避雷针图纸

合集下载

避雷针计算书

避雷针计算书

设计条件:1.计算依据《钢结构设计规范》 《变电站建筑结构设计技术规定》 《建筑地基基础设计规范》 《建筑结构荷载规范》 《建筑抗震设计规范》 《变电构架设计手册》 2.独立避雷针荷载计算: H=35m , 第一段高度 h 1=7300mm, 采用钢管Φ 第二段高度 h 2=7000mm, 采用钢管Φ 第三段高度 h 3=7000mm, 采用钢管Φ 第四段高度 h 4=7000mm, 采用钢管Φ 第五段高度 h 5=2400mm, 采用钢管Φ 第六段高度h 6=1950mm, 采用钢管Φ 第七段高度 h 7=1600mm, 采用钢管Φ 第八段高度 h 5=1050mm, 采用钢管Φ按各段高度及外径求得加权平均外径为:D=(7300×535+7000×440+7000×340+7000× 240+2400×152+1950×133+1600×114+1050×95)÷(7300+7000×3+2400+1950+1600+1050)=339mm (实际取用 364mm 偏于安全) 风荷载计算:按《建筑结构荷载规范》 (GB 50009-2001 )( 2006版)查得ω 0=0.60kN/m 2, 风荷载标准值 :ω k =βz. μ s . μ z . ω0风振系数:单钢管柱 (h>8m), β z =2.0 风压高度变化系数μ z : h=35m 查《建筑结构荷载规范》 (GB50009-2001 )表 7.2.1( B 类)插值得: μ z =1.42+(1.56-1.42) ×5÷ (40-30)=1.4922风荷载体型系数μ s :μ z ω 0.d =1.49× 0.60× 0.364 =0.118>0.015 ,取μ s =+0.62ωk =βz .μs . μz . ω 0=2.0×0.6× 1.49× 0.60=1.073kN/m作用于各段钢管的风荷载标准值:第一段钢管Φ 580/Φ 490x10, q 1= ω k xD=1.073 ×0.535=0.574 kN/m 第二段钢管Φ 490/Φ390x8,q 2=ω k xD=1.073 × 0.44=0.472 kN/m第三段钢管Φ 390/Φ290x8,q 3=ω k xD=1.073 × 0.34=0.365 kN/m 第四段钢管Φ 290/Φ190x6,q 4=ωkxD=1.073 × 0.24=0.258 kN/m避雷针计算GB50017-2003 NDGJ96-92 GB 50007-2002GB 50009-2001 (2006 年版) GB 50011-2008580/Φ 490x10,平均直径Φ 535,N=9.5 kN490/Φ 390x8,平均直径Φ 440, N=6 kN 390/Φ 290x7,平均直径Φ 340,N=5 kN290/Φ 190x6,平均直径Φ 240, N=2.5 kN 152x4, N=0.5 kN133x4, N=0.4 kN114x4, N=0.3 kN95x3, N=0.2 kN第五段钢管Φ152x4,q5=ωk xD=1.073 ×0.152=0.163 kN/m第六段钢管Φ133x4,q6=ωk xD=1.073 ×0.133=0.143 kN/m第七段钢管Φ114x4,q7= ω k xD=1.073 ×0.114=0.122 kN/m第八段钢管Φ95x3,q8=ωk xD=1.073 ×0.095=0.102 kN/m 、内力分析各段钢管底风荷载标准值:1) 剪力第八段钢管Q k8=0.102 × 1.05=0.107 kN第七段钢管Q k7=0.107+0.122 × 1.60=0.107+0.195=0.302 kN第六段钢管Q k6=0.302+0.143 × 1.95=0.302+0.279=0.581 kN第五段钢管Q k5=0.581+0.163 × 2.40=0.581+0.391=0.972 kN第四段钢管Q k4=0.972+0.258 × 7=0.972+1.806=2.778 kN第三段钢管Q k3=2.778+0.365 × 7=2.778+2.555=5.333 kN第二段钢管Q k2=5.333+0.472 × 7=5.333+3.304=8.637 kN第一段钢管Q k1=8.637+0.574 × 7.3=8.637+4.19=12.827 kN2) 弯矩第八段钢管M k8=0.5 ×1.05× 0.107=0.056 kNm第七段钢管M k7=0.056+0.107×1.6+0.5×1.6×0.195=0.056+0.171+0.156=0.383 kNm第六段钢管M k6=0.056+0.107×( 1.6+1.95) +0.156+0.195 × 1.95+0.5×1.95× 0.279=0.056+0.38+0.156+0.38+0.272=1.244 kNm第五段钢管M k5=0.056+0.107×(1.6+1.95+2.40)+0.156+0.195×( 1.95+2.40) +0.272+0.279 ×2.40+0.5×2.4× 0.391=0.056+0.637+0.156+0.85+0.272+0.67+0.469=3.574 kNm 第四段钢管M k4=0.056+0.107×(1.6+1.95+2.40+7)+0.156+0.195×( 1.95+2.40+7) +0.272+0.279 ×(2.40+7)+ 0.469+0.391 ×7+0.5×7×1.806=0.056+1.386+0.156+2.213+0.272+2.623+0.469+2.734+6.321=16.23 kNm第三段钢管M k3=0.056+0.107×(1.6+1.95+2.40+7+7 )+0.156+0.195×(1.95+2.40+7+7) +0.272+0.279 ×(2.40+7+7)+ 0.469+0.391 ×(7+7)+6.321+1.806 × 7+0.5 ×7×2.555=0.056+2.135+0.156+3.578+0.272+4.576+0.469+5.474+6.321+12.642+8.943=44.622 kNm第二段钢管M k2=0.056+0.107 ×( 1.6+1.95+2.40+7+7+7 )+0.156+0.195×( 1.95+2.40+7+7+7 )+0.272+0.279 × (2.40+7+7+7)+ 0.469+0.391 ×( 7+7+7) +6.321+1.806 ×(7+7)+8.943+2.555 × 7+0.5×7×3.304=0.056+2.884+0.156+4.943+0.272+6.529+0.469+8.211+6.321+25.284+8.943+17.885+11.564=95.517 kNm第一段钢管M k1=0.056+0.107×( 1.6+1.95+2.40+7+7+7+7.3 )+0.156+0.195 ×(1.95+2.40+7+7+7+7.3 )+0.272+0.279 × (2.40+7+7+7+7.3)+ 0.469+0.391 ×( 7+7+7+7.3 )+6.321+1.806×(7+7+7.3)+8.943+2.555 ×( 7+7.3 )+11.564+3.304×7.3+0.5×7.3×4.19=0.056+3.665+0.156+6.367+0.272+8.565+0.469+11.065+6.321+38.468+8.943+36.537 +11.564+24.119+15.294=171.862 kNm3)轴力第八段钢管N k8=0.2kN第七段钢管N k7=0.2+0.3=0.5kN第六段钢管N k6=0.5+0.4=0.9kN第五段钢管N k5=0.9+0.5=1.4kN第四段钢管N k4=1.4+2.5=3.9kN第三段钢管N k3=3.9+5=8.9kN第二段钢管N k2=8.9+6=14.9kN第一段钢管N k1=14.9+9.5=24.4kN三、钢管截面特性计算(按平均截面计算)第一段钢管Φ 580/Φ 490x10, 平均直径Φ 535 的截面特性I x=I y=π(d4-d41)/64=3.141592 ×(5354-5154)÷64=568453891.8mm4W x=W y=π(d4-d41)/(32d)=3.141592 ×(5354-5154)÷(32×535)=2125061.3mm3i x=i y=(d2+d21)0.5/4=(535 2+515 2)0.5÷ 4=185.7mm185.8A=π(d2-d21) /4=3.141592×(5352-5152) ÷4=16493.3 mm2第二段钢管Φ 490/Φ 390x8, 平均直径Φ 440 的截面特性I x=I y=π(d4-d41)/64=3.141592 ×(4404-4244)÷64=253366931.8mm4W x=W y=π(d4-d41)/(32d)=3.141592 ×(4404-4244)÷(32×440)=1151667.9mm3i x=i y=(d2+d21)0.5/4=(440 2+424 2)0.5÷ 4=152.8mmA=π(d2-d21) /4=3.141592×(4402-4242) ÷4=10857.3 mm2第三段钢管Φ 390/Φ 290x8, 平均直径Φ 340 的截面特性I x=I y=π(d4-d41)/64=3.141592 ×(3404-3244)÷64=115031326.3mm4W x=W y=π(d4-d41)/(32d)=3.141592 ×(3404-3244)÷(32×340)=676654.9mm3i x=i y=(d2+d21)0.5/4=(340 2+324 2)0.5÷ 4=117.4mmA=π(d2-d21) /4=3.141592 ×(3402-3242) ÷4=8344.1 mm2第四段钢管Φ 290/Φ 190x6, 平均直径Φ 340 的截面特性I x=I y=π(d4-d41)/64=3.141592 ×(2404-2284)÷64=30209536.1mm4W x=W y=π(d4-d41)/(32d)=3.141592 ×(2404-2284)÷(32×240)=251746.1mm3i x=i y=(d2+d21)0.5/4=(240 2+228 2)0.5÷ 4=82.8mmA=π(d2-d21) /4=3.141592 ×(2402-2242) ÷4=5830.8 mm2第五段钢管Φ 152×4 截面特性I x=I y=π(d4-d41)/64=3.141592 ×(1524-1444)÷64=5095913.6mm4W x=W y=π(d4-d41)/(32d)=3.141592 ×(1524-1444)÷(32×152)=67051.5mm3i x=i y=(d2+d21)0.5/4=(152 2+144 2)0.5÷ 4=52.3mmA=π(d2-d21) /4=3.141592 ×(1522-1442) ÷4=1859.8 mm2第六段钢管Φ 133x4 截面特性I x=I y=π(d4-d41)/64=3.141592 ×(1334-1254)÷64=3375252.6mm4W x=W y=π(d4-d41)/(32d)=3.141592×(1334-1254)÷(32x133)=50755.7mm 3i x=i y=(d2+d21)0.5/4=(133 2+125 2)0.5÷ 4=45.6mmA=π(d2-d21) /4=3.141592 ×(1332-1252) ÷4=1621 mm2第七段钢管Φ 114x4 截面特性I x=I y=π(d4-d41)/64=3.141592 ×(1144-1064)÷64=2093494.1mm 4W x=W y=π(d4-d41)/(32d)=3.141592 ×(1144-1064)÷(32×114)=36728mm3 i x=iy=(d2+d21)0.5/4=(1142+1062)0.5÷4=38.9mmA=π(d2-d21) /4=3.141592×(1142-1062) ÷4=1382.3 mm2第八段钢管Φ 95x3 截面特性I x=I y=π(d4-d41)/64=3.141592 ×(954-894)÷64=918345.5mm4W x=W y=π(d4-d41)/(32d)=3.141592×(954-894)÷(32×95)=193333.6mm 3 i x=iy=(d2+d21)0.5/4=(952+892)0.5÷4=32.5mmA=π(d2-d21) /4=3.141592×(952-892) ÷4=867.1mm 2四、强度验算第一段钢管N/A+M x/(γx W x)=1.2×24.4×1000÷16493.3+1.4×171.862×1000000÷(1.15×2125061.3)=1.78+98.46=100.24N/m m 2<215×0.7=150.5 N/mm2N/A-M x/(γx W x)=24.4 ×1000÷16493.3-1.4×171.862×1000000÷(1.15×2125061.3)=1.48-98.46=-96.98N/m m 2<215 ×0.7=150.5 N/mm 2第二段钢管N/A+M x/(γx W x)=1.2×14.9×1000÷10857.3 +1.4 ×95.517 ×1000000÷(1.15×1151667.9)=1.65+100.97=102.61N/m m 2<215 ×0.7=150.5 N/mmN/A-M x/(γx W x)= 14.9×1000÷10857.3 -95.517 ×1000000 ÷(1.15×1151667.9)=1.37-72.12=-70.75N/m m 2<215 × 0.7=150.5 N/mm 2 第三段钢管N/A+M x/(γx W x)= 1.2×8.9×1000÷8344.1 +1.4 ×44.622 ×1000000÷(1.15×676654.9)=1.28+80.28=81.56N/m m 2<215 ×0.7=150.5 N/mm N/A-M x/(γx W x)= 8.9×1000÷8344.1 -44.622×1000000÷(1.15×676654.9)=1.07-57.34=-56.27N/m m 2<215 ×0.7=150.5 N/mm 第四段钢管N/A+M x/(γx W x)= 1.2×3.9×1000÷5830.8 +1.4×16.23×1000000÷(1.15×251746.1)=0.8+78.48=79.28N/m m 2<215×0.7=150.5 N/mm N/A-M x/(γx W x)= 3.9×1000÷5830.8 -16.23×1000000÷(1.15×251746.1)=0.67-56.06=-55.39N/m m 2<215 ×0.7=150.5 N/mm 2第五段钢管N/A+M x/(γx W x)= 1.2×1.4×1000÷1859.8 +1.4×3.574×1000000÷(1.15×67051.5)=0.9+64.89=65.79N/m m 2<215×0.7=150.5 N/mm 2N/A-M x/(γx W x)= 1.4×1000÷1859.8-1.4×3.574×1000000÷(1.15×67051.5)=0.75-64.89=-64.14N/m m 2<215 ×0.7=150.5 N/mm 2第六段钢管N/A+M x/(γx W x)= 1.2×0.9×1000÷1621+1.4×1.244×1000000÷(1.15×50755.7)=0.67+29.84=30.51N/m m 2<215 ×0.7=150.5 N/mm 2 N/A-M x/(γx W x)= 0.9×1000÷1621-1.4×1.244×1000000÷(1.15×50755.7)=0.56-29.84=-29.28N/m m 2<215 ×0.7=150.5 N/mm 2第七段钢管N/A+M x/(γx W x)= 1.2×0.5×1000÷1382.3+1.4×0.383×1000000÷(1.15×36728)=0.43+12.69=13.12N/m m 2<215 ×0.7=150.5 N/mm 2 N/A-M x/(γx W x)= 0.5×1000÷1382.3-1.4×0.383×1000000÷(1.15×36728)=0.36-12.69=-12.33N/m m 2<215 ×0.7=150.5 N/mm 2第八段钢管设计值作用下:N/A+M x/(γx W x)= 1.2×0.2×1000÷1382.3+1.4×0.383×1000000÷(1.15×36728)=0.17+12.69=12.86N/m m 2<215 ×0.7=150.5 N/mm 2 N/A-M x/(γx W x)= 0.2×1000÷1382.3-1.4×0.383×1000000÷(1.15×36728)=0.14-12.69=-12.55N/m m 2<215 ×0.7=150.5 N/mm 2设计值作用下:N/A+M x/(γx W x)= 1.2×0.2×1000÷1382.3+0.383×1000000÷(1.15×36728)=0.17+9.07=9.24N/mm 2<80 N/mm 2N/A-M x/(γx W x)= 0.2×1000÷1382.3-1.4×0.383×1000000÷(1.15×36728)=0.14-12.69=-12.55N/mm 2<80 N/mm 2五、稳定性验算第一段钢管1)平面内的稳定性等效长度计算系数 K=1+M 1/M 2=1+95.517÷171.862=1.556注: (M 1为钢管上部弯矩; M 2为钢管下部弯矩 )x =Kl/i x =1.556×7300÷185.7=61.17<150,查得φx =0.815N 'Ex2EA /(1.1 2x ) 3.1415922 206000 16493.3/(1 .1 61.172) 81471312)平面外的稳定性2) 平面外的稳定性N tx M x 1.2 14900 1.4 1.0 95.517 1000000tx x0.7 2.10 81.27φx A φb W 1x 0.785 10857.3 1.0 1151667.9 83.37kN / m 215kN /m第三段钢管1)平面内的稳定性 等效长度计算系数 注: (M 1为钢管上部弯矩; M 2为钢管下部弯矩 )mxMx φ A Nφx Ax W 1x (1 0.8 ' ) x 1xNE ' x1.2 24400 1.4 1.0 171.862 10000002.18 98.74100.92kN / m 0.815 16493.3215kN /m1.15 2125061.3 (1 0.8 1.2 24400 )8147131 )φx AtxM xφb W1x1.2 24400 0.815 16493.3 81.43kN /m 215kN /m0.7 1.4 1.0171.862 1000000 2.18 79.251.0 2125061.3第二段钢管1)平面内的稳定性等效长度计算系数K=1+M 1/M 2=1+44.622÷95.517=1.467注: (M 1为钢管上部弯矩; M 2为钢管下部弯矩 )x =Kl/i x =1.467x7000 ÷ 152.8=67.21<150,查得φx =0.785N 'Ex 2EA /(1.1 x 2) 3.1415922 206000 10857.3 /(1.1 67.212 ) 4442507 NmxM x 1.2 14900φx A x W 1x (1 0.8 N ' ) 0.785 10857.3 x 1x NE 'x2.10 101.3 103.4kN /m 215kN /m1.4 1.0 95.517 10000001.2 149001.15 1151667.9 (1 0.8 )4442507K=1+M 1/M 2=1+16.23/44.622=1.36x =Kl/i x =1.36x7000 ÷ 117.4=81.09<150,查得φx =0.704N 'Ex 2EA/(1.1 2x ) 3.1415922 206000 8344.1 /(1.1 81.092) 2345411NmxMx1.2 8900 1.4 1.0 44.622 1000000φx Ax W 1x (10.8 N ' ) 0.704 8344.11.15 676654.9 (1 0.81.2 8900) N E 'x23454111.82 80.57 82.39kN /m215kN /m2)平面外的稳定性N tx M x 1.2 8900 0.7 1.4 1.044.622 100000064.61.82φx A φb W 1x 0.704 8344.1 1.0 676654.966.42kN /m 215kN /m第四段钢管1) 平面内的稳定性等效长度计算系数 K=1+M 1/M 2=1+3.574 ÷ 16.23=1.22 注: (M 1为钢管上部弯矩; M 2为钢管下部弯矩 )x =Kl/i x =1.22x7000 ÷ 82.8=103.14<150,查得φx =0.56364.37kN/m 215kN /m根据上述结构计算,第五、第六、第七、第八段平面内及平面外都满足要求。

避雷针施工方案

避雷针施工方案

30m独立避雷针的安装施工方案独立避雷针是保证变电站和人身、设备免受雷击灾害所必须采取的重要技术措施。

变电站建设时根据所需保护的建筑、构架以及设备分布情况进行避雷针防雷保护。

一、根据设计单位计算,黄金埠35kV变电站新建工程将安装2根24米和1根30米高的独立避雷针,由于30米高的独立避雷针高度较高,重量大(1.515 T),且靠近构架和带电线路,因此,作业难度较大,特制定本施工方案.二、施工时间此项工程总体时间计划:2008年02月15日至2008年03月16日构件现场验收: 2008年02月16日-—02月22日构件二次运输:2008年02月23日--02月29日构件组装:2008年03月03日—-03月08日构件吊装:2008年03日10日-—03月16日三、施工内容及主要质量控制要点(一)施工准备(1)技术准备。

l)图纸会检:严格按照国家电网公司《电力建设工程施工技术管理导则》的要求做好图纸会检工作,主要有下列几项:a。

施工图纸与设备、原材料的技术要求是否一致;b.图纸表达深度能否满足施工需要;c.施工图之间和总分图之间、总分尺寸之间有无矛盾;d.设计采用的四新在施工技术、机具和物资供应上有无困难。

2)技术交底:应按照导则规定,每个分项工程必须分级进行施工技术交底。

技术交底内容要充实,具有针对性和指导性,全体参加施工的人员都要参加交底并签名,形成书面交底记录。

(2)机具准备。

按照施工措施要求的工器具进行准备和检查,详细见附表一.(3)构件进场、验收及堆放.l)构件进场时,应检查出厂合格证、构件安装说明、螺栓清单等出厂资料,以及构件的防腐质量、碰伤、变形情况,镀锌层不得有黄锈、锌瘤、毛刺及漏锌现象。

2)堆放时用道木垫起,构件不允许与地面直接接触,钢管堆放不得超过三层。

3)构件验收的质量标准:对单节钢管弯曲矢高偏差控制在L/1500,且≤5mm;单个构件长度偏差≤±3mm.(4)作业人员组织.总负责人:梁敏技术负责人:刘杰安全负责人:徐亚平施工负责人:何强吊装负责人:陈刚测量负责人:毛贤德构件组装: 技工4人,焊工2人,辅工4人。

变电站避雷针结构设计说明

变电站避雷针结构设计说明

.Word 文档变电站避雷针结构设计说明中国电力工程东北电力设计院顾问集团.2015年7月Word 文档.Word 文档变电站避雷针结构设计说明批准:审核:校核:编写:XXX X年XX月.Word 文档目录第1章变电站避雷针结构型式 (1)1.1 构架结构型式 (1)1.2 避雷针结构选型 (12)第2章变电站避雷针设计 (13)2.1 主要遵循的规范规程 (13)2.2 技术原则 (13)2.3 建议措施 (14).Word 文档第1章变电站避雷针结构型式1.1 构架结构型式变电站避雷针主要有构架避雷针及独立避雷针两种,构架避雷针结构型式与构架一致,为保持全站钢结构外观一致,独立避雷针结构选型亦与构架一致。

综合目前国内外220kV及以上电压等级变电构架的结构型式,主要有格构式钢结构及等截面普通圆钢管结构两种。

1.1.1 格构式钢结构该结构体系由矩形断面格构式柱和矩形断面格构式钢梁组成,梁柱采用刚接,构架柱以自立式为主。

格构式柱、梁又分钢管格构式和角钢格构式两种。

格构式结构的优点在于其整个结构均由热轧型钢或钢管组成,节点采用螺栓连接,杆件受力明确,单个构件自重小,制作、运输及防腐处理方便,用钢量少。

但由于杆件种类和数量较多,给现场拼装带来许多不便,对安装机具及设备要求较高,现场拼装工作量较大。

同时,自立式格构式结构纵向宽度较大,为保证跳线的带电距离,会增加间隔宽度。

格构式钢管构架:构架柱采用矩型自立式钢管塔,钢管弦杆,.钢管或角钢腹杆;构架梁采用矩形等断面格构式钢梁,钢管弦杆,钢管或角钢腹杆。

格构式角钢构架:构架柱采用矩型自立式角钢塔,弦杆和腹杆均采用角钢;构架梁采用矩形等截面格构式钢梁,弦杆和腹杆均采用角钢。

目前我院设计的500kV变电站中的500kV构架和部分220kV 构架均采用这种结构。

图1.1 500kV角钢格构式构架Word 文档. Word 文档.图1.2 500kV角钢格构式构架Word 文档.图1.3 500kV钢管格构式构架图1.4 750kV钢管格构式构架Word 文档.图1.5 750kV钢管格构式构架图1.6钢管格构式结构Word 文档.Word 文档图1.7 1000kV钢管格构式构架1.1.2 等截面普通圆钢管结构该结构由A型普通钢管构架柱和三角形断面格构式钢梁或单钢管梁组成,梁柱采用铰接或刚接,纵向设置端撑或侧身支撑。

简析建筑物防雷图纸审核要点

简析建筑物防雷图纸审核要点

简析建筑物防雷图纸审核要点随着社会的不断发展,各种各样的电子信息设备被广泛的应用于国防建设及人们生活的方方面面。

随着城市内高层建筑物的不断增多,建筑物及其内部设备对防雷安全提出了更为严格的要求,但是在建筑物防雷图纸的设计过程中往往会出现很多问题,从而为建筑物防雷留下了很多安全隐患。

全面的对防雷图纸进行审核,并确保其结论的准确性与科学性,与防雷工程的施工质量息息相关。

因此,做好建筑物防雷图纸的审核工作非常重要。

1.建筑物防雷图纸的审核要点在设计防雷图纸之前要先对新建的建筑进行现场勘察,熟悉建筑物的周围环境、内外结构及建筑物内部的电子信息设备、电气等的设置情况,还要掌握建筑物的用途。

并以这些情况为依据对建筑物进行雷击风险评估,并安装科学、合理的雷电防护装置。

再以现场勘察到的内容为依据,确定建筑物的审核要点:①确定建筑防雷的分类;②直击雷的防护措施;③雷电波入侵的防护措施;④防雷区的划分及屏蔽;⑤高层建筑防侧击雷;⑥等电位的处理情况。

2建筑物防雷设计审核要点分析2.1确定建筑物防雷的分类在确认建筑物需要安装防雷装置后,要先对建筑物的防雷类别进行确定。

相关规范对建筑物的防雷类别进行了明确的划分,不仅包含有建筑物的实用性质、发生雷电事故的可能性、重要性及其后果定性,还包括由建筑物预计的年雷击次数决定的第二类、第三类的防雷建筑。

目前,多数建筑电气设计人员在对防雷分类进行确定时,仍然是以《民用建筑电气设计规范》为依据将其防雷设计分为三级;应该按照《建筑物防雷设计规范》将其分为三类。

2.2直击雷的防护措施审核直击雷防护装置主要分为引下线、接闪器及接地装置。

(1)引下线:现有的建筑设计的引下线多是使用柱筋,其线径通常在12mm 以上,与相关规范的要求相符合。

柱筋通常采用压力熔焊焊接的方式进行竖向上的连接,在对其进行审核时要尤其注意引下线布局的合理性,相对而言,引下线的设计审核比较简单。

对于一类防雷建筑而言,需要在架空避雷线的端部、避雷针的杆塔及架空避雷网的各个支柱处至少架一根引下线;对于二类防雷建筑而言,其引下线应该尽可能多于2根,还要注意沿着建筑物的四周对称或均匀布置,并且引下线之间的间距要小于18m;对于三类防雷建筑而言,其引下线要多于2根,但是高度低于40m,周长小于25m的建筑物可以只设1根引下线。

防雷接地图纸怎么看

防雷接地图纸怎么看

防雷接地图纸怎么看一、防雷接地防雷接地分为两个概念一是防雷,防止因雷击而造成损害;二是静电接地,防止静电产生危害。

(一)、工厂防雷分为整体结构防雷,就是主厂房防雷,主要基础打接地极、接地带,形成一个接地网,接地电阻小于10欧。

再与主厂房的钢筋或钢构的主体连接。

水泥混凝土屋顶接避雷带或避雷针,墙外地面还得留有接地测试点,钢构应用镀锌扁铁作直接引到屋顶。

(二)、供电系统接地分为保护接地和工作点接地,保护接地是带电设备外壳接地。

工作点接地指零线接地,接地网做法与避雷接地方式一样,接地电阻小于4欧。

如达不到要求,则应加接地极,条件不好的,应加电解物及(或)更换土壤。

工作接地和保护接地在配电室独立引出,系统可并为一个。

工作方式,如地线和零线分开,也可合为一引到用电系统(或设备)。

接地系统须重复接地。

也有独立分开的方式,TN-S系统。

零地不能再合为一。

(三)、仪器仪表接地系统。

该系统接地电阻小于1欧,不能与防雷接地连接。

(四)、防静电接地,如油管等,每隔(弯头)35米就得有一处可靠接地(可系统也可独立),电阻小于30欧。

二、防雷接地装置部分概念1)雷电接受装置:直接或间接接受雷电的金属杆(接闪器),如避雷针、避雷带(网)、架空地线及避雷器等。

2)引下线:用于将雷电流从接闪器传导至接地装置的导体。

3)接地线:电气设备、杆塔的接地端子与接地体或零线连接用的正常情况下不载流的金属导体。

4)接地体(极):埋入土中并直接与大地接触的金属导体,称为接地体。

分为垂直接地体和水平接地体。

5)接地装置:接地线和接地体的总称。

6)接地网:由垂直和水平接地体组成的具有泄流和均压作用的网状接地装置。

7)接地电阻:接地体或自然接地体的对地电阻的总和,成为接地装置的接地电阻,其数值等于接地装置对地电压与通过接地体流入地中电流的比值。

同时接地电阻也是恒量接地装置水平的标志。

三、识图方法首先看说明,然后看图中的标注了的线安装的位置,再看各个柱子或剪力墙位置是否有引下线。

厂区独立避雷针基础施工方案

厂区独立避雷针基础施工方案

1.工程概况及特点全厂区内共设置四个独立避雷针,基础形式为现浇钢筋混凝土独立基础,基础埋深为-2.50m。

其定位坐标分别为A=663.50m,B=2014.00m; A=531.50m,B=2014.00m;A=481.50m,B=2107.00m;A=594.80m,B=2106.50m;避雷针基础±0.00m标高相当于绝对标高4.40m,其高程控制以厂区控制桩为基准点,进行测量。

因避雷针基础地下水位在-3.00m以上,根据水质报告,地下水对砼有强腐蚀,固此,所有基础砼(包括垫层)中均需掺入SRA-I型防腐剂,掺入量为水泥用量的2%,所有基础外侧均刷厚浆型环氧煤沥青防腐涂料2遍。

厂区独立避雷针基础垫层砼强度等级为C15,基础砼强度等级为C35;模板采用组合钢模板,共300m2;钢筋有I级钢和口级钢两种,共5.0t。

2.编制技术方案依据的技术文件《电力建设消除施工质量通病守则》《火电施工质量检验及评定标准》土建工程篇《电力建设施工及验收技术规范》SDJ69-87《电力建设安全工作规程》第一部分:火力发电厂,DL5009.1-2002《电力建设安全健康与环境管理工作规定》国电电源[2002]49号《混凝土结构工程施工质量验收规范》GB50204-2002《厂区独立避雷针及照明平台施工图》10-F038S-T0447《混凝土结构工程施工质量验收规范》GB50204-2002《人工回填土施工工艺规程》Q/JDJFW102.102-2004《1#机组基础外防腐工程施工技术方案》O-WD1-JZ-FF-A13.施工应具备的条件3.1施工现场场地平整完成,临时道路畅通,水源、电源引至使用地点,经测试后满足施工要求。

3.2建立测量控制网,并经甲方、监理等验收合格。

3.3对进场的所有施工人员进行了三级安全教育,特殊工种作业人员已经经过培训合格,持证上岗。

3.4钢筋、水泥、砂、石、外加剂等施工原材料根据材料计划准备充足,同时完成必要的复试和检验。

防雷接地施工图预算

防雷接地施工图预算
4
解:[ 350×(2-1)]/4
5
=88
6
接地极的制作安装:“根”
01
接地极制作安装以“根”为计量单位。其长度按设计长度计算,设计无规定时,每根按2.5m计算。若设计有管帽时,管帽另按加工计算。
02
P542
*
均压环的敷设:“10m”
1
均压环敷设以“m”为单位计算,焊接时按两根筋考虑,超过两根时,可按比例调整。长度按设计需要作为均压接地的圈梁中心长度,以延长米来计算。
避雷引下线的敷设
STEP4
STEP3
STEP2
STEP1
*
断接卡子制作安装以“套”为计量单位,按设计规定装设的断接卡子数量。断接卡子箱的安装另计。
02
利用建筑物内主筋作引下线安装以“10m”为计量单位,每一柱子内按焊接两根主筋考虑,如果焊接主筋数超过两根时,可按比例调整,即若4根主筋定额基价×2。
避雷针的制作和安装
01
避雷引下线的敷设
03
接地极的制作安装
05
避雷网(带)的安装
02
接地母线的敷设
04
均压环的敷设
06
安装工作内容
目录
01
02
03
工程量计算规则 避雷针的制作和安装 避雷针的制作:“根” 避雷针的安装:“根” 拉线的安装:3根为一组 独立避雷针的制作与安装 制作:按“一般铁构件”的制作或按成品计算:100kg 安装:“基”
导体少长针消雷装置是按生产厂家供应成套装置,现场吊装、组合。接地引下线及接地电阻试验另套相应定额。
防雷装置示例
例: 工程概况 某饲料厂主厂房,房顶的长和宽分别为30m和11m,层高4.5m,共五层,女儿墙高度0.6m,室内外高差0.45m,女儿墙顶敷设Ф8镀锌圆钢避雷带, Ф8镀锌圆钢引下线自两角引下,在距室外自然地坪1.8m处断开,在距建筑物3m处,设3根2.5m长∠ 50×5角钢接地极两组,打入地下0.8m,顶部用-40×4镀锌扁钢连通,在引下线断接卡子处和引下线连接。

(完整版)避雷针安装方法

(完整版)避雷针安装方法

避雷针安装方法所有金属部件必须镀锌,操作时注意保护镀锌层。

采用镀锌钢管管制作针尖,管壁厚度不得小于3mm,针尖刷锡长度不得小于70mm避雷针应垂直安装牢固.垂直度允许偏差为3/1000.焊接要求焊接应采用搭接焊,其搭接长度必须符合下列规定:扁钢为其宽度的2倍(且至少3个棱边焊接)。

圆钢为其直径的6倍.圆钢与扁钢连接时,其长度为圆钢直径的6倍。

避雷针一般采用圆钢或钢管制成,其直径不应小于下列数值:a独立避雷针一般采用直径为19mm镀锌圆钢。

b屋面上的避雷针采用直径25mm镀锌钢管.c水塔顶部避雷针采用直径25mm或40mm的镀锌钢管d烟囱顶上避雷针采用直径25mm镀锌圆钢或直径为40mm镀锌钢管e避雷环用直径12mm镀锌圆钢或截面为100mm2镀锌扁钢,其厚度应为4mm1、避雷针制作1)根据图纸要求在土建进行避雷针基础施工时,预埋好地脚螺栓等。

2) 按设计要求的材料所需的长度分上、中、下三节进行下料。

如果针尖采用钢管制作,先将上节钢管一端锯成锯齿形,用手锤收尖后进行焊缝磨尖、涮锡,然后将另一端与中、下两节找直焊好。

2、避雷针安装将支座钢板固定在预埋的地脚螺栓上, 焊上一块肋板, 再将避雷针立起, 找直、找正后, 进行点焊,然后加以校正, 焊上其他三块胁板。

最后将引下线焊接在底板上,清除药皮刷防锈漆.3、支架安装角钢支架应有燕尾,其埋注深度不小于100mm,扁钢和圆钢支架埋深不小于80mm。

所有支架必须牢固,灰浆饱满,横平竖直。

防雷装置的各种支架顶部一般应距建筑物表面100mm;接地干线支架其顶部应距墙面20mm。

支架水平间距不大于1m(混凝土支座不大于2m);垂直间距不大于1.5m 。

各间距应均匀,允许偏差30mm。

转角处两边的支架距转角中心不大于250mm.支架应平直。

水平度每2m检查段允许偏差3/1000,垂直度每3m检查段允许偏差2/1000;但全长偏差不得大于10mm.支架等铁件均应做防腐处理。

烟囱避雷针安装

烟囱避雷针安装

烟囱直击雷防护设计捷力通防雷烟囱不锈钢避雷针烟囱避雷针安装一、直击雷使用材料:1、避雷针材料1)OCr23Ni28Mo3Cu3Ti2)1Cr18Ni12Mo2Ti3)304L不锈钢4)304L+TA+JLT(高性能材料)2、引下线使用材料1)镀铜材料2)镀锌扁钢(40*4mm或者50*5mm)3) 镀锌圆钢4)铜排或者铜线5)腾辉超绝缘引下线三、具体安装图纸:山西捷力通防雷公司提供资料:四、防雷接地设计标准及规范(GB50057-2010)《建筑物防雷设计规范》(GB50343-2012)《建筑物电子信息系统防雷技术规范》(GB50169-2010)《电气装置安装工程接地装置施工及验收规范》 ( 99D501-1) 《国家建筑标准设计图集(防雷与接地安装)》五、降低接地电阻分析防雷接地对技术要求比较高。

一般用于风力发电、钻井、烟囱、石油、通讯、部队、铁路、桥梁等特殊场合。

接地施工分为以下几个方面:1)根据实际现场情况,测试土壤或砂石土壤电阻率。

2)测试土壤的腐蚀度、考虑地区的气象环境如:干旱少雨、冰冻深度、雷雨季节。

3)根据环境选择施工工具、材料并制定挖掘方案,一般采用深井、环形、L型接地较多。

4)选择接地材料。

主要考虑:对环境的污染、使用寿命、施工难度、运输、造价成本等。

从施工难易度分析:1、高风沙高腐蚀高地阻材料使用:烧制接地模块+锌包钢或绝缘线缆+高纯石墨降阻剂+阴极接地材料+石墨线缆导线+热焊接(此套餐优点:使用寿命长、容易降低接地电阻。

缺点:造价高、材料市场少,一般厂家生产模块为压制模块)2、高地阻石块地区使用材料:离子接地棒+镀铜绞线+镀锌管+石墨降阻剂+普通接地模块(优点:导电性能好、使用寿命长。

缺点:施工难度大、造价高)3、砂质土壤高地阻环境使用材料:A:烧制接地模块+高纯降阻剂+镀铜或镀锌材料连接。

B:深井铜包钢+离子接地棒+高纯降阻剂结合。

4、红土泥土或电阻率低的环境下:镀锌、镀铜、烧制模块都可以使用,效果好。

电气专业施工技术——接地

电气专业施工技术——接地

开挖深度一定要 达到规范或设计 的要求,属于强 制性条文。
接地敷设
接地极: 材料:镀锌角钢(自制)/铜包钢(成品) 安装方式:垂直打入地下 技术要求:接地极间距不宜小于其长度的2倍,无设计规定时不
宜小于5米;顶端具地面符合设计规定,不宜小于0.6米;施 工时加桩帽保护; 接地线: 材料:镀锌扁钢/镀锌圆钢/铜包钢(硬态)/铜包钢(软态) 安装方式:镀锌扁钢、镀锌圆钢——电焊连接;铜包钢——热 熔焊接/夹具连接; 技术要求:接头焊接饱满,无虚接、气孔、夹渣;镀锌扁钢— —搭接长度不小于其宽度的2倍,至少焊接三个棱边,防腐; 镀锌圆钢——搭接长度不小于其直径的6倍,两面施焊,防腐; 铜包钢——选择防腐;
压接:接地体(线)的连接采用压接时,压接面积应符合 GB50149的规定 。 热熔焊:铜与铜或铜与钢的连接应采用放热焊接,必须达到以 下要求:被焊接的导体必须完全包裹在接头里;确保连接部位 的金属完全融化,连接牢固;接头应无贯穿性的气孔;接头表 面应平滑
接地测试
测试条件:一般应选在天气晴好的条件下进行(三 天);
测试位置:单根接地极(个别要求);每个设备引 出点;
技术要求:接地电阻值符合设计要求;常规——装 置区防雷接地系统不大于10欧姆,变电所等配电系 统接地系统不大于4欧姆,仪表控制室及微机接地 系统不大于1欧姆;
不符合处理方法:加打接地极;灌降阻剂;换回填 土;组合方式;

测量1#基位接地装置的方法: 1 测量连续性,应用万用表的电阻档依次测量AB、BC、CD、AD的电阻,阻值 ≤0.2Ω;不允许以某一点为基准进行测试,因为此方法不能保证接地网连续; 不能1#基位接地网的A点与2#接地网的A点进行连续性测试。 2 接地阻抗的测试,应选择连续三天晴天的情况下进行测试,测试时将接地线与 设备断开,分别对A、B、C、D四点进行测试。接地阻抗值必须符合设计要求。

防雷接地平面图的设计及应重点注意的问题

防雷接地平面图的设计及应重点注意的问题

防雷,接地平面图的设计及应重点注意的问题1 标准、规范,设计条件和要求1.1 防雷、接地设计应执行的标准、规范防雷、接地设计中应执行的标准、规范由电气专业负责人在设计统一规定中提出。

1.1.1 国内设计项目按下列标准、规范执行《工业与民用电力装置的接地设计规范》(试行) GBJ65《爆炸和火灾危险环境电力装置设计规范》 GB50058《建筑物防雷设计规范》 GB50057《交流电气装置的过电压保护和绝缘配合》DL/T620—1997《低压配电设计规范》 GB50054《石油化工企业防火规范》 GB50160《石油库设计规范》 GBJ74《化工企业静电接地设计规程》 HGJ28静电接地安装图按《化工企业静电接地安装通用图CD90B4》执行1.1.2 引进项目根据合同要求可按卖方国家有关规定执行,但不得低于1.1.1条的要求。

1.1.3 技术出口项目根据合同要求可执行买方国家或地方的标准、规范,或买方指定的国际标准、规范。

1.2 防雷、接地装置的设计过程防雷、接地装置的设计可分下列几个阶段:1.2.1设计条件和设计资料收集阶段。

为了进行设计计算,应收集以下资料,如不便收集或收集不到时,也可采用经验数据。

所有条件经由电气专业负责人签收转发。

从其它专业提供的设计条件,按设计过程控制规定,由电气专业负责人验收,并在《提出条件通知单》上验收签字后直接(或发给设计人,再由设计人)交给由他负责培训或指导工作的见习生进行设计。

设计人发现设计条件有错误或条件深度达不到设计要求,应及时向电气专业负责人提出,并由电气专业负责人与提供条件的专业负责人协商,由提供条件的专业负责人填写《设计条件变更单》。

设计人按《设计条件变更单》进行设(1) 基础设计(或初步设计)文件详细设计(施工图设计)必需符合基础设计(或初步设计)文件中有关防雷、接地设计的规定。

(2) 工艺装置设备布置图,包括平立剖面图标明界区范围、指北针、主要设备位置及尺寸、框架及管廊、塔、罐及其它操作平台和上下扶梯。

避雷针验收细则

避雷针验收细则

避雷针验收细则1. 引言避雷针是一种用来减少或防止雷电危害的装置,通常用于建筑物、电力设备等场所。

为了确保避雷针的使用安全和有效性,进行验收是非常重要的步骤。

本文档旨在提供一份避雷针的验收细则,以便检查避雷针是否符合规范要求。

2. 验收要求2.1. 技术要求•避雷针应符合国家相关标准,如《建筑物避雷装置技术规范》等;•避雷针的导电材质应具有良好的导电性能和耐腐蚀性;•避雷针的安装和连接件应牢固可靠,确保在雷电活动中不会脱落或损坏;•避雷针的防雷装置应与建筑物的地线系统连接。

2.2. 文件验收•核对避雷针的产品合格证、质量检验报告等文件,确保文件完整、准确;•检查避雷针的安装图纸和设计文件,核对其与实际安装相符;•查阅避雷针的使用说明书及维护保养手册,确保相关手册齐全、易懂。

2.3. 现场检查•检查避雷针的安装位置和高度是否符合设计要求,以保证全面接收雷电;•观察避雷针的外观和连接件的状态,如有损坏、松动或锈蚀等情况及时修复或更换;•使用专业测试仪器,对避雷针的导电性能进行检测,确保导电性能达到要求;•检查避雷针与建筑物的接地装置连接是否牢固,是否满足接地电阻要求。

2.4. 功能测试•使用雷电模拟器进行避雷针的功能测试,模拟真实雷电过程,检查避雷针的接收和传导效果;•监测避雷针在测试过程中是否出现异常现象,比如过热、短路等,确保避雷针的安全性能。

3. 验收结果及记录3.1. 验收结果根据以上验收要求的检查和测试结果,给出以下验收结果:•合格:避雷针符合技术要求,安装牢固可靠,导电性能良好,能有效地防止雷电危害;•不合格:避雷针存在安装不规范、连接件损坏或接地电阻超标等问题,需要进行修复或更换。

3.2. 验收记录在验收过程中,应详细记录以下内容:•验收日期和地点;•验收人员的姓名和单位;•避雷针的基本信息,包括产品型号、生产厂家等;•检查和测试的具体结果;•验收结论及后续处理措施。

4. 验收后处理根据避雷针的验收结果,进行相应的处理:•合格:将验收记录归档,并定期对避雷针进行巡检和维护保养工作;•不合格:根据不合格的具体问题制定处理措施,如修复连接件、更换损坏部件等,并重新进行验收。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档