七年级数学实数经典例题及习题

合集下载

人教版七年级数学下册《实数大小比较》150题及解析

人教版七年级数学下册《实数大小比较》150题及解析

初一数学下册知识点《实数大小比较》经典例题及解析题号一二三四总分得分一、选择题(本大题共68小题,共204.0分)1.定义[x]表示不超过实数x的最大整数,如[1.8]=1,[-1.4]=-2,[-3]=-3.函数y=[x]的图象如图所示,则方程[x]=x2的解为()A. 0或B. 0或2C. 1或D. 或-【答案】A【解析】解:当1≤x<2时,x2=1,解得x1=,x2=-(舍去);当0≤x<1时,x2=0,解得x=0;当-1≤x<0时,x2=-1,方程没有实数解;当-2≤x<-1时,x2=-2,方程没有实数解;所以方程[x]=x2的解为0或.故选:A.根据新定义和函数图象讨论:当1≤x<2时,则x2=1;当0≤x<1时,则x2=0;当-1≤x <0时,则x2=-1;当-2≤x<-1时,则x2=-2;然后分别解关于x的一元二次方程即可.本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.也考查了实数的大小比较.2.四个实数0、、-3.14、2中,最小的数是()A. 0B.C. -3.14D. 2【答案】C【解析】解:根据实数比较大小的方法,可得-3.14<0<<2,所以最小的数是-3.14.故选:C.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.3.下列四个数:-3,-,-π,-1,其中最小的数是()A. -πB. -3C. -1D. -【答案】A【解析】解:∵-1>->-3>-π,∴最小的数为-π,故选:A.将四个数从大到小排列,即可判断.本题考查实数的大小比较,记住任意两个实数都可以比较大小,正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.4.在实数-,-2,0,中,最小的实数是()A. -2B. 0C. -D.【答案】A【解析】解:实数-,-2,0,中,最小的实数是-2,故选:A.根据负数的绝对值越大,这个数越小,然后根据正数大于0,负数小于0进行大小比较即可.此题考查了实数大小比较:正数大于0,负数小于0;负数的绝对值越大,这个数越小.5.已知,,,那么a,b,c的大小关系是()A. a<b<cB. b<a<cC. c<b<aD. c<a<b【答案】B【解析】解:∵a-b=-1-(2-)=-(1+)≈2.449-2.414>0,∴a>b;∵a-c=-1-(-2)=+1-≈2.414-2.449<0,∴a<c;于是b<a<c,故选B.利用作差法比较a和b、b和c、a和c的大小,再比较a、b、c三者的大小.此题主要考查了实数的大小的比较,其中比较两个实数的大小,可以采用作差法、取近似值法、比较n次方的方法等.实数大小比较法则:(1)正数大于0,0大于负数,正数大于负数;(2)两个负数,绝对值大的反而小.6.在实数0,-2,,3中,最大的是()A. 0B. -2C.D. 3【答案】D【解析】【分析】本题考查了实数的大小比较,要注意无理数的大小范围.根据正负数的大小比较,估算无理数的大小进行判断即可.【解答】解:2<<3,实数0,-2,,3中,最大的是3.故选D.7.在实数-3,-1,0,1中,最小的数是()A. -3B. -1C. 0D. 1【答案】A【解析】解:∵-3<-1<0<1,∴最小的是-3.故选:A.根据正数大于0,0大于负数,正数大于负数直接进行比较大小,再找出最小的数.此题主要考查了有理数的比较大小,根据正数都大于0,负数都小于0,正数大于负数,两个负数绝对值大的反而小的原则解答.8.在实数-3,2,0,-4中,最大的数是()A. -3B. 2C. 0D. -4【答案】B【解析】【分析】本题考查了实数大小比较,关键要熟记:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.根据正数大于0,0大于负数,正数大于负数,比较即可.【解答】解:∵-4<-3<0<2,∴四个实数中,最大的实数是2.故选B.9.在实数﹣2,2,0,﹣1中,最小的数是( )A. ﹣2B. 2C. 0D. ﹣1【答案】A【解析】【分析】此题考查了有理数大小比较,熟练掌握两个负数比较大小的方法是解本题的关键.找出实数中最小的数即可.【解答】解:在实数-2,2,0,-1中,最小的数是-2,故选:A.10.下列实数中,最小的数是()A. B. 0 C. 1 D.【答案】A【解析】解:根据题意得:-<0<1<,则最小的数是-.故选:A.将各项数字按照从小到大顺序排列,找出最小的数即可.此题考查了实数大小比较,正确排列出数字是解本题的关键.11.四个实数-2,0,-,1中,最大的实数是()A. -2B. 0C. -D. 1【答案】D【解析】解:∵-2<-<0<1,∴四个实数中,最大的实数是1.故选:D.根据正数大于0,0大于负数,正数大于负数,比较即可.本题考查了实数大小比较,关键要熟记:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.12.如图,数轴上A、B两点分别对应实数a,b,则下列结论正确的是()A. a<bB. a=bC. a>bD. ab>0【答案】C【解析】解:∵b在原点左侧,a在原点右侧,∴b<0,a>0,∴a>b,故A、B错误,C正确;∵a、b异号,∴ab<0,故D错误.故选:C.根据各点在数轴上的位置判断出a、b的符号,再比较出其大小即可.本题考查的是实数大小比较及数轴的特点,熟知数轴上各数的特点是解答此题的关键.13.下面实数比较大小正确的是()A. 3>7B.C. 0<-2D. 22<3【答案】B【解析】解:A、3<7,故本选项错误;B、∵≈1.7,≈1.4,∴>,故本选项正确;C、0>-2,故本选项错误;D、22>3,故本选项错误.故选B.根据实数比较大小的法则对各选项进行逐一分析即可.本题考查的是实数的大小比较,熟知实数比较大小的法则是解答此题的关键.14.下列四个实数中,比-1小的数是()A. -2B. 0C. 1D. 2【答案】A【解析】解:∵-1<0,1>0,2>0,∴可排除B、C、D,∵-2<0,|-2|>|-1|,∴-2<-1.故选:A.根据实数比较大小的法则进行比较即可.本题考查的是实数比较大小的法则,即任意两个实数都可以比较大小,正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.15.在,0,-1,这四个实数中,最大的是()A. B. 0 C. -1 D.【答案】D【解析】解:∵正实数都大于0,负实数都小于0,正实数大于一切负实数,0<<1,1<<2,∴-1<0<<,故选D.利用任意两个实数都可以比较大小,正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小进行比较即可.本题主要考查了比较实数的大小,掌握任意两个实数都可以比较大小,正实数都大于0,负实数都小于0,正实数大于一切负实数,是解答此题的关键.16.下列各数中最小的是()A. 0B. -3C. -D. 1【答案】B【解析】解:因为在A、B、C、D四个选项中只有B、C为负数,故应从B、C中选择;又因为|-3|>|-|=2,所以-3<-,故选B.根据正数都大于0,负数都小于0,两个负数绝对值大的反而小即可解答.此题主要考查了实数的大小的比较,实数比较大小的方法:(1)正数都大于0,负数都小于0,正数大于一切负数;(2)两个负数绝对值大的反而小.17.在0,,-1,这四个实数中,最大的数是()A. -1B. 0C.D.【答案】D【解析】解:∵正数大于0、0大于负数,∴这4个数中较大为是和,而>,∴是4个数中最大的,故选D.根据正数大于0、0大于负数解答可得.本题主要考查实数的大小比较,解题的关键是熟练掌握正数大于0、0大于负数.18.在有理数-1,0,3,中,最大的数是()A. -1B. 0C. 3D.【答案】C【解析】解:在实数-1,0,3,中,最大的数是3,故选:C.根据正实数都大于0,负实数都小于0,正实数大于一切负实数进行比较即可.此题主要考查了实数的比较大小,关键是掌握任意两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.19.在0,2,-3,-这四个数中,最小的数是()A. 0B. 2C. -3D. -【答案】C【解析】解:根据实数比较大小的方法,可得-3<-<0<2,所以最小的数是-3.故选:C.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.20.已知:,,,则a,b,c的大小关系是A. B. C. D.【答案】A【解析】【分析】比较根指数不同的根式的大小,可以首先把它们化为根指数相同的根式,然后只需比较被开方数的大小.先把它们化为根指数相同的根式,再比较被开方数的大小即可解决问题.【解答】解:根据二次根式的性质,化简a=1.4,1.4=<,即a<b.又∵=,=,∴a<b<c.故选A.21.实数a,b在数轴上的对应点的位置如图所示,把-a,-b,0按照从小到大的顺序排列,正确的是()A. -a<0<-bB. 0<-a<-bC. -b<0<-aD. 0<-b<-a【答案】C【解析】解:∵从数轴可知:a<0<b,∴-a>-b,-b<0,-a>0,∴-b<0<-a,故选:C.根据数轴得出a<0<b,求出-a>-b,-b<0,-a>0,即可得出答案.本题考查了数轴,有理数的大小比较的应用,能根据数轴得出-b<0<-a,是解此题的关键.22.已a,b为实数,ab=1,M=,N=,则M,N的大小关系是()A. M>NB. M=NC. M<ND. 无法确定【答案】B【解析】解:M==,∵ab=1,∴==1.N==,∵ab=1,∴==1,∴M=N.故选B.23.比较实数:2、、的大小,正确的是()A. <2<B. 2<<C. <<2D. 2<<【答案】A【解析】解:∵2=<,∴2<,∵<=2,∴<2,∴<2<.故选:A.应用放缩法,判断出2、、的大小关系即可.此题主要考查了实数大小比较的方法,要熟练掌握,注意放缩法的应用.24.四个实数-2,0,-,-1中,最大的实数是()A. -2B. 0C.D. -1【答案】B【解析】解:∵-2,-,-1均为负数,负数小于零,∴最大的实数是0,故选:B.根据负实数都小于0即可得出答案.本题主要考查实数的大小比较,解题的关键是熟练掌握正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.25.已知a=,b=,c=,则下列大小关系正确的是()A. a>b>cB. c>b>aC. b>a>cD. a>c>b【答案】A【解析】解:∵a==,b==,c==,且<<,∴>>,即a>b>c,故选:A.将a,b,c变形后,根据分母大的反而小比较大小即可.此题考查了实数比较大小,将a,b,c进行适当的变形是解本题的关键.26.实数a,b在数轴上对应的点如图所示,则a,b,-a,-b这四个数中最小的数是()A. aB. bC. -aD. -b【答案】D【解析】解:如图,-b<a<-a<b,故最小的数是-b,故选:D.在数轴上把-a,-b表示出来,再根据数轴上右边的数大于左边的数,即可解答.本题考查了实数大小比较,解决本题的关键是熟记数轴上右边的数大于左边的数.27.在实数|-3|,-2,0,1中最大的数是()A. |-3|B. -2C. 0D. 1【答案】A【解析】解:|-3|=3,∴|-3|是最大的数,故选:A.根据实数的大小比较法则即可求出答案.本题考查实数的大小比较,解题的关键是熟练运用实数的大小的比较方法,本题属于基础题型.28.实数a,b,c,d在数轴上的对应点的位置如图所示,这四个数中,绝对值最大的是()A. aB. bC. cD. d【答案】A【解析】解:根据图示,可得3<|a|<4,1<|b|<2,0<|c|<1,2<|d|<3,所以这四个数中,绝对值最大的是a.故选:A.首先根据数轴的特征,以及绝对值的含义和性质,判断出实数a,b,c,d的绝对值的取值范围,然后比较大小,判断出这四个数中,绝对值最大的是哪个数即可.此题主要考查了实数大小的比较方法,以及绝对值的非负性质的应用,要熟练掌握,解答此题的关键是判断出实数a,b,c,d的绝对值的取值范围.29.在实数0,-2,,2中,最大的是()A. 0B. -2C.D. 2【答案】C【解析】解:根据实数比较大小的方法,可得>2>0>-2,故实数0,-2,,2其中最大的数是.故选:C.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.30.下列各数中最大的数是()A. πB. 3C.D. -3【答案】A【解析】解:根据实数比较大小的方法,可得π>3>>-3.故选:A.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.31.如图所示,数轴上两点A,B分别表示实数a,b,则下列四个数中最大的一个数是()A. aB. bC.D.【答案】D【解析】解:∵负数小于正数,∴<a<b<,在区间(0,1)上的实数的倒数比实数本身大.所以>b.故选D.由于负数小于正数,所以a,比b,小,在区间(0,1)上的实数的倒数比实数本身大.本题考查知识点为:负数小于正数,在区间(0,1)上的实数的倒数比实数本身大.32.比较2,,的大小,正确的是()A. B. C. D.【答案】A【解析】解:∵2=,∴<,∵=2,∴<2,∴<<,故选A.先把2写成与的形式,再按照实数大小比较的法则判断即可.此题考查了实数的大小比较法则,解题的关键是牢记法则,此题比较简单,易于掌握.33.如果m>0,n<0,m<|n|,那么m,n,-m,-n的大小关系是()A. -n>m>-m>nB. m>n>-m>-nC. -n>m>n>-mD. n>m>-n>-m 【答案】A【解析】解:根据正数大于一切负数,只需分别比较m和-n,n和-m.再根据绝对值的大小,得-n>m>-m>n.故选A.先确定m、n、-m、-n的符号,再根据正数大于0,负数小于0即可比较m,n,-m,-n 的大小关系.此题主要考查了实数的大小的比较,两个负数,绝对值大的反而小.34.在实数-,π,0,-3中,最小的实数是()A. -B. πC. 0D. -3【答案】D【解析】解:根据实数比较大小的方法,可得-3<-<0<π,∴最小的实数是-3.故选:D.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.35.下列各组数的大小关系正确的是()A. +0.3<-0.1B. 0<-|-7|C. -<-1.414D. ->-【答案】C【解析】解:A、+0.3>-0.1,故本选项不符合题意;B、0>-|-7|,故本选项不符合题意;C、∵1.4142=1.999396,∴-<-1.414,故本选项符合题意;D、-<-,故本选项不符合题意;故选:C.先根据实数的大小比较法则比较数的大小,再得出选项即可.本题考查了实数的大小比较法则、相反数和绝对值,能熟记实数的大小比较法则的内容是解此题的关键,注意:正数都大于0,负数都小于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小.36.在-3,0,,,这四个数中,最小的数是()A. -3B. 0C.D.【答案】D【解析】【分析】此题主要考查了实数比较大小,正确掌握比较方法是解题关键.直接利用负数比较大小的方法结合实数比较大小的方法分析得出答案.【解答】解:∵|-3|=3,|-|=>3,∴-3>-,∴>0>-3>-,故最小的数是:-.故选D.37.在实数-3、0、-、3中,最小的实数是()A. -3B. 0C. -D. 3【答案】A【解析】解:∵1<2<4,∴1<<2.∴-1>->-2.∵3>2,∴-3<-2.∴-3<-2<-<0<3.∴其中最小的实数是-3.故选:A.先估算出-的大小,然后再比较即可.本题主要考查的是比较实数的大小,估算出-的大小是解题的关键.38.下列各数中,最小的数是()A. -2B. 0C.D. -π【答案】D【解析】解:|-|=,则|-|>0>-2>-π,故最小的数是:-π.故选:D.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.39.在下列实数中,最小的是()A. -B. -C. 0D.【答案】A【解析】解:,∴这四个数中最小的是.故选:A.根据实数的大小比较的法则进行比较即可.本题考查的是实数的大小比较,任意两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.40.实数a,b在数轴上的对应点的位置如图所示.把-a,b,0按照从小到大的顺序排列,正确的是()A. -a<0<bB. 0<-a<bC. b<0<-aD. b<-a<0【答案】B【解析】解:由数轴可知,a<0<b,|a|<|b|,∴0<-a<b,故选:B.根据数轴确定a,b的符号和绝对值的大小,根据实数的大小比较法则解答.本题考查的是数轴的概念,实数的大小比较,根据数轴的概念正确判断实数的大小是解题的关键.41.下列整数中,最接近﹣π+1的数是()A. ﹣3B. 0C. ﹣1D. ﹣2【答案】D【解析】【分析】本题考查实数比大小,深刻理解实数中正数>0>负数,两个负数比较大小,绝对值越大的反而越小.据此先估算π的近似值,再通过法则比较即可得出结论.【解答】解:∵π≈3.14∴-π≈-3.14,∴﹣π+1=-2.14,∴最接近的数为-2.故选D.42.四个实数0、、-3.14、2中,最小的数是()A. 0B.C. -3.14D. 2【答案】C【解析】【分析】本题考查了对有理数的大小比较法则的应用,用到的知识点是正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小.根据有理数的大小比较法则(正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小)比较即可.【解答】解:∵-3.14<0<<2,∴最小的数是-3.14,故选C.43.实数a,b,c在数轴上的对应点的位置如图所示,则下列结论正确的是( )A. B. C. D.【答案】C【解析】解:由数轴可知,-4<a<-3,-1<b<0,2<c<3,∴|c|<|a|,A错误;ac<0,B错误;c-b>0,C正确;b+c>0,D错误;故选:C.根据数轴确定a,b,c的范围,根据绝对值的性质,有理数的运算法则计算,判断即可.本题考查的是数轴,绝对值,有理数的乘法,加法和减法,掌握数轴的定义,绝对值的性质是解题的关键.44.下列各数中最小的数是()A. -πB. -3C. -D. 0【答案】A【解析】解:根据实数比较大小的方法,可得-π<-3<-<0,∴各数中最小的数是-π.故选:A.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.45.实数a在数轴上对应的点如图所示,则a,-a,1的大小关系正确的是()A. -a<a<1B. a<-a<1C. 1<-a<aD. a<1<-a【答案】D【解析】解:由数轴上a的位置可知a<0,|a|>1;设a=-2,则-a=2,∵-2<1<2∴a<1<-a,故选项A,B,C错误,选项D正确.故选D.本题首先运用数形结合的思想确定a的正负情况,然后根据相反数意义即可解题.此题主要考查了比较实数的大小,解答此题的关键是根据数轴上a的位置估算出a的值,设出符合条件的数值,再比较大小即可.46.实数中,最小的数是()A. B. -1 C. 0 D. 3【答案】A【解析】【分析】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:根据实数比较大小的方法,可得,∴中,最小的数是.故选A.47.下列各实数中最小的是()A. |-2|B. 0C. -D. -【答案】C【解析】解:根据实数比较大小的方法,可得-<-<0<|-2|,∴各实数中最小的是-.故选:C.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.48.实数a在数轴上对应的点如图所示,则a,-a,-1的大小关系正确的是()A. a<-a<-1B. -a<a<-1C. -1<-a<aD. a<-1<-a【答案】C【解析】【分析】此题主要考查了比较实数的大小,解答此题的关键是根据数轴上a的位置估算出a的值,设出符合条件的数值,再比较大小即可.本题首先运用数形结合的思想确定a的正负情况,然后根据相反数意义即可解题.【解答】解:由数轴上a的位置可知a>0,|a|<1;设a=0.5,则-a=-0.5,∵-1<-0.5<0.5∴-1<-a<a,故选项A,B,D错误,选项C正确.故选C.49.比实数小的数是()A. 2B. 3C. 4D. 5【答案】A【解析】解:∵4<6<9,∴2<<3,∴比实数小的数是2,故选:A.根据实数的估计解答即可.本题考查了实数的大小比较,解决本题的关键是熟记0大于负数,负数比较大小绝对值大的反而小.50.如图,若A是实数a在数轴上对应的点,则关于a,-a,1的大小关系表示正确的是()A. a<1<-aB. a<-a<1C. 1<-a<aD. -a<a<1【答案】A【解析】【分析】本题考查了实数与数轴的对应关系,数轴上的数右边的数总是大于左边的数,根据数轴可以得到a<1<-a,据此即可确定哪个选项正确.【解答】解:∵实数a在数轴上原点的左边,∴a<0,但|a|>1,-a>1,则有a<1<-a.故选A.51.下列四个数:-3,-,-π,-,其中最大的数是()A. -3B. -C. -πD. -【答案】D【解析】解:∵|-3|=3,|-|=,|-π|=π,|-|=,<<3<π,∴最大的数是-.故选:D.根据负数相比较,绝对值大的反而小解答.本题考查了有理数比较大小,(1)正数都大于0,负数都小于0,正数大于一切负数;(2)两个负数,绝对值大的反而小.52.如图,点A是实数a在数轴上对应的点,则a,-a,1的大小关系表示正确的是()A. -a>1>aB. -a>a>1C. 1>-a>aD. 1>a>-a【答案】A【解析】解:如图所示:a<-1,则-a>1,故-a>1>a.故选:A.直接利用数轴得出a的取值范围,进而比较大小即可.此题主要考查了实数比较大小,正确利用数轴是解题关键.53.已知0<x<1,那么在x,,,x2中最小的数是( )A. xB. x2C.D.【答案】B【解析】【分析】本题考查了实数的大小比较,解本题的关键是特殊值法.根据0<x<1,可设x=,从而得出分别为,2,,,再找出最小值即可.【解答】解:∵0<x<1,∴设x=,∴分别为,2,,,∴的值最小.故选B.54.下列各数中,最小实数是()A. 0B.C.D.【答案】B【解析】【分析】此题主要考查了实数的大小的比较,实数比较大小的方法:(1)正数都大于0,负数都小于0,正数大于一切负数;(2)两个负数绝对值大的反而小.根据正数都大于0,负数都小于0,两个负数绝对值大的反而小即可解答.【解答】解:因为在A、B、C、D四个选项中只有B、D选项为负数,故应从B、C选项中选择;又因为|-3|>|-1|,所以-3<-1,因此最小的实数是-3.故选B.55.实数、在数轴上的位置如图所示,则化简的结果为()A. B. C. D.【答案】B【解析】【分析】本题考查了实数与数轴,利用两数相加取绝对值较大加数的符号得出和的符号,小数减大数差为负数是解题关键;由a、b在数轴上的位置,得且,所以,,根据结果的正负性去掉绝对值符号化简即可得到答案.【解答】解:由a、b在数轴上的位置,得且,∴,,∴===故答案为B.56.数轴上实数b的对应点的位置如图所示.比较大小:b+1________0,应该是()A. <B. ≥C. ≤D. >.【答案】A【解析】【分析】本题主要考查的是实数与数轴、不等式的基本性质,熟练掌握相关知识是解题的关键.依据表示b的数在数轴上的位置可知:-2<b<-1,然后依据不等式的性质进行变形即可.【解答】解:由题图知-2<b<-1,所以-1<b+1<0,故选A.57.在0,2,(-3)0,-5这四个数中,最大的数是()A. 0B. 2C. (-3)0D. -5【答案】B【解析】【分析】先利用a0=1(a≠0)得(-3)0=1,再利用两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小即可得出结果.本题主要考查了有理数的大小比较和零指数幂,掌握有理数大小比较的法则和a0=1(a≠0)是解答本题的关键.【解答】解:在0,2,(-3)0=1,-5这四个数中,最大的数是2,故选B.58.在-1,-2,0,1这四个数中,最小的数是( )A. -1B. -2C. 0D. 1【答案】B【解析】【分析】本题考查了有理数大小比较有关知识,根据正数大于0,0大于负数,正数大于负数,同为负数时,绝对值大的负数反而小,比较即可.【解答】解:∵-2<-1<0<1,∴四个实数中,最小的实数是-2.故选B.59.在3,,-4,这四个数中,最大的是( )A. 3B.C. -4D.【答案】D【解析】【分析】本题考查的是实数的大小比较及估算无理数的大小,熟知实数比较大小的法则是解答此题的关键.先估算出和的值,再根据实数比较大小的法则进行比较即可.【解答】解:∵2<<3,又∵3<<4,∴-4<<3<,∴最大的数是.故选D.60.在3,0,-2,-四个数中,最小的数是()A. 3B. 0C. -2D. -【答案】C【解析】解:∵-2<-<0<3,∴四个数中,最小的数是-2,故选:C.依据比较有理数大小的方法判断即可.本题主要考查的是比较有理数的大小,熟练掌握比较有理数大小的法则是解题的关键.61.已知,那么在、、、中最小的数是().A. B. C. D.【答案】B【解析】【分析】此题主要考查了实数比较大小,正确掌握实数的比较大小的方法是解题关键.直接利用x的取值范围,进而比较各数大小.【解答】解:∵-1<x<0,∴>-x2>x>2x,∴在x、2x、、-x2中最小的数是:2x.故选:B.62.在-3,,-1,0这四个实数中,最大的是()A. -3B.C. -1D. 0【答案】B【解析】解:∵正实数都大于0,负实数都小于0,正实数大于一切负实数,∴-3<-1<0<,∴最大.故选:B.利用任意两个实数都可以比较大小,正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小进行比较即可.本题主要考查了比较实数的大小,掌握任意两个实数都可以比较大小,正实数都大于0,负实数都小于0,正实数大于一切负实数,是解答此题的关键.63.下列判断错误的是( )A. B.C. D.【答案】C【解析】【分析】本题考查了实数的大小比较和二次根式的性质,把根号外的因式平方后移入根号内,根据此时被开方数的大小比较即可.【解答】解:A.1.52=2.25, 32=9 , 22=4,2.25<9<4,故正确;B.22=4,()2=5,2.52=6.25,4<5<6.25,故正确;C.12=1,(-)2=8-2=8-1=8-7=8-,2=8-6=8-,8-<8-<8-所以,故错误;D.=5-2=,1=5-4=5->,故正确.故选C.64.已知实数a,b在数轴上的位置如图所示,下列结论中正确的是()A. a>bB. |a|>|b|C. ab>0D. -a<b【答案】B【解析】【分析】本题考查实数与数轴、绝对值以及实数的大小比较,解答本题的关键是明确题意,利用数形结合的思想解答.根据数轴可以判断a、b的正负,从而可以判断各个选项中的结论是否正确,从而可以解答本题.【解答】解:由数轴可得,-2<a<-1<0<b<1,∴a<b,故选项A错误,|a|>|b|,故选项B正确,ab<0,故选项C错误,-a>b,故选项D错误,故选:B.65.有理数a,b在数轴上的位置如图所示,下列结论正确的是()A. -a<-b<a<bB. a<-b<b<-aC. -b<a<-a<bD. a<b<-b<-a 【答案】B【解析】【分析】本题主要考查的是数轴,比较实数的大小的有关知识,根据数轴得到a<0<b且|a|>b,然后再进行大小比较即可.【解答】。

初一数学下册知识点《实数的定义》经典例题及解析

初一数学下册知识点《实数的定义》经典例题及解析

实数的定义一、选择题(本大题共80小题,共240.0分)1. 实数a,b 在数轴上对应点的位置如图所示,化简|a|+ 的结果是()A. -2a+bB. 2a -bC. -bD. b【答案】 A【解析】解:由图可知:a<0,a-b<0,则|a|+=- a-(a-b)=-2 a+b.故选:A.直接利用数轴上a,b 的位置,进而得出a<0,a-b<0,再利用绝对值以及二次根式的性质化简得出答案.此题主要考查了二次根式的性质以及实数与数轴,正确得出各项符号是解题关键.2. 实数a,b,c,d 在数轴上对应的点的位置如图所示,这四个数中最大的是()A. aB. bC. cD. d【答案】 D【解析】解:由数轴可得:a<b<c<d,故选:D.根据实数的大小比较解答即可.此题利用数轴比较大小,在数轴上右边的点表示的数总是大于左边的点表示的数.3. 关于的叙述正确的是()A. 在数轴上不存在表示的点B. = +C. =±2D. 与最接近的整数是 3【答案】 D【解析】解:A、在数轴上存在表示的点,故选项错误;B、≠+ ,故选项错误;C、=2 ,故选项错误;D、与最接近的整数是3,故选项正确.故选:D.根据数轴上的点与实数是一一对应的关系,实数的加法法则,算术平方根的计算法则计算即可求解.考查了实数与数轴,实数的加法,算术平方根,关键是熟练掌握计算法则计算即可求解.4. 下列各数中是有理数的是()A. πB. 0C.D. 【答案】 B【解析】解:A、π是无限不循环小数,属于无理数,故本选项错误;B、0 是有理数,故本选项正确;C、是无理数,故本选项错误;D、无理数,故本选项错误;故选:B.根据有理数是有限小数或无限循环小,可得答案.本题考查了有理数,有限小数或无限循环小数是有理数.5. 已知实数a,b 在数轴上的位置如图所示,下列结论中正确的是()A. a>bB. |a|<|b|C. ab>0D. -a>b【答案】 D【解析】解:由数轴可得,-2<a<-1<0<b<1,∴a<b,故选项 A 错误,|a|>|b|,故选项 B 错误,ab<0,故选项 C 错误,-a>b,故选项 D 正确,故选:D.根据数轴可以判断a、b 的正负,从而可以判断各个选项中的结论是否正确,从而可以解答本题.本题考查实数与数轴、绝对值,解答本题的关键是明确题意,利用数形结合的思想解答.6. 关于的叙述不正确的是()A. =2B. 面积是8 的正方形的边长是C. 是有理数D. 在数轴上可以找到表示的点【答案】 C【解析】解:A、=2 ,所以此选项叙述正确;B、面积是8 的正方形的边长是,所以此选项叙述正确;C、=2 ,它是无理数,所以此选项叙述不正确;D、数轴既可以表示有理数,也可以表示无理数,所以在数轴上可以找到表示的点;所以此选项叙述正确;本题选择叙述不正确的,故选:C.=2 ,是无理数,可以在数轴上表示,还可以表示面积是8 的正方形的边长,由此作判断.本题考查了实数的定义、二次根式的化简、数轴,熟练掌握实数的有关定义是关键.7. 下列实数中,属于有理数的是()A. B. C. π D.【答案】 D【解析】解:A、- 是无理数,故 A 错误;B、是无理数,故 B 错误;C、π是无理数,故 C 错误;D、是有理数,故 D 正确;故选:D.根据有理数是有限小数或无限循环小数,可得答案.本题考查了实数,有限小数或无限循环小数是有理数,无限不循环小数是无理数.8. 如图,已知数轴上的点A、B、C、D 分别表示数-2、1、2、3,则表示数3- 的点P 应落在线段()A. AO 上B. OB 上C. BC 上D. CD 上【答案】 B【解析】解:∵2<<3,∴0<3- <1,故表示数3- 的点P 应落在线段OB 上.故选:B.根据估计无理数的方法得出0<3- <1,进而得出答案.此题主要考查了估算无理数的大小,得出的取值范围是解题关键.9. - 的相反数是()A. B. - C. - D. -2【答案】 A【解析】解:- 的相反数是.故选:A.根据只有符号不同的两个数叫做互为相反数解答.本题考查了实数的性质,熟记相反数的定义是解题的关键.10. 实数a,b 在数轴上的位置如图所示,则化简- +b 的结果是()A. 1B. b+1C. 2aD. 1-2 a【答案】 A【解析】解:由数轴可得:a-1<0,a-b<0,则原式=1-a+a-b+b=1.故选A.利用数轴得出a-1<0,a-b<0,进而利用二次根式的性质化简求出即可.此题主要考查了二次根式的性质与化简,得出各项的符号是解题关键.11. 下列说法错误的是()A. 正整数和正分数统称正有理数B. 两个无理数相乘的结果可能等于零C. 正整数,0,负整数统称为整数D.3.1415926 是小数,也是分数【答案】 B【解析】解:A、正整数和正分数统称为正有理数,正确;B、两个无理数相乘的结果不可能为零,错误;C、正整数,0 负整数统称为整数,正确;D、3.1415926 是小数,也是分数,正确,故选 B利用有理数,整数,无理数,以及分数的定义判断即可.此题考查了实数,涉及的知识有:有理数,无理数,整数与分数,熟练掌握各自的定义是解本题的关键. 12. 有下列说法:①任何无理数都是无限小数; ②有理数与数轴上的点一一对应; ③在 1 和 3 之间的无理数有且只有这4 个; ④ 是分数,它是有理数.⑤近似数 7.30 所表示的准确数 a 的范围是: 7.295≤a < 7.305. 其中正确的个数是()A. 1B. 2C. 3D. 4 【答案】 B【解析】 解:①任何无理数都是无限小数,故说法正确; ②实数与数轴上的点一一对应,故说法错误; ③在 1 和 3 之间的无理数有无数个,故说法错误; ④ 不是分数,它不是有理数,故说法错误. ⑤近似数 7.30 所表示的准确数 a 的范围是: 7.295≤a <7.305,故说法正确. 故选 B .①根据无理数就是无限不循环小数即可判定; ②根据有理数与数轴上的点的对应关系即可的; ③根据无理数的定义及开平方运算的法则即可判定; ④根据无理数、有理数的定义即可判定; ⑤根据近似数的精确度即可判定.此题主要考查了实数的定义及其分类.注意分数能表示成 的形式,其中 A 、B 都是整数.因而像 不是分数,而是无理数.13. 下列说法中正确的是()2A. 实数 -a 是负数B.C. |-a|一定是正数D. 实数 -a 的绝对值是 a【答案】 B 【解析】 【分析】本题考查的是实数的分类及二次根式、 绝对值的性质, 解答此题时要注意 0 既不是正数,也不是负数. 分别根据平方运算的特点, 平方根的性质和绝对值的性质进行逐一分析即可 . 【解答】 解: A 、实数 -a2是负数, a=0 时不成立,故选项错误; B 、 ,符合二次根式的意义,故选项正确,C 、|-a|不一定是正数, a=0 时不成立,故选项错误;D 、实数 -a 的绝对值不一定是 a ,a 为负数时不成立,故选项错误. 故选 B .14. 在,,0,,,227,,相邻两个 6 之间1的个数逐次加中,有理数的个数为( )A. 4B. 5C. 6D. 7 【答案】 C【解析】【分析】本题考查的是有理数问题,关键是根据实数的分类及无理数、有理数的定义分析.分别根据实数的分类及有理数、无理数的概念进行解答.【解答】10%,227,π,0.61611611 6⋯(相邻两个 6 之间1的个数逐在-3,,0,-3.5,﹣次加1)中,有理数为:-3,,0,-3.5,10%,227,共有 6 个.故选 C.15. 下列说法正确的是()A. 无限小数都是无理数B. 9 的立方根是 3C. 平方根等于本身的数是0D. 数轴上的每一个点都对应一个有理数【答案】 C【解析】解:A、无限不循环小数都是无理数,故 A 错误;B、9 的立方根是,故 B 错误;C、平方根等于本身的数是0,故C 正确;D、数轴上的每一个点都对应一个实数,故 D 错误;故选:C.即可.根据实数的分类、平方根和立方根的定义进行选择本题考查了实数、单项式以及多项式,掌握实数的分类、平方根和立方根的定义是解题的关键.16. 关于的叙述,错误的是()A. 是有理数B. 面积为12 的正方形边长是C. =2D. 在数轴上可以找到表示的点【答案】 A【解析】解:A、是无理数,原来的说法错误,符合题意;B、面积为12 的正方形边长是,原来的说法正确,不符合题意;C、=2 ,原来的说法正确,不符合题意;D、在数轴上可以找到表示的点,原来的说法正确,不符合题意.故选:A.根据无理数的定义:无理数是开方开不尽的实数或者无限不循环小数或π;由此即可判项.定选择本题主要考查了实数,有理数,无理数的定义,要求掌握实数,有理数,无理数的范围以及分类方法.17. 下列语句中正确的是()A. 正整数和负整数统称为整数B. 有理数和无理数统称为实数C. 开方开不尽的数和π统称为无理数D. 正数、0、负数统称为有理数【答案】 B【解析】解:A、正整数和负整数,还有零统称为整数,故 A 错误;B、有理数和无理数统称为实数,故 B 正确;C、开方开不尽的数和π都是无理数,故 C 错误;D、整数、分数统称为有理数,故 D 错误;故选B.根据实数的分类进行选择即可.本题考查了实数,掌握实数的分类是解题的关键.18. 下列说法:;数轴上的点与有理数成一一对应关系;是的平方根;任何实数不是有理数就是无理数;两个无理数的和还是无理数;无理数都是无限小数,正确的个数有A. 2 个B. 3 个C. 4 个D. 5 个【答案】 B【解析】【分析】此题主要考查了有理数、无理数、实数的定义及其关系.有理数都可以化为小数,其中整数可以看作小数点后面是零的小数,分数可以化为有限小数或无限循环小数;无理数是无限不循环小数,其中有开方开不尽的数,如,等,也有π这样的数.①根据算术平方根的性质即可判定;②根据实数与数轴上的点的对应关系即可判定;③根据平方根的定义即可判定;④根据实数的分类即可判定;⑤根据无理数的性质即可判定;⑥根据无理数的定义即可判断.【解答】解:①,故说法错误;②数轴上的点与实数成一一对应关系,故说法错误;③-2 是的平方根,故说法正确;④任何实数不是有理数就是无理数,故说法正确;⑤两个无理数的和还是无理数,如与的和是0,是有理数,故说法错误;⑥无理数都是无限小数,故说法正确.故正确的是③④⑥共 3 个.故选B.19.在实数范围内,下列判断正确的是()2>b2,则a>b A. 若|m|=|n|,则m=n B. 若a2C. 若=(),则a=bD. 若= ,则a=b【答案】 D【解析】解:A、根据绝对值的性质可知:两个数的绝对值相等,则这两个数相等或互为相反数,故选项错误;B、平方大的,即这个数的绝对值大,不一定这个数大,如两个负数,故说法错误;C、两个数可能互为相反数,如a=-3,b=3,故选项错误;D、根据立方根的定义,显然这两个数相等,故选项正确.故选:D.解答此题的关键是熟知以下概念:(1)一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0 的绝对值是0.(2)如果一个数的平方等于a,那么这个数叫作 a 的平方根.20.对于-3. 7 ,下列说法不正确的是()A. 是负数B. 是分数C. 是有理数D. 是无理数【答案】 D【解析】解:-3. 7 是无限循环小数,是负数,是分数,是有理数,不是无理数故选:D.根据有理数的定义可得.本题主要考查实数,熟练掌握有理数的定义是解题的关键.21.在数-2,π,0,2.6,+3,中,属于整数的个数为()A. 4B. 3C. 2D. 1【答案】 B【解析】解:在数-2,π,0,2.6,+3,中,整数有-2,0,+3,属于整数的个数,3.故选:B.整数包括正整数、负整数和0,依此即可求解.本题考查了实数的分类.实数分为有理数和无理数;整数和分数统称有理数;整数包括正整数、负整数和0.22.下列数轴上的点 A 都表示实数a,其中,一定满足|a|>2 的是()A. ①③B. ②③C. ①④D. ②④【答案】 B【解析】【分析】本题考查了有理数比较大小,根据绝对值的大小解题是关键.根据绝对值是数轴上的点到原点的距离,图示表示的数,可得答案.【解答】解:一定满足|a |>2 的,A 在-2 的左边,或 A 在2 的右边,故选:B.第7 页,共68 页23.下列说法正确的是()①0 是绝对值最小的实数②相反数大于本身的数是负数③数轴上原点两侧的数互为相反数④带根号的数是无理数A. ①②③④B. ①②③C. ①③D. ①②【答案】 D【解析】解:①0 是绝对值最小的实数,故①正确;②相反数大于本身的数是负数,故②正确;③数轴上原点两侧且到原点距离相等的数互为相反数,故③错误;④带根号的数不一定是无理数,故④错误.故选:D.依据绝对值、相反数、无理数的概念进行判断即可.本题主要考查的是实数的相关概念,熟练掌握相关知识是解题的关键.24.如图,半径为1 的圆从表示 3 的点开始沿着数轴向左滚动一周,圆上的点 A 与表示3 的点重合,滚动一周后到达点B,点 B 表示的数是()A. ﹣2πB. 3﹣2πC. ﹣3﹣2πD. ﹣3+2π【答案】 B【解析】解:由题意得:AB=2πr =2π,点 A 到原点的距离为3,则点 B 到原点的距离为2π-3,∵点B 在原点的左侧,∴点B 所表示的数为-(2π-3)=3- 2π,故选:B.线段AB=2πr =2π,点A 到原点的距离为3,则点 B 到原点的距离为2π-3,点B 在原点的左侧,因此点 B 所表示的数为-(2π-3)=3- 2π,于是得出答案.考查实数的意义,数轴等知识,理解符号和绝对值是确定一个数在数轴上位置的两个必要条件.25.下列说法,正确的有()个①m 是一个实数,m2的算术平方根是m;②m 是一个实数,则-m 没有平方根;③带根号的数是无理数;④无理数是无限小数.A. 0B. 1C. 2D. 3【答案】 B2 2 【解析】解:①如果m 是一个实数,m 的算术平方根是|m|,当m 是非负数时,m的算术平方根是m;所以此说法不正确;②如果m 是一个正数,则-m 没有平方根;所以此选项不正确;③带根号的数不一定是无理数,如=2,是有理数;所以此选项说法不正确;④无理数是无限不循环小数,所以无理数是无限小数,所以此选项说法正确;所以本题说法正确的有 1 个:④,故选B.第8 页,共68 页②根据平方根的定义进行判断;③带根号的数不一定是无理数,开方开不尽的数是无理数;④根据无理数的定义进行判断.此题主要考查了实数的定义、平方根及算术平方根的定义、无理数的定义.属于基础知识,熟练掌握这些基本概念是解题的关键.26.已知实数 a 在数轴上的位置如图,则化简|1-a|+ 的结果为()A. 1B. -1C. 1-2aD. 2a-1【答案】 C【解析】解:由数轴可得:-1<a<0,则|1-a|+ =1-a-a=1-2 a.故选:C.直接利用二次根式的性质化简得出答案.此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.27.下列说法错误的是()A. 的平方根是±2B. 是无理数C. 是有理数D. 是分数【答案】 D【解析】【分析】本题主要考查了实数的有关概念及其分类,其中开不尽方才是无理数,无限不循环小数为无理数.A .根据算术平方根、平方根的定义即可判定; B.根据无理数的定义即可判定;C.根据无理数和立方根的定义即可判定;D.根据开平方和有理数、无理数和分数的定义即可判定.【解答】解:,,故 A 正确;是无理数,故 B 正确;是有理数,故 C 正确;不是分数,它是无理数,故 D 选项错误.故选 D.28.有以下说法:其中正确的说法有()(1)开方开不尽的数是无理数;(2)无理数是无限循环小数(3)无理数包括正无理数和负无理数;(4)无理数都可以用数轴上的点来表示;(5)循环小数都是有理数A. 1 个B. 2 个C. 3 个D. 4 个【答案】 D【解析】解:(1)开方开不尽的数是无理数,该说法正确;(2)无理数是无限不循环小数,原说法错误;(3)无理数包括正无理数和负无理数,该说法正确;(4)无理数都可以用数轴上的点来表示,该说法正确;(5)循环小数都是有理数,该说法正确.正确的有 4 个.故选:D.根据无理数的三种形式求解.,解答本题的关键是掌握无理数的三种形式:①开方开不尽的本题考查了无理数的知识数,②无限不循环小数,③含有π的数.29.如图,数轴上点P 表示的数可能是()A. B. C. D.【答案】 B【解析】解:由被开方数越大算术平方根越大,得<<<<<,即<2<<3<<,故选:B.根据被开方数越大算术平方根越大,可得答案.<<<<本题考查了实数与数轴,利用被开方数越大算术平方根越大得出<是解题关键.30.如图,数轴上,AB=AC,A,B 两点对应的实数分别是和-1,则点 C 所对应的实数是()A. 1+B. 2+C. 2 -1D. 2 +1【答案】 D【解析】解:AC=AB= +1,C 点坐标 A 点坐标加A C 的长,++1=2 +1,即C 点坐标为故选:D.根据线段中点的性质,可得答案.本题考查了实数与数轴,利用线段中点的性质得出A C 的长是解题关键.31.下列各数中,属于有理数的是()A.B.C. πD. 3.1313313331⋯⋯(两个“1”之间依次多一个3)【答案】 A【解析】解:A、是有理数,故此选项正确;B、是无理数,故此选项错误;C、π是无理数,故此选项错误;D、3.1313313331⋯⋯(两个“1”之间依次多一个3)是无理数,故此选项错误;故选:A.直接利用有理数以及无理数的定义分别分析得出答案.此题主要考查了实数,正确掌握相关定义是解题关键.32.下列各组数中互为相反数的是()A. -3 与B. -(-2)与-|-2|C. 5 与D. -2 与【答案】 B【解析】解:A、-3 与不符合相反数的定义,故选项错误;B、-(-2)=2,-|-2|=-2 只有符号相反,故是相反数,故选项正确.C、无意义,故选项错误;D、-2=-2 ,=-2 相等,不符合相反数的定义,故选项错误.故选:B.首先根据绝对值的定义化简,然后根据相反数的定义即可解答.此题主要考查相反数的定义:只有符号相反的两个数互为相反数,0 的相反数是其本身.33.下列说法正确的是()A. 1 的平方根是它本身B. 是分数C. 负数没有立方根D. 如果实数x、y 满足条件y= ,那么x和y 都是非负实数【答案】 D【解析】解:A、1 的平方根是±1,错误;B、是无理数,错误;C、负数有立方根,错误;D、如果实数x、y 满足条件y= ,那么x和y都是非负实数,正确;故选:D.根据平方根、分数、立方根和实数的概念解答即可.此题考查实数问题,关键是根据平方根、分数、立方根和实数的概念解答.34.下列说法中,正确的是()①;②一定是正数;③无理数一定是无限小数;④16.8 万精确到十分位;⑤(-4) 2 的算术平方根是4.A. ①②③B. ④⑤C. ②④D. ③⑤【答案】 D【解析】解:- <- ,故①错误;当m=0 时,是0,不是正数,故②错误;无理数一定是无限小数,故③正确;16.8 万精确到千位,故④错误;(-4)2的算术平方根是4.故⑤正确;即正确的有③⑤,故选:D.根据实数的大小比较,算术平方根的定义,无理数的定义,精确度逐个判断即可.本题考查了实数的大小比较,算术平方根的定义,无理数的定义,精确度等知识点,能熟记知识点的内容是解此题的关键.35.下列说法正确的是()A. 立方根等于它本身的实数只有0 和1B. 平方根等于它本身的实数是0C. 1 的算术平方根是D. 绝对值等于它本身的实数是正数【答案】 B【解析】【分析】此题考查了立方根,平方根,算术平方根,绝对值,掌握这些概念是关键,逐项分析即可得到答案.【解答】解:A.立方根等于它本身的数是0,-1,1,故A 错误;B.平方根等于它本身的实数是0,故 B 正确;C.1 的算术平方根是1,故C 错误;D.绝对值等于它本身的实数是正数,0,故 C 错误;故选 B.36.已知实数a,b 在数轴上对应的点如图所示,则下列式子正确的是()A. -a<-bB. a+ b<0C. |a |<|b|D. a-b>0【答案】 C【解析】解:根据点a、b 在数轴上的位置可知-1<a<0,1<b<2,则-a>-b,a+ b>0,|a|<|b|,a- b<0.故选:C.根据点a、b 在数轴上的位置可判断出a、b 的取值范围,即可作出判断.本题主要考查的是数轴的认识、有理数的加法、减法、绝对值性质的应用,掌握法则是解题的关键.37.设面积为 6 的正方形的边长为a.下列关于 a 的四种说法:①a 是有理数;② a 是无理数;③ a 可以用数轴上的一个点来表示;④2<a<3.其中说法正确的有()A. 1 个B. 2 个C. 3 个D. 4 个【答案】 C【解析】解:∵面积为 3 的正方形的边长为a,∴a= ,故①a 是有理数,错误;②a 是无理数,正确;③a 可以用数轴上的一个点来表示,正确;④2<a<3,正确,则说法正确的是:②③④共 3 个.故选:C.直接利用得出正方形的边长,再利用实数的性质分析得出答案.此题主要考查了实数的性质以及无理数的估算,正确掌握实数有关性质是解题关键.38.实数a,b,c在数轴上的位置如图所示,则化简|b|+|c-a |-|a+ b|的结果为()A. 2a+2 b-cB. -cC. c-2aD. a-b-c【答案】 B【解析】解:从数轴上a、b、c的位置关系可知:c<a<0,b>0 且|b |>|a|,故a+ b>0,c-a<0,即有|b|+|c-a |-|a+ b|=b-(c- a)-(a+ b)=b-c+a-a-b=- c.故选:B.首先从数轴上a、b、c 的位置关系可知:c<a<0,b>0 且|b|>|a |,接着可得a+ b>0,c-a<0,然后即可化简|b|+| c-a|-|a+ b|.此题主要考查了利用数轴比较两个的大小和化简绝对值.数轴的特点:从原点向右为正数,向左为负数,及实数与数轴上的点的对应关系.39.我们知道有一些整数的算术平方根是有理数,如,,,⋯已知n=1,2,3,⋯,99,100,易知中共有10 个有理数,那么中的有理数的个数是()A. 20B. 14C. 13D. 7【答案】 D【解析】解:∵是有理数,∴2n 是完全平方数,∵n=1,2,3,⋯,99,100,∴2n=2,4,6,⋯,198,200,∴在2,4,6,⋯,198,200 的这组数据中,完全平方数有2,8,18,36,64,100,144,196,∴中的有理数的个数是7,故选:D.在2,4,6,⋯,198,200 的这组数据中,找出完全平方数即可..本题考查了实数,完全平方数,正确的找出完全平方数是解题的关键40.将四个数- ,,,表示在数轴上,被如图所示的墨迹覆盖的数是()A. -B.C.D.【答案】 D【解析】解:,,,,因为盖住的数大于 2 小于3,故选:D.盖住的数大于 2 小于3,估计,,的值可确定答案..本题考查无理数值的大小估计.确定无理数在哪两个整数之间是解答的关键41.正方形ABCD 在数轴上的位置如图所示,点D、A 对点顺针时应的数分别为0 和1,若正方形ABCD 绕顶方向在数轴上连续翻转,翻转 1 次后,点B 所对应的数为2;按此规律继续翻转下去,则数轴上数2019 所对应的点是()A. 点AB. 点BC. 点CD. 点D【答案】 C【解析】解:当正方形在转动第一周的过程中, 1 所对应的点是A,2 所对应的点是B,3 所对应的点是C,4 所对应的点是D,∴四次一循环,∵2019 ÷4=504⋯3,∴2019 所对应的点是C.故选:C.由题意可知转一周后,A、B、C、D 分别对应的点为1、2、3、4,可知其四次一循环,由次可确定出2019 所对应的点.律是解题的关键.本题主要考查实数与数轴以及正方形的性质,确定出点的变化规42.下列格式中,化简结果与的倒数相同是()A. B. C. D.【答案】 A【解析】解:的倒数是.A、原式= ,故本选项正确.B、原式= ,故本选项错误.C、原式=- ,故本选项错误.D、原式= ,故本选项错误.故选:A.解答.的倒数是,根据实数的性质、绝对值的计算方法法则即可解题.算计考查了实数的性质,倒数的定义以及绝对值,属于基础题,熟记43.实数a.b 在数轴上的位置如图所示,下列各式中不成立的是()A. -a>bB. a+6<0C. a-b<a+bD. |a |+|b |<|a+b|【答案】 D【解析】解:选项 A 正确:找出表示数 a 的点关于原点的对称点-a,与 b 相比较可得出-a>b.选项 B 正确:a+ b<0;选项 C 正确:a-b<a+b;选项 D 正确的是|a|+|b |>|a+ b|,故这个选项不成立.故选:D.根据一对相反数在数轴上的位置特点,先找出与点 a 相对应的-a,然后与 b 相比较,即可排除选项求解..本题考查了实数与数轴的关系用字母表示数,具有抽象性.互由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者相补充,相辅相成.验,就因为是选择题,也可以采用特值法,如:取a=-2,b=1,代入四个选项,逐一检可以得出正确答案.这样做具体且直观.44.关于下列说法中不正确的是()A. 是无理数B. 的平方是 2C. 2 的平方根是D. 面积为 2 的正方形的边长可表示为【答案】 C【解析】解:A、是无理数,正确,故本选项不符合题意;B、的平方是2,正确,故本选项不符合题意;C、2 的平方根是,错误,故本选项符合题意;D、面积为 2 的正方形的边长为,正确,故本选项不符合题意;故选:C.根据无理数、实数的乘方、平方根的定义、算术平方根的定义逐个判断即可.本题考查了实数及分类、无理数、实数的乘方、平方根的定义、算术平方根的定义,能熟记知识点的内容是解此题的关键,注意:实数包括无理数和有理数,无理数是指无限不循环小数.45.下列结论正确的是()A. 无限不循环小数叫做无理数B. 有理数包括正数和负数C. 0是最小的整数D. 两个有理数的和一定大于每一个加数【答案】 A【解析】解:A、无限不循环小数叫做无理数,正确,故本选项符合题意;B、有理数包括正有理数、0 和负有理数,不正确,故本选项不符合题意;C、0 不是最小的整数,没有最小的整数,不正确,故本选项不符合题意;D、一个数同0 相加仍得这个数,所以两个有理数的和不一定大于每一个加数,不正确,故本选项不符合题意.故选:A.根据有理数、无理数、整数及有理数的加法法则判断即可.本题考查了有理数、无理数、整数及有理数的加法法则,属于基础知识,需牢固掌握.46.①倒数等于本身的数为1;②若a、b 互为相反数,那么a、b 的商必定等于﹣1;③对于任意实数x,|x|+x 一定是非负数;④一个数前面带有“﹣”号,则这个数是负数;⑤整数和小数统称为有理数;⑥数轴上的点都表示有理数;⑦绝对值等于自身的数为0 和1;⑧平方等于自身的数为0 和1;其中正确的个数是()A. 0 个B. 1 个C. 2 个D. 3 个【答案】 C【解析】【分析】本题考查了相反数,绝对值,非负数的性质:绝对值,倒数,掌握相反数,绝对值,非负数的性质:绝对值,倒数的定义是解决问题的关键.直接利用倒数以及绝对值和相反数的性质分别分析得出答案。

七年级实数计算题

七年级实数计算题

七年级实数计算题一、平方根的计算。

1. 计算√(16)- 解析:因为4^2 = 16,所以√(16)=4。

2. 计算√(25)+√(9)- 解析:√(25) = 5,因为5^2=25;√(9)=3,因为3^2 = 9。

所以√(25)+√(9)=5 + 3=8。

3. 计算√(121)-√(49)- 解析:√(121) = 11,因为11^2=121;√(49)=7,因为7^2 = 49。

所以√(121)-√(49)=11-7 = 4。

4. 计算√(0.09)- 解析:因为0.3^2=0.09,所以√(0.09)=0.3。

5. 计算√(1frac{9){16}}- 解析:先将带分数化为假分数,1(9)/(16)=(25)/(16)。

因为((5)/(4))^2=(25)/(16),所以√(1frac{9){16}}=(5)/(4)。

二、立方根的计算。

6. 计算sqrt[3]{8}- 解析:因为2^3 = 8,所以sqrt[3]{8}=2。

7. 计算sqrt[3]{ - 27}- 解析:因为( - 3)^3=-27,所以sqrt[3]{-27}=-3。

8. 计算sqrt[3]{64}+sqrt[3]{ - 1}- 解析:sqrt[3]{64}=4,因为4^3 = 64;sqrt[3]{-1}=-1,因为( - 1)^3=-1。

所以sqrt[3]{64}+sqrt[3]{-1}=4+( - 1)=3。

9. 计算sqrt[3]{0.001}- 解析:因为0.1^3 = 0.001,所以sqrt[3]{0.001}=0.1。

10. 计算sqrt[3]{1-(19)/(27)}- 解析:先计算1-(19)/(27)=(8)/(27)。

因为((2)/(3))^3=(8)/(27),所以sqrt[3]{1-(19)/(27)}=(2)/(3)。

三、实数的混合运算。

11. 计算√(4)+sqrt[3]{ - 8}- - 3- 解析:√(4)=2,sqrt[3]{-8}=-2,| - 3|=3。

(完整版)七年级数学《实数》经典例题及习题新人教版

(完整版)七年级数学《实数》经典例题及习题新人教版

山东省肥城市湖屯镇初级中学七年级数学《实数》经典例题及习题新人教版经典例题1.下面几个数:0.23,1.010010001…,,3π,,,其中,无理数的个数有()A、1B、2C、3D、4解析:本题主要考察对无理数概念的理解和应用,其中,1.010010001…,3π,是无理数故选C举一反三:【变式1】下列说法中正确的是()A、的平方根是±3B、1的立方根是±1C、=±1D、是5的平方根的相反数【答案】本题主要考察平方根、算术平方根、立方根的概念,∵=9,9的平方根是±3,∴A正确.∵1的立方根是1,=1,是5的平方根,∴B、C、D都不正确.【变式2】如图,以数轴的单位长线段为边做一个正方形,以数轴的原点为圆心,正方形对角线长为半径画弧,交数轴正半轴于点A,则点A表示的数是()A、1B、1.4C、D、【答案】本题考察了数轴上的点与全体实数的一一对应的关系.∵正方形的边长为1,对角线为,由圆的定义知|AO|=,∴A表示数为,故选C.【变式3】【答案】∵π= 3.1415…,∴9<3π<10因此3π-9>0,3π-10<0∴类型二.计算类型题2.设,则下列结论正确的是( )A. B.C. D.解析:(估算)因为,所以选B举一反三:【变式1】1)1。

25的算术平方根是__________;平方根是__________。

2) —27立方根是__________.3)___________,___________,___________。

【答案】1);.2)—3。

3),,【变式2】求下列各式中的(1)(2)(3)【答案】(1)(2)x=4或x=-2(3)x=-4类型三.数形结合3。

点A在数轴上表示的数为,点B在数轴上表示的数为,则A,B两点的距离为______解析:在数轴上找到A、B两点,举一反三:【变式1】如图,数轴上表示1,的对应点分别为A,B,点B关于点A的对称点为C,则点C表示的数是( ).A.-1 B.1- C.2- D.-2【答案】选C[变式2]已知实数、、在数轴上的位置如图所示:化简【答案】:类型四.实数绝对值的应用4.化简下列各式:(1) |—1。

专题实数的运算计算题(共45小题)

专题实数的运算计算题(共45小题)

七年级下册数学《第六章 实 数》 专题 实数的运算计算题(共45小题)1.(2022秋•招远市期末)计算: (1)(√5)2+√(−3)2+√−83;(2)(﹣2)3×18−√273×(−√19).【分析】(1)原式利用平方根及立方根定义计算即可求出值; (2)原式利用乘方的意义,算术平方根及立方根定义计算即可求出值. 【解答】解:(1)原式=5+3+(﹣2) =8﹣2 =6;(2)原式=(﹣8)×18−3×(−13) =(﹣1)﹣(﹣1) =﹣1+1 =0.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键. 2.(2022•庐江县二模)计算:√0.04+√−83−√1−925. 【分析】先计算被开方数,再开方,最后加减. 【解答】解:原式=0.2﹣2−√1625 =0.2﹣2−45 =0.2﹣2﹣0.8 =﹣2.6.【点评】本题考查了实数的混合运算,掌握开方运算是解决本题的关键. 3.(2022春•上思县校级月考)计算: (1)−12+√16+|√2−1|+√−83; (2)2√3+|√3−2|−√643+√9.【分析】(1)直接利用算术平方根的性质、绝对值的性质、立方根的性质分别化简,进而计算得出答案;(2)直接利用算术平方根的性质、绝对值的性质、立方根的性质分别化简,进而计算得出答案. 【解答】解:(1)−12+√16+|√2−1|+√−83; =﹣1+4+√2−1﹣2 =√2;(2)原式=2√3+2−√3−4+3 =√3+1.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.4.(2022春•渝中区校级月考)实数的计算: (1)√16+√(−3)2+√273; (2)√−33+|1−√33|﹣(−√3)2.【分析】(1)先计算平方根和立方根,再计算加减; (2)先计算平方根、立方根和绝对值,再计算加减; 【解答】解:(1)√16+√(−3)2+√273=4+3+3 =10;(2)√−33+|1−√33|﹣(−√3)2=−√33+√33−1﹣3 =﹣4.【点评】此题考查了实数的混合运算能力,关键是能准确理解运算顺序,并能进行正确地计算.5.(2022秋•原阳县月考)计算: (1)√−83+√4−(−1)2023;(2)(−√9)2−√643+|−5|−(−2)2.【分析】(1)先化简各式,然后再进行计算即可解答; (2)先化简各式,然后再进行计算即可解答. 【解答】解:(1)√−83+√4−(−1)2023 =﹣2+2﹣(﹣1)=0+1 =1;(2)(−√9)2−√643+|−5|−(−2)2 =9﹣4+5﹣4 =6.【点评】本题考查了实数的运算,准确熟练地化简各式是解题的关键.6.(2022春•牡丹江期中)计算: (1)−12−√0.64+√−273−√125;(2)√3+√(−5)2−√−643−|√3−5|.【分析】(1)先计算平方、平方根和立方根,再进行加减运算; (2)先计算平方根、立方根和绝对值,再进行加减运算. 【解答】解(1)−12−√0.64+√−273−√125=﹣1﹣0.8﹣3﹣0.2 =﹣5;(2)√3+√(−5)2−√−643−|√3−5| =√3+5+4+√3−5 =2√3+4.【点评】此题考查了运用平方根和立方根进行有关运算的能力,关键是能准确理解并运用以上知识.7.(2022秋•南关区校级期末)计算:√16−(−1)2022−√273+|1−√2|.【分析】直接利用有理数的乘方运算法则、绝对值的性质、平方根的性质分别化简,进而得出答案. 【解答】解:原式=4﹣1﹣3+√2−1 =√2−1.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.8.(2022秋•成武县校级期末)计算:﹣12022−√643+|√3−2|.【分析】这里,先算﹣12022=﹣1,√643=4,|√3−2|=2−√3,再进行综合运算.【解答】解:﹣12022−√643+|√3−2|=﹣1﹣4+2−√3 =﹣3−√3.【点评】本题考查了实数的综合运算,计算过程中要细心,注意正负符号,综合性较强.9.(2022春•昌平区校级月考)√1253+√(−3)2−√1−35273.【分析】先化简各式,然后再进行计算即可解答.【解答】解:√1253+√(−3)2−√1−35273=5+3−√−8273=5+3﹣(−23) =5+3+23 =823.【点评】本题考查了实数的运算,准确熟练地化简各式是解题的关键.10.(2022春•舒城县校级月考)计算:√−273+12√16+|−√2|+1.【分析】首先计算开方、开立方和绝对值,然后计算乘法,最后从左向右依次计算,求出算式的值即可. 【解答】解:√−273+12√16+|−√2|+1 =﹣3+12×4+√2+1 =﹣3+2+√2+1 =√2.【点评】此题主要考查了实数的运算,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用. 11.(2022春•舒城县校级月考)计算:﹣12+|﹣2|+√−83+√(−3)2.【分析】先化简各式,然后再进行计算即可解答. 【解答】解:﹣12+|﹣2|+√−83+√(−3)2=﹣1+2+(﹣2)+3=﹣1+2﹣2+3 =2.【点评】本题考查了实数的运算,准确熟练地化简各式是解题的关键.12.(2021秋•镇巴县期末)计算:(−1)10+|√2−2|+√49+√(−3)33. 【分析】按照实数的运算顺序进行运算即可. 【解答】解:原式=1+2−√2+7−3 =7−√2.【点评】本题考查了实数的运算,掌握对值,立方根以及平方根的运算法则是关键.13.(2022春•阳新县期末)计算:|√3−2|+√−83×12+(−√3)2.【分析】先算开方和乘方,再化简绝对值算乘法,最后加减. 【解答】解:原式=2−√3+(﹣2)×12+3 =2−√3−1+3 =4−√3.【点评】本题考查了实数的运算,掌握乘方、开方及绝对值的意义是解决本题的关键.14.(2022春•十堰期中)计算:﹣12022+√(−4)2+√83+10√925.【分析】先算乘方、开方,再算乘法,最后算加减. 【解答】解:原式=﹣1+4+2+10×35 =﹣1+4+2+6 =11.【点评】本题考查了实数的混合运算,掌握实数的运算法则、实数的运算顺序是解决本题的关键. 15.(2021秋•峨边县期末)计算:|√5−3|+√(−2)2−√−83+√5. 【分析】直接利用绝对值的性质以及立方根的性质分别化简,进而得出答案. 【解答】解:原式=3−√5+2+2+√5 =7.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.16.(2021秋•乳山市期末)计算:√(−3)2−2×√94+52×√−0.0273.【分析】应用实数的运算法则:先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行,进行计算即可得出答案. 【解答】解:原式=3﹣2×32+52×(﹣0.3) =3﹣3−52×310 =0−34 =−34.【点评】本题主要考查了实数的运算,熟练掌握实数的运算进行求解是解决本题的关键.17.(2022秋•横县期中)计算:(﹣1)2022+√9−(2﹣3)÷12.【分析】先计算乘方与开方和小括号里的,再计算除法,最后计算加减即可. 【解答】解:原式=1+3﹣(﹣1)×2 =4+2 =6.【点评】此题考查的实数的运算,掌握其运算法则是解决此题的关键.18.(2022秋•儋州校级月考)计算: (1)√643−√81+√1253+3; (2)|−3|−√16+√83+(−2)2.【分析】(1)直接利用立方根的性质、平方根的性质分别化简,进而计算得出答案; (2)直接利用立方根的性质、平方根的性质、绝对值的性质分别化简,进而计算得出答案. 【解答】解:(1)原式=4﹣9+5+3 =3;(2)原式=3﹣4+2+4 =5.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.19.(2022秋•海曙区校级期中)计算: (1)﹣23+√−273−(﹣2)2+√1681;(2)(﹣3)2×(﹣2)+√643+√9.【分析】(1)先计算乘方、立方根和平方根,再计算加减; (2)先计算乘方、立方根和平方根,再计算乘法,最后计算加减. 【解答】解:(1)﹣23+√−273−(﹣2)2+√1681=﹣8﹣3﹣4+49=﹣1459;(2)(﹣3)2×(﹣2)+√643+√9=﹣9×2+4+3 =﹣18+4+3 =﹣11.【点评】此题考查了实数的混合运算能力,关键是能准确确定运算顺序和方法.20.(2022秋•安岳县校级月考)计算: (1)(√3)2−√16+√−83;(2)(﹣2)3×√1214+(﹣1)2013−√273; (3)√(−4)2+√214+√3383−√32+42.【分析】(1)先化简各式,然后再进行计算即可解答; (2)先化简各式,然后再进行计算即可解答; (3)先化简各式,然后再进行计算即可解答. 【解答】解:(1)(√3)2−√16+√−83=3﹣4+(﹣2) =﹣3;(2)(﹣2)3×√1214+(﹣1)2013−√273=﹣8×112+(﹣1)﹣3=﹣44﹣1﹣3=﹣48;(3)√(−4)2+√214+√3383−√32+42=4+32+32−5=2.【点评】本题考查了实数的运算,准确熟练地化简各式是解题的关键.21.(2022秋•隆昌市校级月考)计算:(1)|−3|−√16+√−83+(−2)2;(2)√−273+|2−√3|−(−√16)+2√3.【分析】(1)首先计算乘方、开平方、开立方和绝对值,然后从左向右依次计算,求出算式的值即可.(2)首先计算开平方、开立方和绝对值,然后从左向右依次计算,求出算式的值即可.【解答】解:(1)|−3|−√16+√−83+(−2)2=3﹣4+(﹣2)+4=1.(2)√−273+|2−√3|−(−√16)+2√3=﹣3+(2−√3)﹣(﹣4)+2√3=﹣3+2−√3+4+2√3=3+√3.【点评】此题主要考查了实数的运算,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.22.(2021秋•泉州期末)计算:√(−3)2×√−1 83−(12)2+(−1)2022.【分析】先算乘方和开方,再算乘法,最后算加减.【解答】解:原式=3×(−12)−14+1=−32−14+1 =−12−14=−34.【点评】本题主要考查了实数的运算,掌握平方根的性质、乘方运算、开方运算是解决本题的关键.23.(2022秋•新野县期中)计算:√−83+√9−√1916+(−1)2022+|1−√2|. 【分析】利用立方根的定义,算术平方根的定义,乘方运算,绝对值的定义计算即可. 【解答】解:√−83+√9−√1916+(−1)2022+|1−√2|. =﹣2+3−54+1+√2−1 =−14+√2.【点评】本题考查了实数的运算,解题的关键是掌握立方根的定义,算术平方根的定义,乘方运算,绝对值的定义.24.(2021秋•新兴区校级期末)计算下列各题: (1)√1−19273+√(14−1)2; (2)√53−|−√53|+2√3+3√3.【分析】(1)先化简各式,然后再进行计算即可解答; (2)先化简各式,然后再进行计算即可解答. 【解答】解:(1)√1−19273+√(14−1)2=√8273+√(−34)2=23+34 =1712;(2)√53−|−√53|+2√3+3√3 =√53−√53+2√3+3√3 =5√3.【点评】本题考查了实数的运算,准确熟练地化简各式是解题的关键.25.(2022秋•绥德县期中)计算:2(√3−1)−|√3−2|−√643. 【分析】先去括号,化简绝对值,开立方,再计算加减即可. 【解答】解:原式=2√3−2﹣(2−√3)﹣4 =2√3−2﹣2+√3−4 =3√3−8.【点评】本题考查实数的混合运算,平方根加法,熟练掌握实数的混合运算法则是解题的关键.26.(2022秋•义乌市校级期中)计算:﹣22×(﹣112)2−√−643−√169×|﹣3|. 【分析】先算乘方,再算乘法,后算加减,即可解答. 【解答】解:﹣22×(﹣112)2−√−643−√169×|﹣3|=﹣4×94−(﹣4)−43×3 =﹣9+4﹣4 =﹣9.【点评】本题考查了实数的运算,准确熟练地进行计算是解题的关键.27.(2022秋•西湖区校级期中)计算: (1)|7−√2|﹣|√2−π|−√(−7)2;(2)﹣22×√(−4)2+√(−8)33×(−12)−√273.【分析】(1)先化简绝对值和平方根,再计算加减; (2)先算乘方和根式,再计算乘法,最后加减. 【解答】解:(1)|7−√2|﹣|√2−π|−√(−7)2 =7−√2−(π−√2)﹣7 =7−√2−π+√2−7 =﹣π;(2)﹣22×√(−4)2+√(−8)33×(−12)−√273 =﹣4×4+(﹣8)×(−12)﹣3=﹣16+4﹣3=﹣15.【点评】本题考查了实数的混合运算,实数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行实数的混合运算时,注意各个运算律的运用,使运算过程得到简化.28.(2022秋•沈丘县校级月考)计算:√0.01×√121+√−11253−√0.81. 【分析】直接利用平方根的性质、立方根的性质分别化简,进而得出答案.【解答】解:原式=0.1×11−15−0.9=1.1﹣0.2﹣0.9=0.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.29.(2022春•西山区校级期中)计算:5−2×(√7−2)+√−83+|√3−2|.【分析】直接利用立方根的性质、绝对值的性质分别化简,进而计算得出答案.【解答】解:原式=5﹣2√7+4﹣2+2−√3=9﹣2√7−√3.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.30.(2022春•东莞市期中)计算:√(−3)2+(﹣1)2020+√−83+|1−√2| 【分析】先化简各式,然后再进行计算即可解答.【解答】解:√(−3)2+(﹣1)2020+√−83+|1−√2| =3+1+(﹣2)+√2−1=3+1﹣2+√2−1=1+√2.【点评】本题考查了实数的运算,准确熟练地化简各式是解题的关键.31.(2022秋•安溪县月考)计算:√16+√−273−√3−|√3−2|+√(−5)2.【分析】直接利用立方根的性质、绝对值的性质算术平方根的性质分别化简,进而合并得出答案.【解答】解:原式=4﹣3−√3−2+√3+5=4.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.32.(2022秋•仁寿县校级月考)计算:√−8273+√(−4)2×(−12)3−|1−√3|. 【分析】先化简各式,然后再进行计算即可解答.【解答】解:√−8273+√(−4)2×(−12)3−|1−√3|=−23+4×(−18)﹣(√3−1) =−23+(−12)−√3+1=−76−√3+1=−16−√3.【点评】本题考查了实数的运算,准确熟练地进行计算是解题的关键.33.(2022春•海淀区校级期中)计算:√81+√−273−2(√3−3)−|√3−2|.【分析】本题涉及去掉绝对值、根式化简考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=9﹣3﹣2√3+6﹣(2−√3)=6﹣2√3+6﹣2+√3=10−√3.【点评】本题主要考查了实数的综合运算能力,解决此类题目的关键是准确熟练地化简各式是解题的关键.34.(2022春•梁平区期中)计算:√(−1)33+√−273+√(−2)2−|1−√3|.【分析】利用算术平方根,立方根和绝对值的意义化简运算即可.【解答】解:原式=﹣1+(﹣3)+2﹣(√3−1)=﹣1﹣3+2−√3+1=﹣1−√3.【点评】本题主要考查了实数的运算,算术平方根,立方根和绝对值的意义,正确利用上述法则与性质化简运算是解题的关键.35.(2022春•东莞市校级期中)计算:﹣12020+√(−2)2−√643+|√3−2|. 【分析】直接利用有理数的乘方运算法则、平方根的性质、立方根的性质、绝对值的性质分别化简,进而计算得出答案.【解答】解:原式=﹣1+2﹣4+2−√3=﹣1−√3.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.36.计算下列各题:(1)√1+√−273−√14+√0.1253+√1−6364(2)|7−√2|﹣|√2−π|−√(−7)2【分析】(1)原式利用平方根、立方根定义计算即可求出值;(2)原式利用绝对值的代数意义计算即可求出值.【解答】解:(1)原式=1﹣3−12+0.5+18=−178; (2)原式=7−√2−π+√2−7=﹣π.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.37.计算:√0.0083×√1916−√172−82÷√−11253. 【分析】首先计算开方、乘法和除法,然后计算减法,求出算式的值是多少即可.【解答】解:√0.0083×√1916−√172−82÷√−11253=0.2×54−15÷(−15)=14+75 =7514【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.38.计算:3√3−2(1+√3)+√(−2)2+|√3−2|【分析】首先利用去括号法则以及绝对值的性质和算术平方根的定义分别化简得出答案.【解答】解:原式=3√3−2﹣2√3+2+2−√3=2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.39.计算:(1)√(−2)2×√214−23×√(−18)23(2)√9+|1−√2|−√125273×√(−3)2+|4√0.25−√2|【分析】(1)首先计算开方和乘法,然后计算减法,求出算式的值是多少即可.(2)首先计算开方和乘法,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:(1)√16+√32+√−83=4+3﹣2=5(2)√(−2)2×√214−23×√(−18)23 =2×32−8×14=3﹣2=1(3)√9+|1−√2|−√125273×√(−3)2+|4√0.25−√2|=3+√2−1−53×3+2−√2=﹣1【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.40.计算:(﹣2)2×√14+|√−83|+√2×(﹣1)2022 【分析】原式利用平方根、立方根定义,绝对值的代数意义,以及乘方的意义计算即可得到结果;【解答】解:原式=2+2+√2=4+√2;【点评】此题考查了实数的运算,平方根、立方根,熟练掌握各自的性质是解本题的关键.41.计算:﹣22+√16+√83+1014×934. 【分析】原式第一项利用乘方的意义计算,第二项利用算术平方根定义计算,第三项利用立方根定义计算,最后一项利用乘法法则计算即可得到结果.【解答】解:原式=﹣4+4+2+414×394=2+159916=1011516. 【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.42.计算:|﹣5|−√273+(﹣2)2+4÷(−23). 【分析】根据绝对值的性质、立方根的性质以及实数的运算法则化简计算即可;【解答】解:原式=5﹣3+4﹣6=0【点评】本题考查实数的混合运算,解题的关键是:掌握先乘方,再乘除,后加减,有括号的先算括号里面的,在同一级运算中要从左到右依次运算,无论何种运算,都要注意先定符号后运算.43.(2022秋•城关区校级期中)计算:(1)√12+(√3)2+14√48−9√13;(2)√(−3)2+(−1)2022+√83+|1−√2|.【分析】(1)直接利用平方根的性质分别化简,进而计算得出答案;(2)直接利用平方根的性质、有理数的乘方运算法则、立方根的性质、绝对值的性质分别化简,进而计算得出答案.【解答】解:(1)原式=2√3+3+14×4√3−9×√33 =2√3+3+√3−3√3=3;(2)原式=3+1+2+√2−1=5+√2.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.44.(2021春•濉溪县期末)计算:√49−√273+|1−√2|+√(1−43)2.【分析】原式第一项利用算术平方根定义计算,第二项利用立方根定义计算,第三项利用绝对值的代数意义化简,最后一项利用平方根性质化简即可得到结果.【解答】解:原式=7﹣3+√2−1+13=103+√2. 【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.45.(2022秋•岳麓区校级月考)计算−12022+(12)2+|√2−3|−√(−3)2.【分析】根据乘方,绝对值的意义,平方根的性质将原式进行化简,然后根据实数运算法则进行计算即可.【解答】解:原式=−1+14+3−√2−3,=−34−√2.【点评】本题考查了乘方,绝对值的意义,平方根的性质,掌握相关运算法则是关键.。

盘锦市七年级数学下册第六章【实数】经典习题(含答案解析)

盘锦市七年级数学下册第六章【实数】经典习题(含答案解析)

一、选择题1.若2x -+|y+1|=0,则x+y 的值为( ) A .-3B .3C .-1D .12.对于任意不相等的两个实数a ,b ,定义运算:a ※b =a 2﹣b 2+1,例如3※2=32﹣22+1=6,那么(﹣5)※4的值为( ) A .﹣40B .﹣32C .18D .103.下列各组数中,互为相反数的是( ) A .2-与2B .2-与12-C .()23-与23-D .38-与38-4.64的算术平方根是( ) A .8B .±8C .22D .22±5.若“!”是一种运算符号,且1!=1,2!=2×1,3!=3×2×1,4!=4×3×2×1,…,则计算2015!2014!正确的是( ) A .2015B .2014C .20152014D .2015×20146.如图,直径为1个单位长度的圆从A 点沿数轴向右滚动(无滑动)两周到达点B ,则点B 表示的数是( )A .1π-B .21π-C .2πD .21π+7.已知n 是正整数,并且n -1<326+<n ,则n 的值为( ) A .7B .8C .9D .108.下列计算正确的是( ) A 11-=-B 2(3)3-=-C 42=±D 31182-=-9. 5.713457.134,则571.34的平方根约为( ) A .239.03B .±75.587C .23.903D .±23.903 10.下列实数是无理数的是( ) A . 5.1-B .0C .1D .π11.在1.414,213,5π,2-中,无理数的个数是( ) A .1B .2C .3D .4二、填空题12.计算:(1)132322⎛⎫⨯-⨯-⎪⎝⎭(2)2291|11232⎛⎫-+--⨯- ⎪⎝⎭13.求下列各式中x 的值.(1)4(x ﹣3)2=9; (2)(x +10)3+125=0. 14.计算:(1)36 1.754⎛⎫--+ ⎪⎝⎭;(2)()()232524-⨯--÷;(3)()225--. 15.求下列各式中x 的值 (1)()328x -= (2)21(3)753x -=16.初一年级某同学在学习完第二章《有理数》后,对运算产生了浓厚的兴趣.他借助有理数的运算,定义了一种新运算“⊕”,规则如下:21a b a ab ⊕=--.求()23-⊕的值.17.(2218.已知5的整数部分为a ,5-b ,则2ab b +=_________. 19.一个四位正整数的千位、百位、十位、个位上的数字分别为a ,b ,c ,d ,如果a b c d ≤≤≤,那么我们把这个四位正整数叫做进步数,例如四位正整数2347:因为2347<<<,所以2347叫做进步数.(1)求四位正整数中的最大的“进步数”与最小的“进步数”的差;(2)已知一个四位正整数的百位、个位上的数字分别是1、4,且这个四位正整数是“进步数”,同时,这个四位正整数能被7整除,求这个四位正整数. 20.求下列各式中的x : (1)2940x -=;(2)3(1)8x -=21.9的平方根是_____,-27的立方根是______,()216的算术平方根是_________.三、解答题22.(1)求x 的值:2490x -=; (2)计算:()2325227+--23.求下列各式中x 的值. (1)2(1)2x +=;(2)329203x +=. 24.若()22210b a b -+++-=,求()2020a b +的值.25.如图,数轴上点A ,B ,C 所对应的实数分别为a ,b ,c ,试化简()323|-|b a c a b -++.一、选择题1.观察下列各等式:231-+=-5-6+7+8=4-10-l1-12+13+14+15=9-17-18-19-20+21+22+23+24=16……根据以上规律可知第11行左起第11个数是( ) A .-130B .-131C .-132D .-1332.下列命题中,①81的平方根是9;±2;③−0.003没有立方根;④−64的立方根为±4; ) A .1B .2C .3D .43.下列说法正确的是( ) A .2-是4-的平方根 B .2是()22-的算术平方根 C .()22-的平方根是2D .8的平方根是44.下列命题是真命题的是( ) A .两个无理数的和仍是无理数 B .有理数与数轴上的点一一对应 C .垂线段最短D .如果两个实数的绝对值相等,那么这两个实数相等 5.下列实数中,是无理数的为( )A .3.14B .13C D 6.下列各数中无理数共有( )①–0.21211211121111,②3π,③227,A .1个B .2个C .3个D .4个7.如图,直径为1个单位长度的圆从A 点沿数轴向右滚动(无滑动)两周到达点B ,则点B 表示的数是( )A .1π-B .21π-C .2πD .21π+8.数轴上有O 、A 、B 、C 四点,各点位置与各点所表示的数如图所示.若数线上有一点D ,D 点所表示的数为d ,且|d ﹣5|=|d ﹣c |,则关于D 点的位置,下列叙述正确的是?( )A .在A 的左边B .介于O 、B 之间C .介于C 、O 之间D .介于A 、C 之间9.下列命题中真命题的个数( )①无理数包括正无理数、零和负无理数;②经过直线外一点有且只有一条直线与已知直线平行;③和为180°的两个角互为邻补角;④49的算术平方根是7;⑤有理数和数轴上的点一一对应;⑥垂直于同一条直线的两条直线互相平行. A .4B .3C .2D .110.我们定义新运算如下:当m n ≥时,m 22n m n =-;当m n <时,m 3n m n =-.若5x =,则(3-)(6x -)x 的值为( )A .-27B .-47C .-58D .-6811.下列说法正确的有( ) (1)带根号的数都是无理数; (2)立方根等于本身的数是0和1; (3)a -一定没有平方根;(4)实数与数轴上的点是一一对应的; (5)两个无理数的差还是无理数;(6)若面积为3的正方形的边长为a ,a 一定是一个无理数. A .1个B .2个C .3个D .4个二、填空题12.求出x 的值:()23227x +=13.如图所示,直径为单位1的圆从原点沿着数轴无滑动的逆时针滚动一周到达A 点,则A 点表示的数是_____.若点B 表示 3.14-,则点B 在点A 的______边(填“左”或“右”).14.﹣8的立方根与16的平方根之和是_____.15.若[x ]表示实数x 的整数部分,例如:[3.5]=3,则[17]=___.16.在实数的原有运算法则中,我们补充新运算法则“*”如下:当a≥b 时,a*b=b 2,当a<b 时,a*b=a ,则当x=2时,()()1*-3*=x x x ______17.已知3331.51 1.147,15.1 2.472,0.1510.5325===,则31510的值是______________________.18.如图,一只蚂蚁从点A 沿数轴向右爬了2个单位长度到达点B ,点A 表示2-,设点B 所表示的数为m .(1)求11m m ++-的值;(2)在数轴上还有C 、D 两点分别表示实数c 和d ,且有2c d +4d +求23c d -的平方根.19.已知21a -的平方根是1731a b +-的算术平方根是6,求4a b +的平方根. 20.定义一种新运算“”规则如下:对于两个有理数a ,b ,ab ab b =-,若()()521x -=-,则x =______21.规定新运算:()*4a b a ab =+.已知算式()3*2*2x =-,x =_______.三、解答题22.计算:(1)﹣12327-﹣(﹣2)9(2331)+32| 23.定义一种新运算;观察下列各式;131437=⨯+=()3134111-=⨯-=5454424=⨯+=()4344313-=⨯-=(1)请你想一想:a b = ;(2)若ab ,那么ab ba (填“=”或“≠” );(3)先化简,再求值:()()2a b a b -+,其中1a =-,2b =.24.计算: (1. (2)()23540.255(4)8⨯--⨯⨯-.25.(1)解方程组;25342x y x y -=⎧⎨+=⎩(2)解不等式组:352(2)22x x x x -≥-⎧⎪⎨>-⎪⎩①②,并写出它的所有整数解.(3)解方程:2(x 2)100-=(4)计算:20172(1)|7|(----一、选择题1.在实数:20192020,π2π,0.36,0.3737737773…(相邻两个3之间7的个数逐次加1),52- ) A .4B .5C .6D .72.已知122=,224=,328=,4216=,5232=,……,根据这一规律,20192的个位数字是( ) A .2B .4C .8D .63.下列说法正确的是( ) A .2-是4-的平方根 B .2是()22-的算术平方根 C .()22-的平方根是2 D .8的平方根是44.下列说法正确的是( )A .2B .(﹣4)2的算术平方根是4C .近似数35万精确到个位D 55.已知实数a 的一个平方根是2-,则此实数的算术平方根是( ) A .2±B .2-C .2D .46. ) A .287.2B .28.72C .13.33D .133.37.下列各式中,正确的是( )A B .C 3=-D 4=-8.下列计算正确的是( )A 1=-B 3=-C 2=±D 12=-9.已知无理数m 5π-的整数部分相同,则m 为( )A BC 1D .π-10.已知:m 、n 为两个连续的整数,且5m n <<,以下判断正确的是( ) A .5的整数部分与小数部分的差是45- B .3m = C .5的小数部分是0.236 D .9m n +=11.估计511-的值在( ) A .5~6之间B .6~7之间C .7~8之间D .8~9之间二、填空题12.阅读下列材料,并回答问题:我们把单位“”平均分成若干份,表示其中一份的数叫“单位分数”.单位分数又叫埃及分数,在很早以前,埃及人就研究如何把一个单位分数表示成两个或几个单位分数的和或差.今天我们来研究如何拆分一个单位分数.请观察下列各式:111162323==-⨯;1111123434==-⨯, 1111204545==-⨯,1111305656==-⨯. (1)由此可推测156= ; (2)请用简便方法计算:11111612203042++++; (3)请你猜想出拆分一个单位分数的一般规律,并用含字母m 的等式表示出来(m 表示正整数);(4)仔细观察下面的式子,并用(3)中的规律计算:()()()()()()121231312x x x x x x -+------13.213a -=,31a b -+的平方根是4±,c 433a b c ++的平方根.14.对于结论:当a +b =0时,a 3+b 3=0也成立.若将a 看成a 3的立方根,b 看成是b 3的立方根,由此得出这样的结论:“如果两数的立方根互为相反数,那么这两数也互为相反数”. (1)试举一个例子来判断上述结论的猜测是否成立? (2332x -35x +12x -的值.15.小明定义了一种新的运算,取名为⊗运算,按这种运算进行运算的算式举例如下:①(+4)⊗(+2)=+6;②(﹣4)⊗(﹣3)=+7;③(﹣5)⊗(+3)=﹣8;④(+6)⊗(﹣4)=﹣10;⑤(+8)⊗0=8;⑥0⊗(﹣9)=9.问题:(1)请归纳⊗运算的运算法则:两数进行⊗运算时, ;特别地,0和任何数进行⊗运算,或任何数和0进行⊗运算, . (2)计算:[(﹣2)⊗(+3)]⊗[(﹣12)⊗0]; (3)我们都知道乘法有结合律,这种运算律在有理数的⊗运算中还适用吗?请判断是否适用,并举例验证. 16.计算:(1)(23)(41)----; (2)1111115()13()3()555-⨯-+⨯--⨯-;(3)2(2)|1|-+;(4)311()()(2)424-⨯-÷-.17.对于有理数,a b ,我们规定*a b b ab =- (1)求(2)*1-的值.(2)若有理数x 满足(2)*36x -=,求x 的值. 18.(1)计算:|3|-.(2)求下列各式中x 的值: ③22536x =; ④3(1)64x --=.19.﹣8_____. 20.(1)求x 的值:2490x -=;(221.若一个正数的平方根是21a -和5a -,则这个正数是______.三、解答题22.计算:(12)-+(223.对数运算是高中常用的一种重要运算,它的定义为:如果a x =N (a >0,且a ≠1),那么数x 叫做以a 为底N 的对数,记作:x =log a N ,例如:32=9,则log 39=2,其中a =10的对数叫做常用对数,此时log 10N 可记为lgN .当a >0,且a ≠1,M >0,N >0时,log a (M •N )=log a M +log a N .(1)解方程:log x 4=2;(2)求值:log 48;(3)计算:(lg 2)2+lg 2•1g 5+1g 5﹣201824.计算题.(1)12(7)6(22)-+----(2)2122⨯(33(2)(4)-⨯- (4)13248243⎛⎫-⨯-+- ⎪⎝⎭25.观察下列各式:112⨯=1-12,123⨯=12-13,134⨯=13-14. (1)请根据以上式子填空: ①189⨯= ,②1(1)n n ⨯+= (n 是正整数) (2)由以上几个式子及你找到的规律计算:112⨯+123⨯+134⨯+............+120152016⨯。

(必考题)初中七年级数学下册第六单元《实数》经典习题(含答案解析)

(必考题)初中七年级数学下册第六单元《实数》经典习题(含答案解析)

一、选择题1.a,小数部分为b,则a-b的值为()A.6-B6C.8D8A解析:A【分析】先根据无理数的估算求出a、b的值,由此即可得.【详解】<<,91516<<,<<34∴==,a b3,3)∴-=-=,336a b故选:A.【点睛】本题考查了无理数的估算,熟练掌握估算方法是解题关键.2.观察下列运算:81=8,82=64,83=512,84=4 096,85=32 768,86=262 144,…,则81+82+83+84+…+82 017的和的个位数字是()A.2 B.4 C.6 D.8D解析:D【分析】根据规律可得底数为8的幂的个位数字依次为8,4,2,6,以4个为周期,个位数字相加为0. 2017除以4余数是1,故得到和的个位数字是8.【详解】解:2017÷4=504…1,循环了504次,还有1个个位数字为8,所以81+82+83+84+…+82017的和的个位数字是504×0+8=8.故选:D.【点睛】本题主要考查了数字的变化类,尾数的特征,得到底数为8的幂的个位数字的循环规律是解决本题的突破点.3.下列命题是真命题的是()A.两个无理数的和仍是无理数B.有理数与数轴上的点一一对应C.垂线段最短D.如果两个实数的绝对值相等,那么这两个实数相等C解析:C【分析】根据实数的定义和运算法则、绝对值的意义进行分析.【详解】A 、两个无理数的和可能是有理数,例如:2+(-2),故错误;B 、实数与数轴上的点一一对应,故错误;C 、垂线段最短,正确;D 、如果两个实数的绝对值相等,那么这两个实数相等或互为相反数;故选:C.【点睛】本题考查实数的定义和运算法则、绝对值的意义等,熟练掌握基础知识是关键. 4.如图,数轴上表示实数5的点可能是( )A .点PB .点QC .点RD .点S B 解析:B【分析】5【详解】∵253<<,∴5Q .故选:B .【点睛】5 5.在一列数:1a ,2a ,3a ,…,n a 中,1=7a ,2=1a 从第三个数开始,每一个数都等于它前两个数之积的个位数字,则这列数中的第2020个数是( )A .1B .3C .7D .9C解析:C【分析】根据题意可以写出这列数的前几个数,从而可以发现数字的变化特点,进而可以得到这一列数中的第2020个数.【详解】解:由题意可得:a 1=7,a 2=1,a 3=7,a 4=7,a 5=9,a 6=3,a 7=7,a 8=1,…,∵2020÷6=336…4,∴这一列数中的第2020个数是7.故选:C .【点睛】本题考查数字的变化类、尾数特征,解答本题的关键是明确题意,发现数字的变化的特点,求出相应的数据.6.若“!”是一种运算符号,且1!=1,2!=2×1,3!=3×2×1,4!=4×3×2×1,…,则计算2015!2014!正确的是( ) A .2015B .2014C .20152014D .2015×2014A解析:A【分析】根据题意列出实数混合运算的式子,进而可得出结论;【详解】∵ 1!=1,2!=2×1,3!=3×2×1,4!=4×3×2×1⋅⋅⋅⋅⋅⋅,∴ 可得规律为:()()12!321n n n n =⨯-⨯-⨯⋅⋅⋅⨯⨯⨯, ∴2015!2014!=201520142013120152014201320121⨯⨯⨯⋅⋅⋅⨯=⨯⨯⨯⋅⋅⋅⨯ , 故选:A .【点睛】 本题考查了实数的混合运算,熟知实数混合运算的法则是解答此题的关键.7.在 1.4144-,,227,3π,2,0.3•,2.121112*********...中,无理数的个数( )A .1B .2C .3D .4D 解析:D【分析】分别根据无理数、有理数的定义即可判定选择项.【详解】 1.4144-,有限小数,是有理数,不是无理数;227,分数,是有理数,不是无理数; 0.3•,无限循环小数,是有理数,不是无理数;2-, 3π,23-, 2.121112*********...是无理数,共4个, 故选:D .【点睛】本题主要考查了无理数.初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.8.在下列实数3,0.31,3π,27-,9,12-,38,1.212212221…(每两个1之间依次多一个2)中,无理数的个数为( ) A .1B .2C .3D .4C 解析:C【分析】无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,据此逐一判断即可得.【详解】解∵93=,382=,∴在所列的8个数中,无理数有3,3π,1.212 212 221…(每两个1之间依次多一个2)这3个,故选:C .【点睛】 本题主要考查的是无理数的概念,熟练掌握无理数的三种类型是解题的关键. 9.如图是一个按某种规律排列的数阵:根据数阵排列的规律,第n (n 是整数,且n ≥3)行从左向右数第(n ﹣2)个数是( )(用含n 的代数式表示)A 21n -B 22n -C 23n -D 24n - B解析:B【分析】 观察不难发现,被开方数是从1开始的连续自然数,每一行的数据的个数是从2开始的连续偶数,求出n-1行的数据的个数,再加上n-2得到所求数的被开方数,然后写出算术平方根即可.【详解】解:前(n ﹣1)行的数据的个数为2+4+6+…+2(n ﹣1)=n (n ﹣1),所以,第n (n 是整数,且n ≥3)行从左到右数第n ﹣2个数的被开方数是n (n ﹣1)+n ﹣2=n 2﹣2,所以,第n (n 是整数,且n ≥3)行从左到右数第n ﹣2.故选:B .【点睛】本题考查了算术平方根,观察数据排列规律,确定出前(n-1)行的数据的个数是解题的关键.10.下列计算正确的是( )A .21155⎛⎫-= ⎪⎝⎭ B .()239-= C 2=± D .()515-=- B 解析:B【分析】 根据有理数的乘方以及算术平方根的意义即可求出答案.【详解】解:A.211525⎛⎫-= ⎪⎝⎭,所以,选项A 运算错误,不符合题意; B.()239-=,正确,符合题意;2=,所以,选项C 运算错误,不符合题意;D.()511-=-,所以,选项D 运算错误,不符合题意;故选:B .【点睛】本题考查了有理数的运算以及求一个数的算术平方根,解题的关键是熟练掌握相关的运算法则. 二、填空题11.已知(2m ﹣1)2=9,(n+1)3=27.求出2m+n 的算术平方根.0或【分析】第一个方程依据平方根的定义求解即可;第二个方程依据立方根的定义可求得n+1=3然后再解方程即可;最后分别代入计算即可【详解】解:(2m-1)2=92m-1=±=±32m-1=3或2m-1解析:0.【分析】第一个方程依据平方根的定义求解即可;第二个方程依据立方根的定义可求得n+1=3,然后再解方程即可;最后分别代入计算即可.【详解】解:(2m-1)2=9,,2m-1=3或2m-1=-3,∴m=-1或m=2,(n+1)3=27,n+1=3,∴n=2,当m=-1,n=2时,2m+n=-2+2=0,∴2m+n 的算术平方根是0;当m=2,n=2时,2m+n=4+2=6,∴2m+n ;故2m+n 的算术平方根是0.【点睛】此题考查了立方根与平方根的定义,此题难度不大,注意掌握方程思想的应用,不要丢解.12.定义一种新运算,观察下列式子:212122128=⨯+⨯⨯=★;2232322330=⨯+⨯⨯=★;()()()221212212-=⨯-+⨯⨯-=-★; ()()213132133-=-⨯+⨯-⨯=★;;(1)计算:()32-★的值;(2)猜想:a b =★________;(3)若12162a +=-★,求a 的值.(1);(2);(3)【分析】(1)利用规定的运算方法直接代入计算即可;(2)利用规定的运算方法求解即可;(3)利用规定的运算方法得到方程再进一步解方程即可【详解】解:(1)∵;;;;;∴;(2)由解析:(1)0;(2)22ab ab +;(3)5a =-【分析】(1)利用规定的运算方法直接代入计算即可;(2)利用规定的运算方法求解即可;(3)利用规定的运算方法得到方程,再进一步解方程即可.【详解】解:(1)∵212122128=⨯+⨯⨯=★;2232322330=⨯+⨯⨯=★;()()()221212212-=⨯-+⨯⨯-=-★; ()()213132133-=-⨯+⨯-⨯=★;;∴()()()232322320-=⨯-+⨯⨯-=★;(2)由(1)可得:22a b ab ab =+★.故答案为:22ab ab +.(3)2111222216222a a a +++=⨯+⨯⨯=-★, 解得:5a =-.【点睛】此题考查有理数的混合运算以及解一元一次方程,理解运算方法是解决问题的关键. 13.求下列各式中x 的值(1)()328x -=(2)21(3)753x -=(1);(2)或【分析】(1)利用立方根的定义得到然后解一次方程即可;(2)先变形为然后利用平方根的定义得到的值【详解】(1)∵∴∴;(2)整理得:∴或∴或【点睛】本题考查了解一元一次方程平方根和立解析:(1)4x =;(2)18x =或12x =-.【分析】(1)利用立方根的定义得到22x -=,然后解一次方程即可;(2)先变形为()23225x -=,然后利用平方根的定义得到x 的值.【详解】(1)∵()328x -=,∴22x -=,∴4x =;(2)21(3)753x -=,整理得:()23225x -=,∴315x -=或315x -=-,∴18x =或12x =-.【点睛】本题考查了解一元一次方程,平方根和立方根,熟练掌握各自的定义是解本题的关键. 14.对于有理数a ,b ,定义一种新运算“”,规定a b a b a b =++-.(1)计算()23-的值;(2)①当a ,b 在数轴上的位置如图所示时,化简ab ; ②当a b ac =时,是否一定有b c =或者b c =-?若是,则说明理由;若不是,则举例说明.(1)6;(2)①;②不一定理由见解析【分析】(1)根据新定义可得然后按有理数的运算法则计算即可;(2)①首先根据数轴可得 然后根据新定义可得去掉绝对值符号之后按整式加减运算法则化简即可;②举反例:解析:(1)6;(2)①2b -;②不一定,理由见解析.【分析】(1)根据新定义可得()()()232323-=+-+--☉,然后按有理数的运算法则计算即可;(2)①首先根据数轴可得0a b +<,0a b -> ,然后根据新定义可得a b a b a b =++-☉,去掉绝对值符号之后按整式加减运算法则化简即可;②举反例:当5a =-,4b =,3c =时,a b a c =☉☉成立;【详解】(1)()23-☉()()2323=+-+--15=-+15=+6=; (2)①从a ,b 在数轴上的位置可得0a b +<,0a b -> ,()()2a b a b a b a b a b a b b ∴==++-=-++-=-;②不一定有b c =或者b c =-,举反例如下,当5a =-,4b =,3c =时,10ab a b a b =++-=☉,10ac a c a c =++-=☉, 此时a b a c =☉☉成立,但b c ≠且b c ≠-.【点睛】本题考查新定义运算,解答的关键是根据新定义,转化成有理数的运算,整式的运算. 15.对两数a ,b 规定一种新运算:2a b ab ⊗=,例如:2422416⊗=⨯⨯=,若不论x 取何值时,总有a x x ⊗=,则a =______.【分析】将转化为2ax=x 来解答【详解】解:∵可转化为:2ax=x 即∵不论x 取何值都成立∴解得:故答案为:【点睛】本题考查实数的运算正确理解题目中的新运算是解题的关键解析:12【分析】将a x x ⊗=,转化为2ax=x 来解答.【详解】解:∵a x x ⊗=可转化为:2ax=x ,即()210a x -=,∵不论x 取何值,()210a x -=都成立,∴210a -=,解得:12a =, 故答案为:12. 【点睛】 本题考查实数的运算,正确理解题目中的新运算是解题的关键.16.比较3、4 _______________.(用“<”连接)3<<4;【分析】先估算出的范围即可求出答案【详解】∵∴故答案为:【点睛】本题考查了估算无理数的大小能估算出的大小是解此题的关键解析:34;【分析】【详解】 ∵3=4= ∴34<<.故答案为:34<<.【点睛】17.下列实数0, 23,,π,0.1010010001其中无理数共有___个.2【分析】根据无理数的定义解答即可【详解】解:实数中无理数有实数π共2个故答案为:2【点睛】本题考查了无理数的定义其中初中范围内学习的无理数有:π2π等;开方开不尽的数;以解析:2【分析】根据无理数的定义解答即可.【详解】解:实数0,23,π,0.1010010001π共2个, 故答案为:2.【点睛】 本题考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.18.设a ,b a b <<,是,则a b =____.9【分析】求出的范围求出ab 的值代入求出即可【详解】∵2<<3∴a =2b =3∴ba =32=9故答案为:9【点睛】本题考查了估算无理数的大小的应用关键是求出ab 的值解析:9【分析】a 、b 的值,代入求出即可.【详解】∵23,∴a =2,b =3,∴b a =32=9.故答案为:9.【点睛】本题考查了估算无理数的大小的应用,关键是求出a 、b 的值.19.已知有理数1a ≠,我们把11a -称为a 的差倒数,如:2的差倒数是1112=--,1-的差倒数是()11112=--,如果13a =-,2a 是1a 的差倒数,4a 是3a 的差倒数,4a 是5a 的差倒数…依此类推,那么的12342017201820192020a a a a a a a a -+-⋅⋅⋅+-+-值是______.【分析】根据题意可以写出这列数的前几项从而可以发现数字的变化规律从而可以求得所求式子的值【详解】∵∴……∴每三个数一个循环∵∴则+--3-3-++3=-3-++3故答案为:【点晴】本题考查数字的变化 解析:1312. 【分析】 根据题意,可以写出这列数的前几项,从而可以发现数字的变化规律,从而可以求得所求式子的值.【详解】∵13a =-,∴()211134a ==--,3441131a ,443131a ,()511134a ==--, …… ∴1a ,2n a a ⋅⋅⋅每三个数一个循环,∵202036731÷=⋅⋅⋅,∴202013a a ==-,则12342017201820192020a a a a a a a a -+-⋅⋅⋅+-+-143343=--+++14-43-3 -3-14+43+3 =-3-14+43+3 1312=. 故答案为:1312. 【点晴】本题考查数字的变化类,解答本题的关键是明确题意,发现数字的变化特点,求出所求式子的值.20.若30a +=,则+a b 的立方根是______.-1【分析】根据绝对值和二次根式的非负性求出ab 的值计算即可;【详解】∵∴∴∴∴的立方根-1故答案是-1【点睛】本题主要考查了代数式求值结合绝对值二次根式的非负性立方根的性质计算是解题的关键解析:-1【分析】根据绝对值和二次根式的非负性求出a ,b 的值计算即可;【详解】∵30a ++=,∴30a +=,20b -=,∴3a =-,2b =, ∴321a b +=-+=-, ∴+a b 的立方根-1.故答案是-1.【点睛】本题主要考查了代数式求值,结合绝对值、二次根式的非负性、立方根的性质计算是解题的关键.三、解答题21.阅读下列信息材料信息1:因为尤理数是无限不循环小数,因此无理数的小数部分我们不可能全部地写出来比如:π“……”或者“≈”的表示方法都不够百分百准确;信息2:2.5的整数部分是2,小数部分是0.5,可以看成2.52-得来的;信息3:任何一个无理数,都可以夹在两个相邻的整数之间,如23<<,是因为<;根据上述信息,回答下列问题:(1___________,小数部分是______________;(2)若2122a <<,则a 的整数部分是___________;小数部分可以表示为_______;(3)10+10a b <则a b +=______;(43x y =+,其中x 是整数,且01y <<,请求x y -的相反数.解析:(1)33;(2)21;21a -;(3)23;(47.【分析】(1)先找到91316<<,可找到34<< (2)根据因为2122a <<,即可找出a 的整数部分与小数部分(3)找到12<<在哪两个整数之间,再加10即可.(4)先确定56<<,找到233<<,由01y <<,x 是整数,即可确定x=2,5,再求7x y -=,即可求出【详解】(1)91316<< ∴34<<33故答案为:33;(2)因为2122a <<,故则a 的整数部分是21,a 的小数部分可以表示为21a -. 故答案为:21;21a -;(3)因为12<<, ∴10110102+<+<+,即111012<+<,所以=11a ,=12b ,故23a b +=,故答案为:23;(4)5306<<,23033<<,∵01y <<,x 是整数,∴x=2, ∴325-=,∴)257x y -=-=,∴x y -7.【点睛】本题考查的是无理数的整数部分与小数部分,掌握估值法确定无理数的范围,即无限不循环小数知识的拓展延伸,理解题意,按照题目所给的表示方法去解答是关键.22.进位数是一种计数方法,可以用有限的数学符号代表所有的数值,使用数字符号的数目称为基数,基数为n 个则称为n 进制,现在最常用的是十进制,通常使用10个阿拉伯数字0—9作为基数,特点是满十进1,对于任意一个(210)n n ≤≤进制表示的数通常使用n 个阿拉伯数字()01--n 作为基数,特点是逢n 进一,我们可以通过下列方式把它转化为十进制.例如:五进制数 ()252342535469=⨯+⨯+=,则()523469=,七进制数()271361737676=⨯+⨯+=(1)请将以下两个数转化为十进制:()5333= ,(746)= .(2)若一个正数可以用7进制表示为()7abc ,也可用五进制表示为()5cba ,求出这个数并用十进制表示.解析:(1)93,34;(2)这个数用十进制表示为51或102.【分析】(1)根据进制的规则列式计算即可;(2)根据题意列得227755a b c c b a ++=++,化简成24a+b=12c ,根据a 、b 、c 的取值范围分别将a 从1开始取值验证,即可得到答案.【详解】(1)()253333535393=⨯+⨯+=,7(46)47634=⨯+=,故答案为:93,34;(2)根据题意得:227755a b c c b a ++=++,∴24a+b=12c , ∴212b c a =+, ∵a 、b 、c 均为整数,且04b ≤≤,∴b=0,c=2a ,∵04a <≤,04c <≤,∴12a c =⎧⎨=⎩或24a c =⎧⎨=⎩, ∵27(102)170251=⨯++=,27(204)2704102=⨯++=.∴这个数用十进制表示为51或102.【点睛】此题考查新定义运算,有理数的混合运算,列代数式,正确理解题意是解题的关键. 23.教材中的探究:如图,把两个边长为1的小正方形沿对角线剪开,用所得到的4个直角三角形拼成一个面积为2的大正方形.由此,得到了一种能在数轴上画出无理数对应点的方法(数轴的单位长度为1).(1)阅读理解:图1中大正方形的边长为________,图2中点A 表示的数为________; (2)迁移应用:请你参照上面的方法,把5个小正方形按图3位置摆放,并将其进行裁剪,拼成一个大正方形.①请在图3中画出裁剪线,并在图3中画出所拼得的大正方形的示意图.②利用①中的成果,在图4的数轴上分别标出表示数-0.5以及 35-的点,并比较它们的大小.解析:(1)2,2-;(2)①见解析;②见解析, 350.5-+<-【分析】(1)设正方形边长为a ,根据正方形面积公式,结合平方根的运算求出a 值,则知结果; (2) ① 根据面积相等,利用割补法裁剪后拼得如图所示的正方形;②由题(1)的原理得出大正方形的边长为5,然后在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M ,再把N 点表示出来,即可比较它们的大小.【详解】解:设正方形边长为a ,∵a 2=2,∴a=2±,故答案为:2,2-;(2)解:①裁剪后拼得的大正方形如图所示:②设拼成的大正方形的边长为b ,∴b 2=5,∴b=±5,在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M ,则M 表示的数为-3+5,看图可知,表示-0.5的N 点在M 点的右方,∴比较大小:350.5-+<-.【点睛】本题主要考查平方根与算术平方根的应用及实数的大小比较,熟练掌握平方根与算术平方根的意义及实数的大小比较是解题的关键.24.定义一种新运算,观察下列式子:212122128=⨯+⨯⨯=★;2232322330=⨯+⨯⨯=★;()()()221212212-=⨯-+⨯⨯-=-★; ()()213132133-=-⨯+⨯-⨯=★;;(1)计算:()32-★的值;(2)猜想:a b =★________;(3)若12162a +=-★,求a 的值. 解析:(1)0;(2)22ab ab +;(3)5a =-【分析】(1)利用规定的运算方法直接代入计算即可;(2)利用规定的运算方法求解即可;(3)利用规定的运算方法得到方程,再进一步解方程即可.【详解】解:(1)∵212122128=⨯+⨯⨯=★;2232322330=⨯+⨯⨯=★;()()()221212212-=⨯-+⨯⨯-=-★; ()()213132133-=-⨯+⨯-⨯=★;;∴()()()232322320-=⨯-+⨯⨯-=★;(2)由(1)可得:22a b ab ab =+★.故答案为:22ab ab +.(3)2111222216222a a a +++=⨯+⨯⨯=-★, 解得:5a =-.【点睛】此题考查有理数的混合运算以及解一元一次方程,理解运算方法是解决问题的关键. 25.求下列x 的值.(1) 27x 3=-8 (2) (3x -1)2=9解析:(1)x =23-;(2)x =43或x =23- 【分析】(1)利用立方根的定义求解;(2)利用平方根的定义求解.【详解】(1)解:3827x =,23x =; (2)解:313x -=±,34x =或32x =-, 43x =或23x =-. 【点睛】本题考查解方程,熟练掌握立方根、平方根的定义是关键.26.对于有理数a ,b ,定义一种新运算“”,规定a b a b a b =++-.(1)计算()23-的值;(2)①当a ,b 在数轴上的位置如图所示时,化简ab ; ②当ab ac =时,是否一定有b c =或者b c =-?若是,则说明理由;若不是,则举例说明. 解析:(1)6;(2)①2b -;②不一定,理由见解析.【分析】(1)根据新定义可得()()()232323-=+-+--☉,然后按有理数的运算法则计算即可; (2)①首先根据数轴可得0a b +<,0a b -> ,然后根据新定义可得a b a b a b =++-☉,去掉绝对值符号之后按整式加减运算法则化简即可; ②举反例:当5a =-,4b =,3c =时,a b a c =☉☉成立;【详解】(1)()23-☉()()2323=+-+--15=-+15=+6=; (2)①从a ,b 在数轴上的位置可得0a b +<,0a b -> ,()()2a b a b a b a b a b a b b ∴==++-=-++-=-;②不一定有b c =或者b c =-,举反例如下,当5a =-,4b =,3c =时,10ab a b a b =++-=☉,10ac a c a c =++-=☉, 此时a b a c =☉☉成立,但b c ≠且b c ≠-.【点睛】本题考查新定义运算,解答的关键是根据新定义,转化成有理数的运算,整式的运算. 27.计算:(1238127(5)--(2)03(0)8|32|π--+(3)解方程:4x 2﹣9=0.解析:(1)-8;(2)13)x =±32. 【分析】 (1)利用算数平方根、立方根及二次根式性质计算即可;(2)利用零指数幂、立方根及绝对值的代数意义进行化简即可; (3)方程变形后,利用开方运算即可求解.【详解】解:(1)原式=()935358÷--=--=-;(2)原式=1221-+-=(3)方程变形得:294x =,开方得:32x =±. 【点睛】本题考察实数的运算,熟练掌握运算法则是解题的关键. 28.求满足下列条件的x 的值:(1)3(3)27x +=-; (2)2(1)218x -+=.解析:(1)6x =-;(2)3x =-或5【分析】(1)根据立方根,即可解答;(2)根据平方根,即可解答.【详解】解:(1)3(3)27x +=-33x +=-6x =-;(2)2(1)218x -+=2(1)16x -=14x -=±∴3x =-或5.【点睛】本题考查了平方根、立方根,解决本题的关键是熟记平方根、立方根的定义.。

七年级数学(下)第六章《实数——实数》练习题含答案

七年级数学(下)第六章《实数——实数》练习题含答案

七年级数学(下)第六章《实数——实数》练习题一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列各数中,是有理数的是A.0.9B.–3C.πD.1 3【答案】D【解析】A、0.9=910=31010,是无理数,故此选项错误;B、–3是无理数,故此选项错误;C、π是无理数,故此选项错误;D、13是有理数,故此选项正确.故选D.2.下列说法中错误的是A.数轴上的点与实数一一对应B.实数中没有最小的数C.a、b为实数,若a<b,则a<bD.a、b为实数,若a<b,则3a<3b【答案】C3.实数a、b在数轴上的位置如图所示,则下列各式表示正确的是A.b–a<0 B.1–a>0C.b–1>0 D.–1–b<0【答案】A【解析】由题意,可得b<–1<1<a,则b–a<0,1–a<0,b–1<0,–1–b>0.故选A.4.如图,数轴上点P表示的数可能是A2B5C10D15【答案】B24591015 251015B.5.在实数0,–2,15A.0 B.–2C.1 D5【答案】B【解析】∵0,–2,15–5–2;故选B.6.若m14n,且m、n为连续正整数,则n2–m2的值为A.5 B.7C.9 D.11【答案】B【解析】∵m14n,且m、n为连续正整数,∴m=3,n=4,则原式=7,故选B.+的值为7.|63||26A.5 B.526-C.1 D.61【答案】C【解析】原式=3–6+6–2=1.故选C.8.任何实数a,可用[a]表示不超过a的最大整数,如[4]=4,[3]=1,现对72进行如下操作:72[72]=8[8]=2[2]=1,这样对72只需进行3次操作后变为1,类似地,对81只需进行3次操作后变为1;那么只需进行3次操作后变为1的所有正整数中,最大的是A.82 B.182C.255 D.282【答案】C二、填空题:请将答案填在题中横线上.95__________16__________.【答案】5 25516,4的平方根是±2162.故答案为:5;±2.10.已知:n24n n的最小值为__________.【答案】624n6n,则6n是完全平方数,∴正整数n的最小值是6,故答案为:6.11.比较大小–2__________–3>”、“<”或“=”填空).【答案】<【解析】–2=50–348,5048,∴–2<–3,故答案为:<.12.用“※”定义新运算:对于任意实数a 、b ,都有a ※b =2a 2+B .例如3※4=2×32+4=22※2=__________. 【答案】8※2=2×3+2=6+2=8.故答案为:8.13.计算:|+.【解析】|+14.计算:|2.【答案】3【解析】|2–2+5. 故答案为:3.三、解答题:解答应写出文字说明、证明过程或演算步骤.15.计算:(1)–14–2|(2)4(x +1)2=25【解析】(1)原式=–1–2–3+2=–4 (2)方程整理得:(x +1)2=254, 开方得:x +1=±52, 解得:x =1.5或x =–3.5.16.把下列各数填在相应的大括号内:20%,0,3π,3.14,–23,–0.55,8,–2,–0.5252252225…(每两个5之间依次增加1个2). (1)正数集合:{__________…}; (2)非负整数集合:{__________…}; (3)无理数集合:{__________…}; (4)负分数集合:{__________…}. 【解析】(1)正数集合:{20%,3π,3.14,8…};(2)非负整数集合:{8,0…};(3)无理数集合:{3π,–0.525225……}; (4)负分数集合:{–23,–0.55…}.故答案为:(1)20%,3π,3.14,8;(2)8,0;(3)3π,–0.525225…;(4)–23,–0.55.17.如图:观察实数a 、b 在数轴上的位置,(1)a __________0,b __________0,a –b __________0(请选择<,>,=填写). (2)化简:2a –2b –2()a b -.18.(1)计算并化简(结果保留根号)①|1–2|=__________; ②23|=__________; ③34|=__________; ④45(2)计算(结果保留根号):233445……20172018|.【解析】(1)①|12|=2–1;②2332;③3443④4554; 21324354.(2)原式324354+……2018201720182.。

七年级数学-实数习题精选(含答案)

七年级数学-实数习题精选(含答案)

实数单元练习题1填空题:(本题共10小题,每小题2分,共20分)1、()26-的算术平方根是__________。

2、ππ-+-43= _____________。

3、2的平方根是__________.4、实数a,b,c 在数轴上的对应点如图所示 化简c b c b a a ---++2=________________。

5、若m 、n 互为相反数,则n m +-5=_________。

6、若2)2(1-+-n m =0,则m =________,n =_________。

7、若 a a -=2,则a______0.8、12-的相反数是_________。

9、 38-=________,38-=_________。

10、绝对值小于π的整数有__________________________。

选择题:(本题共10小题,每小题3分,共30分)11、代数式12+x ,x ,y ,2)1(-m ,33x 中一定是正数的有( )。

A 、1个B 、2个C 、3个D 、4个12、若73-x 有意义,则x 的取值范围是( )。

A 、x >37-B 、x ≥ 37- C 、x >37 D 、x ≥37 13、若x ,y 都是实数,且42112=+-+-y x x ,则xy 的值( )。

A 、0B 、21 C 、2 D 、不能确定 14、下列说法中,错误的是( ). A 、4的算术平方根是2 B 、81的平方根是±3C 、8的立方根是±2 D、立方根等于-1的实数是-115、64的立方根是( )。

A 、±4B 、4C 、-4D 、1616、已知04)3(2=-+-b a ,则ba 3的值是( )。

A 、 41 B 、- 41 C 、433 D 、43 17、计算33841627-+-+的值是( )。

A 、1B 、±1C 、2D 、718、有一个数的相反数、平方根、立方根都等于它本身,这个数是( )。

七年级数学实数计算题练习(含答案)

七年级数学实数计算题练习(含答案)

七年级数学实数计算题练习(含答案)1.求下列各式中x的值.(1)4x2﹣9=0;(2)64(x﹣2)3﹣1=0.2.求下列各式中的x.(1)(x﹣1)2﹣8=1.(2)27+(1﹣2x)3=0.3.计算:(1);(2).4.(1);(2).5.(1)计算:;(2)已知8(x﹣1)2=16,求x的值.6.已知=x,,z是﹣8的立方根,求2x+y﹣z的平方根.7.求下列式子中x的值.(1);(2)3x3=﹣81.8.求等式中x的值:3(x+1)2=12.9.计算:.10.(1)若(x﹣1)3=8求x的值;(3)计算.11.计算:﹣12+﹣.12.计算:(1).(2)﹣|﹣2|+(﹣).13.计算:(1);(3).14.已知:实数a、b、c在数轴上的位置如图:且|a|=|b|,化简:|a|﹣|a+b|﹣|c﹣a|+|c+b|﹣|﹣b|.15.计算:(1)(﹣1)2021+﹣+|﹣2|;(2)﹣﹣++.16.计算题:(1);(2).17.计算:(1);(2).答案:1.求下列各式中x的值.(1)4x2﹣9=0;(2)64(x﹣2)3﹣1=0.【解答】解:(1)4x2﹣9=0,移项得:4x2=9,系数化为1得:,∴;(2)64(x﹣2)3﹣1=0,移项得:64(x﹣2)3=1,系数化为1得:,∴,∴.2.求下列各式中的x.(1)(x﹣1)2﹣8=1.(2)27+(1﹣2x)3=0.【解答】解:(1)(x﹣1)2﹣8=1,(x﹣1)2=9,x﹣1=3或x﹣1=﹣3,x=4或x=﹣2;(2)27+(1﹣2x)3=0,(1﹣2x)3=﹣27,1﹣2x=﹣3,x=2.3.计算:(1);(2).【解答】解:(1)===;(2)===9+5=14.4.(1);(2).【解答】解:(1)=﹣27+2﹣﹣3+4=﹣24;(2)=2﹣﹣=.5.(1)计算:;(2)已知8(x﹣1)2=16,求x的值.【解答】解:(1)=+3;(2)8(x﹣1)2=16,(x﹣1)2=2,x﹣1=±,x﹣1=或x﹣1=﹣,x=1+或x=1﹣.6.已知=x,,z是﹣8的立方根,求2x+y﹣z的平方根.【解答】解:∵=x,,z是﹣8的立方根,∴x=5,y=4,z=﹣2,∴2x+y﹣z=10+4+2=16,∴2x+y﹣z的平方根是±4.7.求下列式子中x的值.(1);(2)3x3=﹣81.【解答】解:(1)∵,∴,解得:,;(2)∵3x3=﹣81,∴x3=﹣27,解得:x=﹣3.8.求等式中x的值:3(x+1)2=12.【解答】解:∵3(x+1)2=12,∴(x+1)2=4,∴x+4=±2,∴x+4=2或x+4=﹣2,解得:x=﹣3或x=1.9.计算:.【解答】解:=1+×4﹣(﹣4)=1+2+4=7.10.(1)若(x﹣1)3=8求x的值;(2)计算.【解答】解:(1)∵(x﹣1)3=8,∴x﹣1=2,∴x=3.(2)原式=4﹣(﹣3)+6﹣(4﹣)=4+3+6﹣4+=9+.11.计算:﹣12+﹣.【解答】解:原式=﹣1+3﹣2=0.12.计算:(1).(2)﹣|﹣2|+(﹣).【解答】解:(1)=﹣1+2+8×=﹣1+2+4=5;(2)﹣|﹣2|+(﹣)=4+﹣2+3﹣1=4+.13.计算:(1);(2).【解答】解:(1)原式=1+﹣1+3=3+;(2)原式=3﹣2+=1+.14.已知:实数a、b、c在数轴上的位置如图:且|a|=|b|,化简:|a|﹣|a+b|﹣|c﹣a|+|c+b|﹣|﹣b|.【解答】解:根据图示,可得:a<c<0<b,且|c|<|b|,∴c﹣a>0,c+b>0,﹣b<0,∵a<0<b,且|a|=|b|,∴a+b=0,∴|a|﹣|a+b|﹣|c﹣a|+|c+b|﹣|﹣b|=﹣a﹣0﹣(c﹣a)+(c+b)﹣b=﹣a﹣0﹣c+a+c+b﹣b=0.15.计算:(1)(﹣1)2021+﹣+|﹣2|;(2)﹣﹣++.【解答】解:(1)(﹣1)2021+﹣+|﹣2|=﹣1+2﹣4+2﹣=﹣1﹣;(2)﹣﹣++=3﹣0﹣++=3.16.计算题:(1);(2).【解答】解:(1)=﹣1+4﹣3=0;(2)=﹣1+3+2﹣2=3.17.计算:(1);(2).【解答】解:(1)原式=5+1=6;(2)原式=5+﹣=5.。

人教版初中七年级数学下册第六单元《实数》经典题(含答案解析)

人教版初中七年级数学下册第六单元《实数》经典题(含答案解析)

一、选择题1.下列各数中无理数共有( )①–0.21211211121111,②3π,③227, A .1个B .2个C .3个D .4个C 解析:C【分析】根据无理数的概念确定无理数的个数即可解答.【详解】解:无理数有3π3个. 故答案为C .【点睛】本题主要考查了无理数的定义,无理数主要有以下三种①带根号且开不尽方才是无理数,②无限不循环小数为无理数,③π的倍数.2.下列实数220.010*******;; (相邻两个1之依次多一个0);2,其中无理数有( )A .2个B .3个C .4个D .5个B解析:B【分析】根据无理数、有理数的定义即可判定选择项.【详解】4=-,是有理数;3.14是有限小数,是有理数;227是分数,是有理数;,0.010010001(相邻两个1之依次多一个0)2,是无理数,共3个,故选:B .【点睛】本题考查了无理数的定义,注意无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.3 )A .3B .﹣3C .±3D .6A 解析:A【分析】9,再利用算术平方根的定义求出答案.∵9,∴3,故选:A .【点睛】. 4.定义运算:132x y xy y =-※,若211a =-※,则a 的值为( ) A .12-B .12C .2-D .2C 解析:C 【分析】 根据新定义的运算得到关于a 的方程,求解即可.【详解】解:因为211a =-※, 所以132112a a ⨯-=-, 解得 2a =-.故选:C【点睛】本题考查了新定义的运算与一元一次方程,根据新定义运算得到一元一次方程是解题关键.5.81的平方根是( )A .9B .-9C .9和9-D .81C 解析:C【分析】根据平方根的定义即可求出答案.【详解】解:2(9)81±=, 81的平方根是9±.故选:C【点睛】本题考查平方根的定义,解题的关键是正确理解平方根的定义,本题属于基础题型. 6.下列说法中,错误的是()A .实数与数轴上的点一一对应B .1π+是无理数C D C 解析:C根根据有理数和无理数的定义可对C 、B 、D 进行判断;根据实数与数轴上点的关系可对A 进行判断.【详解】解:A. 实数与数轴上的点是一一对应的,此说法正确,不符合题意;B.1π+是无理数,此说法正确,不符合题意;C.32是无理数,原说法错误,符合题意;D.2是无限不循环小数,此说法正确,不符合题意.故选:C .【点睛】本题考查了实数的有关概念:有理数和无理数统称为实数;整数和分数统称为有理数;无限不循环小数叫无理数;实数与数轴上的点是一一对应的.7.若53a =-,则a 在( ) A .3-和2-之间B .2-和1-之间C .1-和0之间D .0和1之间C 解析:C【分析】依据被开方数越大对应的算术平方根越大可求得5的大致范围,然后可得到问题的答案.【详解】解:∵4<5<9,∴2<5<3.∴-1<5-3<0.故选:C .【点睛】本题考查了估算无理数的大小,求得5的大致范围是解题的关键.8.实数a 、b 在数轴上的位置如图所示,且||||b a >,则化简233||()a a b b -++-的结果是( )A .2aB .2bC .22a b +D .0A解析:A【分析】根据数轴可得a>0,b<0,然后根据加法法则可得a +b <0,然后根据平方根的性质和绝对值的性质及立方根化简即可.【详解】解:由数轴可得:a>0,b<0,∵|a |<|b |,∴a +b <0,∴||a b +=()a a b b ++-=2a故选A .【点睛】此题考查的是平方根的化简和绝对值的化简及开立方根,掌握利用数轴判断各字母的符号、加法法则、平方根的性质和绝对值的性质是解题关键.9.若1a >,则a ,a -,1a 的大小关系正确的是( ) A .1a a a >->B .1a a a >->C .1a a a >>-D .1a a a ->> C 解析:C【分析】可以用取特殊值的方法,因为a >1,所以可设a=2,然后分别计算|a|,-a ,1a ,再比较即可求得它们的关系.【详解】解:设a=2,则|a|=2,-a=-2,112a =, ∵2>12>-2, ∴|a|>1a>-a ; 故选:C .【点睛】 此类问题运用取特殊值的方法做比较简单.10.下列说法正确的有( )(1)带根号的数都是无理数;(2)立方根等于本身的数是0和1;(3)a -一定没有平方根;(4)实数与数轴上的点是一一对应的;(5)两个无理数的差还是无理数;(6)若面积为3的正方形的边长为a ,a 一定是一个无理数.A .1个B .2个C .3个D .4个B解析:B【分析】根据无理数的定义、立方根与平方根、实数与数轴的关系逐个判断即可得.【详解】(12=是有理数,说法错误;(2)立方根等于本身的数是0和±1,说法错误;(3)当a -为非负数时,a -有平方根,说法错误;(4)实数与数轴上的点是一一对应的,说法正确;(50=,说法错误;(6)由正方形的面积公式得:a =是无理数,说法正确;综上,说法正确的有2个,故选:B .【点睛】本题考查了无理数、实数的运算、立方根与平方根,掌握理解各概念和运算法则是解题关键. 二、填空题11.求下列各式中x 的值(1)21(1)64x +-=; (2)3(1)125x -=.(1);(2)【分析】(1)方程整理后利用平方根的性质开平方即可求解;(2)方程直接利用立方根的性质开立方即可求解;【详解】(1)解得:或;(2)解得:【点睛】本题主要考查解方程涉及到立方根平方根解解析:(1)132x =,272x =-;(2)6x = 【分析】(1)方程整理后,利用平方根的性质开平方即可求解;(2)方程直接利用立方根的性质开立方即可求解;【详解】(1)21(1)64x +-= 225(1)4x += 512x +=± 解得:32x =或72x =-;(2)3(1)125x -=15x -=解得:6x =.【点睛】本题主要考查解方程,涉及到立方根、平方根,解题的关键是熟练掌握开平方、开立方根的方法.12.﹣8_____.0或﹣4【分析】根据算术平方根和立方根的定义求解得到答案即可【详解】解:∵﹣8的立方根为﹣2的平方根为2或﹣2∴﹣8的立方根与的平方根之和是﹣2+2=0或﹣2﹣2=﹣4故答案为:0或﹣4【点睛】本题解析:0或﹣4【分析】根据算术平方根和立方根的定义求解,得到答案即可.【详解】解:∵﹣8的立方根为﹣22或﹣2,∴﹣82+2=0或﹣2﹣2=﹣4,故答案为:0或﹣4.【点睛】本题主要考查了实数的运算,熟练掌握运算法则是解本题的关键.13.计算:6-=____.5【分析】先化简绝对值求立方根和算术平方根再加减即可【详解】解:==5故答案为:5【点睛】本题考查了绝对值立方根算术平方根的运算准确运用法则是解题关键解析:5【分析】先化简绝对值、求立方根和算术平方根,再加减即可.【详解】解:6-,=6(5)4+-+,=5,故答案为:5.【点睛】本题考查了绝对值、立方根、算术平方根的运算,准确运用法则是解题关键.14.把下列各数填在相应的横线里:3,0,10%,﹣112,﹣|﹣12|,﹣(﹣5),2π,0.6,127,0.101001000…整数集合:{_____________…};分数集合:{_____________…};无理数集合:{_____________…};非负有理数集合{_____________…}.30﹣|﹣12|﹣(﹣5)10﹣100101001000…3010﹣(﹣5)0【分析】按照有理数的分类填写【详解】解:整数集合:(30﹣|﹣12|﹣(﹣5)…);分数集合:(10﹣10);无理数集合解析:3,0,﹣|﹣12|,﹣(﹣5) 10%,﹣112,0.6⋅,127 2π,0.101001000… 3,0,10%,﹣(﹣5),0.6⋅,127 【分析】按照有理数的分类填写.【详解】解:整数集合:( 3,0,﹣|﹣12|,﹣(﹣5)…);分数集合:( 10%,﹣112,0.6⋅,127); 无理数集合:( 2π,0.101001000…); 非负有理数集合( 3,0,10%,﹣(﹣5),0.6⋅,127).故答案为:3,0,﹣|﹣12|,﹣(﹣5);10%,﹣112,0.6⋅,127;2π,0.101001000;3,0,10%,﹣(﹣5),0.6⋅,127. 【点睛】 本题考查了有理数的分类.认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.15.计算:(1)﹣12﹣(﹣2)(21)+2|(1)﹣9;(2)5【分析】(1)先计算立方根和算术平方根再进行加减运算即可;(2)先计算乘法和绝对值再相加即可【详解】解:(1)原式=﹣12+(﹣3)+2×3=﹣12﹣3+6=﹣9;(2)原式=3 解析:(1)﹣9;(2)5.【分析】(1)先计算立方根和算术平方根,再进行加减运算即可;(2)先计算乘法和绝对值,再相加即可.【详解】解:(1)原式=﹣12+(﹣3)+2×3=﹣12﹣3+6=﹣9;(2)原式=32=5.【点睛】本题考查了实数的运算,掌握立方根和算术平方根的性质是解题关键.16.求下列各式中x 的值.(1)2(1)2x +=; (2)329203x +=.(1);(2)【分析】(1)根据平方根的意义求解即可;(2)变形后根据立方根的意义求解即可【详解】(1)(2)【点睛】本题考查了利用平方根和立方根的意义解方程熟练掌握平方根和立方根的意义是解答本题的解析:(1)11x -,21x =;(2)23x =-. 【分析】(1)根据平方根的意义求解即可;(2)变形后根据立方根的意义求解即可.【详解】(1)2(1)2x +=,1x +=11x =,21x =.(2)329203x +=, 32923x =-, 3827x =-, 23x =-. 【点睛】本题考查了利用平方根和立方根的意义解方程,熟练掌握平方根和立方根的意义是解答本题的关键.17.对于有理数x 、y ,当x ≥y 时,规定x ※y =y x ;而当x <y 时,规定x ※y =y -x ,那么4※(-2)=_______;如果[(-1)※1]※m=36,则m 的值为______.或【分析】根据新定义规定的式子将数值代入再计算即可;先根据新定义的式子将数值代入分情况讨论列方程求解即可【详解】解:4※(-2)=;(-1)※1=(-1)※1※m=2※m=36当时原式可化为解得:;解析:6m =-或38m =.【分析】根据新定义规定的式子将数值代入再计算即可;先根据新定义的式子将数值代入分情况讨论列方程求解即可.【详解】解:42>-∴4※(-2)=()42=16-;11-<∴(-1)※1=()11=2--∴[(-1)※1]※m=2※m=36当2m ≥时,原式可化为236m =解得:6m =±6m ∴=-;当2m <时,原式可化为:236m -=解得:38m =;综上所述,m 的值为:6m =-或38m =;故答案为:16;6m =-或38m =.【点睛】本题考查了新定义的运算,读懂新定义的式子,将值正确代入是解题的关键. 18.规定新运算:()*4a b a ab =+.已知算式()3*2*2x =-,x =_______.【分析】根据新运算可得由得到关于x 的一元一次方程求解即可【详解】解:根据新运算可得∵∴解得故答案为:【点睛】本题考查新定义运算解一元一次方程根据题意得出一元一次方程是解题的关键 解析:43- 【分析】根据新运算可得()3*334x x =+,()()2*22440-=⨯-+=,由()3*2*2x =-得到关于x 的一元一次方程,求解即可.【详解】解:根据新运算可得()3*334x x =+,()()2*22440-=⨯-+=,∵()3*2*2x =-,∴()3340x +=,解得43x =-, 故答案为:43-.【点睛】本题考查新定义运算、解一元一次方程,根据题意得出一元一次方程是解题的关键.19_____;16的平方根为_____;()34-的立方根是_____.【分析】分别根据算术平方根相反数平方根和立方根的概念直接计算即可求解【详解】解:=所以的相反数是;16的平方根为;的立方根是故答案为:;±4;-4【点睛】本题考查了算术平方根平方根和立方根的概念进行解析:- 4± 4-【分析】分别根据算术平方根、相反数、平方根和立方根的概念直接计算即可求解.【详解】-;16的平方根为4±;()34-的立方根是4-.故答案为:—±4;-4【点睛】本题考查了算术平方根、平方根和立方根的概念进行求解即可.注意一个正数有两个平方根,它们互为相反数,正的平方根即为它的算术平方根.立方根的性质:一个正数的立方根是正数,一个负数的立方根是负数,0的立方根是0.20.已知实数,x y 满足()230x -=,求xy -的平方根.±【分析】根据当几个非负数之和为零则这几个非负数都为了0求得xy 的值再代入到所求代数式中求解即可【详解】解:∵且∴x ﹣3=0y+8=0解得:x=3y=﹣8∴﹣xy=﹣3×(﹣8)=24∴﹣xy 的平方解析:±【分析】根据当几个非负数之和为零,则这几个非负数都为了0求得x 、y 的值,再代入到所求代数式中求解即可.【详解】解:∵()230x -=,且()230x -≥≥, ∴x ﹣3=0,y+8=0,解得:x=3,y=﹣8,∴﹣xy=﹣3×(﹣8)=24,∴﹣xy 的平方根是±【点睛】本题考查了非负数的性质、解一元一次方程、代数式求值、有理数的乘法、平方根,理解非负数的性质,正确求出一个数的平方根是解答的关键.三、解答题21.“比差法”是数学中常用的比较两个数大小的方法,即0,0,0,a b a b a b a b a b a b ->>⎧⎪-==⎨⎪-<<⎩则则则2与2的大小;224-=,1619<<,则45<<,2240-=>,22>.请根据上述方法解答以下问题:(1_______3;(2)比较23-的大小,并说明理由.解析:(1)>;(2)3-<2-.【分析】(1,可得:3<4,从而可得答案;(245,从而可得:0<5-0<()23-,从而可得答案.【详解】解:(1)327<,3∴<4,故答案为:>.(2)16<4∴5,∴<5∴<3+2,∴<()23-,∴ 3-<2-.【点睛】本题考查的是实数的大小比较,掌握实数的大小比较的方法是解题的关键.22.小燕在测量铅球的半径时,先将铅球完全浸没在一个带刻度的圆柱形小水桶中,拿出铅球时,小燕发现小水桶中的水面下降了1cm ,小燕量得小水桶的直径为12cm ,于是她就算出了铅球的半径.你知道她是如何计算的吗?请求出铅球的半径.(球的体积公式343V r π=,r 为球的半径.) 解析:3cm .【分析】设球的半径为r ,求出下降的水的体积,即圆柱形小水桶中下降的水的体积,最后根据球的体积公式列式求解即可.【详解】解:设球的半径为r ,小水桶的直径为12cm ,水面下降了1cm ,∴小水桶的半径为6cm ,∴下降的水的体积是π×62×1=36π(cm 3), 即34363r ππ=,解得:327r =,3r =,答:铅球的半径是3cm .【点睛】本题考查了立方根的应用,涉及圆柱的体积求解,解此题的关键是得出关于r 的方程.23.计算:(12)-+(2解析:(1)-2;(2)【分析】 (1)原式去括号合并即可得到结果;(2)首先计算开方,然后从左向右依次计算,求出算式的值是多少即可.【详解】解:(1)原式=2-2=-(2)原式22=+=【点睛】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.24. 1.414≈,于是我们说:的整数部分为1,小数部分则可记为1”.则:(11的整数部分是__________,小数部分可以表示为__________;(22的小数部分是a ,7-b ,那么a b +=__________;(3x 的小数部分为y ,求1(x y --的平方根.解析:(1)21;(2)1;(3)3±.【分析】(11的整数部分和小数部分;(22和7-a 与b 的值,最后代入代数式计算即可;(3的取值范围,再确定x 、y 的值,最后代入代数式计算即可.【详解】解:(1)∵1<2<4∴1<2 ∴1, ∴1的整数部分为212+-1故答案为21;(2)∵1<3<4∴12 ∴1,∴2的整数部分为3,小数部分为21-;7-的整数部分为5,小数部分为b=75--=2∴1+2=1故答案为1;(3)∵9<11<16∴3<4 ∴x=3,小数部分为-3∴()3211(3==3=9x y --- ∵3±.故答案为3±.【点睛】本题主要考查了估算无理数的大小,掌握运用逼近法比较无理数的大小成为解答本题的关键.25.求下列各式中的x 的值(1)21(1)82x +=;(2)3(21)270x -+= 解析:(1)3x =或5x =-;(2)1x =-.【分析】(1)适当变形后,利用平方根的定义即可解方程;(2)适当变形后,利用立方根的定义即可解方程.【详解】解:(1)21(1)82x += 两边乘以2得,2(1)16x +=,开平方得,14x +=±,即14x +=或14x +=-,∴3x =或5x =-;(2)3(21)270x -+=移项得,3(21)27x -=-,开立方得,213x -=-,解得,1x =-.【点睛】本题考查的是利用平方根,立方根的含义解方程,掌握平方根与立方根的定义和等式的性质是解题的关键.26.教材中的探究:如图,把两个边长为1的小正方形沿对角线剪开,用所得到的4个直角三角形拼成一个面积为2的大正方形.由此,得到了一种能在数轴上画出无理数对应点的方法(数轴的单位长度为1).(1)阅读理解:图1中大正方形的边长为________,图2中点A 表示的数为________; (2)迁移应用:请你参照上面的方法,把5个小正方形按图3位置摆放,并将其进行裁剪,拼成一个大正方形.①请在图3中画出裁剪线,并在图3中画出所拼得的大正方形的示意图.②利用①中的成果,在图4的数轴上分别标出表示数-0.5以及 35-+ 的点,并比较它们的大小.解析:(12,22)①见解析;②见解析, 350.5-+<-【分析】(1)设正方形边长为a ,根据正方形面积公式,结合平方根的运算求出a 值,则知结果; (2) ① 根据面积相等,利用割补法裁剪后拼得如图所示的正方形;②由题(1)的原理得出大正方形的边长为5,然后在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M ,再把N 点表示出来,即可比较它们的大小.【详解】解:设正方形边长为a ,∵a 2=2,∴a=2±,故答案为:2,2-;(2)解:①裁剪后拼得的大正方形如图所示:②设拼成的大正方形的边长为b ,∴b 2=5,∴b=±5,在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M ,则M 表示的数为-3+5,看图可知,表示-0.5的N 点在M 点的右方,∴比较大小:350.5-+<-.【点睛】本题主要考查平方根与算术平方根的应用及实数的大小比较,熟练掌握平方根与算术平方根的意义及实数的大小比较是解题的关键.27.求满足条件的x 值:(1)()23112x -=(2)235x -=解析:(1)13x =,21x =-;(2)122x =222x =-【分析】(1)方程两边同除以3,再运用直接开平方法求解即可;(2)方程移项后,再运用直接开平方法求解即可.【详解】解:(1)()23112x -=()214x -=12x -=±解得,13x =,21x =-;(2)235x -=28x = ∴x =±∴1x =2x =-【点睛】本题考查了平方根的应用,解决本题的关键是熟记平方根的定义.28.阅读下面的文字,解答问题:无理数是无限不循环小数,因此无理数的小数部分我们不可能全部地写出来,比如π、等,而常用“……”或者“≈”1的小数部分,你同意小刚的表示方法吗?的整数部分是1,将这个数减去其整数部分,差就是小数部分.<<,即23<<,22也就是说,任何一个无理数,都可以夹在两个相邻的整数之间.根据上述信息,请回答下列问题:(1______,小数部分是_______;(2)10+10a b <+<,则a b +=_____;(34x y =+,其中x 是整数,且01y <<.求:x y -的相反数.解析:(1)3 3-;(2)25;(3)()8x y --=.【分析】(1)由34可得答案;(2)由2<3知12<<13,可求出a ,b 的值,据此求解可得;(3)得出243<-<,即可得出x ,y ,从而得出结论. 【详解】解:(1)∵9<13<16∴34, ∴3;故答案为:3.(2)∵4<7<9,∴2<3∴12<<13∴a=12,b=13∴a+b=12+13=25,故答案为:25;(3<<67<<所以64474-<<-即243<-<4的整数部分为2,即2x =,426y =-=()26x y x y --=-+=-+=8=【点睛】本题考查了估算无理数的大小,解决本题的关键是熟记估算无理数的大小.。

七年级数学实数测试题及答案

七年级数学实数测试题及答案

七年级数学实数测试题及答案一、选择题(每题2分,共10分)1. 下列哪个数不是实数?A. -3B. √2C. πD. i(虚数单位)2. 实数a和b满足a < b,那么a + 1与b + 1的大小关系是:A. a + 1 < b + 1B. a + 1 > b + 1C. a + 1 = b + 1D. 不能确定3. 以下哪个表达式表示的是实数的乘方?A. √9B. 3^2C. 1/2^3D. -2^34. 实数x满足|x| < 1,那么x的取值范围是:A. x > 1B. x < -1C. -1 < x < 1D. x ≥ 1 或x ≤ -15. 两个实数相除,如果除数为负数,商的符号与:A. 被除数相同B. 被除数相反C. 除数相同D. 除数相反二、填空题(每题2分,共10分)6. 若a = -2,则a的相反数是______。

7. 一个数的绝对值是5,这个数可以是______。

8. 一个数的平方根是3,那么这个数的立方根是______。

9. 一个数的立方是-8,这个数是______。

10. 若√x = 3,则x = ______。

三、解答题(每题10分,共40分)11. 计算下列各题,并简化结果:(1) √25(2) (-3)^2(3) √(-4)^212. 已知a = -1,b = 3,求下列表达式的值:(1) a + b(2) a - b(3) a * b13. 根据题目条件,求解以下不等式:(1) |x - 2| < 3(2) |x + 1| ≥ 414. 证明:如果a > 0,b < 0,且|a| > |b|,则a + b > 0。

四、应用题(每题15分,共30分)15. 一个数的平方根是4,求这个数,并计算它的立方根。

16. 某工厂在生产过程中,发现一个零件的长度在-2到2厘米之间波动。

如果这个零件的长度超过1.5厘米,就会影响机器的正常运转。

初一数学实数计算题专题训练(含答案)

初一数学实数计算题专题训练(含答案)

初一数学实数计算题专题训练(含答案) 专题一计算题训练一1.计算题:| -2 | - (1+) 0+.解答:原式 = 2 - 1 + 2 = 3.2.计算题:- + 4 × (-3)² + (-6) ÷ (-2).解答:原式 = - + 4 × 9 + 3 = 38.5.计算题:(-4)³ - 8 ÷ (-8) - (-1).解答:原式 = -64 + 1 - (-1) = -64 + 2 = -62.10.(-2)³ + (-3) × [(-4)² + 2] - (-3)² ÷ (-2).解答:原式 = -8 + (-3) × [16 + 2] - 9 ÷ (-2) = -8 + (-3) × 18 + 4.5 = -8 - 54 + 4.5 = -57.5.11.| -| -1 | - 2 |.解答:原式 = | -1 - 2 | = 1.14.求 x 的值:9x² = 121.解答:x² = 121 ÷ 9 = 13 1/3,x = ± √13 1/3.15.已知 2x + 3y = 10,3x - y = 2,求 xy 的值(精确到0.01)。

解答:将第二个式子变形为 y = 3x - 2,代入第一个式子得到 2x + 9x - 6 = 10,解得 x = 1,代入 y = 3x - 2 得到 y = 1,所以 xy = 1,精确到 0.01.16.比较大小:-2,-(-2)(要求写过程说明)。

解答:-(-2) = 2,所以 -2 < -(-2).17.求 x 的值:(x + 10)² = 16.解答:x + 10 = ± 4,解得 x = -6 或 -14.19.已知 m < n,求 (m + n) ÷ 2 和 (n - m)²的大小关系。

七年级数学上册实数经典大题例题

七年级数学上册实数经典大题例题

(每日一练)七年级数学上册实数经典大题例题单选题1、下列计算正确的是()A.√0.09=±0.3B.√414=2√12C.√−273=−3D.−√|−25|=5答案:C解析:根据平方根的性质、立方根的性质以及绝对值的性质即可求出答案.A、原式=0.3,故A不符合题意.B、原式=√174=√172,故B不符合题意.C、原式=﹣3,故C符合题意.D、原式=﹣5,故D不符合题意.故选:C.小提示:本题考查了平方根的性质、立方根的性质以及绝对值的性质,正确进行平方根与立方根的计算是关键,要注意平方根与算术平方根的区别.2、下列四个实数中,是无理数的为()A.0B.√3C.﹣1D.13答案:B解析:因为0,﹣1,1是有限小数或无限循环小数,√3是无限不循环小数,所以√3是无理3数,故选B.3、下列实数中,最大的数是()A.﹣1B.0C.√3D.13答案:C解析:根据实数的大小比较,负数总是小于零,正数总是大于零,同负绝对值大的反而小,同为正可以进行估算比较大小.,解:∵√3≈1.732>13∴﹣1<0<1<√3,3∴最大的数是√3.故选:C.本题主要考查实数的大小比较,可以根据负数总是小于零,正数总是大于零,同负绝对值大的反而小进行判断.填空题4、若一个数的立方根等于这个数的算术平方根,则这个数是_____.答案:0或1解析:设这个数为a,由立方根等于这个数的算术平方根可以列出方程,解方程即可求出a.解:设这个数为a,由题意知,3=√a(a≥0),√a解得:a=1或0,所以答案是:1或0小提示:本题主要考查算术平方根和立方根等知识点,基础题需要重点掌握,同学们很容易忽略a≥0.5、规定运算:(a*b)=|a-b|,其中a、b为实数,则(√7*3)+√7=________.解析:根据题意得(√7*3)+√7=|√7-3|+√7=3-√7+√7=3,所以答案是:3.解答题6、阅读下面的文字,解答问题.大家知道√2是无理数,而无理数是无限不循环小数,因此√2的小数部分我们不可能全部地写出来,于是小明用√2-1来表示√2的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为√2的整数部分是1,•将这个数减去其整数部分,差就是小数部分.请解答:已知:10+√3=x+y,其中x是整数,且0<y<1,求x-y的相反数.答案:√3-12解析:本题主要考查了无理数的公式能力,解题关键是估算无理数的整数部分和小数部分. 根据题意的方法,估计√3的大小,易得10+√3的范围,进而可得xy的值;再由相反数的求法,易得答案.解:∵1<√3<2,∴1+10<10+√3<2+10,∴11<10+√3<12,∴x=11,y=10+√3-11=√3-1,x-y=11-(√3-1)=12-√3,∴x-y的相反数√3-12.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

经典例题
类型一.有关概念的识别
1.下面几个数:0.23,1.010010001…,,3π,,,其中,无理数的个
数有()
A、1
B、2
C、3
D、4
解析:本题主要考察对无理数概念的理解和应用,其中,1.010010001…,3π,是无理数
故选C
举一反三:
【变式1】下列说法中正确的是()
A、的平方根是±3
B、1的立方根是±1
C、=±1
D、是5的平方根的相反数
【变式2】如图,以数轴的单位长线段为边做一个正方形,以数轴的原点为圆心,正方形对角线长为半径画弧,交数轴正半轴于点A,则点A表示的数是()
A、1
B、1.4
C、
D、
【变式3】
类型二.计算类型题
2.设,则下列结论正确的是()
A. B.
C. D.
解析:(估算)因为,所以选B
举一反三:
【变式1】1)1.25的算术平方根是__________;平方根是__________.2)-27立方根是__________. 3)
___________,___________,___________.
【变式2】求下列各式中的
(1)(2)(3)
类型三.数形结合
3. 点A在数轴上表示的数为,点B在数轴上表示的数为,则A,B两点的距离为______
解析:在数轴上找到A、B两点,
举一反三:
【变式1】如图,数轴上表示1,的对应点分别为A,B,点B关于点A的对称点为C,则点C 表示的数是().
A.-1 B.1-C.2-D.-2
[变式2]已知实数、、在数轴上的位置如图所示:
化简
类型四.实数绝对值的应用
4.化简下列各式:
(1) |-1.4|(2) |π-3.142|
(3) |-| 分析:要正确去掉绝对值符号,就要弄清绝对值符号内的数是正数、负数还是零,然后根据绝对值的定义正确去掉绝对值。

说明:这里对|2x-3|的结果采取了分类讨论的方法,我
们对这个绝对值的基本概念要有清楚的认识,并能灵活运用。

举一反三:
【变式1】化简:
类型五.实数非负性的应用
5.已知:=0,求实数a, b的值。

举一反三:
【变式1】已知(x-6)2++|y+2z|=0,求(x-y)3-z3的值。

【变式2】已知那么a+b-c的值为___________
类型六.实数应用题
6.有一个边长为11cm的正方形和一个长为13cm,宽为8cm的矩形,要作一个面积为这两个图形的面积之和的正方形,问边长应为多少cm。

类型七.易错题
7.判断下列说法是否正确
(1)的算术平方根是-3;(2)的平方根是±15.
(3)当x=0或2时,(4)是分数
类型八.引申提高
8.(1)已知的整数部分为a,小数部分为b,求a2-b2的值.
(2)把下列无限循环小数化成分数:①②③
(1)分析:确定算术平方根的整数部分与小数部分,首先判断这个算术平方根在哪两个整数之间,那么较小的整数即为算术平方根的整数部分,算术平方根减去整数部分的差即为小数部分.
(2)解:(1) 设x=①
则②
②-①得
9x=6
∴.
(2) 设①
则②
②-①,得
99x=23
∴.
(3) 设①
则②
②-①,得
999x=107,
∴.
学习成果测评:
A组(基础)
一、细心选一选
1.下列各式中正确的是()
A. B. C. D.
2. 的平方根是( )
A.4 B. C. 2 D.
3. 下列说法中①无限小数都是无理数②无理数都是无限小数③-2是4的平方根④带根号的数都是
无理数。

其中正确的说法有()
A.3个 B. 2个 C. 1个 D. 0个
4.和数轴上的点一一对应的是()
A.整数 B.有理数 C. 无理数 D. 实数
5.对于来说()
A.有平方根B.只有算术平方根 C. 没有平方根 D. 不能确定
6.在(两个“1”之间依次多1个“0”)中,无理数
的个数有()
A.3个 B. 4个 C. 5个 D. 6个
7.面积为11的正方形边长为x,则x的范围是()
A. B. C. D.
8.下列各组数中,互为相反数的是()
A.-2与 B.∣-∣与 C. 与 D. 与
9.-8的立方根与4的平方根之和是()
A.0 B. 4 C. 0或-4 D. 0或4
10.已知一个自然数的算术平方根是a ,则该自然数的下一个自然数的算术平方根是()
A. B. C. D.
二、耐心填一填
11.的相反数是________,绝对值等于的数是________,∣∣=_______。

12.的算术平方根是_______,=______。

13.____的平方根等于它本身,____的立方根等于它本身,____的算术平方根等于它本身。

15.填入两个和为6的无理数,使等式成立:___+___=6。

16.大于,小于的整数有______个。

17.若∣2a-5∣与互为相反数,则a=______,b=_____。

18.若∣a∣=6,=3,且ab0,则a-b=______。

19.数轴上点A,点B分别表示实数则A、B两点间的距离为______。

20.一个正数x的两个平方根分别是a+2和a-4,则a=_____,x=_____。

三、认真解一解
21.计算
⑴⑵⑶
⑷∣∣+∣∣⑸×+×
⑹4×[ 9 + 2×()] (结果保留3个有效数字)
22.在数轴上表示下列各数和它们的相反数,并把这些数和它们的相反数按从小到大的顺序排列,用“”号连接:。

相关文档
最新文档