北师大版数学必修四:《周期现象与角的概念的推广》导学案(含解析)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1课时周期现象与角的概念的推广

1.通过实例使学生感受自然界存在着丰富的周期现象,使学生经历数据分析以及观察散点图特征的学习过程,领悟、思考周期现象.

2.观察实例,理解角的概念推广的必要性,理解并掌握正角、负角、零角、象限角、终边相同的角的概念及表示方法.通过类比正、负数的规定,认识正角、负角并体会类比、数形结合等思想方法的运用.

今天是星期一,7天后是星期几?21天后是星期几?86天后是星期几?

问题1:在现实生活中,具有周期现象的实例:海水的潮汐、候鸟的迁徙、四季变化、钟摆运动、一星期的往复、物理中的简谐振动、地球绕太阳公转等.

问题2:什么是角?角有哪些元素?怎样区分不同旋转方向所成的角?

平面内一条射线绕着它的端点从一个位置旋转到另一个位置所形成的图形叫作角;旋转开始时的射线叫作角的边,旋转终止时的射线叫作角的边,射线的端点叫作角的顶点.

为了表示不同旋转方向所形成的角,可以把按逆时针方向旋转所形成的角叫作,按顺时针方向旋转所形成的角叫作,把没有旋转的射线也看成一个角,叫作.

问题3:什么是象限角?各象限角怎么表示?轴线角怎么表示?

当角的顶点与坐标原点重合,角的始边与x轴的非负半轴重合,那么角的终边(除端点外)在第几象限,就说这个角是.

第一象限角的集合为;

第二象限角的集合为;

第三象限角的集合为;

第四象限角的集合为.

终边落在x轴上,角的集合为{x|x=k·180°,k∈Z},终边落在y轴上,角的集合为{x|x=k·180°+90°,k∈Z},所以终边落在坐标轴上,角的集合

为.

问题4:终边相同的角

一般地,所有与角α终边相同的角,连同角α在内,可构成一个集合S=,即任何一个与角α终边相同的角,都可以表示成角α与的和.

(1)终边相同角的前提条件:角的顶点在坐标原点,角的始边与x轴的重合.

(2)对于终边相同的角应注意以下两点:

①k是;②α是.

(3)k·360°与α之间是“+”号,如k·360°-30°可看成.(k∈Z)

(4)终边相同的角相等,但相等的角的终边相同,终边相同的角有无数多个,它们相差360°的倍.

(5)一般地,终边相同的角的表达形式.

1.经过一个小时,手表上的时针旋转了().

A.30°

B.-30°

C.15°

D.-15°

2.下列自然现象:月亮东升西落,气候的冷暖,昼夜变化,火山爆发.其中是周期现象的有().

A.1个

B.2个

C.3个

D.4个

3.角-950°12'的终边(除端点外)在第象限.

4.写出与70°角终边相同的角的集合S,并把S中适合不等式-360°≤β<720°的元素β写出来.

周期现象的简单应用

如果今天是星期一,那么从明天算起,第100天是星期().

A.二

B.三

C.四

D.五

终边相同的角

在0°~360°之间,求出与下列各角终边相同的角,并判断下列各角是第几象限角.

(1)825°17';(2)-1046°.

根据已知角的范围求等分角的范围

若α是第一象限角,则可能是第几象限角?

游乐场中的摩天轮有10个座舱,每个座舱最多乘4人,每30min转一圈,请估算16h内最多有多少人乘坐.

(1)写出与25°角终边相同的角的集合;

(2)在(1)的集合中,将适合不等式-1080°<α<360°的元素α求出.

已知角α∈(0°,360°),且6α与240°角的终边相同,求α的所有可能取值.

1.下列哪个不是周期现象().

A.挂在弹簧下方作上下振动的小球

B.钟表秒针的运动

C.每七天出现一个星期一

D.抛一枚骰子,向上的数字是奇数

2.在直角坐标系中,终边在∠xOy及其对顶角的平分线上的角的集合为.

3.若将时钟拨慢5分钟,则分针转了度;时针转了度.

4.写出与-75°角终边相同的角的集合S,并把S中适合不等式-360°≤β<720°的元素β写出来.

如图,点A在半径为1且圆心在原点的圆上,且∠AOx=45°,点P从A点出发,按逆时针方向等速地沿单位圆旋转.已知P在1s内转过的角度为θ(0°<θ<180°),经过2s到达第三象限,经过14s后又回到出发点A,求θ的值.

考题变式(我来改编):

第一章解三角形

第1课时周期现象与角的概念的推广

知识体系梳理

问题2:始终正角负角零角

问题3:第几象限角{x|k·360°

问题4:{β|β=α+k·360°,k∈Z}周角的整数倍(1)非负半轴(2)①任意整数②任意角(3)k·360°+(-30°)

(4)不一定一定整数(5)不唯一

基础学习交流

1.B因为手表一圈所成的角度是360°,表盘上有十二个刻度,故相邻两个刻度之间是

2.B月亮东升西落、昼夜变化是周期现象,气候的冷暖、火山爆发不是周期现象.

3.二∵-950°12'=-3×360°+129°48',∴129°48'的角的终边和-950°12'的角的终边相同,它是第二象限角.

4.解:S={β|β=70°+k·360°,k∈Z},S中适合-360°≤β<270°的元素有:70°-1×360°=-290°,70°+0×360°=70°,70°+1×360°=430°.

重点难点探究

探究一:【解析】因为每周有七天,从星期一到星期日,周而复始,故这是一个周期现象,

相关文档
最新文档