仪器分析知识点复习

合集下载

仪器分析全知识点

仪器分析全知识点

分子光谱的分类分子吸收光谱转动光谱(远红外光谱)振动光谱(红外光谱)电子光谱(紫外-可见光谱)分子发射光谱电子光谱(分子荧光、磷光)原子光谱的分类原子吸收光谱原子发射光谱光、电、色1色谱法分类气相色谱法高效液相色谱法电化学分析法分类电位分析法电位滴定法伏安法3紫外-可见分光光度法(紫外-可见吸收光谱法):物质分子对紫外-可见光的吸收进行定性、定量及结构分析。

紫外-可见光区分为远紫外(10~200nm)、近紫外(200~360nm)和可见部分(360~760nm);远紫外的吸收测量在真空下进行;通常研究近紫外-可见光围的光谱行为。

第2章紫外-可见分光光度法4§2-1 分子光谱概述1.分子光谱产生M+hν==M*基态激发态E1 E2分子吸收能量后,电子从一个能级跃迁到另一个能级分子部电子能级的跃迁而产生的光谱:紫外-可见光谱5吸收光谱(吸收曲线): 横坐标用波长或频率表示;物质的吸收峰位置对应于分子结构,是定性依据。

纵坐标用光强的参数表示,如透光率、吸光度、吸光系数等,是定量依据。

2.吸收光谱特征63.光吸收定律:朗伯-比尔(Lambert-Beer)定律当一束强度为I0 的平行单色光照射到均匀而非散射的溶液时,光的一部分(强度为Ia)被吸收,一部分(强度为It)透过溶液,一部分(强度为Ir)被器皿表面所反射,则I0 = Ia + It + Ir光的反射损失Ir 主要决定于器皿材料、形状、大小和溶液性质。

在相同条件下,这些因素是固定的,且反射损失的量很小,故Ir 可忽略不计,则:I0 = Ia + It散射:光通过不均匀悬浮颗粒时,部分光束将偏离原来方向而分散到各个方向去。

单色光: 单一频率(波长)的光7透光度(透光率或透射比)(T ,Transmittance ) :透过光强度与入射光强度之比 : T = I / I0吸光度(A, Absorbance ):物质对光的吸收程度,其值为透光度的负对数:注:A 、T 无单位方便起见, 透过光强度 It 用 I 表示8人们对光吸收定律认识,经历了较长历史过程。

(完整版)仪器分析知识点整理..

(完整版)仪器分析知识点整理..

(完整版)仪器分析知识点整理..教学内容绪论分子光谱法:UV-VIS、IR、F原子光谱法:AAS电化学分析法:电位分析法、电位滴定色谱分析法:GC、HPLC质谱分析法:MS、NRS第一章绪论⒈经典分析方法与仪器分析方法有何不同?经典分析方法:是利用化学反应及其计量关系,由某已知量求待测物量,一般用于常量分析,为化学分析法。

仪器分析方法:是利用精密仪器测量物质的某些物理或物理化学性质以确定其化学组成、含量及化学结构的一类分析方法,用于微量或痕量分析,又称为物理或物理化学分析法。

化学分析法是仪器分析方法的基础,仪器分析方法离不开必要的化学分析步骤,二者相辅相成。

⒉仪器的主要性能指标的定义1、精密度(重现性):数次平行测定结果的相互一致性的程度,一般用相对标准偏差表示(RSD%),精密度表征测定过程中随机误差的大小。

2、灵敏度:仪器在稳定条件下对被测量物微小变化的响应,也即仪器的输出量与输入量之比。

3、检出限(检出下限):在适当置信概率下仪器能检测出的被检测组分的最小量或最低浓度。

4、线性范围:仪器的检测信号与被测物质浓度或质量成线性关系的范围。

5、选择性:对单组分分析仪器而言,指仪器区分待测组分与非待测组分的能力。

⒊简述三种定量分析方法的特点和应用要求一、工作曲线法(标准曲线法、外标法)特点:直观、准确、可部分扣除偶然误差。

需要标准对照和扣空白应用要求:试样的浓度或含量范围应在工作曲线的线性范围内,绘制工作曲线的条件应与试样的条件尽量保持一致。

二、标准加入法(添加法、增量法)特点:由于测定中非待测组分组成变化不大,可消除基体效应带来的影响应用要求:适用于待测组分浓度不为零,仪器输出信号与待测组分浓度符合线性关系的情况三、内标法特点:可扣除样品处理过程中的误差应用要求:内标物与待测组分的物理及化学性质相近、浓度相近,在相同检测条件下,响应相近,内标物既不干扰待测组分,又不被其他杂质干扰第2章光谱分析法引论习题1、吸收光谱和发射光谱的电子能动级跃迁的关系吸收光谱:当物质所吸收的电磁辐射能与该物质的原子核、原子或分子的两个能级间跃迁所需要的能量满足ΔE=hv的关系时,将产生吸收光谱。

仪器分析复习内容

仪器分析复习内容

仪器分析复习内容
一、原理
仪器分析是指通过使用电子或物理仪器(也称检测仪器)来检测和测
量一些物质的含量,反映其中一种物质或物质的物理和化学特性,从而了
解它们的存在状况或结构,为科学研究提供参考和决策依据。

仪器分析是一个多学科的交叉领域。

它涉及的科学科目包括化学、物理、生物、地质和过程科学等。

因此,仪器分析常见的原理包括:电离质
谱法(离子质谱)、质谱法(质谱图)、光谱法、分析化学、热分析、热
工学仪器分析等。

二、电离质谱法(离子质谱)
电离质谱(离子质谱)是以电场来离开物质中的离子的一种分析技术,是以电离、电屏蔽和电流来测定分析物质中离子浓度的一种技术。

它可以
用来分析物质中的单个离子浓度,以及离子的丰度关系,进而计算化合物
的组成百分比。

电离质谱法具有高灵敏度、高准确度、操作简单方便等优点,是一种常用的仪器分析手段。

电离质谱法的过程包括离子源(Ion Source)、离子传输器(Ion Transporter)、轨道电离器(Orbital Ionizer)、检测器(Detector)、电源(Power Supply)等部分。

仪器分析考试知识点总结

仪器分析考试知识点总结

仪器分析考试知识点总结一、仪器分析的基本概念1. 仪器分析的定义和概念仪器分析是利用各种物理、化学、光学、电子等原理和方法,用各种仪器和设备对化学物质进行检测和分析的过程,以发现物质的性质、结构、组成和含量等信息。

2. 仪器分析的分类仪器分析可以分为物理分析、化学分析和光谱分析等不同的类别,不同的分析方法适用于不同类型的化学物质。

3. 仪器分析的原理仪器分析的原理主要包括化学反应原理、光学原理、电子学原理、物理原理等,不同的仪器在分析过程中会运用不同的原理。

二、基本仪器原理和基本技术1. 常用电子仪器的原理和技术常见的电子仪器如电子天平、电位计、电解质浓度计、电导率计等都是基于电子原理和技术进行工作的。

学习者需要了解这些仪器的原理和操作方法。

2. 常用光学仪器的原理和技术常见的光学仪器如分光光度计、荧光光度计、紫外-可见分光光度计等都是基于光学原理和技术进行工作的。

学习者需要了解这些仪器的原理和操作方法。

3. 常用物理仪器的原理和技术常见的物理仪器如质谱仪、核磁共振仪、X射线衍射仪等都是基于物理原理和技术进行工作的。

学习者需要了解这些仪器的原理和操作方法。

三、仪器分析的基本操作1. 样品的准备样品的准备是仪器分析的第一步,学习者需要学会如何准备不同类型的样品,包括液体样品、固体样品和气体样品等。

2. 仪器的调试仪器的调试是仪器分析的关键步骤,学习者需要学会如何合理地调试仪器,以保证分析的准确性和可靠性。

3. 数据的处理仪器分析得到的数据需要进行合理的处理和分析,学习者需要学会如何处理数据和制作数据报告。

四、仪器分析的常见问题和解决方法1. 仪器的故障和维修仪器在使用过程中可能会出现各种故障,学习者需要学会如何及时发现和解决这些故障。

2. 数据的异常和处理方法在数据分析过程中,可能会出现异常数据,学习者需要学会如何判断异常数据并进行合理的处理。

五、仪器分析的应用1. 仪器分析在化学、医药、环境和食品等领域的应用仪器分析可广泛应用于各种领域,包括化学、医药、环境和食品等。

仪器分析复习重点

仪器分析复习重点

▪ 7.固定液选择的原理是? ▪ 8.在色谱分析法中,为什么要测定定量校
正因子 ?
▪ 9.液相色谱中正相,反相色谱的定义及研 究对象
▪ 10.色谱定量分析公式-内标法 ▪ 11.色谱分离条件选择-如何提高柱效
第三节 HPLC的主要类型及分离原理
1. 液液分配色谱
亲水性固定液常采用疏水性流动相,即流动相的极 性小于固定相的极性,称为正相液液色谱法,极性柱 也称正相柱。主要应用于分离甾醇类、类脂化合物、 磷脂类化合物、脂肪酸以及其他有机物。
cM mMVS
VS
:相比
相对保留值 r21:指组分2和组分1的调整保留值之比。
r21
t 'R2 t 'R1
V 'R2 V 'R1
相对保留值的特点是只与温度和固定相的性质有关, 与色谱柱及其它色谱操作条件无关。
相对保留值反映了色谱柱对待测两组分1和2 的选 择性,是气相色谱法中最常使用的定性参数。
例:用电解法从组成为0.01 mol/L Ag+, 2mol/L Cu2+的混合液中分离Ag+ 和Cu2+,已知铜的标 准电极电位为0.345V,银的标准电极电位为 0.779V。
问:1)首先在阴极上析出的是铜还是银?
2)电解时两者能否完全分离?
3) 外加电压应控制在什么数值上,Ag+与Cu2+ 完全分离,阳极电位等于1.23v(vs.SCE,不考 虑超电位) ?
测待测液的pH值,写出该化学电池的符号表示式?(见书 P113) 5.离子选择性系数 的定义?(见书P118) 6.盐桥是什么组成的?作用是什么? 7.干扰电流及其消除方法(见书P162) 8.什么是残余电流,它产生的原因是什么?它对极谱分析有 什么影响? (见书P162)

仪器分析知识点

仪器分析知识点

仪器分析题库第一章1. 几个常用公式:v=λν(v:传播速度,λ:波长,ν:频率)1eV=1.602*10^-19 J波动性:c=λf=f/σ(f:频率,σ=1/λ:波数)微粒性:E=hν=hc/λ(h:普朗克常数,其值为6.626*10^-34 J·s)2. 电磁波谱:电磁辐射按照波长或频率的大小顺序排列γ射线→X射线→紫外光→可见光→红外光→微波→无线电波(从左到右:波长越来越大,频率越来越小,能量越来越小)3. 光谱法按物质与能量作用形式(能量交换方向)分类:1)吸收能量(基态→激发态)M+hν→M*2)发射、辐射(激发态→基态)M*→M+hν按作用的物质对象分类:1)原子光谱,2)分子光谱4. 共振线:原子中的电子的基态和激发态能量差的辐射称为共振线第一共振线:从基态跃迁至能量最低的激发态(第一激发态)产生的共振线称为第一共振线(由于各类元素的第一共振线不同,故这种共振线称为元素的特征谱线)。

第一共振线灵敏度最高,所以又称为最灵敏线。

第二章1. 紫外-可见吸收光谱法(UV-Vis)是分子吸收光谱方法,也是带状光谱,是由分子中的价电子发生能级跃迁发生的。

2. 分子能级的高低顺序:σ<π<n<*π<σ*分子轨道间可能的跃迁有:σ→σ*, σ→*π, π→σ*, n→σ*, π→*π, n→*π跃迁能量最大:σ→σ*,跃迁能量最小:n→*π3. 朗伯-比尔定律1)它表明在稀溶液中,物质对单色光的吸光度(A)与吸光物质溶液的浓度(c)和液层厚度(l)的乘积成正比。

2)公式:A=lcε(ε:常数,称为吸光系数或吸收系数)3)摩尔吸光系数:在一定波长时,溶液浓度为单位摩尔浓度、液层厚度为单位厚度时的吸光度,其单位为L·cm-1·mol-1。

(偏离比尔定律的因素:1)化学因素:浓度,需要小于0.01mol/L;2)光学因素:非单色光;其他光学因素:反射,参比溶液;散射:胶体,细小颗粒物(应用均匀溶液,真溶液,若产生“假吸收”,会导致吸光度增加,导致结果偏高))4. 影响显色反应的因素:显色剂用量、溶液酸度(pH)、显色时间、显色温度第三章1. 红外光谱(IR)是分子光谱,是由于分子中原子振动或分子转动产生的吸收光谱。

仪器分析复习总结

仪器分析复习总结

1.光谱范围:仪器能测量光谱的波长范围。

2.工作范围:仪器能按规定的准确度和精密度进行测量的吸光度或强度范围。

3.厚度:样品池的两个平行且透光的内表平面之间的距离。

4.光路长度:光通过吸收池内物质的入射面和出射面之间的路程。

当垂直入射时,应与厚度相同。

5.仪器的准确度:在不考虑随机误差的情况下,仪器给出的读数与被测量的真值相一致的能力。

考察系统误差。

6.仪器的重复性:在不考虑系统误差的情况下,仪器对某一测量值能给出相一致读数的能力 (短时间内) 。

7.仪器的稳定性:在一段时间内,仪器保持其精密度的能力8.仪器的可靠性:仪器保持其所有性能(准确度、精密度和稳定性)的能力。

1 仪器分析:是指通过测量物质是某些物理或者物理化学性质` 参数及其变化来确定物质的组成成分含量级化学结构的分析方法。

2 定性分析:鉴定式样由哪些元素、离子、基团或化合物组成,即确定物质的组成。

3 定量分析:试样中各种组分(如元素、根或官能团等)含量的操作。

4精密度:指同一分析仪器的同一方法多次测定所得到数据间的一致程度,是表征随机误差大小的指标,亦成为重复测定结果随测定平均值的分散度,即重现性。

5 灵敏度:仪器或分析方法灵敏度是指区别具有微小浓度差异分析物能力的度量,它取决于两个因素:即校准曲线的斜率和仪器设备的重现性或精密度。

6 检出限:又称检测下限或最低检出量,指一定置信水平下检出分析物或组分的最小量或最低浓度。

它取决于分析物产生信号与本底空白信号波动或噪声统计平均值之比。

7动态范围:定量测定最低浓度(LOQ)扩展到校准曲线偏离线性响应(LOL)的浓度范围。

8选择性:一种仪器方法的选择性是指避免试样中含有其它组分干扰组分测定的程度。

9 分辨率:指仪器鉴别由两相近组分产生信号的能力。

不同类型仪器分辨率指标各不相同,光谱仪器指将波长相近两谱线(或谱峰)分开的能力;质谱仪器指分辨两相邻质量组分质谱峰的分辨能力;色谱指相邻两色谱峰的分离度;核磁共振波谱有它独特的分辨率指标,以临二氯甲苯中特定峰,在最大峰的半宽度为分辨率大小。

仪器分析重点知识点整理

仪器分析重点知识点整理

仪器分析重点知识点整理一,名词解释。

1.吸收光谱:指物质对相应辐射能的选择性吸收而产生的光谱2.吸光度(A):是指光线通过溶液或某一物质前的入射光强度与该光线通过溶液或物质后的透射光强度比值的以10为底的对数 A=abc =lg(I0/I t)3.透光率(T):透射光强度与入射光强度之比 T=I0/I t4.摩尔吸光系数(ε):物质对某波长的光的吸收能力的量度,(如浓度c以摩尔浓度(mol/L)表示则A=εbc)物理意义:溶液浓度为1mol/L,液层厚度为1cm时的吸光度5.百分吸光系数(E1cm1%):物质对某波长的光的吸收能力的量度,(如浓度c以质量百分浓度(g/100ml),则A=E1cm1%bc)物理意义:溶液浓度为1g/100ml,液层厚度为1cm时的吸光度6.发色团:有机化合物分子结构中含有π→π*或n→π*跃迁的基团,能在紫外可见光范围内产生吸收7.助色团:含有非键电子的杂原子饱和基团,本身不能吸收波长大于200nm的辐射,但与发色团或饱和烃相连时,能使该发色团或饱和烃的吸收峰向长波移动,并使吸收强度增加的基团8.红移(长移):由取代基或溶剂效应等引起的吸收峰向长波长方向移动的现象9.蓝移(短移):由取代基或溶剂效应等引起的吸收峰向短波长方向移动的现象10.浓色效应(增色效应):使化合物吸收强度增加的效应11.淡色效应(减色效应):使化合物吸收强度减弱的效应12.吸收带:紫外-可见光谱为带状光谱,故将紫外-可见光谱中吸收峰称为吸收带13.R带:Radikal(基团) ,是由 n →π*跃迁引起的吸收带14.K带:Konjugation(共轭作用),是由共轭双键中π→π*跃迁引起的吸收带15.B带:benzenoid(苯的),是由苯等芳香族化合物的骨架伸缩振动与苯环状共轭系统叠加的π→π*跃迁引起的吸收带,芳香族化合物特征吸收带16.E带:也是芳香族化合物特征吸收带,分为E1、E217.紫外吸收曲线(紫外吸收光谱):18.最大吸收波长λmax:吸收曲线上的吸收峰所对应的波长19.最小吸收波长λmin:吸收曲线上的吸收谷所对应的波长20.末端吸收:吸收曲线上短波端只呈现强吸收而不成峰形的部分21.试剂空白:指在相同条件下只是不加入试样溶液,而依次加入各种试剂和溶液所得到的空白溶液22.试样空白:指在与显色相同条件下取相同量试样溶液,只是不加显色剂所制备的空白溶液23.溶剂空白;指在测定入射波长下,溶液中只有被测组分对光有吸收,而显色剂或其他组分对光没有吸收或有少许吸收,但所引起的测定误差在允许范围内,此时可用溶剂作为空白溶液24.荧光:物质分子吸收光子能量而被激发,然后从激发态的最低振动能级返回到基态时所发射出的光25.分子荧光:?26.荧光效率:激发态分子发射荧光的光子数与基态分子吸收激发光的光子数之比27.多普勒变宽:由于原子的无规则热运动而引起的谱线变宽,用ΔνD表示28.谱线轮廓:原子光谱理论上产生线性光谱,吸收线应是很尖锐的,但由于种种原因造成谱线具有一定的宽度,一定的形状,即谱线轮廓29.半宽度(Δν):是指峰高一半(K0/2)时所对应的频率范围30.峰值吸收系数:吸收线中心频率所对应的峰值吸收系数?31.共振吸收线:原子的最外层电子从基态跃到第一激发态所产生的吸收谱线,最灵敏的谱线32.内标法:选择样品中不含有的纯物质作为对照物质(内标)加入待测样品溶液中,以待测组分和内标物的响应信号对比,测定待测组分含量的方法33.外标法:用待测组分的纯品作标准品,在相同条件下以标准品和样品中待测组分的响应信号相比较进行定量的方法34.背景干扰:主要是原子化过程中所产生的连续光谱干扰,前面光谱干扰中已详细介绍,它主要包括分子吸收、光的散射及折射等,是光谱干扰的主要原因35.物理干扰:指试样在转移、蒸发和原子化过程中,由于试样任何物理特性(如密度、粘度、表面张力)的变化而引起的原子吸收强度下降的效应36.光谱干扰:由于分析元素的吸收线与其他吸收线或辐射不能完全分离所引起的干扰37.原子吸收光谱:?38.保护剂:作用于与被测元素生成更稳定的配合物,防止被测元素与干扰组分反应39.释放剂:作用于与干扰组分形成更稳定或更难发挥的化合物,以使被测元素释放出来40.红外线:波长为0.76-500um的电磁波41.红外光谱:又称分子振动转动光谱,属分子吸收光谱。

仪器分析知识点

仪器分析知识点

一、仪器分析分类:(简答)质谱分析法、色谱分析法、光分析法、分析仪器联用技术、电化学分析法、热分析法。

二、色谱分析法:(简答)气相色谱法、液相色谱法、薄层色谱法、超临界色谱法、激光色谱法、电色谱法三、光分析法:(填空)紫外可见法、红外法、核磁法、荧光法、原子发射法、原子吸收法四、由分析对象的数量级来看五、茨维特实验——首次提出色谱法六、对称因子(Symmetry, fs):用于衡量色谱峰的对称与否,又称拖尾因子。

对称因子在0.95~1.05之间的色谱峰为对称峰;小于0.95者为前延峰;大于1.05者为拖尾峰。

《中国药典》称对称因子为拖尾因子。

对称因子可按左图由下式计算:fs = W0.05h/2A =(B+A)/2A七、色谱法按两相分类:1.气相色谱——流动相为气体:气固色谱、气液色谱2.液相色谱——流动相为液体:固液色谱、液液色谱3.超临界色谱——流动相为超临界流体八、按组份在固定相上的分离机理分:吸附色谱:不同组份在固定相的吸附作用不同。

分配色谱:不同组份在固定相上的溶解能力不同。

离子色谱:不同组份和固定相上离子的作用力不同。

凝胶色谱(分子排阻色谱):不同尺寸分子在固定相上的渗透作用。

亲合色谱:不同组份与固定相上配基的作用力不同。

手性色谱:对映异构体和不同的固定相的作用力不同。

九、色谱法的特点优点:“三高”、“一快”、“一广”高选择性——可将性质相似的组分分开高效能——反复多次利用组分性质的差异产生很好分离效果高灵敏度——10-11~10-13g,适于痕量分析分析速度快——几~几十分钟完成分离一次可以测多种样品应用范围广——气体,液体、固体物质分离、分析缺点:对未知物分析的定性专属性差需要与其他分析方法联用(GC-MS,LC-MS)十、薄层色谱的特点①设备简单,操作方便。

消耗溶剂和吸附剂小,是一种经济的分离方法。

②分离操作时间短。

一个薄板展开只需十几分钟,而且可以多个样品或不同条件的薄板同时展开,工作效率高。

仪器分析教程知识点总结

仪器分析教程知识点总结

仪器分析教程知识点总结一、光谱分析1. 原子吸收光谱法原子吸收光谱法是一种常用的分析技术,主要用于测定金属元素的含量。

其原理是通过测量金属元素的特征吸收线强度来定量分析样品中金属元素的含量。

在进行原子吸收光谱法实验时,需要掌握标准曲线法、内标法等定量分析方法,以及样品的预处理和稀释方法。

2. 紫外-可见吸收光谱法紫外-可见吸收光谱法是用于测定有机化合物和无机化合物的含量和结构的方法。

通过测量样品在紫外-可见光区域的吸收强度,可以获得样品的吸收光谱图,从而分析样品的成分和结构。

在进行紫外-可见吸收光谱法实验时,需要掌握分光光度计的操作方法、样品的制备和处理方法,以及吸收峰的解释和定量分析方法。

3. 红外光谱法红外光谱法是用于测定有机化合物和无机化合物的结构和功能基团的方法。

通过测量样品在红外光区域的吸收强度,可以获得样品的红外光谱图,从而分析样品的结构和功能基团。

在进行红外光谱法实验时,需要掌握红外光谱仪的操作方法、样品的制备和处理方法,以及吸收峰的解释和定量分析方法。

二、色谱分析1. 气相色谱法气相色谱法是用于分离和检测样品中有机化合物的方法。

通过样品分子在固定相和流动相之间的分配行为,可以实现样品分离和检测。

在进行气相色谱法实验时,需要掌握气相色谱仪的操作方法、固定相和流动相的选择和配制方法,以及色谱柱的使用和维护方法。

2. 液相色谱法液相色谱法是用于分离和检测样品中有机化合物和无机化合物的方法。

通过样品分子在固定相和流动相之间的分配行为,可以实现样品分离和检测。

在进行液相色谱法实验时,需要掌握液相色谱仪的操作方法、固定相和流动相的选择和配制方法,以及色谱柱的使用和维护方法。

三、质谱分析质谱分析是用于确定样品中有机分子和核素的相对分子质量和结构的方法。

通过测量样品离子的质荷比,可以获得样品的质谱图,从而确认样品的分子质量和结构。

在进行质谱分析实验时,需要掌握质谱仪的操作方法、样品的离子化和碎裂方法,以及质谱图的解释和质谱定性分析方法。

仪器分析知识点复习汇总

仪器分析知识点复习汇总

仪器分析知识点复习汇总仪器分析是化学分析中的一个重要分支,主要研究利用各种仪器设备进行样品分析和检测的方法和技术。

下面是仪器分析的一些知识点复习汇总:1.基本概念:仪器分析是利用仪器设备对样品进行分析和检测的方法。

仪器分析可以分为定性分析和定量分析两个方面。

2.仪器分类:仪器主要分为电化学仪器、光谱仪器、质谱仪器、色谱仪器、微量元素分析仪器等几个大类。

3.电化学仪器:电化学仪器包括电解池、电渗析仪、电导仪、计时电位计等,主要用于电化学分析和电化学过程研究。

4.光谱仪器:光谱仪器包括分光光度计、紫外可见分光光度计、荧光光谱仪、红外光谱仪等,主要用于分析和检测样品的光谱特性。

5.质谱仪器:质谱仪器包括质谱仪和气相色谱-质谱联用仪,可用于分析样品中的有机化合物的结构和组成。

6.色谱仪器:色谱仪器包括气相色谱仪、液相色谱仪、离子色谱仪等,主要用于分离和定性分析样品中的化合物。

7.微量元素分析仪器:微量元素分析仪器包括火焰原子吸收光谱仪、电感耦合等离子体发射光谱仪、电感耦合等离子体质谱仪等,主要用于测定样品中的微量元素含量。

8.仪器分析的步骤:仪器分析通常包括样品的制备、测量条件的选择与优化、光谱或电位的测量、数据处理与结果分析等几个步骤。

9.仪器分析中的常见问题:仪器分析中常见的问题包括仪器的灵敏度、选择性、准确度和重现性等。

灵敏度指的是仪器检测样品中目标物质的能力,选择性指的是仪器只检测样品中的目标物质而不受其他物质的干扰,准确度指的是仪器检测结果与真实值之间的偏差,重现性指的是多次测量同一样品的结果之间的一致性。

10.仪器分析的应用:仪器分析广泛应用于环境监测、食品质量安全检测、医药检验等领域。

在环境监测中,仪器分析可以检测大气中的污染物、水中的有机污染物和无机污染物等。

在食品质量安全检测中,仪器分析可以检测食品中的农药残留、重金属含量等。

在医药检验中,仪器分析可以分析药物的纯度、含量等。

以上是仪器分析的一些基本知识点复习汇总。

仪器分析知识点

仪器分析知识点

仪器分析知识点第二、三章 色谱一、基本概念1. 保留时间(t R ):组分从进样到柱后出现浓度极大值(即色谱峰顶值)时所需的时间; 死时间(t 0):不与固定相作用的气体(如空气)的保留时间; 调整保留时间(t R '):t R '= t R -t 02. 保留体积(V R ):从进样开始到柱后被测组分出现浓度最大值时所通过的载气体积。

与载气流速无关 V R = t R ×F 0(F 0为柱出口处的载气流量,单位:m L / min ) 死体积(V 0): 色谱柱在填充后柱管内固定相颗粒间所剩留的空间,色谱仪中管路和连接头间的空间以及检测器的空间的总和。

反映柱和仪器系统的特性,与被测物质无关。

V 0 = t 0 ×F 0 调整保留体积(V R ’):反映被测组分的保留特性,与载气流速无关V R ' = V R -V 03. 相对保留值r 2,1 : r 2,1 = t ´R2 / t ´R1= V ´R2 / V ´R1 反应固定相的选择性。

r 2,1= 1不能被分离。

相对保留值只与柱温和固定相性质有关,与其他色谱操作条件无关。

4. 用来衡量色谱峰宽度的参数,有三种表示方法: (1)标准偏差(σ):即0.607倍峰高处色谱峰宽度的一半。

(2)半峰宽(W 1/2):色谱峰高一半处的宽度 W 1/2 =2.354 σ (3)峰底宽(W b):(Y)=W b =4 σ5. 分配比 k :在一定温度下,组分在两相间分配达到平衡时的质量比Msm m k ==组分在流动相中的质量组分在固定相中的质量分配系数K :在一定温度下,组分在两相间分配达到平衡时的浓度比Msc c K ==组分在流动相中的浓度组分在固定相中的浓度分离原理:不同物质在两相间具有不同的分配系数。

容量因子与分配系数的关系 :βKV V c c m m k m S m s m S =⋅== 二、气相热导检测器的检测依据:惠斯登电桥,不同的气体有不同的热导系数。

仪器分析考点整理

仪器分析考点整理

仪器分析考点整理一、概念部分1、色谱法:借助于在两相间分配原理而使混合物中各组分分离的技术,称为色谱分离技术或色谱法2、基线:当色谱柱后没有组分进入检测器时,在实验操作条件下,反映检测器系统噪声随时间变化的线称为基线3、分配系数:在一定温度下组分在两相之间分配达到平衡时的浓度比称为分配系数K4、分离度:相邻两组分色谱峰保留值之差与两个组分色谱峰峰底宽度总和之半的比值:5、分配过程:物质在固定相和流动相(气相)之间发生的吸附、脱附和溶解、挥发的过程叫做分配过程。

6、相对保留时间:(α或r12)指某组分2的调整保留时间与另一组分1的调整保留时间之比:7、程序升温:程序升温色谱法,是指色谱柱的温度按照组分沸程设置的程序连续地随时间线性或非线性逐渐升高,使柱温与组分的沸点相互对应,以使低沸点组分和高沸点组分在色谱柱中都有适宜的保留、色谱峰分布均匀且峰形对称。

8、梯度洗脱:载液中含有两种(或更多)不同极性的溶剂,在分离过程中按一定的程序连续改变载液中溶剂的配比,从而改变极性,通过载液极性的变化来改变被分离组分的分离因素,以提高分离效果。

9、顶空分析:顶空分析是取样品基质(液体和固体)上方的气相部分进行色谱分析。

10、共振吸收线:电子从基态跃迁至第一激发态所产生的吸收谱线。

11、化学干扰:指待测元素与其它组分之间的化学作用所引起的干扰效应,它主要影响待测元素的原子化效率。

12、谱线轮廓:原子群从基态跃迁至激发态所吸收的谱线并不是绝对单色的几何线,而是具有一定的宽度,称之为谱线轮廓。

13、基体效应:物理干扰是指试样在转移、蒸发和原子化过程中,由于试样任何物理性质的变化而引起的干扰效应。

14、锐线光源:能发射出谱线半宽度很窄的发射线的光源。

15、担体:是一种化学惰性、多孔性的固体颗粒,主要作用是提供一个大的惰性表面,以便涂上一层薄而均匀的液膜,构成固定相。

15、在气相色谱中,程序升温适于对宽沸程样品进行分析。

16、在使用气相色谱仪之前应检查仪器各部件是否处于正常状态,对气路部分来讲,首先应进行检漏。

仪器分析全知识点..

仪器分析全知识点..

分子光谱的分类分子吸收光谱转动光谱(远红外光谱)振动光谱(红外光谱)电子光谱(紫外-可见光谱)分子发射光谱电子光谱(分子荧光、磷光)原子光谱的分类原子吸收光谱原子发射光谱光、电、色1色谱法分类气相色谱法高效液相色谱法电化学分析法分类电位分析法电位滴定法伏安法3紫外-可见分光光度法(紫外-可见吸收光谱法):物质分子对紫外-可见光的吸收进行定性、定量及结构分析。

紫外-可见光区分为远紫外(10~200nm)、近紫外(200~360nm)和可见部分(360~760nm);远紫外的吸收测量在真空下进行;通常研究近紫外-可见光范围的光谱行为。

第2章紫外-可见分光光度法4§2-1 分子光谱概述1.分子光谱产生M+hν==M*基态激发态E1 E2分子吸收能量后,电子从一个能级跃迁到另一个能级分子内部电子能级的跃迁而产生的光谱:紫外-可见光谱5吸收光谱(吸收曲线): 横坐标用波长或频率表示;物质的吸收峰位置对应于分子结构,是定性依据。

纵坐标用光强的参数表示,如透光率、吸光度、吸光系数等,是定量依据。

2.吸收光谱特征63.光吸收定律:朗伯-比尔(Lambert-Beer)定律当一束强度为I0 的平行单色光照射到均匀而非散射的溶液时,光的一部分(强度为Ia)被吸收,一部分(强度为It)透过溶液,一部分(强度为Ir)被器皿表面所反射,则I0 = Ia + It + Ir光的反射损失Ir 主要决定于器皿材料、形状、大小和溶液性质。

在相同条件下,这些因素是固定的,且反射损失的量很小,故Ir 可忽略不计,则:I0 = Ia + It散射:光通过不均匀悬浮颗粒时,部分光束将偏离原来方向而分散到各个方向去。

单色光: 单一频率(波长)的光 7透光度(透光率或透射比)(T ,Transmittance ) :透过光强度与入射光强度之比 : T = I / I0吸光度(A, Absorbance ):物质对光的吸收程度,其值为透光度的负对数: 注:A 、T 无单位方便起见, 透过光强度 It 用 I 表示 8人们对光吸收定律认识,经历了较长历史过程。

仪器分析复习资料

仪器分析复习资料

仪器分析复习资料仪器分析的复习提纲第一章小结:仪器分析是以物质性质或物质化学性质及其在分析过程中所发生的分析结果与物质的内在关系为基础,进而对其进行定性、定量、进行形态和结构分析的一类测定方法。

精密度:指在相同条件下对同一样品进行多次平行测定,各平行测定结果之间的符合程度。

准确度:指多次测定的平均值与真值相符合的程度。

选择性:是指分析方法不受试样中共存物质干扰的程度。

选择性越好,干扰越小。

线性范围:指定量测定的最低浓度到遵循线性响应关系的最高浓度间的范围。

灵敏度:指分析信号随组分含量的变化率,与检测器的放大倍数有直接关系。

检出限:指能产生一个确证在试样中存在被测组分的分析信号所需要的该组分的最小含量或最小浓度。

D=3s0/b.仪器分析的主要优点:1.灵敏度极高;2.选择性好,适于复杂组分试样的分析;3.分析迅速,适于批量试样的分析;4.适于微量、超微量组分的测定;5.能进行无损分析;6.组合能力和适应性强,能进行在线分析;易于自动化和智能化。

第二章小结:光分析法:基于电磁辐射与待测物质相互作用后所产生的辐射信号与物质组成及结构关系所建立起来的分析方法。

光谱法——基于物质与辐射能作用时,分子发生能级跃迁而产生的发射、吸收或散射的波长或强度进行分析的方法。

激发能:原子外层电子由低能级跃迁到高能级所需要的能量。

电离能:原子外层电子获得足够大的能量,脱离原子,使原子电离所需要的最小能量。

光分析法仪器的基本单位:光谱仪器通常包括五个基本单位:1.光源;2.单色器3.试样装置4.检测器5.显示与数据处理第三章小结:原子发射光谱仪:用来观察和记录原子发射光谱并进行光谱分析的仪器称为原子发射光谱仪。

一般元素普线的强度会随浓度的下降而消失,其总数量也会同时减少,所以谱线中最后消失的谱线称“最后线”或最灵敏线。

原子发射光谱分析的特点:1.多元素同时检测的能力。

样品激发后,不同元素都发射特征光谱。

2.灵敏度高。

可进行痕量分析,检出限可达10—0.1ug.g-13.选择性好。

仪器分析考试复习知识重点总结

仪器分析考试复习知识重点总结

基础部分1基线:当色谱柱后没有组分进入检测器时,在实验操作条件下,反映检测器系统噪声随时间变化的线2死时间:指不被固定相吸附或溶解的气体从进样开始到柱后出现浓度最大值所需的时间3保留时间:指被测组分从进样开始到柱后出现浓度最大值所需的时间4调整保留时间:指扣除死时间后的保留时间5保留值:试样中各组分在色谱柱中的滞留时间的数值6相对保留值:指组分2的调整保留时间与另一组分1的调整保留时间之比(公式见P7)7分配系数:在一定温度下组分在两相之间分配达到平衡时浓度比称为分配系数(公式见P9)8分配比:在一定温度、压力下在两相间达到平衡时,组分在两相中的质量比(公式见P10)9速率公式:H=A+B/u+CuA涡流扩散相:气体碰到填充物颗粒时,不断地改变流动方向,使试样组分在气相中形成类似“涡流”的流动,因而引起色谱峰的扩张A=2λd pλ:填充的不均匀性d p:填充物的平均直径提高柱效:使用适当细粒度和颗粒均匀的担体,填充均匀,B/u分子扩散项:由于试样组分被载气带入色谱柱后,是以“塞子”的形式存在于柱的很小一段空间中,在“塞子”的前后存在着浓度差而形成浓度梯度,因此使运动着的分子产生纵向扩散。

B=2γDgγ:载体填充在柱内引起的扩散路径弯曲因子D:组分在流动相中的扩散系数提高柱效:B/u与流速有关,流速↓,滞留时间↑,扩散↑;Dg∝(M载气)-1/,M载气↑,B值↓,采用分子质量较大的载气Cu:传质阻力相:气相传质阻力(Cg)样品组分从气相移动到固定相表面及其返回的过程。

提高柱效:采用粒度小的填充物和电工对分子质量小的气体作载气(见P16)液相传质阻力系数(Cl )样品组分从固定相的气/液界面移动到液相内部及返回的传质过程10色谱峰的标准偏差、半峰宽度、峰底宽度:标准偏差x:即0.607倍峰高处色谱峰宽度的一半。

半峰宽度Y1/2:一半峰高处的宽度Y1/2 =2.354 x峰底宽度Y:过峰两侧拐点的切线与基线焦点的间距。

《仪器分析》知识点整理

《仪器分析》知识点整理

《仪器分析》知识点整理一、仪器分类1.按测量原理分类:光学仪器、电子仪器、热力学仪器等;2.按测量对象分类:物理性质测量仪器、化学性质测量仪器、生物性质测量仪器等;3.按测量方法分类:分光法仪器、电化学法仪器、色谱法仪器等。

二、分析方法1.光谱法:包括紫外可见光谱、红外光谱、原子吸收光谱等,用于物质的结构分析和定量测定;2.色谱法:包括气相色谱、液相色谱等,用于物质分离和定性定量分析;3.电化学法:包括电位滴定法、电解析法等,用于物质的电化学性质测定;4.波谱法:包括质谱、核磁共振等,用于物质的分子结构和成分的测定;5.色度法:用于物质颜色的测定。

三、仪器操作与调试1.仪器的安装:包括设备摆放、电源接线和设备连接等操作;2.仪器的调零:如光谱仪进行零点调整,使其读数归零,保证测量的准确性;3.分析曲线的绘制:通过构建标准曲线来进行定量分析,提高测量精度;4.仪器的正确使用:如熟练掌握仪器的各个功能键和参数设定方法,避免误操作;5.仪器的维护与保养:包括定期清洁、维修和更换零部件,延长仪器寿命。

四、仪器的应用领域1.化学分析:如水质分析、土壤分析、食品质量检测、药物分析等;2.聚合物材料:如塑料、合成树脂等材料的成分分析和性能表征;3.环境监测:包括大气污染、水质污染、土壤污染等环境问题的分析与监测;4.制药工业:用于药物质量控制和药物成分分析等;5.生命科学:如生物材料分析、基因测序、蛋白质组学研究等。

五、仪器的发展趋势1.近红外光谱技术的应用与发展;2.微纳技术和生物芯片技术的应用;3.便携式仪器设备的发展;4.互联网和大数据技术在仪器分析中的应用;5.仪器的自动化和智能化发展。

通过对以上知识点的整理,可以更好地理解《仪器分析》的基本概念、分类和应用领域,了解仪器的操作和调试方法,了解仪器分析领域的未来发展趋势。

同时,了解《仪器分析》的知识也有助于提高我们在实验室工作中的科学素养和操作技能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章绪论1.解释名词:(1)灵敏度(2)检出限(1)灵敏度:被测物质单位浓度或单位质量的变化引起响应信号值变化的程度。

(2)检出限:一定置信水平下检出分析物或组分的最小量或最小浓度。

2.检出限指恰能鉴别的响应信号至少应等于检测器噪声信号的(C )。

A.1倍B.2倍C.3倍D.4倍3.书上第13页,6题,根据表里给的数据,写出标准曲线方程和相关系数。

y=5.7554x+0.1267 R2=0.9716第二章光学分析法导论1. 名词解释:(1)原子光谱和分子光谱;(2)发射光谱和吸收光谱;(3)线光谱和带光谱;(1)原子光谱:原子光谱是由原子外层或内层电子能级的变化产生的,表现形式为线光谱。

分子光谱:分子光谱是由分子中电子能级、振动和转动能级的变化产生的,表现为带光谱。

(2)吸收光谱:当电磁辐射通过固体、液体或气体时,具一定频率(能量)的辐射将能量转移给处于基态的原子、分子或离子,并跃迁至高能态,从而使这些辐射被选择性地吸收。

发射光谱:处于激发态的物质将多余能量释放回到基态,若多余能量以光子形式释放,产生电磁辐射。

(3)带光谱:除电子能级跃迁外,还产生分子振动和转动能级变化,形成一个或数个密集的谱线组,即为谱带。

线光谱:物质在高温下解离为气态原子或离子,当其受外界能量激发时,将发射出各自的线状光谱。

其谱线的宽度约为10-3nm,称为自然宽度。

2. 在AES、AAS、AFS、UV-Vis、IR几种光谱分析法中,属于带状光谱的是UV-Vis、IR,属于线性状光谱的是AES、AAS、AFS。

第三章紫外-可见吸收光谱法1. 朗伯-比尔定律的物理意义是什么?什么是透光度?什么是吸光度?两者之间的关系是什么?2. 有色配合物的摩尔吸收系数与下面因素有关系的是(B)A.吸收池厚度B.入射光波长C.吸收池材料D.有色配合物的浓度3. 物质的紫外-可见吸收光谱的产生是由于(B)A.分子的振动B. 原子核外层电子的跃迁C.分子的转动D. 原子核内层电子的跃迁4. 以下跃迁中那种跃迁所需能量最大(A)A. σ→σ*B. π→π*C. n→σ*D. n→π*5. 何谓生色团和助色团?试举例说明。

从广义来说,所谓生色团,是指分子中可以吸收光子而产生电子跃迁的原子基团,人们通常将能吸收紫外,可见光的原子团或结构系统定义为生色团。

此类基团为具有不饱和键和含有弧对电子的基团,如:C=C、C=O、N=N等。

助色团是指本身不产生吸收峰,但与生色团相连时,能使生色团的吸收峰向长波方向移动,并且使其吸收强度增强的基团,如—OH、—OR、—NHR、—SH、—Cl、—Br、—I等。

6. 在下列化合物中,哪一个的摩尔吸光系数最大?(1)乙烯;(2)1,3,5-己三烯;(3)1,3-丁二烯(2)的摩尔吸光系数最大。

共轭不饱和键越多,红移越明显,吸收强度也越强。

7. 试估计下列化合物中,何者吸收的光波最长?何者最短?为什么?化合物(C)吸收的光波最长,化合物(B)吸收的光波最短。

吸收波长随着共轭体系的增大向长波移动。

8. 测定金属钴中微量元素锰时,在酸性溶液中用KIO3将锰氧化为高锰酸钾后进行吸光度的测定。

在测定高锰酸钾标准溶液及试液吸光度时应选什么作参比溶液?在测定高锰酸钾标准溶液时采用纯水作为参比溶液。

在测定试液时采用不加KIO3的试液做参比溶液。

第四章原子发射光谱法1. 电感耦合等离子体光源主要由高频发射器、等离子炬管、雾化器(进样系统)等三部分组成,此光源具有稳定性好、机体效应小、线性范围宽、检出限低、应用范围广、自吸效应小、准确度高等优点。

2. 在原子发射光谱通常所使用的光源中不发生自吸的光源是(A )A.ICPB.电火花C.直流电弧D.交流电弧3. 原子发射光谱法中进行谱线检查时,通常采取与标准光谱比较法来确定谱线位置,通常作为标准的是(A)A、铁谱B、铜谱C、碳谱D、氢谱4. 原子发射光谱的产生是由于(B )A.原子次外层电子在不同能态间的跃迁B.原子外层电子在不同能态间的跃迁C.原子外层电子的振动和转动D.原子核的振动5. 矿石粉末的定性分析,一般选择下列哪种光源为好?(B)A.交流电弧B.直流电弧C.高压火花D.等离子体光源6.下面几种常用的激发光源中,分析的线性范围最大的是(D)A.直流电弧B.交流电弧C.电火花D.高频电感耦合等离子体7.原子发射光谱分析方法中,内标法主要解决了(A)A.光源不稳定性对方法准确度的影响B.提高了光源的温度C.提高了方法的选择性D.提高了光源的原子化效率8.以光栅作单色器的色散元件,光栅面上单位距离内的刻痕线越少,则(D)A.光谱色散率大,分辨率增高B.光谱色散率变小,分辨率增高C.光谱色散率变大,分辨率降低D.光谱色散率变小,分辨率亦降低第五章原子吸收光谱法1. 原子吸收分析中,常见的背景校正的方法有氘灯校正和塞曼效应校正。

2. 原子吸收光谱分析法中的干扰可分为光谱干扰、物理干扰、化学干扰和电离干扰四大类。

3. 原子吸收光谱分析仪的光源是(D)A.氢灯B.氘灯C.钨灯D.空心阴极灯4. 原子吸收光谱分析仪中单色器位于(B )A. 空心阴极灯之后B. 原子化器之后C. 原子化器之前D. 空心阴极灯之前5. 空心阴极灯中对发射线宽度影响最大的因素是(C)A.阴极材料B.填充材料C.灯电流D.阳极材料6. 原子吸收法测定NaCl中微量K时,用纯KCl配制标准系列制作工作曲线,分析结果偏高的原因是(A)A.电离干扰B.物理干扰C.化学干扰D.背景干扰7. 空心阴极灯的构造是(D)A. 待测元素作阴极,铂棒作阳极,内充氮气B. 待测元素作阳极,铂棒作阴极,内充氩气C. 待测元素作阴极,钨棒作阳极,灯内抽真空D. 待测元素作阴极,钨棒作阳极,内充惰性气体8. 在下列诸变宽中,属于热变宽的是(A)A.多普勒变宽B.劳伦兹变宽C.赫鲁兹马克变宽D.自然变宽9. 原子吸收光谱分析中,火焰的温度要满足(C)A.将试样中的待测元素转变成激发态原子B.将注入的试样几乎完全离子化C.将试样中的待测元素转变成游离基态原子D.以上说法均不准确10. 峰值吸收代替积分吸收的条件是什么?发射线的中心频率与吸收线的中心频率一致;发射线的半宽度远小于吸收线的半宽度(1/5~1/10)。

第六章原子荧光光谱法1.在原子荧光产生过程中,共振荧光(B)A.产生的荧光与激发光的波长不相同B.产生的荧光与激发光的波长相同C.产生的荧光总是大于激发光的波长D.产生的荧光总是小于激发光的波长2. 原子荧光是怎么产生的,有几种类型?气态自由原子吸收特征辐射后跃迁到较高能级,然后又跃迁回到基态或较低能级。

同时发射出与原激发辐射波长相同或不同的辐射即原子荧光。

分为:共振荧光、非共振荧光、敏化荧光第七章化学发光分析法1. 试指出萘在下述哪一种溶剂中有最大的荧光:1-氯丙烷;1-溴丙烷;1-碘丙烷;1,2-二碘丙烷。

在1-氯丙烷中有最大的荧光。

因为外重原子效应,后两者含有重原子溴和碘,使荧光减弱。

2. 解释下列名词:(1)荧光;(2)磷光;(3)化学发光;(4)荧光猝灭;(5)荧光量子产率;(6)重原子效应。

(1)荧光:电子由第一激发单重态的最低振动能级→基态(多为S1→S0跃迁)。

(2)磷光:电子由第一激发三重态的最低振动能级→基态(T1→S0跃迁)。

(3)化学发光:是由化学反应提供的能量激发物质所产生的光辐射。

(4)荧光猝灭:指荧光物质分子与溶剂分子之间所发生的导致荧光强度下降的物理或化学作用过程。

(5)荧光量子产率:荧光物质吸光后所发射的荧光的光子数与所吸收的激发光的光子数之比值。

(6)重原子效应:磷光测定体系中有原子序数较大的原子存在时,由于重原子的高核电荷引起或增强了溶质分子的自旋轨道耦合作用,从而增大了S→T1吸收跃迁和S1→T1体系间窜跃的概率,即增加了T1态粒子的布局数,有利于磷光的产生和增大磷光的量子产率。

3. 说明荧光,磷光和化学发光的一般检测仪器的主要差别。

荧光分析仪器由激发光源,单色器,试样池,光检测器和读数等部件组成。

荧光仪器的单色器有两个,分别用选择激发波长的荧光发射波长;荧光的测量通常在与激发光垂直的方向上进行,以消除透射光的散射光对荧光测量的影响。

磷光分析仪器与荧光分析仪器同样由五个基本部件组成,但需要有一些特殊的配件,在比较好的磷光分析仪器上都配有荧光分析的配件,因此两种方法可以用同一仪器。

磷光分析仪器与荧光分析仪器的主要区别有两点。

(1)试样池需配有冷却装置:对于溶液磷光的测定,常采用低温磷光分析法,即试样溶液需要低温冷冻,通常把试液装入约1~3mm的石英细管(液池)中,然后将池液插入盛有液氮的石英杜瓦瓶内。

(2)磷光镜:有些物质会同时发射荧光和磷光,因此在测定磷光时,必须把荧光分离去。

化学发光分析法的测量仪器比较简单,主要包括样品室,光检测器,放大器和信号输出装置。

化学发光反应在样品室中进行,反应发出的光直接照射在检测器上,目前常用的是光电流检测器。

第八章红外光谱法1. 产生红外光谱的条件是什么?红外线照射分子时,分子中某个基团的振动频率与照射光的频率恰好相等;分子发生偶极矩的变化。

2. 何谓化学位移?它是怎样产生的?由于有机分子中各种质子受到不同程度的屏蔽效应,因此在核磁共振谱的不同位置上出现吸收峰。

某一物质吸收峰的位置与标准质子吸收峰位置之间的差异称为该物质的化学位移,常以δ表示。

相关文档
最新文档