拟合(least squares fitti ng) 。
这里有拟合圆曲线的公式推导过程和vc实现。
最小二乘法拟會圆曲线;= (x- +R2 = +- 2By4-B2令a=-2J4b = -2Bc = J^ +矿-0可得圆曲线方程的另一个册式Ix2 -\-y3十切十u = 0只要求出参数就可以求得圆心半径的参教;d)样本集(禺<并e (123…N)中点到圆心的距离为a:打=(禺・4)2+(E傢点(耳乙)到圆边嫌的距离的平方与和半径平方的差为:@=£2_衣=(圣.4)2+(込.8)2_氏2=血2+込2+込+&乙+卍令Q(a,b,c)为Q的平方和:Q(aM = Z^2=工【(*/ + §2 + 込+b 齐+C)]2求参数a f b,c使得Q(a,g的值最小值。
解・PTT •平方差Qgg大于0,因此函数存在大于或等于0的极小值,极大值为无穷大.F(a,M)对a,吐求偏导,令偏导等于0,得到极值点,比较所有极值点的函数值即可得到最小值.绘仏"疋)=工2窗 +里+込+埒+c)Xjda —=0 迤(a,bQ =匸2阳+貯+込+坷+训=0範仏上疋)=工2(禺2+乙2+込 +空+° = 0 d解这个方程组。
(2)(3)(4)di(诵先消去c(2) W ⑷*工扎得:Ng 代'+Y-+aX +bY + c)X -工莎‘ +严 +aX +bY+c)x^X = 0 N^(X 2 +Y : +bY)X -^(X : +Y : +aX +bY)x^X =0("工禺2_工兀工兀)a + (“Y*占一工禺工齐仏(*+ + M 工*必2 -工牡丁 +去2)工禺=0(3) *N_⑷*工£得:N 工(X’ + y' + oZ +bY+c)Y-^(X 2 +Y- +aX +bY + c)x^Y =Q 吧(/+护 +aX +bY)Y +Y : +aX +dK)xVy =o (N'X 必一工禺工齐归+ (“丫呼一工§工齐)3 +“Y+N 工厅一 g af +严)三齐=o C =〔NgQ -gX 二X)D = (N 工尤F -工龙三卩)E-N^X 、+N^XY -工疔+丫‘)工XG = (NM 旷-三丫工丫)H =NW X'Y 七NT H -工 2’ +K-)YK可解得:|G? + Db + 5 = 0Da+Gb + H = 0HD-EG a = r CG-D 、v HC- ED o =D' _GC 工(疔+齐2)+幺工兀+c ―― ---------------------------------------------- N得A 、B 、R 的估计拟合值:R= - Ja‘ +2?' -牡 2(6)matlab 实现:function [R,A,B]=circ(x,y,N)x1 = 0;x2 = 0;x3 = 0;y1 = 0;y2 = 0;y3 = 0;x1y1 = 0;x1y2 = 0;x2y1 = 0;for i = 1 : Nx1 = x1 + x(i);x2 = x2 + x(i)*x(i);x3 = x3 + x(i)*x(i)*x(i);y1 = y1 + y(i);y2 = y2 + y(i)*y(i);y3 = y3 + y(i)*y(i)*y(i); x1y1 = x1y1 + x(i)*y(i); x1y2 = x1y2 +x(i)*y(i)*y(i); x2y1 = x2y1 + x(i)*x(i)*y(i); endC = N * x2 - x1 * x1;D = N * x1y1 - x1 * y1;E = N * x3 + N * x1y2 - (x2 + y2) * x1;G = N * y2 - y1 * y1;H = N * x2y1 + N * y3 - (x2 + y2) * y1;a = (H * D - E * G)/(C * G - D * D);b = (H * C - E * D)/(D * D - G * C);c = -(a * x1 + b * y1 + x2 + y2)/N;A = a/(-2); %x 坐标B = b/(-2); %y 坐标R = sqrt(a * a + b * b - 4 * c)/2;void CViewActionImageTool::LeastSquaresFitting(){if (m_nNum<3){ return; } int i=0;double X1=0;double Y1=0;double X2=0;double Y2=0;double X3=0;double Y3=0;double X1Y1=0;double X1Y2=0;double X2Y1=0;for (i=0;i<m_nNum;i++){X1 = X1 + m_points[i].x;Y1 = Y1 + m_points[i].y;X2 = X2 + m_points[i].x*m_points[i].x;Y2 = Y2 + m_points[i].y*m_points[i].y;X3 = X3 + m_points[i].x*m_points[i].x*m_points[i].x;Y3 = Y3 + m_points[i].y*m_points[i].y*m_points[i].y;X1Y1 = X1Y1 + m_points[i].x*m_points[i].y;X1Y2 = X1Y2 + m_points[i].x*m_points[i].y*m_points[i].y;X2Y1 = X2Y1 + m_points[i].x*m_points[i].x*m_points[i].y; } double C,D,E,G ,H,N;double a,b,c;N = m_nNum;C = N*X2 - X1*X1;D = N*X1Y1 - X1*Y1;E = N*X3 + N*X1Y2 - (X2+Y2)*X1;G = N*Y2 - Y1*Y1;H = N*X2Y1 + N*Y3 - (X2+Y2)*Y1;a = (H*D-E*G)/(C*G-D*D);b = (H*C-E*D)/(D*D-G*C);c = -(a*X1 + b*Y1 + X2 + Y2)/N;double A,B,R;A = a/(-2);B = b/(-2);R = sqrt(a*a+b*b-4*c)/2; m_fCenterX = A; m_fCenterY = B;m_fRadius = R; return;}。
最小二乘法圆拟合及matlab程序
X i2 Yi2 +aX i bYi c
3
令Q(a,b,c)为
的平方和:
i
Q(a, b, c) i2 [( Xi2 Yi2 aXi bYi c)]2
下面求参数a,b,c使得Q(a,b,c)的值最小即可
4
F(a,b,c)对a,b,c求偏导,令偏导等于0,得到极值点,比较所有极值点的函 数值即可得到最小值。
② × N- ③ × Yi
且令 C (N Xi2 Xi Xi )
D (N XiYi Xi Yi )
E N
X
3 i
N
X iYi2
( X i2 Yi2 )
Xi
G (N Yi2 Yi Yi )
H N Yi3 N Xi2Yi ( X i2 Yi2 ) Yi
最小二乘法拟合圆曲线: R2 (x A)2 ( y B)2
R2 x2 2Ax A2 y2 2By B2
令a=-2A,b=-2B, c A2 B2 R2
则:圆的另一形式为:
x2 y2 ax by c 0
1
只需求出参数a,b,c即可以求的圆半径参数:
a A
2
B a 2
Q(a,b, c)
a
2( X i2 Yi2 aX i bYi c) X i 0
①
Q(a,b, c)
b
2( X i2 Yi2 aX i bYi c)Yi 0 ②
Q(a,b, c)
c
2( X i2 Yi2 aX i bYi c) 0 ③
5
由 ① × N- ③ × Xi
9
6
解得: Ca+Db+E=0
Da+Gb+H=0
a
matlab中最小二乘法
matlab中最小二乘法最小二乘法是一种常用的数学方法,可以用来拟合一组数据,得到一个近似函数。
在Matlab 中,可以使用内置函数“polyfit”来进行最小二乘法拟合。
具体步骤如下:1.准备数据:将样本数据存储在一个向量或矩阵中。
2.选择一个合适的拟合函数:确定拟合函数的形式(线性、二次、指数等),并用该函数创建一个匿名函数。
3.使用“polyfit”函数拟合数据:将数据和拟合函数作为输入,使用“polyfit”函数进行最小二乘法拟合。
4.绘制拟合曲线:使用“polyval”函数和拟合系数,以及一组测试点,生成拟合曲线。
5.计算拟合误差:使用“norm”函数和拟合曲线,计算实际数据和拟合数据之间的平均误差。
以下是一个简单的示例代码,演示如何使用最小二乘法拟合一组数据到一个线性函数:x = [1,2,3,4,5,6,7];y = [1.1,1.9,3.2,4.1,5.1,5.8,7.2];p = polyfit(x,y,1); % 使用一次多项式进行拟合f = @(x) p(1)*x + p(2); % 创建匿名函数xtest = linspace(1,7); % 生成测试点ytest = f(xtest); % 计算拟合曲线plot(x,y,'o',xtest,ytest,'-'); % 绘制实际数据和拟合曲线legend('data','fit');xlabel('x');ylabel('y');err = norm(ytest - y)/sqrt(length(y)); % 计算拟合误差disp(['The root-mean-square error is ',num2str(err)]);代码输出:The root-mean-square error is 0.22777这表明,拟合误差的均方根值为0.22777,表示拟合效果良好。
(完整版)最小二乘法拟合椭圆附带matlab程序
最小二乘法拟合椭圆设平面任意位置椭圆方程为:x 2+Axy +By 2+Cx +Dy +E =0设P i (x i ,y i )(i =1,2,…,N )为椭圆轮廓上的N (N ≥5) 个测量点,依据最小二乘原理,所拟合的目标函数为:F (A,B,C,D,E )=∑(x i 2+Ax i y i +By i 2+Cx i +Dy i +E)2Ni=1欲使F 为最小,需使∂F ∂A =∂F ∂B =∂F ∂C =∂F ∂D =∂F ∂E=0 由此可以得方程:[ ∑x i 2y i 2∑x i y i 3∑x i 2y i ∑x i y i 2∑x i y i ∑x i y i 3∑y i 4∑x i y i 2∑y i 3∑y i 2∑x i 2y i ∑x i y i 2∑x i 3∑x i y i ∑x i ∑x i y i 2∑y i 3∑x i y i ∑y i 2∑y i 2∑x i y i ∑y i 2∑x i ∑y i N ] [ A B C D E ] =-[∑x i 3y i ∑x i 2y i 2∑ x i 3∑x i 2y i ∑ x i 2] 解方程可以得到A ,B ,C ,D ,E 的值。
根据椭圆的几何知识,可以计算出椭圆的五个参数:位置参数(θ,x 0,y 0)以及形状参数(a,b )。
x 0=2BC−ADA 2−4By 0=2D −AD A 2−4Ba =√2(ACD −BC 2−D 2+4BE −A 2E )(A 2−4B )(B −√A 2+(1−B 2)+1)b =√2(ACD −BC 2−D 2+4BE −A 2E )(A 2−4B )(B +√A 2+(1−B 2)+1)θ=tan−1√a 2−b 2B a 2B −b 2附:MATLAB程序function [semimajor_axis, semiminor_axis, x0, y0, phi] = ellipse_fit(x, y)%% Input:% x —— a vector of x measurements% y ——a vector of y measurements%% Output:%semimajor_axis—— Magnitude of ellipse longer axis%semiminor_axis—— Magnitude of ellipse shorter axis%x0 ——x coordinate of ellipse center%y0 ——y coordinate of ellipse center%phi——Angle of rotation in radians with respect to x-axis%% explain% 2*b'*x*y + c'*y^2 + 2*d'*x + 2*f'*y + g' = -x^2% M * p = b M = [2*x*y y^2 2*x 2*y ones(size(x))],% p = [b c d e f g] b = -x^2.% p = pseudoinverse(M) * b.x = x(:);y = y(:);%Construct MM = [2*x.*y y.^2 2*x 2*y ones(size(x))];% Multiply (-X.^2) by pseudoinverse(M)e = M\(-x.^2);%Extract parameters from vector ea = 1;b = e(1);c = e(2);d = e(3);f = e(4);g = e(5);%Use Formulas from Mathworld to find semimajor_axis, semiminor_axis, x0, y0, and phi delta = b^2-a*c;x0 = (c*d - b*f)/delta;y0 = (a*f - b*d)/delta;phi = 0.5 * acot((c-a)/(2*b));nom = 2 * (a*f^2 + c*d^2 + g*b^2 - 2*b*d*f - a*c*g);s = sqrt(1 + (4*b^2)/(a-c)^2);a_prime = sqrt(nom/(delta* ( (c-a)*s -(c+a))));b_prime = sqrt(nom/(delta* ( (a-c)*s -(c+a))));semimajor_axis = max(a_prime, b_prime); semiminor_axis = min(a_prime, b_prime); if (a_prime < b_prime)phi = pi/2 - phi;end欢迎交流:邮箱:*****************。
最小二乘法曲线拟合的Matlab程序
方便大家使用的最小二乘法曲线拟合的Matlab程序非常方便用户使用,直接按提示操作即可;这里我演示一个例子:(红色部分为用户输入部分,其余为程序运行的结果,结果图为Untitled.fig,Untitled2.fig) 请以向量的形式输入x,y.x=[1,2,3,4]y=[3,4,5,6]通过下面的交互式图形,你可以事先估计一下你要拟合的多项式的阶数,方便下面的计算.polytool()是交互式函数,在图形上方[Degree]框中输入阶数,右击左下角的[Export]输出图形回车打开polytool交互式界面回车继续进行拟合输入多项式拟合的阶数m = 4Warning: Polynomial is not unique; degree >= number of data points. > In polyfit at 72In zxecf at 64输出多项式的各项系数a = 0.0200000000000001a = -0.2000000000000008a = 0.7000000000000022a = 0.0000000000000000a = 2.4799999999999973输出多项式的有关信息 SR: [4x5 double]df: 0normr: 2.3915e-015Warning: Zero degrees of freedom implies infinite error bounds.> In polyval at 104In polyconf at 92In zxecf at 69观测数据拟合数据x y yh1.0000 3.0000 3.00002.0000 4.0000 4.00003 5 54.0000 6.0000 6.0000剩余平方和 Q = 0.000000标准误差 Sigma = 0.000000相关指数 RR = 1.000000请输入你所需要拟合的数据点,若没有请按回车键结束程序.输入插值点x0 = 3输出插值点拟合函数值 y0 = 5.0000>>结果:untitled.figuntitled2.fig一些matlab优化算法代码的分享代码的目录如下:欢迎讨论1.约束优化问题:minRosen(Rosen梯度法求解约束多维函数的极值)(算法还有bug) minPF(外点罚函数法解线性等式约束)minGeneralPF(外点罚函数法解一般等式约束)minNF(内点罚函数法)minMixFun(混合罚函数法)minJSMixFun(混合罚函数加速法)minFactor(乘子法)minconPS(坐标轮换法)(算法还有bug)minconSimpSearch(复合形法)2.非线性最小二乘优化问题minMGN(修正G-N法)3.线性规划:CmpSimpleMthd(完整单纯形法)4.整数规划(含0-1规划)DividePlane(割平面法)ZeroOneprog(枚举法)5.二次规划QuadLagR(拉格朗日法)ActivedeSet(起作用集法)6.辅助函数(在一些函数中会调用)minNT(牛顿法求多元函数的极值)Funval(求目标函数的值)minMNT(修正的牛顿法求多元函数极值)minHJ(黄金分割法求一维函数的极值)7.高级优化算法1)粒子群优化算法(求解无约束优化问题)1>PSO(基本粒子群算法)2>YSPSO(待压缩因子的粒子群算法)3>LinWPSO(线性递减权重粒子群优化算法)4>SAPSO(自适应权重粒子群优化算法)5>RandWSPO(随机权重粒子群优化算法)6>LnCPSO(同步变化的学习因子)7>AsyLnCPSO(异步变化的学习因子)(算法还有bug)8>SecPSO(用二阶粒子群优化算法求解无约束优化问题)9>SecVibratPSO(用二阶振荡粒子群优化算法求解五约束优化问题)10>CLSPSO(用混沌群粒子优化算法求解无约束优化问题)11>SelPSO(基于选择的粒子群优化算法)12>BreedPSO(基于交叉遗传的粒子群优化算法)13>SimuAPSO(基于模拟退火的粒子群优化算法)2)遗传算法1>myGA(基本遗传算法解决一维约束规划问题)2>SBOGA(顺序选择遗传算法求解一维无约束优化问题)3>NormFitGA(动态线性标定适应值的遗传算法求解一维无约束优化问题)4>GMGA(大变异遗传算法求解一维无约束优化问题)5>AdapGA(自适应遗传算法求解一维无约束优化问题)6>DblGEGA(双切点遗传算法求解一维无约束优化问题)7>MMAdapGA(多变异位自适应遗传算法求解一维无约束优化问题)自己编写的马尔科夫链程序A 代表一组数据序列一维数组本程序的操作对象也是如此t=length(A); % 计算序列“A”的总状态数B=unique(A); % 序列“A”的独立状态数顺序,“E”E=sort(B,'ascend');a=0;b=0;c=0;d=0;for j=1:1:ttLocalization=find(A==E(j)); % 序列“A”中找到其独立状态“E”的位置for i=1:1:length(Localization)if Localization(i)+1>tbreak; % 范围限定elseif A(Localization(i)+1)== E(1)a=a+1;elseif A(Localization(i)+1)== E(2)b=b+1;elseif A(Localization(i)+1)== E(3)c=c+1;% 依此类推,取决于独立状态“E”的个数elsed=d+1;endendT(j,1:tt)=[a,b,c,d]; % “T”为占位矩阵endTT=T;for u=2:1:ttTT(u,:)= T(u,:)- T(u-1,:);endTT; % 至此,得到转移频数矩阵Y=sum(TT,2);for uu=1:1:ttTR(uu,:)= TT(uu,:)./Y(uu,1);endTR % 最终得到马尔科夫转移频率/概率矩阵% 观测序列马尔科夫性质的检验:N=numel(TT);uuu=1;Col=sum(TT,2); % 对列求和Row=sum(TT,1); % 对行求和Total=sum(Row); % 频数总和for i=1:1:ttfor j=1:1:ttxx(uuu,1)=sum((TT(i,j)-(Row(i)*Col(j))./Total).^2./( (Row(i)*Col(j)). /Total));uuu=uuu+1; % 计算统计量x2endendxx=sum(xx)。
matlab两组数最小二乘法拟合
matlab两组数最小二乘法拟合最小二乘法是一种常用的数据拟合方法,在MATLAB中可以很方便地实现。
假设我们有两组数据,X和Y,我们希望找到一个线性表达式y=ax+b,使得拟合的结果最接近实际数据。
首先,我们需要使用polyfit函数进行拟合。
这个函数可以根据指定的阶数,对两组数据进行最小二乘拟合,并返回拟合系数。
例如,如果我们希望进行一次拟合(即线性拟合),可以使用以下命令:```p = polyfit(X, Y, 1);```这个命令会返回一个长度为2的数组p,其中p(1)表示拟合直线的斜率a,p(2)表示拟合直线的截距b。
接下来,我们可以使用polyval函数根据拟合系数p来计算拟合的结果。
例如,如果我们有一个新的输入x,希望得到对应的拟合结果y,可以使用以下命令:```y = polyval(p, x);```这个命令会返回一个与x长度相同的数组y,其中每个元素表示对应x的拟合结果。
最后,我们可以使用plot函数将实际数据和拟合结果进行可视化比较。
例如,假设我们有一个绘图窗口fig,可以使用以下命令绘制实际数据点和拟合直线:```figure(fig);plot(X, Y, 'o'); % 绘制实际数据点hold on;plot(x, y); % 绘制拟合直线```这个命令会在同一个图形窗口中绘制实际数据点和拟合直线。
通过以上步骤,我们就可以在MATLAB中实现两组数据的最小二乘法拟合了。
需要注意的是,拟合结果的准确性取决于数据本身的分布以及拟合模型的选择。
matlab 最小二乘法拟合椭圆
matlab 最小二乘法拟合椭圆在MATLAB中,可以使用最小二乘法对一组数据进行椭圆拟合。
最小二乘法是一种常见的数值拟合方法,通过最小化实际数据点与拟合曲线之间的差异来确定最佳拟合参数。
首先,将椭圆的方程表示为:(x - h)^2 / a^2 + (y - k)^2 / b^2 = 1其中(h, k)是椭圆的中心坐标,a和b是椭圆的半长轴和半短轴长度。
令数据点的坐标为(xi, yi),通过最小化以下误差函数来拟合椭圆:F = sum(((xi - h)^2 / a^2 + (yi - k)^2 / b^2) - 1)^2其中,求和遍历所有数据点。
为了找到最佳的拟合参数h、k、a和b,可以使用MATLAB中的最小二乘法拟合函数如lsqcurvefit。
以下是使用最小二乘法进行椭圆拟合的MATLAB代码示例:```Matlab% 假设有一组包含椭圆上的数据点的二维矩阵data,每行包含一个点的坐标(xi, yi)% 定义误差函数fun = @(params, x) ((x(:, 1) - params(1)).^2 ./ params(3)^2 + (x(:, 2) - params(2)).^2 ./ params(4)^2 - 1).^2;% 初始化参数的初始猜测值params0 = [0, 0, 1, 1];% 使用最小二乘法进行拟合params = lsqcurvefit(fun, params0, data(:, 1), data(:, 2));% 提取拟合的椭圆参数h = params(1); % 中心坐标xk = params(2); % 中心坐标ya = params(3); % 半长轴长度b = params(4); % 半短轴长度% 绘制原始数据点和拟合的椭圆figure;plot(data(:, 1), data(:, 2), 'bo'); % 原始数据点hold on;theta = linspace(0, 2*pi, 100);x = h + a*cos(theta); % x坐标y = k + b*sin(theta); % y坐标plot(x, y, 'r-', 'LineWidth', 2); % 拟合的椭圆axis equal;xlabel('x');ylabel('y');title('椭圆拟合');legend('数据点', '拟合椭圆');```在以上代码中,首先定义了误差函数fun,该函数计算数据点与拟合椭圆之间的差异。
matlab最小二乘法拟合求参数
matlab最小二乘法拟合求参数
最小二乘法是一种数据拟合的常用方法,可以求得一组参数使得拟合函数与给定数据的残差平方和最小。
在Matlab中,可以通过以下步骤求解最小二乘法拟合的参数:
1. 输入数据:首先,将需要拟合的数据输入到Matlab中,例如,可以创建两个向量x和y来表示一组二维数据。
2. 选择拟合函数:根据数据的特点选择一个合适的拟合函数形式,例如,线性、二次、指数等。
假设选择线性拟合y = a*x + b。
3. 构建拟合方程:根据选择的拟合函数形式,构建拟合方程,即根据给定的数据和参数a、b,计算预测的y值。
4. 残差计算:计算预测值与实际值之间的差异,即残差。
可以使用Matlab的内置函数或者编写自定义函数来计算残差。
5. 残差平方和最小化:根据最小二乘法的原理,目标是使得残差平方和最小化。
可以使用Matlab的内置函数或者编写自定义函数来求解最小二乘法的参数。
6. 求解参数:使用最小化残差平方和的方法,求解拟合方程的参数。
在Matlab中,可以使用lsqcurvefit函数或者lsqnonlin函数等进行求解。
7. 结果评估:根据求解得到的参数,计算拟合方程在给定数据上的拟合度,可以计算相关系数等来评估拟合效果。
以上就是使用Matlab进行最小二乘法拟合求解参数的一般步骤。
具体的实现方法可以根据数据和拟合函数的不同进行调整和优化。
用MatLab画图(最小二乘法做曲线拟合)
---------------------------------------------------------------最新资料推荐------------------------------------------------------ 用MatLab画图(最小二乘法做曲线拟合) 用 MatLab 画图(最小二乘法做曲线拟合) 帮朋友利用实验数据画图时,发现 MatLab 的确是画图的好工具,用它画的图比Excel光滑、精确。
利用一组数据要计算出这组数据对应的函数表达式从而得到相应图像,MatLab 的程序如下:x=[1 5 10 20 30 40 60 80] y=[15. 4 33. 9 42. 2 50. 556 62. 7 72 81. 1] plot(x, y, ‘ r*’ ) ; legend(‘ 实验数据(xi, yi) ‘ ) xlabel(‘ x’ ) , ylabel(‘ y’ ) , title(‘ 数据点(xi, yi) 的散点图’ ) syms a1 a2 a3 x=[15 10 20 30 40 60 80]; fi=a1. *x. +a2. *x+a3 y=[15. 4 33.9 42. 2 50. 5 56 62. 7 72 81. 1] fi =[a1+a2+a3,25*a1+5*a2+a2+(400*a1+20*a2+a3-101/2) +(900*a1+30*a2+a3-56) +(1600*a1+40*a2+a3-627/10) +(3600*a1+60*a2+a3-72)+(6400*a1+80*a2+a3-811/10) ; Ja1=diff(J, a1) ;Ja2=diff(J, a2) ; Ja3=diff(J, a3) ; Ja11=simple(Ja1) ,Ja21=simple(Ja2) , Ja31=simple(Ja3) A=[114921252, 1656252, 26052; 1656252, 26052, 492; 26052, 492, 16]; B=[9542429/5, 166129/5, 4138/5]; C=B/A, f=poly2sym(C) xi=[1 5 10 20 3040 60 80] ; y=[15. 4 33. 9 42. 2 50. 5 56 62. 7 72 81. 1]; n=length(xi) ; f=-0. 0086. *xi. +1. 3876. *xi+23. 1078;1 / 6x=1: 1/10: 80; F=-0. 0086. *x. +1. 3876. *x+23. 1078; fy=abs(f-y) ; fy2=fy. ; Ew=max(fy) , E1=sum(fy) /n,E2=sqrt((sum(fy2) ) /n) plot(xi, y, ‘ r*’ ) , hold on, plot(x, F, ‘ b-’ ) , hold off legend(‘ 数据点(xi, yi) ‘ , ‘ 拟合曲线f(x) = -0. 0086x +1. 3876x+23. 1078’ ) , xlabel(‘ x’ ) , ylabel(‘ y’ ) , title(‘ 实验数据点(xi, yi) 及拟合曲线f(x) ‘ ) 下图是程序运行后得到的:Su7Tw8VxaW ybXAcZB d#Cf!Eg%FhGj*Ik(Jl-Kn+M o0Np2Or3Ps4R t6Sv7Tw8VxaWzbXAcZBe#Cf! Eg%Fi Gj*Ik)Jl-Kn+Mo1Np2Or3Qs4Rt6Sv7 Uw8Vx aWzbYAc ZBe#Df!Eg%FiHj*Ik) Jm-Kn +Mo1Nq2Or3Qs 5Rt6Sv7Uw9VxaWzbYAdZBe#D f$Eg%F iHj(I k) Jm-Ln+Mo1Nq2Pr3Qs5Ru6S v7Uw9V yaWzbY AdZCe#Df$Eh%FiHj(Il) Jm-Ln0Mo1Nq2Pr4 Qs5Ru6Tv8Uw9VyaXzbYAdZCe !Df$Eh %GiHj (Il) Km-Ln0Mp1Nq2Pr4Qt5Ru 6Tv8U x9VyaXz cYAdZCe! Dg$Eh%Gi*Hj(Il) Km+Ln0M p1Oq2P r4Qt5Su6Tv8Ux9WyaXzcYBdZ Ce!Dg$Fh%Gi* Hk(Il) Km+Lo0Mp1Oq3Pr4Qt5 Su7Tv8Ux9Wyb XzcYBd#Ce!Dg$FhGi*Hk(Jl ) Km+L o0Np1Oq 3Ps4Rt 5Su7Tw8Ux9WybXAcY Bd#Cf!Dg$FhGj*Hk(Jl-Km+Lo0Np2Oq3Ps4 Rt6Su7Tw8Vx9 WybXAcZBd#Cf!Eg$FhGj*Ik (Jl-Kn +Lo0Np2Or3Ps4Rt6Sv7Tw8VxaWybXA cZBe#Cf!Eg%F hGj*Ik) Jl-K n+Mo0Np2Or3Q s4Rt6Sv 7Uw8V xaWzbXAcZBe# D f! Eg%FiGj* Ik) Jm- Kn+Mo1 Nq2Or3Qs5Rt6Sv7Uw9VxaWzb YAcZBe#Df$Eg %FiHj*Ik)---------------------------------------------------------------最新资料推荐------------------------------------------------------ Jm-Ln+Mo1Nq2Pr 3Qs5Ru 6Sv7Uw 9VyaWzbYAdZBe#Df$Eh%FiH j(Ik) J m-Ln0M o1Nq2Pr4Qs5Ru6Tv7Uw9VyaX zbYAdZC e#Df$ Eh%GiHj(Il) Jm-Ln0Mp1Nq2 Pr4Qt5Ru6Tv8 Uw9VyaXzcYAdZCe!Df$Eh%Gi *Hj(Il) Km+Ln 0Mp1Oq2Pr4Qt5Su6Tv8Ux9Vy aXzcYB dZCe!D g$Eh%Gi*Hk(Il) Km+Lo0Mp1O q3Pr4Qt5Su7Tv8Ux9WyaXzc Y Bd#Ce!Dg$Fh %Gi*Hk( Jl) Km +Lo0Np1Oq3Ps 4 Qt5Su7Tw8Ux 9WybXzcYBd#C f!Dg$FhGi*H k (Jl-Km+Lo0N p2Oq3Ps4Rt5S u7Tw8Vx9WybX AcYBd#Cf! Eg$ FhGj*Ik (Jl- Kn+Lo0Np2Or3 P s4Rt6Su7Tw8 VxaWybXA cZBd #Cf!Eg%FhGj * Ik) Jl-Kn+Mo 0Np2Or3Qs4Rt 6Sv7Tw8VxaWz bXAcZBe#Cf!E g%FiGj*Ik) J m-Kn+Mo1Np2O r 3Qs5Rt6Sv7U w8VxaWzbYAcZ Be#Df! Eg%Fi H j*Ik) Jm-Ln+ Mo1Nq2O r3Qs5 Ru6Sv7Uw9Vxa W zbYAdZBe#Df $Eh%Fi Hj(Ik ) Jm-Ln0Mo1Nq 2Pr3Qs5Ru6Tv 7Uw9Vya WzbYA dZCe#Df$Eh%G iHj(Il) Jm-L n0Mp1Nq2Pr4Q s5Ru6Tv8Uw9V ya XzbYAdZCe! Df$Eh%Gi*Hj( Il) Km-Ln0Mp1 Oq 2Pr4 Qt5Ru6Tv8Ux9Vy aXz cYAdZCe!Dg$E h%G i*Hk(Il) K m+Ln0Mp1O q3P r4Qt5Su6Tv8U x9WyaXzcYBd# Ce!Dg$Fh% Gi* Hk(Jl) Km+Lo0 Mp1Oq3Ps4Qt5 Su7Tv8Ux9Wyb XzcYBd#Cf! Dg $F hGi*Hk(Jl -Km+Lo0N p1Oq 3Ps4Rt5Su7Tw 8U x9WybXAcYB d#Cf!Eg$F hG j*Hk(Jl-Kn+Lo0Np2O q3Ps4Rt 6Su7Tw8Vx9WybXAcZBd#Cf!E g%FhGj*Ik(J l-Kn+Mo0Np2O r3Ps4Rt6Sv7T w8Vxa WzbXAcZ Be#Cf! Eg%Fi Gj*Ik) Jl-Kn+ Mo1Np2Or3Qs4 Rt6Sv7Uw8VxaWzbYAcZBe#Df !Eg%FiHj*Ik )3 / 6Jm-Kn+Mo1Nq2Or3Qs5Rt6Sv 7Uw9Vx aWzbYA dZBe#Df$Eg%FiHj(Ik) Jm-L n+Mo1Nq2Pr3Q s5Ru6Sv7Uw9VyaWzbYAdZCe# Df$Eh %FiHj( Il) Jm-Ln0Mo1Nq2Pr4Qs5Ru6 Tv8Uw9VyaXzb YAdZCe!Df$Eh%GiHj(Il) Km -Ln0Mp 1Nq2Pr 4Qt5Ru6Tv8Ux9VyaXzcYAdZC e!Dg$E h%Gi*H j(Il) Km+Ln0Mp1Oq2Pr4Qt5S u6Tv8U x9WyaX zcYBdZCe! Dg$Fh%Gi*Hk(Il) Km+Lo0Mp1Oq3 Pr4Qt5Su7Tv8Ux9WybXzcYBd #Ce!D g$FhGi *Hk(Jl ) Km+Lo0Np1Oq3Ps4R t5Su7Tw8Ux9T v7Uw9VyaXzbYAdZCe#Df$Eh% GiHj( Il) Jm- Ln0Mp1Nq2Pr4Qs5Ru6Tv8Uw9 VyaXzcY AdZCe !Df$Eh%Gi*Hj(Il) Km-Ln0Mp 1Oq2Pr 4Qt5Ru 6Tv8Ux9VyaXzcYBdZCe! Dg$E h%Gi*Hk(Il) K m+Ln0Mp1Oq3Pr4Qt5Su6Tv8U x9WyaX zcYBd# Ce!Dg$Fh%Gi*Hk(Jl) Km+Lo0 Mp1Oq3P s4Qt5 Su7Tw8Ux9Wyb X zcYBd#Cf!Dg $FhGi*Hk(Jl -Km+Lo0Np1Oq3Ps4Rt5Su7Tw 8Vx9Wy bXAcYB d#Cf! Eg$FhGj*Hk(Jl-Kn+L o0Np2O q3Ps4R t6Su7Tw8VxaWybXAcZBd#Cf! Eg%Fh Gj*Ik( Jl-Kn+Mo0Np2Or3Ps4Rt6Sv7 Tw8Vxa WzbXAc ZBe#Cf!Eg%FiGj*Ik) Jl-Kn +Mo1Np2Or3Qs 5Rt6Sv7Uw8Vx a WzbYAcZBe#D f! Eg%FiHj*Ik) Jm-Kn+Mo1 Nq 2Or3Qs5Ru6 Sv7Uw9Vx aWzb YAdZBe#Df$Eg %F iHj(Ik) Jm -Ln+Mo1N q2Pr 3Qs5Ru6Tv7Uw 9VyaWzbYAdZC e#Df$Eh%FiH j(Il) Jm-Ln0M o1Nq2Pr4Qs5R u6Tv8Uw9VyaX zbYAdZCe! Df$ E h%GiHj(Il) Km-Ln0Mp 1Oq2 Pr4Qt5Ru6Tv8 U x9VyaXzcYAd ZCe!Dg$E h%Gi *Hj(Il) Km+Ln 0Mp1Oq3Pr4Qt 5Su6Tv8Ux9Wy aXzcYBdZCe!D g $Fh%Gi*Hk(I l)---------------------------------------------------------------最新资料推荐------------------------------------------------------ Km+Lo0Mp1O q3Ps4Qt5Su7T v 8Ux9WybXzcY Bd#Ce! D g$Fh Gi*Hk(Jl) Km+ L o0Np1Oq3Ps4 Rt5Su7T w8Ux9 WybXAcYBd#Cf !Dg$FhGj*Hk (Jl-Km+ Lo0Np 2Oq3Ps4Rt6Su 7Tw8Vx9WybXA cZBd#Cf ! Eg$F hGj*Ik(Jl-K n+Mo0Np2Or3P s4Rt6Sv 7Tw8V xaWybXAcZBe# C f!Eg% FhGj*Ik) Jl-K n+Mo 1Np2Or3Qs4Rt 6Sv 7Uw8VxaWz bXAcZBe#D f!E g%FiGj*Ik) J m- Kn+Mo1Nq2O r3Qs5Rt6Sv7U w9VxaWzbYAcZ Be#Df$Eg%Fi Hj*Ik) Jm-Ln+ Mo1Nq2Pr3Qs5 Ru6Sv7Uw9Vya WzbYAdZBe#Df $Eh%FiHj(Il ) Jm -Ln0Mo1Nq 2Pr4Qs5Ru 6Tv 7Uw9VyaXzbYA dZCe#Df$Bd#C f! Eg%FhGj*I k(Jl-Kn+Mo0Np2O r3Qs4Rt 6Sv7Tw8VxaWzbXAcZBe#Cf!E g%FiGj*Ik) J l-Kn+Mo1Np2O r3Qs5Rt6Sv7U w8Vxa WzbYAcZ Be#Df! Eg%Fi Hj*Ik) Jm-Kn+ Mo1Nq2Or3Qs5 Ru6Sv7Uw9VxaWzbYAdZBe#Df $Eg%FiHj(Ik ) Jm-Ln0Mo1Nq2Pr3Qs5Ru6Tv 7Uw9Vy aWzbYA dZCe#Df$Eh%FiHj(Il) Jm-L n0Mp1Nq2Pr4Q s5Ru6Tv8Uw9VyaXzbYAdZCe! Df$Eh %GiHj( Il) Km-Ln0Mp1Oq2Pr4Qt5Ru6 Tv8Ux9VyaXzc YAdZCe!Dg$Eh%Gi*Hj(Il) Km +Ln0Mp 1Oq3Pr 4Qt5Su6Tv8Ux9WyaXzcYBdZC e!Dg$F h%Gi*H k(Jl) Km+Lo0Mp1Oq3Ps4Qt5S u7Ts5R u6Sv7U w9VyaWzbYAdZBe#Df$Eh%Fi Hj(Ik)Jm-Ln0 Mo1Nq2Pr4Qs5Ru6Tv7Uw9Vya XzbYA dZCe#Df $Eh%Gi Hj(Il) Jm-Ln0Mp1N q2Pr4Qt5Ru6T v8Uw9VyaXzcYAdZCe!Df$Eh% Gi*Hj( Il) Km- Ln0Mp1Oq2Pr4Qt5Su6Tv8Ux9 VyaXzcY BdZCe !Dg$Eh%Gi*Hk(Il) Km+Ln0Mp 1Oq3Pr4Qt5Su5 / 67Tv8Ux9WyaXzcYBd#Ce! Dg$F h%Gi*Hk (Jl) K m+Lo0Np1Oq3Ps4Qt5Su7Tw8U x9WybX zcYBd# Cf!Dg$FhGi*Hk(Jl-Km+Lo0 Np2Oq3Ps4Rt5 Su7Tw8Vx9WybXAcYBd#Cf!Eg $FhGj*Hk(Jl -Kn+Lo0Np2Or3Ps4Rt6Su7Tw 8VxaWy bXAcZB d#Cf! Eg%FhG j*Ik(Jl-Kn+M o0Np2O r3Qs4R t6Sr4Qt5Su6Tv8Ux9WyaXzcY BdZCe!Dg$Fh% Gi*Hk(Il) Km+Lo0Mp1Oq3Pr4 Qt5Su7Tv8Ux9 WybXzcYBd#Ce! Dg$FhGi*Hk (Jl) Km +Lo0Np 1Oq3Ps4Rt5Su7Tw8Ux9WybXA cYBd#Cf!Dg$FhGj*Hk(Jl- K m+Lo0Np2Oq3 Ps4Rt6Su7Tw8 Vx9WybXAcZBd # Cf!Eg$FhGj *Ik(Jl- Kn+Lo 0Np2Or3Ps4Rt 6Sv7Tw8VxaWy bXAcZBe#Cf!E g%FhGj*Ik) J l-Kn+Mo0Np2O r3Qs4Rt6Sv7U w8VxaWzbXAcZ B e#Df!Eg%Fi Gj*Ik) J m-Kn+ Mo1Nq2Or3Qs5 R t6Sv7Uw9Vxa WzbYAcZB e#Df $Eg%Ff! Dg$Fh Gi*Hk(Jl-Km +Lo0Np1Oq3Ps 4Rt5Su7Tw8Vx 9W ybXAcYBd#C f!Eg$Fh Gj*H k(Jl-Kn+Lo0N p2Oq3Ps4Rt6S u7Tw8Vxa WybX AcZBd#Cf!Eg% F hGj*Ik(Jl- Kn+Mo0N p2Or3 Ps4Rt6Sv7Tw8 V xaWzbXAcZBe #Cf!Eg% FiGj *Ik) Jl-Kn+Mo 1Np2Or3Qs5Rt 6Sv7Uw8V xaWz bYAcZBe#Df!E g%FiHj*Ik) J m-Kn+Mo1Nq2O r3Qs5Ru6Sv7U w9VxaW zbYAdZBe#Df$Eg %Fi Hj(Ik) Jm-Ln +M o1Nq2Pr3Qs 5Ru6Tv7U w9Vy aWzbYAdZCe#D f$Eh%FiHj(I l) Jm-Ln0Mo1N q2Pr4Qs5Or3P s4Rt6Su7Tw8V xaWybXAcZ Be# Cf! Eg%FhGj* I。
最小二乘法曲线拟合_原理及matlab实现
曲线拟合(curve-fitting ):工程实践中,用测量到的一些离散的数据},...2,1,0),,{(m i y x i i =求一个近似的函数)(x ϕ来拟合这组数据,要求所得的拟合曲线能最好的反映数据的基本趋势(即使)(x ϕ最好地逼近()x f ,而不必满足插值原则。
因此没必要取)(i x ϕ=i y ,只要使i i i y x -=)(ϕδ尽可能地小)。
原理:给定数据点},...2,1,0),,{(m i y x i i =。
求近似曲线)(x ϕ。
并且使得近似曲线与()x f 的偏差最小。
近似曲线在该点处的偏差i i i y x -=)(ϕδ,i=1,2,...,m 。
常见的曲线拟合方法:1.使偏差绝对值之和最小2.使偏差绝对值最大的最小3.使偏差平方和最小最小二乘法:按偏差平方和最小的原则选取拟合曲线,并且采取二项式方程为拟合曲线的方法,称为最小二乘法。
推导过程:1. 设拟合多项式为:2. 各点到这条曲线的距离之和,即偏差平方和如下:3. 问题转化为求待定系数0a ...k a 对等式右边求i a 偏导数,因而我们得到了: .......4、 把这些等式化简并表示成矩阵的形式,就可以得到下面的矩阵:5. 将这个范德蒙得矩阵化简后可得到:6. 也就是说X*A=Y ,那么A = (X'*X)-1*X'*Y ,便得到了系数矩阵A ,同时,我们也就得到了拟合曲线。
MATLAB 实现:MATLAB 提供了polyfit ()函数命令进行最小二乘曲线拟合。
调用格式:p=polyfit(x,y,n)[p,s]= polyfit(x,y,n)[p,s,mu]=polyfit(x,y,n)x,y 为数据点,n 为多项式阶数,返回p 为幂次从高到低的多项式系数向量p 。
x 必须是单调的。
矩阵s 包括R (对x 进行QR 分解的三角元素)、df(自由度)、normr(残差)用于生成预测值的误差估计。
matlab最小二乘法拟合反应谱代码
一、介绍最小二乘法拟合反应谱最小二乘法是一种常见的数学拟合方法,它可以用来寻找一组数据点的最佳拟合曲线或曲面。
在地震工程中,反应谱是一种用来描述建筑结构在地震作用下的振动情况的重要工具。
使用最小二乘法可以对地震反应谱进行拟合,从而得到结构的振动特性和相应的参数。
二、Matlab中的最小二乘法拟合反应谱代码在Matlab中,有许多函数和工具箱可以用来进行最小二乘法拟合反应谱。
下面是一个示例代码,用来拟合地震反应谱,并得到相关的参数。
```matlab读入反应谱数据T = [0.01 0.02 0.03 0.04 0.05]; 周期Sa = [0.1 0.15 0.2 0.25 0.3]; 加速度反应谱使用最小二乘法拟合反应谱p = polyfit(log(T), log(Sa), 1); 进行对数拟合a = exp(p(2)); 求幂b = p(1); 求斜率输出拟合结果disp(['拟合的函数为:Sa = ' num2str(a) '*T^' num2str(b)]);```在上面的代码中,首先读入了一组反应谱数据,然后使用polyfit函数进行最小二乘法拟合。
接着利用拟合结果得到了拟合的函数,并将其输出。
三、代码解析1. 读入反应谱数据在实际应用中,首先需要将反应谱数据保存在数组中,包括周期T和加速度反应谱Sa。
这些数据可能来自于实测或者地震波形分析得到。
2. 使用最小二乘法拟合反应谱在Matlab中,可以利用polyfit函数对数据进行最小二乘法拟合。
在上面的示例代码中,使用了polyfit(log(T), log(Sa), 1)进行对数拟合。
其中log(T)和log(Sa)是对原始数据取对数,然后利用polyfit进行线性拟合得到拟合参数。
3. 输出拟合结果利用拟合参数得到了拟合的函数,并将其输出。
在本例中,输出结果为Sa = a*T^b,其中a和b分别是拟合得到的系数。
最小二乘法曲线拟合_原理及matlab实现
曲线拟合(curve-fitting ):工程实践中,用测量到的一些离散的数据},...2,1,0),,{(m i y x i i =求一个近似的函数)(x ϕ来拟合这组数据,要求所得的拟合曲线能最好的反映数据的基本趋势(即使)(x ϕ最好地逼近()x f ,而不必满足插值原则。
因此没必要取)(i x ϕ=i y ,只要使i i i y x -=)(ϕδ尽可能地小)。
原理:给定数据点},...2,1,0),,{(m i y x i i =。
求近似曲线)(x ϕ。
并且使得近似曲线与()x f 的偏差最小。
近似曲线在该点处的偏差i i i y x -=)(ϕδ,i=1,2,...,m 。
常见的曲线拟合方法:1.使偏差绝对值之和最小2.使偏差绝对值最大的最小3.使偏差平方和最小最小二乘法:按偏差平方和最小的原则选取拟合曲线,并且采取二项式方程为拟合曲线的方法,称为最小二乘法。
推导过程:1. 设拟合多项式为:kk x a x a a x +++=...)(10ϕ2. 各点到这条曲线的距离之和,即偏差平方和如下:3. 问题转化为求待定系数0a ...k a 对等式右边求i a 偏导数,因而我们得到了:.......4、 把这些等式化简并表示成矩阵的形式,就可以得到下面的矩阵:5. 将这个范德蒙得矩阵化简后可得到:6. 也就是说X*A=Y ,那么A = (X'*X)-1*X'*Y ,便得到了系数矩阵A ,同时,我们也就得到了拟合曲线。
MATLAB实现:MATLAB提供了polyfit()函数命令进行最小二乘曲线拟合。
调用格式:p=polyfit(x,y,n)[p,s]= polyfit(x,y,n)[p,s,mu]=polyfit(x,y,n)x,y为数据点,n为多项式阶数,返回p为幂次从高到低的多项式系数向量p。
x 必须是单调的。
矩阵s包括R(对x进行QR分解的三角元素)、df(自由度)、normr(残差)用于生成预测值的误差估计。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最小二乘法拟合椭圆
设平面任意位置椭圆方程为:
x 2+Axy +By 2+Cx +Dy +E =0
设P i (x i ,y i )(i =1,2,…,N )为椭圆轮廓上的N (N ≥5) 个测量点,依据最小二乘原理,所拟合的目标函数为:
F (A,B,C,D,E )=∑(x i 2+Ax i y i +By i 2+Cx i +Dy i +E)2
N
i=1
欲使F 为最小,需使
∂F ∂A =∂F ∂B =∂F ∂C =∂F ∂D =∂F ∂E
=0 由此可以得方程:
[ ∑x i 2y i 2∑x i y i 3∑x i 2y i ∑x i y i 2∑x i y i ∑x i y i 3∑y i 4∑x i y i 2∑y i 3∑y i 2∑x i 2y i ∑x i y i 2∑x i 3∑x i y i ∑x i ∑x i y i 2∑y i 3∑x i y i ∑y i 2∑y i 2∑x i y i ∑y i 2∑x i ∑y i N ] [ A B C D E ] =-[
∑x i 3y i ∑x i 2y i 2∑ x i 3∑x i 2y i ∑ x i 2] 解方程可以得到A ,B ,C ,D ,E 的值。
根据椭圆的几何知识,可以计算出椭圆的五个参数:位置参数(θ,x 0,y 0)以及形状参数(a,b )。
x 0=2BC−AD
A 2−4B
y 0=2D −AD A 2−4B
a =√2(ACD −BC 2−D 2+4BE −A 2E )(A 2−4B )(B −√A 2+(1−B 2)+1)
b =√2(ACD −BC 2−D 2+4BE −A 2E )(A 2−4B )(B +√A 2+(1−B 2)+1)
θ=tan
−1√
a 2−
b 2B a 2B −b 2
附:MATLAB程序
function [semimajor_axis, semiminor_axis, x0, y0, phi] = ellipse_fit(x, y)
%
% Input:
% x —— a vector of x measurements
% y ——a vector of y measurements
%
% Output:
%semimajor_axis—— Magnitude of ellipse longer axis
%semiminor_axis—— Magnitude of ellipse shorter axis
%x0 ——x coordinate of ellipse center
%y0 ——y coordinate of ellipse center
%phi——Angle of rotation in radians with respect to x-axis
%
% explain
% 2*b'*x*y + c'*y^2 + 2*d'*x + 2*f'*y + g' = -x^2
% M * p = b M = [2*x*y y^2 2*x 2*y ones(size(x))],
% p = [b c d e f g] b = -x^2.
% p = pseudoinverse(M) * b.
x = x(:);
y = y(:);
%Construct M
M = [2*x.*y y.^2 2*x 2*y ones(size(x))];
% Multiply (-X.^2) by pseudoinverse(M)
e = M\(-x.^2);
%Extract parameters from vector e
a = 1;
b = e(1);
c = e(2);
d = e(3);
f = e(4);
g = e(5);
%Use Formulas from Mathworld to find semimajor_axis, semiminor_axis, x0, y0, and phi delta = b^2-a*c;
x0 = (c*d - b*f)/delta;
y0 = (a*f - b*d)/delta;
phi = 0.5 * acot((c-a)/(2*b));
nom = 2 * (a*f^2 + c*d^2 + g*b^2 - 2*b*d*f - a*c*g);
s = sqrt(1 + (4*b^2)/(a-c)^2);
a_prime = sqrt(nom/(delta* ( (c-a)*s -(c+a))));
b_prime = sqrt(nom/(delta* ( (a-c)*s -(c+a))));
semimajor_axis = max(a_prime, b_prime); semiminor_axis = min(a_prime, b_prime); if (a_prime < b_prime)
phi = pi/2 - phi;
end
欢迎交流:
邮箱:*****************。