第六章 氧化反应(4)
药物合成反应第六章氧化反应
嘌呤及其衍生物的氧化
要点一
总结词
嘌呤及其衍生物是一类重要的生物碱,其氧化反应在药物 合成中具有重要意义。
要点二
详细描述
嘌呤可以通过氧化反应生成8-羟基嘌呤和8-醛基嘌呤等化 合物,这些化合物在药物合成中具有广泛的应用。常用的 氧化剂包括硝酸、高锰酸钾、过氧化氢等。
详细描述
腈的氧化通常会将其转化为相应的羧酸或酸 酐,这一过程在药物合成中常用于制备具有 生物活性的化合物。在氧化过程中,需要注 意控制反应条件,以避免过度氧化导致产物 的分解或副反应的发生。
06
CATALOGUE
杂环化合物的氧化
呋喃和噻吩的氧化
总结词
呋喃和噻吩是重要的杂环化合物,其氧化反应在药物 合成中具有广泛应用。
氧化等。
醇的氧化产物通常是醛 、酮、酸等,这些化合 物在药物合成中具有重
要应用。
醇的氧化反应通常需要 在较低的温度和压力下 进行,因此相对安全。
醛酮的氧化
醛酮的氧化可以通过多种方式进行, 如空气氧化、过氧化物氧化、金属盐 催化等。
醛酮的氧化反应通常需要在较低的温 度和压力下进行,因此相对安全。
醛酮的氧化产物通常是羧酸、酯、腈 等,这些化合物在药物合成中具有重 要应用。
氧化反应在药物合成中的应用
01
02
03
引入官能团
通过氧化反应,可以在药 物分子中引入羟基、羧基 、羰基等官能团,从而改 变药物的性质。
碳-碳键的形成
某些氧化反应可以用于合 成含有碳-碳键的药物分子 ,如烯烃、醇、醛等。
杂环化合物的合成
利用氧化反应可以合成各 种杂环化合物,如吡啶、 嘧啶等。
氧化反应的机理与选择性
第六章氧化反应
第六章氧化反应从广义上来讲,凡是有机物分子中碳原子失去电子,碳原子总的氧化态增高的反应均称为氧化反应;从狭义上讲,凡使反应物分子中的氧原子数增加,氢原子数减少的反应称为氧化反应。
利用氧化反应除了可以得到各类有机化合物如醇、醛、酮、酸、酯、环氧化物和过氧化物等,还可以制备有机腈和二烯烃等。
有机物的氧化反应都是强放热反应,因此,氧化反应中及时移除反应热是一个很关键的问题。
烃类和其它有机物的氧化反应几乎都是不可逆反应,反应都能进行到底。
有机合成中氧化方法主要有三种,即催化氧化和催化脱氢、化学氧化、电解氧化。
此外,生物氧化在有机合成中的应用也日益受到人们的重视。
生物氧化是一种较缓和的氧化过程。
人类在很早以前就利用微生物进行氧化反应来进行酿酒、制醋。
生物氧化具有高度的选择性,收率高,反应条件温和,三废少等特点。
因此,生物氧化是一种很有发展前景的氧化合成方法。
第一节催化氧化和催化脱氢一、催化氧化在没有催化剂的情况下,有机物在室温下与空气接触,就能发生缓慢的氧化反应,这种现象称为自动氧化。
在实际生产中常常需要使用催化剂,以提高反应的速度和选择性。
在催化剂存在下进行的氧化反就应称为催化氧化。
催化氧化法生产能力大,对环境污染小,且作为氧化剂的空气和氧来源广泛,无腐蚀性。
因此,工业上大吨位产品多采用空气催化氧化法。
氧化反应根据反应温度和反应物聚集状态不同,又可分为液相催化氧化和气相催化氧化反应。
液相催化氧化多在100︒C左右进行反应;气相催化氧化则常在200~400︒C下进行反应。
(一)液相空气氧化液相空气氧化是液态有机物在催化剂存在下,通入空气进行的催化氧化反应。
液相空气氧化反应的实质是在气液两相间进行的,大多采用鼓泡型反应器。
1.反应历程液相空气氧化属于自由基反应历程,其反应历程包括链的引发,链的传递和链的终止三个步骤,其中决定性步骤是链的引发。
下面以烃的氧化为例:(1)链引发 烃类R-H 在光照、热及可变价金属盐或自由基引发剂的作用下发生C-H 键的均裂而生成自由基R ⋅。
药物合成反应-第六章-氧化反应
另外,二氧化硒毒性非常大,使用极大受限。
位 氧 化
2
选择性的氧化可将烯丙位氧化为醛、酮或醇而不破坏双键。
烯
应用特点: 二氧化硒氧化
CH CH CH2
丙 位
二氧化硒可将烯丙位氧化为醛或酮,但如果想得到醇羟基,需在醋酸溶液中以醋酸酯的形 式分离产物,再水解得羟基。
氧 化
SeO2/C2H5OH heat
高锰酸钾、四氧化鋨及碘&湿羧酸银是常用的氧化条件。反应一般经历环状过渡态。
高锰酸钾需要低浓度及碱性 pH>12低温反应,否则易进
KMnO4
OH
NaOH
OH
一步氧化。
KMnO4 H2O
CHO CHO
CH3 OsO4/Py CH3 Et2O
CH3
OH 两 个 OH在 位 阻 小 的 地 方 生 成
OH
CH3
醇 氧 化
DMSO-Ac2O,能氧化大 位阻的醇;
1
Oppenauer氧化:
三烷氧基铝(如异丙醇铝)和丙酮,氧化仲醇为酮。(伯醇不适合此氧化)
特别适合氧化烯丙位醇为α,β-不饱和酮,普通仲醇也可,但β,γ-双键常移位到α,β。
O
O
O
CH3CCH3
60%
Al(O-ipr)3
HO
HO
H3CO
CH N
N 奎宁
O
CH3
CH (OCCH3)2
CHO
CrO3 / Ac2O / H2SO4
H2SO4 H2O
(65-66%)
NO2
NO2
NO2
苄 位 氧 化
1
非选择性强氧化
使用强氧化剂KMnO4、Na2Cr2O7、Cr2O3或稀硝酸等,将苄甲基氧化为羧基。
第六章 氧化反应
饱和脂肪烃的氧化反应仅对那些具有叔C-H键的饱和烃才有 合成价值。铬酸或高锰酸盐常常可将叔C-H键选择性氧化成叔醇, 若为手性叔碳的C-H键,氧化时可保持构型。
n-Bu CH 3 Et
CH 3
PhCH 2NEt3MnO 4 3℃ , 数天
H
Na 2 Cr2 O 7 HClO 4 / HOAc / H 2 O
CH 3 CH 3 CH 3
n-BuONO / CH 3ONa (91%)
CH 3 NOH O
CH 2O/ HCl / HOAc (~100%)
CH 3
CH 3 O O
O
6.1.4 烯丙位烃基的氧化
烯丙位的甲基、亚甲基或次甲基在一些氧化剂作用下可被氧化成相应的醇 (酯)、醛或酮,而双键不被氧化或破坏,但可能发生双键的迁移。 铬酐-吡啶配合物和二氯甲烷组成的溶液称为Collins试剂,它和PCC[铬酐吡啶配合物的盐酸盐]在室温下可使醇迅速氧化成相应的羰基化合物,而对醇 中的双键、苄位亚甲基和硫醚不起作用。若使用过量的Collins试剂(室温) 或PCC(在二氯甲烷或苯中回流),可将烯丙位碳氢键氧化成羰基。
n-Bu CH 3 Et
CH 3 OH
(72%)
OH
桥环化合物的桥头C-H键一般为叔C-H,张力较大的桥头碳 氢键因离子和自由基均难形成,不易发生氧化反应,但一些环 系较大的桥环化合物的氧化反应也可选择性地发生在桥头碳原 子上。例如:
(40%~50% )
HO
CrO3 / Ac2O / AcOH 35 C , 1h , r.t. , 6h(71%)
OH
CrO 3 / H 2SO 4 / 丙酮 (75%)
O
Jones 氧化
OLeabharlann OHH(73%)
第6章 氧化反应
-1
lO cm,则这个气泡核心所受的毛细管压力 Pco=2σ 液、炉渣和炉气的静压力
/r(g)=2 ×1500/ 10
-7
=3×10 [dyn·cm ]=29600[atm)。实际上CO气泡所受到的压力还包括钢 Pco= P(g)+ ρ mhm+ρ ShS+2σ m-g/r(g) 式中 P(g)为炉气压力;ρ m、ρ S 为钢、渣的密度;hm、hS 为钢、渣层的 厚度。
(6—18)
各种炼钢方法中实际的熔池[O]含量都高于相应的理论的含量;附图表示了氧气转炉实际的 [%C]·[%O]与相应的理论值的比较。 如将与[%C]相平衡的[%O]平衡值和实际熔池中的[%O]实际之差称为过剩氧Δ [%O],即 Δ [%O]= [%O]实际一[%O]平衡 将(6—20)代人m=[%O]·[%C]式中,得到 Δ [%O]= [%O]实际一m[%O]平衡 (6-21) 过剩氧Δ [%O]的大小与脱碳反应动力学有关。脱碳速度大,则反应接近平衡,过剩氧值 较小;反之,过剩氧就更大些。
(6—70)
P2O5。因此,影响
脱磷反应实际的热力学条件:
(1)温度的影响 由上面平衡常数的温度式可知,脱磷是强放热反应,降低反应温度 将使 Kp 增大,所以较低的熔池温度有利于脱磷。 (2)碱度的影响 因 CaO 是使γ P2O5 降低的主要因素,增加(%CaO)达到饱和含量可以增 大 aCaO,可见到增加渣中(CaO)或石灰用量,会使(%P205)提高或使钢中[%P]降低,但(%CaO) 过高将使炉渣变粘而不利于脱磷 (3)(FeO)的影响 (FeO)对脱磷反应的影响比较复杂,因为它与其它因素有密切的联 系。在其它条件一定时,在一定限度内增加(FeO)将使 Lp 增大,如上图所示。 (FeO)还有促 进石灰熔化的作用,但如(%FeO)过分高时将稀释(CaO)的去磷作用。因此, (%FeO)与炉 渣碱度对脱磷的综合影响是:碱度在 2.5 以下,增加碱度对脱磷的影响最大。碱度在 2.5~ 4.0,增加(FeO)对脱磷有利。但过高的(FeO)反而使脱磷能力下降。
药物合成反应 第六章 氧化反应
1. Chromium Regent • (1)Jones :CrO3/acetone/H2SO4
对酸敏感化合物不能用此法; 如果起始原料是醛,可氧化成酸;
• (2)Sarret and Collins Regent
• 制备存在危险性; • 产品从吡啶中分离困难;
Example
(3)PCC、PDC
(氧环在位阻小的一侧形成)
PH值有影响:
2.不与羰基共轭的烯键的环氧化
O
CH3 H
CH3 H
+ CH3CO3H
CH3 H
C
C
CH3 H
+ CH3CO2H
烯烃在试剂的作用下,生成环氧化合物的反应称为环氧化反应。
O OH
+
OH R
+
H O
反 应 机 理
R
C O
+
[
R
C O
C O
O
-
O
] -
OH R C O O
• 2. 氧化生成酮、羧酸 • 应用特点
KMnO4、Na2Cr2O7、Cr2O3和稀HNO3作 氧化剂
空气氧化
用硝酸铈铵作氧化剂, 苄位亚甲基氧化成酮
SeO2试剂
(82%)
二 羰基a位活性烃基的氧化
1.形成a-羟酮
(1)反应通式
• (2)影响因素
加BF3可催化酮的烯醇化,KC有利,从而有 利于乙酰化。
• ②铬酰氯为氧化剂
(Chromychlorde)CrO2Cl2
机理:(自由型)
Etard复合体
机理:(离子型)
(Etard复合体)
• (3)影响因素 • ①反应温度
第六章 氧化反应
OH
H2CrO4
O
Jones氧化法(CrO3-H2SO4-丙酮)
OH CrO3/H2SO4/CH3COCH3 O
(75%)
§2 Jones氧化法
O CrO3/H2SO4/CH3COCH3 O HO O O (73%) O
§2 PCC
Cl N H
/ CrO 3
= PCC
§2 PDC
2
N H
2
Cr2O7
PhCOOOH O + (94:6) O
§4 .1.5 有机过氧酸为环氧化剂
OH PhCOOOH O OH
§4 .1.5 有机过氧酸为环氧化剂
OOCCH 3 PhCOOOH
OOCCH 3 O
§4. 2 .1 顺式羟基化
• 常用试剂是高锰酸钾 • 四氧化锇 • 碘-湿乙酸银。
§4. 2.1 顺式羟基化
TPAP(Pr4NRuO4)
• 直接将RuCl4· nH2O加到过量的溴酸钠(NaBrO3)的l mol/L 浓度的碳酸钠水溶液中,氧化成[RuO4]-,接 着加入(Pr4N)OH,即产生深绿色的TPAP晶体, 过滤后干燥备用。TPAP用量(摩尔分数)为5%(相 对于被氧化的醇),常用的共氧化剂为双氧水和N甲基吗啉氧化物(NMO),由于TPAP是在非水介质 中氧化醇,故共氧化剂用后者。常用的溶剂是 CH2Cl2 或CH3CN,在用CH2Cl2 作溶剂时加10% 的CH3CN ,可提高催化剂的利用率。
= PDC
§2 醇氧化成酮
PhCH(OH)Ph
PCC
PhCOPh
(100%)
§2 醇氧化成醛
HO DMAP/HCl/CrO3 HO HO CHO
§2 醇氧化成酮:用锰化合物氧化
第六章 氧化反应
O2N
HO H N H O
O2N Al[OCH(CH3)2]3, HOCH(CH3)2
HO H N H O
O p-Nitro- -acetamido--hydroxyphenylpropanone
H OH (± )-thero-1-p-nitrophenyl-2acetamidopropane-1,3-diol
加氧或脱氢 的反应 称为氧化
Oxidation State(氧化态)
氧化与药物代谢
药物生物合成
第一节 烃类的氧化反应
一、 烷烃的氧化
Oxidation of alkanes and alkyl groups
Barton reaction
二、 苄位烃基的氧化
1. 氧化生成醇、酮、羧酸
2)Jones reagent (选择性氧化方法): —— CrO3-diluted H2SO4-acetone
Jones reagent HO O
—— Unsaturated secondary alcohols can be oxidized to ketones while carbon-carbon double bonds remain unchanged.
O CCH3 RC O3H
methyl
O COCH3 ? + O OCCH3
√
?
三、 –羟酮的氧化反应
第四节 含烯键化合物的氧化
一. 烯键环氧化
1. ,–不饱和羰基化合物的环氧化
,–不饱和羰基化合物中,碳碳双键与羰基共轭,一 般在碱性条件下用过氧化氢或叔丁基过氧化氢使 之环氧化.
机理
O2N
Br2, C6H5Cl O
第六章氧化反应
× R
R'
C
酮
O
[O]
O [O]
O
R CH
R COH
38
1、用铬化合物氧化
铬化合物
CH OH
CO
39
R
O
O
快
CH OH +
Cr
R'
HO
OH
R
O
CH O Cr O
R'
HO
O
R
慢
C O Cr O
R'
H
OH
H2O
O
O
RC R'
O + H3O+ +
Cr OH
O
HO
Cr OH
40
甾体环上位阻大的OH反而易被氧化, 因为脱氢是控制反应速率的步骤:
O R C CH2 CH2R
R OH C
CH RH2C
O
Se RO
O
C
CH RH2C
OH Se
O
[2,3-δ迁移]
RO
C
OH
CH
Se
RHC
O
H
RO
C
+ SeO + H2O
CH
RHC
14
2. 亲核反应 (1)亲核消除 二甲基亚砜氧化醇生成醛或酮的反应属亲核消除反应机理。
NC N
H H3C S CH3
(二)三氧化铬-吡啶配合物(科林斯试剂)
将三氧化铬加到过量的吡啶(质量比为三氧化铬 :吡啶=1:10) 中即生成三氧化铬-吡啶配合物吡啶溶液,它可以氧化伯、仲醇为 醛、酮,效果很好,对酸敏感的官能团不受影响。
也可将三氧化铬吡啶配合物从吡啶中分离出来,干燥后再溶于二 氯甲烷中使用,这样组成的溶液称为科林斯试剂。它是使伯、仲醇 氧化成醛、酮最普通的方法。
第六章 氧化还原
4、根据氧化剂和还原剂得失电子数相等的原则, 找出最小公倍数,合并成一个配平的离子方程式。
①×2 ② ×5 2MnO4-+16H++10e10Cl- - 10e5Cl2 2Mn2++ 5Cl2 + 8H2O
14
2Mn2++8H2O
两式相加 2MnO4-+16H++10Cl-
5、将配平的离子方程式写为分子方程式。注意反 应前后氧化值没有变化的离子的配平。
21
常用电极类型: 常用的电极(半电池),通常有四种类型: 1. 金属-金属离子电极:将金属插入到其盐溶液中构 成的电极。如:银电极( Ag+ / Ag ) 。 电极组成式:Ag|Ag+ (c) 电极反应: Ag++eAg
2. 金属-难溶盐-阴离子电极: 将金属表面涂有其金属 难溶盐的固体,浸入与该盐具有相同阴离子的溶液 中所构成的电极。 如: Ag-AgCl电极。 电极组成式:Ag | AgCl(s) | Cl- (c) 电极反应: AgCl + eAg + Cl22
8
又如: Zn + 2HCl
ZnCl2 + H2
锌失去电子,氧化值升高,被氧化,称为还原
剂(reducing agent),又称电子的供体(electron donor)。 HCl中的H+得到电子,氧化值降低,被还原, HCl称为氧化剂(oxidizing agent),又称电子的受体 (electron acceptor)。 氧化还原反应的本质是反应过程中有电子转移 (电子的得失或电子云的偏移),从而导致元素的 氧化值发生变化。
式中:n=5,氧化态为MnO4-和8H+,还原态为Mn2+ (H2O是溶剂,不包括在内)。
第六章 氧化反应
O
CH2 CCH3
Organic Reactions for Drug Synthesis
由于反应按自由基机理进行,有时伴有双键的重 排,生成相对更稳定的结构。
CH3 CrO3-Py/CH2Cl2 O
O CrO3-Py/CH2Cl2 F F
CH3
Organic Reactions for Drug Synthesis
ArCH(OCrCl2OH)2
H2O
ArCHO + 2H2CrO3
(Etard复合体)
Organic Reactions for Drug Synthesis
③ 铬酐-醋酐(CrO3-Ac2O)
O O Cr O + CH3 CH3
CH3 + O O H2O Cr O OCCH3 OCCH3 O CHO CH
3 有机过酸酯 (引入酰氧基后水解生成醇)
反应机理是自由基取代反应。
OH CH3CO3C(CH3)3
得烯丙醇
CuBr
CH3CH2CH CH2
O 常用
CH3CO3C(CH3)3
CuBr
CH3CHCH OH
CH2
C6H5COOC(CH3)3 CH3COOC(CH3)3 O
Organic Reactions for Drug Synthesis
三 、烯丙位的氧化反应
CH CH CH2 CH CH CH OH [O] O CH CH C
1.SeO2——醇
2. CrO3—吡啶络合物——酮
3. 有机过酸酯——酯水解成醇
反应中烯键不影响。
Organic Reactions for Drug Synthesis
1.SeO2/H2O/HOAc
第六章氧化反应
第四节 醛、酮的氧化
• 一、醛的氧化 • 1.反应通式
• 2.应用特点 • (1)醛氧化制备羧酸
新制Ag2O、CuO氧化
(2)Dakin反应
当醛基的邻、对位有-OH等供电子基时,则 经过酸氧化,甲酸酯中间体生成羟基
当-CHO邻、对位有供电子基时,芳环电子云密度较 丰富,有利于“b式”重排;若无取代基或供电子 基在间位以及存在吸电子基时,则按“a式”重排, 形成酸。
• O3/H2O2; O3/Zn/H+; O3/DMS; O3/Ph3P
• NaIO4/KMnO4; NaIO4/OsO4替代方法
第六节 芳烃的氧化反应 一 芳环的氧化开裂 1. KMnO4氧化
即:芳环上有供电子基的优先被氧化
2. RuO4氧化
3 CuCl+Py氧化
二、氧化成醌 1.铬酸氧化剂
• M-CPBA
• OsO4 • Bromohydrin
• Prevost • Woodward
5. Asymmetric Dihydroxylation Reaction
Sharpless Catalytic Asymmetric Dihydroxylation (AD) Reaction
三、烯烃的氧化性断裂及还原性断裂
• 二、酮的氧化
• Baeyer-Villiger oxidation
反应机理
迁移能力:3>2>环己基>苄基>苯基>1>H 越富电子烷基越先迁移
第五节 含烯键化合物的氧化
一、烯键的环氧化 1.a、b-不饱和羰基化合物的环氧化
环氧化机理:
此键可旋转,最终生成比较稳定的E型环氧 化合物
如:
两个较大基团在环的两侧
药物合成反应_第六章_氧化反应
苄 位 氧 化
1
非选择性强氧化
使用强氧化剂KMnO4、Na2Cr2O7、Cr2O3或稀硝酸等,将苄甲基氧化为羧基。
CH3
KMnO4
COOH
不管侧链多长均被氧化成-COOH
COOH
CH2CH2CH3
苄 位 氧 化
CH3 CH2CH3
CH3
40%HNO3
COOH
氧化碳链长的一段
CrO3 /HOAc(75%) H3CO 40℃、2hr H3CO O
伯 ︑ 仲 醇 氧 化
HO
O
1
DMSO氧化:
DMSO与强亲电试剂,如DCC、酸酐(Ac2O,三氟醋酸酐)、酰氯(SOCl2,草酰氯) 等配合,可选择性氧化羟基为醛/酮;条件温和收率高。
DMSO-DCC,不易氧化 大位阻的醇;
伯 ︑ 仲 醇 氧 化
DMSO-Ac2O,能氧化大 位阻的醇;
1
Oppenauer氧化:
④:环内双键,在②前提下优先氧化环上的烯丙位;
烯 丙 位 氧 化
OH CH2CH3
(Z)
CH2CH3
(Z)
SeO2
HOAc SeO2 ⑤:末端双键,常常重排引入端位羟基; CH3CH2CH2CH2CH CH2
CH3CH2CH2CH2CH CH2
SeO2
CH3CH2CH2CH2 CH CH2OH
3
CH3CH2CH2CH2 CH CH2OH
OOCR C O C H C O H CF3CO3H H2O/H2SO4 C RCOO C OH OH OH C 水解 C OH OH C
烯 键 氧 化 二 醇
1,2-
其实过氧酸也是烯键环氧化试剂之一,只是自身的酸性及酸根亲核试剂不利于环氧的稳定。 所以过氧醋酸和过氧甲酸等常用于直接从烯键制备反式1,2-二醇。
第六章 氧化反应
• 环氧化反应中取代基较多的双键比取代基少 的更易反应。富电子的双键比缺电子的双键 易反应。
O t-BuOOH, PhH Mo(CO)6, reflux
CHO
t-BuOOH Ti(Ⅳ), SiO2 O
CHO
• 对于含烯丙醇结构的烯烃,在金属催化剂 存在下,叔丁基过氧化氢可区域选择性或 立体选择性的环氧化反应。
• α,β-不饱和腈在过氧化氢碱性介质中,首先在氰 基上加成,随之在双键上的环氧化反应得到环氧 酰胺,叔丁基过氧化氢碱性条件环氧化α,β-不饱 和腈可以得到环氧腈
NH C N H2O2, NaOH OOH O O NH2
Ph C N Ph t-BuOOH NaOH Ph Ph O C N
• 过氧羧酸是最常用的环氧化试剂。是用相应 的羧酸与过氧化氢反应制取。过氧羧酸大多 不稳定,现用现配。 • 过氧羧酸与烯烃反应是合成环氧化物最简便 的方法。尤其对孤立双键、单独用过氧化氢 或过氧醇(不存在金属催化剂)不易被环氧 化,而用过氧羧酸很容易反应,其环氧化烯 烃的反应机理是过氧羧酸对碳-碳双键的氢 电性进攻
• 6-3-4 高碘酸 • 高碘酸或高碘酸盐水溶液是1,2-二醇氧化裂解 试剂。溶剂为甲醇、乙醇、乙酸、二氧六环等。 能定量的反应,根据高碘酸的消耗,推知多元 醇中相邻羟基的数目,根据产物推知原化合物 的结构。
H H R C C CH2CH2 COOH OHOH KIO4/H2SO4 EtOH/H2O RCHO + CHO-CH2CH2COOH
O
Ph (1) O3 (2) Zn, AcOH
O
Ph CHO
O
(1) O3, Et2O, 0 de AcO H (2) LiAlH4, 0 de OAc
第6章 氧化反应
常用的氧化剂是过氧酸(如过氧苯甲酸及其氯代物)或叔丁基过氧化氢 (需金属催化剂)。产物仍保持烯烃的立体化学结构:
其反应机理为:
6.4烯烃的氧化
过氧酸的氧化能力与对应酸的强度成正比,其氧化能力顺序为:
烯烃的环氧化常受空间阻碍的影响,在阻碍较小的一侧形成环氧化合物; 若有羟基的存在,由于其感应作用,则形成与羟基在同侧的环氧化物。
6.4.3烯烃类化合物的氧化切断
烯烃类化合物的氧化切断:进行此种类反应常用高锰酸钾-高碘酸钠的混 合氧化剂,或使用臭氧。 1)使用KMnO4-NaIO4混合氧化剂 利用KMnO4将烯烃类转变成二醇类,再用NaIO4将醇类氧化切断,并进一步氧 化成为羧酸。由于KMnO4作用后产生的MnO2可以被NaIO4氧化回到KMnO4, 故只需使用催化剂量的KMnO4 :
6.4.2烯烃的二羟基化反应
1)以高锰酸钾为氧化剂时,条件控制十分重要,否则形成的二醇类会进一
步氧化裂解:
CH2=CHCH(OCH3)2+KMnO4
H2O,5℃ 67%
CH2CHCH(OCH3)2
OH OH
若有机化合物不溶于水时,常加入相转移催化剂,如季铵盐等,使反应 在有机溶剂中进行,但反应的酸碱度也会影响产物。
OsO4,t-BuOH-THF-H2O,25℃,4h
反应都是遵循空间效应,从阻碍小的一侧作用。又因为OsO4是亲电子性, 所以反应不在氢较少的富电子双键发生。
6.4.2烯烃的二羟基化反应
3)以碘及湿的醋酸银为氧化剂,用这种方法可以获得空间位阻较大一侧的 顺式-邻二醇:
邻二醇化合物以高碘酸HIO4处理,得到两个羰基化合物:
O RCH2CH2CR
O
O
第六章 醇、酚、醚习题解答
第六章醇、酚、醚一、学习要求1.掌握醇、酚、醚的结构和命名。
2.掌握醇、酚、醚的主要化学性质和醇的重要的物理性质。
3.了解硫醇、硫醚和冠醚的结构、命名、性质及其重要用途。
二、本章要点醇、酚、醚是三类重要的有机化合物,有的在医药上用作消毒剂、麻醉剂、溶剂,有的是有机合成的常用原料。
(一)醇1.结构醇分子中的羟基氧为不等性sp3杂化,其中2个杂化轨道被2对未成键电子占据,另2个杂化轨道分别与α- C的sp3杂化轨道和氢原子的S轨道形成σ键。
由于氧的电负性大,故羟基氧电子云密度大,氢电子云密度小,因此氢氧键极性较大。
2. 命名醇的普通命名是在“醇”前加上烃基名称,并省去“基”字。
醇的系统命名原则是:(1)选择含有羟基的最长碳链作为主链,称为“某醇”,并使羟基相连的碳原子编号最小,将羟基位次写在“某醇”之前,其余的原则与烷烃相同。
(2)多元醇,应选择含羟基数目最多的最长碳链作主链,按羟基数目的多少称为“某二醇”、“某三醇”等。
(3)不饱和一元醇:选择既含羟基又含不饱和键数目最多的最长碳链作主链,编号时应使羟基位次最小,根据主链碳原子数称为“某烯(炔)醇”,并在“烯(炔)”、“醇”前面标明不饱和键和羟基的位次。
(4)命名芳香醇时,将芳环作为取代基,以侧链脂肪醇为母体。
(5)脂环醇,根据脂环烃基的名称,称为“环某醇”,从羟基所连接的碳原子开始,按“取代基位次之和最小”的原则给环碳原子编号,将取代基的位次、数目、名称依次写在“环某醇”的名称之前。
3. 性质(1)重要物理性质:由于醇可形成分子间氢键,故低级醇的沸点通常比相对分子质量相近的烷烃高得多。
随着醇中烷基的增大,醇羟基与水形成氢键的能力逐渐减弱,因此低级醇易溶于水,中级醇部分溶于水,高级醇则不溶于水。
(2)主要化学性质:①醇与活泼金属(如Na、K、Mg、Al等)反应,生成相应的醇盐,并放出氢气。
醇与活泼金属的反应速率顺序为:1)低级醇>中级醇>高级醇;2)甲醇>伯醇>仲醇>叔醇②醇可以与氢卤酸、卤化磷及氯化亚砜等发生亲核取代反应。
第6章_氧化反应
HO
O33ຫໍສະໝຸດ 第二节 醇类的氧化一. 伯、仲醇氧化成醛、酮
2. 用锰的化合物氧化 活性二氧化锰可以由硫酸锰和高锰酸钾反应 得到, 具有大的表面积和低的含水量, 可以选择 性氧化α,β不饱和醇得到醛或酮.
O O CH2OH O O CHO
MnO2 / C6H6 30℃, 2h
N
N
34
第二节 醇类的氧化
第六章 氧化反应
第一节 第二节 第三节 第四节 第五节 烃类的氧化 醇类的氧化 醛、酮的氧化 含烯键化合物的氧化 芳烃的氧化
1
第一节 烃类的氧化
一. 苄位烃基的氧化
1. 氧化生成醇和酯 在有机酸的环境中, 采用硝酸铈铵、 四醋酸铅、四氟醋酸铅等氧化剂, 可以 将苄位烃基氧化成酯, 水解之后得到醇.
O CH3 O Pb(OAc)4 / BF3, Et2O / C6H6 25℃ AcO AcO O O CH2OAc
J. Chem. Soc., 1965, 6 - 11, DOI: 10.1039/JR9650000006
21
第一节 烃类的氧化
二. 羰基α位活性烃基的氧化
2. 形成1,2-二羰基化合物 二氧化硒作为氧化剂, 可以将羰基α-位的活性 烃基氧化成 1,2-二羰基化合物.
5-甲基吡嗪-2-羧酸
格列吡嗪等的中间体
5-甲基-2-羟甲基吡嗪与水成悬液, 20℃滴 加5%的高锰酸钾溶液(1:1.2), 反应2h. 滴加饱和亚硫酸氢钠至高锰酸钾颜色消失. 抽滤, 滤液用盐酸调pH为2, 过滤得固体.
38
第二节 醇类的氧化
三. 二元醇的氧化
1. 1,2-二醇的氧化 四乙酸铅氧化
?
NO2
CH3 (NH4)2Ce(NO3)6 / AcOH-H2O NO2 Reflux
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
氧化反应分类:
1. 化学氧化: 用化学试剂氧化 氧化反应分类 2. 催化氧化: 用过渡金属复合物与氧化物氧化 3. 电解氧化: 用电解的方法 4. 生化氧化: 用微生物氧化
机理: 许多氧化反应机理尚不清楚。
第六章 氧化反应 3
通用型氧化剂:KMnO4
1) 对各种可被氧化的基团都可进行氧化; 2)反应介质的pH对反应有影响; KMnO4 3)反应溶剂:水和与水混溶的有机溶剂中,如, 丙酮,叔丁醇,吡啶,乙酸等。DMSO不行。 4)可加入相转移催化剂如季胺盐或冠醚等解决氧化底物 与溶剂的溶解性问题。 5)应用 (i) 氧化烯烃:产物为邻二醇(收率低);酸和酮 (ii)氧化醇:产物为酮或酸。 (iii) 氧化芳烃: 一般为侧链被氧化成羧基,强烈条件 可破坏芳环。
OH
Sharpless 试剂可选择 氧化烯丙醇 双键。
"O"(R,R)-D-(+)-tartrate sharpless 环氧化法
Sharpless环氧化法是由烯丙醇制备手性烯丙醇环氧化物的极好
方法。缺点为反应时间太长,手性催化剂回收率低。改进方法有
二: (1)添加催化剂;(2)使用高分子支载的酒石酸酯。
1) KMnO4/OH-, N 2) H+ N
第六章 氧化反应
COOH COOH
4
6.1 醇羟基和酚羟基的氧化反应
[O] 伯、仲醇 ROH [O] 羧酸 醛、酮 用选择性氧化剂 铬(VI)化合物:Collins Reagent; PCC; Jones 锰氧化物:MnO2 Ag2CO3, DMSO, Pb(OAc)4
(ii)顺式加成,氧环在位阻小的一侧。
第六章 氧化反应 25
t-BuOOH Mo(CO)6
+ O 92%
O 8%
Mo(CO)6 ROOH
O
"O"(s,s)-D-(-)-tartrate R2 R3 R1 R2 t-BuOOH,Ti(OPri)4 CH2Cl2, 20 oC 80%~90% R3 R1 O OH >90% ee
R R R
C OH IO 4
R R R C O C R O
OI O OH OH 2R2C=O + IO3- + H2O
+
C R
OH
可用于测 定结构
AgNO3 AgIO3 (白色)
OH CH2OH
HIO4
O + HCHO
两羟基无法形成环状过渡态时,氧化反应不进行。比较:
第六章 氧化反应 20
OH HO HIO4
第六章 氧化反应 26
(2)有机过氧酸为环氧化试剂: 常用氧化剂:过氧苯甲酸,间氯过氧苯甲酸,过氧乙酸,三氟 过氧乙酸等。含苯环的试剂较稳定。 环氧化反应特点: (i)用芳香过氧酸效果较好;用脂肪族过氧酸,需在缓冲溶
液(NaOAc)中进行,否则,得开环产物。
(ii)过氧酸分子中有吸电子基团或烯键碳上有烃基时,环氧 化反应易进行。
10
4. 用DMSO氧化 二甲亚砜( DMSO)是实验室广泛使用的非质子极性溶剂,它 又是非常有用的选择性氧化剂。它能在酸、碱和脱水剂协助下将 伯、仲醇氧化成醛、酮,也能将上述醇的磺酸酯,一些活泼的卤
化物如α-卤代酸,α-卤代酸酯、苄卤及α-卤代苯乙酮等氧化为羰 基化合物。 11 第六章 氧化反应
(e)试剂可再生
★ 常用固载载体:硅胶,Al2O3, 黏土(如,蒙脱土)
第六章 氧化反应 18
如:
固载氧化反应的氧化剂制备及反应特征性较强,需要用时要查
文献,再选择、尝试。(见书P259~261)
第六章 氧化反应 19
二、 二元醇的氧化 1. 1,2-二醇的氧化 常用试剂:过碘酸(HIO4),四醋酸铅(LTA)
反应机理:
H3C H3C R1 S O +E
+
H3C H3C
S O E
+
R2
CHOH H3C
R1 SO CH H3C R2
R1 R2
C O + H3C S CH3
亲电试剂如DCC(二环己基碳二亚胺),Ac2O, (CF3CO)2O, SOCl2, (COCl)2,等活化,生成活性锍盐,它极易与醇形成烷氧基锍盐, 接着发生消除反应,生成醛或酮与二甲硫醚。 氧化剂特点:反应条件温和,产物分离简便,收率高,费用低 反应选择性好。 常用组合:DMSO-DCC,DMSO-Ac2O,DMSO-(COCl)2 ※ DMSO-DCC/H3PO4((碱还可用三乙胺等有机碱)
OH DMAP/HCrO3Cl N OH OH CHO N(CH3)2 CrO3Cl H DMAP
2. 用活性二氧化锰氧化 活性二氧化锰是α ,β- 不饱和醇(如烯丙醇、苄醇)进行选择 性氧化的氧化剂,反应条件温和,操作简便,如:
第六章 氧化反应
8
O O H3C N CH2OH MnO2, C6H6 30 C, 2h
6.2.1 烯键环氧化
氧化剂:H2O2/OH-; t-BuOOH/OH, m-ClC6H4CO3H 反应机理:首先是ROO-的亲核加成,然后形成环氧化合物:
第六章 氧化反应
24
பைடு நூலகம்
1. 不与羰基共轭的烯键的环氧化
这类烯键的电子云密度较高,双键的氧化带有亲电性特征。 常用氧化剂: H2O2( t-BuOOH )/过渡金属配合物; 有机过氧酸 (1)H2O2( t-BuOOH )/过渡金属配合物: 常用过渡金属配合物:Mo(CO)6 ; Salen-Mn(III) 配合物; [Ti(OPri)4]/酒石酸二酯(Sharpless) 环氧化反应特点: (i)取代基多的烯键优先氧化;
第六章 氧化反应
内 容
6.1 醇羟基和酚羟基的氧化反应 6.2 碳-碳双键的氧化反应 6.3 酮的氧化反应 6.4 芳烃侧链和烯丙位氧化
第六章 氧化反应 1
氧化反应是一类最常用和极重要的有机化学反应。
有机化合物中,凡失去电子或电子偏移使碳原子上电子云密度 降低的反应,称为氧化反应。狭义而言,是指有机物分子中氧 原子增加或氢原子减少,或二者兼而有之的反应,不涉及形成 新的碳-卤键,碳-氢键和碳-硫键。 氧化反应必须通过氧化剂来实现。 氧化剂:亲电试剂,它进攻有机物电子密度大的部位,从有机
o
O O H 3C N CHO
当分子中有数个羟基时,活性二氧化锰可选择氧化烯丙位羟基:
HO OH HO MnO2/CH2Cl2 r.t. O OH
HO
62%
3. 用碳酸银氧化
氧化剂特点:反应条件温和,可在中性环境进行,且收率较高。 反应选择性: (1)位阻大的羟基不易被氧化;优先氧化仲醇; 烯丙位比仲醇更易被氧化。
一、伯、仲醇被氧化成醛、酮 1. 用铬的化合物氧化 六价铬(VI)化合物,包括CrO3-Py(Collins), 重铬酸盐、 氯 铬酸吡啶盐(PCC)等,在酸性条件下可使伯醇氧化为醛,仲 醇氧化成酮。 如: CrO3-Py(Collins 试剂): 将CrO3加到Py中制得
第六章 氧化反应 5
CH3(CH2)5CH2OH
第六章 氧化反应
27
(iii)环氧化有高度立体选择性(无高度对映选择性),顺式 加成,常从位阻小一侧形成氧环。烯丙位存在如羟基、乙酰氧 基等含氧基团时,主要得氧环与乙酰氧基处于异侧的产物。
PhCOOOH/CHCl3 O H H 94: 6 +
H H O
O O C CH3 PhCOOOH/PhH 0C
第六章 氧化反应
O
OH
RCR + CH3CHCH3
O CH3
CH3CHCH2CH2CH=CCH=CH2
CH3CCH2CH2CH=CCH=CH2
15
双键位移,与羰基共轭:
(ii)Pb(OAc)4(LTA)氧化法
第六章 氧化反应
16
(iii)O2/Pt 氧化法:
工业上用于从L-山 梨糖制备Vc中间体
2
PDC
氧化性更强,反应需在中性条件下进行,以CH2Cl2为溶剂。 若用DMF或DMSO做溶剂,氧化性更强。
O PCC/CH2Cl2 CH2OH PCC/CH2Cl2 AcONa PDC/CH2Cl2 PDC/DMF
第六章 氧化反应
CHO
COOH
7
DMAP与氯铬酸组成的吡啶蓊盐,可选择性地氧化烯丙醇 及苄醇类,如:
三、酚的氧化
酚类化合物很容易被氧化,形成稳定的酚氧自由基:
如:联萘酚的合成:
第六章 氧化反应
22
又如:
利用该反应,可将根皮乙酰苯转化为地衣酸
第六章 氧化反应
23
6.2 碳-碳双键的氧化反应
烯键可被一些试剂氧化生成各种氧化物。
O C C C [O] C C OH OH C O , C 氧化剂:过氧化氢(物),有机过氧酸 顺式邻二醇:KMnO4(低温、低浓度、碱性) 氧化剂: OsO4, I2 AgCO( 3 Woodward) 反式邻二醇: 有机过氧酸, I2 AgCO3(Prevost) O C OH 氧化剂:KMnO4 , O3 O2/PdCl2-CuCl
免使用毒性大的DCC。但收率比 DMSO-DCC法低。
第六章 氧化反应
14
5. 其它氧化法: (i) Oppenauer氧化法:仲醇氧化为酮
反 应 机 理
O R2CHOH + CH3CCH3
OH CH3
Al[OCH(CH3)2]3 or Al[OC(CH3)3]3
Al[OC(CH3)3]3 丙酮—苯
第六章 氧化反应
12
CH3 O
S O + C6H11 N C N C6H11 + H3C S CH3 H C6H11 N C N C6H11 H H H3 C R2CHOH R H3C R Base R H3 C S OC S O C + S O CH CH2 R (C6H11NH)2C O CH R 3 CH3 R