离散数学复习题(全)

合集下载

离散数学期末复习题(6套)

离散数学期末复习题(6套)

《离散数学》期末考试题(A)一、填空题(每小题3分,共15分)1.设}}{},,{{c b a A =,}}{},,{},{{c c b a B =,则)(=⋃B A ,)(=⋂B A ,)()(=A P .2.集合},,{c b a A =,其上可定义( )个封闭的1元运算,( )个封闭的2元运算,( )个封闭的3元运算.3.命题公式1)(↑∧q p 的对偶式为( ).4.所有6的因数组成的集合为( ).5.不同构的5阶根树有( )棵.二、单选题(每小题3分,共15分)1.设A , B 是集合,若A B A =-,则(A)B = ∅ (B) A = ∅ (C)=⋂B A ∅ (D)A B A =⋂2.谓词公式)())()((x R y yQ x P x ∧∃→∀中量词x ∀的辖域为(A))())()((x R y yQ x P x ∧∃→∀ (B))()(y yQ x P ∃→(C))())()((x R y yQ x P ∧∃→ (D))()(y yQ x P ∃→和)(x R3.任意6阶群的子群的阶一定不为(A)4 (B)6 (C)2 (D)34.设n 是正整数,则有限布尔代数的元素个数为(A)2n (B)4n (C)n 2 (D)2n5.对于下列序列,可构成简单无向图的度数序列为(A)3, 3, 4, 4, 5 (B)0, 1, 3, 3, 3 (C)1, 1, 2, 2, 3 (D)1, 1, 2, 2, 2三、判断题(每小题3分,共15分): 正确打“√”,错误打“×”.1. 设N N N :⨯→f ,)1,()(+=x x x f ,则f 是满射. () 2. 5男5女圆桌交替就座的方式有2880种. () 3. 设),(≤L 是格,对于L z y x ∈,,,若z x y x ⋅=⋅且z x y x +=+,则z y =. () 4. 任何树都至少2片树叶. ()5. 无向图G 有生成树的充要条件是G 为连通图. ( )四、(10分)设C B A ,,和D 是集合,证明)()()()(D B C A D C B A ⨯-⨯⊆-⨯-,并举例说明上式中不能将⊆改为 = .五、(15分)设N 是自然数集合,定义N 上的关系R 如下:y x R y x +⇔∈),(是偶数,1.证明R 是N 上的等价关系.2.求出N 关于等价关系R 的所有等价类.3.试求出一个N 到N 的函数f ,使得)}()(,N ,|),{(y f x f y x y x R =∈=.六、(10分)在实数集合R 中证明下列推理的有效性:因为R 中存在自然数,而所有自然数是整数,所以R 中存在整数.七、(10分)设R 是实数集合,令}0,R ,|),{(≠∈=a b a b a G ,定义G 上的运算如下: 对于任意G d c b a ∈),(),,(,),(),(),(b ad ac d c b a +=⋅,证明),(⋅G 是非Abel 群.八、(10分)若简单平面图G 的节点数7=n 且边数15=m ,则G 是连通图,试证明之.《离散数学》期末考试题(B)一、填空题(每小题3分,共15分)1.设,,},,{{b a b a A =∅},则-A ∅ = ( ),-A {∅} = ( ),)(A P 中的元素个数=|)(|A P ( ).2.设集合A 中有3个元素,则A 上的二元关系有( )个,其中有( )个是A 到A 的函数.3.谓词公式))()(())()((y P y Q y x Q x P x ⌝∧∃∧→∀中量词x ∀的辖域为( ), 量词y ∃的辖域为( ).4.设}24,12,8,6,4,3,2,1{24=D ,对于其上的整除关系“|”,元素( )不存在补元.5.当n ( )时,n 阶完全无向图n K 是平面图,当n 为( )时,n K 是欧拉图.二、单选题(每小题3分,共15分)1.设R 是集合A 上的偏序关系,1-R 是R 的逆关系,则1-⋃R R 是A 上的(A)偏序关系 (B)等价关系 (C)相容关系 (D)以上结论都不成立2.由2个命题变元p 和q 组成的不等值的命题公式的个数有(A)2 (B)4 (C)8 (D)163.设p 是素数且n 是正整数,则任意有限域的元素个数为(A)n p + (B)pn (C)n p (D)pn4.设R 是实数集合,≤是其上的小于等于关系,则(R, ≤)是(A)有界格 (B)分配格 (C)有补格 (D)布尔格5.3阶完全无向图3K 的不同构的生成子图有(A)2 (B)3 (C)4 (D)5 三、判断题(每小题3分,共15分): 正确打“√”,错误打“×”.1.若一个元素a 既存在左逆元l a ,又存在右逆元r a ,则r l a a =. ( )2.命题联结词→不满足结合律. ( )3.在Z 8 = {0,1,2,3,4,5,6,7}中,2关于“⋅8”的逆元为4. ( )4.整环不一定是域. ( )5.任何),(m n 平面图的面数2+-=n m r . ( )四、(10分)设B A f →:且C B g →:,若g f 是单射,证明f 是单射,并举例说明g 不一定是单射.五、(15分)设},,,{d c b a A =,A 上的关系)},(),,(),,(),,(),,(),,(),,(),,(),,{(c d b d a d c c b c a c c a b a a a R =,1.画出R 的关系图R G .2.判断R 所具有的性质.3.求出R 的关系矩阵R M .六、(10分)利用真值表求命题公式))(())((p q r r q p A →→↔→→=的主析取范式和主合取范式.七、(10分) 边数30<m 的简单平面图G ,必存在节点v 使得4)deg(≤v .八、(10分) 有六个数字,其中三个1,两个2,一个3,求能组成四位数的个数.《离散数学》期末考试题(C)一、填空题(每小题3分,共15分)1. 若n B m A ==||,||,则=⨯||B A ( ),A 到B 的2元关系共有( )个,A 上的2元关系共有( )个.2. 设A = {1, 2, 3}, f = {(1,1), (2,1), (3, 1)}, g = {(1, 1), (2, 3), (3, 2)}和h = {(1, 3), (2, 1), (3,1)},则( )是单射,( )是满射,( )是双射.3. 下列5个命题公式中,是永真式的有( )(选择正确答案的番号).(1)q q p p →→∧)(;(2))(q p p ∨→;(3))(q p p ∧→;(4)q q p p →∨∧⌝)(;(5)q q p →→)(.4. 设D 24是24的所有正因数组成的集合,“|”是其上的整除关系,则3的补元( ),4的补元( ),6的补元( ).5. 设G 是(7, 15)简单平面图,则G 一定是( )图,且其每个面恰由( )条边围成,G 的面数为( ).二、单选题(每小题3分,共15分)1. 设A , B , C 是集合,则下述论断正确的是( ).(A)若A ⊆ B , B ∈ C ,则A ∈ C . (B)若A ⊆ B , B ∈ C ,则A ⊆ C .(C)若A ∈ B , B ⊆ C ,则A ∈ C . (D)若A ∈ B , B ⊆ C ,则A ⊆ C .2. 设R ⊆ A ⨯ A ,S ⊆ A ⨯ A ,则下述结论正确的是( ).(A)若R 和S 是自反的,则R ⋂ S 是自反的.(B)若R 和S 是对称的,则S R 是对称的.(C)若R 和S 是反对称的,则S R 是反对称的.(D)若R 和S 是传递的,则R ⋃ S 是传递的.3.在谓词逻辑中,下列各式中不正确的是( ).(A))()())()((x xB x xA x B x A x ∀∨∀=∨∀(B))()())()((x xB x xA x B x A x ∀∧∀=∧∀(C))()())()((x xB x xA x B x A x ∃∨∃=∨∃(D)),(),(y x xA y y x yA x ∀∃=∃∀4. 域与整环的关系为( ).(A)整环是域 (B)域是整环 (C)整环不是域 (D) 域不是整环5.设G 是(n , m )图,且G 中每个节点的度数不是k 就是k + 1,则G 中度数为k 的节点个数为( ). (A)2n . (B)n (n + 1). (C)nk . (D)m k n 2)1(-+. 三、判断题(每小题3分,共15分): 正确打“√”,错误打“×”.1.设f : Z → Z ,x x x f 2||)(-=,则f 是单射. ( )2.设ϕ是群G 1到群G 2的同态映射,若G 1是Abel 群,则G 2是Abel 群. ( )3.设),(≤L 是格,对于L z y x ∈,,,若z x y x ⋅=⋅且z x y x +=+,则z y =. ( )4.元素个数相同的有限布尔代数都是同构的. ( )5.设G 是n (n ≥ 11)阶简单图,则G 或G 是非平面图. ( )四、(15分)设A 和B 是集合,使下列各式(1)A B A =⋂; (2)A B B A -=-;(3)A A B B A =-⋃-)()(成立的充要条件是什么,并给出理由.五、(10分) 设S 是实数集合R 上的关系,其定义如下∈=y x y x S ,|),{(R 且是3y x -是整数}, 证明: S 是R 上的等价关系. 六、(10分) 求谓词公式)))()(()(()(x xD y yC y B x xA ∀→∃⌝→→∃的前束范式.七、(10分) 若n 个人,每个人恰有3个朋友,则n 必为偶数,试证明之.八、(10分) 利用生成函数求解递归关系⎩⎨⎧=-+=-2)1(211a n a a n n .《离散数学》期末考试题(D)一、填空题(每小题3分,共15分)1. 设|A | = 5, |B | = 2, 则可定义A 到B 的函数( )个,其中有( )单射,( )个满射.2. 令G (x ): x 是金子,F (x ): x 是闪光的,则命题“金子都是闪光的,但闪光的未必是金子”符号化为( ).3. 设X 是非空集合,则X 的幂集P (X )关于集合的⋃运算的单位元是( ),零元是( ),P (X )关于集合的⋂运算的单位元是( ).4. 不同构的5阶无向树有( )棵.5. 对于n 阶完全无向图K n , 当n 为( )时是Euler 图,当n ≥ ( )时是Hamilton 图,当n ( )时是平面图.二、单选题(每小题3分,共15分)1. 幂集P (P (P (∅))) 为( )(A){{∅}, {∅, {∅}}}. (B){∅, {∅, {∅}}, {∅}}.(C){ ∅, {∅, {∅}}, {{∅}}, {∅}} (D){ ∅, {∅, {∅}}}.2. 设R 是集合A 上的偏序关系,则1-⋃R R 是( ).(A)偏序关系 (B)等价关系 (C)相容关系 (D)以上答案都不对3. 下列( )组命题公式是不等值的.(A))(B A →⌝与B A ⌝∧. (B) )(B A ↔⌝与)()(B A B A ∧⌝∨⌝∧.(C))(C B A ∨→与C B A →⌝∧)(. (D))(C B A ∨→与)(C B A ∨∧⌝.4.下列代数结构(G , *)中,( )是群.(A)G = {0, 1, 3, 5}, “*”是模7加法. (B) G = Q , “*”是数的乘法.(C)G = Z , “*”是数的减法. (D) G = {1, 3, 4, 5, 9}, “*”是模11乘法.5.4阶完全无向图4K 中含3条边的不同构的生成子图有(A)3 (B)4 (C)5 (D)2三、判断题(每小题3分,共15分): 正确打“√”,错误打“×”.1.函数的复合运算“ ”满足结合律. ( )2. {→⌝,}是最小功能完备联结词集合. ( )3. 实数集R 关于数的乘法运算“⋅”阿贝尔群. ( )4. 任意有限域的元素个数为2n . ( )5. 设G 是n (n 为奇数)简单图,则G 与G 中度数为奇数的节点个数相同. ( )四、(10分)设A 和B 是集合,使B B A =-成立的充要条件是什么,并给出理由.五、(10分) 设R 和S 是集合A 上的对称关系,证明S R 对称的充要条件是R S S R =.六、(15分)分别利用(1)等值演算法和(2)真值表求命题公式))(())((r q p p q r A ∨→→→∨⌝=的主析取范式和主合取范式.七、(10分) 设G 是(n , m )无向图,若n m ≥,证明G 中必存在圈.八、(10分) 在初始条件f (1) = c 下,求解递归关系bn n f n f +⎪⎭⎫ ⎝⎛=22)(,其中b ,c 为常数且kn 2=,k 为正整数.《离散数学》期末考试题(E)一、填空题(每小题3分,共15分)1.设A = {2, {3}, 4, a }, B = {1, 3, 4, {a }}, 则{3}( )A ,{a }( )B ,{{a }}( )B .2. 设A = {1, 2, 3, 4, 5}上的关系R = {(1, 2), (3, 4), (2, 2)}, S = {(4, 2), (2, 5), (3, 1), (1, 3)}, 则=S R { }, =R S { }, =R R { }.3. gcd(36, 48) = ( ),lcm(36, 48) = ( ).4.任意有限布尔代数)1,0,,,,(⋅+B 均与集合代数( )同构,其元素个数为( ).5. 不同构的5阶无向树有( )棵,不同构的5阶根树有( )棵.二、单选题(每小题3分,共15分)1. 在有理数集合Q 上定义运算“*”如下:对于任意x , y ∈ Q ,y x * = x + y – xy ,则Q 关于*的单位元是( ).(A)x . (B)y . (C)1. (D)0.2. 设A = {1, 2, 3}, 下图分别给出了A 上的两个关系R 和S ,则S R 是( )关系.(A)自反. (B)对称. (C)传递. (D)等价.3.令T (x ): x 是火车,B (x ): x 是汽车,F (x , y ): x 比y 快,则“某些汽车比所有的火车慢”符号化为( ).(A)()()),()()(y x H x T x y B y →∀∧∃.(B)()()),()()(y x H x T x y B y ∧∀→∃.(C)()()),()()(y x H x T y B y x ∧→∃∀.(D)()()),()()(y x H x T x y B y →∀→∃.4. 整数集合Z 关于数的加法“+”和数的乘法“⋅”构成的代数结构(Z, +, ⋅)是( ). 1 1 22 3 3G S G R(A)域(B)域和整环(C)整环(D) 有零因子环G≅,则称G为自补图. 5阶不同构的自补图5.设G是简单图,G是G的补图,若G个数为( ).(A)0. (B)1. (C)2. (D)3.三、判断题(每小题3分,共15分): 正确打“√”,错误打“×”.1. { ∅, {∅}} ∉P(P({∅})). ( )2. 非空1元及2元联结词集合的个数为29-1. ( )3. 群可分为Abel群和非Abel群. ( )4. 元素个数相同的有限域都是同构的. ( )5. 设G是简单图,则G或G是连通图. ( )四、(15分)设C,:, 若gf 是单射,证明f是单射,并举例说明g→:f→gBBA不一定是单射.五、(10分)设A = {a, b, c, d}上的关系R = {(a, b), (b, d), (c, c), (a, c)}, 画出R的关系图,并求出R的自反闭包r(R)、对称闭包s(R)和传递闭包t(R).六、(10分)用CP规则证明下列推理.⌝∨→∨(.⇒),(⌝),→pqssrqrqp→七、(10分)求谓词公式))xyByAxA∀→∨∀∧⌝∃的前束范式.zC((x()))(z(()八、(10分)任意6个人中,一定有3个人彼此认识或有3个人彼此不认识.《离散数学》期末考试题(F)一、填空题(每小题3分,共15分)1. 设A = {1, 2, 3, {1, 2}, {3}}, B = {2, {2,3}, {1}} , 则A–B = { }, B–A = { }, A⊕B = { }.2. 实数集合R关于加法运算“+”的单位元为( ), 关于乘法运算“⋅”的单位元为( ), 关于乘法运算“⋅”的零元为( ).3. 令Z(x): x是整数,O(x): x是奇数,则“不是所有整数都是奇数”符号化为( ).4. 有限域的元素个数为( ), 其中( )且( ).5. 设G 是(7, 15)简单平面图,则G 一定 ( )连通图,其每个面恰由( )条边围成,G 的面数为( ).二、单选题(每小题3分,共15分)1. 函数的复合运算“ ”满足( )(A)交换律. (B)结合律. (C)幂等律. (D)消去律.2. 设集合A 中有4个元素,则A 上的等价关系共有( )个.(A)13 (B)14 (C)15 (D)163.下列代数结构(G , *)中,( )是群.(A)G = {0, 1, 3, 5}, “*”是模7加法. (B) G = Q , “*”是数的乘法.(C)G = Z , “*”是数的减法. (D) G = {1, 3, 4, 5, 9}, “*”是模11乘法.4. 下列偏序集,( )是格.5. 不同构的(5, 3)简单无向图有( )个.(A)4 (B)5 (C)3 (D)2三、判断题(每小题3分,共15分): 正确打“√”,错误打“×”.1. 设A ,B ,C 是集合,若C A B A ⊕=⊕, 则B = C . ( )2. 逻辑联结词“→”满足结合律. ( )3. 设 (L , ≤)是偏序集,若L 的任意非空子集均存在上确界和下确界,则(L , ≤)是格.( )4. 在同构意义下,有限布尔代数只有,,,),((⋂⋃X P ∅, X ). ( )5. 设G 是简单图,则G 与G 中度数为奇数的节点个数相同. ( )四、(15分) 设C B g B A f →→:,:, 若g f 是满射,证明g 是满射,并举例说明f 不一定是满射.五、(10分) 在整数集合Z 上定义关系R 如下:对于任意∈y x , Z ,y y x x R y x +=+⇔∈22),(.判断R 是否具有自反性、反自反性、对称性、反对称性及传递性.六、(10分)利用真值表求命题公式)())(q p q p A ⌝→↔→⌝=的主析取范式和主合取范式.七、(10分)证明:在至少两个人的人群中,必有两个人有相同个数的朋友.八、(10分)将6阶完全无向图K 6的边随意地涂上红色或蓝色,证明:无论如何涂法,总存在红色的K 3或蓝色的K 3.(ps :答案见离散数学期末复习题(6套)答案文档)。

(完整版)离散数学题目及答案

(完整版)离散数学题目及答案

数理逻辑习题判断题1.任何命题公式存在惟一的特异析取范式 ( √ ) 2. 公式)(q p p →⌝→是永真式 ( √ ) 3.命题公式p q p →∧)(是永真式 ( √ ) 4.命题公式r q p ∧⌝∧的成真赋值为010 ( × ) 5.))(()(B x A x B x xA →∃=→∀ ( √ )6.命题“如果1+2=3,则雪是黑的”是真命题 ( × ) 7.p q p p =∧∨)( ( √ )8.))()((x G x F x →∀是永真式 ( × ) 9.“我正在撒谎”是命题 ( × ) 10. )()(x xG x xF ∃→∀是永真式( √ )11.命题“如果1+2=0,则雪是黑的”是假命题 ( × ) 12.p q p p =∨∧)( ( √ )13.))()((x G x F x →∀是永假式 ( × )14.每个命题公式都有唯一的特异(主)合取范式 ( √ ) 15.若雪是黑色的:p ,则q →p 公式是永真式 ( √ ) 16.每个逻辑公式都有唯一的前束范式 ( × ) 17.q →p 公式的特异(主)析取式为q p ∨⌝ ( × ) 18.命题公式 )(r q p →∨⌝的成假赋值是110 ( √ ) 19.一阶逻辑公式)),()((y x G x F x →∀是闭式( × )单项选择题1. 下述不是命题的是( A )A.花儿真美啊! B.明天是阴天。

C.2是偶数。

D.铅球是方的。

2.谓词公式(∀y)(∀x)(P(x)→R(x,y))∧∃yQ(x,y)中变元y (B)A.是自由变元但不是约束变元B.是约束变元但不是自由变元C.既是自由变元又是约束变元D.既不是自由变元又不是约束变元3.下列命题公式为重言式的是( A )A.p→ (p∨q)B.(p∨┐p)→qC.q∧┐q D.p→┐q4.下列语句中不是..命题的只有(A )A.花儿为什么这样红?B.2+2=0C.飞碟来自地球外的星球。

《离散数学》复习题及答案

《离散数学》复习题及答案

页眉内容《离散数学》试题及答案一、选择或填空(数理逻辑部分)1、下列哪些公式为永真蕴含式?( )(1)⌝Q=>Q→P (2)⌝Q=>P→Q (3)P=>P→Q (4)⌝P∧(P∨Q)=>⌝P答:(1),(4)2、下列公式中哪些是永真式?( )(1)(┐P∧Q)→(Q→⌝R) (2)P→(Q→Q) (3)(P∧Q)→P (4)P→(P∨Q)答:(2),(3),(4)3、设有下列公式,请问哪几个是永真蕴涵式?( )(1)P=>P∧Q (2) P∧Q=>P (3) P∧Q=>P∨Q(4)P∧(P→Q)=>Q (5) ⌝(P→Q)=>P (6) ⌝P∧(P∨Q)=>⌝P答:(2),(3),(4),(5),(6)4、公式∀x((A(x)→B(y,x))∧∃z C(y,z))→D(x)中,自由变元是( ),约束变元是( )。

答:x,y, x,z5、判断下列语句是不是命题。

若是,给出命题的真值。

( )(1)北京是中华人民共和国的首都。

(2) 陕西师大是一座工厂。

(3) 你喜欢唱歌吗? (4) 若7+8>18,则三角形有4条边。

(5) 前进! (6) 给我一杯水吧!答:(1)是,T (2)是,F (3)不是(4)是,T (5)不是(6)不是6、命题“存在一些人是大学生”的否定是( ),而命题“所有的人都是要死的”的否定是( )。

答:所有人都不是大学生,有些人不会死7、设P:我生病,Q:我去学校,则下列命题可符号化为( )。

(1) 只有在生病时,我才不去学校 (2) 若我生病,则我不去学校(3) 当且仅当我生病时,我才不去学校(4) 若我不生病,则我一定去学校答:(1)PP⌝P→⌝↔(4)QQ→⌝(2)QP⌝→(3)Q8、设个体域为整数集,则下列公式的意义是( )。

(1) ∀x∃y(x+y=0) (2) ∃y∀x(x+y=0)答:(1)对任一整数x存在整数 y满足x+y=0(2)存在整数y对任一整数x满足x+y=0 9、设全体域D是正整数集合,确定下列命题的真值:(1) ∀x∃y (xy=y) ( ) (2) ∃x∀y(x+y=y) ( )(3) ∃x∀y(x+y=x) ( ) (4) ∀x∃y(y=2x) ( )答:(1) F (2) F (3)F (4)T10、设谓词P(x):x是奇数,Q(x):x是偶数,谓词公式∃x(P(x)∨Q(x))在哪个个体域中为真?( )(1) 自然数(2) 实数 (3) 复数(4) (1)--(3)均成立答:(1)11、命题“2是偶数或-3是负数”的否定是()。

离散数学复习题及答案

离散数学复习题及答案

总复习题(一)一.单选题1 (C)。

一连通的平面图,5个顶点3个面,则边数为()。

、4 、5 、6 、72、 (A)。

如果一个简单图,则称为自补图,非同构的无向4阶自补图有()个。

、1 、2 、3 、43、 (D)。

为无环有向图,为的关联矩阵,则()。

、是的终点、与不关联、与关联、是的始点4、 (B)。

一连通的平面图,8个顶点4个面,则边数为。

、9 、10 、11 、125、 (D)。

如果一个简单图,则称为自补图,非同构的3阶有向完全图的子图中自补图有个。

、1 、2 、3 、46、21条边,3个4度顶点,其余顶点为3度的无向图共有个顶点。

、13 、12 、11 、107、 (D)。

有向图的通路包括。

、简单通路、初级通路、复杂通路、简单通路、初级通路和复杂通路8、 (D)。

一连通的平面图,9个顶点5个面,则边数为。

、9 、10 、11 、12A B C D G G ≅G A B C D E ,V D =[]m n ij m ⨯D 1m ij =A i v j e B i v j e C i v j e D i v j e A B C D G G ≅G A B C D A B C D A B C D A B C D9、21条边,3个4度顶点,其余顶点为3度的无向图共有个顶点。

、13 、12 、11 、1010、 (D)。

有向图的通路包括。

、简单通路、初级通路、复杂通路、简单通路、初级通路和复杂通路11、 (D)。

一连通的平面图,9个顶点5个面,则边数为。

、9 、10 、11 、1212、 (B)。

为有向图,为的邻接矩阵,则。

、邻接到的边的条数是5、接到的长度为4的通路数是5、长度为4的通路总数是5、长度为4的回路总数是513、 (C)。

在无向完全图中有个结点,则该图的边数为()。

A 、B 、C 、D 、14、 (C)。

任意平面图最多是()色的。

A 、3B 、4C 、5D 、615、 (A)。

对与10个结点的完全图,对其着色时,需要的最少颜色数为()。

离散数学复习题

离散数学复习题

离散数学复习题第⼀套题⼀、填空题1设集合A,B,其中A={1,2,3}, B= {1,2},则A - B=____________________;ρ(A) - ρ(B)=_________________ .答案:{3};{{3},{1,3},{2,3},{1,2,3}}.2. 设有限集合A, |A| = n,则|ρ(A×A)| = ____________.答案:22n.3. 已知命题公式G=?(P→Q)∧R,则G的主析取范式是____________.答案:(P∧?Q∧R).4. 设A、B为两个集合, A= {1,2,4}, B = {3,4}, 则从A?B=_____; A?B=_____;A-B=_____.答案:{4};{1, 2, 3, 4};{1, 2}.5. 设R是集合A上的等价关系,则R所具有的关系的三个特性是______, ________, ________.答案:⾃反性;对称性;传递性.6. 设集合A={1,2,3,4}, A上的关系R1 = {(1,4),(2,3),(3,2)}, R1 = {(2,1),(3,2),(4,3)},则R1?R2=________;R2?R1 =________;R12=___________.答案:{(1,3),(2,2),(3,1)};{(2,4),(3,3),(4,2)};{(2,2),(3,3)}.7. 设有限集A, B,|A| = m, |B| = n,则| |ρ(A?B)| = ___________.则R以集合形式(列举法)记为______________.答案:{(2, 2),(2, 4),(2, 6),(3, 3),(3, 6),(4, 4),(5, 5),(6, 6)}.9. 设G是具有8个顶点的树,则G中增加_________条边才能把G变成完全图。

答案:21.10. 设谓词的定义域为{a, b},将表达式?xR(x)→?xS(x)中量词消除,写成与之对应的命题公式是_____________.答案:(R(a)∧R(b))→(S(a)∨S(b)).11. 设集合A={1, 2, 3, 4},A上的⼆元关系R={(1,1),(1,2),(2,3)},S={(1,3),(2,3),(3,2)}。

离散数学复习题

离散数学复习题

《离散数学》复习题一、单项选择题1.下列句子是原子命题的是( A)A. 大熊猫产在我国;B. 2+x=5;C. 小王和小李是学生;D. 别讲话了!2. 设p:天下雨,q:我去新华书店,命题“除非天不下雨,我去新华书店”的符号化形式为( D )A.p→qB.q→pC.┐q→pD.┐p→q3. 以下命题不是重言式的有(A )⌝P B. P∨⌝PA. P∧C. (P→Q)↔(⌝Q→⌝P)D. P→P∨Q4. 以下语句中不是命题的为(B)A.明天我要上门去谢你。

B.谢谢你给了我机会。

C.如果不说,我就不谢你。

D.除非你做了,我才谢你5.与⌝(∃x) M(x) 等价的是(D)A.(∀x) M(x)B.(∃x) ⌝M(x)C.(∀x) M(x)D.(∀x) ⌝M(x)6. 设P(x)为“x是大学生”,Q(x)为“x满30岁”。

命题“所有大学生都不满30岁”写成谓词公式为( C )A. ∀x(P(x)∧Q(x))B.∃ x(P(x)∧Q(x))C.∀x(P(x)→Q(x))D.∃ x(P(x)→Q(x))7.公式(∀x) (P(x)→(∀y)R(x, y))中,∀x的辖域为(B )A.P(x)B.(P(x)→(∀y)R(x, y))C.P(x)和R(x, y)D.P(x)→(∀y)8.设S={a, b, c},则S的幂集的元素的个数有(C )A.3B.6 C. 8D.99.以下等式中不正确的是:( A ) A.A∪(B×C)=(A∪B)×(A∪C)B.A×(B∪C)=(A×B)∪(A×C)C.(A∪B)×C=(A×C)∪(A×C)D(A×B)×C=A×(B×C)10.设A={1, 2, 3, 4}, A上的等价关系R={<1, 2>, <2, 1>, <3, 4>, <4, 3>}∪I A, 则对应于R的A 的划分是( D ) A.{{1},{2, 3}, {4}}B.{{1, 2},{3}, {4}}C.{{1},{2}, {3}, {4}}D.{{1,2}, {3, 4}}11.设函数f:{1,2}→{1},则f是( B ) A.入射B.满射C.双射D.非入射非满射12.设Z-是负正整数集合,+,-,*,△是普通数的加法、减法和平方运算,则能构成代数系统是( B )A.< Z-, +> B.< Z-, ->C.< Z-, *>D< Z-, △>13.若他聪明,他用功,则“他虽聪明但不用功”,可符号化为( B )A. B.C.D.14. 若一个代数系统(A,*)满足运算封闭性及结合律,且有幺元,则它是( A ) A.独异点B.群C.格D.布尔代数15.设G为无限群,则( C ) A.G是交换群B.G是循环群C.G中每个元素都有逆元D.G中每个元素的阶都是无限的16.在有3个结点的图中,度数是奇数的结点的个数为( D ) A.1B.3C. 1或3D.0或217.在5阶图G中,若从结点v1到v4存在路,则从v1到v4的路中必存在路,其长度小于等于( D ) A.1B.2C. 3D.418.连通平面图G的面的次数之和为10,则其边数为( A ) A.5B.10C. 15D.2019. 在自然数集合上,下列哪种运算不是可交换的( D )A. B.C. D.20. 设简单图的最大结点度数为,图的结点数为,则与的关系为( B )A. B.C. D. 与没关系21.下列各项中错误的是(A)A.B.C.D.22.设,下列各式成立的是(C )A.B.C.D.23.连通平面图G中,所有面的次数之和是( C )A.边数B.边数的一半C.边数的两倍D.边数的一倍24.无向图具有一条欧拉回路,那么图的所有结点的度数都是(B )A.奇数B.偶数C.素数D.125. 下列集合哪个是最小联结词集( D )A. B.C. D.26. 设简单图的最大结点度数为,图的结点数为,则与的关系为(B)A. B.C. D. 与没关系27. 设集合A={1,2,3},B={2,3,4,5},C={2,4,8,16},D={1,2,3,4},设“|”是集合上的“整除”关系,则下列偏序集中能构成格的是( C )A. <A,|>;B. <B,|>;C. <C,|>;D. <D,|>;28.设上的二元关系,则关系具有的性质是哪一个(B)A. 自反性B. 对称性C. 传递性D. 反对称性29.判断下列各式中不是合式公式的是哪一个( C)A. B.C. D.30. 代数系统(S, )中以下断言正确的是( C )A. 单位元与零元总是不相等;B. 可能有二个左单位元和一个右单位元;C. 单位元总有逆元;D. 若S' S,则(S', )是(S, )的子代数31. 指出下列语句中哪个是原子命题( A)A. 苏州是中国的首都。

离散数学考试题及答案

离散数学考试题及答案

离散数学考试题及答案一、选择题(每题5分,共20分)1. 下列哪个选项不是离散数学的研究对象?A. 图论B. 组合数学C. 微积分D. 逻辑学答案:C2. 在逻辑学中,下列哪个命题是真命题?A. 如果今天是周一,那么明天是周二。

B. 如果今天是周一,那么明天是周三。

C. 如果今天是周一,那么明天是周四。

D. 如果今天是周一,那么明天是周五。

答案:A3. 在集合论中,下列哪个符号表示集合的并集?A. ∩B. ∪C. ⊆D. ⊂答案:B4. 在图论中,下列哪个术语描述的是图中的顶点集合?A. 边B. 路径C. 子图D. 顶点答案:D二、填空题(每题5分,共20分)1. 如果一个集合A包含5个元素,那么它的子集个数是______。

答案:322. 在逻辑学中,如果命题P和命题Q都是真命题,那么复合命题“P且Q”的真值是______。

答案:真3. 在图论中,如果一个图的顶点数为n,那么它的最大边数是______。

答案:n(n-1)/24. 如果一个二叉树的深度为3,那么它最多包含______个节点。

答案:7三、简答题(每题10分,共30分)1. 请简述什么是图的连通性,并给出一个例子。

答案:图的连通性是指在图中任意两个顶点之间都存在一条路径。

例如,在一个完全图K3中,任意两个顶点之间都可以通过一条边直接连接,因此它是连通的。

2. 解释什么是逻辑蕴含,并给出一个例子。

答案:逻辑蕴含是指如果一个命题P为真,则另一个命题Q也必须为真。

例如,命题P:“如果今天是周一”,命题Q:“明天是周二”。

如果今天是周一,那么根据逻辑蕴含,明天必须是周二。

3. 请描述什么是二叉搜索树,并给出它的一个性质。

答案:二叉搜索树是一种特殊的二叉树,其中每个节点的左子树只包含小于当前节点的数,右子树只包含大于当前节点的数。

它的一个性质是中序遍历可以得到一个有序序列。

四、计算题(每题15分,共30分)1. 给定一个集合A={1, 2, 3, 4, 5},请计算它的幂集,并列出所有元素。

离散数学试题总汇及答案

离散数学试题总汇及答案

离散数学试题总汇及答案一、单项选择题(每题2分,共20分)1. 在集合{1,2,3}和{3,4,5}的笛卡尔积中,元素(2,4)是否存在?A. 存在B. 不存在C. 无法确定D. 以上都不对2. 函数f: A→B是单射的,当且仅当对于任意的a1, a2∈A,若f(a1)=f(a2),则a1=a2。

A. 正确B. 错误C. 无法确定D. 以上都不对3. 以下哪个命题是真命题?A. 所有的狗都会游泳。

B. 有些狗不会游泳。

C. 所有的狗都不会游泳。

D. 以上都不是真命题。

4. 如果p蕴含q为假,那么p和q的真值可以是?A. p为真,q为假B. p为假,q为真C. p为真,q为真D. p为假,q为假5. 以下哪个图是连通图?A. 一个孤立点B. 两个不相连的点C. 一个包含三个点且每对点都相连的图D. 以上都不是连通图6. 在有向图中,如果存在从顶点u到顶点v的路径,那么称v是u的后继顶点。

A. 正确B. 错误C. 无法确定D. 以上都不对7. 以下哪个等价关系是集合{1,2,3}上的?A. {(1,1), (2,2), (3,3)}B. {(1,2), (2,1), (2,2), (3,3)}C. {(1,1), (2,3), (3,2), (3,3)}D. {(1,1), (2,2), (3,3), (1,3)}8. 以下哪个命题是假命题?A. 所有的鸟都有羽毛。

B. 有些鸟不会飞。

C. 所有的哺乳动物都是温血动物。

D. 以上都不是假命题。

9. 在图论中,一个图的生成树是包含图中所有顶点的最小连通子图。

A. 正确B. 错误C. 无法确定D. 以上都不对10. 如果命题p和q互为逆否命题,那么它们具有相同的真值。

A. 正确B. 错误C. 无法确定D. 以上都不对二、填空题(每题2分,共20分)1. 集合{1,2,3}和{3,4,5}的并集是________。

2. 函数f: A→B是满射的,当且仅当对于任意的b∈B,存在a∈A,使得f(a)=________。

离散数学试题及答案解析

离散数学试题及答案解析

离散数学试题及答案解析一、选择题1. 在集合{1,2,3,4}中,含有3个元素的子集有多少个?A. 4B. 8C. 16D. 32答案:B解析:含有3个元素的子集可以通过组合数公式C(n, k) = n! / [k!(n-k)!]来计算,其中n为集合的元素个数,k为子集中的元素个数。

在本题中,n=4,k=3,所以C(4, 3) = 4! / [3!(4-3)!] = 4。

2. 下列哪个命题是真命题?A. 所有偶数都是整数。

B. 所有整数都是偶数。

C. 所有整数都是奇数。

D. 所有奇数都是整数。

答案:A解析:偶数是指能被2整除的整数,因此所有偶数都是整数,选项A是真命题。

选项B、C和D都是错误的,因为并非所有整数都是偶数或奇数。

二、填空题1. 逻辑运算符“非”(NOT)的真值表是:当输入为真时,输出为______;当输入为假时,输出为真。

答案:假解析:逻辑运算符“非”(NOT)是一元运算符,它将输入的真值取反。

如果输入为真,则输出为假;如果输入为假,则输出为真。

2. 命题逻辑中,合取词“与”(AND)的真值表是:当两个命题都为真时,输出为真;否则输出为______。

答案:假解析:合取词“与”(AND)是二元运算符,只有当两个命题都为真时,输出才为真;如果其中一个或两个命题为假,则输出为假。

三、简答题1. 解释什么是等价关系,并给出一个例子。

答案:等价关系是定义在集合上的一个二元关系,它满足自反性、对称性和传递性。

例如,考虑整数集合上的“同余”关系。

对于任意整数a,b,如果a和b除以同一个正整数n后余数相同,则称a和b模n同余。

这个关系是自反的(a同余a),对称的(如果a同余b,则b同余a),并且是传递的(如果a同余b且b同余c,则a同余c)。

2. 什么是图的连通性?一个图是连通的需要满足什么条件?答案:图的连通性是指在无向图中,任意两个顶点之间都存在一条路径。

一个图是连通的需要满足以下条件:图中的任意两个顶点v和w,都可以通过图中的边相互到达。

《离散数学》复习题及答案

《离散数学》复习题及答案

《离散数学》复习题及答案《离散数学》试题及答案⼀、选择或填空(数理逻辑部分)1、下列哪些公式为永真蕴含式?( )(1)?Q=>Q→P (2)?Q=>P→Q (3)P=>P→Q (4)?P∧(P∨Q)=>?P答:(1),(4)2、下列公式中哪些是永真式?( )(1)(┐P∧Q)→(Q→?R) (2)P→(Q→Q) (3)(P∧Q)→P (4)P→(P∨Q)答:(2),(3),(4)3、设有下列公式,请问哪⼏个是永真蕴涵式?( )(1)P=>P∧Q (2) P∧Q=>P (3) P∧Q=>P∨Q(4)P∧(P→Q)=>Q (5) ?(P→Q)=>P (6) ?P∧(P∨Q)=>?P答:(2),(3),(4),(5),(6)4、公式?x((A(x)→B(y,x))∧?z C(y,z))→D(x)中,⾃由变元是( ),约束变元是( )。

答:x,y, x,z5、判断下列语句是不是命题。

若是,给出命题的真值。

( )(1)北京是中华⼈民共和国的⾸都。

(2) 陕西师⼤是⼀座⼯⼚。

(3) 你喜欢唱歌吗? (4) 若7+8>18,则三⾓形有4条边。

(5) 前进! (6) 给我⼀杯⽔吧!答:(1)是,T (2)是,F (3)不是(4)是,T (5)不是(6)不是6、命题“存在⼀些⼈是⼤学⽣”的否定是( ),⽽命题“所有的⼈都是要死的”的否定是( )。

答:所有⼈都不是⼤学⽣,有些⼈不会死7、设P:我⽣病,Q:我去学校,则下列命题可符号化为( )。

(1) 只有在⽣病时,我才不去学校 (2) 若我⽣病,则我不去学校(3) 当且仅当我⽣病时,我才不去学校(4) 若我不⽣病,则我⼀定去学校答:(1)PP?P→(4)QQ→→(3)Q8、设个体域为整数集,则下列公式的意义是( )。

(1) ?x?y(x+y=0) (2) ?y?x(x+y=0)答:(1)对任⼀整数x存在整数 y满⾜x+y=0(2)存在整数y对任⼀整数x满⾜x+y=0 9、设全体域D是正整数集合,确定下列命题的真值:(1) ?x?y (xy=y) ( ) (2) ?x?y(x+y=y) ( )(3) ?x?y(x+y=x) ( ) (4) ?x?y(y=2x) ( )答:(1) F (2) F (3)F (4)T10、设谓词P(x):x是奇数,Q(x):x是偶数,谓词公式?x(P(x)∨Q(x))在哪个个体域中为真?( )(1) ⾃然数(2) 实数 (3) 复数(4) (1)--(3)均成⽴答:(1)11、命题“2是偶数或-3是负数”的否定是()。

离散数学复习题参考带答案

离散数学复习题参考带答案

一、选择题:(每题2’)1、下列语句中不是命题的有()。

A.离散数学是计算机专业的一门必修课。

B.鸡有三只脚。

C.太阳系以外的星球上有生物。

D.你打算考硕士研究生吗?2、命题公式A与B是等价的,是指()。

A.A与B有相同的原子变元B.A与B都是可满足的C.当A的真值为真时,B的真值也为真D.A与B有相同的真值3、所有使命题公式P∨(Q∧¬R)为真的赋值为()。

A.010,100,101,110,111 B.010,100,101,111C.全体赋值D.不存在4、合式公式⌝(P∧Q)→R的主析取范式中含极小项的个数为()。

A.2 B.3 C.5 D.05、一个公式在等价意义下,下面哪个写法是唯一的()。

A.析取范式B.合取范式C.主析取范式D.以上答案都不对6、下述公式中是重言式的有()。

A.(P∧Q) → (P∨Q) B.(P↔Q) ↔ (( P→Q)∧(Q→P))C.⌝(P →Q)∧Q D.P →(P∧Q)7、命题公式(⌝P→Q) →(⌝Q∨P)中极小项的个数为(),成真赋值的个数为()。

A.0 B.1 C.2 D.38、若公式(P∧Q)∨(⌝P∧R) 的主析取范式为m001∨m011∨m110∨m111则它的主合取范式为()。

A.m001∧m011∧m110∧m111B.M000∧M010∧M100∧M101C.M001∧M011∧M110∧M111D.m000∧m010∧m100∧m1019、下列公式中正确的等价式是()。

A.⌝(∃x)A(x) ⇔ (∃x)⌝A(x) B.(∀x) (∀y)A(x, y) ⇔ (∃y) (∀x) A(x, y)C.⌝(∀x)A(x) ⇔ (∃x)⌝A(x) D.(∀x) (A(x) ∧B(x)) ⇔ (∀x) A(x) ∨(∀x) B(x)10、下列等价关系正确的是()。

A.∀x ( P(x) ∨Q(x) ) ⇔∀x P(x) ∨∀x Q(x) B.∃x ( P(x) ∨Q(x) ) ⇔∃x P(x) ∨∃x Q(x)C.∀x ( P(x) →Q ) ⇔∀x P(x) → Q D.∃x ( P(x) →Q ) ⇔∃x P(x) → Q11、设个体域为整数集,下列真值为真的公式是()。

离散数学期末复习题

离散数学期末复习题

离散数学期末复习题第一章集合论一、判断题(1)空集是任何集合的真子集. ( 错 )(2){}φ是空集. ( 错 ) (3){}{}a a a },{∈ ( 对 ) (4)设集合{}{}{}{}AA 22,1,2,1,2,1⊆=则. ( 对 ) (5)如果B A a ⋃∉,则A a ∉或B a ∉. ( 错 )解 B A a ⋃∉则B A B A a ⋂=⋃∈,即A a ∈且B a ∈,所以A a ∉且B a ∉(6)如果A ∪.,B A B B ⊆=则 ( 对 )(7)设集合},,{321a a a A =,},,{321b b b B =,则},,,,,{332211><><><=⨯b a b a b a B A ( 错 )(8)设集合}1,0{=A ,则}1},0{,0},0{,1,,0,{><><><><=φφρ是A2到A 的关系. ( 对 )解 A 2}},1{},0{,{A φ=, =⨯A A 2}1,,0,,1},1{,0},1{,1},0{,0},0{,1,,0,{><><><><><><><><A A φφ(9)关系的复合运算满足交换律. ( 错 )(10).条件具有传递性的充分必要上的关系是集合ρρρρA = ( 错 )(11)设.~,上的传递关系也是则上的传递关系是集合A A ρρ ( 对 ) (12)集合A 上的对称关系必不是反对称的. ( 错 )(13)设21,ρρ为集合A 上的等价关系, 则21ρρ⋂也是集合A 上的等价关系( 对 )(14)设ρ是集合A 上的等价关系, 则当ρ>∈<b a ,时, ρρ][][b a = ( 对 )(15)设21,ρρ为集合 A 上的等价关系, 则 ( 错 )二、单项选择题(1)设R 为实数集合,下列集合中哪一个不是空集 ( A )A. {}R x x x ∈=-且,01|2 B .{}R x x x ∈=+且,09|2C. {}R x x x x ∈+=且,1|D. {}R x x x ∈-=且,1|2(2)设B A ,为集合,若φ=B A \,则一定有 ( C )A. φ=B B .φ≠B C. B A ⊆ D. B A ⊇(3)下列各式中不正确的是 ( C )A. φφ⊆ B .{}φφ∈ C. φφ⊂ D. {}}{,φφφ∈ (4)设{}}{,a a A =,则下列各式中错误的是 ( B )A. {}A a 2∈ B .{}A a 2⊆ C. {}A a 2}{∈ D. {}Aa 2}{⊆ (5)设{}2,1=A ,{}c b a B ,,=,{}d c C ,=,则)(C B A ⨯为 ( B ) A. {}><><c c ,2,1, B .{}><><c c ,2,,1C. {}><><2,,,1c cD. {}><><2,,1,c c(6)设{}b A ,0=,{}3,,1b B =,则B A 的恒等关系为 ( A ) A. {}><><><><3,3,,,1,1,0,0b b B .{}><><><3,3,1,1,0,0C. {}><><><3,3,,,0,0b bD. {}><><><><0,3,3,,,1,1,0b b(7)设{}c b a A ,,=上的二元关系如下,则具有传递性的为 ( D )A. {}><><><><=a b b a a c c a ,,,,,,,1ρB . {}><><=a c c a ,,,2ρC. {}><><><><=c b a b c c b a ,,,,,,,3ρD. {}><=a a ,4ρ(8)设ρ为集合A 上的等价关系,对任意A a ∈,其等价类[]ρa 为 ( B )A. 空集; B .非空集; C. 是否为空集不能确定; D. }|{A x x ∈.(9)映射的复合运算满足 ( B )A. 交换律 B .结合律 C. 幂等律 D. 分配律(10)设A ,B 是集合,则下列说法中( C )是正确的.A .A 到B 的关系都是A 到B 的映射B .A 到B 的映射都是可逆的C .A 到B 的双射都是可逆的D .B A ⊂时必不存在A 到B 的双射(11)设A 是集合,则( B )成立.A .A A #22#=B .A X X A⊆↔∈2 C .{}A2∈φ D .{}AA 2∈ (12)设A 是有限集(n A =#),则A 上既是≤又是~的关系共有(B ).A .0个B .1个C .2个D .n 个三、填空题1. 设}}2,1{,2,1{=A ,则=A2____________.填}}},2,1{,2{}},2,1{,1{},2,1{}},2,1{{},2{},1{,{2A A φ=2.设}}{,{φφ=A ,则A 2= . 填}}},{{},{,{2A A φφφ=3.设集合B A ,中元素的个数分别为5#=A ,7#=B ,且9)(#=⋃B A ,则集合B A ⋂中元素的个数=⋂)(#B A .34.设集合}4,1001|{Z x x x x A ∈≤≤=的倍数,是,}5,1001|{Z x x x x B ∈≤≤=的倍数,是,则B A 中元素的个数为 .405.设 },{b a A =, ρ 是 A2 上的包含于关系,,则有ρ= .},,},{,}{},{,},{,}{},{,,,}{,,}{,,,{><><><><><><><><><A A A b b b A a a a A b a φφφφφ6.设21,ρρ为集合 A 上的二元关系, 则=21ρρ .~1~2ρρ7.集合A 上的二元关系ρ为传递的充分必要条件是 .ρρρ⊆8. 设集合{}{}><><==0,2,2,02,1,01ρ上的关系A 及集合A 到集合{}4,2,0=B 的关系=2ρ{><b a ,|><b a ,A b a B A ∈⨯∈,且∩}=21,ρρ 则B ___________________. 填 }2,2,0,2,2,0,0,0{><><><><四、解答题1. 设 A d c b a A },,,,{=上的关系 },,,,,,,,,,,,,,,{><><><><><><><><=c d d c a b b a d d c c b b a a ρ(1)写出ρ的关系矩阵;(2)验证ρ是A 上的等价关系;(3)求出A 的各元素的等价类。

离散数学-复习题

离散数学-复习题

离散数学试题1一、单项选择题在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.下列句子为命题的是( )A.走,看电影去B.x+y>0C.空集是任意集合的真子集D.你明天能来吗?2.下列式子不是..谓词合式公式的是( ) A.(∀x)(P(x)→(∃x)(Q(x) ∧A(x ,y)))B.(∀x)∧(∃y)∨P(x ,y)C.(∀x)P(x)→R(y)D.(∃x)P(x)∧Q(y ,z)3.下列式子为重言式的是( )A.P →P ∨QB.(﹁P ∧Q)∧(P ∨﹁Q)C.﹁ (P Q)D.(P ∨Q) (P →Q) 4.设个体域为实数集,特定元素a=0,函数f(x ,y)=x-y ,特定谓词F(x ,y)为x<y ,下列公式真值为真的是( )A.(∀x)(∀y)F(x ,f(f(x ,y),y))B.(∀x)(∀y)(﹁F(f(x ,y),x))C.(∀x)(∀y)(∀z)(F(x ,y)→F(f(x ,z),f(y ,z)))D.(∀x)F(f(a ,x),a)5.对于公式(∀x)(∀y)P(x ,y)∨Q(x ,z)∧(∃x)P(x ,y),下列说法正确的是( )A.x 是自由变元B.x 是约束变元C.( ∀x)的辖域是P(x ,y)∨Q(x ,z)D.(∀x)的辖域是P(x ,y)6.设论域为{1,2},与公式(∀x)﹁A(X)等价的是( )A. ﹁A(1) ∨﹁A(2)B. ﹁A(1)→﹁(A2)C. ﹁A(1) ∧﹁A(2)D. A(1) →A(2)7.设Z +是正整数集,f :Z +×Z +→Z +,f(n ,m)=n m ,则f( )A.仅是单射B.仅是满射C.是双射D.不是函数8.下列哪个关系矩阵所对应的关系具有自反性( )A.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001111101B.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101110001C.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001100100D.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡00101010110.在整数集上,下面哪个运算不是..二元运算( )A.加法B.减法C.乘法D.除法二、填空题请在每小题的空格中填上正确答案。

离散数学复习题及答案

离散数学复习题及答案

1. 写出命题公式 ﹁(P →(P ∨ Q ))的真值表。

答案:2.证明 答案:3. 证明以下蕴涵关系成立: 答案:4. 写出下列式子的主析取范式: 答案:)()(Q P Q P Q P ⌝∧⌝∨∧⇔↔Q)P (Q)(P P)(Q P)P (Q)(Q Q)P (P)Q)P ((Q)Q)P (P)Q (Q)P (Q P ⌝∧⌝∨∧⇔∧∨∧⌝∨⌝∧∨⌝∧⌝⇔∧∨⌝∨⌝∧∨⌝⇔∨⌝∧∨⌝⇔↔Q Q P P ⇒∨∧⌝)()()(R P Q P ∨∧∧⌝5. 构造下列推理的论证:p ∨q, p →Ør, s→t, Øs→r, Øt Þ q 答案:①s →t 前提 ②t 前提③s ①②拒取式I12 ④s →r 前提⑤r ③④假言推理I11 ⑥p →r 前提⑦p ⑤⑥拒取式I12 ⑧p ∨q 前提⑨q ⑦⑧析取三段论I106. 用反证法证明:p →(Ø(r∧s)→Øq), p, Øs Þ Øq)()(R P Q P ∨∧∧⌝)()(R P Q P ∨∧⌝∨⌝⇔))(())(R Q P P Q P ∧⌝∨⌝∨∧⌝∨⌝⇔)()()()(R Q R P P Q P P ∧⌝∨∧⌝∨∧⌝∨∧⌝⇔)()()(Q R P R P Q R P Q ∧∧⌝∨⌝∧∧⌝∨∧∧⌝⇔)()()(P R Q P R Q Q R P ⌝∧∧⌝∨∧∧⌝∨⌝∧∧⌝∨)()()(Q R P R P Q R P Q ∧∧⌝∨⌝∧∧⌝∨∧∧⌝⇔)(Q R P ⌝∧∧⌝∨7. 请将下列命题符号化:所有鱼都生活在水中。

答案:令 F( x ):x 是鱼 W( x ):x 生活在水中))((W(x)F(x)x →∀8. 请将下列命题符号化:存在着不是有理数的实数。

答案:令 Q ( x ):x 是有理数 R ( x ):x 是实数Q(x))x)(R(x)(⌝∧∃9. 请将下列命题符号化:尽管有人聪明,但并非一切人都聪明。

离散数学考试试题及答案

离散数学考试试题及答案

离散数学考试试题及答案一、单项选择题(每题5分,共20分)1. 在离散数学中,以下哪个概念不是布尔代数的基本元素?A. 逻辑与B. 逻辑或C. 逻辑非D. 逻辑异或答案:D2. 下列哪个命题不是命题逻辑中的命题?A. 所有学生都是勤奋的B. 有些学生是勤奋的C. 学生是勤奋的D. 勤奋的学生答案:D3. 在集合论中,以下哪个符号表示集合的并集?A. ∩B. ∪C. ⊆D. ⊂答案:B4. 以下哪个图不是无向图?A. 简单图B. 完全图C. 有向图D. 多重图答案:C二、填空题(每题5分,共20分)1. 如果一个命题的逆否命题为真,则原命题的________为真。

答案:逆命题2. 在图论中,如果一个图的任意两个顶点都由一条边连接,则称这个图为________图。

答案:完全3. 一个集合的幂集是指包含该集合的所有________的集合。

答案:子集4. 如果一个函数的定义域和值域都是有限集合,那么这个函数被称为________函数。

答案:有限三、简答题(每题10分,共30分)1. 请简述什么是图的欧拉路径。

答案:欧拉路径是一条通过图中每条边恰好一次的路径。

2. 解释什么是二元关系,并给出一个例子。

答案:二元关系是指定义在两个集合之间的关系,它将第一个集合中的元素与第二个集合中的元素联系起来。

例如,小于关系就是一个二元关系。

3. 请说明什么是递归函数,并给出一个简单的例子。

答案:递归函数是一种通过自身定义来计算函数值的函数。

例如,阶乘函数就是一个递归函数,定义为:n! = n * (n-1)!,其中n! = 1当n=0时。

四、计算题(每题10分,共30分)1. 计算以下逻辑表达式:(P ∧ Q) ∨ ¬R答案:首先计算P ∧ Q,然后计算¬R,最后计算两者的逻辑或。

2. 给定集合A = {1, 2, 3},B = {2, 3, 4},求A ∪ B。

答案:A ∪ B = {1, 2, 3, 4}3. 已知函数f(x) = 2x + 3,求f(5)。

《离散数学》试卷及答案精选全文完整版

《离散数学》试卷及答案精选全文完整版
解 设谓词Q(x):x是勤奋的;
H(x):x是身体健康的;
S(x):x是科学家
C(x):x是事业获得成功的人
置换规则。
3、设集合|A|=101,S ,且|S|为奇数,则这样的S有2101/2或2100个。
4、设mi是公式G的的主析取范式中的一个极小项,则mi的对偶式不一定是(填“是”/“不是”/“不一定是” ) G的主合取范式中的一个极大项。
5、由3个元素组成的有限集上所有的等价关系有5个
6、给定解释I如下: (1) Di:={2,3}; (2) a=3; (3) 函数f(x)为f(2)=2,f(3)=3; (4) 谓词:F(x)为F(2):=1,F(3):=0;G(x,y)为当i=j时,G(i,j):=1;当i≠j时,G(i,j):=0;其中i,j=2,3;
ac>0并且cu>0
若u>0,则c>0,a>0,因此有ac>0;
若u<0,则c<0,a<0, 也有ac>0;
因此有(a+bi)R(u+vi)
所以R在C*是传递的。所以R是C*上的等价关系。
2、在一阶逻辑自然推理系统F中,构造下面推理的证明。个体域是人的集合。
“每位科学家都是勤奋的,每个勤奋又身体健康的人在事业中都会获得成功。存在着身体健康的科学家。所以,存在着事业获得成功的人。”(15分)
2.设A={1,2,3…10},定义A上的二元关系R={<x,y>|x,y∈A∩x+y=10},试讨论R关于关系的五个方面的性质并说明理由(5分)
解答:R={<1,9>,<9,1>,<2,8>,<8, 2 >,<3,7>,<7,3>,<4,6>,<6, 4 >,<5, 5 >}

(完整版)离散数学题库与答案

(完整版)离散数学题库与答案

试卷二十二试题与答案一、单项选择题:(每小题1分,本大题共15分)1.设A={1,2,3,4,5},下面( )集合等于A 。

A 、{1,2,3,4,5,6};B 、}25{2≤x x x 是整数且; C 、}5{≤x x x 是正整数且; D 、}5{≤x x x 是正有理数且。

2.设A={{1,2,3},{4,5},{6,7,8}},下列各式中( )是错的。

A 、A ⊆Φ;B 、{6,7,8}∈A ;C 、{{4,5}}⊂A ;D 、{1,2,3}⊂A 。

3.六阶群的子群的阶数可以是( )。

A 、1,2,5;B 、2,4;C 、3,6,7;D 、2,3 。

4.设B A S ⨯⊆,下列各式中( )是正确的。

A 、 domS ⊆B ; B 、domS ⊆A ;C 、ranS ⊆A ;D 、domS ⋃ ranS = S 。

5.设集合Φ≠X ,则空关系X Φ不具备的性质是( )。

A 、自反性;B 、反自反性;C 、对称性;D 、传递性。

6.下列函数中,( )是入射函数。

A 、世界上每个人与其年龄的序偶集;B 、、世界上每个人与其性别的序偶集;B 、 一个作者的专著与其作者的序偶集; D 、每个国家与其国旗的序偶集。

7.><,*G 是群,则对*( )。

A 、满足结合律、交换律;B 、有单位元,可结合;C 、有单位元、可交换;D 、每元有逆元,有零元。

8.下面( )哈斯图所描述的偏序关系构成分配格。

9.下列( )中的运算符都是可交换的。

A 、→∨∧,,;B 、↔→,;C 、⨯⋂⋃,,;D 、∧∨,。

10.设G 是n 个结点、m 条边和r 个面的连通平面图,则m 等于( )。

A 、n+r-2 ;B 、n-r+2 ;C 、n-r-2 ;D 、n+r+2 。

11.n 个结点的无向完全图n K 的边数为( )。

A 、)1(+n n ;B 、2)1(+n n ;C 、)1(-n n ;D 、2)1(-n n 。

离散数学试题及答案解析

离散数学试题及答案解析

离散数学试题及答案解析一、单项选择题(每题2分,共10分)1. 集合A={1,2,3},集合B={2,3,4},则A∩B等于:A. {1,2,3}B. {2,3}C. {1,4}D. {3,4}答案:B2. 以下哪个命题是真命题?A. 所有天鹅都是白色的。

B. 有些天鹅不是白色的。

C. 所有天鹅都不是白色的。

D. 没有天鹅是白色的。

答案:B3. 函数f: A→B的定义域是A,值域是B,那么f是:A. 单射B. 满射C. 双射D. 既不是单射也不是满射答案:D4. 逻辑表达式(p∧q)→r的逆否命题是:A. ¬r→¬(p∧q)B. ¬r→¬p∨¬qC. r→(p∧q)D. ¬r∧¬p∨¬q答案:B5. 有限集合A={a, b, c}的子集个数为:A. 3B. 4C. 7D. 8答案:D二、填空题(每题3分,共15分)1. 如果一个关系R在集合A上是自反的,那么对于A中的每一个元素a,都有___________。

答案:(a, a)∈R2. 命题逻辑中,合取(AND)的逻辑运算符用___________表示。

答案:∧3. 在图论中,一个连通图是指图中任意两个顶点之间都存在___________。

答案:路径4. 集合{1, 2, 3}的幂集包含___________个元素。

答案:85. 如果一个函数f是单射,那么对于任意的x1, x2∈A,如果f(x1)=f(x2),则x1___________x2。

答案:=三、解答题(每题10分,共20分)1. 证明:若p是q的充分条件,q是r的充分条件,则p是r的充分条件。

证明:假设p成立,由于p是q的充分条件,所以q成立。

又因为q是r的充分条件,所以r成立。

因此,p成立可以推出r成立,即p是r的充分条件。

2. 给定一个有向图,其中包含顶点A、B、C、D,边为(A, B),(B, C),(C, D),(D, A),(A, C)。

离散数学考试试题及答案

离散数学考试试题及答案

离散数学考试试题及答案一、选择题(每题2分,共20分)1. 在集合论中,以下哪个选项表示“属于”关系?A. ⊆B. ⊂C. ∈D. ⊇答案:C2. 以下哪个命题是真命题?A. p ∧ ¬pB. p ∨ ¬pC. p → ¬pD. ¬(p → q) → p答案:B3. 以下哪个选项是命题逻辑中的德摩根定律?A. ¬(p ∨ q) = ¬p ∧ ¬qB. ¬(p ∧ q) = ¬p ∨ ¬qC. ¬(p → q) = p ∧ ¬qD. ¬(p ∨ q) = ¬p ∨ ¬q答案:A4. 以下哪个选项是命题逻辑中的蕴含等价?A. p → q ≡ ¬p ∨ qB. p → q ≡ ¬q → ¬pC. p → q ≡ p ∨ ¬qD. p → q ≡ ¬p ∧ q答案:A5. 以下哪个选项是关系的性质?A. 反身性B. 对称性C. 传递性D. 所有选项都是答案:D6. 以下哪个选项是图论中的有向图?A. 无向图中的边没有方向B. 有向图中的边有方向C. 混合图中的边既有方向也有无方向D. 所有选项都是答案:B7. 在图论中,以下哪个选项是树的性质?A. 树是无环的B. 树是连通的C. 树是无向图D. 所有选项都是答案:D8. 以下哪个选项是布尔代数的基本运算?A. 与(AND)B. 或(OR)C. 非(NOT)D. 所有选项都是答案:D9. 以下哪个选项是组合数学中的排列?A. 从n个不同元素中取出m个元素的组合B. 从n个不同元素中取出m个元素的排列C. 从n个相同元素中取出m个元素的组合D. 从n个相同元素中取出m个元素的排列答案:B10. 以下哪个选项是集合论中的幂集?A. 一个集合的所有子集的集合B. 一个集合的所有真子集的集合C. 一个集合的所有超集的集合D. 一个集合的所有子集的个数答案:A二、简答题(每题10分,共30分)1. 简述命题逻辑中的等价命题是什么?答案:等价命题是指两个命题在所有可能的真值赋值下都具有相同真值的命题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

离散数学复习资料一、填空1. 命题“对于任意给定的正实数,都存在比它大的实数”令F(x):x 为实数,yx y x L >:),(则命题的逻辑谓词公式为 。

2. 设p :王大力是100米冠军,q :王大力是500米冠军,在命题逻辑中,命题“王大力不但是100米冠军,而且是500米冠军”的符号化形式为 。

命题“存在一个人不但是100米冠军,而且是500米冠军”的符号化形式为____。

3. 选择合适的论域和谓词表达集合A=“直角坐标系中,单位元(不包括单位圆周)的点集”则A= 。

4. 设 P (x ):x 是素数, E(x):x 是偶数,O(x):x 是奇数 N (x,y):x 可以整数y 。

则谓词(()(()(,)))x P x y O y N y x ∀→∃∧ 的自然语言是 对于任意一个素数都存在一个奇数使该素数都能被整除 。

5. 设个体域是{a,b},谓词公式()()()()x P x x P x ∀⌝∨∀写成不含量词的形式是 。

6. 谓词(((,)(,))(,,))x y z P x z P y z uQ x y u ∀∀∃∧→∃的前束范式为 。

7. 命题公式)))(((R Q Q P P A →⌝∧→⌝∨⇔的主合取范式为 ,其编码表示为 。

8. 设E 为全集, ,称为A 的绝对补,记作~A ,且~(~A )= ,~E = ,~Φ= 。

9. 设={256},{234},{134}A B C ==,,,,,,,则A-B= ,A ⊕B = ,A ×C = 。

10. 设},,{c b a A =考虑下列子集}},{},,{{1c b b a S =,}},{},,{},{{2c a b a a S =,}},{},{{3c b a S =,}},,{{4c b a S =,}}{},{},{{5c b a S =,}},{},{{6c a a S =则A 的覆盖有 ,A 的划分有 。

11. 设}2,121{Z x x x x M ∈≤≤=整除,被,}3,121{Z x x x x N ∈≤≤=整除,被,则=⋂N M ,=-N M 。

12. 设A={<1,2>,<2 , 4 >,<3 , 3 >} , B={<1,3>,<2,4>,<4,2>},则B A ⋃= ,B A ο= 。

13. A={1,2,3,4,5,6},A 上二元关系}|,{是素数y x y x T ÷><=,则用列举法 T= ;T 的关系图为 ,T 具有 性质。

14. 偏序集><≤R A ,的哈斯图为,则≤R = 。

15. 设},2|{N n x x A n∈==,定义A 上的二元运算为普通乘法、除法和加法,则代数系统<A,*>中运算*关于 运算具有封闭性。

16. A ,B ,C 表示三个集合,文图中阴影部分的集合表达式为 。

17. 设图G = < V ,E >,},,,4321v v v 的邻接矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=0001001111011010A ,则1v 的入度 )(deg 1v -= ,4v 的出度)(deg 4v += ,从2v 到4v 的长度为2的路径有 条。

18. 结点数n (3≥n )的简单连通平面图的边数为m ,则m 与n 的关系为 m<=3n-6 。

19. 设 f ,g 是自然数集N 上的函数x x g x x f N x 2)(,1)(,=+=∈∀,则=)(x g f ο 。

20. 设I 是整数集合,Z 3是由模3的同余类组成的同余类集,在Z 3上定义+3如下:]3m od )[(][][3j i j i +=+,则+3的运算表为 ;<Z +,+3>是否构成群 。

21. 集合S={α,β,γ,δ}上的二元运算*为* α β γ δ α δ α β γ β α β γ δ γ β γ γ γ δαδγδ那么,代数系统<S, *>中的幺元是 ,α的逆元是 。

22. 设< {a,b,c}, * >为代数系统,* 运算如下:A BC则它的幺元为 ;零元为 。

23. 设A={a ,b ,c},A 上二元关系R={< a, a > , < a, b >,< a, c >, < c, c>} , 则s (R )= 。

24. 设A={<1,2>,<2 , 4 >,<3 , 3 >} , B={<1,3>,<2,4>,<4,2>},则B A ⋃= ,B A ο= 。

25. 设集合X={1,2,3},下列关系中 不是等价的。

A= {<1,1>,<2 , 2 >,<3 , 3 >}B= {<1,1>,<2 , 2 >,<3 , 3 >,<3,2>,<2 ,3 >} C= {<1,1>,<2 , 2 >,<3 , 3 >,<1,4>}D= {<1,1>,<2 , 2 >,<1 , 2 >,<2,1>,<1 ,3 >,<3,1>,<3 , 3 >,<2 , 3 >,<3,2>}26. 设{1,2,3,4},{1,2,2,43,3}X R ==<><><>,,则r (R)= ;s (R)= ;t (R) = 。

27. 设G 是n 阶完全图,则G 的边数m= 。

28. 设A={a ,b ,c ,d},其上偏序关系R 的哈斯图如右图所示:则R= 。

29. n 阶完全图Kn 的边数为 。

30. 结点数n (3≥n )的简单连通平面图的边数为m ,则m 与n 的关系为 。

31. 图的补图为 。

* a b c a a b c b b a c cccc32. 有向图 中从v 1到v 2长度为2的通路有 条。

33. 设G 为9阶无向图,每个结点度数不是5就是6,则G 中至少有 个5度结点。

34. n 阶完全图结点v 的度数d(v) = n-1 。

二、证明1. 不构造真值表证明蕴涵式Q R P P R R P P Q →⇒⌝∧→→→⌝∧→)))((())((2. 证明,A B C D D E F A F ∨→∧∨→⇒→3. 证明(P ∧Q)∨(P ∧⌝Q) ⇔ P4. 证明(())()P Q R P Q R →∨⇔∧⌝→5. 证明)()())()((x xQ x xP x Q x P x ∀→∀⇒→∀6. 证明(()())()()x P x Q x xP x xQ x ∀∨⇒∀∨∃7. 用推理规则证明下式:前提: )()(,)()(,))())()((()()(x Q x x P x x R x Q x P x x P x ∃∃→∨∀→∃ 结论:))()()()((y R x P y x ∧∃∃8. 设论域D={a , b , c},求证:))()(()()(x B x A x x xB x xA ∨∀⇒∀∨∀。

9. 设f g ο是复合函数,如果f g ο满射,则g 也是满射。

10. 假定C B g B A f →→:,:,且f g ο是一个满射,g 是个入射,则f 是满射。

11. 用反证法证明R S S Q R P Q P ∨⇒→∧→∧∨)()()(。

12. 设< I ,+ >是一个群,设I E ={ x|x=2n ,n ∈I },证明< I E ,+ >是< I ,+ >的一个子群。

三、按要求解答1. 将谓词公式)()())()()()((y R y y Q y x P x ∀→∀∨∃化为前束析取范式与前束合取范式。

2. 用推理规则论证:如果今天是星期六,我们就要到颐和园或圆明园玩,如果颐和园游人太多,我们就不去颐和园玩。

今天是星期六,颐和园游人太多,所以,我们去圆明园玩。

3. 符号化语句:“有些人喜欢所有的花,但是人们不喜欢杂草,那么花不是杂草”。

并推证其结论。

4. 用推理规则论证:或者逻辑难学,或者有少数学生不喜欢它;如果数学容易学,那么逻辑并不难学。

因此,如果许多学生喜欢逻辑,那么数学并不难学。

5. 设有下列情况,用推理规则论证结论是否有效? (a )或者天晴,或者下雨。

(b )如果天晴,我去看电影。

(c )如果我去看电影,我就不看书。

结论:如果我在看书则天在下雨。

6. 符号化语句:“有些病人相信所有的医生,但是病人都不相信骗子,所以医生都不是骗子”。

并推证其结论。

7. 给定3个命题:P :北京比天津人口多;Q :2大于1;R :15是素数。

求复合命题:)()(R P R Q ⌝∧↔→的真值。

8. 将(((,))(()()))x yP x y zQ z R x ∃⌝∃→∃→化为与其等价的前束范式。

9. 把公式()()()()x Q x x P x ∃→∀转化为前束范式 10. 求)()(Q P P Q ∧⌝∧→的主合取范式。

11. 求(A →B ∧C) ∧(⌝A ↔(⌝B ⌝∧C))的主析取范式与主合取范式。

12. 求(P ∨Q )→R 的主析取范式与主合取范式。

13. 设命题A 1,A 2的真值为1,A 3,A 4真值为0,求命题)()))(((421321A A A A A A ⌝∨↔⌝∧→∨的真值。

14. 求集合),3,2,1(10Λ=⎭⎬⎫⎩⎨⎧≤<=n n x x A n 的并与交。

15. 设X={1,2,3,4,5},X 上的关系R={<1,1> , < 1 , 2 > , <2 , 4 > , < 3 , 5 > , < 4 , 2 > },求R 的传递闭包t (R)。

16. 设集合{}X a b c d =,,,上的关系{},,,,,,,R a b b a b c c c =<><><><>。

求R 的传递闭包()t R 。

17. 在实数平面上,画出关系{}0202,<--∧>+-><=y x y x y x R ,并判定关系的特殊性质。

18.设X ={ a ,b ,c ,d },R 是X 上的二元关系,R ={< a ,c >,< a ,d >,< b ,c >,< b ,d >,< c ,d >}设S={1 , 2 , 3 , 4, 6 , 8 , 12 , 24},“≤”为S 上整除关系,问:(1)偏序集≤><,S 的哈斯图如何?(2)偏序集(1) 画出R 的关系图。

相关文档
最新文档