数值分析(13)Hermite插值

合集下载

课程设计---Hermite 插值法的程序设计及应用

课程设计---Hermite 插值法的程序设计及应用

课程设计说明书题目:Hermite 插值法的程序设计及应用学生姓名:学院:班级:指导教师:2012年 1月 5日摘要Hermite 插值是数值分析中的一个重要内容,在相同的节点下得到比拉格朗日插值更高次的插值多项式,而且,相应的曲线在部分节点处也更光滑.在我们所学课程中,只给出了当所有节点处一阶导数均已知时的Hermite 插值.但在实际应用中,并不是所有节点处的一阶导数都是已知的.为此,通过查阅文献、学习总结,给出了更具一般性的Hermite 插值公式.已有的Hermite 插值公式成为本文所得结果的一个特例.本次课程设计,对Hermite 插值法进行了总结,包括Hermit插值法的理论推导,不同情形下的例,以及在解决实际问题中的应用.同时也给出了Hermite插值公式的Matlab算法.关键词Hermite 插值;Matlab 实现;数值分析引言 (1)第一章 Hermite插值 (2)§1.1 Hermite插值的概念 (2)§1.2 Hermite插值简单情形 (3)§1.2.1简单情形解的存在性 (3)§1.2.2 简单情形解的存在唯一性 (5)§1.2.3插值余项 (5)§1.3 Hermite插值其他情形................................ . (5)第二章 Hermite插值的Matlab实现 (9)§2.1 导数完全情形Hermite插值的Matlab实现................... ..9 §2.2导数不完全情形Hermite插值的Matlab实现.. (10)§2.3 Hermite插值在实际问题中的应用 (13)参考文献 (15)附录A (16)附录B (17)附录C (19)在实际工作中, 人们得到的一些数据通常是一些不连续的点, 在土木工程、流体力学、经济学和空气动力学等学科中经常要遇到这样的问题. 此时, 这些数据如果不加以处理, 就难以发现其内在的规律性. 如果用户想得到这些分散点外的其他数值, 就必须运用这些已知的点进行插值.因此,对近似公式的构造产生了插值问题.在实际问题中,两个变量的关系)(x f y =经常要靠实验和观测来获得,而在通常的情况下只能得到)(x f 在有限个点上的值.,,1,0),(n i x f y i ==人们希望找到)(x f 的一个近似函数)(x y φ=,使得i i y x =)(φ,.,,1,0n i = ○1 此时,)(x f 称为被插值函数,点n i x x x ,,,0 称为插值结点,)(x φ称为插值函数,○1为插值条件. 常用的插值法有Lagrange 插值、Newton 插值、最近邻插值、Hermite 插值和三次样条插值插值法等. Lagrange 插值在向量X 区域内的插值较准确, 但向量X 区域之外则不太准确.Newton 插值仅适用于等距节点下的牛顿向前(后) 插值. 最近邻插值是最简便的插值, 在这种算法中, 每一个插值输出像素的值就是在输入图像中与其最临近的采样点的值, 当图像中包含像素之间灰度级变化的细微结构时, 最近邻插值法会在图像中产生人工的痕迹. 最近邻插值的特点是简单、快速, 缺点是误差较大; 三次样条插值一阶和二阶连续可导, 插值曲线光滑, 插值效果比较好, 应用较广Newton 插值和Lagrange 插值虽然构造比较简单,但都存在插值曲线在节点处有尖点、不光滑、插值多项式在节点处不可导等缺点.为了保证插值多项式)(x p n 能更好地逼近)(x f , 对)(x p n 增加一些约束条件, 例如要求)(x p n 在某些结点处与)(x f 的微商相等, 这样就产生了切触插值问题.切触插值即为Hermite 插值.它与被插函数一般有更高的密合度.本课程设计主要对Hermite 插值法进行总结,对其一般情况,特殊情况进行更进一步的学习,尽量实现其在Matlab 及C++上的程序运行.第一章 Hermite 插值实际问题中应用较广为Newton 插值和Lagrange 插值,虽然这辆种插值法构造比较简单, 但都存在插值曲线在节点处有尖点、不光滑、插值多项式在节点处不可导等缺点.为了克这些缺点,我们引入了Hermite 插值.§1.1 Hermite 插值的概念定义1.1 许多实际插值问题中,为使插值函数能更好地和原来的函数重合,不但要求二者在节点上函数值相等,而且还要求相切,对应的导数值也相等,甚至要求高阶导数也相等.这类插值称作切触插值,或埃尔米特(Hermite)插值.该定义给出了Hermite 插值的概念,由此得出Hermite 插值的几何意义,如图1.1.定义1.2 满足上述要求的插值多项式是埃尔米特插值多项式.记为H (x ). 定义1.3 求一个次数不大于1++r n 的代数多项式 H(x) ,满足:).(,,2,1),()(.,,2,1),()(n r r i x f x H n i x f x H i i i i ≤='='== (1-1) 则(1-1)为Hermite 插值条件.定义1.4 令 ),(22y x ),(33y x ),(44y x),(11y x),(00y x xy图1.1 Hermite 插值多项式的几何意义含义.)()()()()(00∑∑=='+=rk k k n k k k x f x x f x x H βα (1-2)其中,),,1,0)(x (),,1,0)((k n k n k x k ==βα和都是1++r n 次待定多项式并且它们满足如下条件:⎩⎨⎧=01)(i k x α k i k i ≠= .,,1,0,n k i = .,,1,0,,,1,0,0)('r i n k x i k ===α⎩⎨⎧='01)(i k x β k i k i ≠= .,,1,0,r k i = .,,1,0,,,1,0,0)(n i r k x i k ===β称(1-2)为Hermite 插值公式.解决Hermite 插值问题,就是在给定结点处函数值与导数值的基础上根据插值公式构造Hermite 插值多项式,并根据已知条件解出多项式系数.§1.2 Hermite 插值简单情形已知函数表: x0x 1x 2x … m x … n x )(x f0y 1y 2y … m y … n y )(x f ' 0'y 1'y 2'y … m y ' … n y '求一个插值多项式,使其满足条件数表.由于数表中包含22+n 个条件,所以能够确定次数不大于12+n 的代数多项式 )(12x H n +.此情形为导数个数与函数值个数相等的情形,即 Hermite 插值问题的最简单也是最常用情形.1.2.1简单情形解的存在性由于Hermite 插值公式(1-2)已给出,接下来只需构造出)(x k α及)(x k β,即认为其存在.在此简介Lagrange-Hermite 插值法构造插值多项式.Step1 构造)(x k α(n k ,,1,0 =)由条件)(0)(')(k i x x i k i k ≠==αα知),,,1,0(k i r i x i ≠= 是)(x k α的二重零点.已知Lagrange 插值基函数)(x l k 是n 次多项式,且具有性质⎩⎨⎧=≠==i k i k x l ki i k ,1,0)(δ, 则2n 次多项式[]2)(x k k 也具有性质[]ki i k x l δ=2)(,而[]2)(x l k 的一阶导数在)(k i x i ≠处的值[]()0)()(2)(2='='i k i k i k x l x l x l 所以当k i ≠时,i x 也都是[]2)(x k k的两重零点.注意到)(x h k 是12+n 次多项式,而[]2)(x l k 是n 2次多项式,因此可设),,2,1,0)(()()(2n k x l b ax x k k =+=α其中b a ,为待定常数.显然k i ≠时满足0)(')(==i k i k x x αα,现只要求出b a ,满足k i =时,满足0)(',1)(==k k k k x x αα即可.由此得到确定b a ,的两个方程:)(2)())(()(2)(1)()()()(22=+'=++'='=+=+=a x l x al b ax x l x l x b ax x l b ax x k k k k k k k k k k k k k k k k k αα解出 k k kk k x x l b x l a ⋅'+='-=)(21)(2 于是[])())((21)(2x l x x x l x k k k kk -'-=α. Step2 构造)(x k β ),,1,0(n k =由条件)(0)(')(k i x x i k i k ≠==ββ知),,,1,0(k i r i x i ≠= 是)(x k β的二重零点.因此可设)(x k β也含因子)(2x l k ,又0)(=k k x β,所以)(x k β还含有因式)(k x x -,因此设)()()(2x l x x A x k k k -=β,其中A 为待定常数.显然)(x k β是12+n 次多项式,且当k i ≠时满足0)(')(==i k i k x x αα,由,1)(='k kx β可确定A 如下: 1)()(2)()()(2=='⋅⋅-+='A x l x l x x A x Al x k kk k k k k k k β所以 )()()(2x l x x x k k k -=β.到此为止,Hermite 插值问题的解)(12x H n +为[],)()()())((21)(2020k k nk k k kn k k k k f x l x x f x l x x x l x H '-+-'-=∑∑== 特别地,当=n 1时,满足113003113003)(,)(,)(,)(y x H y x H y x H y x H '=''='==的三阶Hermite 插值多项式为+⎪⎪⎭⎫ ⎝⎛--⎥⎦⎤⎢⎣⎡'-+⎪⎪⎭⎫ ⎝⎛--+=21010000103)(21)(x x x x y x x y x x x x x H 2010111101)(21⎪⎪⎭⎫ ⎝⎛--⎥⎦⎤⎢⎣⎡'-+⎪⎪⎭⎫ ⎝⎛--+x x x x y x x y x x x x .§1.2.2 简单情形解的存在唯一性为了简便理解,下面用流程图来说明解的存在唯一性.详见附录A.§1.2.3 插值余项定理 1.1 设)(x f 在包含1+n 个插值结点的最小区间[b a ,]上22+n 次连续可微,则存在与x 有关的ξ,b a <<ξ,使得),()!22()()()(222x w n f x H x f n +=-+ξ 其中∏=-=n0j )()(j x x x w .由此可得到三阶Hermite 插值多项式的误差为:,)()(!4)()()()(212043x x x x f x H x f x R --=-=ξ ξ在0x 与1x 之间.§1.3 Hermite 插值其他情形已知函数表:x 0x1x … m x … n x y0y 1y … m y … n yy ' 0y ' 1y ' … m y '求一个插值多项式,使其满足条件数表.该问题中,导数个数与函数值个数不相等.我们称之为Hermite 插值中其他情形.在此简介Newton-Hermite 插值法构造插值多项式.先分析插值条件的个数:2++m n 个,那么,所构造的多项式的次数一般不能超1++m n .于是,按牛顿差值的思想,可设);())(()(),()()()(1011n n n m n x x x x x x x x x P x N x H ---=+=++ ωω其中,)(x N n 为n 次牛顿差值多项式;)(x P m 为待定的次数不超过m 次的多项式. 显然:n i x f x N x H i i n i ,,2,1,0),()()( ===为确定)(x P m ,对)(x H 求导:)()()()()()(11x x P x x P x N x H n m n m n++'+'+'='ωω 根据插值条件)()(i i x f x H '=',有)()()()()()()()()(111i n i m i ni n i m i n i m i n i x x P x N x x P x x P x N x H +++'+'='+'+'='ωωω 得到m i x x N x f x P i ni n i i m ,,2,1,0,)()()()(1 =''-'=+ω 于是,把求)(x P m 的问题转化为又一个插值问题已知)(x P m 的函数表 x1x 2x … m x )(x P m )(1x P m )(2x P m … )(m m x P确定一个次数不超过m 的插值多项式)(x L m ,使其满足)()(i m i m x P x L =. 根据牛顿差值公式.)())(](,,[)](,[)()(10000100----++-+=m m m m m m x x x x x x x x P x x x x P x P x P将上式带回,即得到满足条件;,,2,1,0),()(;,,2,1,0),()(m k x f x H n k x f x H k k k k ='='==的Newton-Hermite 插值多项式.例1.1 已知函数表: x 0x1x y 0y1y y ' 0'y求一个插值多项式H (x ),使其满足条件:),()(),()(),()(001100x f x H x f x H x f x H '='==该问题中,导数个数与函数值个数不相等.我们称之为Hermite 插值中其他情形.在此简介Newton-Hermite 插值法构造插值多项式.先由函数表xx 0 x 1 yy 0 y 1作线性插值,即为 []()01001,)()(x x x x f x f x P -+= 再注意到H (x )与P 1 (x )在节点x 0, x 1上函数值相同,即:11110010)()()()(y x P x H y x P x H ====于是,它们的差可以设为 ))(()()(101x x x x K x P x H --=-其中K 为待定常数,上式又可记为:))(()()(101x x x x K x P x H --+= (1-3)为确定K ,对上式求导:)()()(101x x x x K x P x H -+-+'='令x = x 0,代入上式,并且注意到插值条件00)(y x H '='得: []010*******)(,)()()(y x x K x x f x x K x P x H '=-+=-+'='于是有[]01010x x y x x f K -'--=将上式代入(1-3)得[]))(()()(10010101x x x x x x y x x f x P x H ---'--+=[][]))(()(,)(10010100100x x x x x x y x x f x x x x f x f ---'--+-+= (1-4)可以验证(1-4)所确定的H (x )确实满足插值条件(1-1).同时也可以看到,构造牛顿——埃米尔特插值多项式,完全采用牛顿插值的构造思想.最后,也可以把(1-4)式整理成拉格朗日形式:1001112010001101010)()(y x x xx x x y xx x x y xx x x x x x x x x x H '-⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎭⎫ ⎝⎛----+-=插值余项为()()120)3(2!3)()(x x x x f X R --=ξ, ξ在0x 与1x 之间.第二章 Hermite 插值的Matlab 实现§2.1 导数完全情形Hermite 插值的Matlab 实现在实际应用中,应用最广也是最简单的Hermite 插值情形即为导数完全的情况下,Hermite 插值多项式的拟合.我们首先讨论该情形下的Matlab 程序.在给出程序之前,我们首先给出该公式所应用的Hermite 插值公式. 定理2.1 设在节点b x x x a n ≤<<≤≤ 21上,,)(,)(j j j j y x f y x f '='=,其中n j ≤≤1,则函数)(x f 在结点处n x x x ,,,21 处的Hermite 插值多项式为∑=+--=ni i i i i i i y y y a x x h x y 1])2)([()(其中 ∑∏≠=≠=-=--=nij j ji i nij j ji j i x x a x x x x h 1211;)(.该定理的证明详见文献.该情形下对应的Matlab 程序及流程图详见附录B . 为验证该程序的正确性与有效性,下面给出例2.1. 例2.1 设有如下数据表:x0 0.5 1 1.5 2 2.5 3 3.5)sin(x y = 0 0.4794 0.8145 0.9975 0.9093 0.5985 0.1411 -0.3508 )cos(x y =' 1 0.8776 0.5403 0.0707 -0.4161 -0.8011 -0.9900 -0.9365在Matlab 工作台输入如下命令:>> x0=[0,0.5,1,1.5,2,2.5,3,3.5];y0=[0,0.4794,0.8415,0.9975,0.9093,0.5985,0.1411,- 0.3508]; y1=[1,0.8776,0.5403,0.0707,-0.4161,-0.8011,-0.9900,-0.9365]; x=x0;y=hermite(x0,y0,y1,x); yplot(x,y) y2=sin(x); hold onplot(x,y2,'*r') 则输出结点处的插值:y =0 0.4794 0.8415 0.9975 0.9093 0.5985 0.1411 -0.3508)sin(x y =的Hermite 插值多项式的拟合图像如图:§2.2导数不完全情形Hermite 插值的Matlab 实现在实际应用中,并不是所有节点处的一阶导数都是已知的,为此,我们给出了更具一般性的Hermite 插值公式及其算法实现,已有的Hermite 插值公式成为本文所得结果的一个特例.在此首先给出求解Hermite 插值问题的一般性公式。

数值分析(13)Hermite插值

数值分析(13)Hermite插值
Hermite插值中,最基本而重要的情形是只要求 一阶导数的条件。给出n 1个互异节点x0 , x1 , xn上 的函数值和导数值 yi f ( xi )和y 'i f '( xi ) ( i 0,1, 2, , n) 构造不低于2n 1次插值多项式H 2 n 1 ( x ),要求满足 插值条件 H 2 n 1 ( x i ) yi i 0, 1, 2, n H '2 n1 ( xi ) y 'ii 0 i 源自0 i 0 n i 0 nn
n
利用Lagrange插值基函数li ( x ) (
j 0 ( ji )
1)构造hi ( x )( i 0,1, 2, , n) hi ( x )应满足条件: (1)hi ( x )应是 2n 1次多项式; 1 i j (2)hi ( x j ) ij i j 0 h 'i ( x j ) 0 ( i,j 0, 1, 2, ,n)
由条件(2)可列出方程组 2 h ( x ) ( ax b ) l i i i i ( xi ) 1 h' ( x ) al 2 ( x ) 2(ax b)l ( x )l ' ( x ) 0 i i i i i i i i i
li ( xi ) 1, axi b 1, a 2l ( xi ) 0
二、Hermite插值多项式的构造
1、Lagrange型插值基函数法 设Hermite插值多项式为 H 2 n1 ( x ) hi ( x ) yi hi ( x ) y 'i
i 0 i 0 n n
使其满足插值条件 H 2 n 1 ( x i ) yi H '2 n1 ( xi ) y 'i

数值分析Hermite

数值分析Hermite
求一次数x0xixn431hermitehermite插值问题的提出三次hermite插值基函数构造法满足插值条件的牛顿插值法误差估计2n1次hermite插值多项式hermite插值问题的提出由于理论与实践的需要在构造插值函数时不但要求在节点上函数值相等而且还要求它的高阶导数值也相等即要求在节点上具有一定的光滑度使得插值函数与被插函数贴近程度更好满足这种要求的插值多项式就是hermite项式有时也称为具有重节点插值或切触插值
由(2.3)可设
0 x x x1 a x x0 b ,
2
再由(2.2)可求得
b 1
x1 x0
2
, a
2
x1 x0
பைடு நூலகம்
3
x x1 x x0 0 x 1 2 x1 x0 x0 x1
4!
3. 2n+1 次Hermite 插值多项式
给定n+1个节点和相应的函数值和导数值:
f xi yi , yi f xi mi , i 0,1,, n
则可构造2n+1 次Hermite 插值多项式H x 满足条件:
H 1) x 是不超过2n+1 次多项式; H 2) xi yi , H xi mi , i 0,1,, n
2
2
f , x0 , x1 4!
4
于是有下述定理
定理:设 H3 x 是以 x0 , x1 为插值节点的三次 f x C 3 a, b , f 4 x 在 a, b Hermite 插值多项式, 内存在,其中 a, b 是包含 x0 , x1 的任一区 间,则对任意给定的 x a, b ,总存在依赖 于 x 的点 a, b ,使 4 f 2 2 R3 x f x H 3 x x x0 x x1 .

埃尔米特(Hermite)插值

埃尔米特(Hermite)插值

实验二埃尔米特(Hermite)插值一、实验目的:1.掌握埃尔米特插值算法原理;2.使用C语言编程实现埃尔米特插值算法。

二、实验准备:阅读《数值分析》2.4节二、实验要求:某人从甲地开车去乙地,每隔一段时间对行车距离和速率进行一次采样,得到在n+1 个采样时刻点t i 的里程s i和速率v i(i=0, 1, ..., n)。

要求编程构造埃尔米特插值多项式H2n+1(t),满足H2n+1(t i)=s i,H'2n+1(t i)=v i,对所有i=0, 1, ..., n成立,并据此计算m个给定时刻的里程和速率。

函数接口定义:void Hermite_Interpolation( int N, double t[], double s[], double v[], int m, double ht[], double hs[], double hv[] );其中N为采样点个数(注意这个N不是公式中的最大下标n,而是等于n+1),采样时刻点t i、里程s i、速率v i分别通过t、s、v传入;m是需要估算的给定时刻的个数,ht传入给定的时刻点,相应计算出的里程和速率应分别存储在hs和hv中。

裁判程序如下:裁判输入数据:20.0 1.00.0 1.00.0 0.050.0 0.2 0.5 0.8 1.030.0 0.5 1.0100.0 170.0 200.030.0 150.0 0.050.0 0.25 0.5 0.75 1.050.0 1.0 2.0 3.0 4.00.0 60.0 160.0 260.0 300.05.0 70.0 100.0 120.0 20.0100.5 1.0 1.5 2.0 2.5 3.0 3.5 3.8 3.95 4.0标准输出数据:0.0000 0.1040 0.5000 0.8960 1.00000.0000 0.9600 1.5000 0.9600 0.0000100.0000 127.9297 170.0000 195.9766 200.000030.0000 165.4688 150.0000 52.9688 0.000030.2222 60.0000 105.9303 160.0000 206.3438 260.0000 307.9764 305.7687 299.9796 300.000062.6024 70.0000 109.0488 100.0000 92.9745 120.0000 41.2374 -44.8421 -16.2783 20.0000#include<stdio.h>#define MAXN 5 /* 最大采样点个数 */#define MAXM 10 /* 最大估算点个数 */void Hermite_Interpolation( int N, double t[], double s[], double v[], int m, double ht[], double hs[], double hv[] ){double l[10],p[10],h1[10],h2[10],x,ll[10],pp[10];int kk;for(kk=0;kk<m;kk++){x=ht[kk];hs[kk]=0;hv[kk]=0;int i;for(i=0;i<N;i++){l[i]=1;ll[i]=1;int j;for(j=0;j<N;j++){if(i!=j){l[i]=l[i]*(x-t[j])/(t[i]-t[j]);}}p[i]=0;pp[i]=0;int k;for(k=0;k<N;k++){if(i!=k){p[i]=p[i]+l[i]/(x-t[k]);pp[i]=pp[i]+ll[i]/(t[i]-t[k]);}}h1[i]=(1-2*pp[i]*(x-t[i]))*l[i]*l[i];h2[i]=(x-t[i])*l[i]*l[i];hs[kk]=hs[kk]+s[i]*h1[i]+v[i]*h2[i];int kkk;for(kkk=0;kkk<N;kkk++){if(x==t[kkk])break;}if(x==t[kkk])hv[kk]=v[kkk];elsehv[kk]=hv[kk]+s[i]*(2*p[i]*l[i]-4*l[i]*p[i]*(x-t[i])*pp[i]-2*pp[i]*l[ i]*l[i])+v[i]*(l[i]*l[i]+2*l[i]*p[i]*(x-t[i]));}}}int main(){int N, m;double t[MAXN], s[MAXN], v[MAXN]; /* 用于构造的数据 */double ht[MAXM], hs[MAXM], hv[MAXM]; /* 用估算的数据 */int i;while ( scanf("%d", &N) != EOF ) {for ( i=0; i<N; i++ )scanf("%lf", &t[i]);for ( i=0; i<N; i++ )scanf("%lf", &s[i]);for ( i=0; i<N; i++ )scanf("%lf", &v[i]);scanf("%d", &m);for ( i=0; i<m; i++ )scanf("%lf", &ht[i]);Hermite_Interpolation( N, t, s, v, m, ht, hs, hv );for ( i=0; i<m; i++ )printf("%.4lf ", hs[i]);printf("\n");for ( i=0; i<m; i++ )printf("%.4lf ", hv[i]);printf("\n\n");}return 0; }。

埃尔米特(Hermite)插值

埃尔米特(Hermite)插值

实验二埃尔米特(Hermite)插值一、实验目的:1.掌握埃尔米特插值算法原理;2.使用C语言编程实现埃尔米特插值算法。

二、实验准备:阅读《数值分析》2.4节二、实验要求:某人从甲地开车去乙地,每隔一段时间对行车距离和速率进行一次采样,得到在n+1 个采样时刻点t i 的里程s i和速率v i(i=0, 1, ..., n)。

要求编程构造埃尔米特插值多项式H2n+1(t),满足H2n+1(t i)=s i,H'2n+1(t i)=v i,对所有i=0, 1, ..., n成立,并据此计算m个给定时刻的里程和速率。

函数接口定义:void Hermite_Interpolation( int N, double t[], double s[], double v[], int m, double ht[], double hs[], double hv[] );其中N为采样点个数(注意这个N不是公式中的最大下标n,而是等于n+1),采样时刻点t i、里程s i、速率v i分别通过t、s、v传入;m是需要估算的给定时刻的个数,ht传入给定的时刻点,相应计算出的里程和速率应分别存储在hs和hv中。

裁判程序如下:裁判输入数据:20.0 1.00.0 1.00.0 0.050.0 0.2 0.5 0.8 1.030.0 0.5 1.0100.0 170.0 200.030.0 150.0 0.050.0 0.25 0.5 0.75 1.050.0 1.0 2.0 3.0 4.00.0 60.0 160.0 260.0 300.05.0 70.0 100.0 120.0 20.0100.5 1.0 1.5 2.0 2.5 3.0 3.5 3.8 3.95 4.0标准输出数据:0.0000 0.1040 0.5000 0.8960 1.00000.0000 0.9600 1.5000 0.9600 0.0000100.0000 127.9297 170.0000 195.9766 200.000030.0000 165.4688 150.0000 52.9688 0.000030.2222 60.0000 105.9303 160.0000 206.3438 260.0000 307.9764 305.7687 299.9796 300.000062.6024 70.0000 109.0488 100.0000 92.9745 120.0000 41.2374 -44.8421 -16.2783 20.0000#include<stdio.h>#define MAXN 5 /* 最大采样点个数 */#define MAXM 10 /* 最大估算点个数 */void Hermite_Interpolation( int N, double t[], double s[], double v[], int m, double ht[], double hs[], double hv[] ){double l[10],p[10],h1[10],h2[10],x,ll[10],pp[10];int kk;for(kk=0;kk<m;kk++){x=ht[kk];hs[kk]=0;hv[kk]=0;int i;for(i=0;i<N;i++){l[i]=1;ll[i]=1;int j;for(j=0;j<N;j++){if(i!=j){l[i]=l[i]*(x-t[j])/(t[i]-t[j]);}}p[i]=0;pp[i]=0;int k;for(k=0;k<N;k++){if(i!=k){p[i]=p[i]+l[i]/(x-t[k]);pp[i]=pp[i]+ll[i]/(t[i]-t[k]);}}h1[i]=(1-2*pp[i]*(x-t[i]))*l[i]*l[i];h2[i]=(x-t[i])*l[i]*l[i];hs[kk]=hs[kk]+s[i]*h1[i]+v[i]*h2[i];int kkk;for(kkk=0;kkk<N;kkk++){if(x==t[kkk])break;}if(x==t[kkk])hv[kk]=v[kkk];elsehv[kk]=hv[kk]+s[i]*(2*p[i]*l[i]-4*l[i]*p[i]*(x-t[i])*pp[i]-2*pp[i]*l[ i]*l[i])+v[i]*(l[i]*l[i]+2*l[i]*p[i]*(x-t[i]));}}}int main(){int N, m;double t[MAXN], s[MAXN], v[MAXN]; /* 用于构造的数据 */double ht[MAXM], hs[MAXM], hv[MAXM]; /* 用估算的数据 */int i;while ( scanf("%d", &N) != EOF ) {for ( i=0; i<N; i++ )scanf("%lf", &t[i]);for ( i=0; i<N; i++ )scanf("%lf", &s[i]);for ( i=0; i<N; i++ )scanf("%lf", &v[i]);scanf("%d", &m);for ( i=0; i<m; i++ )scanf("%lf", &ht[i]);Hermite_Interpolation( N, t, s, v, m, ht, hs, hv );for ( i=0; i<m; i++ )printf("%.4lf ", hs[i]);printf("\n");for ( i=0; i<m; i++ )printf("%.4lf ", hv[i]);printf("\n\n");}return 0; }。

埃尔米特插值

埃尔米特插值

即:x x j ( j i)是i (x)的二重根
因为i (x)得次数是2n 1
n
则:i (x) (ax b) (x x j )2 j0 ji
a和b由以下两式确定:
i (xi ) 1 i(xi ) 0
ii((xxj
) 0,j j ) 0,j
A 59 , 360
B 161 360
例5:给定如下数据表,求次数不高于3 次的代数多项式。
xi f(xi)
f (xi )
f ( xi )
x0 f(x0)
f ( x0 )
f (x0 )
x1 f(x1)
提示 H3 (x) H2 (x) A(x x0 )2 (x x1)
又:H

2
(0)

0
则:c 1
则:R2 (x) x(x 1)
则:H2 (x) L1(x) R2 (x) x2
再增加:
xi
1
yi
1
求 : H3(x),其中H3(x)满足:
xi
01
f(xi) 0
1
f (xi )
0
1
:H3(x) = H2 (x) + R3(x)
R3(0) = 0 其中:R3(1) = 0
例6:给定如下数据表,求首项系数为1 的4次的代数多项式。
xi
ab
f(xi) 0
f (xi )
0
0
f ( xi ) 0
提示 H3(x) H2 (x) c(x a)3
H2 (x) 0
xi
ab
f(xi) 0
f (xi )
0
0
f ( xi ) 0

第一章 第三节 Hermite插值

第一章 第三节 Hermite插值

内至少有一个零点,即存在 a, b ,使
F
2 n+2
0

f
2 n+ 2
x 2n + 2 ! 0
f
于是
x
2 n + 2 !
2 n+2
将它代入表达式4.9,便得到 Hermite 插值余项。综合以上, 有 定理 2
(4.1)
类似于Lagrange插值多项式的构造法,可以设想H(x) 具有如下形式:
H ( x) Ai ( x) yi + Bi ( x) yi'
j 0 j 0
n
n
(4.2)
其中 Aj ( x), B j ( x) 都是2n + 1次多项式,且满足条件
Aj ( xi ) ij , A'j ( xi ) 0 B j ( xi ) 0, B 'j ( xi ) ij
可以证明,三次 Hermite 插值多项式的余项为
R x f x H3 x f
4

24
x x0 x x1
2
2
例 2、求作二次式H 2 x ,使满足
H 2 x0 y0 , H 2 x0 y0 , H 2 x1 y1 ,
n
l 2 x y j j
+ x x j l 2 x y j j
n j 0
可知,
x x0 x x1 A0 x 1 2 x0 x1 x0 x1
2
若记 x1 x0 h, 则
x x0 x x0 A0 x 1 1 + 2 h h

5.2Hermite插值

5.2Hermite插值

二、Hermite插值问题(带导数条件的代数插值问题)
三、Hermite插值问题的存在唯一性
证明
第一步:存在性
构造:pn ( xi ) f ( xi ), i 0,1,2,, n 令: H mn1 ( x) pn ( x) qm ( x)n1 ( x)
H mn1 ( xi ) yi
j ( x), j ( x), j 0,1,2,, n 的推导留为作业:
参考:任玉杰,6.4
例:求满足条件:
f x0 , y1 f x1 , y1 f x1 y0 f x0 , y0
的三次Hermite插值多项式 H 3 ( x) 。
0 ( x) y1 1 ( x) H3 ( x) y00 ( x) y11 ( x) y0
H 2 n1 x y j j x yj j x .
j 0 n
n 1 2 j x 1 2 x x j l j x. k 0 x j xk k j
5.2 Hermite插值
一 、Hermite插值的概念 二、Hermite插值问题 三、Hermite插值问题的存在唯一性 四、Hermite插值多项式的构造 五、Hermite插值问题余项 六、分段Hermite插值 (介绍。任玉杰,自学)
六、分段Hermite插值
(1)定义 设 f ( x)是区间[a, b]上的函数,给定节点
则称 I h ( x) f ( x)的分段Hermite插值函数。其几何意义就是将
插值节点用分段曲线连接起来逼近 f ( x)。
Y=sinx的分段线性插值 Y=sinx的分段Hermite插值

数值分析实验报告Hermite插值法、Runge现象,比较Language插值、分段线性插值、分段三次Hermie插值

数值分析实验报告Hermite插值法、Runge现象,比较Language插值、分段线性插值、分段三次Hermie插值

山东师范大学数学科学学院实验报告x 0.1 0.5 1 1.5 2 2.5 3y 0.95 0.84 0.86 1.06 1.5 0.72 1.9y' 1 1.5 2 2.5 3 3.5 4求质点在时刻1.8时的速度,并画出插值多项式的图像。

1)运用Hermite插值法画出图像,如图4-1,并求质点在时刻1.8时的速度。

>>clear>>clc>>X=[0.1 0.5 1 1.5 2 2.5 3;0.95 0.84 0.86 1.06 1.5 0.72 1.9;1 1.5 2 2.5 3 3.5 4];>> x=0.1:0.01:3;>> H=Hermite1(X,x);>> plot(x,H)>> hold on>> plot(X(1,:),X(2,:),'r*')>> H1_8=Hermite(X,1.8);>> plot(1.8,H1_8,'go')>> legend('插值图像','原始点','目标点');图4-1二、验证高次插值的Runge现象问题分析和算法设计(一)Language插值代码function [Ln] =Lagrange(X,x)%请输入2*n+1矩阵X,X中第一行每个元素都是插值节点,X中第二行每个元素都是插值节点对应的函数值;%第二章P24例一拉格朗日插值n=size(X,2);d=0;for m=1:1:nif x==X(1,m);d=m;breakendend运行结果和总结 运行结果 例:给定函数55,11)(2≤≤-+=x xx f ; (1) 验证表2-10的误差结果(高次插值的Runge 现象);(2) 以0.1为步长分别进行Language 插值、分段线性插值、分段三次Hermite插值,画出三种插值函数以及f(x)的图像,比较三种插值结果。

计算方法 13 Hermite插值资料

计算方法 13 Hermite插值资料

x x1
x0 x0
2
(x
x1 )l1( x)2.
记 h x1 x0
A0 (x)
1
2
x
x0 h
1
x
x0 h
2
A1 ( x)
3
2
x
x0 h
x
x0 h
2
B0 (x)
h
x
x0 h
1
x
x0 h
2
B1 ( x)
h
x
x0 h
1 x
x0
2
h
置 x0 0, x1 1,则
观察上面的条件,可知
n个插值节点xk , k 0,1,, n, k j是插值基函数Aj (x)的二重 零点, 而x j不是Aj (x)的零点,然而基函数Aj (x)是2n 1次多项 式。故我们可以假设
Aj ( x) D j (ax b)( x x0 )2 ( x x j1 )2 ( x x j1 )2 ( x xn )2
A0 ( x)
x0
x1
B0 ( x)
x0
x1
A1( x)
Bj (x) (x x j ) l j (x) 2
再构造 Aj ( x) : 由于第一个方程用于确定与函数值相关的条件,因此,有
Aj ( xk ) 0, k 0,1,, n, 且k j; Aj ( xk ) 1, k j.
而第二个方程用于确定与导数值相关的条件,因此,有
Aj ( xk ) 0, k 0,1,, n.

n
n
H 2n1( x) Aj ( x) y j B j ( x) yj ,
j0
j0
其中插值基函数 Aj ( x) ,B j ( x) 都是 2n 1 次式。由于 插值问题的解存在唯一性定理,有

数值分析实验,用程序实现Hermite插值法

数值分析实验,用程序实现Hermite插值法

《数值分析》实验报告实验序号:实验六 实验名称: Hermite 插值法1. 实验目的:学会Hermite 插值法,并应用该算法于实际问题.2. 实验内容:求一个函数ϕ(x )用来近似函数f (x ),用分段三次Hermit 插值的方法来求解近似函数ϕ(x )并画出近似函数图像及原函数图像。

设在区间[a,b]上,给定n+1个插值节点b x x x x a n =<<<<=...210和相应的函数值n y y y ,...,,10以及一阶导数值''1'0,...,,ny y y ,求一个插值函数)(x H ,满足以下条件: (1)),...,2,1,0()(,)(''n i y x H y x H i i i i === (2) )(x H 在每一个小区间[1,+j j x x ]上是三次多项式。

对于给定函数11-,2511)(2≤≤+=x x x f 。

在区间[]11-,上画出f (x )和分段三次Hermit 插值函数)(x H 的函数图像。

3. 实验分析:算法分析:1. 分段三次Hermit 插值的算法思想:分段三次Hermit 插值的做法是在每一个小区间上作三次Hermit 插值,因此在每一个插值节点上都需要构造两个插值基函数)(),(x H x h i i ,然后再作它们的线性组合。

分段三次Hermit 插值基函数如下:⎪⎩⎪⎨⎧≤≤----+=其它 0 ))(21()(1021010100x x x x x x x x x x x x h ⎪⎩⎪⎨⎧≤≤---=其它 0 ))(()(10210100x x x x x x x x x x H1,...,2,1 0 ))(21( ))(21()(1211112111-=⎪⎪⎪⎩⎪⎪⎪⎨⎧≤<----+≤≤----+=++++---n i x x x x x x x x x x x x x x x x x x x x x x x h i i i i i i i i i i-i i i i i i i 其它1,...,2,1 0 ))(( ))(()(12111211-=⎪⎪⎪⎩⎪⎪⎪⎨⎧≤<---≤≤---=+++--n i x x x x x x x x x x x x x x x x x x x H i i i i i i i i-i i i i i 其它⎪⎩⎪⎨⎧≤<----+=---其它 0 ))(21()(1-n 2111n n n n n n n n x x x x x x x x x x x x h ⎪⎩⎪⎨⎧≤<---=--其它 0 ))(()(1-n 211n n n n n n x x x x x x x x x x H 分段三次Hermit 插值函数是:∑=+=n i i i i i x H y x h y x H 0'))()(()( 4. 实验代码:// LDlg.cpp : implementation file//#include "stdafx.h"#include "L.h"#include "LDlg.h"#ifdef _DEBUG#define new DEBUG_NEW#undef THIS_FILEstatic char THIS_FILE[] = __FILE__;#endif/////////////////////////////////////////////////////////////////////////////// CAboutDlg dialog used for App Aboutclass CAboutDlg : public CDialog{public:CAboutDlg();// Dialog Data//{{AFX_DATA(CAboutDlg)enum { IDD = IDD_ABOUTBOX };//}}AFX_DATA// ClassWizard generated virtual function overrides//{{AFX_VIRTUAL(CAboutDlg)protected:virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support //}}AFX_VIRTUAL// Implementationprotected://{{AFX_MSG(CAboutDlg)//}}AFX_MSGDECLARE_MESSAGE_MAP()};CAboutDlg::CAboutDlg() : CDialog(CAboutDlg::IDD){//{{AFX_DATA_INIT(CAboutDlg)//}}AFX_DATA_INIT}void CAboutDlg::DoDataExchange(CDataExchange* pDX){CDialog::DoDataExchange(pDX);//{{AFX_DATA_MAP(CAboutDlg)//}}AFX_DATA_MAP}BEGIN_MESSAGE_MAP(CAboutDlg, CDialog)//{{AFX_MSG_MAP(CAboutDlg)// No message handlers//}}AFX_MSG_MAPEND_MESSAGE_MAP()///////////////////////////////////////////////////////////////////////////// // CLDlg dialogCLDlg::CLDlg(CWnd* pParent /*=NULL*/): CDialog(CLDlg::IDD, pParent){//{{AFX_DATA_INIT(CLDlg)// NOTE: the ClassWizard will add member initialization here//}}AFX_DATA_INIT// Note that LoadIcon does not require a subsequent DestroyIcon in Win32m_hIcon = AfxGetApp()->LoadIcon(IDR_MAINFRAME);}void CLDlg::DoDataExchange(CDataExchange* pDX){CDialog::DoDataExchange(pDX);//{{AFX_DATA_MAP(CLDlg)// NOTE: the ClassWizard will add DDX and DDV calls here//}}AFX_DATA_MAP}BEGIN_MESSAGE_MAP(CLDlg, CDialog)//{{AFX_MSG_MAP(CLDlg)ON_WM_SYSCOMMAND()ON_WM_PAINT()ON_WM_QUERYDRAGICON()ON_BN_CLICKED(IDC_LARGRI, OnLargri)ON_BN_CLICKED(IDC_BUTTON2, OnButton2)ON_BN_CLICKED(IDC_HERMITE, OnHermite)//}}AFX_MSG_MAPEND_MESSAGE_MAP()///////////////////////////////////////////////////////////////////////////// // CLDlg message handlersBOOL CLDlg::OnInitDialog(){CDialog::OnInitDialog();// Add "About..." menu item to system menu.// IDM_ABOUTBOX must be in the system command range.ASSERT((IDM_ABOUTBOX & 0xFFF0) == IDM_ABOUTBOX);ASSERT(IDM_ABOUTBOX < 0xF000);CMenu* pSysMenu = GetSystemMenu(FALSE);if (pSysMenu != NULL){CString strAboutMenu;strAboutMenu.LoadString(IDS_ABOUTBOX);if (!strAboutMenu.IsEmpty()){pSysMenu->AppendMenu(MF_SEPARATOR);pSysMenu->AppendMenu(MF_STRING, IDM_ABOUTBOX, strAboutMenu);}}// Set the icon for this dialog. The framework does this automatically // when the application's main window is not a dialogSetIcon(m_hIcon, TRUE); // Set big iconSetIcon(m_hIcon, FALSE); // Set small icon// TODO: Add extra initialization herereturn TRUE; // return TRUE unless you set the focus to a control}void CLDlg::OnSysCommand(UINT nID, LPARAM lParam){if ((nID & 0xFFF0) == IDM_ABOUTBOX){CAboutDlg dlgAbout;dlgAbout.DoModal();}else{CDialog::OnSysCommand(nID, lParam);}// If you add a minimize button to your dialog, you will need the code below // to draw the icon. For MFC applications using the document/view model, // this is automatically done for you by the framework.void CLDlg::OnPaint(){if (IsIconic()){CPaintDC dc(this); // device context for paintingSendMessage(WM_ICONERASEBKGND, (WPARAM) dc.GetSafeHdc(), 0);// Center icon in client rectangleint cxIcon = GetSystemMetrics(SM_CXICON);int cyIcon = GetSystemMetrics(SM_CYICON);CRect rect;GetClientRect(&rect);int x = (rect.Width() - cxIcon + 1) / 2;int y = (rect.Height() - cyIcon + 1) / 2;// Draw the icondc.DrawIcon(x, y, m_hIcon);}else{CDialog::OnPaint();}}// The system calls this to obtain the cursor to display while the user drags // the minimized window.HCURSOR CLDlg::OnQueryDragIcon(){return (HCURSOR) m_hIcon;}void CLDlg::OnOK(){int x00=300,y00=350,i,j;double x;CDC *pDC=GetDC();pDC->SetMapMode(MM_LOMETRIC);pDC->SetViewportOrg(x00,y00);//画坐标轴与原函数for(i=-700; i<=700; i++){pDC->SetPixel(i,0,RGB(0,0,0));pDC->SetPixel(0,i,RGB(0,0,0));}for(x=-1; x<=1; x+=0.001){double j=400.0/(1+25*x*x);pDC->SetPixel(x*500,j,RGB(255,0,0));}pDC->TextOut(-30,-10,"0");pDC->TextOut(-30,430,"1");pDC->TextOut(490,-10,"1");pDC->TextOut(-490,-10,"-1");pDC->MoveTo(-10,680); //x箭头pDC->LineTo(0,700);pDC->MoveTo(0,700);pDC->LineTo(10,680);pDC->MoveTo(680,10); //y箭头pDC->LineTo(700,0);pDC->MoveTo(700,0);pDC->LineTo(680,-10);pDC->TextOut(-30,700,"y");pDC->TextOut(700,-10,"x");}void CLDlg::OnLargri(){int x00=300,y00=350,i,j;double x;CDC *pDC=GetDC();pDC->SetMapMode(MM_LOMETRIC);pDC->SetViewportOrg(x00,y00);//画坐标轴for(i=-700; i<=700; i++){pDC->SetPixel(i,0,RGB(0,0,0));pDC->SetPixel(0,i,RGB(0,0,0));}double yx[]={-1,-0.8,-0.6,-0.4,-0.2,0,0.2,0.4,0.6,0.8,1}; pDC->TextOut(-30,-10,"0");pDC->TextOut(-30,430,"1");pDC->TextOut(490,-10,"1");pDC->TextOut(-490,-10,"-1");pDC->MoveTo(-10,680); //x箭头pDC->LineTo(0,700);pDC->MoveTo(0,700);pDC->LineTo(10,680);pDC->MoveTo(680,10); //y箭头pDC->LineTo(700,0);pDC->MoveTo(700,0);pDC->LineTo(680,-10);pDC->TextOut(-30,700,"y");pDC->TextOut(700,-10,"x");// 拉格朗日差值的函数double yy[12],lx[12],ly[12];double l_fenzi[12],l_fenmu[12];double l_x,l_y;for(i=0; i<=10; i++){yy[i]=1.0/(1+25*yx[i]*yx[i]);for(i=0; i<=10; i++){l_fenmu[i]=1.0;for(j=0; j<=10; j++){if(i!=j)l_fenmu[i]=l_fenmu[i]*(yx[i]-yx[j]);}}double qq,pp;for(qq=-1; qq<=1; qq+=0.0003){for(i=0; i<=10; i++){l_fenzi[i]=1.0;for(j=0; j<=10; j++){if(i!=j)l_fenzi[i]=l_fenzi[i]*(qq-yx[j]);}}pp=0;for(i=0; i<=11; i++){pp=pp+1.0/(1+25*yx[i]*yx[i])*l_fenzi[i]/l_fenmu[i];}pDC->SetPixel(qq*500,pp*390+5,RGB(132,112,225));}void CLDlg::OnButton2(){int x00=300,y00=350,i,j;double x;CDC *pDC=GetDC();pDC->SetMapMode(MM_LOMETRIC);pDC->SetViewportOrg(x00,y00);//画坐标轴与原函数for(i=-700; i<=700; i++){pDC->SetPixel(i,0,RGB(0,0,0));pDC->SetPixel(0,i,RGB(0,0,0));}double yx[]={-1,-0.8,-0.6,-0.4,-0.2,0,0.2,0.4,0.6,0.8,1}; double yy[14];for(i=0; i<=10; i++){yy[i]=1.0/(1+25*yx[i]*yx[i]);}pDC->TextOut(-30,-10,"0");pDC->TextOut(-30,430,"1");pDC->TextOut(490,-10,"1");pDC->TextOut(-490,-10,"-1");pDC->MoveTo(-10,680); //x箭头pDC->LineTo(0,700);pDC->MoveTo(0,700);pDC->LineTo(10,680);pDC->MoveTo(680,10); //y箭头pDC->LineTo(700,0);pDC->MoveTo(700,0);pDC->LineTo(680,-10);pDC->TextOut(-30,700,"y");pDC->TextOut(700,-10,"x");// 线性分段差值的图像CPen pen;CPen*oldpen;pen.CreatePen(PS_SOLID,5,RGB(0,0,0));oldpen=pDC->SelectObject(&pen);for(i=0; i<10; i++){pDC->MoveTo(yx[i]*480,yy[i]*400);pDC->LineTo(yx[i+1]*480,yy[i+1]*400); }}void CLDlg::OnHermite(){int x00=300,y00=350,i,j;double x;CDC *pDC=GetDC();pDC->SetMapMode(MM_LOMETRIC);pDC->SetViewportOrg(x00,y00);//画坐标轴与原函数for(i=-700; i<=700; i++){pDC->SetPixel(i,0,RGB(0,0,0));pDC->SetPixel(0,i,RGB(0,0,0));}double yx[]={-1,-0.8,-0.6,-0.4,-0.2,0,0.2,0.4,0.6,0.8,1};double yy[12];for(i=0; i<=10; i++){yy[i]=1.0/(1+25*yx[i]*yx[i]);}pDC->TextOut(-30,-10,"0");pDC->TextOut(-30,430,"1");pDC->TextOut(490,-10,"1");pDC->TextOut(-490,-10,"-1");pDC->MoveTo(-10,680); //x箭头pDC->LineTo(0,700);pDC->MoveTo(0,700);pDC->LineTo(10,680);pDC->MoveTo(680,10); //y箭头pDC->LineTo(700,0);pDC->MoveTo(700,0);pDC->LineTo(680,-10);pDC->TextOut(-30,700,"y");pDC->TextOut(700,-10,"x");//分段三次Hermite差值的函数double x0,x1,yd1,yd0,y1,y0;for(i=0; i<10; i++){x0=yx[i],x1=yx[i+1];y0=1.0/(1+25*x0*x0);y1=1.0/(1+25*x1*x1);yd0=-(50*x0)*1.0/((1+25*x0*x0)*(1+25*x0*x0));yd1=-(50*x1)*1.0/((1+25*x1*x1)*(1+25*x1*x1));for(double qq=x0; qq<x1; qq+=0.005){double pp= y0*(1+2*(qq-x0)/(x1-x0)) * (qq-x1)/(x0-x1) * (qq-x1)/(x0-x1)+y1*(1+2*(qq-x1)/(x0-x1)) * (qq-x0)/(x1-x0) * (qq-x0)/(x1-x0)+yd0*(qq-x0) * (qq-x1)/(x0-x1) * (qq-x1)/(x0-x1)+yd1*(qq-x1) * (qq-x0)/(x1-x0) * (qq-x0)/(x1-x0);pDC->SetPixel(qq*500,pp*400,RGB(225,185,15));}}}5.实验截图6. 实验结果分析:通过本次实验我对分段三次Hermit插值有了更深刻更全面的掌握,它在给定了节点处的函数值和导数值以后,构造了一个整体上具有一阶连续微商的插值函数。

Hermite插值法

Hermite插值法
′ ′ R3 ( xi ) = f ′( xi ) − H 3 ( xi ) = 0
i = 0 ,1
x0 , x1均为R3 ( x )的二重零点,因此可设
R3 ( x ) = K ( x )( x − x0 )2 ( x − x1 )2
其中K (x )待定
10
构造辅助函数
ϕ (t ) = f (t ) − H 3 (t ) − K ( x )(t − x0 )2 (t − x1 )2
求一个次数不超过2n+1次的多项式H(x)使 求一个次数不超过2n+1次的多项式H(x)使 2n+1次的多项式H(x)
H ( xi ) = f ( xi ) = yi H ′( xi ) = f ′( xi ) = yi′
i = 0 ,1,L , n i = 0 ,1,L , n
这种带有导 数的多项式 问题, 插值 问题, 称为 Hermite插 Hermite插 值问题。 值问题。 1
′ ′ H 3 ( x) = y0α 0 ( x) + y1α1 ( x) + y0 β 0 ( x) + y1β1 ( x)
线性插值基函数代入定理1.5 将Lagrange线性插值基函数代入定理 线性插值基函数代入定理 中的基函数求得三次Hermite插值的基 中的基函数求得三次 插值的基 函数! 函数
x − x1 l0 ( x) = x0 − x1 x − x0 l1 ( x) = x1 − x0
基函数具有 什么表达式? 什么表达式?
4
x − x0 x − x1 α 0 ( x) = 1 + 2 x1 − x0 x0 − x1
2
x − x1 x − x0 α1 ( x ) = 1 + 2 x0 − x1 x1 − x0

Hermite插值

Hermite插值

第五章 函数近似计算(插值问题)的插值方法5.4 Hermite 插值 1.带导数值的提法如果不仅已知插值节点处的函数值,而且还掌握插值节点处的导数值(1阶甚至高阶);或者说,不仅要求在节点处插值多项式与被插值函数的值相等(Lagrange 条件),而且还要求相应阶的导数值也要相等,这就是带导数插值,也称为Hermite(埃尔米特)插值。

从几何上看,Hermite 插值意味着插值函数不仅要过被插函数的已知点,而且在这些点上,两者还要“相切”(即导数值相同),可见这种插值函数与被插函数的“密切”程度比Lagrange 插值的情况更好,因此,Herimite 插值也称为密切插值。

下面只讨论1阶导数的情形。

2.Hermite 插值问题及插值公式 已知函数f在],[b a 上1+n 上互异节点],[b a x i ∈的函数值)(i i x f f =和1阶导数值),,1,0)((''n i x f f i i ==,或记为已知离散数据),,1,0)(',,(n i f f x i i i = (5.4.1)求作一个次数尽可能低的多项式)(x H ,满足插值条件),,1,0(')(')(n i f x H f x H iii =⎩⎨⎧== (5.4.2) 这样的多项式)(x H 就称为Hermite 插值多项式。

注意这里有22+n 个插值条件。

故有下述定理。

定理 5.4.1 对已知数据 (5.4.1)存在惟一的次数12+≤n 的多项式1212)(++∈n n P x H 满足插值条件),,1,0(')(')(1212n i f x H f x H in ii n =⎩⎨⎧==++ (5.4.3)这里,也仿照Lagrange 插值多项式的做法,用基函数的方法求插值多项式)(12x H n +。

如果能够由已知插值节点),,1,0(n i x i =作出22+n 个12+n 次插值基函数 )(x i α,)(x i β ),,1,0(n i =它们具有下列性质:⎩⎨⎧==01)(ij j i x δαji ji ≠= 0)('=j i x α (5.4.4) 0)(=j i x β ⎩⎨⎧==01)(ij j i x δβ ji ji ≠= (5.4.5)则显然可得满足插值条件(5.4.3)的12+n 次Hermite 插值多项式∑=++=ni i i i i n f x f x x H 012]')()([)(βα (5.4.6)现在来确定)(x i α和)(x i β。

Hermite 插值解析

Hermite 插值解析
'
( x x1 )( x x2 )...( x xn 1 ))
所以有 1 l ( x0 ) (( x0 x2 )( x0 x3 )...( x0 xn ) A ( x0 x1 )( x0 x3 )...( x0 xn )
' 0
... ( x0 x1 )( x0 x2 )...( x0 xn 1 ))
j ( x) C ( x x j )
( x x0 )2 ( x x1 )2 ...( x x j 1 )2 ( x x j 1 )2 ...( x xn ) 2 ( x j x0 )2 ( x j x1 )2 ...( x j x j 1 )2 ( x j x j 1 ) 2 ...( x j xn ) 2
故得:
j ( x) (2l 'j ( x j ) x 1 2 x j l 'j ( x j ))l 2 j (x )
(1 2( x j x)l ( x j ))l ( x )
' j 2 j
j ( x)也为次数不超过2n 1的多项式,它的零点:
0 j ( x0 ) j ( x1 ) ... j ( x j 1 ) j ( x j 1 ) ... j ( xn )
函数逼近的插值法 ——Hermite插值多项式
主讲 孟纯军
Hermite 插值多项式



Lagrange插值公式所求得L(x)保证了节点处的 函数值相等,也就是保证了函数的连续性。 但不少实际问题还需要插值得光滑度,也就是 还要求它在节点处的导数值也相等,导数的阶 数越高则光滑度越高。 现代的仿生学就是一个典型的例子。在设计交 通具的外形,就是参照海豚的标本上已知点及 已知点的导数,做插值在计算机上模拟海豚的 外形制成飞机、汽车等外形。

数值分析各算法流程图

数值分析各算法流程图

01,,n1,,n1,,)n x及数值分析各算法流程图一、插值1、 拉格朗日插值流程图:( 相应程序:lagrintp(x,y,xx))2,,n ,,j n 1,2,,n 1,,)n 2、 牛顿插值流程图(1)产生差商表的算法流程图(相应程序:divdiff(x,y))注:1、另一程序divdiff1(x,y),输出的矩阵包含了节点向量。

而divdiff(x,y)不含节点向量。

2、另一程序tableofdd(x,y,m),输出的是表格形式,添加了表头。

1,,),,n m 及1,,m (2)非等距节点的牛顿插值流程图(相应程序:newtint11(x,y,xx,m)) 、注:1、虽然程序newtint11(x,y,xx,m)考虑了多种情形,看上去很复杂,但基本流程结构还是如上图所示。

2、程序中调用的子程序是divdiff 。

若调用的子程序是divdiff1的话,流程图中的第三,第四,第五步要相应的改一下数字。

2,3,,1m +1,,j1,2,,n=1,2,,)n m 及(3)求差分表的流程图(相应程序:difference(y,m))注:1、difference 输出的是矩阵D 。

而另一程序tableofd(y,m),输出的是带有表头的差分表。

n x m1,,),,1,,m注:1、程序newtforward1(x,y,xx,m))的结构与上述流程图一致,xx可以是数组。

2、另一程序newtforward(x,y,xx,m))先求出插值多项式,再求插值多项式在插值点的函数值。

基本结构还是和上面的流程图一样。

n x m1,,),,-x x1,,m注:1、程序newtbackward1(x,y,xx,m))的结构与上述流程图一致,xx可以是数组。

2、另一程序newtbackward(x,y,xx,m))先求出插值多项式,再求插值多项式在插值点的函数值。

基本结构还是和上面的流程图一样。

1,2,,n1,2,,n ,2,,)n x及3、Hermite 插值流程图(1) 已知条件中一阶导数的个数与插值节点的个数相等时的Hermite 插值流程图。

Hermite插值 ppt课件

Hermite插值 ppt课件

f
(4) (
4!
)
(
x
x0
)(
x
x1)2
(
x
x2
)
证明:由插值多项式满足的插值条件可知
R3(x) f (x) P3(x) k(x)(x x0)(x x1)2(x x2).
构造辅助函数:
(t) f (x) P3(t) k(x)(t x0)(t x1)2(t x2).
t x,t x0,t x1,t x1,t x为2 (t) 的零点,反复
P(k) (x0 ) f (k) (x0 ), k 0, n
带导数信息的插值多项式,是一种n次 埃尔米特插值。
二、两个典型的埃尔米特插值 1、满足如下条件的插值多项式
xi f (xi ) f (xi )
x0 f (x0 )
x1 f (x1) f (x1)
x2 f (x2 )
方法1:
思路: 仿牛顿法 1)先利用已知条件:
(2)
'(xi )
y
' i
(i 0,1,2,...n)
保持插值曲线在节点处有切线(光滑), 使插值函数和被插函数的密和程度更好 。
设函数f(x) 在区间[ a, b] 上有 n+1个互异节点
a=x0<x1<x2<……<xn=b , 定义在[a,b]上函数f(x) 在节点上满足: f(xi) = yi, f ' (xi)=y ' i, i=0,1,2……n
方法3:
基于带重节点的差商计算,构造差商表, 给出带重节点的牛顿插值多项式。
xi f (xi ) 1阶
2阶
3阶
x0 f (x0)
x1 f (x1) f [x0, x1]
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2n
共2n 2个方程,可求出2n 2个系数a0 , a1 ,..., a2n , a2n1 .
数值分析
数值分析
Hermite插值多项式的构造
( 2) Lagrange型插值基函数法 设Hermite插值多项式为 H 2 n1 ( x ) hi ( x ) yi hi ( x ) y 'i
' i
a 2li' ( xi ) 解出 ' b 1 2 x l i i ( xi )
hi ( x ) (1 2( x xi )li' ( xi )) l i2 ( xi ) ( i 0,1, 2, n) n n x xj 1 ' 其中 li ( x ) ( ), l i ( xi ) ( ) xi x j xi x j j0 j0 所以
2
数值分析
数值分析
数值分析
数值分析
不完全导数条件的Hermite插值
例:试构造一个不高于4次的Hermite插值多项式 H 4 ( x ), 使其满足条件 H 4 (0) 0,
' H4 (0) 0,
H 4 (1) 1,
' H4 (1) 1,
H 4ห้องสมุดไป่ตู้(2) 1,
解:用Lagrange插值基函数法构造H 4 ( x ), 设
hi ( x )应满足条件: (1) hi ( x )应是 2n 1次多项式; i j 1 (2) hi ( x j ) ij i j 0 h 'i ( x j ) 0 ( i,j 0, 1, 2, ,n) hi ( x )应满足条件: (1)hi ( x )应是 2n 1次多项式; i j 1 (2)h 'i ( x j ) ij i j 0 hi ( x j ) 0 ( i,j 0, 1, 2, ,n )
数值分析
数值分析
由条件(2)可列出方程组 2 h ( x ) ( ax b ) l i i i i ( xi ) 1 ' 2 ' h ( x ) ali ( xi ) 2(axi b )l i ( xi )l i ( xi ) 0 i i
li ( xi ) 1, axi b 1, a 2l ( xi ) 0
2 i
c 1
h i ( x ) ( x x i )l ( x )
代入hi ( x )和hi ( x )经整理得到 H 2 n1 ( x ) [(1 2( x xi )l 'i ( xi ) yi ) ( x xi ) y 'i ]li2 ( x )
i 0
数值分析
R3 ( x ) 4!
( x x )
i 1 i
1 R3 ( x ) max f(4)( ) max x1 x x2 4! x1 x x2 1 h max f(4)( ) 4! 2 x1 x x2 其中h x2 x1
4
2 ( x x ) i i 1
n
数值分析
Hermite插值误差分析
定理 设f ( x ) C [a , b],且在(a , b)上存在 2n 2次导数,对于n 1个互异节点上的Hermite插值 函数,有如下误差估计式 f (2 n 2) ( ) n 2 R2 n1 ( x ) f ( x ) H 2 n1 ( x ) ( x x ) i (2n 2)! i 0 其中 是介于x0 , x1 , , xn中最小数和最大数之间。
证明:因R2 n1 ( x )有n 1个零点x0 , x1 , R2 n1 ( x ) K (x) ( x x0 )2 ( x x1 )2 构造以t为参变量的辅助函数F ( t )
, xn,故设
( x xn )2
数值分析
F ( t ) f ( t ) H 2 n1 (t ) K ( x ) ( t xi )
n
, f ( m0 ) ( x 0 ) , f ( m1 ) ( x1 ) , f ( mn ) ( x n )
, n)是正整数。
i 1
以上总共有N n 1 mi 个插值条件,要求构 造不低于N 1次插值函数H (x)满足以上插值条件。
数值分析
数值分析
例 求一个四次插值多项式 H (x),使 x 0 时,H (0) 1,H( ' 0) 2; '' x 1 时,H (1) 0,H( ' 1) 10,H( 1) 40
i 0
数值分析
n
2
F ( t )关于t 有n 2个零点:x0,x1, ,xn,x 。 但F ' ( t )关于t 有2n 2个零点,由Rolle(罗尔)定理 必存在点 (a , b),使 F
(2 n 2)
( ) f
(2 n 2)
( ) 0 K ( x )(2n 2)! 0
n
x xj
xi x j
)

hi ( x ) (ax b)l 2 i ( x )
由条件(2)可列出方程组 2 h ( x ) ( ax b ) l i i i i ( xi ) 1 ' 2 ' h ( x ) al ( x ) 2( ax b ) l ( x ) l i i i i i i i i ( xi ) 0
数值分析
代入后得到 x x1 x x2 2 x x2 2 h1 ( x ) (1 2 )( ) ,h1 ( x ) (x x1)( ) x2 x1 x1 x2 x1 x2 x x2 x x1 2 x x1 2 h2 ( x ) (1 2 )( ) ,h2 ( x ) (x x2)( ) x1 x2 x2 x1 x2 x1 f(4) ( ) 2 2
i 0 i 0 n n
使其满足插值条件 H 2 n 1 ( x i ) yi H '2 n1 ( xi ) y 'i
i 0, 1, 2, n
数值分析
数值分析
H 2 n1 ( x j ) hi ( x j ) yi hi ( x j ) y 'i y j H '2 n1 ( x j ) h 'i ( x j ) yi h 'i ( x j ) y 'i y ' j
数值分析
第四节 带导数条件的Hermite插值

假设函数y=f(x)是 在[a,b]上有一定光滑性的函数, 在[a,b] 上有n+1个互异点xo…xn, f(x)在这些点上取值 yo…...yn.求一个确定的函数p(x)在上面n+1个点上满 足p(xi)=yi i=0,1,…,n.这是最简单的插值问题,如果除 了知道f(x)在插值节点上的取值外,还知道f(x)在插值 节点xi上的 1≤mi≤n阶导数,如何来构造插值函数呢? Hermite插值就是既满足插值节点xi的函数值条件又 满足微商条件的插值函数。
Hermite插值中,最基本而重要的情形是只要求 一阶导数的条件。给出n 1个互异节点x0 , x1 , xn上 的函数值和导数值 yi f ( xi )和y 'i f '( xi ) ( i 0,1, 2, , n) 构造不低于2n 1次插值多项式H 2 n 1 ( x ),要求满足 插值条件 H 2 n 1 ( x i ) yi i 0, 1, 2, n H '2 n1 ( xi ) y 'i
数值分析
数值分析
Hermite插值多项式的构造
(1) 待定系数法 设H 2 n 1 ( x ) a 2 n 1 x 由插值条件
H 2 n 1 ( x i ) yi H '2 n1 ( xi ) y'i i 0, 1, 2, n
2 n1
a2 n x ... a1 x a0
i 0 i 0 i 0 n i 0 n
n
n
数值分析
数值分析
利用Lagrange插值基函数li ( x ) (
j 0 ( ji )
1.构造hi ( x )( i 0,1, 2, , n) hi ( x )应满足条件: (1)hi ( x )应是 2n 1次多项式; 1 i j (2)hi ( x j ) ij i j 0 h 'i ( x j ) 0 ( i,j 0, 1, 2, ,n)

hi ( x) (cx d )l 2i ( x)
由条件(2)可列出方程组 2 hi ( xi ) (cxi d )li ( xi ) 0 2 ' h 'i ( xi ) cli ( xi ) 2(cxi d )li ( xi )l i ( xi ) 1
( ji ) ( ji )
数值分析
数值分析
2.构造 hi ( x ),( i 0,1, 2, , n) hi ( x )应满足条件: (1)hi ( x )应是2n 1次多项式; 1 i j (2)h 'i ( x j ) ij i j 0 hi ( x j ) 0 ( i,j 0, 1, 2, ,n)
数值分析
数值分析
由条件(2)可列出方程组 2 h ( x ) ( cx d ) l i i i i ( xi ) 0 2 ' h ' ( x ) cl ( x ) 2( cx d ) l ( x ) l i i i i i i i i ( xi ) 1
li ( xi ) 1, cxi d 0, c 1 解出 d xi 于是求出
相关文档
最新文档