最新初中中考数学复习专题特殊平行四边形
中考数学专题知识点精讲1:特殊的平行四边形
特殊的平行四边形一、知识要点概述、边(或两底和)的一半.4、平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等.推论1:过三角形一边中点且平行于另一边的直线必平分第三边.推论2:过梯形一腰中点且平行于两底的直线必平分另一腰.二、典型例题剖析例1、已知四边形ABCD和对角线AC、BD,顺次连结各边中点得四边形MNPQ,给出以下六个命题:①若所得四边形MNPQ为矩形,则原四边形ABCD是菱形;②若所得四边形MNPQ为菱形,则原四边形ABCD是矩形;③若所得四边形MNPQ为矩形,则AC⊥BD;④若所得四边形MNPQ为菱形,则AC=BD;⑤若所得四边形MNPQ为矩形,则∠BAD=90°;⑥若所得四边形MNPQ为菱形,则AB=AD.以上命题中,正确的是()A.①②B.③④C.③④⑤⑥D.①②③④答案:选B.例2、下列命题:①一组对边平行且相等的四边形是梯形;②一组对边平行且不相等的四边形是梯形;③一组对边平行,另一组对边相等的四边形是梯形;④一条直线与矩形的一组对边相交,必分矩形为两个直角梯形.其中真命题的序号是__________.分析:可采用反例法,即举的例子符合题设但不符合结论,从而说明原命题是假命题.①可举反例:平行四边形;②可证得另一组对边不平行,故符合定义;③可举反例:矩形;④直线与矩形垂直相交,则得到两个矩形.答案:②例3、已知:如图AB∥CD,AE⊥DC,AE=12,BD=15,AC=20,则梯形的面积是()A.130B.140C.150D.160分析:要求梯形的面积,由于,而AE=12,所以关键是求(AB+DC)的长,注意已知BD和AC,这样我们可过B作对角线AC的平行线交DC的延长线于F,则可证AB=CF,于是转化求(DC+CF)的长,又过B作BH⊥DC于H,则BH=AE=12,现在只要求DH和HF即可.在Rt△BDH中,利用勾股定理得在Rt△BHF中,故DF=DH+HF=DC+AB=9+16=25.这样梯形的面积为.答案:选C.例4、如图,梯形ABCD中,AD∥BC,中位线EF分别与BD、AC交于点G,H,若AD=6,BC=10,则GH=__________.分析:本题主要考查三角形、梯形的中位线定理.因为EF是中位线,,EG、HF分别是△ABD、△ACD的中位线,,故GH=EF-EG-HF=8-3-3=2.答案:2.例5、如图,将矩形ABCD沿着直线BD折叠,使点C落在C′处,BC′交AD于E,AD=8,AB=4,求△BED的面积.解:由△BCD沿直线BD折叠与△BC′D重合,∠1=∠2,又∵AD∥BC,∴∠2=∠3.∠1=∠3,故△BED是等腰三角形.∴BE=ED.设ED=x,则AE=AD-ED=8-x.在Rt△ABE中,AB2+AE2=BE2,∴42+(8-x)2=x2.解之得x=5.故例6、如图,M、N分别是□ABCD的对边AD、BC的中点,且AD=2AB.求证:PMQN为矩形.证明:∵ABCD是平行四边形,∴AD BC.又M、N分别是AD、BC的中点,∴MD BN,BNDM为平行四边形.∴BM∥ND,同理AN∥MC,∴PMQN为平行四边形.连结MN,∵AM BN,∴ABNM为平行四边形.又AD=2AB,M为AD中点,∴AM=AB.∴ABNM为菱形,∴AN⊥BM.∴PMQN为矩形.说明:本例是一道平行四边形、菱形、矩形性质定理和判定定理反复运用的较好的综合题,同学们认真体会其证题思路和证明方法.例7、如图,过正方形ABCD的顶点B作BE∥AC且使AE=AC,又CF∥AE,求证:.分析:按常规思路将∠AEB取半或将∠BCF加倍,但由于图形的“不规则”性,难于达到目的,易见AEFC为菱形,∠ACB=45°,若结论成立,则∠ACF=∠AEF=30°,不妨利用正方形和菱形的特性求出∠E=30°.证明:连结BD交AC于O,作AH⊥BE于H.∵ABCD为正方形,∴AC与BD互相垂直平分于点O,且AO=BO.已知BE∥AC,已知AH⊥BE易证四边形AOBH为正方形,.∴∠AEH=30°又BE∥AC,AE∥CF,AE=AC.∴ACFE为菱形,∴∠AEF=∠ACF=30°,又∠ACB=45°,∴∠BCF=15°..例8、在梯形ABCD中,AD∥BC且AB=AD+BC,M为DC的中点,求证:AM⊥BM.分析:由题设AB=AD+BC,应将两底集中.证明:延长AM交BC延长线于N,∵M是DC的中点,AD∥BC,则△ADM≌△NCM.∴AD=CN,AM=MN.故AB=AD+BC=CN+BC=BN.由等腰三角形“三线合一”知BM⊥AM.说明:根据证题的需要,集中梯形的两底是常用辅助线之一,本例也可以先延长BC到N使BN=AB,再证A、M、N共线而得.例9、如图,在等腰梯形ABCD中AD∥BC,AB=DC,点P为BC边上的一点,PE⊥AB,PF⊥CD,BG⊥CD,垂足分别为E、F、G,求证:PE+PF=BG.证明:过P点作PH⊥BG于点H,∵BG⊥CD,PF⊥CD,PH⊥BG,∴四边形PHGF为矩形.∴PF=HG,PH∥CD,∴∠BPH=∠C.又在等腰梯形ABCD中AB=DC,∵∠PBE=∠C,∴∠PBE=∠BPH.故Rt△BPH≌Rt△PBE,∴BH=PE.∴PE+PF=BH+HG=BG.说明:在梯形的有关问题中常是化归为特殊的平行四边形及三角形来处理.例10、如图,ABCD为等腰梯形,AB∥CD,对角线AC、BD交于O,且∠AOB=60°,又E、F、G分别为DO、AO、BC的中点,求证:△EFG为等边三角形.分析:这里中点较多,显然,又AD=BC,要能证EG,FG为BC的一半才行,但无法用中位线定理,只有另辟蹊径,注意∠AOB=60°.证明:连结EC,∵ABCD为等腰梯形,∴AD=BC且AC=BD,又DC=DC,∴△ADC≌△BCD,∠ACD=∠BDC.∴△ODC为等腰三角形.∵∠DOC=∠AOB=60°,∴△ODC为等边三角形.又E为OD中点,∴∠OEC=90°.在Rt△BEC中,G为斜边的中点,,在△OAD中,∵E、F分别是OD、OA的中点,,∴△EFG为等边三角形.说明:本例中除揭示等腰梯形的诸性质外,还提醒同学们注意遇到中点应联想中位线,但不要只想到中位线,须将所学过的知识综合运用,这里运用了“直角三角形斜边上的中线等于斜边的一半”.。
中考数学复习四边形时特殊平行四边形教案
中考数学复习四边形时特殊平行四边形教案教学目标:1.了解特殊平行四边形的概念和性质。
2.掌握特殊平行四边形的判定方法。
3.运用特殊平行四边形的性质解决实际问题。
教学准备:教学课件、黑板、彩色粉笔、练习题、学生练习本。
教学过程:Step 1:引入新知1.通过展示图片向学生介绍特殊平行四边形的概念:特殊平行四边形是指具有特别性质的平行四边形。
2.让学生观察图片,思考有哪些特殊平行四边形。
3.与学生一起总结,将特殊平行四边形分为矩形、正方形、菱形和长方形。
Step 2:矩形1.通过展示图片向学生介绍矩形的性质:矩形是两对相邻边相等且都平行的四边形。
2.通过黑板上的示意图向学生讲解矩形的判断方法:如果一个四边形的对角线相等,那么它就是矩形。
3.让学生通过默写练习判断一些图形是否是矩形,并与同桌讨论答案。
Step 3:正方形1.通过展示图片向学生介绍正方形的性质:正方形是两对相邻边相等且都平行的四边形,且四个角都是直角。
2.通过黑板上的示意图向学生讲解正方形的判断方法:如果一个四边形的对角线相等且呈直角,那么它就是正方形。
3.让学生通过默写练习判断一些图形是否是正方形,并与同桌讨论答案。
Step 4:菱形1.通过展示图片向学生介绍菱形的性质:菱形是两对相邻边相等的四边形。
2.通过黑板上的示意图向学生讲解菱形的判断方法:如果一个四边形的两对相邻边相等,那么它就是菱形。
3.让学生通过默写练习判断一些图形是否是菱形,并与同桌讨论答案。
Step 5:长方形1.通过展示图片向学生介绍长方形的性质:长方形是两对相邻边相等且都平行的四边形,且四个角都是直角。
2.通过黑板上的示意图向学生讲解长方形的判断方法:如果一个四边形的两对相邻边相等且呈直角,那么它就是长方形。
3.让学生通过默写练习判断一些图形是否是长方形,并与同桌讨论答案。
Step 6:综合练习1.让学生完成练习题,运用所学的方法判断给出的图形属于哪种特殊平行四边形。
特殊平行四边形知识点归纳
特殊平行四边形知识点归纳1.对角线:特殊平行四边形的对角线分别连接了两对相对顶点,它们相交于一个点,并且该交点将对角线分为两个相等的部分。
2.平行线性质:特殊平行四边形的两对边分别是平行的。
根据平行线的性质,可以推论出特殊平行四边形的一些重要性质,如对边相等和内角和为180度。
3.对角线性质:特殊平行四边形的对角线相等,即对角线BD=AC。
这个性质可以通过两个相似三角形的性质证明得出。
4.垂直线性质:特殊平行四边形的对角线相交于一个垂直点,即∠BOC=90度。
这个性质可以通过垂直线的性质证明得出。
5.邻补角性质:特殊平行四边形的邻补角(共享一条边且内角和为180度的两个角)之和为180度。
这个性质可以通过平行线的性质证明得出。
6.夹角性质:特殊平行四边形的夹角(相邻且共享一条边的两个内角)之和为180度。
这个性质也可以通过夹角的定义和平行线的性质证明得出。
7.对角线中点连线性质:特殊平行四边形的对角线的中点分别连接,即中点E和F相连,则EF平行于对边AB和CD,并且EF=AB=CD。
这个性质可以通过对角线中点连线构造等腰直角三角形的性质证明得出。
特殊平行四边形的这些性质和概念在几何学中有着广泛的应用。
例如,在解决平行四边形的面积、周长、角度和边长等问题时,可以利用这些性质来求解。
特殊平行四边形还与三角形、四边形和多边形等几何图形的关系密切相关,在几何证明和问题求解中起着重要的作用。
总之,特殊平行四边形是一个重要的几何概念,它具有一系列的重要性质和应用。
通过深入理解这些知识点,并善于运用它们来解决问题,可以提高我们的几何学思维能力和分析问题的能力。
初三数学特殊的平行四边形图形的相似知识点
初三数学特殊的平行四边形图形的相似知识点平行四边形是一个有特殊性质的四边形,其边界任意两边两边互相平行并且长度相等。
在研究平行四边形的时候,我们可以遇到以下几种相似的图形:1. 直角共边平行四边形:这是一种特殊的平行四边形,其中两条边是相互垂直的,我们可以通过相似性来研究它们。
由于这是一个直角平行四边形,角度大小为90度,因此我们可以利用相似三角形的概念来研究其它相似性质。
2. 斜边相等平行四边形:这是另一种特殊的平行四边形,其中两条斜边的长度相等。
根据这个特点,我们可以得出这两个平行四边形的其它边长也相等。
利用这种相似性,我们可以得到它们的一些共同特征,例如周长、面积等。
3. 高度等比例平行四边形:对于两个平行四边形,如果它们的高度相等,并且这两个平行四边形是相似的,那么它们的边长之比也是相等的。
这个性质可以通过相似三角形的概念进行证明。
4. 底边等比例平行四边形:对于两个平行四边形,如果它们的底边之比等于它们的相似比,那么这两个平行四边形是相似的。
同样地,这个性质也可以通过相似三角形进行证明。
在研究平行四边形的相似性质时,我们可以利用各种几何定理和性质来进行证明。
相似性质不仅可以帮助我们推导出平行四边形的其他性质,还能扩展我们对几何形状的理解,为后续的学习奠定坚实的基础。
平行四边形是在我们初中数学中经常会遇到的一个图形,它有着独特的性质和特点。
而在研究平行四边形的过程中,我们经常会遇到一些特殊情况,这些特殊的平行四边形图形包含着一些相似的知识点。
首先,我们来讨论直角共边平行四边形。
直角共边平行四边形是一个有趣且特殊的平行四边形,其中两条边是互相垂直的。
这使得我们可以运用相似三角形的概念来研究它们。
在这种情况下,平行四边形的两对对角线相交于一点,并且形成四个直角三角形。
我们可以利用直角三角形的性质,如勾股定理和三角函数,来探讨直角共边平行四边形的周长、面积和各边之间的关系。
其次,我们来考虑斜边相等平行四边形。
初中数学特殊平行四边形知识点总结
特殊的平行四边形一、平行四边形(复习):中心对称图形,非轴对称图形平行四边形的定义:两组对边分别平行的四边形叫做平行四边形平行四边形的性质(1)平行四边形的对边平行且相等。
(对边)(2)平行四边形相邻的角互补,对角相等(对角)(3)平行四边形的对角线互相平分。
(对角线)(4)平行四边形是中心对称图形,对称中心是对角线的交点。
补充:(1)若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段的中点是对角线的交点,并且这条直线二等分此平行四边形的面积。
(2)推论:夹在两条平行线间的平行线段相等。
(3)平行线分线段成比例定理:两条直线被一组平行线所截,截得的对应线段的长度成比例。
推论:平行于三角形一边的直线,截其他两边(或两边延长线)所得的对应线段成比例平行四边形的判定(1)定义:两组对边分别平行的四边形是平行四边形。
(对边)(2)定理1:两组对边分别相等的四边形是平行四边形。
(对边)(3)定理2:一组对边平行且相等的四边形是平行四边形。
(对边)(4)定理3:两组对角分别相等的四边形是平行四边形。
(对角)(5)定理4:对角线互相平分的四边形是平行四边形。
(对角线)两条平行线的距离:两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线的距离。
注意:平行线间的距离处处相等。
平行四边形的面积:S平行四边形=底边长×高=ah二、菱形:特殊平行四边形,有平行四边形一切性质菱形的定义:有一组邻边相等的平行四边形叫做菱形菱形的性质(1)菱形的四条边相等,对边平行。
(边)(2)菱形的相邻的角互补,对角相等。
(对角)(3)菱形的对角线互相垂直平分,并且每一条对角线平分一组对角。
(对角线)(4)菱形既是中心对称图形又是轴对称图形;对称中心是对角线的交点(对称中心到菱形四条边的距离相等);对称轴有两条,是对角线所在的直线。
菱形的判定(1)定义:有一组邻边相等的平行四边形是菱形。
(2)定理1:四边都相等的四边形是菱形。
中考数学复习专题特殊平行四边形
中考(Kao)数学复习专题特殊平行四边形小(Xiao)题)1.下列性质中,菱形具有(You)而平行四边形不具有的性质是()A.对边平(Ping)行且相等B.对角线互(Hu)相平分C.对角线互相(Xiang)垂直 D.对角互补2.能判定一个四边形是菱形的条件是()A.对角线互相平分且相等B.对角线互相垂直且相等C.对角线互相垂直且对角相等D.对角线互相垂直,且一条对角线平分一组对角3.矩形具有而菱形不一定具有的性质是()A.对边分别相等B.对角分别相等C.对角线互相平分 D.对角线相等4.以下条件不能判别四边形ABCD是矩形的是()A.AB=CD,AD=BC,∠A=90°B.OA=OB=OC=ODC.AB=CD,AB∥CD,AC=BD D.AB=CD,AB∥CD,OA=OC,OB=OD5.顺次连接四边形ABCD各边中点所成的四边形为菱形,那么四边形ABCD的对角线AC 和BD只需满足的条件是()A.相等B.互相垂直C.相等且互相垂直 D.相等且互相平分6.已知菱形的两条对角线长分别是6cm和8cm,则菱形的边长是()A.12cm B.10cm C.7cm D.5cm7.如图,在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,以A为圆心,AB长为半径画弧交AD于F,若BF=12,AB=10,则AE的长为()A.16 B.15 C.14 D.138.如(Ru)图,E,G,F,H分(Fen)别是矩形(Xing)ABCD四条边上的(De)点,EF⊥GH,若(Ruo)AB=2,BC=3,则(Ze)EF:GH=()A.2:3 B.3:2 C.4:9 D.无法确(Que)定9.如(Ru)图:点P是Rt△ABC斜边AB上的一点,PE⊥AC于E,PF⊥BC于F,BC=15,AC=20,则线段EF的最小值为()A.12 B.6 C.12.5 D.2510.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,点E为垂足,连接DF,则∠CDF为()A.80°B.70°C.65°D.60°11.如图,在菱形ABCD中,∠A=110°,E,F分别是边AB和BC的中点,EP⊥CD于点P,则∠FPC的度数为()A.55°B.50°C.45°D.35°12.如(Ru)图,矩形(Xing)ABCD中(Zhong),O为(Wei)AC中点(Dian),过点(Dian)O的(De)直线分别与(Yu)AB,CD交于点E,F,连接BF交AC于点M,连接DE,BO.若∠COB=60°,FO=FC,则下列结论:①FB⊥OC,OM=CM;②△EOB≌△CMB;③四边形EBFD是菱形;④MB:OE=3:2.其中正确结论的个数是()A.1 B.2 C.3 D.4评卷人得分二.填空题(共6小题)13.如图,菱形纸片ABCD,∠A=60°,P为AB中点,折叠菱形纸片ABCD,使点C落在DP所在的直线上,得到经过点D的折痕DE,则∠DEC等于度.14.如图,在平面直角坐标系中(Zhong),菱形(Xing)ABCD在第一象(Xiang)限内,边(Bian)BC与(Yu)x轴(Zhou)平行,A,B两点(Dian)的纵坐标分别为(Wei)3,1,反比例函数y=的图象经过A,B两点,则菱形ABCD的面积为.15.如图:在矩形ABCD中,AB=4,BC=8,对角线AC、BD相交于点O,过点O作OE 垂直AC交AD于点E,则DE的长是.16.平行四边形ABCD中,对角线AC、BD相交于点O,BD=2AD,E、F、G分别是OC、OD,AB的中点.下列结论:①EG=EF;②△EFG≌△GBE;③FB平分∠EFG;④EA平分∠GEF;⑤四边形BEFG是菱形.其中正确的是.17.如图,矩形ABCD中,对角线AC、BD交于点O,点E是BC上一点,且AB=BE,∠1=15°,则∠2=.18.如图所示(Shi),在矩形(Xing)ABCD中(Zhong),AB=6,AD=8,P是(Shi)AD上(Shang)的动点,PE⊥AC,PF⊥BD于(Yu)F,则(Ze)PE+PF的值(Zhi)为.评卷人得分三.解答题(共6小题)19.如图,在Rt△ABC中,∠ACB=90°,D为AB的中点,AE∥CD,CE∥AB,连接DE 交AC于点O.(1)证明:四边形ADCE为菱形.(2)BC=6,AB=10,求菱形ADCE的面积.20.已知,如图,BD为平行四边形ABCD的对角线,O为BD的中点,EF⊥BD于点O,与AD、BC分别交于点E、F.试判断四边形BFDE的形状,并证明你的结论.21.如图,在△ABC中,AB=AC,点D是BC的中点,DE⊥AC于点E,DG⊥AB于点G,EK⊥AB于点K,GH⊥AC于点H、EK和GH相交于点F.求证:GE与FD互相垂直平分.22.如图(Tu):在△ABC中(Zhong),CE、CF分(Fen)别平分∠ACB与它的(De)邻补角∠ACD,AE⊥CE于(Yu)E,AF⊥CF于(Yu)F,直(Zhi)线(Xian)EF分别交AB、AC于M、N.(1)求证:四边形AECF为矩形;(2)试猜想MN与BC的关系,并证明你的猜想;(3)如果四边形AECF是菱形,试判断△ABC的形状,直接写出结果,不用说明理由.23.如图:矩形ABCD中,AB=2,BC=5,E、P分别在AD、BC上,且DE=BP=1.(1)判断△BEC的形状,并说明理由?(2)判断四边形EFPH是什么特殊四边形?并证明你的判断;(3)求四边形EFPH的面积.24.如图,在△ABC中,∠ABC=90°,BD为AC的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.(1)求证:BD=DF;(2)求证:四边形BDFG为菱形;(3)若AG=13,CF=6,求四边形BDFG的周长.2017---2018学年中(Zhong)考数学复习专题(Ti)--《特殊平行(Xing)四边形》参考答案与试题解(Jie)析一.选择(Ze)题(共(Gong)12小(Xiao)题)1.下列性质(Zhi)中,菱形具有而平行四边形不具有的性质是()A.对边平行且相等 B.对角线互相平分C.对角线互相垂直 D.对角互补【解答】解:A、平行四边形的对边平行且相等,所以A选项错误;B、平行四边形的对角线互相平分,所以B选项错误;C、菱形的对角线互相垂直,平行四边形的对角线互相平分,所以C选项正确;D、平行四边形的对角相等,所以D选项错误.故选C.2.能判定一个四边形是菱形的条件是()A.对角线互相平分且相等B.对角线互相垂直且相等C.对角线互相垂直且对角相等D.对角线互相垂直,且一条对角线平分一组对角【解答】解:∵对角线互相垂直平分的四边形是菱形.∴A、B、D都不正确.∵对角相等的四边形是平行四边形,而对角线互相垂直的平行四边形是菱形.故C正确.故选C.3.矩形具有而菱形不一定具有的性质是()A.对边分别相等B.对角分别相等C.对角线互相平分 D.对角线相等【解答】解:矩形的性质有:①矩形的对边相等且平行,②矩形的对角相等,且都是直角,③矩形的对角线互相平分、相等;菱(Ling)形的性质有:①菱形的四条(Tiao)边都相等,且对边平行,②菱(Ling)形的对角相等,③菱形的对角(Jiao)线互相平分、垂直,且每一条对角线平分一组对角;∴矩形具有而菱形不一定具有的性质(Zhi)是对角线相等,故(Gu)选(Xuan)D.4.以下条件不(Bu)能判别四边形ABCD是矩形的是()A.AB=CD,AD=BC,∠A=90°B.OA=OB=OC=ODC.AB=CD,AB∥CD,AC=BD D.AB=CD,AB∥CD,OA=OC,OB=OD【解答】解:如图:A、∵AB=CD,AD=BC,∴四边形ABCD是平行四边形,∵∠BAD=90°,∴四边形ABCD是矩形,故本选项错误;B、∵OA=OB=OC=OD,∴AC=BD,∴四边形ABCD是平行四边形,∴四边形ABCD是矩形,故本选项错误;C、∵AB=CD,AB∥CD,∴四边形ABCD是平行四边形,∵AC=BD,∴四边形ABCD是矩形,故本选项错误;D、∵AB∥CD,AB=CD,∴四边形ABCD是平行四边形,根据OA=OC,OB=OD不能推出平行四边形ABCD是矩形,故本选项正确;故选D.5.顺(Shun)次连接四边形(Xing)ABCD各边(Bian)中点所成的四边形为菱形,那么四边形(Xing)ABCD的(De)对角线(Xian)AC和(He)BD只需满足的条件(Jian)是()A.相等B.互相垂直C.相等且互相垂直 D.相等且互相平分【解答】解:因为原四边形的对角线与连接各边中点得到的四边形的关系:①原四边形对角线相等,所得的四边形是菱形;②原四边形对角线互相垂直,所得的四边形是矩形;③原四边形对角线既相等又垂直,所得的四边形是正方形;④原四边形对角线既不相等又不垂直,所得的四边形是平行四边形.因为顺次连接四边形ABCD各边中点所成的四边形为菱形,所以四边形ABCD的对角线AC和BD相等.故选A.6.已知菱形的两条对角线长分别是6cm和8cm,则菱形的边长是()A.12cm B.10cm C.7cm D.5cm【解答】解:如图:∵菱形ABCD中BD=8cm,AC=6cm,∴OD=BD=4cm,OA=AC=3cm,在直角三角形AOD中AD===5cm.故选D.7.如图,在(Zai)平行四边形(Xing)ABCD中,用直尺(Chi)和圆规作∠BAD的(De)平分线(Xian)AG交(Jiao)BC于(Yu)点(Dian)E,以A为圆心,AB长为半径画弧交AD于F,若BF=12,AB=10,则AE的长为()A.16 B.15 C.14 D.13【解答】解:连结EF,AE与BF交于点O,如图,∵AO平分∠BAD,∴∠1=∠2,∵四边形ABCD为平行四边形,∴AF∥BE,∴∠1=∠3,∴∠2=∠3,∴AB=EB,同理:AF=BE,又∵AF∥BE,∴四边形ABEF是平行四边形,∴四边形ABEF是菱形,∴AE⊥BF,OB=OF=6,OA=OE,在Rt△AOB中,由勾股定理得:OA===8,∴AE=2OA=16.故选:A.8.如(Ru)图,E,G,F,H分别(Bie)是矩形(Xing)ABCD四(Si)条边上的点,EF⊥GH,若(Ruo)AB=2,BC=3,则(Ze)EF:GH=()A.2:3 B.3:2 C.4:9 D.无法(Fa)确定【解(Jie)答】解:过F作FM⊥AB于M,过H作HN⊥BC于N,则∠4=∠5=90°=∠AMF∵四边形ABCD是矩形,∴AD∥BC,AB∥CD,∠A=∠D=90°=∠AMF,∴四边形AMFD是矩形,∴FM∥AD,FM=AD=BC=3,同理HN=AB=2,HN∥AB,∴∠1=∠2,∵HG⊥EF,∴∠HOE=90°,∴∠1+∠GHN=90°,∵∠3+∠GHN=90°,∴∠1=∠3=∠2,即∠2=∠3,∠4=∠5,∴△FME∽△HNG,∴==∴EF:GH=AD:CD=3:2.故(Gu)选(Xuan)B.9.如(Ru)图:点(Dian)P是(Shi)Rt△ABC斜(Xie)边(Bian)AB上的一(Yi)点,PE⊥AC于E,PF⊥BC于F,BC=15,AC=20,则线段EF的最小值为()A.12 B.6 C.12.5 D.25【解答】解:如图,连接CP.∵∠C=90°,AC=3,BC=4,∴AB===25,∵PE⊥AC,PF⊥BC,∠C=90°,∴四边形CFPE是矩形,∴EF=CP,由垂线段最短可得CP⊥AB时,线段EF的值最小,=BC•AC=AB•CP,此时,S△ABC即(Ji) ×20×15=×25•CP,解(Jie)得(De)CP=12.故(Gu)选(Xuan)A.10.如图(Tu),在菱形(Xing)ABCD中(Zhong),∠BAD=80°,AB的垂直平分线交对角线AC于点F,点E为垂足,连接DF,则∠CDF为()A.80°B.70°C.65°D.60°【解答】解:如图,连接BF,在△BCF和△DCF中,∵CD=CB,∠DCF=∠BCF,CF=CF∴△BCF≌△DCF∴∠CBF=∠CDF∵FE垂直平分AB,∠BAF=×80°=40°∴∠ABF=∠BAF=40°∵∠ABC=180°﹣80°=100°,∠CBF=100°﹣40°=60°∴∠CDF=60°.故(Gu)选(Xuan)D.11.如图(Tu),在菱形(Xing)ABCD中(Zhong),∠A=110°,E,F分别(Bie)是边(Bian)AB和(He)BC的中点,EP⊥CD于点P,则∠FPC的度数为()A.55°B.50°C.45°D.35°【解答】解:延长PF交AB的延长线于点G.如图所示:在△BGF与△CPF中,,∴△BGF≌△CPF(ASA),∴GF=PF,∴F为PG中点.又∵由题可知,∠BEP=90°,∴EF=PG,∵PF=PG,∴EF=PF,∴∠FEP=∠EPF,∵∠BEP=∠EPC=90°,∴∠BEP﹣∠FEP=∠EPC﹣∠EPF,即(Ji)∠BEF=∠FPC,∵四(Si)边形(Xing)ABCD为(Wei)菱形,∴AB=BC,∠ABC=180°﹣∠A=70°,∵E,F分(Fen)别为(Wei)AB,BC的中(Zhong)点,∴BE=BF,∠BEF=∠BFE=(180°﹣70°)=55°,∴∠FPC=55°;故(Gu)选:A.12.如图,矩形ABCD中,O为AC中点,过点O的直线分别与AB,CD交于点E,F,连接BF交AC于点M,连接DE,BO.若∠COB=60°,FO=FC,则下列结论:①FB⊥OC,OM=CM;②△EOB≌△CMB;③四边形EBFD是菱形;④MB:OE=3:2.其中正确结论的个数是()A.1 B.2 C.3 D.4【解答】解:连接BD,∵四边形ABCD是矩形,∴AC=BD,AC、BD互相平(Ping)分,∵O为(Wei)AC中(Zhong)点,∴BD也(Ye)过(Guo)O点(Dian),∴OB=OC,∵∠COB=60°,OB=OC,∴△OBC是等边三(San)角形,∴OB=BC=OC,∠OBC=60°,在(Zai)△OBF与△CBF中∴△OBF≌△CBF(SSS),∴△OBF与△CBF关于直线BF对称,∴FB⊥OC,OM=CM;∴①正确,∵∠OBC=60°,∴∠ABO=30°,∵△OBF≌△CBF,∴∠OBM=∠CBM=30°,∴∠ABO=∠OBF,∵AB∥CD,∴∠OCF=∠OAE,∵OA=OC,易证△AOE≌△COF,∴OE=OF,∴OB⊥EF,∴四边形EBFD是菱形,∴③正确,∵△EOB≌△FOB≌△FCB,∴△EOB≌△CMB错(Cuo)误.∴②错(Cuo)误,∵∠OMB=∠BOF=90°,∠OBF=30°,∴MB=,OF=,∵OE=OF,∴MB:OE=3:2,∴④正(Zheng)确;故(Gu)选:C.二(Er).填空题(共(Gong)6小(Xiao)题)13.如图(Tu),菱形纸片ABCD,∠A=60°,P为AB中点,折叠菱形纸片ABCD,使点C 落在DP所在的直线上,得到经过点D的折痕DE,则∠DEC等于75度.【解答】解:连接BD,∵四边形ABCD为菱形,∠A=60°,∴△ABD为等边三角形,∠ADC=120°,∠C=60°,∵P为AB的中点,∴DP为∠ADB的平分线,即∠ADP=∠BDP=30°,∴∠PDC=90°,∴由折叠的性质得到∠CDE=∠PDE=45°,在(Zai)△DEC中(Zhong),∠DEC=180°﹣(∠CDE+∠C)=75°.故答案(An)为:75.14.如图,在平面直角坐标系中(Zhong),菱形(Xing)ABCD在第一象(Xiang)限内,边(Bian)BC与(Yu)x轴平行,A,B两点的纵坐标分别为3,1,反比例函数y=的图象经过A,B两点,则菱形ABCD的面积为4.【解答】解:过点A作x轴的垂线,与CB的延长线交于点E,∵A,B两点在反比例函数y=的图象上且纵坐标分别为3,1,∴A,B横坐标分别为1,3,∴AE=2,BE=2,∴AB=2,S菱(Ling)形(Xing)ABCD=底(Di)×高(Gao)=2×2=4,故(Gu)答案为(Wei)4.15.如图(Tu):在矩形(Xing)ABCD中,AB=4,BC=8,对角线AC、BD相交于点O,过点O作OE垂直AC交AD于点E,则DE的长是3.【解答】解:如图,连接CE,,设DE=x,则AE=8﹣x,∵OE⊥AC,且点O是AC的中点,∴OE是AC的垂直平分线,∴CE=AE=8﹣x,在Rt△CDE中,x2+42=(8﹣x)2解得x=3,∴DE的(De)长是(Shi)3.故(Gu)答案为:3.16.平(Ping)行四边形(Xing)ABCD中,对(Dui)角线(Xian)AC、BD相交(Jiao)于点O,BD=2AD,E、F、G分别是OC、OD,AB的中点.下列结论:①EG=EF;②△EFG≌△GBE;③FB平分∠EFG;④EA平分∠GEF;⑤四边形BEFG是菱形.其中正确的是①②④.【解答】解:令GF和AC的交点为点P,如图所示:∵E、F分别是OC、OD的中点,∴EF∥CD,且EF=CD,∵四边形ABCD为平行四边形,∴AB∥CD,且AB=CD,∴∠FEG=∠BGE(两直线平行,内错角相等),∵点G为AB的中点,∴BG=AB=CD=FE,在△EFG和△GBE中,,∴△EFG≌△GBE(SAS),即②成立,∴∠EGF=∠GEB,∴GF∥BE(内错角相等,两直线平行),∵BD=2BC,点(Dian)O为平行四边形对角线交(Jiao)点,∴BO=BD=BC,∵E为(Wei)OC中(Zhong)点,∴BE⊥OC,∴GP⊥AC,∴∠APG=∠EPG=90°∵GP∥BE,G为(Wei)AB中(Zhong)点,∴P为(Wei)AE中(Zhong)点,即AP=PE,且GP=BE,在△APG和△EGP中,,∴△APG≌△EPG(SAS),∴AG=EG=AB,∴EG=EF,即①成立,∵EF∥BG,GF∥BE,∴四边形BGFE为平行四边形,∴GF=BE,∵GP=BE=GF,∴GP=FP,∵GF⊥AC,∴∠GPE=∠FPE=90°在(Zai)△GPE和(He)△FPE中(Zhong),,∴△GPE≌△FPE(SAS),∴∠GEP=∠FEP,∴EA平(Ping)分∠GEF,即(Ji)④成(Cheng)立.故(Gu)答案为:①②④.17.如(Ru)图,矩形ABCD中,对角线AC、BD交于点O,点E是BC上一点,且AB=BE,∠1=15°,则∠2=30°.【解答】解:∵四边形ABCD是矩形,∴∠ABC=∠BAD=90°,OB=OD,OA=OC,AC=BD,∴OB=OC,OB=OA,∴∠OCB=∠OBC,∵AB=BE,∠ABE=90°,∴∠BAE=∠AEB=45°,∵∠1=15°,∴∠OCB=∠AEB﹣∠EAC=45°﹣15°=30°,∴∠OBC=∠OCB=30°,∴∠AOB=30°+30°=60°,∵OA=OB,∴△AOB是(Shi)等边三角形,∴AB=OB,∵∠BAE=∠AEB=45°,∴AB=BE,∴OB=BE,∴∠OEB=∠EOB,∵∠OBE=30°,∠OBE+∠OEB+∠BEO=180°,∴∠OEB=75°,∵∠AEB=45°,∴∠2=∠OEB﹣∠AEB=30°,故(Gu)答案为:30°.18.如图所示(Shi),在矩形(Xing)ABCD中(Zhong),AB=6,AD=8,P是(Shi)AD上(Shang)的动点,PE⊥AC,PF⊥BD于(Yu)F,则PE+PF的值为.【解答】解:连接OP,∵四边形ABCD是矩形,∴∠DAB=90°,AC=2AO=2OC,BD=2BO=2DO,AC=BD,∴OA=OD=OC=OB,∴S △AOD =S △DOC =S △AOB =S △BOC =S 矩(Ju)形(Xing)ABCD =×6×8=12,在(Zai)Rt △BAD 中,由勾股(Gu)定理得:BD===10,∴AO=OD=5,∵S △APO +S △DPO =S △AOD , ∴×AO ×PE +×DO ×PF=12,∴5PE +5PF=24, PE +PF=,故答(Da)案为:.三.解(Jie)答题(共(Gong)6小(Xiao)题) 19.如(Ru)图,在(Zai)Rt △ABC 中(Zhong),∠ACB=90°,D 为(Wei)AB 的中(Zhong)点,AE ∥CD ,CE ∥AB ,连(Lian)接(Jie)DE 交(Jiao)AC 于点O .(1)证明:四边形ADCE 为菱形.(2)BC=6,AB=10,求菱形ADCE的面积.【解答】证明:(1)∵在Rt△ABC中,∠ACB=90°,D为AB中点,∴CD=AB=AD,又∵AE∥CD,CE∥AB∴四边形ADCE是平行四边形,∴平行四边形ADCE是菱形;(2)在Rt△ABC中,AC===8.∵平行四边形ADCE是菱形,∴CO=OA,又∵BD=DA,∴DO是△ABC的中位线,∴BC=2DO.又∵DE=2DO,∴BC=DE=6,===24.∴S菱(Ling)形(Xing)ADCE20.已知(Zhi),如图,BD为平(Ping)行四边形(Xing)ABCD的对(Dui)角线,O为(Wei)BD的(De)中点,EF⊥BD于点O,与AD、BC分别交于点E、F.试判断四边形BFDE的形状,并证明你的结论.【解答】答:四边形BFDE的形状是菱形,理由如下:∵四边形ABCD是平行四边形,∴AD∥BC,OB=OD,∵∠EDO=∠FBO,∠OED=∠OFB,∴△OED≌△OFB,∴DE=BF,又∵ED∥BF,∴四边形BEDF是平行四边形,∵EF⊥BD,∴▱BEDF是菱形.21.如图,在△ABC中,AB=AC,点D是BC的中点,DE⊥AC于点E,DG⊥AB于点G,EK⊥AB于点K,GH⊥AC于点H、EK和GH相交于点F.求证:GE与FD互相垂直平分.【解(Jie)答】证(Zheng)明:∵DE⊥AC,DG⊥AB,EK⊥AB,GH⊥AC,∴∠DGB=∠DEC=90°,EK∥DG,DE∥GH,∴四(Si)边形(Xing)DEFG是平行四边(Bian)形,∵AB=AC,∴∠B=∠C,在(Zai)△DGB和(He)△DEC中(Zhong),,∴△DGB≌△DEC(AAS),∴DG=DE,∵四边形DEFG是平行四边形,∴四边形DEFG是菱形,∴GE与FD互相垂直平分.22.如图:在△ABC中,CE、CF分别平分∠ACB与它的邻补角∠ACD,AE⊥CE于E,AF⊥CF于F,直线EF分别交AB、AC于M、N.(1)求证:四边形AECF为矩形;(2)试猜想MN与BC的关系,并证明你的猜想;(3)如果四边形AECF是菱形,试判断△ABC的形状,直接写出结果,不用说明理由.【解(Jie)答】(1)证(Zheng)明:∵AE⊥CE于(Yu)E,AF⊥CF于(Yu)F,∴∠AEC=∠AFC=90°,又(You)∵CE、CF分别(Bie)平分∠ACB与它的(De)邻补角∠ACD,∴∠BCE=∠ACE,∠ACF=∠DCF,∴∠ACE+∠ACF=(∠BCE+∠ACE+∠ACF+∠DCF)=×180°=90°,∴三个角为直角的(De)四边形AECF为矩形.(2)结论:MN∥BC且MN=BC.证明:∵四边形AECF为矩形,∴对角线相等且互相平分,∴NE=NC,∴∠NEC=∠ACE=∠BCE,∴MN∥BC,又∵AN=CN(矩形的对角线相等且互相平分),∴N是AC的中点,若M不是AB的中点,则可在AB取中点M1,连接M1N,则(Ze)M1N是(Shi)△ABC的中位(Wei)线,MN∥BC,而(Er)MN∥BC,M1即(Ji)为点(Dian)M,。
初中数学知识点总结:特殊的平行四边形
初中数学知识点总结:特殊的平行四边形知识点总结一、特殊的平行四边形1.矩形:(1)定义:有一个角是直角的平行四边形。
(2)性质:矩形的四个角都是直角;矩形的对角线平分且相等。
(3)判定定理:①有一个角是直角的平行四边形叫做矩形。
②对角线相等的平行四边形是矩形。
③有三个角是直角的四边形是矩形。
直角三角形的性质:直角三角形中所对的直角边等于斜边的一半。
2.菱形:(1)定义:邻边相等的平行四边形。
(2)性质:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。
(3)判定定理:①一组邻边相等的平行四边形是菱形。
②对角线互相垂直的平行四边形是菱形。
③四条边相等的四边形是菱形。
(4)面积:3.正方形:(1)定义:一个角是直角的菱形或邻边相等的矩形。
(2)性质:四条边都相等,四个角都是直角,对角线互相垂直平分。
正方形既是矩形,又是菱形。
(3)正方形判定定理:①对角线互相垂直平分且相等的四边形是正方形;②一组邻边相等,一个角为直角的平行四边形是正方形;③对角线互相垂直的矩形是正方形;④邻边相等的矩形是正方形⑤有一个角是直角的菱形是正方形;⑥对角线相等的菱形是正方形。
二、矩形、菱形、正方形与平行四边形、四边形之间的联系:1.矩形、菱形和正方形都是特殊的平行四边形,其性质都是在平行四边形的基础上扩充来的。
矩形是由平行四边形增加“一个角为90°”的条件得到的,它在角和对角线方面具有比平行四边形更多的特性;菱形是由平行四边形增加“一组邻边相等”的条件得到的,它在边和对角线方面具有比平行四边形更多的特性;正方形是由平行四边形增加“一组邻边相等”和“一个角为90°”两个条件得到的,它在边、角和对角线方面都具有比平行四边形更多的特性。
2.矩形、菱形的判定可以根据出发点不同而分成两类:一类是以四边形为出发点进行判定,另一类是以平行四边形为出发点进行判定。
而正方形除了上述两个出发点外,还可以从矩形和菱形出发进行判定。
中考数学专题复习:特殊的平行四边形
特殊的平行四边形
返回目录
例1 练习1
例2 练习2
例3 练习3
(3)如图,当点F是BD的中点时,则BF=DF, ∴AF⊥BD,∠BAF=∠DAF=12 ∠BAD=45°. ∵∠EAF=45°,∴∠EAF=∠BAF, ∴AE与AB重合,点E与点B重合, ∴∠AEF=∠ABD=45°,∠AFE=∠AFB=90°. 由旋转,得∠AEQ=∠ADF=45°,∠Q=∠AFD=90°, ∴∠FEQ=90°, ∴四边形AFEQ是矩形. ∵AQ=AF, ∴四边形AFEQ是正方形.
(3)对称性:既是中心对称图形,又是轴对称图形,有⑳ 4 条对称轴.
(4)面积:S= ○21 a2 (a表示正方形边长)=○22
1AC2(或 1BD2)
2
2
。
(用对角线计算).
特殊的平行四边形
返回目录
1.有一个角是直角的○23 菱 形是正方形.菱∠形ABACB=CD90° 菱形ABCD是正方形
2.有一组邻边相等的○24 矩 形是正方形.矩形ABCD
返回目录
例1
三、正方形的性质与判定 例3. 如图,在正方形ABCD中,E,F是对角线BD上两点,且∠EAF=
练习1 45°,将△ADF绕点A顺时针旋转90°后,得到△ABQ,连接EQ.
例2
(1)由旋转的特征可得AQ= ,∠BAQ=∠ ,由正方形的性质可得
∠BAD= °,进而可证明△AEQ ≌ ,证明依据:
解析:如图,连接FC,AE,设AC,EF交于点O.∵EF为AC的垂直平分线,∴AF =FC,AE=EC,AO=OC.∵四边形ABCD是矩形,∴AD∥BC,∠B=90°,
∠FAC=∠ECA, ∴∠FAC=∠ECA.在△AFO和△CEO中, AO=CO,
2023年中考数学 几何专题:特殊的平行四边形(含答案)
2023中考数学 几何专题:特殊的平行四边形(含答案)例1 矩形的性质(1)如图,l m ∥,矩形ABCD 的顶点B 在直线m 上,则α=∠________度.(2)矩形边长为10和15,其中一内角平分线分长边为两部分,这两部分的长为( )A .6和9B .5和10C .4和11D .7和8(3) 如图,矩形ABCD中,120AOD BC ∠=︒=,,则下列结论:①AOB △是等边三角形②130∠=︒③3cm AB =④6cm AC =⑤2ABCD S =矩形.其中正确的有( )A .①②③B .①②③④C .②③④⑤D .①②③④⑤(4) 如图,矩形ABCD 中,O 是两对角线的交点,AE BD ⊥,垂足为E.若2OD OE AE =,则DE 的长为________.【答案】(1)30;(2)B ;(3)D ;(4)3例2 矩形模型 (1)如图,已知矩形ABCD 中,对角线AC 、BD 相交于点O ,AE BD ⊥,垂足为E ,:3:1DAE BAE ∠∠=,则EAC ∠的度数为_______.α60°lm DCBAO 1DC BA第14题图E OCBDAA B(2)如图所示,矩形ABCD 内一点P 到A 、B 、C 的长分别是2、3、4,则PD 的长为_______.(3)已知,如图,在矩形ABCD 中,P 是边AD 上的动点,PE AC ⊥于E ,PF BD ⊥于F ,如果3AB =,4AD =,那么PE+PF=_______.【答案】(1)45︒;(2(3)125例3 矩形的判定(1)在四边形ABCD 中,AB DC =,AD BC =.请再添加一个条件,使四边形ABCD 是矩形.你添加的条件是________.(写出一种即可)【答案】AC BD =或AB BC ⊥或90ABC =︒∠(答案不唯一)(2)如图,D 是△ABC 的边AB 上一点,CN ∥AB ,DN 交AC 于点M ,若MA=MC ,∠BAN=90°,求证:四边形ADCN 是矩形.证明:∵CN ∥AB , ∴∠DAC=∠NCA , 在△AMD 和△CMN 中,∵∠DAC =∠NCA ,MA =MC ,∠AMD =∠CMN ∴△AMD ≌△CMN (ASA ), ∴AD=CN . 又∵AD ∥CN ,∴四边形ADCN 是平行四边形. 又∵∠BAN=90度,∴四边形ADCN 是矩形.(3)如图,平行四边形ABCD 中,AQ 、BN 、CN 、DQ 分别是DAB ∠、ABC ∠、BCD ∠、CDA ∠的平分PDCBAABCDPEF线,AQ 与BN 交于P ,CN 与DQ 交于M ,证明:四边形PQMN 是矩形.【答案】∵四边形ABCD 为平行四边形∴AB CD ∥,AD BC ∥∵AQ 、BN 分别是DAB ∠、ABC ∠的平分线 ∴180BAD ABC ∠+∠=︒ ∴90QPN ∠=︒同理90PQM QMN MNP ∠=∠=∠=︒ ∴四边形PQMN 是矩形.例4 (1)如图,已知菱形ABCD 的两条对角线相交于点O ,若6AC =,4BD =,则菱形ABCD 的周长是( )A .24B .16C.D.(2)如图,已知菱形的两条对角线分别为6cm 和8cm ,则这个菱形的高DE 为( ) A .2.4cmB .4.8cmC .5cmD .9.6cm(3)如图,在边长为2的菱形ABCD 中,∠A=60°,DE ⊥AB ,DF ⊥BC ,则△DEF 的周长为_______(4)如图,把菱形ABCD 沿AH 折叠,使B 点落在BC 上的E 点处,若70B =︒∠,则AED ∠的大小为( )NMQPDCBAODC BAA .60︒B .55︒C .65︒D .70︒ (5)如图,在菱形ABCD 中,80BAD ∠=︒,AB 的垂直平分线交对角线AC 于点E ,点F 为垂足,连接DE ,则CDE ∠=( )A .80︒B .70︒C .65︒D .60︒(6)如图,在菱形ABCD 中,4AB =,60BAD ∠=︒,点P 是对角线AC 上的一个动点,点E 是AB 边上的中点,则PB PE +的最小值为( )A .2B.C. D .4【答案】(1)C ;(2)B ;(3)(4)B ;(5)D ;(6)B能力提升例5 菱形的判定(1)已知:如图,平行四边形的对角线、相交于点,且,,求证:平行四边形是菱形;ABCDEHFABCDEABCD AC BD O 10AB =5AO =BO =ABCD【答案】∵在中,,, ∴ ∴是直角三角形∴平行四边形是菱形.AOB △10AB =5AO=BO =222AB AO BO =+AOB △AC BD ⊥ABCD(2)如图,ABC ∆中,90ACB ∠=︒,AD 是BAC ∠的平分线,交BC 于D ,CH 是AB 边上的高,交AD 于F ,DE AB ⊥于E ,求证:四边形CDEF 是菱形.【答案】∵∠ACB=90°,AD 是∠CAB 的平分线,DE ⊥AB , ∴DC=DE ,∠CAD=∠EAD ,∠CDF+∠CAD=90°, ∵CH 是AB 边上的高, ∴CH ⊥AB ,∴CH ∥DE ,∠AFH+∠EAD=90°, ∴∠CDF=∠AFH , ∵∠CFD=∠AFH , ∴∠CDF=∠CFD , ∴CF=DC , ∴CF=DE ,∴四边形CDEF 是平行四边形, ∴四边形CDEF 是菱形.例6 (1)如图,在正方形ABCD 中,E 是对角线BD 上任意一点,过E 作EF ⊥BC 于F ,作EG ⊥CD 于G ,若正方形ABCD 的周长为m ,则四边形EFCG 的周长为(2)如图,AC 为正方形ABCD 的对角线,E 为AC 上一点,联结EB ,ED ,当126BED ∠=°时,EDA ∠的度数为( )A .54°B .27°C .36°D .18°(3)已知正方形ABCD ,以AB 为边构造等边ABP ∆,那么DCP ∠=HF DECBAEDCB A【答案】(1)2m;(2)D ;(3)15°或75° 例7 下列说法不正确的是( ) A .有一个角是直角的菱形是正方形 B .两条对角线相等的菱形是正方形 C .对角线互相垂直的矩形是正方形D .四条边都相等的四边形是正方形【答案】D练1 (1)如图,矩形ABCD 中,3AB =,两条对角线AC 、BD 所夹的钝角为120︒,则对角线BD 的长为________(2) 矩形ABCD 的对角线AC 、BD 交于O ,如果ABC ∆的周长比AOB ∆的周长大10cm ,则边AD 的长是 .【答案】(1)6 ;(2)10cm练2 (1)下列说法不能判定四边形是矩形的是( ) A .三个角是直角的四边形 B .四个角都相等的四边形 C .对角线相等的平行四边形 D .对角线垂直且相等的四边形 【答案】D(2)已知:如图,M 为▱ABCD 的AD 边上的中点,且MB=MC , 求证:▱ABCD 是矩形.证明:∵四边形ABCD 是平行四边形, ∴AB=CD .∵AM=DM ,MB=MC , ∴△ABM ≌△DCM . ∴∠A=∠D . ∵AB ∥CD ,∴∠A+∠D=180°. ∴∠A=90°.∴▱ABCD 是矩形.练3 (1)如图:在菱形ABCD 中,AC=6,BD=8,则菱形的边长为_______;BC 上的高为_____(2)菱形的周长为20cm ,两邻角度数之比为2:1,则菱形较长的对角线的长度为 【答案】(1)5、245;(2)练4 如图.矩形的对角线相交于点.,. ⑴ 求证:四边形是菱形;⑵ 若,菱形的面积为ABCD 的面积.【答案】⑴ ∵, ∴四边形是平行四边形 ∵四边形是矩形∴(矩形对角线相等且互相平分)∴四边形是菱形(邻边相等的平行四边形是菱形)⑵ABCD S练5 四边形ABCD 是正方形,延长BC 至E ,使CE AC =,连结AE 交CD 于F ,那么AFC ∠的度数为________.【答案】112.5°ABCD O DE AC ∥CE BD ∥OCED 30ACB ∠=︒OCED OEDC BADE AC ∥CE BD ∥OCED ABCD OC OD =OCED 12OCD OCED S S =△菱形FED CBA。
初中数学专题—特殊的平行四边形
初中数学专题—特殊的平行四边形知识回顾——平行四边形的定义、性质、判定平行四边形定义:有两组对边分别平行的四边形是平行四边形性质:1、平行四边形的两组对边分别平行2、平行四边形的两组对边分别相等3、平行四边形的两组对角分别相等4、平行四边形的两条对角线互相平分判定方法:1、两组对边分别平行的四边形是平行四边形2、两组对边分别相等的四边形是平行四边形3、一组对边平行且相等的四边形是平行四边形4、两条对角线互相平分的四边形是平行四边形5、两组对角分别相等的四边形是平行四边形三角形中位线定义:连接三角形两边中点的线段叫三角形的中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半特殊的平行四边形矩形(长方形)定义:有一个角是直角的平行四边形叫做矩形性质:1、具有平行四边形的所有性质2、矩形有四个角都是直角3、矩形有对角线相等4、矩形是轴对称图形,有两条对称轴判定:1、定义2、对角线相等的平行四边形是矩形3、有三个角是直角的四边形是矩形习题练习1、如图,矩形ABCD的对角线AC、BD相交于点O,∠ABO=60°,若矩形的对角线长为6,则AD的长是A、3√3B、4C、2√3D、32、如图,长方形纸片ABCD中,AB=8cm,把长方形纸片沿直线AC折叠,点B落在E处,AE交DC于点F,若AD=4cm,则CF的长是A、4cmB、5cmC、6cmD、7cm菱形定义:有一组邻边相等的平行四边形叫菱形性质:1、具有平行四边形所有性质2、菱形有四条边都相等3、菱形的两条对角线互相垂直,并且每一条对角线平分一组对角4、菱形是轴对称图形判定:1、定义2、对角线互相垂直的平行四边形3、四边相等的四边形习题练习1、如图,菱形ABCD中,∠A=60°,边AB=8,E为边DA的中点,P为边CD上的一点,连接PE、PB,当PE=EB时,线段PE的长为A、4B、8C、4√2D、4√32、如图,在菱形ABCD中,AC与BD相交于点O,点P是AB的中点,PO=2,则菱形ABCD的周长是A、4B、8C、16D、24正方形定义:一组邻边相等的矩形性质:具有平行四边形、矩形、菱形的所有性质判定:1、定义2、有一个内角是直角的菱形3、对角线相等的菱形4、对角线互相垂直的矩形习题练习1、如图是我国古代著名的“赵爽弦图”的示意图,此图是由四个全等的直角三角形拼接而成,其中AE=5,BE=12,则EF的长是A、7B、8C、7√2D、7√32、如图,过边长为2的正方形ABCD的中心O引两条互相垂直的射线,分别与正方形的边交于E、F两点,连接EF,则线段EF长的取值范围是A、√2≤EF≤2B、√2≤EF≤2√22C、√2≤EF≤2√2D、√2≤EF≤√22。
新人教版初中数学——特殊的平行四边形-知识点归纳及中考典型题解析
新人教版初中数学——特殊的平行四边形知识点归纳及中考题型解析一、矩形的性质与判定1.矩形的性质:(1)四个角都是直角;(2)对角线相等且互相平分;(3)面积=长×宽=2S△ABD=4S△AOB.(如图)2.矩形的判定:(1)定义法:有一个角是直角的平行四边形;(2)有三个角是直角;(3)对角线相等的平行四边形.二、菱形的性质与判定1.菱形的性质:(1)四边相等;(2)对角线互相垂直、平分,一条对角线平分一组对角;(3)面积=底×高=对角线乘积的一半.2.菱形的判定:(1)定义法:有一组邻边相等的平行四边形;(2)对角线互相垂直的平行四边形;(3)四条边都相等的四边形.三、正方形的性质与判定1.正方形的性质:(1)四条边都相等,四个角都是直角;(2)对角线相等且互相垂直平分;(3)面积=边长×边长=2S△ABD=4S△AOB.2.正方形的判定:(1)定义法:有一个角是直角,且有一组邻边相等的平行四边形;(2)一组邻边相等的矩形;(3)一个角是直角的菱形;(4)对角线相等且互相垂直、平分.四、联系(1)两组对边分别平行;(2)相邻两边相等;(3)有一个角是直角;(4)有一个角是直角;(5)相邻两边相等;(6)有一个角是直角,相邻两边相等;(7)四边相等;(8)有三个角都是直角.五、中点四边形(1)任意四边形所得到的中点四边形一定是平行四边形.(2)对角线相等的四边形所得到的中点四边形是矩形.(3)对角线互相垂直的四边形所得到的中点四边形是菱形.(4)对角线互相垂直且相等的四边形所得到的中点四边形是正方形.考向一矩形的性质与判定1.矩形除了具有平行四边形的一切性质外,还具有自己单独的性质,即:矩形的四个角都是直角;矩形的对角线相等.2.利用矩形的性质可以推出直角三角形斜边中线的性质,即在直角三角形中,斜边上的中线等于斜边的一半.3.矩形的判定:有三个角是直角的四边形是矩形;对角线相等的平行四边形是矩形.典例1 如图,矩形ABCD的对角线交于点O,若∠BAO=55°,则∠AOD等于A.105°B.110°C.115°D.120°【答案】B【解析】∵四边形ABCD是矩形,∴OA=O B.∴∠BAO=∠ABO=55°.∴∠AOD=∠BAO+∠ABO=55°+55°=110°.故选B.典例2 如图,矩形ABCD的对角线AC与数轴重合(点C在正半轴上),AB=5,BC=12,点A表示的数是–1,则对角线AC、BD的交点表示的数A.5.5 B.5 C.6 D.6.5【答案】A【解析】连接BD交AC于E,如图所示:∵四边形ABCD是矩形,∴190,2B AE AC ∠==,∴13AC=,∴AE=6.5,∵点A表示的数是−1,∴OA=1,∴OE=AE−OA=5.5,∴点E表示的数是5.5,即对角线AC、BD的交点表示的数是5.5;故选A.1.如图,四边形ABCD 的对角线互相平分,要使它成为矩形,那么需要添加的条件是A .AB =BC B .AC 垂直BD C .∠A =∠C D .AC =BD2.如图,在平行四边形ABCD 中,对角线AC BD 、交于点O ,并且6015DAC ADB ∠=︒∠=︒,,点E 是AD 边上一动点,延长EO 交于BC 点F ,当点E 从点D 向点A 移动过程中(点E 与点D ,A 不重合),则四边形AFCE 的变化是A .平行四边形→菱形→平行四边形→矩形→平行四边形B .平行四边形→矩形→平行四边形→菱形→平行四边形C .平行四边形→矩形→平行四边形→正方形→平行四边形D .平行四边形→矩形→菱形→正方形→平行四边形考向二 菱形的性质与判定1.菱形除了具有平行四边形的一切性质外,具有自己单独的性质,即:菱形的四条边都相等; 菱形的对角线互相垂直,并且每一条对角线平分一组对角. 2.菱形的判定:四条边都相等的四边形是菱形; 对角线互相垂直的平行四边形是菱形.典例3 菱形具有而平行四边形不具有的性质是 A .两组对边分别平行 B .两组对边分别相等 C .一组邻边相等D .对角线互相平分【答案】C【解析】根据菱形的性质及平行四边形的性质进行比较,可发现A,B,D两者均具有,而C只有菱形具有平行四边形不具有,故选C.【名师点睛】有一组邻边相等的平行四边形是菱形.典例4如图,四边形ABCD的对角线互相垂直,且满足AO=CO,请你添加一个适当的条件_____________,使四边形ABCD成为菱形.(只需添加一个即可)【答案】BO=DO(答案不唯一)【解析】四边形ABCD中,AC、BD互相垂直,若四边形ABCD是菱形,需添加的条件是:AC、BD 互相平分(对角线互相垂直且平分的四边形是菱形).故答案为:BO=DO(答案不唯一).3.已知菱形的一条对角线与边长相等,则菱形的邻角度数分别为A.45°,135°B.60°,120°C.90°,90°D.30°,150°4.如图,在△ABC中,AD是∠BAC的平分线,DE∥AC交AB于E,DF∥AB交AC于F,求证:四边形AEDF是菱形.考向三正方形的性质与判定1.正方形的性质=矩形的性质+菱形的性质.2.正方形的判定:以矩形和菱形的判定为基础,可以引申出更多正方形的判定方法,如对角线互相垂直平分且相等的四边形是正方形.证明四边形是正方形的一般步骤是先证出四边形是矩形或菱形,再根据相应判定方法证明四边形是正方形.典例5面积为9㎝2的正方形以对角线为边长的正方形面积为A.18㎝2B.20㎝2C.24㎝2D.28㎝2【答案】A【解析】∵正方形的面积为9cm2,∴边长为3cm,∴根据勾股定理得对角线长cm,∴以=2=18cm2.故选A.典例6如图,在△ABC中,∠B=90°,AB=BC=4,把△ABC绕点A逆时针旋转45°得到△ADE,过点C作CF⊥AE于F,DE交CF于G,则四边形ADGF的周长是A.8 B.C.D.【答案】D【解析】如图,连接AG,∵∠B=90°,AB=BC=4,∴∠CAB=∠ACB=45°,AC,∵把△ABC绕点A逆时针旋转45°得到△ADE,∴AD=AB=4,∠EAD=∠CAB=45°,∴∠FAB=90°,CD=AC﹣AD﹣4,∵∠B=90°=∠FAB,CF⊥AE,∴四边形ABCF是矩形,且AB=BC=4,∴四边形ABCF是正方形,∴AF=CF=AB=4=AD,∠AFC=∠FCB=90°,∴∠GCD =45°,且∠GDC =90°,∴∠GCD =∠CGD =45°,∴CD =GD ﹣4,∵AF =AD ,AG =AG ,∴Rt △AGF ≌Rt △AGD (HL ),∴FG =GD ﹣4,∴四边形ADGF 的周长=AF +AD +FG +GD ﹣﹣,故选D .5.如图,在正方形ABCD 内一点E 连接BE 、CE ,过C 作CF ⊥CE 与BE 延长线交于点F ,连接DF 、DE .CE =CF =1,DE ,下列结论中:①△CBE ≌△CDF ;②BF ⊥DF ;③点D 到CF 的距离为2;④S 四边形DECF +1.其中正确结论的个数是A .1B .2C .3D .46.如图,在正方形ABCD 中,,2BE FC CF FD ==,AE 、BF 交于点G ,下列结论中错误的是A .AE BF ⊥B .AE BF =C .43BG GE =D .ABGCEGF S S=四边形考向四 中点四边形1.中点四边形一定是平行四边形;2.中点四边形的面积等于原四边形面积的一半.典例7如图,任意四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA上的点,对于四边形EFGH的形状,某班学生在一次数学活动课中,通过动手实践,探索出如下结论,其中错误的是A.当E,F,G,H是各边中点,且AC=BD时,四边形EFGH为菱形B.当E,F,G,H是各边中点,且AC⊥BD时,四边形EFGH为矩形C.当E,F,G,H不是各边中点时,四边形EFGH可以为平行四边形D.当E,F,G,H不是各边中点时,四边形EFGH不可能为菱形【答案】D【解析】A.当E,F,G,H是四边形ABCD各边中点,且AC=BD时,存在EF=FG=GH=HE,故四边形EFGH为菱形,故A正确;B.当E,F,G,H是四边形ABCD各边中点,且AC⊥BD时,存在∠EFG=∠FGH=∠GHE=90°,故四边形EFGH为矩形,故B正确;C.如图所示,当E,F,G,H不是四边形ABCD各边中点时,若EF∥HG,EF=HG,则四边形EFGH 为平行四边形,故C正确;D.如图所示,当E,F,G,H不是四边形ABCD各边中点时,若EF=FG=GH=HE,则四边形EFGH 为菱形,故D错误,故选D.7.顺次连接下列四边形的四边中点所得图形一定是菱形的是A.平行四边形B.菱形C.矩形D.梯形8.如图,我们把依次连接任意四边形ABCD各边中点所得四边形EFGH叫中点四边形.若四边形ABCD的面积记为S1,中点四边形EFGH的面积记为S2,则S1与S2的数量关系是A.S1=3S2B.2S1=3S2C.S1=2S2D.3S1=4S21.如图,矩形ABCD的对角线AC与BD相交于点O,∠ADB=30°,AB=4,则OC=A.5 B.4 C.3.5 D.32.如图,在矩形ABCD中,对角线AC,BD交于点O,已知∠AOD=120°,AC=16,则图中长度为8的线段有A.2条B.4条C.5条D.6条3.如图,在长方形ABCD中,AB=3,BC=4,若沿折痕EF折叠,使点C与点A重合,则折痕EF 的长为A.158B.154C.152D.154.如图,菱形ABCD的对角线交于点O,AC=8 cm,BD=6 cm,则菱形的高为A.485cm B.245cm C.125cm D.105cm5.如图,在菱形ABCD中,∠ADC=72°,AD的垂直平分线交对角线BD于点P,垂足为E,连接CP,则∠CPB的度数是A.108°B.72°C.90°D.100°6.如图,在正方形ABCD中,点E,F分别在边BC,CD上,且BE=CF.连接AE,BF,AE与BF 交于点G.下列结论错误的是A.AE=BF B.∠DAE=∠BFCC.∠AEB+∠BFC=90°D.AE⊥BF7.如图,矩形ABCD中将其沿EF翻折后,D点恰落在B处,∠BFE=65°,则∠AEB=____________.8.如图,P为正方形ABCD内一点,且BP=2,PC=3,∠APB=135°,将△APB绕点B顺时针旋转90°得到△CP′B,连接PP′,则AP=_______.9.如图,在ABCD中,AB=6,BC=8,AC=10.(1)求证:四边形ABCD是矩形;(2)求BD的长.10.如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE,CF相交于点D.(1)求证:BE=CF;(2)当四边形ACDE为菱形时,求BD的长.11.如图,△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)判断OE与OF的大小关系?并说明理由;(2)当点O运动到何处时,四边形AECF是矩形?并说出你的理由;(3)在(2)的条件下,当△ABC满足什么条件时,四边形AECF是正方形.直接写出答案,不需说明理由.1.下列命题正确的是A.有一个角是直角的平行四边形是矩形B.四条边相等的四边形是矩形C.有一组邻边相等的平行四边形是矩形D.对角线相等的四边形是矩形2.如图,四边形ABCD为菱形,A,B两点的坐标分别是(2,0),(0,1),点C,D在坐标轴上,则菱形ABCD的周长等于AB.C.D.203.如图,在正方形ABCD中,点E,F将对角线AC三等分,且AC=12,点P在正方形的边上,则满足PE+PF=9的点P的个数是A.0 B.4 C.6 D.84.如图,正方形ABCD中,点E.F分别在边CD,AD上,BE与CF交于点G.若BC=4,DE=AF=1,则GF的长为A.135B.125C.195D.1655.如图,正方形纸片ABCD的边长为12,E是边CD上一点,连接AE.折叠该纸片,使点A落在AE上的G点,并使折痕经过点B,得到折痕BF,点F在AD上.若5DE ,则GE的长为__________.6.如图,把某矩形纸片ABCD沿EF、GH折叠(点E、H在AD边上,点F、G在BC边上),使得点B、点C落在AD边上同一点P处,A点的对称点为A 点,D点的对称点为D点,若FPG,A EP90△的面积为1,则矩形ABCD的面积等于__________.△的面积为4,D PH7.如图,已知菱形ABCD的对角线AC,BD交于点O,E为BC的中点,若OE=3,则菱形的周长为__________.8.如图,正方形ABCD,点E,F分别在AD,CD上,且DE=CF,AF与BE相交于点G.(1)求证:BE=AF;(2)若AB=4,DE=1,求AG的长.9.已知:如图,在▱ABCD中,AE⊥BC,CF⊥AD,E,F分别为垂足.(1)求证:△ABE≌△CDF;(2)求证:四边形AECF是矩形.10.如图,在菱形ABCD中,点E.F分别为A D.CD边上的点,DE=DF,求证:∠1=∠2.11.如图,点E、F分别是矩形ABCD的边AB、CD上的一点,且DF=BE.求证:AF=CE.12.如图,四边形ABCD中,AB=CD,AD=BC,对角线AC,BD相交于点O,且OA=OD.求证:四边形ABCD是矩形.13.如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F,H在菱形ABCD 的对角线BD上.(1)求证:BG=DE;(2)若E为AD中点,FH=2,求菱形ABCD的周长.1.【答案】D【解析】结合选项可知,添加AC=BD,∵四边形ABCD的对角线互相平分,∴四边形ABCD是平行四边形,∵AC=BD,根据矩形判定定理对角线相等的平行四边形是矩形,∴四边形ABCD是矩形,故选D.2.【答案】A【解析】点E从D点向A点移动过程中,当∠EOD<15°时,四边形AFCE为平行四边形,当∠EOD=15°时,AC⊥EF,四边形AFCE为菱形,当15°<∠EOD <75°时,四边形AFCE 为平行四边形, 当∠EOD =75°时,∠AEF =90°,四边形AFCE 为矩形, 当75°<∠EOD <105°时,四边形AFCE 为平行四边形,故选A . 3.【答案】B【解析】如图,由题意知AB =BC =AC ,∵AB =BC =AC ,∴△ABC 为等边三角形,即60B ∠=︒,根据平行四边形的性质,18060120.BAD ∠=-=︒︒︒故选B .4.【解析】∵DE ∥AC ,DF ∥AB , ∴四边形AEDF 为平行四边形, ∴∠FAD =∠EDA ,∵AD 是∠BAC 的平分线,∴∠EAD =∠FAD ,∴∠EAD =∠EDA , ∴AE =ED ,∴四边形AEDF 是菱形. 5.【答案】B【解析】∵四边形ABCD 是正方形,∴BC =CD ,∠BCD =90°, ∵CF ⊥CE ,∴∠ECF =∠BCD =90°,∴∠BCE =∠DCF ,在△BCE 与△DCF 中,BC CDBCE DCF CE CF =⎧⎪∠=∠⎨⎪=⎩,∴△BCE ≌△DCF (SAS ),故①正确;∵△BCE ≌△DCF ,∴∠CBE =∠CDF ,∴∠DFB =∠BCD =90°,∴BF ⊥ED , 故②正确,过点D 作DM ⊥CF ,交CF 的延长线于点M ,∵∠ECF =90°,FC =EC =1,∴∠CFE =45°,∵∠DFM +∠CFB =90°,∴∠DFM =∠FDM =45°,∴FM =DM ,∴由勾股定理可求得:EF ,∵DE ,∴由勾股定理可得:DF =2,∵EF 2+BE 2=2BE 2=BF 2,∴DM =FM ∵△BCE ≌△DCF ,∴S △BCE =S △DCF ,∴S 四边形DECF =S △DCF +S △DCE =S △ECF +S △DEF =S △AFP +S △PFB =12B . 6.【答案】C【解析】在正方形ABCD 中,AB =BC ,∠ABE =∠C =90,又∵BE =CF ,∴△ABE ≌△BCF (SAS ),∴AE =BF ,∠BAE =∠CBF ,∴∠FBC +∠BEG =∠BAE +∠BEG =90°,∴∠BGE =90°,∴AE ⊥BF .故A 、B 正确; ∵CF =2FD ,∴CF :CD =2:3,∵BE =CF ,AB =CD ,32AB BE ∴=, ∵∠EBG +∠ABG =∠ABG +∠BAG =90°,∴∠EBG =∠BAG , ∵∠EGB =∠ABE =90°,∴△BGE ∽△ABE ,32BG AB GE BE ∴==,故C 不正确, ∵△ABE ≌△BCF ,∴S △ABE =S △BFC ,∴S △ABE –S △BEG =S △BFC –S △BEG ,∴S 四边形CEGF =S △ABG , 故D 正确.故选C .7.【答案】C【解析】∵顺次连接任意四边形的四边中点所得图形一定是平行四边形, 当对角线相等时,所得图形一定是菱形,故选C . 8.【答案】C【解析】如图,设AC 与EH 、FG 分别交于点N 、P ,BD 与EF 、HG 分别交于点K 、Q , ∵E 是AB 的中点,F 是BC 的中点,∴EF ∥AC , 同理可证EH ∥BD ,∴△EBK ∽△ABM ,△AEN ∽△EBK ,1.【答案】B【解析】∵四边形ABCD 是矩形,∴AC =BD ,OA =OC ,∠BAD =90°, ∵∠ADB =30°,∴AC =BD =2AB =8,∴OC =AC =4.故选B . 2.【答案】D【解析】∵AC =16,四边形ABCD 是矩形, ∴DC =AB ,BO =DO =12BD ,AO =OC =12AC =8,BD =AC , ∴BO =OD =AO =OC =8,∵∠AOD =120°,∴∠AOB =60°,∴△ABO 是等边三角形,∴AB =AO =8,∴DC =8,即图中长度为8的线段有AO 、CO 、BO 、DO 、AB 、DC 共6条,故选D . 3.【答案】B【解析】如图,连接AF .根据折叠的性质,得EF 垂直平分AC ,则设,则,在中,根据勾股定理,得,解得. 在中,根据勾股定理,得AC =5,则AO =2.5.12.AF CF =AF x =4BF x =-Rt △ABF 229(4)x x =+-258x =Rt △ABC在中,根据勾股定理,得 根据全等三角形的性质,可以证明则故选B .4.【答案】B【解析】∵菱形ABCD 的对角线∴AC ⊥BD ,OA =AC =4 cm ,OB =BD =3 cm ,根据勾股定理,(cm ).设菱形的高为h ,则菱形的面积,即,解得,即菱形的高为cm .故选B . 5.【答案】B【解析】如图,连接AP ,∵在菱形ABCD 中,∠ADC =72°,BD 为菱形ABCD 的对角线,∴∠ADP =∠CDP =12∠ADC =36°. ∵AD 的垂直平分线交对角线BD 于点P ,垂足为E ,∴PA =P D. ∴∠DAP =∠ADP =36°.∴∠APB =∠DAP +∠ADP =72°. 又∵菱形ABCD 是关于对角线BD 对称的,∴∠CPB =∠APB =72°.故选B.6.【答案】CRt △AOF 158,OF =,OE OF =154.EF=8cm 6cm AC BD ==,,12125AB ===12AB h AC BD =⋅=⋅15862h =⨯⨯245h =245【解析】∵AD//BC,∴∠DAE=∠AEB,∵BE=CF,AB=BC,∠ABE=∠BCF,∴△ABE≌△BCF,∴AE=BF,∠DAE=∠BFC,∵∠FBC+∠BFC=90°,∠AEB=∠BFC,∴∠FBC+AEB=90°,∴AE ⊥BF,所以A、B、D三个选项正确,∠AEB=∠BFC,故C选项错误,故选C.7.【答案】50°【解析】如图所示,由矩形ABCD可得AD∥BC,∴∠1=∠BFE=65°,由翻折得∠2=∠1=65°,∴∠AEB=180°–∠1–∠2=180°–65°–65°=50°.故答案为:50°.8.【答案】1【解析】∵△BP'C是由△BPA旋转得到,∴∠APB=∠CP'B=135°,∠ABP=∠CBP',BP=BP',AP=CP',∵∠ABP+∠PBC=90°,∴∠CBP'+∠PBC=90°,即∠PBP'=90°,∴△BPP'是等腰直角三角形,∴∠BP'P=45°,∵∠APB=∠CP'B=135°,∴∠PP'C=90°,∵BP=2,∴PP,∵PC=3,∴CP,∴AP=CP′=1,故答案为1.9.【解析】(1)∵AB=6,BC=8,AC=10,∴AB2+BC2=AC2,∴∠ABC=90°,∵四边形ABCD是平行四边形,∴ABCD是矩形.(2)∵四边形ABCD是矩形,∴BD=AC=10.10.【解析】(1)∵△AEF是由△ABC绕点A按顺时针方向旋转得到的,∴AE=AB,AF=AC,∠EAF=∠BAC,∴∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,在△ACF和△ABE中,AC ABCAF BAEAF AE=⎧⎪∠=∠⎨⎪=⎩,∴△ACF≌△ABE,∴BE=CF.(2)∵四边形ACDE为菱形,AB=AC=1,∴DE=AE=AC=AB=1,AC∥DE,∴∠AEB=∠ABE,∠ABE=∠BAC=45°,∴∠AEB=∠ABE=45°,∴△ABE为等腰直角三角形,∴BEBD=BE﹣DE1.11.【解析】(1)OE=OF,理由如下:因为CE平分∠ACB,所以∠1=∠2,又因为MN∥BC,所以∠1=∠3,所以∠3=∠2,所以EO=CO,同理,FO=CO,所以OE=OF.(2)当点O运动到AC的中点时,四边形AECF是矩形,理由如下:因为OE=OF,点O是AC的中点,所以四边形AECF是平行四边形,又因为CF平分∠BCA的外角,所以∠4=∠5,又因为∠1=∠2,所以∠1=∠2,∠2+∠4=11802⨯︒=90°,即∠ECF=90°,所以平行四边形AECF是矩形.(3)当△ABC是直角三角形时,即∠ACB=90°时,四边形AECF是正方形,理由如下:由(2)证明可知,当点O运动到AC的中点时,四边形AECF是矩形,又因为∠ACB=90°,CE,CN分别是∠ACB与∠ACB的外角的平分线,所以∠1=∠2=∠3=∠4=∠5=45°,所以AC⊥MN,所以四边形AECF是正方形.1.【答案】A【解析】A.有一个角为直角的平行四边形是矩形满足判定条件;B.四条边都相等的四边形是菱形,故B错误;C有一组邻边相等的平行四边形是菱形,故C错误;对角线相等且相互平分的四边形是矩形,则D错误;故选A.【名师点睛】本题考查了矩形的判定,矩形的判定方法有:1.有三个角是直角的四边形是矩形;2.对角线互相平分且相等的四边形是矩形;3.有一个角为直角的平行四边形是矩形;4.对角线相等的平行四边形是矩形.2.【答案】C【解析】∵菱形ABCD的顶点A,B的坐标分别为(2,0),(0,1),∴AO=2,OB=1,AC⊥BD,∴由勾股定理知:AB==,∵四边形ABCD为菱形,∴AB=DC=BC=AD∴菱形ABCD的周长为:C.【名师点睛】此题主要考查了菱形的性质,勾股定理以及坐标与图形的性质,得出AB的长是解题关键.3.【答案】D【解析】如图,过E点作关于AB的对称点E′,则当E′,P,F三点共线时PE+PF取最小值,∵∠EAP=45°,∴∠EAE′=90°,又∵AE=EF=AE′=4,∴PE+PF的最小值为E′F=,∵满足PE+PF∴在边AB上存在两个P点使PE+PF=9,同理在其余各边上也都存在两个P点满足条件,∴满足PE+PF=9的点P的个数是8,故选D.【名师点睛】本题主要考查了正方形的性质以及根据轴对称求最短路径,有一定难度,巧妙的运用求最值的思想判断满足题意的点的个数是解题关键.4.【答案】A【解析】正方形ABCD 中,∵BC =4, ∴BC =CD =AD =4,∠BCE =∠CDF =90°, ∵AF =DE =1,∴DF =CE =3,∴BE =CF =5,在△BCE 和△CDF 中,BC CD BCE CDF CE DF =⎧⎪∠=∠⎨⎪=⎩,∴△BCE ≌△CDF (SAS ),∴∠CBE =∠DCF , ∵∠CBE +∠CEB =∠ECG +∠CEB =90°=∠CGE , cos ∠CBE =cos ∠ECG =BC CGBE CE=, ∴453CG =,CG =125,∴GF =CF ﹣CG =5﹣125=135, 故选A .【名师点睛】此题主要考查了正方形的性质,全等三角形的判定和性质,勾股定理,锐角三角函数,证明△BCE ≌△CDF 是解本题的关键. 5.【答案】4913【解析】如图,令AE 与BF 的交点为M . 在正方形ABCD 中,∠BAD =∠D =90︒,∴∠BAM +∠FAM =90︒, 在Rt ADE △中,13==A E ,∵由折叠的性质可得ABF GBF △≌△, ∴AB =BG ,∠FBA =∠FBG , ∴BF 垂直平分AG , ∴AM =MG ,∠AMB =90︒, ∴∠BAM +∠ABM =90︒, ∴∠ABM =∠FAM ,∴ABM EAD △∽△,∴AM AB DE AE = ,∴12513AM =,∴AM =6013,∴AG =12013,∴GE =13–120491313=. 【名师点睛】本题考查了正方形与折叠,勾股定理,等腰三角形的性质,以及三角形相似的判定和性质,熟练掌握相关的知识是解题的关键.6.【答案】【解析】∵A 'E ∥PF ,∴∠A 'EP =∠D 'PH ,又∵∠A =∠A '=90°,∠D =∠D '=90°,∴∠A '=∠D ',∴△A 'EP ~△D 'PH , 又∵AB =CD ,AB =A 'P ,CD =D 'P ,∴A 'P = D 'P , 设A 'P =D 'P =x ,∵S △A 'EP :S △D 'PH =4:1,∴A 'E =2D 'P =2x ,∴S △A 'EP =2112422A E A P x x x ''⨯⨯=⨯⨯==, ∵0x >,∴2x =,∴A 'P =D 'P =2,∴A 'E =2D 'P =4,∴EP ==∴1=2PH EP =112DH D H A P ''===,∴415AD AE EP PH DH =+++=+=+ ∴2AB A P '==,∴25)10ABCD S AB AD =⨯=⨯=矩形,【名师点睛】本题考查矩形的性质、折叠的性质,解题的关键是掌握矩形的性质、折叠的性质. 7.【答案】24【解析】∵四边形ABCD 是菱形, ∴AB =BC =CD =AD ,BO =DO , ∵点E 是BC 的中点, ∴OE 是△BCD 的中位线, ∴CD =2OE =2×3=6,∴菱形ABCD 的周长=4×6=24; 故答案为:24.【名师点睛】本题考查了菱形的性质以及三角形中位线定理;熟记菱形性质与三角形中位线定理是解题的关键.8.【解析】(1)∵四边形ABCD是正方形,∴∠BAE=∠ADF=90°,AB=AD=CD,∵DE=CF,∴AE=DF,在△BAE和△ADF中,AB ADBAE ADF AE DF=⎧⎪∠=∠⎨⎪=⎩,∴△BAE≌△ADF(SAS),∴BE=AF;(2)解:由(1)得:△BAE≌△ADF,∴∠EBA=∠FAD,∴∠GAE+∠AEG=90°,∴∠AGE=90°,∵AB=4,DE=1,∴AE=3,∴BE,在Rt△ABE中,12AB×AE=12BE×AG,∴AG=435⨯=125.【名师点睛】本题考查了全等三角形的判定与性质、正方形的性质、勾股定理以及三角形面积公式;熟练掌握正方形的性质,证明三角形全等是解题的关键.9.【解析】(1)∵四边形ABCD是平行四边形,∴∠B=∠D,AB=CD,AD∥BC,∵AE⊥BC,CF⊥AD,∴∠AEB=∠AEC=∠CFD=∠AFC=90°,在△ABE和△CDF中,B DAEB CFD AB CD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE≌△CDF(AAS);(2)∵AD∥BC,∴∠EAF=∠AEB=90°,∴∠EAF=∠AEC=∠AFC=90°,∴四边形AECF是矩形.【名师点睛】本题考查了矩形的判定、平行四边形的性质、全等三角形的判定与性质;熟练掌握平行四边形的性质和矩形的判定是解题的关键.10.【解析】∵四边形ABCD是菱形,∴AD=CD,在△ADF和△CDE中,AD CDD D DF DE=⎧⎪∠=∠⎨⎪=⎩,∴△ADF≌△CDE(SAS),∴∠1=∠2.【名师点睛】本题考查了菱形的性质、全等三角形的判定与性质;熟练掌握菱形的性质,证明三角形全等是解题的关键.11.【答案】见解析.【解析】∵四边形ABCD是矩形,∴∠D=∠B=90°,AD=BC,在△ADF和△CBE中,AD CBD B DF BE⎧=∠=∠=⎪⎨⎪⎩,∴△ADF≌△CBE(SAS),∴AF=CE.【名师点睛】本题考查了矩形的性质、全等三角形的判定与性质;熟练掌握矩形的性质,证明三角形全等是解题的关键.12.【答案】见解析.【解析】∵四边形ABCD中,AB=CD,AD=BC,∴四边形ABCD是平行四边形,∴AC=2AO,BD=2OD,∵OA=OD,∴AC=BD,∴四边形ABCD是矩形.【名师点睛】本题考查了平行四边形的性质和判定,矩形的判定等知识点,能由题中已知信息推出四边形ABCD是平行四边形是关键.13.【解析】(1)∵四边形EFGH是矩形,∴EH=FG,EH∥FG,∴∠GFH=∠EHF,∵∠BFG=180°﹣∠GFH,∠DHE=180°﹣∠EHF,∴∠BFG=∠DHE,∵四边形ABCD是菱形,∴AD∥BC,∴∠GBF=∠EDH,∴△BGF≌△DEH(AAS),∴BG=DE;(2)连接EG,∵四边形ABCD是菱形,∴AD=BC,AD∥BC,∵E为AD中点,∴AE=ED,∵BG=DE,∴AE=BG,AE∥BG,∴四边形ABGE是平行四边形,∴AB=EG,∵EG=FH=2,∴AB=2,∴菱形ABCD的周长=8.【名师点睛】本题考查了菱形的性质,矩形的性质,全等三角形的判定和性质,正确的识别作图是解题的关键.。
特殊平行四边形 解答题(八大模块)(解析版)—2024-2025学年九年级数学上学期期中挑战满分冲刺
特殊平行四边形 解答题(八大模块)目录:模块一、基础—单特殊平行四边形模块二、与其他几何性质结合模块三、作图有关的解答证明题模块四、模块二强化模块五、动态几何基础模块六、综合探究特殊平行四边形的判定模块七、特殊平行四边形在平面直角坐标系的应用模块八、压轴过渡练模块一、基础—单特殊平行四边形1.如图,四边形ABCD 是平行四边形,对角线AC ,BD 相交于点O .若12Ð=Ð,请判断四边形ABCD 的形状,并说明理由.【答案】四边形ABCD 是矩形,理由见解析【分析】本题考查了平行四边形的性质,等角对等边,矩形的判定.先根据平行四边形的性质得出2,2AC OC BD OB ==,再根据12Ð=Ð,推出AC BD =,即可得出结论.【解析】解:四边形ABCD 是矩形,理由如下:∵AC 、BD 是平行四边形ABCD 的对角线,∴2,2AC OC BD OB ==,∵12Ð=Ð,∴OC OB =,则AC BD =,∴平行四边形ABCD 是矩形.2.如图,在矩形ABCD 中,点E F 、在BC 上,连接AE DF 、,且AE DF =,求证:ABE DCF △≌△.【答案】证明见解析.【分析】本题考查了矩形的性质和全等三角形的判定,由四边形ABCD 是矩形,得90B C Ð=Ð=︒,AB DC =,然后根据“HL ”的判定方法即可求证,熟练掌握知识点的应用是解题的关键.【解析】证明:∵四边形ABCD 是矩形,∴90B C Ð=Ð=︒,AB DC =,在Rt ABE △与Rt DCF V 中,AB DC AE DF=ìí=î,∴()Rt Rt HL ABE DCF ≌△△.3.如图所示,在菱形ABCD 中,对角线AC 、BD 相交于点O ,BD =12cm ,AC =6cm ,求菱形的周长.4.如图,ABCD 是正方形,G 是BC 上任意一点,DE AG ^于E ,BF AG ^于F .求证:AE BF =.【答案】证明见解析.【分析】由正方形的性质结合DE AG ^,BF AG ^,证明,ABF DAE V V ≌即可得到答案.【解析】解:ABCD Q 是正方形,,90,AB AD BAD \=Ð=︒90,BAF DAE \Ð+Ð=︒DE AG ^Q ,BFAG ^,90,DEA AFB \Ð=Ð=︒90,DAE ADE \Ð+Ð=︒,BAF ADE \Ð=Ð在ABF △与DAE V 中,,BAF ADE AFB DEA AB DA Ð=ÐìïÐ=Ðíï=î,ABF DAE \V V ≌.BF AE \=【点睛】本题考查的正方形的性质,三角形全等的判定与性质,掌握以上知识是解题的关键.5.如图,在矩形ABCD 中,6AB =,8BC =,AC 与BD 交于点O .求BOC V 与DOC △的周长差.【答案】2【分析】本题主要考查矩形的性质,熟练掌握矩形的性质是解题关键.利用矩形的性质可得6CD AB ==,OB OD =,再根据三角形的周长公式计算即可.【解析】解:Q 四边形ABCD 为矩形,6AB =,8BC =,6CD AB \==,OB OD =,()862BOC DOC C C OB OC BC OD OC CD BC CD \-=++-++=-=-=V V ,BOC V \与DOC △的周长之差为2.6.如图,在菱形ABCD 中,点M 、N 分别在AB 、CB 上,且ADM CDN Ð=Ð,求证:BM BN =.7.如图,菱形ABCD 的对角线相交于点O ,∠BAD =60°,菱形ABCD 的周长为24.(1)求对角线BD 的长;(2)求菱形ABCD 的面积.【答案】(1)68.如图,在矩形ABCD 中,对角线AC 与BD 交于点O ,BE AC ^,CF BD ^,垂足分别为E 、F .求证:OE OF =.【答案】证明见解析.9.如图,在菱形ABCD 中,E 、F 分别为边AD 和CD 上的点,且AE CF =.连接AF 、CE 交于点G .求证:DGE DGF Ð=Ð.【答案】证明见解析.【分析】先证△DAF ≌△DCE ,再证△AEG ≌△CFG ,最后证△DGE ≌△DGF ,根据全等三角形的性质即可得到∠DGE =∠DGF .【解析】证明:∵四边形ABCD 是菱形,∴DA =DC =AB =BC ,∵AE =CF ,∴DE =DF在△DAF 和△DCE 中,DF DE ADF CDE AD CD =ìïÐ=Ðíï=î,∴△DAF ≌△DCE (SAS ),∴∠EAG =∠FCG ,在△AEG 和△CFG 中,EAG FCG AGE CGF AE CF Ð=ÐìïÐ=Ðíï=î,∴△AEG ≌△CFG (AAS ),∴EG =FG ,在△DGE 和△DGF 中,DE DF EG FG DG DG =ìï=íï=î,∴△DGE ≌△DGF (SSS ),∴∠DGE =∠DGF .【点睛】本题考查菱形的性质,全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.10.如图,在正方形ABCD 中,点E 在BC 边的延长线上,点F 在CD 边的延长线上,且CE DF =,连接AE 和BF 相交于点M .求证:AE BF = .【答案】证明见解析.【分析】利用正方形的性质证明:AB =BC =CD ,∠ABE =∠BCF =90°,再证明BE =CF ,可得三角形的全等,利用全等三角形的性质可得答案.【解析】证明:∵四边形ABCD 为正方形,∴AB =BC =CD ,∠ABE =∠BCF =90°,又∵CE =DF ,∴CE +BC =DF +CD 即BE =CF ,在△BCF 和△ABE 中,BE CF ABE BCF AB BC =ìïÐ=Ðíï=î∴ABE BCF △△≌(SAS ),∴AE =BF .【点睛】本题考查的是正方形的性质,三角形全等的判定与性质,掌握以上知识是解题的关键.模块二、与其他几何性质结合11.如图,正方形ABCD 的边长为4,点E在对角线BD 上,且∠BAE =22.5°,EF ⊥AB 于点F ,求EF 的长.12.如图,在矩形ABCD 中,E ,F 分别是BC ,AD 边上的点,且AE CF =.(1)求证:ABE CDF △≌△;(2)当AC EF ^时,四边形AECF 是菱形吗?请说明理由.【答案】(1)见解析(2)当AC EF ^时,四边形AECF 是菱形,理由见解析【分析】(1)由矩形的性质得出90B D Ð=Ð=︒,AB CD =,AD BC =,AD BC ∥,由HL 证明Rt Rt ABE CDF ≌△△即可;(2)由全等三角形的性质得出BE DF =,得出CE AF =,由CE AF ∥,证出四边形AECF 是平行四边形,再由AC EF ^,即可得出四边形AECF 是菱形.【解析】(1)证明:Q 四边形ABCD 是矩形,90B D \Ð=Ð=︒,AB CD =,AD BC =,AD BC ∥,在Rt ABE △和Rt CDF △中,AE CF AB CD =ìí=î,()Rt Rt HL ABE CDF \V V ≌;(2)解:当AC EF ^时,四边形AECF 是菱形,理由如下:ABE CDF QV V ≌,BE DF \=,BC AD =Q ,CE AF \=,Q CE AF ∥,\四边形AECF 是平行四边形,又AC EF ^Q ,\四边形AECF 是菱形.【点睛】本题考查了矩形的性质、全等三角形的判定与性质、菱形的判定、平行四边形的判定;熟练掌握矩形的性质和菱形的判定,证明三角形全等是解题的关键.13.如图,已在ABCD Y 中,对角线AC 与BD 相交于点O ,E ,F 是BD 上两点,且BE DF =,2AC OE =,(1)求证: 四边形AECF 是矩形;(2)若90304BAC ACE AE Ð=︒Ð=︒=,,,求BC 的长.∴903060AEG Ð=︒-︒=︒,∴1206060,BEG Ð=︒-︒=︒∴906030,GBE Ð=︒-︒=︒14.在四边形ABCD 中,AD BC ∥,AD BC =,对角线AC BD 、交于点O ,BD 平分ABC Ð,延长AD 至点E ,使DE BO =,连接OE .(1)求证:四边形ABCD 是菱形;(2)若460AD DAB =Ð=︒,,求OE 的长.【答案】(1)见解析15.如图,在矩形ABCD 中,对角线AC 的垂直平分线分别与边AB ,CD 的延长线交于点M ,N ,与边AD 交于点E ,垂足为O .(1)求证:AOM CON △△≌;(2)若8AD =,4CD =,求AE 的长.【答案】(1)见解析(2)5AE =【分析】(1)根据矩形的性质得出AB CD ∥,求出M N Ð=Ð,AO CO =,再根据全等三角形的判定定理AAS 推出即可;(2)根据矩形的性质得出4AB CD ==,根据线段垂直平分线的性质得出AE CE =,再根据勾股定理求出即可.【解析】(1)证明:∵四边形ABCD 是矩形,∴AB CD ∥,∴M N Ð=Ð,∵AC 的垂直平分线是MN ,∴AO CO =,在AOM V 和CON V 中,AOM CON M NAO CO Ð=ÐìïÐ=Ðíï=î,∵AC 的垂直平分线是∴AE CE x ==,∵四边形ABCD 是矩形,∴90ADC Ð=︒,DC =在Rt CDE △中,由勾股定理,得即()22284x x -+=,解得16.如图,在四边形ABCD 中,AB DC P ,AB AD =,AC 平分DAB Ð.对角线AC ,BD 相交于点O ,过点D 作DE AB ^于点E ,连接OE .(1)求证:四边形ABCD 是菱形.(2)若AD =4AC =,求OE 的长.【答案】(1)见解析(2)1,,,,17.如图,在正方形ABCD中,E是BC边上的一点,连接AE,点B关于直线AE的对称点为F,连接EF并延长交CD 于点G ,连接AG .求证:GF GD =.【答案】证明见解析.【分析】连接AF ,根据对称得:△ABE ≌△AFE ,再由HL 证明Rt △AFG ≌Rt △ADG ,可得结论.【解析】证明:连接AF ,Q 四边形ABCD 是正方形,AB AD \=,90B D Ð=Ð=︒,Q 点B 关于直线AE 的对称点为F ,∴△ABE ≌△AFE ,AB AF AD \==,90AFE B Ð=Ð=︒,90AFG \Ð=︒,在Rt AFG V 和Rt ADG V 中,AG AG =Q ,AF AD =,∴Rt △AFG ≌Rt △ADG (HL ),GF GD \=.【点睛】本题考查了正方形的性质,全等三角形的判定与性质,对称的性质,解决本题的关键是利用正方形的性质得到相等的边和相等的角,证明三角形全等,作出辅助线也是解决本题的关键.18.如图,在矩形ABCD 中,AB BC <,E 为AD 上一点,且BE AD =.(1)请用无刻度的直尺和圆规作出CBE Ð的平分线.(保留作图痕迹,不写作法)(2)在(1)中所作的角平分线与AD 的延长线交于点F ,连接CF .猜想四边形BEFC 是什么四边形?并证明你的猜想.【答案】(1)见解析(2)四边形BEFC 是菱形.证明见解析【分析】本题考查作图—基本作图、矩形的性质、角平分线的定义、菱形的判定,熟练掌握矩形的性质、角平分线的定义、菱形的判定是解答本题的关键.(1)根据角平分线的作图方法作图即可.(2)结合矩形的性质、角平分线的定义、菱形的判定可得结论.【解析】(1)解:如图,BP 即为所求.(2)解:四边形BEFC 是菱形.证明:BF Q 平分CBE Ð,CBF EBF \Ð=Ð.Q 四边形ABCD 是矩形,AD BC \=,AF BC ∥,CBF EFB \Ð=Ð,EBF EFB \Ð=Ð,BE EF \=,BE AD =Q ,AD BC =,BC EF \=,\四边形BEFC 是平行四边形.BE EF =Q ,\四边形BEFC 是菱形.模块三、作图有关的解答证明题19.如图,四边形ABCD 是正方形,射线DP 交AB 于点,90,P PDQ DQ Ð=︒交BC 的延长线于点Q .(1)尺规作图:作PDQ Ð的平分线交BC 于E ;(保留作图痕迹,不写作法)(2)在(1)的基础上,连接PE ,求证:PE PA CE=+【答案】(1)见解析(2)见解析【分析】此题考查了正方形的性质、全等三角形的判定和性质角平分线的作图等知识.(1)按照角平分线的作图方法作图即可;(2)证明()ASA PDA QDC V V ≌,则AP CQ =,PD QD =,再证明()SAS PDE QDE V V ≌,则PE QE =,由QE CQ CE PA CE =+=+即可得到PE PA CE =+.【解析】(1)解:如图所示:(2)证明:∵四边形ABCD 是正方形,∴90PAD ADC BCD Ð=Ð=Ð=︒,AD CD =,∴90PDA CDP Ð+Ð=︒,90QCD Ð=︒∵90PDQ Ð=︒,∴90CDQ CDP Ð+Ð=︒∴PDA CDQ Ð=Ð,∵90QCD PAD Ð=Ð=︒,AD CD =,∴()ASA PDA QDC V V ≌∴AP CQ =,PD QD =,∵作PDQ Ð的平分线交BC 于E∴PDE QDE Ð=Ð,又∵,DE DE =∴()SAS PDE QDE V V ≌∴PE QE =,∵QE CQ CE PA CE=+=+∴PE PA CE=+20.如图,在由24个全等的正三角形组成的正六边形网格中,请画出符合要求的格点四边形(即顶点均在格点上的四边形).(1)在图中画出以AB 为对角线的矩形APBQ .(2)在图中画出一个邻边比为1)中的矩形不全等.(2)解:如图,矩形CDEF 即为所求作的矩形.设每个小正方形的边长为1,∵1AC CG DG AD ====,∴四边形ACGD 为菱形,∴1122AO GO AG ===,CD ^模块四、模块二强化21.如图,在正方形ABCD 中,E 是边CD 的中点,点P 是边AD 上一点(与点A ,D 不重合),射线PE 与BC 的延长线交于点Q .(1)求证:PDE QCE V V ≌;(2)过点E 作EF BC ∥交PB 于点F ,连接AF ,当PB PQ =时.求证:四边形AFEP 是平行四边形.由三角形内角和定理可得AFP FPEÐ=ÐPE AF \∥,EF AP Q ∥,\四边形AFEP 是平行四边形.【点睛】本题主要考查正方形的性质,平行四边形的判定,全等三角形的判定与性质,平行线分线段成比例,直角三角形性质,等腰三角形的判定与性质,三角形内角和定理,熟练掌握相关几何性质与判定是解题的关键.22.如图,在矩形ABCD 中,6AD =,8CD =,菱形EFGH 的三个顶点E 、G 、H 分别在矩形ABCD 的边AB 、CD 、DA 上,2AH =,连接CF .(1)当2DG =时,求证:四边形EFGH 是正方形;(2)当△FCG 的面积为2时,求CG 的值.则90FMG Ð=︒,90A FMG \Ð=Ð=︒,由矩形和菱形的性质,可得AEG MGE \Ð=Ð,HEG Ð23.如图,在ABC V 中,AB AC =,AD 平分BAC Ð,CE AD ∥且CE AD =.(1)求证:四边形ADCE 是矩形;(2)若ABC V 是边长为4的等边三角形,,AC DE 相交于点O ,在CE 上截取CF CO =,连接OF ,求线段FC 的长及四边形AOFE 的面积.则90OHC Ð=︒,∵30OCH Ð=︒,112OH OC \==,AEC COF AOFE S S S \=-=V V 四边形模块五、动态几何基础24.如图,在矩形纸片AEE D ¢中,5AD =,15AEE D S ¢=矩形,在EE ¢上取一点F ,使4EF =,剪下AEF △,将它平移至DE F ¢¢V 的位置,拼成四边形AFF D ¢.(1)求证∶四边形AFF D ¢是菱形;(2)求四边形AFF D ¢的两条对角线的长.∵4EF =,5FF AD ¢==,∴9EF EF FF ¢¢=+=,在Rt AEF ¢△中,22239AF AE EF ¢¢=+=+在Rt DFE ¢V 中,541FE FF E F ¢¢¢¢=-=-=,25.如图,把矩形ABCD 绕点A 按逆时针方向旋转得到矩形AEFG ,使点E 落在对角线BD 上,连接DG ,DF .(1)若50BAE Ð=︒,则DAG Ð= °;(2)求证:DF AB =.【答案】(1)50(2)见解析【分析】(1)根据矩形的性质,得到90BAD EAG Ð=Ð=︒,进而得到BAE DAG Ð=Ð,即可求出DAG Ð的度数;(2)根据旋转和矩形的性质,易证四边形ABDF 是平行四边形,即可证明结论.【解析】(1)解:Q 矩形ABCD 和矩形AEFG ,90BAD EAG \Ð=Ð=︒,BAD EAD EAG EAD -=-∴∠∠∠∠,BAE DAG \Ð=Ð,50BAE Ð=︒Q ,50DAG \Ð=︒,故答案为:50;(2)证明:连接AF ,由旋转的性质可知,AF BD =,FAE ABD Ð=Ð,AB AE =,ABE AEB \Ð=Ð,FAE AEB \Ð=Ð,AF BD \∥,\四边形ABDF 是平行四边形,DF AB \=;【点睛】本题考查了旋转的性质,矩形的性质,平行四边形的判定和性质,平行线的判定,等边对等角,熟练掌握旋转和矩形的性质是解题关键.26.如图,在矩形ABCD 中,2AB AD >,点E F ,分别在边AB CD ,上.将ADF △沿AF 折叠,点D 的对应点G 恰好落在对角线AC 上;将CBE △沿CE 折叠,点B 的对应点H 恰好也落在对角线AC 上.连接GE FH ,.求证:(1)AEH CFG △≌△;(2)四边形EGFH 为平行四边形.【答案】(1)证明见解析;(2)证明见解析.【分析】(1)由矩形的性质可得AD BC =,90B D Ð=Ð=︒,AB CD ∥,即得EAH FCG Ð=Ð,由折叠的性质可得AG AD =,CH CB =,90CHE B Ð=Ð=︒,90AGF D Ð=Ð=︒,即得CH AG =,90AHE CGF Ð=Ð=︒,进而得AH CG =,即可由ASA 证明AEH CFG △≌△;(2)由(1)得90AHE CGF Ð=Ð=︒,AEH CFG △≌△,即可得到EH FG ∥,EH FG =,进而即可求证;本题考查了矩形的性质,折叠的性质,全等三角形的判定和性质,平行线的判定和性质,掌握矩形和折叠的性质是解题的关键.【解析】(1)证明:∵四边形ABCD 是矩形,∴AD BC =,90B D Ð=Ð=︒,AB CD ∥,∴EAH FCG Ð=Ð,由折叠可得,AG AD =,CH CB =,90CHE B Ð=Ð=︒,90AGF D Ð=Ð=︒,∴CH AG =,90AHE CGF Ð=Ð=︒,∴AH CG =,在AEH △和CFG △中,90EAH FCG AH CGAHE CGF Ð=Ðìï=íïÐ=Ð=︒î,∴()ASA AEH CFG V V ≌;(2)证明:由(1)知90AHE CGF Ð=Ð=︒,AEH CFG △≌△,∴EH FG ∥,EH FG =,∴四边形EGFH 为平行四边形.27.如图,正方形ABCD 和正方形GECF ,点E 、F 分别在边BC 、上,将正方形GECF 绕点C 顺时针方向旋转,旋转角为0180a a ︒<<︒().(1)如图2,连接BE 、DF ,求证:BE DF =;(2)如图3,若1BC =+,1EC =,当点E 旋转到边上时,连接BE 、连接DF ,并将延长BE 交DF 于点H ,求证:BH 垂直平分DF .【答案】(1)见解析(2)见解析【分析】(1)根据四边形ABCD 和GECF为正方形可得BC DC =,EC FC =,BCE DCF Ð=Ð,再证明()SAS BCE DCF V V ≌即可得到结论;(2)证明BD BF =,=DE EF 即可得出结论.本题主要考查了正方形的性质,旋转的性质,线段垂直平分线的判断,全等三角形的判定与性质等知识,正确作出辅助线构造全等三角形是解答本题的关键.【解析】(1)证明:∵四边形ABCD 和GECF 为正方形,BC DC \=,EC FC =,90BCD ECF Ð=Ð=︒,BCE DCE DCF DCE \Ð+Ð=Ð+Ð,)解:连接, Q ()2221BD BC \==+22EF CE ==,CD BC =211BF BC CF \=+=++22,BF BD DE EF \==+=模块六、综合探究特殊平行四边形的判定28.如图,点O 是ABC V 内一点,连接OB 、OC ,并将AB 、OB 、OC 、AC 的中点D 、E 、F 、G 依次连接,得到四边形DEFG .(1)求证:四边形DEFG 是平行四边形;(2)连接AO①直接写出当AO 和BC 有怎样的位置关系时,四边形DEFG 是矩形;②直接写出当AO和BC有怎样的关系时,四边形DEFG是正方形.Q\∥DE AO,Q点E、F分别是OB、\BC EF∥,Q,AO BC^由①得当AO BC ^时,四边形Q 点D 、E 分别是AB 、\12DE AO =,Q 点E 、F 分别是OB 、(1)求证:四边形EFGH 是矩形;(2)如图二,连接FH ,P 为边FH 上一动点,PN EF ^于点N ,PM EH ^于点M ,3EF =,4EH =,求MN 的最小值.30.如图(1),在ABCD 中,对角线AC 与BD 相交于点O ,点E ,F 分别为OB ,OD 的中点,延长AE 至点G ,使EG AE =,连接CG ,延长CF 至点H ,使FH CF =,连接AH .(1)求证:四边形AGCH 是平行四边形;(2)如图(2),若2AC AB =,求证:四边形AGCH 是矩形;(3)如图(3),若AC AB ^,求证:四边形AGCH 是菱形.()SAS AEO CFO \△≌△,\Ð=Ð=,AEO CFO AE CF ,AE CF \∥,,==EG AE FH CF Q ,AG CH \=,\四边形AGCH 是平行四边形;(2)==Q ,EA EG OA OC ,EO \是AGC V 的中位线,∥\EO GC ,AE CF \∥,\四边形EGCF 是平行四边形,22==Q ,AC AB AC AO ,AB AO \=,E Q 是OB 的中点,AE OB \^,90OEG \Ð=︒,\四边形EGCF 是矩形;90AGC \Ð=︒,由(1)知,四边形AGCH 是平行四边形,\四边形AGCH 是矩形;(3)连接H G ,由(1)知,OA OC =,HG \过点O ,连接BG ,Q 点E 为OB 的中点,BE OE \=,AE EG =Q ,\四边形ABGO 是平行四边形,∥\AB OG ,AB AC ^Q ,\^HG AC ,\四边形AGCH 是菱形.【点睛】本题是四边形的综合题,考查了矩形的判定,菱形的判定,平行四边形的判定和性质,全等三角形的判定和性质,三角形的中位线定理,正确的识别图形是解题的关键.31.如图所示,在Rt ABC △中,90B =°,100cm AC =,60A Ð=︒,点D 从点C 出发沿CA 方向以4cm s 的速度向点A 匀速运动,同时点E 从点A 出发沿AB 方向以2cm s 的速度向点B 匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D 、E 运动的时间是t 秒()025t <£.过点D 作DF BC ^于点F ,连接DE ,EF .(1)求证:四边形AEFD 是平行四边形;(2)四边形AEFD 能够成为菱形吗?如果能,求出相应的t 值;如果不能,请说明理由;(3)当t 为何值时,DEF V 为直角三角形?请说明理由.【答案】(1)证明见解析Q 90CFD \Ð=︒,90B Ð=︒Q ,60A Ð=︒,30C \Ð=︒,114222DF CD t t \==´=,AE DF \=,若四边形AEFD 为菱形,则AE =100AC =Q ,4CD t =,1004AD AC CD t \=-=-,又2AE t =Q ,21004t t \=-,Q 90DFC DFB \Ð=Ð=︒,又90B Ð=︒Q ,\四边形DFBE 为矩形,DF BE \=,90B Ð=︒Q ,60A Ð=︒,由(1)可知:四边形AEFD 是平行四边形,\∥EF AD ,90ADE DEF \Ð=Ð=︒,在Rt ADE V 中,60A Ð=︒,2AE t =30AED \Ð=︒,11模块七、特殊平行四边形在平面直角坐标系的应用32.如图,已知OABC 是一张放在平面直角坐标系中的矩形纸片,O 为坐标原点,点(10,0)A ,点(0,6)C ,在边AB 上任取一点D ,将AOD △沿OD 翻折,使点A 落在BC 边上,记为点E .(1)EC 的长度为 ;(2)求D 点坐标;(3)若在x 轴正半轴上存在点P ,使得OEP V 为等腰三角形,则点P 的坐标为 .则6EM AB ==,在Rt OEM △中,OM OE =设OP a =,则PE a =,PM 在Rt PEM △中,2PE PM =222(8)6a a \=-+,\同②得8OM =,8MP \=,\点P 的坐标为(16,0);综上,点P 的坐标为(10,0)或25,04æöç÷èø【点睛】本题属于几何变换综合题,考查了翻折变换,矩形的性质,等腰三角形的性质,勾股定理,分类讨论思想的运用是解题的关键.33.如图1,在平面直角坐标系中,一次函数48y x =+的图象分别交x 轴,y 轴于A ,B 两点,将AOB V 绕点O 顺时针旋转90︒得COD △(点A 与点C 对应,点B 与点D 对应).(1)直接写出直线CD 的解析式;(2)点E 为线段CD 上一点,过点E 作EF y ∥轴交直线AB 于点F ,作EG x ∥轴交直线AB 于点G ,当EF EG AD +=时,求点E 的坐标;(3)如图2,若点M 为线段AB 的中点,点N 为直线CD 上一点,点P 为坐标系内一点.且以O ,M ,N ,P 为顶点的四边形为矩形,请直接写出所有符合条件的点N 的坐标,并写出其中一种求解点N 坐标的过程.∵,∵,()0,8B ,点M 为线段∴()1,4M -,12OM AM BM AB ===∵将AOB V 绕点O 顺时针旋转90∴AOB COD ≌△△,∴2OA OC ==,OAB OCD Ð=Ð∵ON OM ^,由(1)得,直线CD 的解析式为设1,24N n n æö-+ç÷èø,∵()1,4M -,∴2221417OM =+=,22ON n =+模块八、压轴过渡练34.如图,在ABC V 中,点O 是边AC 上一个动点,过点O 作直线MN BC ∥.设MN 交ACB Ð的平分线于点E ,交ABC V 的外角ACD Ð的平分线于点F .(1)求证:OE OF =;(2)若12CE =,5CF =,求OC 的长;(3)连接AE ,AF ,当点O 在边AC 上运动到什么位置时,四边形AECF 是矩形?请说明理由.【答案】(1)见解析(2) 6.5OC =(3)点O 在边AC 上运动到AC 的中点时,四边形AECF 是矩形.理由见解析【分析】(1)由角平分线的定义结合平行线的性质可证得ACE OEC Ð=Ð,则OE OC =,同理OC OF =,即可得出结论;(2)利用勾股定理可求得EF 的长,再结合(1)的结论可求得OC 的长;(3)只要保证四边形AECF 是平行四边形即可,则可知O 为AC 的中点时,满足条件.本题考查了矩形的判定、平行四边形的判定与性质、等腰三角形的判定以及勾股定理等知识,熟练掌握矩形的判定和等腰三角形的判定是解题的关键.【解析】(1)证明:CE Q 平分ACB Ð,ACE ECB \Ð=Ð,MN BC Q P ,ECB OEC \Ð=Ð,ACE OEC \Ð=Ð,OE OC \=,同理可得OC OF =,OE OF \=;35.如图,四边形ABCD 和BGEF 均为正方形,点E 恰好在线段AD 上,连接AF 、BE 、CG .(1)当点E 与A 、D 两点都不重合时,求证:ABF CBG V V ≌;(2)当点E 与A 点重合时,等式AB AE CG -=成立;当点E 与A 、D 两点都不重合时,等式AB AE CG -=是否仍然成立?请证明你的结论.Q 90EFB \Ð=︒,45FEB FBE Ð=Ð=︒,90AFE EFH BFH EFH \Ð+Ð=Ð+Ð=︒,AFE HFB \Ð=Ð.36.问题解决:如图①,在矩形ABCD 中,点E ,F 分别在AB BC ,边上,DE AF DE AF =^,于点G .(1)求证:四边形ABCD 是正方形;(2)延长CB 到点H ,使得BH AE =,连接AH ,判断AHF △的形状,并说明理由.类比迁移:如图②,在菱形ABCD 中,点E ,F 分别在AB BC ,边上,DE 与AF 相交于点G ,6072DE AF AED AE BF =Ð=︒==,,,,求DE 的长.【答案】(1)见解析;(2)等腰三角形,见解析;类比迁移:9【分析】本题主要考查了正方形的证明、菱形的性质、三角形全等的判断与性质等知识点,理解题意并灵活运用相关知识、正确做出辅助线构造三角形全等是解题的关键.(1)先说明90DE AF AGD ^Ð=︒,可得ADE BAF Ð=Ð,再证明()AAS ADE BAF V V ≌得到AD AB =,然后根据一组邻边相等的矩形是正方形即可证明结论;(2)由ADE BAF ≌△△可得AE BF =,再证明BH BF =可得AH AF =,从而得到等腰三角形;类比迁移:如图,延长CB 到点H ,使BH AE =,连接AH ,由菱形的性质可证明DAE ABH ≌V V ,再结合已知60AED Ð=︒可得AHF △是等边三角形,最后利用线段的和差即可解答.【解析】(1)解:证明:∵四边形ABCD 是矩形,∴90DAB ABC Ð=Ð=︒,∴90DE AF AGD ^Ð=︒,,∵9090BAF DAF ADE DAF Ð+Ð=︒Ð+Ð=︒,,∴ADE BAFÐ=Ð在ADE V 和BAF △中,90DAE ABF ADE BAFDE AF Ð=Ð=︒ìïÐ=Ðíï=î∴()AAS ADE BAF V V ≌,∴AD AB =,∴四边形ABCD 是正方形.(2)AHF △是等腰三角形,理由:由(1)得ADE BAF ≌△△,∴AE BF =,∵BH AE =,∴BH BF =,∵90ABH Ð=︒,∴AH AF =,。
九年级数学特殊的平行四边形中考总复习
《特殊的平行四边形》专题复习学习目标:1.平行四边形、矩形、菱形、正方形的性质和判定在几何问题中的综合运用。
2.连平行四边形、矩形、菱形、正方形的对角线,能得到特殊三角形(直角三角形和等腰三角形)、全等三角形,要用心体会方程思想(直角三角形)和分类讨论思想(等腰三角形)在解决问题中的作用.知识梳理:一.矩形、菱形、正方形的性质与判定.二.矩形、菱形、正方形与平行四边形的关系.(小组讨论)注意:以平行四边形为基础,从边、角、对角线等不同角度进行演变,推出特殊的四边形:矩形、菱形、正方形。
他们之间既有联系又有区别。
(1)矩形的性质与判定.注意:从矩形的图形中可以分解出:直角三角形、等腰三角形、对角线的夹角是60°时有等边三角形。
(2)矩形性质的推论:直角三角形斜边上的中线等于斜边的一半. (3)菱形的性质与判定.注意:从菱形的图形中可以分解出:直角三角形、等腰三角形或等边三角形。
(4)菱形的面积1.运用平行四边形的面积公式: .2.菱形的面积等于两条对角线乘积的一半.(5)正方形的性质与判定.注意:从正方形的图形中可以分解出:等腰直角三角形。
例1.如图,在菱形ABCD 中,P 是对角线AC 上任一点(不与A ,C 重合),连接BP ,DP ,过P 作PE ∥CD 交AD 于E ,过P 作PF ∥AD 交CD 于F ,连接EF .(1)求证:△ABP ≌△ADP ;(2)若BP=EF ,求证:四边形EPFD 是矩形.S =⨯平行四形底高12ABCD S AC BD =⋅菱形跟踪练习.如图,四边形ABCD是矩形,把矩形沿对角线AC折叠,点B落在点E处,CE与AD相交于点O.(1)求证:△AOE≌△COD;(2)若∠OCD=30°,AB=,求△AOC的面积.例2.如图,在平行四边形ABCD中,DB=DA,点F是AB的中点,连接DF并延长,交CB的延长线于点E,连接AE.(1)求证:四边形AEBD是菱形;(2)若DC=,tan∠DCB=3,求菱形AEBD的面积.跟踪练习.如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O 的直线分别交AB,CD边于点E,F.(1)求证:四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,求EF的长.巩固提高:准备一张矩形纸片,按如图操作:将△ABE沿BE翻折,使点A落在对角线BD上的M点,将△CDF沿DF翻折,使点C落在对角线BD上的N点.(1)求证:四边形BFDE是平行四边形;(2)若四边形BFDE是菱形,AB=2,求菱形BFDE的面积.总结中考这类题做题方法与注意事项:专项训练:1.如图,菱形ABCD的对角线AC,BD相交于点O,E是AD的中点,点F,G在AB 上,EF⊥AB,OG∥EF.(1)求证:四边形OEFG是矩形;(2)若AD=10,EF=4,求OE和BG的长.2. 如图,四边形ABCD是平行四边形,DE∥BF,且分别交对角线AC于点E,F,连接BE,DF.(1)求证:AE=CF;(2)若BE=DE,求证:四边形EBFD为菱形.3. 如图,在△ABC中,AB=AC,点D、E分别是线段BC、AD的中点,过点A作BC 的平行线交BE的延长线于点F,连接CF.(1)求证:△BDE≌△FAE;(2)求证:四边形ADCF为矩形.4. 如图,在边长为l的正方形ABCD中,E是边CD的中点,点P是边AD上一点(与点A、D不重合),射线PE与BC的延长线交于点Q.(1)求证:△PDE≌△QCE;(2)过点E作EF∥BC交PB于点F,连结AF,当PB=PQ时,①求证:四边形AFEP是平行四边形;②请判断四边形AFEP是否为菱形,并说明理由.5. 如图,矩形ABCD中,AB=4,BC=2,点E、F分别在AB、CD上,且BE=DF=.(1)求证:四边形AECF是菱形;(2)求线段EF的长.6. 如图,已知在△ABC中,D,E,F分别是AB,BC,AC的中点,连结DF,EF,BF.(1)求证:四边形BEFD是平行四边形;(2)若∠AFB=90°,AB=6,求四边形BEFD的周长.7. 如图,矩形ABCD中,E是AD的中点,延长CE,BA交于点F,连接AC,DF.(1)求证:四边形ACDF是平行四边形;(2)当CF平分∠BCD时,写出BC与CD的数量关系,并说明理由.8. 如图,在菱形ABCD中,对角线AC与BD交于点O.过点C作BD的平行线,过点D作AC的平行线,两直线相交于点E.(1)求证:四边形OCED是矩形;(2)若CE=1,DE=2,求ABCD的面积?9. 如图,已知A、F、C、D四点在同一条直线上,AF=CD,AB∥DE,且AB=DE.(1)求证:△ABC≌△DEF;(2)若EF=3,DE=4,∠DEF=90°,请直接写出使四边形EFBC为菱形时AF的长度.10. 如图,在▱ABCD中,AE⊥BC,AF⊥CD,垂足分别为E,F,且BE=DF.(1)求证:▱ABCD是菱形;(2)若AB=5,AC=6,求▱ABCD的面积.11. 如图,在四边形ABCD中,∠BAC=90°,E是BC的中点,AD∥BC,AE∥DC,EF ⊥CD于点F.(1)求证:四边形AECD是菱形;(2)若AB=6,BC=10,求EF的长.12. 如图,在Rt△ABC中,∠ACB=90°,D、E分别是AB、AC的中点,连接CD,过E作EF∥DC交BC的延长线于F.(1)证明:四边形CDEF是平行四边形;(2)若四边形CDEF的周长是25cm,AC的长为5cm,求线段AB的长度.13. 如图,菱形ABCD的对角线AC与BD相交于点O,且BE∥AC,CE∥BD.(1)求证:四边形OBEC是矩形;(2)若菱形ABCD的周长是4,tanα=,求四边形OBEC的面积.14. 如图,在正方形ABCD中,点E,F分别在AD,CD上,且DE=CF,AF与BE相交于点G.(1)求证:BE=AF(2)若AB=4,DE=1,求AG的长.15.如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,16.延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.。
2024年中考第一轮复习特殊平行四边形2
3.[2019·上海]如图25-7,在正方形ABCD中,E是边AD的中点.将△ABE沿直线BE
翻折,点A落在点F处,连结DF,那么∠EDF的正切值是
图25-7
.
[答案]2
1
[解析] 如图所示,由折叠可得 AE=FE,∠AEB=∠FEB= ∠AEF,
■ 知识梳理
1.定义:顺次连结四边形各边中点所得的四边形称为中点四边形.
2.任意四边形的中点四边形是① 平行四边形 .
对角线相等的四边形的中点四边形是② 菱形
.
对角线垂直的四边形的中点四边形是③ 矩形
.
对角线互相垂直且相等的四边形的中点四边形是④ 正方形 .
考向一
中点四边形
例1 如图25-4,D,E分别是不等边三角形ABC(即AB≠BC≠AC)的边AB,AC的中点
1
2
∵AC=BD=8,AE=CF=2,∴OD=4,OE=OF= (8-2-2)=2.
由勾股定理,得 DE= 2 + 2 = 42 + 22 =2 5,
∴四边形 BEDF 的周长=4DE=4×2 5=8 5.
■ 知识梳理
图25-2
考点二
中点四边形
4.顺次连结任意四边形各边的中点,所得的四边形一定是
,O是△ABC所在平面上的动点,连结OA,OB,OC,点G,F分别是OB,OC的中点,顺
次连结点D,G,F,E.
(1)当点O在△ABC的内部时,求证:四边形DGFE是平行四边形;
解:(1)证明:∵D,E 分别是 AB,AC 的中点,
1
∴DE∥BC,且 DE=2BC.
1
同理,GF∥BC,且 GF=2BC,
中考数学专题复习题:特殊平行四边形
中考数学专题复习题:特殊平行四边形一、单项选择题(共5小题)1.下列结论中,矩形具有而平行四边形不一定具有的性质是()A.对边平行且相等B.对角线互相平分C.任意两个邻角互补D.对角线相等2.如图,在△ABC中,DE∥CA,DF∥BA,下列四个判断不正确的是()A.四边形AEDF是平行四边形B.如果∠BAC=90°,那么四边形AEDF是矩形C.如果AD平分∠BAC,那么四边形AEDF是矩形D.如果AD⊥BC,且AB=AC,那么四边形AEDF是菱形第2题图第3题图3.如图,在矩形ABCD中,对角线AC,BD相交于点O,下列说法错误的是()A.∠ABC=90°B.AC=BD C.OA=OB D.OA=AD4.如图,四边形ABCD的对角线AC与BD相交于点O,下列条件中,能判定四边形ABCD是矩形的是()A.AB∥DC,AB=CD B.AB∥CD,AD∥BCC.AC=BD,AC⊥BD D.OA=OB=OC=OD5.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=5,AD=12,则四边形ABOM的周长为()A.17 B.18 C.19 D.20二、填空题(共5小题)6.如图,小明把面积为8的矩形纸板挂在墙上,则图中阴影区域的面积是________.7.如图,四边形ABCD是矩形,对角线AC与BD交于点O,∠AOD=60°,AD=2,则AC=________,矩形的面积等于________.8.如图,在矩形ABCD中,已知AE⊥BD于点E,∠DBC=30°,BE=1 cm,则AE的长为________.9.已知Rt△ABC的两直角边长分别为3 cm,4 cm,则斜边上的中线是________,斜边上的高是________.10.如图,矩形ABCD的对角线AC,BD相交于点O,DE∥AC,CE∥BD.若AC=10,则四边形OCED的周长是________.三、解答题(共2小题)11.如图,在平行四边形ABCD中,∠ABC和∠BCD的平分线相交于点E,BF∥CE,CF∥BE. 求证:四边形BFCE是矩形.12.如图,四边形ABCD是矩形,对角线AC,BD相交于点O,BE∥AC交DC的延长线于点E.(1)求证:BD=BE;(2)若∠DBC=30°,BO=4,求四边形ABED的面积.。
2024中考备考数学重难点03 平行四边形与特殊平行四边形8大题型+满分技巧+限时分层检测
重难点03 平行四边形与特殊平行四边形中考数学中《平行四边形、矩形、菱形》部分主要考向分为五类:一、多边形内角和(每年1道,3~4分)二、平行四边形的性质与判定(每年1道,3~8分)三、矩形的性质与判定(每年1~2题,3~12分)四、菱形的性质与判定(每年1~2题,3~12分)五、正方形的性质(每年1道,3~12分)平行四边形和特殊平行四边形在中考数学中是占比比较大的一块考点,考察内容主要有各个特殊四边形的性质、判定、以及其应用;考察题型上从选择到填空再都解答题都有,题型变化也比较多样;并且考察难度也都是中等和中等偏上,难度较大,综合性比较强。
所以需要考生在复习这块内容的时候一定要准确掌握其性质与判定,并且会在不同的结合问题上注意和其他考点的融合。
考向一:多边形内角和【题型1 多边形的内角和的计算】满分技巧多边形内角和公式:()()31802≥︒⨯-nn任意多边形的外角和为360°正多边形的一个内角:()nnn︒-︒︒⨯-360180/18021.(2023•北京)正十二边形的外角和为()A.30°B.150°C.360°D.1800°2.(2023•襄阳)五边形的外角和等于()A.180°B.360°C.540°D.720°3.(2023•重庆)如图,正五边形ABCDE中,连接AC,那么∠BAC的度数为.4.(2023•济宁)一个多边形的内角和是540°,则这个多边形是边形.考向二:平行四边形的性质与判定【题型2 平行四边形的性质】满分技巧1.平行四边形的性质可以从三个方面记,①边:对边平行且相等;②角:对角相等,邻角互补;③对角线:对角线互相平分;2.平行四边形的问题经常转化为全等三角形的判定与性质类问题来解决。
1.(2023•益阳)如图,▱ABCD的对角线AC,BD交于点O,下列结论一定成立的是()A.OA=OB B.OA⊥OB C.OA=OC D.∠OBA=∠OBC2.(2023•海南)如图,在▱ABCD中,AB=8,∠ABC=60°,BE平分∠ABC,交边AD于点E,连接CE,若AE=2ED,则CE的长为()A.6B.4C.D.3.(2023•泸州)如图,▱ABCD的对角线AC,BD相交于点O,∠ADC的平分线与边AB相交于点P,E是PD中点,若AD=4,CD=6,则EO的长为()A.1B.2C.3D.44.(2023•福建)如图,在▱ABCD中,O为BD的中点,EF过点O且分别交AB,CD于点E,F.若AE=10,则CF的长为.5.(2023•聊城)如图,在▱ABCD中,BC的垂直平分线EO交AD于点E,交BC于点O,连接BE,CE,过点C作CF∥BE,交EO的延长线于点F,连接BF.若AD=8,CE=5,则四边形BFCE的面积为.6.(2023•哈尔滨)已知四边形ABCD是平行四边形,点E在对角线BD上,点F在边BC上,连接AE,EF,DE=BF,BE=BC.(1)如图①,求证△AED≌△EFB;(2)如图②,若AB=AD,AE≠ED,过点C作CH∥AE交BE于点H,在不添加任何辅助线的情况下,请直接写出图②中四个角(∠BAE除外),使写出的每个角都与∠BAE相等.【题型3 平行四边形的判定和性质的综合】满分技巧1、平行四边形的判定也可以从三个方面记,①边:两组对边分别平行;两组对边分别相等;一组对边平行且相等;②角:两组对角分别相等;③对角线:对角线互相平分;2、平行四边形的判定和性质经常综合在一起考,即先考判定一个四边形是平行四边,然后再利用平行四边形的性质去解剩余的问题。
中考数学专题训练:特殊平行四边形(附参考答案)
中考数学专题训练:特殊平行四边形(附参考答案)1.如图,在矩形ABCD和△BDE中,点A在BE上.若矩形ABCD的面积为20,△BDE的面积为24,则△ADE的面积为( )A.10 B.12C.14 D.162.如图,矩形ABCD的对角线AC,BD交于点O,AB=3,BC=4,过点O作OM⊥AC,交BC于点M,过点M作MN⊥BD,垂足为点N,则OM+MN的值为( )A.245B.165C.125D.653.如图,在四边形ABCD中,AB∥CD,AB⊥BD,AB=5,BD=4,CD=3,E是AC 的中点,则BE的长为( )A.2 B.52C.√5D.34.关于菱形的性质,以下说法不正确的是( )A.四条边相等B.对角线相等C.对角线互相垂直D.是轴对称图形5.下列选项中能使□ABCD成为菱形的是( )A.AB=CD B.AB=BCC.∠BAD=90°D.AC=BD6.如图,在菱形ABCD中,∠B=60°,点P从点B出发,沿折线BC-CD方向移动,移动到点D停止.在△ABP形状的变化过程中,依次出现的特殊三角形是( )A.直角三角形→等边三角形→等腰三角形→直角三角形B.直角三角形→等腰三角形→直角三角形→等边三角形C.直角三角形→等边三角形→直角三角形→等腰三角形D.等腰三角形→等边三角形→直角三角形→等腰三角形7.如图,菱形ABCD的对角线AC与BD相交于点O,E为边BC的中点,连接OE.若AC=6,BD=8,则OE=( )A.2 B.52C.3 D.48.如图,在菱形ABCD中,E,F分别是边BC,CD的中点,连接AE,AF,EF.若菱形ABCD的面积为8,则△AEF的面积为( )A.2 B.3C.4 D.59.如图,将矩形ABCD对折,使边AB与DC,BC与AD分别重合,展开后得到四边形EFGH.若AB=2,BC=4,则四边形EFGH的面积为( )A.2 B.4C.5 D.610.一个四边形顺次添加下列条件中的三个条件便得到正方形:a.两组对边分别相等;b.一组对边平行且相等;c.一组邻边相等;d.一个角是直角.顺次添加的条件:①a→c→d ②b→d→c ③a→b→c,则正确的是( )A.仅①B.仅③C.①②D.②③11.如图,在正方形ABCD中,点E,F分别在边CD,AD上,BE与CF交于点G.若BC=4,DE=AF=1,则CG的长是( )A.2 B.√5C.3√22D.12512.如图,已知F,E分别是正方形ABCD的边AB与BC的中点,AE与DF交于点P,则下列结论成立的是( )A.BE=12AE B.PC=PDC.∠EAF+∠AFD=90°D.PE=EC13.如图,在边长为3的正方形ABCD中,∠CDE=30°,DE⊥CF,则BF的长是( )A.1 B.√2C.√3D.214.如图,O为正方形ABCD对角线AC的中点,△ACE为等边三角形.若AB=2,则OE的长度为( )A.√6B.√62C.2√2D.2√315.如图,在△ABC中,D,E,F分别是边AB,BC和AC的中点,请添加一个条件________________________,使四边形BEFD为矩形.(填一个即可)16.如图,点O是菱形ABCD对角线的交点,DE∥AC,CE∥BD,连接OE.若AC=12,BD=16,则OE的长为______.17.如图,在矩形ABCD中,对角线AC,BD相交于点O,E是边AD的中点,点FAC,连接EF.若AC=10,则EF=______.在对角线AC上,且AF=1418.如图,E是矩形ABCD边AD上一点,F,G,H分别是BE,BC,CE的中点,AF=3,则GH的长为_____.19.如图,菱形ABCD的对角线AC,BD相交于点O,OE⊥AD,垂足为点E,AC=8,BD=6,则OE的长为______.20.如图,菱形ABCD的边长为6 cm,∠BAD=60°,将该菱形沿AC方向平移2√3 cm得到四边形A′B′C′D′,A′D′交CD于点E,则点E到AC的距离为_____cm.21.如图,已知菱形ABCD的边长为2,∠DAB=60°,E为AB的中点,F为CE 的中点,AF与DE相交于点G,则GF的长等于______.22.如图,将边长为1的正方形ABCD绕点A顺时针旋转30°得到正方形AB1C1D1,则阴影部分的面积是_________.23.如图,在正方形ABCD中,点E,F分别在BC,CD上,连接AE,AF,EF,∠EAF=45°.若∠BAE=α,则∠FEC一定等于______.24.如图,E,F是正方形ABCD的对角线AC上的两点,AC=8,AE=CF=2,则四边形BEDF的周长是_______.参考答案1.C 2.C 3.C 4.B 5.B 6.C 7.B 8.B 9.B 10.C 11.D 12.C 13.C 14.B15.AB⊥BC(答案不唯一) 16.10 17.52 18.3 19.12520.221.√19422.2-2√3323.2α 24.8√5。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学复习专题--《特殊平行四边形》评卷人得分一.选择题(共12小题)1.下列性质中,菱形具有而平行四边形不具有的性质是()A.对边平行且相等 B.对角线互相平分C.对角线互相垂直 D.对角互补2.能判定一个四边形是菱形的条件是()A.对角线互相平分且相等B.对角线互相垂直且相等C.对角线互相垂直且对角相等D.对角线互相垂直,且一条对角线平分一组对角3.矩形具有而菱形不一定具有的性质是()A.对边分别相等B.对角分别相等C.对角线互相平分 D.对角线相等4.以下条件不能判别四边形ABCD是矩形的是()A.AB=CD,AD=BC,∠A=90°B.OA=OB=OC=ODC.AB=CD,AB∥CD,AC=BD D.AB=CD,AB∥CD,OA=OC,OB=OD5.顺次连接四边形ABCD各边中点所成的四边形为菱形,那么四边形ABCD的对角线AC和BD只需满足的条件是()A.相等B.互相垂直C.相等且互相垂直 D.相等且互相平分6.已知菱形的两条对角线长分别是6cm和8cm,则菱形的边长是()A.12cm B.10cm C.7cm D.5cm7.如图,在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,以A为圆心,AB长为半径画弧交AD于F,若BF=12,AB=10,则AE的长为()A.16 B.15 C.14 D.138.如图,E,G,F,H分别是矩形ABCD四条边上的点,EF⊥GH,若AB=2,BC=3,则EF:GH=()A.2:3 B.3:2 C.4:9 D.无法确定9.如图:点P是Rt△ABC斜边AB上的一点,PE⊥AC于E,PF⊥BC于F,BC=15,AC=20,则线段EF的最小值为()A.12 B.6 C.12.5 D.2510.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,点E为垂足,连接DF,则∠CDF为()A.80°B.70°C.65°D.60°11.如图,在菱形ABCD中,∠A=110°,E,F分别是边AB和BC的中点,EP⊥CD于点P,则∠FPC的度数为()A.55°B.50°C.45°D.35°12.如图,矩形ABCD中,O为AC中点,过点O的直线分别与AB,CD交于点E,F,连接BF交AC于点M,连接DE,BO.若∠COB=60°,FO=FC,则下列结论:①FB⊥OC,OM=CM;②△EOB≌△CMB;③四边形EBFD是菱形;④MB:OE=3:2.其中正确结论的个数是()A.1 B.2 C.3 D.4评卷人得分二.填空题(共6小题)13.如图,菱形纸片ABCD,∠A=60°,P为AB中点,折叠菱形纸片ABCD,使点C落在DP所在的直线上,得到经过点D的折痕DE,则∠DEC等于度.14.如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为3,1,反比例函数y=的图象经过A,B两点,则菱形ABCD的面积为.15.如图:在矩形ABCD中,AB=4,BC=8,对角线AC、BD相交于点O,过点O 作OE垂直AC交AD于点E,则DE的长是.16.平行四边形ABCD中,对角线AC、BD相交于点O,BD=2AD,E、F、G分别是OC、OD,AB的中点.下列结论:①EG=EF;②△EFG≌△GBE;③FB平分∠EFG;④EA平分∠GEF;⑤四边形BEFG是菱形.其中正确的是.17.如图,矩形ABCD中,对角线AC、BD交于点O,点E是BC上一点,且AB=BE,∠1=15°,则∠2=.18.如图所示,在矩形ABCD中,AB=6,AD=8,P是AD上的动点,PE⊥AC,PF ⊥BD于F,则PE+PF的值为.评卷人得分三.解答题(共6小题)19.如图,在Rt△ABC中,∠ACB=90°,D为AB的中点,AE∥CD,CE∥AB,连接DE交AC于点O.(1)证明:四边形ADCE为菱形.(2)BC=6,AB=10,求菱形ADCE的面积.20.已知,如图,BD为平行四边形ABCD的对角线,O为BD的中点,EF⊥BD 于点O,与AD、BC分别交于点E、F.试判断四边形BFDE的形状,并证明你的结论.21.如图,在△ABC中,AB=AC,点D是BC的中点,DE⊥AC于点E,DG⊥AB 于点G,EK⊥AB于点K,GH⊥AC于点H、EK和GH相交于点F.求证:GE与FD互相垂直平分.22.如图:在△ABC中,CE、CF分别平分∠ACB与它的邻补角∠ACD,AE⊥CE 于E,AF⊥CF于F,直线EF分别交AB、AC于M、N.(1)求证:四边形AECF为矩形;(2)试猜想MN与BC的关系,并证明你的猜想;(3)如果四边形AECF是菱形,试判断△ABC的形状,直接写出结果,不用说明理由.23.如图:矩形ABCD中,AB=2,BC=5,E、P分别在AD、BC上,且DE=BP=1.(1)判断△BEC的形状,并说明理由?(2)判断四边形EFPH是什么特殊四边形?并证明你的判断;(3)求四边形EFPH的面积.24.如图,在△ABC中,∠ABC=90°,BD为AC的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.(1)求证:BD=DF;(2)求证:四边形BDFG为菱形;(3)若AG=13,CF=6,求四边形BDFG的周长.2017---2018学年中考数学复习专题--《特殊平行四边形》参考答案与试题解析一.选择题(共12小题)1.下列性质中,菱形具有而平行四边形不具有的性质是()A.对边平行且相等 B.对角线互相平分C.对角线互相垂直 D.对角互补【解答】解:A、平行四边形的对边平行且相等,所以A选项错误;B、平行四边形的对角线互相平分,所以B选项错误;C、菱形的对角线互相垂直,平行四边形的对角线互相平分,所以C选项正确;D、平行四边形的对角相等,所以D选项错误.故选C.2.能判定一个四边形是菱形的条件是()A.对角线互相平分且相等B.对角线互相垂直且相等C.对角线互相垂直且对角相等D.对角线互相垂直,且一条对角线平分一组对角【解答】解:∵对角线互相垂直平分的四边形是菱形.∴A、B、D都不正确.∵对角相等的四边形是平行四边形,而对角线互相垂直的平行四边形是菱形.故C正确.故选C.3.矩形具有而菱形不一定具有的性质是()A.对边分别相等B.对角分别相等C.对角线互相平分 D.对角线相等【解答】解:矩形的性质有:①矩形的对边相等且平行,②矩形的对角相等,且都是直角,③矩形的对角线互相平分、相等;菱形的性质有:①菱形的四条边都相等,且对边平行,②菱形的对角相等,③菱形的对角线互相平分、垂直,且每一条对角线平分一组对角;∴矩形具有而菱形不一定具有的性质是对角线相等,故选D.4.以下条件不能判别四边形ABCD是矩形的是()A.AB=CD,AD=BC,∠A=90°B.OA=OB=OC=ODC.AB=CD,AB∥CD,AC=BD D.AB=CD,AB∥CD,OA=OC,OB=OD【解答】解:如图:A、∵AB=CD,AD=BC,∴四边形ABCD是平行四边形,∵∠BAD=90°,∴四边形ABCD是矩形,故本选项错误;B、∵OA=OB=OC=OD,∴AC=BD,∴四边形ABCD是平行四边形,∴四边形ABCD是矩形,故本选项错误;C、∵AB=CD,AB∥CD,∴四边形ABCD是平行四边形,∵AC=BD,∴四边形ABCD是矩形,故本选项错误;D、∵AB∥CD,AB=CD,∴四边形ABCD是平行四边形,根据OA=OC,OB=OD不能推出平行四边形ABCD是矩形,故本选项正确;故选D.5.顺次连接四边形ABCD各边中点所成的四边形为菱形,那么四边形ABCD的对角线AC和BD只需满足的条件是()A.相等B.互相垂直C.相等且互相垂直 D.相等且互相平分【解答】解:因为原四边形的对角线与连接各边中点得到的四边形的关系:①原四边形对角线相等,所得的四边形是菱形;②原四边形对角线互相垂直,所得的四边形是矩形;③原四边形对角线既相等又垂直,所得的四边形是正方形;④原四边形对角线既不相等又不垂直,所得的四边形是平行四边形.因为顺次连接四边形ABCD各边中点所成的四边形为菱形,所以四边形ABCD的对角线AC和BD相等.故选A.6.已知菱形的两条对角线长分别是6cm和8cm,则菱形的边长是()A.12cm B.10cm C.7cm D.5cm【解答】解:如图:∵菱形ABCD中BD=8cm,AC=6cm,∴OD=BD=4cm,OA=AC=3cm,在直角三角形AOD中AD===5cm.故选D.7.如图,在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,以A为圆心,AB长为半径画弧交AD于F,若BF=12,AB=10,则AE的长为()A.16 B.15 C.14 D.13【解答】解:连结EF,AE与BF交于点O,如图,∵AO平分∠BAD,∴∠1=∠2,∵四边形ABCD为平行四边形,∴AF∥BE,∴∠1=∠3,∴∠2=∠3,∴AB=EB,同理:AF=BE,又∵AF∥BE,∴四边形ABEF是平行四边形,∴四边形ABEF是菱形,∴AE⊥BF,OB=OF=6,OA=OE,在Rt△AOB中,由勾股定理得:OA===8,∴AE=2OA=16.故选:A.8.如图,E,G,F,H分别是矩形ABCD四条边上的点,EF⊥GH,若AB=2,BC=3,则EF:GH=()A.2:3 B.3:2 C.4:9 D.无法确定【解答】解:过F作FM⊥AB于M,过H作HN⊥BC于N,则∠4=∠5=90°=∠AMF∵四边形ABCD是矩形,∴AD∥BC,AB∥CD,∠A=∠D=90°=∠AMF,∴四边形AMFD是矩形,∴FM∥AD,FM=AD=BC=3,同理HN=AB=2,HN∥AB,∴∠1=∠2,∵HG⊥EF,∴∠HOE=90°,∴∠1+∠GHN=90°,∵∠3+∠GHN=90°,∴∠1=∠3=∠2,即∠2=∠3,∠4=∠5,∴△FME∽△HNG,∴==∴EF:GH=AD:CD=3:2.故选B.9.如图:点P是Rt△ABC斜边AB上的一点,PE⊥AC于E,PF⊥BC于F,BC=15,AC=20,则线段EF的最小值为()A.12 B.6 C.12.5 D.25【解答】解:如图,连接CP.∵∠C=90°,AC=3,BC=4,∴AB===25,∵PE⊥AC,PF⊥BC,∠C=90°,∴四边形CFPE是矩形,∴EF=CP,由垂线段最短可得CP⊥AB时,线段EF的值最小,此时,S=BC•AC=AB•CP,△ABC即×20×15=×25•CP,解得CP=12.故选A.10.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,点E为垂足,连接DF,则∠CDF为()A.80°B.70°C.65°D.60°【解答】解:如图,连接BF,在△BCF和△DCF中,∵CD=CB,∠DCF=∠BCF,CF=CF∴△BCF≌△DCF∴∠CBF=∠CDF∵FE垂直平分AB,∠BAF=×80°=40°∴∠ABF=∠BAF=40°∵∠ABC=180°﹣80°=100°,∠CBF=100°﹣40°=60°∴∠CDF=60°.故选D.11.如图,在菱形ABCD中,∠A=110°,E,F分别是边AB和BC的中点,EP⊥CD于点P,则∠FPC的度数为()A.55°B.50°C.45°D.35°【解答】解:延长PF交AB的延长线于点G.如图所示:在△BGF与△CPF中,,∴△BGF≌△CPF(ASA),∴GF=PF,∴F为PG中点.又∵由题可知,∠BEP=90°,∴EF=PG,∵PF=PG,∴EF=PF,∴∠FEP=∠EPF,∵∠BEP=∠EPC=90°,∴∠BEP﹣∠FEP=∠EPC﹣∠EPF,即∠BEF=∠FPC,∵四边形ABCD为菱形,∴AB=BC,∠ABC=180°﹣∠A=70°,∵E,F分别为AB,BC的中点,∴BE=BF,∠BEF=∠BFE=(180°﹣70°)=55°,∴∠FPC=55°;故选:A.12.如图,矩形ABCD中,O为AC中点,过点O的直线分别与AB,CD交于点E,F,连接BF交AC于点M,连接DE,BO.若∠COB=60°,FO=FC,则下列结论:①FB⊥OC,OM=CM;②△EOB≌△CMB;③四边形EBFD是菱形;④MB:OE=3:2.其中正确结论的个数是()A.1 B.2 C.3 D.4【解答】解:连接BD,∵四边形ABCD是矩形,∴AC=BD,AC、BD互相平分,∵O为AC中点,∴BD也过O点,∴OB=OC,∵∠COB=60°,OB=OC,∴△OBC是等边三角形,∴OB=BC=OC,∠OBC=60°,在△OBF与△CBF中∴△OBF≌△CBF(SSS),∴△OBF与△CBF关于直线BF对称,∴FB⊥OC,OM=CM;∴①正确,∵∠OBC=60°,∴∠ABO=30°,∵△OBF≌△CBF,∴∠OBM=∠CBM=30°,∴∠ABO=∠OBF,∵AB∥CD,∴∠OCF=∠OAE,∵OA=OC,易证△AOE≌△COF,∴OE=OF,∴OB⊥EF,∴四边形EBFD是菱形,∴③正确,∵△EOB≌△FOB≌△FCB,∴△EOB≌△CMB错误.∴②错误,∵∠OMB=∠BOF=90°,∠OBF=30°,∴MB=,OF=,∵OE=OF,∴MB:OE=3:2,∴④正确;故选:C.二.填空题(共6小题)13.如图,菱形纸片ABCD,∠A=60°,P为AB中点,折叠菱形纸片ABCD,使点C落在DP所在的直线上,得到经过点D的折痕DE,则∠DEC等于75度.【解答】解:连接BD,∵四边形ABCD为菱形,∠A=60°,∴△ABD为等边三角形,∠ADC=120°,∠C=60°,∵P为AB的中点,∴DP为∠ADB的平分线,即∠ADP=∠BDP=30°,∴∠PDC=90°,∴由折叠的性质得到∠CDE=∠PDE=45°,在△DEC中,∠DEC=180°﹣(∠CDE+∠C)=75°.故答案为:75.14.如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为3,1,反比例函数y=的图象经过A,B两点,则菱形ABCD的面积为4.【解答】解:过点A作x轴的垂线,与CB的延长线交于点E,∵A,B两点在反比例函数y=的图象上且纵坐标分别为3,1,∴A,B横坐标分别为1,3,∴AE=2,BE=2,∴AB=2,S菱形ABCD=底×高=2×2=4,故答案为4.15.如图:在矩形ABCD中,AB=4,BC=8,对角线AC、BD相交于点O,过点O 作OE垂直AC交AD于点E,则DE的长是3.【解答】解:如图,连接CE,,设DE=x,则AE=8﹣x,∵OE⊥AC,且点O是AC的中点,∴OE是AC的垂直平分线,∴CE=AE=8﹣x,在Rt△CDE中,x2+42=(8﹣x)2解得x=3,∴DE的长是3.故答案为:3.16.平行四边形ABCD中,对角线AC、BD相交于点O,BD=2AD,E、F、G分别是OC、OD,AB的中点.下列结论:①EG=EF;②△EFG≌△GBE;③FB平分∠EFG;④EA平分∠GEF;⑤四边形BEFG是菱形.其中正确的是①②④.【解答】解:令GF和AC的交点为点P,如图所示:∵E、F分别是OC、OD的中点,∴EF∥CD,且EF=CD,∵四边形ABCD为平行四边形,∴AB∥CD,且AB=CD,∴∠FEG=∠BGE(两直线平行,内错角相等),∵点G为AB的中点,∴BG=AB=CD=FE,在△EFG和△GBE中,,∴△EFG≌△GBE(SAS),即②成立,∴∠EGF=∠GEB,∴GF∥BE(内错角相等,两直线平行),∵BD=2BC,点O为平行四边形对角线交点,∴BO=BD=BC,∵E为OC中点,∴BE⊥OC,∴GP⊥AC,∴∠APG=∠EPG=90°∵GP∥BE,G为AB中点,∴P为AE中点,即AP=PE,且GP=BE,在△APG和△EGP中,,∴△APG≌△EPG(SAS),∴AG=EG=AB,∴EG=EF,即①成立,∵EF∥BG,GF∥BE,∴四边形BGFE为平行四边形,∴GF=BE,∵GP=BE=GF,∴GP=FP,∵GF⊥AC,∴∠GPE=∠FPE=90°在△GPE和△FPE中,,∴△GPE≌△FPE(SAS),∴∠GEP=∠FEP,∴EA平分∠GEF,即④成立.故答案为:①②④.17.如图,矩形ABCD中,对角线AC、BD交于点O,点E是BC上一点,且AB=BE,∠1=15°,则∠2=30°.【解答】解:∵四边形ABCD是矩形,∴∠ABC=∠BAD=90°,OB=OD,OA=OC,AC=BD,∴OB=OC,OB=OA,∴∠OCB=∠OBC,∵AB=BE,∠ABE=90°,∴∠BAE=∠AEB=45°,∵∠1=15°,∴∠OCB=∠AEB﹣∠EAC=45°﹣15°=30°,∴∠OBC=∠OCB=30°,∴∠AOB=30°+30°=60°,∵OA=OB,∴△AOB是等边三角形,∴AB=OB,∵∠BAE=∠AEB=45°,∴AB=BE,∴OB=BE,∴∠OEB=∠EOB,∵∠OBE=30°,∠OBE+∠OEB+∠BEO=180°,∴∠OEB=75°,∵∠AEB=45°,∴∠2=∠OEB﹣∠AEB=30°,故答案为:30°.18.如图所示,在矩形ABCD中,AB=6,AD=8,P是AD上的动点,PE⊥AC,PF ⊥BD于F,则PE+PF的值为.【解答】解:连接OP ,∵四边形ABCD 是矩形,∴∠DAB=90°,AC=2AO=2OC ,BD=2BO=2DO ,AC=BD , ∴OA=OD=OC=OB ,∴S △AOD =S △DOC =S △AOB =S △BOC =S 矩形ABCD =×6×8=12, 在Rt △BAD 中,由勾股定理得:BD===10,∴AO=OD=5, ∵S △APO +S △DPO =S △AOD ,∴×AO ×PE +×DO ×PF=12, ∴5PE +5PF=24, PE +PF=,故答案为:.三.解答题(共6小题)19.如图,在Rt △ABC 中,∠ACB=90°,D 为AB 的中点,AE ∥CD ,CE ∥AB ,连接DE 交AC 于点O .(1)证明:四边形ADCE 为菱形.(2)BC=6,AB=10,求菱形ADCE 的面积.【解答】证明:(1)∵在Rt△ABC中,∠ACB=90°,D为AB中点,∴CD=AB=AD,又∵AE∥CD,CE∥AB∴四边形ADCE是平行四边形,∴平行四边形ADCE是菱形;(2)在Rt△ABC中,AC===8.∵平行四边形ADCE是菱形,∴CO=OA,又∵BD=DA,∴DO是△ABC的中位线,∴BC=2DO.又∵DE=2DO,∴BC=DE=6,∴S===24.菱形ADCE20.已知,如图,BD为平行四边形ABCD的对角线,O为BD的中点,EF⊥BD 于点O,与AD、BC分别交于点E、F.试判断四边形BFDE的形状,并证明你的结论.【解答】答:四边形BFDE的形状是菱形,理由如下:∵四边形ABCD是平行四边形,∴AD∥BC,OB=OD,∵∠EDO=∠FBO,∠OED=∠OFB,∴△OED≌△OFB,∴DE=BF,又∵ED∥BF,∴四边形BEDF是平行四边形,∵EF⊥BD,∴▱BEDF是菱形.21.如图,在△ABC中,AB=AC,点D是BC的中点,DE⊥AC于点E,DG⊥AB 于点G,EK⊥AB于点K,GH⊥AC于点H、EK和GH相交于点F.求证:GE与FD互相垂直平分.【解答】证明:∵DE⊥AC,DG⊥AB,EK⊥AB,GH⊥AC,∴∠DGB=∠DEC=90°,EK∥DG,DE∥GH,∴四边形DEFG是平行四边形,∵AB=AC,∴∠B=∠C,在△DGB和△DEC中,,∴△DGB≌△DEC(AAS),∴DG=DE,∵四边形DEFG是平行四边形,∴四边形DEFG是菱形,∴GE与FD互相垂直平分.22.如图:在△ABC中,CE、CF分别平分∠ACB与它的邻补角∠ACD,AE⊥CE 于E,AF⊥CF于F,直线EF分别交AB、AC于M、N.(1)求证:四边形AECF为矩形;(2)试猜想MN与BC的关系,并证明你的猜想;(3)如果四边形AECF是菱形,试判断△ABC的形状,直接写出结果,不用说明理由.【解答】(1)证明:∵AE⊥CE于E,AF⊥CF于F,∴∠AEC=∠AFC=90°,又∵CE、CF分别平分∠ACB与它的邻补角∠ACD,∴∠BCE=∠ACE,∠ACF=∠DCF,∴∠ACE+∠ACF=(∠BCE+∠ACE+∠ACF+∠DCF)=×180°=90°,∴三个角为直角的四边形AECF为矩形.(2)结论:MN∥BC且MN=BC.证明:∵四边形AECF为矩形,∴对角线相等且互相平分,∴NE=NC,∴∠NEC=∠ACE=∠BCE,∴MN∥BC,又∵AN=CN(矩形的对角线相等且互相平分),∴N是AC的中点,若M不是AB的中点,则可在AB取中点M1,连接M1N,则M1N是△ABC的中位线,MN∥BC,而MN∥BC,M1即为点M,所以MN是△ABC的中位线(也可以用平行线等分线段定理,证明AM=BM)∴MN=BC;法二:延长MN至K,使NK=MN,因为对角线互相平分,所以AMCK是平行四边形,KC∥MA,KC=AM因为MN∥BC,所以MBCK是平行四边形,MK=BC,所以MN=BC(3)解:△ABC是直角三角形(∠ACB=90°).理由:∵四边形AECF是菱形,∴AC⊥EF,∵EF∥AC,∴AC⊥CB,∴∠ACB=90°.即△ABC是直角三角形.23.如图:矩形ABCD中,AB=2,BC=5,E、P分别在AD、BC上,且DE=BP=1.(1)判断△BEC的形状,并说明理由?(2)判断四边形EFPH是什么特殊四边形?并证明你的判断;(3)求四边形EFPH的面积.【解答】(1)△BEC是直角三角形:理由是:∵矩形ABCD,∴∠ADC=∠ABP=90°,AD=BC=5,AB=CD=2,由勾股定理得:CE===,同理BE=2,∴CE2+BE2=5+20=25,∵BC2=52=25,∴BE2+CE2=BC2,∴∠BEC=90°,∴△BEC是直角三角形.(2)解:四边形EFPH为矩形,证明:∵矩形ABCD,∴AD=BC,AD∥BC,∵DE=BP,∴四边形DEBP是平行四边形,∴BE∥DP,∵AD=BC,AD∥BC,DE=BP,∴AE=CP,∴四边形AECP是平行四边形,∴AP∥CE,∴四边形EFPH是平行四边形,∵∠BEC=90°,∴平行四边形EFPH是矩形.(3)解:在Rt△PCD中FC⊥PD,由三角形的面积公式得:PD•CF=PC•CD,∴CF==,∴EF=CE﹣CF=﹣=,∵PF==,=EF•PF=,∴S矩形EFPH答:四边形EFPH的面积是.24.如图,在△ABC中,∠ABC=90°,BD为AC的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.(1)求证:BD=DF;(2)求证:四边形BDFG为菱形;(3)若AG=13,CF=6,求四边形BDFG的周长.【解答】(1)证明:∵∠ABC=90°,BD为AC的中线,∴BD=AC,∵AG∥BD,BD=FG,∴四边形BGFD是平行四边形,∵CF⊥BD,∴CF⊥AG,又∵点D是AC中点,∴DF=AC,∴BD=DF;(2)证明:∵BD=DF,∴四边形BGFD是菱形,(3)解:设GF=x,则AF=13﹣x,AC=2x,∵在Rt△ACF中,∠CFA=90°,∴AF2+CF2=AC2,即(13﹣x)2+62=(2x)2,解得:x=5,∴四边形BDFG的周长=4GF=20.。