离散数学3_2
离散数学(第五版)清华大学出版社第2章习题解答
![离散数学(第五版)清华大学出版社第2章习题解答](https://img.taocdn.com/s3/m/0eb53002a300a6c30c229ffe.png)
离散数学(第五版)清华大学出版社第2章习题解答2.1 本题没有给出个体域,因而使用全总个体域.(1) 令F(x):x是鸟G(x):x会飞翔.命题符号化为∀x(F(x)→G(x)).(2)令F(x):x为人.G(x):x爱吃糖命题符号化为¬∀x(F(x)→G(x))或者∃x(F(x)∧¬G(x))(3)令F(x):x为人.G(x):x爱看小说.命题符号化为∃x(F(x)∧G(x)).(4) F(x):x为人.G(x):x爱看电视.命题符号化为¬∃x(F(x)∧¬G(x)).分析1°如果没指出要求什么样的个体域,就使用全总个休域,使用全总个体域时,往往要使用特性谓词。
(1)-(4)中的F(x)都是特性谓词。
2° 初学者经常犯的错误是,将类似于(1)中的命题符号化为27∀x(F(x)∧G(x))即用合取联结词取代蕴含联结词,这是万万不可的。
将(1)中命题叙述得更透彻些,是说“对于宇宙间的一切事物百言,如果它是鸟,则它会飞翔。
”因而符号化应该使用联结词→而不能使用∧。
若使用∧,使(1)中命题变成了“宇宙间的一切事物都是鸟并且都会飞翔。
”这显然改变了原命题的意义。
3° (2)与(4)中两种符号化公式是等值的,请读者正确的使用量词否定等值式,证明(2),(4)中两公式各为等值的。
2.2 (1)d (a),(b),(c)中均符号化为∀xF(x)其中F(x):(x+1)2=x2+2x+1,此命题在(a),(b),(c)中均为真命题。
(2)在(a),(b),(c)中均符号化为∃xG(x)其中G(x):x+2=0,此命题在(a)中为假命题,在(b)(c)中均为真命题。
(3)在(a),(b),(c)中均符号化为∃xH(x)其中H(x):5x=1.此命题在(a),(b)中均为假命题,在(c)中为真命题。
分析1°命题的真值与个体域有关。
2° 有的命题在不同个体域中,符号化的形式不同,考虑命题“人都呼吸”。
离散数学课后习题答案(第二章)
![离散数学课后习题答案(第二章)](https://img.taocdn.com/s3/m/c774627df46527d3240ce0a4.png)
(3) 寻求下列各式的真假值。 A) (∀x)( P( x) ∨ Q( x)) ,其中 P( x) : x = 1, Q( x) : x = 2 ,且论域是 {1, 2} B) (∀x)( P → Q( x)) ∨ R( a) , 其中 P : 2 > 1, Q( x) : x ≤ 3, R( x) : x > 5 而 a : 5 , 论域是 {−2,3, 6} 解:a) (x)(P(x)∨Q(x))⇔(P(1)∨Q(1))∧(P(2)∨Q(2)), 但 P(1)为 T,Q(1)为 F,P(2)为 F,Q(2)为 T, 所以(x)(P(x)∨Q(x))⇔(T∨F)∧(F∨T) ⇔T。 b) (x)(P→Q(x))∨R(a)⇔ ((P→Q(−2))∧(P→Q(3))∧(P→Q(6)))∨R(a) 因为 P 为 T,Q(−2)为 T,Q(3)为 T,Q(6)为 F,R(5)为 F, 所以(x)(P→Q(x))∨R(a)⇔((T→T)∧(T→T)∧(T→F))∨F⇔ F (4) 对下列谓词公式中的约束变元进行换名。 A) ∀x∃y ( P ( x, z ) → Q ( y ) � S ( x, y ) B) (∀xP( x) → ( R( x) ∨ Q( x))) ∧ ∃xR( x)) → ∃zS ( x, z) 解:a)(u)(v)(P(u,z)→Q(v))S(x,y) b)(u)(P(u)→ (R(u)∨Q(u))∧(v)R(v))→(z)S(x,z) (5) 对下列谓词公式中的自由变元进行代入。 A) (∃yA( x, y ) → ∀xB ( x, z )) ∧ ∃x∀zC ( x, y , z ) B) (∀yP( x, y ) ∧ ∃zQ( x, z )) ∨ ∀xR( x, y) 解:a)((y)A(u,y)→(x)B(x,v))∧(x)(z)C(x,t,z) b)((y)P(u,y)∧(z)Q(u,z))∨(x)R(x,t) 习题 2-5 (1)考虑以下赋值,论域:
离散数学(第三版)陈建明-刘国荣课后习题答案
![离散数学(第三版)陈建明-刘国荣课后习题答案](https://img.taocdn.com/s3/m/9efd5e75284ac850ac02420b.png)
离散数学辅助教材概念分析结构思想与推理证明第一部分集合论刘国荣交大电信学院计算机系离散数学习题解答习题一(第一章集合)1. 列出下述集合的全部元素:1)A={x | x ∈N∧x是偶数∧x<15}2)B={x|x∈N∧4+x=3}3)C={x|x是十进制的数字}[解] 1)A={2,4,6,8,10,12,14}2)B=3)C={0,1,2,3,4,5,6,7,8,9}2. 用谓词法表示下列集合:1){奇整数集合}2){小于7的非负整数集合}3){3,5,7,11,13,17,19,23,29}[解] 1){n n I(m I)(n=2m+1)};2){n n I n0n<7};3){p p N p>2p<30(d N)(d1d p(k N)(p=k d))}。
3. 确定下列各命题的真假性:1)2)∈3){}4)∈{}5){a,b}{a,b,c,{a,b,c}}6){a,b}∈(a,b,c,{a,b,c})7){a,b}{a,b,{{a,b,}}}8){a,b}∈{a,b,{{a,b,}}}[解]1)真。
因为空集是任意集合的子集;2)假。
因为空集不含任何元素;3)真。
因为空集是任意集合的子集;4)真。
因为是集合{}的元素;5)真。
因为{a,b}是集合{a,b,c,{a,b,c}}的子集;6)假。
因为{a,b}不是集合{a,b,c,{a,b,c}}的元素;7)真。
因为{a,b}是集合{a,b,{{a,b}}}的子集;8)假。
因为{a,b}不是集合{a,b,{{a,b}}}的元素。
4. 对任意集合A,B,C,确定下列命题的真假性:1)如果A∈B∧B∈C,则A∈C。
2)如果A∈B∧B∈C,则A∈C。
3)如果A B∧B∈C,则A∈C。
[解] 1)假。
例如A={a},B={a,b},C={{a},{b}},从而A∈B∧B∈C但A∈C。
2)假。
例如A={a},B={a,{a}},C={{a},{{a}}},从而A∈B∧B∈C,但、A∈C。
离散数学第2章第3节
![离散数学第2章第3节](https://img.taocdn.com/s3/m/ffab481814791711cc7917cd.png)
(x)(y) A( x, y) (y)(x) A( x, y)
具有两个量词的谓词公式有如下一些蕴含关系:
(x)(y) A( x, y) (y)(x) A( x, y) (y)(x) A( x, y) (x)(y) A( x, y)
(y)(x) A( x, y) (x)(y) A( x, y)
用分析法证明 (x)A(x)∨(x)B(x)(x)(A(x)∨B(x)) 。 证明 若(x)(A(x)∨B(x))为假, 则必有个体a, 使 A(a)∨B(a)为假; 因此A(a), B(a)皆为假, 所以(x)A(x)和(x)B(x)为假, 即 (x)A(x)∨(x)B(x)为假。 故(x)A(x)∨(x)B(x)(x)(A(x)∨B(x))
xi(i=1,2,
…,n)是客体变元,
Aij是原子公式或其否定。
举例
(x)(u)(z)(( P( x) P(u)) ( P( x) Q( y, z)) (Q( x, y) P(u)) (Q( x, y) Q( y, z)))
(x)(z)(y){[P ( x a) ( z b)] [Q( y) (a b)]}
命题演算的等价式
P Q P Q
P Q (P Q)
P P F
(x) H ( x, y) (x) H ( x, y) F
2、量词与联结词¬之间的关系 ¬ (x)P(x) (x)¬ P(x) ¬ (x)P(x) (x)¬ P(x)
其中Qi(1≤i≤k)为或, A为不含有量词的谓词公式。
特别地,若谓词公式中无量词,则该公式也看作 是前束范式。 前束范式的特点:所有量词均非否定地出现在公 式最前面,且它的辖域一直延伸到公式之末。
离散数学概论习题答案第3章
![离散数学概论习题答案第3章](https://img.taocdn.com/s3/m/ea457f07f61fb7360a4c6571.png)
第二部分集合、矩阵、关系和函数集合论是处理集合,函数和关系的数学理论。
集合包括最基本的数学概念,例如集合,元素和成员关系。
在大多数现代数学公式中,集合论提供了一种描述数学对象的语言。
集合可用来表示数及其运算,还可表示和处理非数值计算,如数据间关系的描述等。
集合论,逻辑和一阶逻辑构成了数学公理化的基础。
同时,函数和关系是基于集合的映射,它们是满足某些属性的特殊集合。
接下来,我们将在两个单独的章节中介绍它们。
集和矩阵将在第3章中介绍,而关系和函数将在第4章中介绍。
第三章集合和矩阵3.1 集合3.1.1 集合概念集合没有确定的概念。
一般地,我们把研究的对象统称为元素;把一些元素组成的总体叫做集合,也简称集。
通常用大写英文字母表示集合。
例如,N代表是自然数集合,Z代表是整数集合,R代表是实数集合。
用小写英文字母表示集合内元素。
若元素a是集合A的一个元素,则表示为a A∈,读作元素a属于集合A;若元素a不是集合A的一个元素,则表示为a A∉,读作a不属于集合A。
集合分为有限集合和无限集合两种,下面给出定义。
表示集合方法有列举法和描述法两种方式,下面分别介绍。
1. 列举法当集合是有限集合时,可以列出集合的所有元素,用逗号隔开各元素,并用花括号把所有元素括起来。
这种表述方式为列举法。
例如:S1={a, b, c, d, e, f},S2={a, b, b, c, d, e, f},S3={ d, e, a, b, c, f}上述三个集合S1、S2和S3是相同集合,尽管有重复元素。
且集合元素之间没有次序关系。
一个集合可以作为另个集合的元素。
例如,S1={a, b,{ c, d, e, f }}集合S1包含元素a, b和{ c, d, e, f }。
因为{ c, d, e, f }是集合S1中的元素,故可记为:{}∈。
,,,c d e f A以上给出的集合实例都是有限集合。
当集合是无限集合时,无法列出集合的所有元素,可先列出一部分元素,若剩余元素与已给出元素存在一定规律,那剩余元素的一般形式很明显可用省略号表示。
离散数学课后习题答案二
![离散数学课后习题答案二](https://img.taocdn.com/s3/m/25ea39d2f7ec4afe04a1dfc8.png)
习题1. 列出关系}6|{=⋅⋅⋅∈><+d c b a d c b a d c b a 且,,,,,,Z 中所有有序4元组。
解}6|{=⋅⋅⋅∈><+d c b a d c b a d c b a 且,,,,,,Z ,2,1,3,1,3,1,2,1,2,3,1,1,3,2,1,1,1,1,1,6,1,1,6,1,1,6,1,1,6,1,1,1{><><><><><><><><=><><><><><><><><2,1,1,3,3,1,1,2,1,2,1,3,1,3,1,2,1,1,2,3,1,1,3,2,1,2,3,1,1,3,2,12. 列出二维表所表示的多元关系中所有5元组。
假设不增加新的5元组,找出二维表所有的主键码。
解 略3. 当施用投影运算5,3,2π到有序5元组><d c b a ,,,时你能得到什么解 略4. 哪个投影运算用于除去一个6元组的第一、第二和第四个分量 解 略5. 给出分别施用投影运算4,2,1π和选择运算Nadir航空公司=σ到二维表以后得到的表。
解5,3,2πNadir 航空公司=6. 把连接运算3J 用到5元组二维表和8元组二维表后所得二维表中有序多元组有多少个分量解 略7. 构造把连接运算2J 用到二维表和二维表所得到的二维表。
解 零件供应商二维表与零件数量和颜色代码二维表连接运算2结果第4章:群、环、域习题1. 判断下列集合对所给的二元运算是否封闭。
(1)集合}|{Z Z ∈⨯=z z n n 关于普通加法和普通乘法运算,其中n 是正整数。
(2)集合}12|{+∈-==Z n n x x S ,关于普通加法和普通乘法运算。
(3)集合}10{,=S 关于普通加法和普通乘法运算。
数学一数学二和数学三的数学离散数学介绍
![数学一数学二和数学三的数学离散数学介绍](https://img.taocdn.com/s3/m/66fa52ab18e8b8f67c1cfad6195f312b3169ebec.png)
数学一数学二和数学三的数学离散数学介绍数学一、数学二和数学三的数学离散数学介绍数学在我们的生活中扮演着重要的角色,它是一门独特而又智慧的学科,被广泛用于解决实际问题和推动科学的发展。
而数学学科又可以分为许多分支,其中离散数学是一个重要而有趣的领域。
本文将介绍数学一、数学二和数学三的离散数学的相关概念和知识。
一、离散数学的概述离散数学是数学中的一门学科,与连续数学形成鲜明对比。
连续数学关注于连续对象,如实数、连续函数等,而离散数学则主要研究离散对象,如整数、集合、图等。
离散数学的研究对象离散且有限,因此被广泛应用于计算机科学、信息技术等领域。
二、数学一中的离散数学数学一作为大学数学课程中的一门重要课程,也涉及到了离散数学的部分内容。
在数学一中,离散数学主要包括以下几个方面的内容:1. 集合论:集合论是离散数学的基础,它研究集合及其操作和关系。
在数学一中,我们学习了集合的基本概念、集合的表示方法、集合之间的关系和运算等内容。
2. 逻辑与命题:逻辑与命题是离散数学中的重要部分。
在数学一的学习中,我们研究了命题及其逻辑运算、命题的等值关系、命题的推理和证明等内容。
3. 代数系统:数学一中的离散数学还包括了代数系统的研究,其中包括了群、环、域等代数结构的概念和性质。
三、数学二中的离散数学在数学二中,离散数学的研究进一步深入,涉及到以下几个方面的内容:1. 图论:图论是离散数学中的一个重要分支,它研究了图及其性质、图的遍历和连通性、最短路径和最小生成树等问题。
在数学二中,我们学习了图的基本概念、图的表示方法和图的算法以及与图相关的应用问题。
2. 网络流与匹配理论:网络流与匹配理论是离散数学中涉及到实际问题的一部分。
在数学二中,我们学习了网络流与匹配理论的相关概念和算法,并应用于实际问题的求解中,如网络传输、最大匹配问题等。
四、数学三中的离散数学数学三作为数学专业学生的一门重要课程,较为深入地研究了离散数学的相关内容。
离散数学第二版最全课后习题答案详解
![离散数学第二版最全课后习题答案详解](https://img.taocdn.com/s3/m/53561b635627a5e9856a561252d380eb62942327.png)
离散数学第二版最全课后习题答案详解离散数学是现代数学的一个重要分支,它在计算机科学、信息科学、电气工程等领域都有着广泛的应用。
对于学习离散数学的同学们来说,课后习题的解答是巩固知识、加深理解的重要环节。
本文将为您提供离散数学第二版的最全课后习题答案详解,希望能对您的学习有所帮助。
在开始讲解具体的习题答案之前,让我们先简要回顾一下离散数学的主要内容。
离散数学包括集合论、数理逻辑、图论、代数结构等几个部分。
集合论是离散数学的基础,它研究集合的性质、运算和关系。
在集合论的习题中,常见的问题包括集合的表示、集合的运算(并集、交集、补集等)、集合的包含关系以及集合的基数等。
例如,有这样一道习题:设集合 A ={1, 2, 3},B ={2, 3, 4},求 A ∪ B 和A ∩ B。
答案是:A ∪ B ={1, 2, 3, 4},A ∩ B ={2, 3}。
这是因为并集是包含两个集合中所有元素的集合,而交集是同时属于两个集合的元素组成的集合。
数理逻辑是研究推理和证明的工具,它包括命题逻辑和谓词逻辑。
在数理逻辑的习题中,需要掌握命题的符号化、逻辑公式的等价变换、推理规则的应用等。
比如,给出这样一个命题:“如果今天下雨,那么我就不去公园”,将其符号化。
我们可以设“今天下雨”为 P,“我去公园”为 Q,那么这个命题可以符号化为P → ¬Q。
图论是研究图的性质和应用的分支。
图的概念在计算机网络、交通运输等领域有着重要的应用。
图论的习题常常涉及图的表示、顶点的度、路径、连通性、图的着色等问题。
假设有这样一道题:一个无向图有 10 个顶点,每个顶点的度都为 6,求这个图的边数。
根据顶点度数之和等于边数的两倍这个定理,我们可以计算出边数为 30。
代数结构则包括群、环、域等概念,在这部分的习题中,需要理解和运用代数结构的定义和性质来解决问题。
接下来,我们具体来看一些习题的详细解答。
例 1:设集合 A ={x | x 是小于 10 的正奇数},B ={x | x 是小于 10 的正偶数},求 A B。
离散数学第二章(第3讲)
![离散数学第二章(第3讲)](https://img.taocdn.com/s3/m/4f9da69dff00bed5b9f31dc8.png)
2、规则使用说明
(1)用US,ES在推导中去掉量词,用UG,EG使结论量化 (加上量词)。 (2)在使用ES,US时,要求谓词公式必须是前束范式
(3)推导中既用ES,又用US, 则必须先用ES ,后 用US方可取相同变元,反之不行。
xP(x) P(c) xQ(x) Q(c)
(4)推导中连续使用US规则可用相同变元 xP(x) P(c) xQ(x) Q(c)
(x)(M(x)D(x)),M(s) D(s)
(1) x(M(x)D(x))
P
(2) M(s) D(s)
US(1)
(3) M(s)
P
(4) D(s)
T(2)(3)I
(2)CP 规则证明
例 证明: x (P(x)Q(x)) x P(x) xQ(x)
(1) x P(x)
附加前提
(2) x (P(x)Q(x))
x(P(x)(Q(x)S(x))),x(P(x)T(x)),Q(c)T(c)P(c)S(c)
推理形式如下:
(1) P(c)
附加前提
(2) x(P(x)(Q(x)S(x)))
P
(3) P(c)(Q(c)S(c))
US (2)
(4) Q(c)S(c)
T(1)(3) I
(5) Q(c)T(c)
P
(6) Q(c)
T (6)(10) I
T(1) E
(3) xP(x)
T (2) I
(4) P(a)
ES (3)
(5) xQ(x)
T(2) I
(6) Q(a)
US (5)
(7) x( P(x) Q(x) )
P
(8) P(a) Q(a)
US(7)
离散数学第二版罗熊课后答案
![离散数学第二版罗熊课后答案](https://img.taocdn.com/s3/m/212753e69fc3d5bbfd0a79563c1ec5da50e2d612.png)
离散数学第二版罗熊课后答案第1章绪论 1 .试述数据、数据库、数据库系统、数据库管理系统的概念。
答:( l )数据( Data ) :叙述事物的符号记录称作数据。
数据的种类存有数字、文字、图形、图像、声音、正文等。
数据与其语义就是不可分的。
解析在现代计算机系统中数据的概念就是广义的。
早期的计算机系统主要用作科学计算,处置的数据就是整数、实数、浮点数等传统数学中的数据。
现代计算机能够存储和处置的对象十分广为,则表示这些对象的数据也越来越繁杂。
数据与其语义就是不可分的。
500 这个数字可以表示一件物品的价格是 500 元,也可以表示一个学术会议参加的人数有 500 人,还可以表示一袋奶粉重 500 克。
( 2 )数据库( DataBase ,缩写 DB ) :数据库就是长期储存在计算机内的、存有非政府的、可以共享资源的数据子集。
数据库中的数据按一定的数据模型非政府、叙述和储存,具备较小的冗余度、较低的数据独立性和易扩展性,并可向各种用户共享资源。
( 3 )数据库系统( DataBas 。
Sytem ,缩写 DBS ) :数据库系统就是所指在计算机系统中导入数据库后的系统形成,通常由数据库、数据库管理系统(及其开发工具)、应用领域系统、数据库管理员形成。
解析数据库系统和数据库就是两个概念。
数据库系统就是一个人一机系统,数据库就是数据库系统的一个组成部分。
但是在日常工作中人们常常把数据库系统缩写为数据库。
期望读者能从人们讲话或文章的上下文中区分“数据库系统”和“数据库”,不要引发混为一谈。
( 4 )数据库管理系统( DataBase Management sytem ,简称 DBMs ) :数据库管理系统是位于用户与操作系统之间的一层数据管理软件,用于科学地组织和存储数据、高效地获取和维护数据。
DBMS 的主要功能包含数据定义功能、数据压低功能、数据库的运转管理功能、数据库的创建和保护功能。
解析 DBMS 就是一个大型的繁杂的软件系统,就是计算机中的基础软件。
离散数学-第二章命题逻辑
![离散数学-第二章命题逻辑](https://img.taocdn.com/s3/m/779dc3601ed9ad51f01df2b7.png)
设A( P1,P2,…,Pn )是一个命题公式,
P1,P2,…,Pn是出现于其中的全部命题变元,对P1, P2,…,Pn分别指定一个真值,称为对P1,P2,…,Pn公式A 的一组真值指派。
列出命题公式A在P1,P2,…,Pn的所有2n种真值指 派下对应的真值,这样的表称为A的真值表。
16
例3
值表。
例12 用符号形式表示下列命题。
(1) (2) 如果明天早上下雨或下雪,那么我不去学校 如果明天早上不下雨且不下雪,那么我去学校。
(3)
(4)
如果明天早上不是雨夹雪,那么我去学校。
只有当明天早上不下雨且不下雪时,我才去学校。 解 令P:明天早上下雨; Q:明天早上下雪; R:我去学校。 (1)(P∨Q)→ ¬ R; (2)(¬ ∧¬ P Q)→R; (3)¬ (P∧Q)→R (4)R→(¬ ∧¬ Q) P
4
例4
2.合取“∧” 定义2.2.2
设P和Q是两个命题,则P和Q的合取 是一个复合命题,记作“P ∧ Q”(读作“P且Q”)。
当且仅当命题P和Q均取值为真时,P ∧ Q才取值为真。
P 0 0 1 1 Q 0 1 0 1 P∧Q 0 0 0 1
例5
设P:我们去看电影。Q:房间里有十张桌子。则
P ∧ Q表示“我们去看电影并且房间里有十张桌子。”
5
3. 析取“∨” 定义2.2.3
设P和Q是两个命题,则P和Q的析取是一个复 合命题,记作“P∨Q”(读作“P或Q”)。
当且仅当P和Q至少有一个取值为真时,P∨Q取值为真。
P
0 0 1 1 Q 0 1 0 1 P∨Q 0 1 1 1
例6 设命题P:他可能是100米赛跑冠军;
Q:他可能是400米赛跑冠军。
离散数学第二章
![离散数学第二章](https://img.taocdn.com/s3/m/8af83d621fd9ad51f01dc281e53a580216fc5083.png)
种
相当于 “任意”,“凡是”,“所有”...
存在量词(Existential Quantifier):
表示个体域中部分个体的词, 记作
相当于 “存在”,“至少有一个”,“有些”...
若个体域中所有个体x,均使A(x)为真,记作(x)A(x) 若个体域中存在某些个体x,使A(x)为真,记作(x)A(x)
4.特性谓词: 若在全总个体域讨论问题,还需在命题表达中
增加特性谓词,以说明命题中个体的取值范围.
5.命题符号化
“每个计算机系的学生都学离散数学“
“存在着偶素数”
现在你正浏览到当前第二十二页,共一百一十七页。
谓词逻辑 >谓词公式
课堂练习
在谓词逻辑中符号化: 1. 北京是中国的首都 2. 甲是乙的父亲 3. 3介于2与4之间 4. 3大于2仅当3大于4。 5. 张三和李四是同班同学 6. 天下乌鸦一般黑 7. 火车都比汽车跑得快 8. 有的火车比所有汽车快。
例题 用谓词逻辑处理苏格拉底三段论:
人总是要死的, (x) (M(x) P(x)),
苏格拉底是人, M(a),
所以,苏格拉底是要死的。 P(a).
令 P(x): x是要死的,
M(x): x是人, a: 苏格拉底
推理形式为: (x) (M(x) P(x)), M(a) P(a).
现在你正浏览到当前第十九页,共一百一十七页。
现在你正浏览到当前第二十三页,共一百一十七页。
谓词逻辑
2-1 谓词的概念与表示 2-2 量词 2-3 谓词公式
2-4 谓词公式的解释 2-5 等价式与蕴含式 2-6 前束范式 2-7 谓词演算的推理理论
现在你正浏览到当前第二十四页,共一百一十七页。
离散数学及应用 第3版 第2章 谓词逻辑
![离散数学及应用 第3版 第2章 谓词逻辑](https://img.taocdn.com/s3/m/b7f59e7a777f5acfa1c7aa00b52acfc788eb9f49.png)
2.1个体词、谓词与量词
(3)∃x∀yP(x,y),其中D = {1,2,3},谓词P(x,y) : x = y 解:∃x∀yP(x,y)=∀yP(1,y)∨∀yP(2,y)∨∀yP(3,y)
=(P(1,1)∧P(1,2)∧P(1,3))∨(P(2,1)∧P(2,2)∧P(2,3)) ∨(P(3,1)∧P(3,2)∧P(3,3)) =(1∧0∧0)∨(0∧1∧0)∨(0∧0∧1) =0
2.1个体词、谓词与量词
存在量词: 表示存在, 有的, 至少有一个等 x 表示在个体域中存在x 设P (x)是以D为个体域的一元谓词, xP(x) = 0 :对任意的x ∈ D,P(x)取值0 xP(x) = 1 :存在a ∈ D,P(a)取值1
➢ 设D = {a1,···,an}是有限个体域, ∃xP(x) = P(a1)∨P(a2)∨···∨P(an)
所以,∃x∀yP(x,y)与∀y∃xP(x,y)值不相同。
2.1个体词、谓词与量词
例2.3 在谓词逻辑中将下列命题符号化 (1) 人人都爱美; (2) 有人用左手写字 分别取二个不同的个体域 (a) D为人类集合, (b) D为全总个体域 .
(a) (1) 设G(x): x爱美, 符号化为 x G(x) (2) 设T(x): x用左手写字, 符号化为 xT(x)
(b) 设F(x): x为人,G(x): x爱美 T(x): x用左手写字 (1) x (F(x)G(x)) (2) x (F(x)T(x))
这是两个基本公式, 注意它们的使用
2.1个体词、谓词与量词
例2.4 在谓词逻辑中将下列命题符号化
(1) 正数都大于负数
(2) 有的无理数大于有的有理数
注意: 题目中没给个体域, 使用全总个体域
离散数学(第二版)最全课后习题答案详解
![离散数学(第二版)最全课后习题答案详解](https://img.taocdn.com/s3/m/7fa0fcb3dd88d0d233d46a76.png)
习题一1.下列句子中,哪些是命题?在是命题的句子中,哪些是简单命题?哪些是真命题?哪些命题的真值现在还不知道?(1)中国有四大发明.答:此命题是简单命题,其真值为 1.(2)5是无理数.答:此命题是简单命题,其真值为 1.(3)3是素数或4是素数.答:是命题,但不是简单命题,其真值为 1.(4)2x+ <3 5答:不是命题.(5)你去图书馆吗?答:不是命题.(6)2与3是偶数.答:是命题,但不是简单命题,其真值为0.(7)刘红与魏新是同学.答:此命题是简单命题,其真值还不知道.(8)这朵玫瑰花多美丽呀!答:不是命题.(9)吸烟请到吸烟室去!答:不是命题.(10)圆的面积等于半径的平方乘以π .答:此命题是简单命题,其真值为 1.(11)只有6是偶数,3才能是2的倍数.答:是命题,但不是简单命题,其真值为0.(12)8是偶数的充分必要条件是8能被3整除.答:是命题,但不是简单命题,其真值为0.(13)2008年元旦下大雪.答:此命题是简单命题,其真值还不知道.2.将上题中是简单命题的命题符号化.解:(1)p:中国有四大发明.(2)p:是无理数.(7)p:刘红与魏新是同学.(10)p:圆的面积等于半径的平方乘以π.(13)p:2008年元旦下大雪.3.写出下列各命题的否定式,并将原命题及其否定式都符号化,最后指出各否定式的真值.(1)5是有理数.答:否定式:5是无理数. p:5是有理数.q:5是无理数.其否定式q的真值为 1.(2)25不是无理数.答:否定式:25是有理数. p:25不是无理数. q:25是有理数.其否定式q的真值为1.(3)2.5是自然数.答:否定式:2.5不是自然数. p:2.5是自然数. q:2.5不是自然数.其否定式q的真值为1.(4)ln1是整数.答:否定式:ln1不是整数. p:ln1是整数. q:ln1不是整数.其否定式q的真值为1.4.将下列命题符号化,并指出真值.(1)2与5都是素数答:p:2是素数,q:5是素数,符号化为p q∧,其真值为1.(2)不但π是无理数,而且自然对数的底e也是无理数.答:p:π是无理数,q:自然对数的底e是无理数,符号化为p q∧,其真值为 1.(3)虽然2是最小的素数,但2不是最小的自然数.答:p:2是最小的素数,q:2是最小的自然数,符号化为p q∧¬,其真值为1.(4)3是偶素数.答:p:3是素数,q:3是偶数,符号化为p q∧,其真值为0.(5)4既不是素数,也不是偶数.答:p:4是素数,q:4是偶数,符号化为¬ ∧¬p q,其真值为0.5.将下列命题符号化,并指出真值.(1)2或3是偶数.(2)2或4是偶数.(3)3或5是偶数.(4)3不是偶数或4不是偶数.(5)3不是素数或4不是答: p:2是偶数,q:3是偶数,r:3是素数,s:4是偶数, t:5是偶数偶数.(1)符号化: p q∨,其真值为 1.(2)符号化:p r∨,其真值为1. (3)符号化:r t∨,其真值为0.(4)符号化:¬ ∨¬q s,其真值为 1.(5)符号化:¬ ∨¬r s,其真值为0.6.将下列命题符号化.(1)小丽只能从筐里拿一个苹果或一个梨.答:p:小丽从筐里拿一个苹果,q:小丽从筐里拿一个梨,符号化为: p q∨ .(2)这学期,刘晓月只能选学英语或日语中的一门外语课.答:p:刘晓月选学英语,q:刘晓月选学日语,符号化为: (¬ ∧ ∨ ∧¬p q)(p q) .7.设p:王冬生于1971年,q:王冬生于1972年,说明命题“王冬生于1971年或1972年”既可以化答:列出两种符号化的真值表:p q0 0 1 1 01111111根据真值表,可以判断出,只有当p与q同时为真时两种符号化的表示才会有不同的真值,但结合命题可以发现,p与q不可能同时为真,故上述命题有两种符号化方式.8.将下列命题符号化,并指出真值.,就有(1)只要(2)如果(3)只有(4)除非(5)除非(6);,则;,才有,才有,否则;;;仅当.,则: ;设q: ,则:答:设p:.符号化真值(1)(2)(3)(4)(5)1 1 0 0 0(6) 19.设p:俄罗斯位于南半球,q:亚洲人口最多,将下面命题用自然语言表述,并指出其真值:(1)(2);;;(3)(4);;(5)(6)(7);;.答:根据题意,p为假命题,q为真命题.自然语言真值(1)(2)(3)(4)(5)(6)(7)只要俄罗斯位于南半球,亚洲人口就最多只要亚洲人口最多,俄罗斯就位于南半球11111 只要俄罗斯不位于南半球,亚洲人口就最多只要俄罗斯位于南半球,亚洲人口就不是最多只要亚洲人口不是最多,俄罗斯就位于南半球只要俄罗斯不位于南半球,亚洲人口就不是最多只要亚洲人口不是最多,俄罗斯就不位于南半球10.设p:9是3的倍数,q:英国与土耳其相邻,将下面命题用自然语言表述,并指出真值:(1)(2)(3)(4);;;.答:根据题意,p为真命题,q为假命题.自然语言真值(1)(2)(3)9是3的倍数当且仅当英语与土耳其相邻9是3的倍数当且仅当英语与土耳其不相邻9不是3的倍数当且仅当英语与土耳其相邻11(4)9不是 3的倍数当且仅当英语与土耳其不相邻 011.将下列命题符号化,并给出各命题的真值: (1)若 2+2=4,则地球是静止不动的; (2)若 2+2=4,则地球是运动不止的; (3)若地球上没有树木,则人类不能生存;(4)若地球上没有水,则是无理数. 答:命题 1命题 2符号化真值 (1) (2) (3) (4)p:2+2=4 q:地球是静止不动的 q:地球是静止不动的 q:人类能生存0 p:2+2=4 1 1 1p:地球上有树木 p:地球上有树木q:人类能生存12.将下列命题符号化,并给出各命题的真值: (1)2+2=4当且仅当 3+3=6; (2)2+2=4的充要条件是 3+36;(3)2+2 4与 3+3=6互为充要条件;(4)若 2+2 4,则 3+3 6,反之亦然. 答:设p:2+2=4,q:3+3=6. 符号化 真值 (1) (2) (3) (4)1 0 0 113.将下列命题符号化,并讨论各命题的真值: (1)若今天是星期一,则明天是星期二; (2)只有今天是星期一,明天才是星期二;(3)今天是星期一当且仅当明天是星期二;(4)若今天是星期一,则明天是星期三.答:设p:今天是星期一,q:明天是星期二,r:明天是星期三.符号化真值讨论(1)(2)(3)(4)不会出现前句为真,后句为假的情况不会出现前句为真,后句为假的情况必然为1若p为真,则真值为0;若p为假,则真值为114.将下列命题符号化:(1)刘晓月跑得快,跳得高;(2)老王是山东人或者河北人;(3)因为天气冷,所以我穿了羽绒服;(4)王欢与李乐组成一个小组;(5)李欣与李末是兄弟;(6)王强与刘威都学过法语;(7)他一面吃饭,一面听音乐;(8)如果天下大雨,他就乘班车上班;(9)只有天下大雨,他才乘班车上班;(10)除非天下大雨,否则他不乘班车上班;(11)下雪路滑,他迟到了;(12)2与4都是素数,这是不对的;(13)“2或4是素数,这是不对的”是不对的.答: 命题1 命题2命题3符号化(1)(2)(3)(4)(5)p:刘晓月跑得快q:刘晓月跳得高-p:老王是山东人p:天气冷q:老王是河北人----q:我穿羽绒服p:王欢与李乐组成p:王欢与李乐组成一个--一个小组小组p:李辛与李末是兄p:李辛与李末是兄弟弟(6)(7) p:王强学过法语p:他吃饭q:刘威学过法语q:他听音乐q:他乘车上班q:他乘车上班q:他乘车上班q:路滑--(8) p:天下大雨p:天下大雨p:天下大雨p:下雪-(9) -(10)(11)(12)(13)-r:他迟到了p:2是素数p:2是素数q:4是素数--q:4是素数15.设p:2+3=5.q:大熊猫产在中国.r:太阳从西方升起.求下列符合命题的真值:(1)(2)(3)(4)解:p真值为1,q真值为1,r真值为0.(1)0,(2)0,(3)0,(4)116.当p,q的真值为0,r,s的真值为1时,求下列各命题公式的真值:(1)(2)(3)(4)解:(1)0,(2)0,(3)0,(4)117.判断下面一段论述是否为真:“是无理数.并且,如果3是无理数,则外,只有6能被2整除,6才能被4整除.”也是无理数.另解:p:是无理数q: 3是无理数r:是无理数s: 6能被2整除t:6能被4整除符号化为: ,该式为重言式,所以论述为真。
离散数学3.1-2
![离散数学3.1-2](https://img.taocdn.com/s3/m/d84f1fba9b6648d7c0c74678.png)
(2) 全称量词和存在量词的区别
(3) 多个量词出现时, 不能随意交换顺序
如 在个体域R中, 记H(x,y): x+y=10
xy H(x,y)
真值为1
yx H(x,y)
真值为0
(4) 命题的符号化不惟一
如例5 (1) x (F(x)y(G(y)H(x,y)))
(3) xy(F(x)G(y)H(x,y))
9
量词
量词: 表示数量的词 全称量词: 表示任意的, 所有的, 一切的等 如 x 表示对个体域中所有的x x F(x) 表示所有的x具有性质F
存在量词: 表示存在, 有的, 至少有一个等 如 x 表示在个体域中存在x x F(x) 表示存在x具有性质F
10
一阶逻辑命题符号化
例3 在一阶逻辑中将下面命题符号化: (1) 人都爱美; (2) 有人用左手写字 个体域分别取(a) 人类集合, (b) 全总个体域 . 解: (a) (1) 设F(x): x爱美, 符号化为 x F(x)
(2) 设G(x): x用左手写字, 符号化为 x G(x) (b) 设M(x): x为人, F(x), G(x)同(a)中
(1) x (M(x)F(x)) (2) x (M(x)G(x)) M(x)称作特性谓词
11
实例
例4 将下列命题符号化, 并讨论其真值: (1) 对任意的x, 均有x2-3x+2=(x-1)(x-2) (2) 存在x, 使得x+5=3 分别取(a) 个体域D1=N, (b) 个体域D2=R 解 记F(x): x2-3x+2=(x-1)(x-2), G(x): x+5=3 (a) (1) x F(x) 真值为1
定理3.2 重言式的代换实例都是永真式,矛盾式的代换实 例都是矛盾式.
离散数学答案 屈婉玲版 第二版 高等教育出版社课后答案之欧阳家百创编
![离散数学答案 屈婉玲版 第二版 高等教育出版社课后答案之欧阳家百创编](https://img.taocdn.com/s3/m/4152cf0ed15abe23492f4dad.png)
离散数学答案屈婉玲版欧阳家百(2021.03.07)第二版高等教育出版社课后答案第一章部分课后习题参考答案16 设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。
(1)p∨(q∧r)⇔ 0∨(0∧1)⇔0(2)(p↔r)∧(﹁q∨s)⇔(0↔1)∧(1∨1)⇔0∧1⇔0.(3)(⌝p∧⌝q∧r)↔(p∧q∧﹁r)⇔(1∧1∧1)↔(0∧0∧0)⇔0(4)(⌝r∧s)→(p∧⌝q)⇔(0∧1)→(1∧0)⇔0→0⇔117.判断下面一段论述是否为真:“π是无理数。
并且,如果3是无理数,则2也是无理数。
另外6能被2整除,6才能被4整除。
”答:p: π是无理数 1q: 3是无理数 0r: 2是无理数 1s:6能被2整除 1t: 6能被4整除 0命题符号化为: p∧(q→r)∧(t→s)的真值为1,所以这一段的论述为真。
19.用真值表判断下列公式的类型:(4)(p→q) →(⌝q→⌝p)(5)(p∧r)↔(⌝p∧⌝q)(6)((p→q) ∧(q→r)) →(p→r)答:(4)p q p→q ⌝q ⌝p ⌝q→⌝p (p→q)→(⌝q→⌝p)0 0 1 1 1 1 10 1 1 0 1 1 11 0 0 1 0 0 11 1 1 0 0 1 1所以公式类型为永真式(5)公式类型为可满足式(方法如上例)(6)公式类型为永真式(方法如上例)第二章部分课后习题参考答案3.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值.(1)⌝(p∧q→q)(2)(p→(p∨q))∨(p→r)(3)(p∨q)→(p∧r)答:(2)(p→(p∨q))∨(p→r)⇔(⌝p∨(p∨q))∨(⌝p∨r)⇔⌝p∨p∨q∨r⇔1所以公式类型为永真式(3)P q r p∨q p∧r (p∨q)→(p∧r)0 0 0 0 0 10 0 1 0 0 10 1 0 1 0 00 1 1 1 0 01 0 0 1 0 01 0 1 1 1 11 1 0 1 0 01 1 1 1 1 1所以公式类型为可满足式4.用等值演算法证明下面等值式:(2)(p→q)∧(p→r)⇔(p→(q∧r))(4)(p∧⌝q)∨(⌝p∧q)⇔(p∨q) ∧⌝(p∧q)证明(2)(p→q)∧(p→r)⇔ (⌝p∨q)∧(⌝p∨r)⇔⌝p∨(q∧r))⇔p→(q∧r)(4)(p∧⌝q)∨(⌝p∧q)⇔(p∨(⌝p∧q)) ∧(⌝q∨(⌝p∧q)⇔(p∨⌝p)∧(p∨q)∧(⌝q∨⌝p) ∧(⌝q∨q)⇔1∧(p∨q)∧⌝(p∧q)∧1⇔(p∨q)∧⌝(p∧q)5.求下列公式的主析取范式与主合取范式,并求成真赋值(1)(⌝p→q)→(⌝q∨p)(2)⌝(p→q)∧q∧r(3)(p∨(q∧r))→(p∨q∨r)解:(1)主析取范式(⌝p→q)→(⌝q∨p)⇔⌝(p∨q)∨(⌝q∨p)⇔(⌝p∧⌝q)∨(⌝q∨p)⇔ (⌝p∧⌝q)∨(⌝q∧p)∨(⌝q∧⌝p)∨(p∧q)∨(p∧⌝q)⇔(⌝p∧⌝q)∨(p∧⌝q)∨(p∧q)⇔∑(0,2,3)主合取范式:(⌝p→q)→(⌝q∨p)⇔⌝(p∨q)∨(⌝q∨p)⇔(⌝p∧⌝q)∨(⌝q∨p)⇔(⌝p∨(⌝q∨p))∧(⌝q∨(⌝q∨p))⇔1∧(p∨⌝q)⇔(p∨⌝q)⇔ M1⇔∏(1)(2) 主合取范式为:⌝(p→q)∧q∧r⇔⌝(⌝p∨q)∧q∧r⇔(p∧⌝q)∧q∧r⇔0所以该式为矛盾式.主合取范式为∏(0,1,2,3,4,5,6,7)矛盾式的主析取范式为 0(3)主合取范式为:(p∨(q∧r))→(p∨q∨r)⇔⌝(p∨(q∧r))→(p∨q∨r)⇔(⌝p∧(⌝q∨⌝r))∨(p∨q∨r)⇔(⌝p∨(p∨q∨r))∧((⌝q∨⌝r))∨(p∨q∨r))⇔1∧1⇔1所以该式为永真式.永真式的主合取范式为 1主析取范式为∑(0,1,2,3,4,5,6,7)第三章部分课后习题参考答案14.在自然推理系统P中构造下面推理的证明: (2)前提:p→q,⌝(q∧r),r结论:⌝p(4)前提:q→p,q↔s,s↔t,t∧r结论:p∧q证明:(2)①⌝(q∧r) 前提引入②⌝q∨⌝r ①置换③q→⌝r ②蕴含等值式④r 前提引入⑤⌝q ③④拒取式⑥p→q 前提引入⑦¬p(3)⑤⑥拒取式证明(4):①t∧r 前提引入②t ①化简律③q↔s 前提引入④s↔t 前提引入⑤q↔t ③④等价三段论⑥(q→t)∧(t→q) ⑤置换⑦(q→t)⑥化简⑧q ②⑥假言推理⑨q→p 前提引入⑩p ⑧⑨假言推理(11)p∧q ⑧⑩合取15在自然推理系统P中用附加前提法证明下面各推理:(1)前提:p→(q→r),s→p,q结论:s→r证明①s 附加前提引入②s→p 前提引入③p ①②假言推理④p→(q→r) 前提引入⑤q→r ③④假言推理⑥q 前提引入⑦r ⑤⑥假言推理16在自然推理系统P中用归谬法证明下面各推理:(1)前提:p→⌝q,⌝r∨q,r∧⌝s结论:⌝p证明:①p 结论的否定引入②p→﹁q 前提引入③﹁q ①②假言推理④¬r∨q 前提引入⑤¬r ④化简律⑥r∧¬s 前提引入⑦r ⑥化简律⑧r∧﹁r ⑤⑦合取由于最后一步r∧﹁r是矛盾式,所以推理正确.第四章部分课后习题参考答案3. 在一阶逻辑中将下面将下面命题符号化,并分别讨论个体域限制为(a),(b)条件时命题的真值:(1) 对于任意x,均有2=(x+)(x).(2) 存在x,使得x+5=9.其中(a)个体域为自然数集合.(b)个体域为实数集合.解:F(x):2=(x+)(x).G(x): x+5=9.(1)在两个个体域中都解释为)(x∀,在(a)中为假命题,xF在(b)中为真命题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定理3-4.1
设R是X上的二元关系,那么 a) R是自反的,当且仅当r(R)=R b) R是对称的,当且仅当s(R)=R c) R是传递的,当且仅当t(R)=R
该定理表明: 关系R是自反的,则r(R)=R 关系R是对称的,则s(R)=R 关系R是传递的,则t(R)=R
二、求闭包的方法
1. 求自反闭包
t ( R) R i R R 2 R 3
i 1
证明:I 首先证明 R i t ( R)
i 1
思路:可用数学规纳法证明Ri (i≥1)都包含于t(R)。 显然,由t(R)的定义可知Rt(R),设Rit(R) (i≥1), 以下证明Ri+1t(R)
因为Ri+1=RiR,则对任意序偶<a,b>∈Ri+1,有
Warshall 1962年提出计算R+的有效算法, 不仅适用于程序计算,而且对手工运算同样简便。
Warshall算法如下:
(1)置新矩阵A:=M
(2)置k=1,2,…,n
A[j,k]:=a[j,k]+a[i,k]
(4)i:=i+1
(5)如果i≤n,则转到步骤(3),否则停止。
3-5 集合的划分和覆盖
定义3-5.1 若把一个集合A分成若干个叫做分 块的非空子集,使得A中每个元素至少属于一个 分块,那么这些分块的全体构成的集合叫做A的 一个覆盖。如果A中每个元素属于且仅属于一个 分块,那么这些分块的全体构成的集合叫做A的 一个划分(或分划)。
几个概念
最大划分:分块数=元素个数
(1)关系集合求r(R):r(R)=R∪Ix
(2)关系矩阵求r(R):主对角线元素全部置1
(3)关系图求r(R):所有无自环的顶点加上自环
2.求对称闭包 (1)关系集合求s(R):s(R)=R∪Rc (2)关系矩阵求s(R):MR∨MRc (3)关系图求s(R):所有单向弧变成一对双向弧
3.求传递闭包 (1)关系集合求t(R) 定理3-4.2 设R是X上的二元关系,则
3-4
一、闭包定义
关系的闭包运算
定义:设R是X上的二元关系,如果有另一个关系R'满 足:
a)R'是自反的(对称的,可传递的) b) R'R c)对于任何自反的(对称的,可传递的)关系R",如果 有R"R,就有R"R',则称R'为R的自反(对称,传递) 闭包,记作:r(R),(s( R ),t( R )) 上述定义表明:R的自反(对称,传递)闭包是包含关系 R的最小的一个自反(对称,传递)关系。
最小划分:仅一个分块
交叉划分:若{A1,A2,…,Ar}与{B1,B2,…,Bs}是 同一个集合的两种划分,则其中所有的Ai∩Bj 组成的集合(即由交集组成的集合),称为原来 两种划分的交叉划分
加细:如果1={A1,A2,…,Ar},2={A1, A2,…,As}均为A的划分,若对Ai1, Bj2,有AiBj则称1为2的细分(加细)
(3)关系图求t(R) 依次试验每一条弧是否满足传 递性,不满足则添加弧,使之传递,直到所有弧 (包括新添加的弧)都满足传递性时停止。 例:求下面关系图的传递闭包.
a
b
c
d
图中黑色弧为原始图,紫色和蓝色为添加的弧
闭包运算的复合
定理3-4.4
设R是X上的二元关系,则
a) rs(R)=sr(R) b) rt(R)=tr(R) c) ts(R) st(R)
x∈X,使得<a,x>∈Ri且<x,b>∈R,
又Rit(R)且Rt(R),
故<a,x>∈t(R)且<x,b>∈t(R),t(R)传递,推出
<a,b>∈t(R),即Ri+1t( R)。
II
i t ( R ) R 再证明 i 1
通常,将
i 1
R
i
记为R+。
对R+中的任意序偶<x,y>和<y,z>,则必然存在 整数s,t,使得<x,y>∈Rs,<y,z>∈Rt,这样就有 <x,z>∈RsRt, RsRt=Rs+t,而Rs+tR+,因此 <x,z>∈R+,故R+是传递的。 又因为包含R的可传递关系都包含t(R),故
t ( R) R i
i 1
证毕。
定理3-4.3 设X是含有n个元素的集合,R是X上 的二元关系,则存在一个正整数k≤n,使得 t(R)=RR2 R3 … Rk 这一定理说明,当R为有限可数集合X上的 二元关系时,求t(R)最多只需计算R2到Rn。 (2)关系矩阵求t(R)