嵌入式程序设计实验报告

合集下载

《嵌入式软件设计》实验报告 qt程序设计

《嵌入式软件设计》实验报告 qt程序设计
3进行交叉编译,mount到目标机运行。
四、实验结果与数据处理五、分与讨论六、教师评语签名:
日期:
成绩
《嵌入式系统软件设计》实验报告
实验序号:09实验项目名称:qt程序设计
学 号
姓 名
专业、班
实验地点
指导教师
实验时间
一、实验目的
1.熟悉qt程序设计的基本步骤。
2.掌握qt程序设计的基本方法。
3. 熟悉qt程序设计的关机技术
二、实验设备(环境)及要求
硬件:PC机;PXA270试验箱
软件:PC机操作系统linux
三、实验内容与步骤
1用qt designer和用户自定义类的方法设计如图1的qt界面,并用主程序调用他们。比较这种方法的不同和优点。(文本框有字符后find按钮有效)
图1图2
2在以上工作的基础上,增加一个clock按钮,布局如图2:
将../../qt-embedded-free-3.1.1/examples/aclock中的aclock.cpp和aclock.h拷贝到当前目录。当用户按clock按钮的时候,程序调出时钟。

嵌入式实验四实验报告

嵌入式实验四实验报告

嵌入式实验四实验报告实验四:嵌入式编程设计
实验设计目的:
1. 学习使用嵌入式开发工具进行编程设计;
2. 学习使用C语言编写嵌入式程序;
3. 学习使用GPIO模块进行输入输出;
4. 学习使用中断处理函数。

实验器材:
1. 嵌入式开发板;
2. USB数据线;
3. 电脑;
4. LED灯;
5. 电阻;
6. 蜂鸣器;
7. 其他必要的电路元件。

实验步骤:
1. 连接开发板和计算机,安装开发板驱动程序;
2. 打开嵌入式开发工具,创建一个新的工程;
3. 在工程中添加一个C文件,编写程序;
4. 编写程序实现以下功能:
- 使用GPIO模块控制LED灯的亮、灭;
- 使用GPIO模块读取按键状态;
- 使用GPIO模块控制蜂鸣器的开、关;
- 使用Timer模块计时;
- 使用中断处理函数处理外部中断;
- 其他必要的功能;
5. 编译程序,下载到开发板;
6. 运行程序,测试功能是否正常。

实验结果与分析:
实验结果应当是LED灯、蜂鸣器、按键正常工作,可以通过按键控制LED灯的亮、灭、蜂鸣器的开、关。

实验总结:
通过本次实验,我学会了使用嵌入式开发工具进行编程设计,掌握了使用C语言编写
嵌入式程序的方法。

通过实验,我深入理解了嵌入式系统的原理和实现方法,对嵌入
式系统的应用有了更加深入的了解。

在今后的学习和工作中,我将能够更好地运用嵌
入式技术解决实际问题。

嵌入式报告实验报告

嵌入式报告实验报告

嵌入式报告实验报告1. 引言嵌入式系统作为一种特殊的计算机系统,应用广泛且日益重要。

嵌入式报告实验是对嵌入式系统进行实际操作和测试的过程,旨在验证嵌入式系统的功能和性能,以评估其是否满足设计要求。

本报告将详细介绍嵌入式报告实验的设计与实施,并对实验结果进行分析与总结。

2. 实验设计2.1 实验目的嵌入式报告实验的目的是通过设计和实施一系列测试来评估嵌入式系统的性能和功能。

具体目标包括但不限于:验证系统的实时性、稳定性和可靠性;测试系统的各种输入输出功能;评估系统对异常情况的处理能力。

2.2 实验环境实验使用的嵌入式系统硬件为XX处理器,集成了XX模块和XX接口。

软件方面,使用XX嵌入式操作系统和XX开发工具进行系统开发和测试。

2.3 实验步骤1) 配置硬件环境:将嵌入式系统与外部设备连接,确保硬件环境正常。

2) 编写测试程序:根据实验目标,编写相应的测试程序,包括输入输出测试、性能测试和异常情况测试等。

3) 软件调试:通过软件调试工具对测试程序进行调试,确保程序逻辑正确。

4) 硬件调试:通过硬件调试工具对嵌入式系统进行调试,确保硬件模块正常工作。

5) 实验运行:将测试程序下载到嵌入式系统中,运行测试程序并记录实验数据。

6) 数据分析与总结:对实验数据进行分析和总结,评估嵌入式系统的性能和功能是否满足设计要求。

3. 实验结果与分析3.1 输入输出测试通过设计一系列输入输出测试用例,测试嵌入式系统的输入输出功能。

测试包括但不限于:按键输入、传感器数据采集、外部设备通信等。

实验结果表明,嵌入式系统的输入输出功能正常,能够准确获取和处理各种输入信号,并成功输出相应的结果。

3.2 性能测试通过设计一系列性能测试用例,测试嵌入式系统的处理能力和实时性。

测试包括但不限于:任务切换速度、响应时间、系统负载等。

实验结果表明,嵌入式系统具有较高的处理能力和实时性,能够快速响应各种任务并保持系统的稳定性。

3.3 异常情况测试通过设计一系列异常情况测试用例,测试嵌入式系统对异常情况的处理能力。

嵌入式程序设计实验报告

嵌入式程序设计实验报告

实验一开发环境的搭建与配置【实验目的】1)熟悉嵌入式Linux开发平台。

2)掌握嵌入式Linux开发平台的开发环境搭建与配置。

3)了解minicom配置串口通信参数的过程。

4)了解嵌入式Linux的启动过程。

5)掌握程序交叉编译运行及调试的一般方法。

【实验内容】1)连接实验开发板与宿主机。

2)在虚拟机中的CentOS(宿主机)搭建开发环境。

3)在宿主机中配置minicom。

4)分析嵌入式Linux的启动过程。

5)在宿主机上编写简单的C语言程序并用交叉编译工具进行编译,然后传输到目标机上运行。

6)在宿主机上编写简单的C语言程序并用交叉编译工具进行编译,用gdbserver进行远程调试。

【实验步骤】连接实验开发板,对虚拟机进行设置1)首先把实验开发板打开,用网线和串口线连接宿主机,并连接电源(注意这时不要拨动实验开发板的开关按钮)。

2)在桌面上点击打开vmware 软件,选择“编辑虚拟机设置”,如下图所示:图13)进入虚拟机配置界面后把网络连接方式设置为“桥接方式”,如图2所示:图24)添加串口,如下图所示:图35)完成串口的添加后,选择“OK”,完成对虚拟机的设置。

如下图所示:图46)选择虚拟机的“Edit”、“Virtual Network Editor...”,如下图所示:图57)进入虚拟机网络参数设置界面后对VMnet0进行设置(注意这里桥接的网卡应选择与实验开发板相连接的那块儿网卡),然后点击“Apply”、“OK”如下图所示:图68)上述设置完成后启动CentOS(CentOS的用户名为“root”,密码为“xidianembed”)。

工具链的配置1)在CentOS的根目录下创建一个名为“EELiod”的目录,把实验中要用到的文件(主要是一些rpm包)拷贝到该目录下。

(可以用U盘、WinSCP等工具进行,此处不再做详细说明)。

2)交叉编译工具链位于/opt/buildroot-2011.02/output/host/usr目录下,进入工具链的bin目录下,可以看到一些编译工具,这些工具将会在之后的交叉编译过程中使用到。

嵌入式实训报告2篇

嵌入式实训报告2篇

嵌入式实训报告嵌入式实训报告精选2篇(一)嵌入式实训报告一、实训目的和背景嵌入式系统在现代社会中应用广泛,具有重要的实际意义。

为了进步学生的实际应用才能,我们组织了一次嵌入式实训。

通过实际操作与理论,培养学生的嵌入式系统开发才能和解决实际问题的才能。

二、实训内容1. 嵌入式系统开发环境的搭建:学生首先学习如何搭建嵌入式系统的开发环境,包括安装集成开发环境、配置编译工具链等。

2. 嵌入式系统根底知识的学习:学生学习嵌入式系统的根本概念、原理和架构,理解嵌入式系统的工作原理和开发流程。

3. 嵌入式系统软件开发:学生通过实际编程理论,掌握嵌入式系统的软件开发技术,包括编写驱动程序、应用程序等。

4. 嵌入式系统硬件开发:学生通过实际操作,学习嵌入式系统的硬件开发技术,包括电路设计、硬件接口设计等。

5. 嵌入式系统应用理论:学生完成一个实际工程,将所学的嵌入式系统开发技术应用到实际问题的解决中,加深对嵌入式系统的理解和应用才能。

三、实训过程1. 搭建嵌入式系统开发环境:学生按照实训指导书的要求,完成嵌入式系统开发环境的搭建。

2. 学习嵌入式系统根底知识:学生通过听课和自学,理解嵌入式系统的根本原理和架构。

3. 软件开发理论:学生根据实训指导书中的实例,编写嵌入式系统的软件程序。

4. 硬件开发理论:学生根据实训指导书中的实例,完成嵌入式系统的硬件设计和接口设计。

5. 应用理论:学生根据自己的兴趣和实际需求,选择一个实际工程,并使用嵌入式系统开发技术,完成工程的开发和施行。

四、实训效果通过嵌入式实训,学生深化学习了嵌入式系统的开发技术和实际应用,掌握了嵌入式系统的开发流程和方法。

同时,学生通过理论操作,进步了自己的动手才能和解决问题的才能。

实训过程中,学生不断考虑和探究,解决了许多实际问题,获得了良好的效果。

五、总结与展望嵌入式实训是一次富有意义的理论活动,通过实际操作与理论,加深了学生对嵌入式系统的理解和应用才能。

嵌入式实训课实验报告

嵌入式实训课实验报告

一、实验背景嵌入式系统在现代工业、消费电子、智能家居等领域扮演着越来越重要的角色。

为了让学生深入了解嵌入式系统的设计原理和开发过程,提高学生的实践能力和创新精神,我们开设了嵌入式实训课程。

本次实验报告将针对实训课程中的部分实验进行总结和分析。

二、实验目的1. 掌握嵌入式系统的基本原理和开发流程。

2. 熟悉嵌入式开发工具和环境。

3. 熟练使用C语言进行嵌入式编程。

4. 学会调试和优化嵌入式程序。

三、实验内容本次实训课程共安排了五个实验,以下是每个实验的具体内容和实验步骤:实验一:使用NeoPixel库控制RGB LED灯带1. 实验目的:学习使用NeoPixel库控制RGB LED灯带,实现循环显示不同颜色。

2. 实验步骤:(1)搭建实验平台,连接NeoPixel LED灯带。

(2)编写程序,初始化NeoPixel库,设置LED灯带模式。

(3)通过循环,控制LED灯带显示不同的颜色。

实验二:使用tm1637库控制数码管显示器1. 实验目的:学习使用tm1637库控制数码管显示器,显示数字、十六进制数、温度值以及字符串,并实现字符串滚动显示和倒计时功能。

2. 实验步骤:(1)搭建实验平台,连接tm1637数码管显示器。

(2)编写程序,初始化tm1637库,设置显示模式。

(3)编写函数,实现数字、十六进制数、温度值的显示。

(4)编写函数,实现字符串滚动显示和倒计时功能。

实验三:使用ds18x20库和onewire库读取DS18B20温度传感器的数据1. 实验目的:学习使用ds18x20库和onewire库读取DS18B20温度传感器的数据,并输出温度值。

2. 实验步骤:(1)搭建实验平台,连接DS18B20温度传感器。

(2)编写程序,初始化ds18x20库和onewire库。

(3)编写函数,读取温度传感器的数据,并输出温度值。

实验四:使用ESP32开发板连接手机热点,并实现LED1作为连接指示灯1. 实验目的:学习使用ESP32开发板连接手机热点,并通过LED1指示灯显示连接状态。

嵌入式实训报告范文2篇2

嵌入式实训报告范文2篇2

嵌入式实训报告范文 (2)嵌入式实训报告范文 (2)精选2篇(一)嵌入式实训报告一、实训背景嵌入式系统是一种以具体任务为中心,集成了硬件与软件的计算机系统。

由于其体积小、功耗低、功能强大等特点,嵌入式系统被广泛应用于各个领域,如家电、汽车、医疗等。

通过参与嵌入式实训,我希望能够掌握嵌入式开发的基本原理和方法,提高自己的实践能力。

二、实训目标1.掌握嵌入式系统的基本知识和开发工具的使用;2.了解嵌入式系统的硬件架构和软件设计流程;3.能够根据需求设计并实现简单的嵌入式系统。

三、实训内容1.学习嵌入式系统基础知识:通过课堂教学和自主学习,了解了嵌入式系统的概念、特点及应用领域。

深入学习了ARM架构和C语言的基本知识,并进行了相应的实践操作。

2.学习嵌入式开发工具的使用:学习了Keil MDK和IAR Embedded Workbench等常用的嵌入式开发工具的安装和配置方法。

通过实操操作,掌握了调试、编译、下载等基本功能的使用。

3.学习嵌入式系统设计流程:了解了嵌入式软件开发的常用流程,包括需求分析、系统设计、编码实现、调试测试、系统验证等。

通过案例分析和实践操作,对嵌入式系统设计流程有了更深入的了解。

4.设计并实现简单的嵌入式系统:根据实训要求,我选择了一个简单的嵌入式系统项目,通过分析需求、设计系统架构、编写软件代码、调试测试等环节,最终成功完成了项目。

四、实训总结及收获通过参与嵌入式实训,我不仅掌握了嵌入式系统的基本知识和开发工具的使用,还锻炼了自己的实践能力。

我深刻认识到嵌入式系统开发需要全面的知识储备和较高的技术水平,同时也需要良好的分析、设计和沟通能力。

通过实训,我对嵌入式系统开发流程有了更深入的理解,对嵌入式系统的设计和开发也有了更高的认识和要求。

在未来的学习和工作中,我会继续深入学习嵌入式系统开发相关知识,并不断提高自己的实践能力。

嵌入式系统是未来的发展方向,通过不断探索和实践,我相信我能够在这个领域取得更好的成果。

嵌入式实训报告范文2篇

嵌入式实训报告范文2篇

嵌入式实训报告范文嵌入式实训报告范文精选2篇(一)嵌入式实训报告一、实训目的和背景嵌入式实训的目的是通过设计和实现一个嵌入式系统,培养学生的嵌入式系统开发才能和团队协作才能。

本次实训的背景是为了满足社会对嵌入式系统开发人才的需求,进步学生的实际动手才能。

二、实训内容1. 硬件平台的选择和搭建:选择了一款ARM开发板作为硬件平台,并搭建了相应的开发环境。

2. 系统设计和分析:根据实训要求,我们团队设计了一个智能门锁系统,包括用户认证、门锁控制和远程监控功能。

3. 软件开发:使用C语言和嵌入式开发工具进展软件开发,实现了用户认证、门锁控制和远程监控等功能。

4. 硬件连接和调试:将开发板和相关传感器、执行器等硬件设备进展连接和调试,确保系统可以正常运行。

5. 功能测试和调优:对系统进展全面测试,发现并修复了一些问题,并对系统进展了性能优化。

三、实训心得和体会通过本次实训,我深入认识到嵌入式系统开发的复杂性和挑战性。

在实训过程中,我们团队遇到了许多问题,比方硬件和软件的兼容性、性能优化等方面。

但是通过团队的努力和合作,我们成功解决了这些问题,并完成了一个功能完善的嵌入式系统。

此外,我还学到了许多软件开发和硬件调试的技巧,进步了自己的实际动手才能。

在团队协作方面,我们团队成员之间互相配合,共同解决问题,形成了良好的协作机制。

总结起来,本次嵌入式实训让我受益匪浅,学会了许多实际应用的技能和知识,并进步了自身的综合才能。

四、实训成果展示在实训完毕后,我们团队成功完成了一个智能门锁系统,具备用户认证、门锁控制和远程监控等功能。

系统的稳定性和可靠性得到了验证,并且在实际使用中得到了积极的反应。

附图:〔展示系统界面、硬件设备连接示意图等〕五、实训改良意见尽管本次实训获得了良好的成果,但仍有一些方面需要改良。

首先,实训的时间安排可以更合理一些,以便更充分地利用时间进展理论操作。

其次,可以增加一些真实场景的案例分析和解决方案的设计,以提升学生的实际应用才能。

嵌入式实验设计实训报告

嵌入式实验设计实训报告

一、实验背景随着信息技术的飞速发展,嵌入式系统在各个领域得到了广泛的应用。

为了让学生更好地掌握嵌入式系统设计的相关知识,提高学生的动手能力和实际操作能力,我们开展了嵌入式实验设计实训。

本次实训以ARM处理器为平台,通过实际操作,让学生了解嵌入式系统的基本原理和设计方法。

二、实验目的1. 熟悉ARM处理器的基本架构和编程环境。

2. 掌握嵌入式系统设计的基本流程和方法。

3. 培养学生的动手能力和实际操作能力。

4. 提高学生对嵌入式系统的认知和应用能力。

三、实验内容1. 实验环境(1)硬件平台:ARM处理器开发板(2)软件平台:Keil uVision5、GNU ARM Embedded Toolchain2. 实验步骤(1)搭建实验环境首先,将开发板连接到计算机,并安装Keil uVision5和GNU ARM Embedded Toolchain软件。

接着,配置开发板,使其能够正常运行。

(2)编写程序根据实验要求,编写嵌入式系统程序。

程序主要包括以下几个方面:1)初始化:设置时钟、GPIO、中断等。

2)主循环:实现程序的主要功能。

3)中断处理:处理外部中断。

4)延时函数:实现延时功能。

(3)编译程序将编写好的程序编译成可执行文件。

(4)下载程序将编译好的程序下载到开发板上。

(5)调试程序在开发板上运行程序,通过串口调试软件观察程序运行情况,并对程序进行调试。

(6)实验报告根据实验内容,撰写实验报告。

3. 实验项目(1)点亮LED灯通过控制GPIO端口,实现LED灯的点亮和熄灭。

(2)按键控制LED灯通过检测按键状态,控制LED灯的点亮和熄灭。

(3)定时器实现定时功能使用定时器实现定时功能,例如定时关闭LED灯。

(4)串口通信实现串口通信,发送和接收数据。

四、实验结果与分析1. 点亮LED灯实验成功实现了通过控制GPIO端口点亮LED灯的功能。

2. 按键控制LED灯实验成功实现了通过检测按键状态控制LED灯的功能。

嵌入式设计实验报告

嵌入式设计实验报告

一、实验目的1. 熟悉嵌入式系统开发的基本流程和常用工具;2. 掌握嵌入式系统硬件资源的使用方法;3. 熟悉嵌入式系统软件开发的基本方法;4. 提高嵌入式系统设计能力。

二、实验内容1. 硬件平台:基于STM32F103系列单片机的开发板;2. 软件平台:Keil uVision5集成开发环境;3. 实验任务:设计一个简单的嵌入式系统,实现按键输入和LED灯控制功能。

三、实验原理1. 硬件原理:STM32F103系列单片机是一款高性能、低功耗的ARM Cortex-M3内核微控制器,具有丰富的片上外设资源,如GPIO、定时器、ADC等。

在本实验中,主要使用GPIO进行按键输入和LED灯控制。

2. 软件原理:嵌入式系统软件开发主要包括底层驱动程序、中间件和应用层。

底层驱动程序负责硬件资源的管理和配置;中间件提供系统服务,如通信、定时器等;应用层实现用户功能。

在本实验中,主要使用C语言编写程序,实现按键输入和LED灯控制功能。

四、实验步骤1. 硬件连接:将开发板上的按键和LED灯分别连接到单片机的GPIO端口;2. 软件编写:(1)创建项目:在Keil uVision5中创建一个新的项目,选择STM32F103系列单片机作为目标设备;(2)添加源文件:添加一个C语言源文件,用于编写主程序;(3)配置GPIO:在源文件中编写GPIO初始化代码,配置按键和LED灯的GPIO端口为输入和输出模式;(4)编写按键输入程序:编写按键扫描函数,用于检测按键状态,并根据按键状态控制LED灯;(5)编译程序:编译项目,生成目标文件;(6)下载程序:将编译好的程序下载到开发板;3. 实验验证:在开发板上运行程序,观察按键输入和LED灯控制功能是否正常。

五、实验结果与分析1. 实验结果:按键按下时,LED灯点亮;按键松开时,LED灯熄灭;2. 实验分析:通过编写程序,实现了按键输入和LED灯控制功能,验证了嵌入式系统开发的基本流程和常用工具。

嵌入式实验报告

嵌入式实验报告

实验一 ARM汇编语言程序设计一、实验目的1.了解IAR Embedded Workbench 集成开发环境2.掌握ARM汇编指令程序的设计及调试二、实验设备1.PC操作系统WIN98或WIN2000或WINXP,ADSI.2集成开发环境,仿真驱动程序三、实验内容1.熟悉IAR Embedded Workbench 集成开发环境2.理解下列程序,新建工程,加入下面的程序,并观察实验结果,解释程序实现的功能分析:该程序实现的功能是程序功能:Y = A*B+C*D+E*F程序代码:AREA Examl, CODE,READONLY ;定义一个代码段ENTRY ;程序入口MOV R0,#0;设置R0寄存器的值为0MOV R8,#0;设置R8寄存器的值为0ADR R2,N;将R2寄存器的值设为数据域N的地址LDR R1,[R2];将以R2的值为地址的数据读入R1MOV R2,#0;设置R2的值为0ADR R3,C; 将R3寄存器的值设为数据域C的地址ADR R5,X; 将R5寄存器的值设为数据域X的地址LOOPLDR R4,[R3,R8];将R3+R8的数据读入R4LDR R6,[R5,R8];将R5+R8的数据读入R6MUL R9,R4,R6;R9 = R4*R6ADD R2,R2,R9;R2 = R2+R9ADD R8,R8,#4;R8 = R8+4ADD R0,R0,#1;R0 = R0+1CMP R0,R1;比较R0和R1的值BLT LOOP;R0<R1的话执行循环N DCD 0X03;C DCD 0X01,0X02,0X03,0X04,0X05,0X06;X DCD 0X01,0X02,0X03,0X04,0X05,0X06;END程序结果:各个寄存器的结果执行结果如下:3.实现1+2+3+4+····+100,求的值,并保存在地址0x90018的地址里面程序代码:MOV R0,#100;设置R0寄存器的值为100LDR R2,=0X90018;设置R2寄存器指向地址0x90018MOV R1,#0;设置R1的值为0MOV R3,#0;设置R3的值为0LOOPADD R3,R3,R0;R3 = R3+R0SUB R0,R0,#1;R0 = R0-1CMP R0,R1;将R0和R1的值比较BNE LOOP;不相等的话继续执行循环STR R3,[R2];将R3的值装入到R2指向的地址块中。

嵌入式驱动程序设计_实验报告1

嵌入式驱动程序设计_实验报告1
1是向内核装载模块时调用的函数。
2是在内核中删除模块时调用的函数。
3是向内核装载模块时指定内核调用的函数的宏和在内核中删除模块时指定内核调用的函数的宏。
4是标记模块许可证的部分。
创建为了编译已创建模块的Makefile。译器设定为交叉编译器— arm-linux-gcc。
1定义要生成模块的模块名称。
2指定内核的源码位置。
3指定作为要编译的对象的模块源码所在的当前目录。
4指定编译模块的命令。
5作为编译结果生成的文件全部删除。
模块程序编译:编译模块。确认生成的文件列表。生成的文件中加载到内核中的模块文件是hello.ko。
模块运行:在目标板上运行模块的方法虽然有很多种,但是这里将说明利用tftp运行的方法。将hello.ko文件复制到/tftpboot目录中。在目标板上登录到内核中后,下载hello.ko文件。并且将hello模块加载到内核中。利用lsmod确认装载的模块列表。第一列显示注册的模块名,第二列显示模块在内核中占据的内存大小,第三列显示使用与否,第四列显示正参考的有关模块的模块名。删除内核中注册的模块。这时,仅指定设备驱动程序模块名。
图1-5下载内核
(6)删除内核中注册的模块。这时,仅指定设备驱动程序模块名。
图1-6注Leabharlann 内核6、实验思考题(1)请说明嵌入式驱动程序由哪些组成部分。
答:1.自动配置和初始化子程序,负责监测所要驱动的硬件设备是否存在和能否正常工作。如果该设备正常,则对这个设备及其相关的设备驱动程序需要的软件状态进行初始化。这部分驱动程序仅在初始化时被调用一次。
7、实验体会
通过这次实验我知道模块是具有内核程序的特征的同时在内核中被动态装载和删除,因此需要具有与一般程序不同的源码形式。以对象形式创建如设备驱动程序的内核库,如果通过系统调用向Linux内核请求装载,则内核使有关对象动态链接到内核中。但是,由于其不能通过自身进行链接处理,因此提供了内核符号表功能。

嵌入式程序实训报告总结

嵌入式程序实训报告总结

一、前言随着科技的飞速发展,嵌入式系统在各个领域得到了广泛应用,嵌入式程序开发成为了一个热门的技术方向。

为了提高自身的实践能力,我对嵌入式程序开发进行了为期一个月的实训。

通过这次实训,我对嵌入式程序开发有了更加深入的了解,以下是对实训过程及收获的总结。

二、实训内容1. 嵌入式系统基础知识学习在实训初期,我主要学习了嵌入式系统的基本概念、组成、特点以及常用硬件平台。

通过学习,我了解了嵌入式系统的层次结构,包括硬件平台、操作系统、中间件和应用软件等。

同时,我还学习了常用的硬件平台,如ARM、MIPS等,以及相应的开发工具和编程语言。

2. 嵌入式软件开发环境搭建为了进行嵌入式软件开发,我学习了如何搭建开发环境。

首先,我安装了嵌入式开发所需的操作系统,如Linux或Windows。

然后,我配置了交叉编译器、调试工具和代码编辑器等开发工具。

通过这一过程,我掌握了嵌入式软件开发环境的搭建方法。

3. 嵌入式程序设计实践在实训过程中,我参与了多个嵌入式程序设计项目。

以下列举其中两个项目:(1)基于ARM平台的智能家居控制系统该项目旨在设计一个基于ARM平台的智能家居控制系统,实现对家庭电器的远程控制。

我负责编写嵌入式程序,实现对家电的开关控制、温度调节等功能。

在项目开发过程中,我使用了C语言进行编程,并利用Linux操作系统进行调试。

(2)基于STM32的电子狗系统该项目旨在设计一个基于STM32的电子狗系统,实现对车辆行驶速度的监控。

我负责编写嵌入式程序,实现对车辆速度的实时检测和报警。

在项目开发过程中,我使用了C语言进行编程,并利用Keil软件进行调试。

4. 嵌入式程序调试与优化在嵌入式程序开发过程中,调试和优化是至关重要的环节。

我学习了如何使用调试工具(如GDB、JTAG等)对嵌入式程序进行调试,以及如何优化程序性能。

通过实际操作,我掌握了调试技巧和性能优化方法。

三、实训收获1. 理论知识与实践能力的提升通过本次实训,我对嵌入式系统的理论知识有了更加深入的理解,同时实践能力也得到了显著提升。

嵌入式实验报告一

嵌入式实验报告一

嵌入式实验报告一实验时间2013/6/9 报告人一、实验目的:1.嵌入式仿真开发环境的建立;2.通过上机实验,使学生验证、巩固和充实所学理论知识,加深对相关内容的理解,了解嵌入式操作系统的指令和目录结构。

二、实验要求:1.安装Cygwin;2.学习常见的Linux命令。

(1)文件操作命令主要包括查看文件命令(ls)、显示文件内容命令(cat)、文件复制命令(cp)、文件改名命令(mv)、删除文件命令(rm)。

(2)目录操作命令目录操作命令主要包括改变当前目录命令(cd)、显示当前目录命令(pwd)、建立子目录(mkdir)和删除子目录(rmdir)。

(3)其他操作命令其他操作命令主要包括链接命令(ln),清屏命令(clear),显示日期、时间和月历命令,修改权限的命令chmod等。

三、问题:1.文件操作指令的功能。

(1)熟悉Linux命令的功能。

(2)建立将左图所示的目录结构变为右图所示的目录结构。

请用最少的命令完成操作,并写出所使用的命令(图中方框表示目录,圆圈表示文件)。

(1)建左图目录结构(2)改左图目录为右图目录cd cdmkdir a1 b1 c1 mv /a1/d /c1cd a1 mv /a1/e /c1touch d e mv /b1/f /a1cd mv /c1/c2/i /a1cd b1 mv /c1/c2/j /b1touch f mv /c1/d2/k /b1cd cd c1cd c1 rmdir c2 d2mkdir c2 d2cd c2touch i jcd d2touch k2.简述Linux目录结构,说明各个目录的作用且使用时有哪些注意事项。

1. / :Linux文件系统的入口,也是处于最高一级的目录。

2. /bin:基础系统所需要的那些命令位于此目录,也是最小系统所需要的命令;比如ls、cp、mkdir等命令;功能和/usr/bin类似,这个目录中的文件都是可执行的,普通用户都可以使用的命令。

嵌入式教学实践报告(3篇)

嵌入式教学实践报告(3篇)

第1篇一、引言随着信息技术的飞速发展,嵌入式系统在各个领域得到了广泛的应用。

为了培养适应社会需求的高素质人才,我国高校纷纷开展嵌入式教学。

本文以某高校嵌入式教学实践为例,分析嵌入式教学的现状、方法及成效,以期为我国嵌入式教学提供参考。

二、嵌入式教学现状1. 课程设置目前,我国高校嵌入式课程设置主要包括嵌入式系统原理、嵌入式系统设计、嵌入式Linux、嵌入式编程等。

这些课程旨在使学生掌握嵌入式系统的基本原理、设计方法、编程技巧和开发工具。

2. 教学方法(1)理论教学:通过课堂讲授、案例分析等方式,使学生掌握嵌入式系统的基本概念、原理和设计方法。

(2)实践教学:通过实验、项目实践等环节,提高学生的动手能力和工程实践能力。

(3)线上教学:利用网络平台,为学生提供在线课程、在线实验、在线讨论等资源。

3. 教学资源(1)教材:高校普遍采用国内外优秀的嵌入式教材,如《嵌入式系统原理与应用》、《嵌入式Linux编程》等。

(2)实验设备:高校普遍配备嵌入式实验箱、开发板等实验设备,为学生提供实践平台。

(3)在线资源:高校积极建设在线教学资源,为学生提供丰富的学习资料。

三、嵌入式教学方法探讨1. 案例教学法案例教学法通过分析实际嵌入式系统项目,引导学生掌握嵌入式系统设计、开发和应用方法。

具体步骤如下:(1)选择典型案例:根据教学目标,选择具有代表性的嵌入式系统项目。

(2)分析案例:引导学生分析案例中嵌入式系统的设计思路、关键技术、开发过程等。

(3)讨论与总结:组织学生进行讨论,总结案例中的经验和教训。

2. 项目驱动教学法项目驱动教学法以项目为导向,让学生在完成项目的过程中,掌握嵌入式系统设计、开发和应用技能。

具体步骤如下:(1)确定项目:根据学生的兴趣和市场需求,确定嵌入式系统项目。

(2)项目分解:将项目分解为若干个子任务,明确每个子任务的技术要求和完成时间。

(3)分工与合作:学生分组,明确每个组员的责任,共同完成项目。

嵌入式实验课程设计报告

嵌入式实验课程设计报告

嵌入式实验课程设计报告一、课程目标知识目标:1. 学生能理解嵌入式系统的基础知识,掌握其基本组成和工作原理。

2. 学生能够掌握嵌入式编程的基本语法和常用指令,具备编写简单嵌入式程序的能力。

3. 学生能够了解嵌入式系统在实际应用中的优势和局限性。

技能目标:1. 学生能够运用所学知识,进行简单的嵌入式系统设计和程序开发。

2. 学生能够使用嵌入式实验设备,进行实际操作,并解决常见问题。

3. 学生能够通过团队协作,完成一个具有实际应用价值的嵌入式项目。

情感态度价值观目标:1. 学生对嵌入式系统产生兴趣,激发其学习主动性和积极性。

2. 学生能够认识到嵌入式技术在国家战略和社会发展中的重要性,培养其社会责任感和使命感。

3. 学生在课程学习过程中,培养良好的团队合作精神和沟通能力,形成正确的价值观。

课程性质分析:本课程为嵌入式实验课程,侧重于实践操作和项目实践。

课程内容紧密结合教材,旨在帮助学生将理论知识与实际应用相结合。

学生特点分析:本年级学生已具备一定的计算机基础和编程能力,对新鲜事物充满好奇,具备较强的动手能力和创新能力。

教学要求:1. 注重理论与实践相结合,提高学生的实际操作能力。

2. 采用项目驱动教学法,培养学生的团队协作和解决问题的能力。

3. 激发学生的学习兴趣,引导其探索嵌入式技术在实际应用中的奥秘。

二、教学内容1. 嵌入式系统概述:介绍嵌入式系统的基本概念、发展历程、应用领域及未来发展趋势。

教材章节:第一章 嵌入式系统概述2. 嵌入式系统组成:讲解嵌入式系统的硬件组成、软件架构及系统设计方法。

教材章节:第二章 嵌入式系统硬件组成;第三章 嵌入式系统软件架构3. 嵌入式编程基础:学习嵌入式编程的基本语法、常用指令和编程技巧。

教材章节:第四章 嵌入式编程语言与编程环境;第五章 嵌入式程序设计基础4. 嵌入式系统设计与实践:通过项目实践,让学生掌握嵌入式系统的设计方法和实际操作。

教材章节:第六章 嵌入式系统设计与实践5. 嵌入式系统应用案例分析:分析典型嵌入式应用案例,了解嵌入式技术的实际应用。

2023年嵌入式实验报告

2023年嵌入式实验报告

目录试验一跑马灯试验 ............................................ 错误!未定义书签。

试验二按键输入试验 ........................................ 错误!未定义书签。

试验三串口试验................................................ 错误!未定义书签。

试验四外部中断试验 ........................................ 错误!未定义书签。

试验五独立看门狗试验..................................... 错误!未定义书签。

试验七定期器中断试验..................................... 错误!未定义书签。

试验十三 ADC试验 ............................................. 错误!未定义书签。

试验十五 DMA试验 ............................................. 错误!未定义书签。

试验十六 I2C试验 ............................................. 错误!未定义书签。

试验十七 SPI试验 ............................................. 错误!未定义书签。

试验二十一红外遥控试验 ................................. 错误!未定义书签。

试验二十二 DS18B20试验.................................. 错误!未定义书签。

试验一跑马灯试验一.试验简介我旳第一种试验,跑马灯试验。

二.试验目旳掌握STM32开发环境,掌握从无到有旳构建工程。

三.试验内容熟悉MDK KEIL开发环境,构建基于固件库旳工程,编写代码实现跑马灯工程。

嵌入式实验报告

嵌入式实验报告

嵌入式实验报告学院:信息工程学院专业:计算机科学与技术班级:计算机班姓名:学号:指导老师:实验目录实验一嵌入式系统开发环境实验 (2)实验二系统节拍定时器实验 (12)实验三 GPIO控制实验 (16)实验四外部中断实验 (19)实验五串口通讯实验 (23)实验一嵌入式系统开发环境实验【实验目的】1.熟悉RealView MDK集成开发环境以及使用方法。

2.熟悉嵌入式系统软件设计方法和流程。

【实验内容】1. 通过例程熟悉、掌握嵌入式系统的编辑、编译、调试、下载及运行过程。

2. 建立自己的工程文件,在开发板板上调试程序。

【实验步骤】(一)程序安装1. 建议在安装之前关闭所有的应用程序,双击安装文件,弹出如图对话框,Next2.默认选择C盘文件下安装。

3.这样就在c盘底下出现keil文件夹。

4.单击选择菜单“>"License Management" 将弹出下面一张图的界面:复制其中CID号,以便在粘贴到下一步中的破解软件。

5.复制CID6.运行破解软件,将出现下面一张图的界面,把上步复制的CID号粘贴到相应位置,其他选项如图,然后点击“Generate”按钮,然后复制产生的序列号,粘贴到上一步的下面一张图的LIC输入框中,然后点击右侧的Add LIC,即可完成破解。

7.安装文件夹中的jlink驱动。

(二)工程创建、编译使用Realview MDK创建、完成一个新的工程只需要以下几个环节:→创建工程并选择处理器→选择工具集→创建源文件→配置硬件选项→配置对应启动代码→编译链接→下载→调试。

1.创建工程并选择处理器选择Project→New Project…,输入创建的新工程的文件名,即可创建一个新的工程。

2.创建一个新工程时,需要为工程选择一款对应处理器,在NXP 列表下选择LPC1768 芯片。

然后点击OK。

接下来出现的对话框选择“是或者也可以通过单击Project→Select Device for Target…在本次课程中,我们选择3.点击上图的ok,在弹出的对话框中确定是否需要复制启动文件选择否,如果选择是,将使用keil自带的启动文件4.在工程区域单击鼠标右键,选择manage components5.在“Project Components”标签下根据需要建立目录,第一栏是工程的根目录,在这里可以修改目录名;第二栏是添加Groups,可以根据个人习惯建立不同的组来分别放置不同类型的文件;第三栏是为建立的组添加代码文件用的,点击“Add Files”添加。

嵌入式系统实验报告1

嵌入式系统实验报告1

LINUX操作实验报告一实验要求:1、程序设计思想要阐述清楚;2、要有流程图和源代码及注释;3、要有仿真结果及说明。

【实验一】内容与目的:编写fork/vfork的测试程序,验证二者的区别1、程序设计思想fork/vfork为进程创建操作,为实现以上目的,可以在程序中设置等待,根据打印输出信息,验证父进程与子进程在执行顺序上的差别;在父进程中设置测试使用变量,分别在子进程中对变量进行修改,并打印输出,可以观察子进程对变量的修改是否会影响父进程中变量的取值,进而可以观察父进程与子进程是否数据空间及堆、栈等。

2、流程图、源代码及注释Fork01a程序代码及注释如下:#include<stdio.h>#include<stdlib.h>#include<unistd.h>int global=1; //设定参数初始值int main(void){int var=2;pid_t pid; //显示两个参数初始值printf("The original values:global=%d,var=%d\n",global,var);if((pid=fork())<0) //如果进程号小于0,显示出错{printf("for error\n");}else if(pid==0) //如果处于子进程,显示所处进程,并修改各变量{sleep(10); //(设置等待时间:S)global++;var++;printf("In child process\n");}else //如果处于父进程,显示所处进程和各变量{sleep(5);printf("In parent process\n");}printf("pid=%d,global=%d,var=%d\n",getpid(),global,var);exit(0);}运行结果:若变换等待时间如下:#include<stdio.h>#include<stdlib.h>#include<unistd.h>#include<sys/types.h>int global=1; //设定参数初始值int main(void){int var=2;pid_t pid; //显示两个参数初始值printf("The original values:global=%d,var=%d\n",global,var);if((pid=fork())<0) //如果进程号小于0,显示出错{printf("for error\n");}else if(pid==0) //如果处于子进程,显示所处进程,并修改各变量{sleep(5); //(设置等待时间:S)global++;}else //如果处于父进程,显示所处进程和各变量{sleep(10);printf("In parent process\n");}printf("pid=%d,global=%d,var=%d\n",getpid(),global,var);exit(0);}Fork01b程序代码及注释如下:#include<stdio.h>#include<stdlib.h>#include<unistd.h>#include<sys/types.h>int global=1; //设定参数初始值int main(void){int var=2;pid_t pid; //显示各参数值printf("The original values:global=%d,var=%d\n",global,var);if((pid=vfork())<0) //如果进程号小于0,报错{printf("vfork error\n");}else if(pid==0) //如果处于子进程,设定等待时间,修改各参数值,显示进程状态和参数值,返回{sleep(3);global++;var++;printf("In child process\n");printf("pid=%d,global=%d,var=%d\n",getpid(),global,var);printf("child process ended\n");} //如果处于父进程,设定等待时间,修改各参数值,显示进程状态和参数值,返回else{sleep(1);printf("In parent process\n");global++;var++;}printf("pid=%d,global=%d,var=%d\n",getpid(),global,var);printf("parent process ended\n");exit(0);}运行结果如下:若变换等待时间如下:#include<stdio.h>#include<stdlib.h>#include<unistd.h>#include<sys/types.h>int global=1; //设定参数初始值int main(void){int var=2;pid_t pid; //显示各参数值printf("The original values:global=%d,var=%d\n",global,var);if((pid=vfork())<0) //如果进程号小于0,报错{printf("vfork error\n");}else if(pid==0) //如果处于子进程,设定等待时间,修改各参数值,显示进程状态和参数值,返回{global++;var++;printf("In child process\n");printf("pid=%d,global=%d,var=%d\n",getpid(),global,var);printf("child process ended\n");_exit(0);} //如果处于父进程,设定等待时间,修改各参数值,显示进程状态和参数值,返回else{sleep(3;printf("In parent process\n");global++;var++;}printf("pid=%d,global=%d,var=%d\n",getpid(),global,var);printf("parent process ended\n");exit(0);}运行结果如下:3、仿真结果及说明由fork01a和fork01b的两个等待时间情况下的打印结果可以看出,fork对于子进程与父进程执行的先后顺序没有要求,且在父进程先于子进程退出以后,程序无法正常退出,而vfork要求先执行子进程,后执行父进程。

嵌入式实验报告 3 4 部分

嵌入式实验报告  3 4 部分

嵌入式控制系统及应用实验报告学期:2015-2016-1[第组] 嵌入式控制系统及应用实验报告基于ARM Cortex-M3 LPC1788目录实验一熟悉实验环境 (1)实验二嵌入式系统软件设计 (2)实验三矩阵键盘实验 (4)实验四RS-232串行通信实验 (8)实验四RS-232串行通信实验 (13)实验五A/D 转换实验 (16)实验六D/A 转换实验 (19)分数:实验一熟悉实验环境一、实验目的熟悉并掌握Keil μVersion 4开发环境,学会构建ARM Cortex-M3 LPC1788工程,学会使用JLINKv8下载器,编译与调试嵌入式系统软件。

二、实验内容1.熟悉Keil μVersion 4开发环境。

2. 阅读LPC1788芯片数据手册与用户手册,了解LPC1788的GPIO相关寄存器及其功能。

3.编程实现一个LED闪烁实验,使用JLINK下载灯闪烁代码到目标板。

三、实验设备硬件部分:PC计算机(宿主机)、LPC1788实验系统、JLINK仿真器。

软件部分:PC机WINDOWS系统、KEIL MDK μVersion 4软件、JLINK仿真调试驱动程序。

四、实验步骤1.启动PC机,进入keil环境。

2. 创建和打开项目。

3. 源程序编辑4 运行程序,观察并记录实验结果。

分数:实验二嵌入式系统软件设计一、实验目的1.了解实验系统的128*64液晶显示接口电路。

2.掌握LPC1788 GPIO口的使用方法。

3.掌握LPC1788的软件基本框架及设计技术。

二、实验内容1. 阅读128*64液晶显示模块的文档,掌握128*64液晶显示模块的工作原理。

2. 阅读SN74LVC4245A芯片文档,掌握SN74LVC4245A芯片的工作原理。

3. 完成128*64液晶显示模块程序的设计与调试。

三、实验设备硬件部分:PC机(宿主机)、LPC1788实验系统(目标板)、JLINK仿真器。

软件部分:PC机WINDOWS系统、MDK KEIL软件、JLINK仿真调试驱动程序。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一开发环境的搭建与配置【实验目的】1)熟悉嵌入式Linux开发平台。

2)掌握嵌入式Linux开发平台的开发环境搭建与配置。

3)了解minicom配置串口通信参数的过程。

4)了解嵌入式Linux的启动过程。

5)掌握程序交叉编译运行及调试的一般方法。

【实验内容】1)连接实验开发板与宿主机。

2)在虚拟机中的CentOS(宿主机)搭建开发环境。

3)在宿主机中配置minicom。

4)分析嵌入式Linux的启动过程。

5)在宿主机上编写简单的C语言程序并用交叉编译工具进行编译,然后传输到目标机上运行。

6)在宿主机上编写简单的C语言程序并用交叉编译工具进行编译,用gdbserver进行远程调试。

【实验步骤】连接实验开发板,对虚拟机进行设置1)首先把实验开发板打开,用网线和串口线连接宿主机,并连接电源(注意这时不要拨动实验开发板的开关按钮)。

2)在桌面上点击打开vmware 软件,选择“编辑虚拟机设置”,如下图所示:图13)进入虚拟机配置界面后把网络连接方式设置为“桥接方式”,如图2所示:图24)添加串口,如下图所示:图35)完成串口的添加后,选择“OK”,完成对虚拟机的设置。

如下图所示:图46)选择虚拟机的“Edit”、“Virtual Network Editor...”,如下图所示:图57)进入虚拟机网络参数设置界面后对VMnet0进行设置(注意这里桥接的网卡应选择与实验开发板相连接的那块儿网卡),然后点击“Apply”、“OK”如下图所示:图68)上述设置完成后启动CentOS(CentOS的用户名为“root”,密码为“xidianembed”)。

工具链的配置1)在CentOS的根目录下创建一个名为“EELiod”的目录,把实验中要用到的文件(主要是一些rpm包)拷贝到该目录下。

(可以用U盘、WinSCP等工具进行,此处不再做详细说明)。

2)交叉编译工具链位于/opt/buildroot-2011.02/output/host/usr目录下,进入工具链的bin目录下,可以看到一些编译工具,这些工具将会在之后的交叉编译过程中使用到。

图73)为了之后在任何目录下都能够使用上述目录下的命令,必须对系统环境变量PATH进行设置。

这个可以通过修改/etc/profile文件来实现。

在设置之前,先用echo命令查看一下PA TH的当前值,如果已经添加了交叉编译工具链的路径,就不用再修改PATH的值了。

如果要修改,则可以用vi编辑器打开/etc/profile文件。

图84)在/etc/profile文件中export语句之前添加一行“PATH=$PATH:/opt/buildroot-2011.02/output/host/usr/bin”,然后保存并退出该文件。

图95)使用source命令来使路径生效。

图106)使用echo $PA TH查看环境变量PA TH的当前值,看修改是否生效。

7)使用which命令来查看路径是否生效,并查看arm-linux-gcc命令的基本信息以验证此命令是否可用。

图11注意:如果路径没有生效,则可以重启一下CentOS系统,再使用which命令来查看路径是否生效。

该交叉编译工具链的版本为4.2.4。

tftp的安装1)进入/root/EELiod/rpm目录下。

图122)安装tftp协议并设置tftp协议的配置文件(这里只用把配置好的文件替换默认配置文件就行了)。

图13如果在安装tftp时有“error:Failed dependencies”的错误提示,请先安装“xinetd-2.3.14-16.e15.i386.rpm”,然后再安装tftp。

3)用cat命令查看tftp的配置文件。

图144)在根目录下创建tftpboot文件夹,作为tftp服务器端的默认根目录(对应于配置文件中的“server_args”字段),用户可以把需要向实验开发板传输的文件放到“/tftpboot”目录下。

图155)重新执行xinetd守护进程,使配置生效。

图16 进入minicom软件,配置串口通信参数1)在终端中输入minicom –s,进入minicom配置界面。

图17在如下图当中,选择Serial Port Setup 菜单选项,进行串口配置。

图18有关串口通信选项的含义:"Filenames and paths":选择需要传输的文件和路径"File transfer protocols":选择传输文件的通信协议"Serial port setup":设置串口通信参数"Save setup as dfl":将设置好的各项参数保存为dfl"Save setup as":将设置好的各项参数保存为自定义的文件名"Exit":退出返回到minicom设置好后的终端"Exit from Minicom":从minicom命令中退出返回Linux终端将光标移到"Serial port setup",按回车键会弹出串口通信参数的配置菜单。

2)串口通信口的选择:(A - Serial Device)按"A"键把光标移动到Serial Device。

如果串口线连在PC机的串口1上,则把Serial device设置为/dev/ttyS0。

如果连在串口2上,则把Serial device设置为/dev/ttyS1,然后按下回车键。

图193)串口参数的设置(E - Bps/Par/Bits)按"E"键来设置通信波特率、数据位、奇偶校验位和停止位(可以通过按下不同的键来设置通信参数)。

分别按"I"、"V"、"L"、"W"键把波特率设为115200,数据位设为8,奇偶校验位设为无,停止位设为1。

设置完后按"Esc"。

图204)数据流的控制选择(F - Hardware Flow Control、G - Software Flow Control)按"F"键可以完成硬件流控制切换,即完成"Yes"与"No"之间的切换。

按"G"键完成软件流控制切换,即完成"Yes"与"No"之间的切换。

下图显示的是串口配置好的后完整信息。

图21 5)配置完成后,按下“Esc”键,将会出现下图的配置菜单。

选择“Save setup as dfl”按ENTER键来保存,当配置保存后,按下“Esc”键完成设置。

图226)配置完成后单击“Esc”退出配置界面,进入minicom的初始界面,如下图所示:图23实验开发板的启动1)拨动实验开发板的电源开关,启动目标板。

图24注意在启动的过程中可能出现如下提示信息,这些信息不影响系统的启动。

图252)当启动停止后直接按“Enter”即可进入系统。

图26嵌入式Linux系统的启动过程分析1)启动BootloaderBootloader是嵌入式系统的引导加载程序,它是系统上电后运行的第一段程序,其作用类似于PC 机上的BIOS。

在本系统中这段程序的起始地址为0x00000000。

Bootloader在完成初始化RAM、初始化串口、检测处理器类型、设置Linux启动参数后,开始调用Linux内核。

本系统Linux内核镜像zImage 放在Flash中,Bootloader首先把它拷贝到RAM中,然后跳转到RAM中对zImage进行解压缩。

解压缩后启动内核。

2)加载内核内核启动后先进行一系列与内核相关的初始化,然后调用第一个用户进程——init进程并等待用户进程的执行。

具体的过程如下:进行与体系结构相关的第一个初始化工作,首先通过检测出来的处理器类型进行处理器内核的初始化,然后进行内存结构的初始化,最后开启MMU,创建内核页表,映射所有的物理内存和IO空间;创建异常向量表和初始化中断处理函数;初始化系统核心进程调度器和时钟中断处理机制;初始化串口控制台,在minicom中看到的系统启动过程中的信息都是通过串口输出的;创建和初始化系统cache,为各种内存调用机制提供缓存,包括动态内存分配、虚拟文件系统及页缓存;初始化内存管理,检测内存大小及被内核占用的内存情况;初始化系统的进程间通信机制(IPC);创建init进程,结束内核的启动。

3)执行init进程。

内核被加载后,第一个运行的程序便是/sbin/init,init进程是所有进程的发起者和控制者,它的进程号是1。

init进程首先读取/etc/inittab文件,并依据此文件来进行初始化工作(首先进行一系列的硬件初始化,然后通过命令行传递过来的参数挂载根文件系统。

最后执行一些其它的进程)。

下面是/etc/inittab文件的内容。

图27init配置文件每行的基本格式为“id:runlevel_ignored:action:process”,其中某些部分可以为空。

各部分的具体内容如下:id:指定启动进程的控制终端,如果所启动的进程并不是可以交互的shell,应该会有个控制终端(在PC机上该字段表示配置行的惟一标识)。

runlevel_ignored:该字段是忽略掉的,配置inittab时空着它就行了(在PC机上该字段用来配置所启动进程适用的系统运行级别)。

action:下面是对几种行为的描述。

行为描述sysinit 为init提供初始化命令脚本的路径respawn 每当相应的进程终止时,重新启动该进程。

askfirst 类似respawn,主要用途是减少系统上执行的终端应用程序的数量。

它将会促使init在控制台上显示“Please press Enter to activethis console”的信息,并在重新启动之前等待用户按下“Enter”键ctrlaltdel 当用户按下【Ctrl+Alt+Del】时执行相应的进程shutdown 当系统关机时,执行相应的进程process:process为init执行的进程。

4)执行/bin/login程序。

有些嵌入式系统在init进程执行完后会执行/bin/login。

login程序会提示使用者输入账号及密码,接着编码并确认密码的正确性,如果账号与密码相符,则为使用者初始化环境,并将控制权交给shell,即等待用户登录。

本系统在执行完init进程后直接开始执行/bin/sh,进入shell交互程序(跳过了执行/bin/login这一步)。

这个可以通过图27中的语句“ttyS0::askfirst:-bin/sh”来说明。

相关文档
最新文档