2018中考考点专题训练考点32:尺规作图

合集下载

尺规作图篇(解析版)--中考数学必考考点总结+题型专训

尺规作图篇(解析版)--中考数学必考考点总结+题型专训

专题13尺规作图知识回顾1.尺规作图是指用没有刻度的直尺和圆规作图.只使用圆规和直尺,并且只准许使用有限次,来解决不同的平面几何作图题.2.基本要求它使用的直尺和圆规带有想像性质,跟现实中的并非完全相同.①直尺必须没有刻度,无限长,且只能使用直尺的固定一侧.只可以用它来将两个点连在一起,不可以在上画刻度.②圆规可以开至无限宽,但上面亦不能有刻度.它只可以拉开成你之前构造过的长度3.基本作图有:(1)作一条线段等于已知线段.(2)作一个角等于已知角.(3)作已知线段的垂直平分线.具体步骤:①以线段两个端点为圆心,大于线段长度的一半为半径画圆弧,两圆弧在线段的两侧别分交于M、N。

如图①②连接MN,过MN的直线即为线段的垂直平分线。

如图②(4)作已知角的角平分线.具体步骤:①以角的顶点O为圆心,一定长度为半径画圆弧,圆弧与角的两边分别交于两点M、N。

如图①。

②分别以点M与点N为圆心,大于MN长度的一半为半径画圆弧,两圆弧交于点P。

如图②。

即为角的平分线。

③连接OP,OP4.复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作。

5.设计作图:应用与设计作图主要把简单作图放入实际问题中.首先要理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图。

专题练习1.尺规作图(保留作图痕迹,不要求写出作法):如图,已知线段m,n.求作△ABC,使∠A=90°,AB=m,BC=n.【分析】先在直线l上取点A,过A点作AD⊥l,再在直线l上截取AB=m,然后以B点为圆心,n为半径画弧交AD于C,则△ABC满足条件.【解答】解:如图,△ABC为所作.2.如图,在△ABC中,AB=AC,BD是△ABC的角平分线.(1)作∠ACB的角平分线,交AB于点E(尺规作图,不写作法,保留作图痕迹);(2)求证:AD=AE.【分析】(1)按照角平分线的作图步骤作图即可.(2)证明△ACE≌△ABD,即可得出AD=AE.【解答】(1)解:如图所示.(2)证明:∵AB=AC,∴∠ABC=∠ACB,∵BD是∠ABC的角平分线,CE是∠ABC的角平分线,∴∠ABD=∠ACE,∵AB=AC,∠A=∠A,∴△ACE≌△ABD(ASA),∴AD=AE.3.如图,已知线段AC和线段a.(1)用直尺和圆规按下列要求作图.(请保留作图痕迹,并标明相应的字母,不写作法)①作线段AC的垂直平分线l,交线段AC于点O;②以线段AC为对角线,作矩形ABCD,使得AB=a,并且点B在线段AC的上方.(2)当AC=4,a=21ABCD的面积.【分析】(1)①按照线段垂直平分线的作图步骤作图即可.②以点O为圆心,OA的长为半径画弧,再以点A为圆心,线段a的长为半径画弧,两弧在线段AC上方交于点B,同理,以点O为圆心,OC的长为半径画弧,再以点C为圆心,线段a的长为半径画弧,两弧在线段AC下方交于点D,连接AD,CD,AB,BC,即可得矩形ABCD.(2)利用勾股定理求出BC,再利用矩形的面积公式求解即可.【解答】解:(1)①如图,直线l即为所求.②如图,矩形ABCD即为所求.(2)∵四边形ABCD为矩形,∴∠ABC=90°,∵a=2,∴AB=CD=2,∴BC=AD===,∴矩形ABCD的面积为AB•BC=2×=.4.如图,四边形ABCD中,AB∥DC,AB=BC,AD⊥DC于点D.(1)用尺规作∠ABC的角平分线,交CD于点E;(不写作法,保留作图痕迹)(2)连接AE.求证:四边形ABCE是菱形.【分析】(1)根据角平分线的作图步骤作图即可.(2)由角平分线的定义和平行四边形的判定定理,可得四边形ABCE为平行四边形,再结合AB=BC,可证得四边形ABCE为菱形.【解答】(1)解:如图所示.(2)证明:∵BE是∠ABC的角平分线,∴∠ABE=∠CBE,∵AB∥CD,∴∠ABE=∠BEC,∴∠CBE=∠BEC,∴BC=EC,∵AB=BC,∴AB=EC,∴四边形ABCE为平行四边形,∵AB=BC,∴四边形ABCE为菱形.5.如图,在4×4的方格纸中,点A,B在格点上.请按要求画出格点线段(线段的端点在格点上),并写出结论.(1)在图1中画一条线段垂直AB.(2)在图2中画一条线段平分AB.【分析】(1)利用数形结合的思想作出图形即可;(2【解答】解:(1)如图1中,线段EF即为所求(答案不唯一);(2)如图2中,线段EF即为所求(答案不唯一).6.“水城河畔,樱花绽放,凉都宫中,书画成风”的风景,引来市民和游客争相“打卡”留念.已知水城河与南环路之间的某路段平行宽度为200米,为避免交通拥堵,请在水城河与南环路之间设计一条停车带,使得每个停车位到水城河与到凉都宫点F的距离相等.(1)利用尺规作出凉都宫到水城河的距离(保留作图痕迹,不写作法);(2)在图中格点处标出三个符合条件的停车位P1,P2,P3;(3)建立平面直角坐标系,设M(0,2),N(2,0),停车位P(x,y),请写出y与x之间的关系式,在图中画出停车带,并判断点P(4,﹣4)是否在停车带上.【分析】(1)利用过直线外一点作垂线的方法作图即可;(2)根据停车位到水城河与到凉都宫点F的距离相等,可得点P1,P2,P3;(3)根据停车位P(x,y)到点F(0,﹣1)和直线y=1的距离相等,得1﹣y=,从而解决问题.【解答】解:(1)如图,线段FA的长即为所求;(2)如图,点P1,P2,P3即为所求;(3)∵停车位P(x,y)到点F(0,﹣1)和直线y=1的距离相等,∴1﹣y=,化简得y=﹣,当x=4时,y=﹣4,∴点P(4,﹣4)在停车带上.7.图①、图②、图③均是5×5的正方形网格,每个小正方形的边长均为1,其顶点称为格点,△ABC 的顶点均在格点上.只用无刻度的直尺,在给定的网格中,按下列要求作图,保留作图痕迹.(1)网格中△ABC的形状是;(2)在图①中确定一点D,连结DB、DC,使△DBC与△ABC全等;(3)在图②中△ABC的边BC上确定一点E,连结AE,使△ABE∽△CBA;(4)在图③中△ABC的边AB上确定一点P,在边BC上确定一点Q,连结PQ,使△PBQ∽△ABC,且相似比为1:2.【分析】(1)利用勾股定理的逆定理证明即可;(2(3)根据相似三角形的判定作出图形即可;(4)作出AB,BC的中点P,Q即可.【解答】解:(1)∵AC==,AB==2,BC=5,∴AC2+AB2=BC2,∴∠BAC=90°,∴△ABC是直角三角形;故答案为:直角三角形;(2)如图①中,点D,点D′,点D″即为所求;(3)如图②中,点E即为所求;(4)如图③,点P,点Q即为所求.8.如图,⊙O是△ABC的外接圆,∠ABC=45°.(1)请用尺规作出⊙O的切线AD(保留作图痕迹,不写作法);(2)在(1)的条件下,若AB与切线AD所夹的锐角为75°,⊙O的半径为2,求BC的长.【分析】(1)过点A作AD⊥AO即可;(2)连接OB,OC.证明∠=75°,利用三角形内角和定理求出∠CAB,推出∠BOC=120°,求出CH可得结论.【解答】解:(1)如图,切线AD即为所求;(2)过点O作OH⊥BC于H,连接OB,OC.∵AD是切线,∴OA⊥AD,∴∠OAD =90°,∵∠DAB =75°,∴∠OAB =15°,∵OA =OB ,∴∠OAB =∠OBA =15°,∴∠BOA =150°,∴∠BCA =∠AOB =75°,∵∠ABC =45°,∴∠BAC =180°﹣45°﹣75°=60°,∴∠BOC =2∠BAC =120°,∵OB =OC =2,∴∠BCO =∠CBO =30°,∵OH ⊥BC ,∴CH =BH =OC •cos30°=,∴BC =2.9.如图,在△ABC 中,AD 是△ABC 的角平分线,分别以点A ,D 为圆心,大于21AD 的长为半径作弧,两弧交于点M ,N ,作直线MN AB ,AD ,AC 于点E ,O ,F ,连接DE ,DF .(1)由作图可知,直线MN 是线段AD 的.(2)求证:四边形AEDF 是菱形.【分析】(1)根据作法得到MN 是线段AD 的垂直平分线;(2)根据垂直平分线的性质则AF =DF ,AE =DE ,进而得出DF ∥AB ,同理DE ∥AF ,于是可判断四边形AEDF 是平行四边形,加上FA =FD ,则可判断四边形AEDF 为菱形.【解答】(1)解:根据作法可知:MN 是线段AD 的垂直平分线;故答案为:垂直平分线;(2)证明:∵MN 是AD 的垂直平分线,∴AF=DF,AE=DE,∴∠FAD=∠FDA,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠FDA=∠BAD,∴DF∥AB,同理DE∥AF,∴四边形AEDF是平行四边形,∵FA=FD,∴四边形AEDF为菱形.10.如图,已知Rt△ABC中,∠ACB=90°,AB=8,BC=5.(1)作BC的垂直平分线,分别交AB、BC于点D、H;(2)在(1)的条件下,连接CD,求△BCD的周长.【分析】(1)利用基本作图,作BC的垂直平分线即可;(2)根据线段垂直平分线的性质得到DC=DB,则利用等角的余角相等得到∠A=∠DCA,则DC=DA,然后利用等线段代换得到△BCD的周长=AB+BC.【解答】解:(1)如图,DH为所作;(2)∵DH垂直平分BC,∴DC=DB,∴∠B=∠DCB,∵∠B+∠A=90°,∠DCB+∠DCA=90°,∴∠A=∠DCA,∴DC=DA,∴△BCD的周长=DC+DB+BC=DA+DB+BC=AB+BC=8+5=13.11.已知:△ABC.(1)尺规作图:用直尺和圆规作出△ABC内切圆的圆心O.(只保留作图痕迹,不写作法和证明)(2)如果△ABC的周长为14cm,内切圆的半径为1.3cm,求△ABC的面积.【分析】(1)作∠ABC,∠ACB的角平分线交于点O,点O即为所求;(2)△ABC的面积=(a+b+c)•r计算即可.【解答】解:(1)如图,点O即为所求;(2)由题意,△ABC的面积=×14×1.3=9.1(cm2).12.已知四边形ABCD为矩形,点E是边AD的中点,请仅用无刻度的直尺完成下列作图,不写作法,保留作图痕迹.(1)在图1中作出矩形ABCD的对称轴m,使m∥AB;(2)在图2中作出矩形ABCD的对称轴n,使n∥AD.【分析】(1)如图1中,连接,BD交于点O,作直线OE即可;(2)如图2中,同法作出点O,连接BE交AC于点T,连接DT,延长TD交AB于点R,作直线OR即可.【解答】解:(1)如图1中,直线m即为所求;(2)如图2中,直线n即为所求;13.如图,在10×10的正方形网格中,小正方形的顶点称为格点,顶点均在格点上的图形称为格点图形,图中△ABC为格点三角形.请按要求作图,不需证明.(1)在图1中,作出与△ABC全等的所有格点三角形,要求所作格点三角形与△ABC有一条公共边,且不与△ABC重叠;(2)在图2中,作出以BC为对角线的所有格点菱形.【分析】(1)根据全等三角形的判定画出图形即可;(2)根据菱形的定义画出图形即可.【解答】解:(1)如图1中,△ABD1,△ABD2,△ACD3,△ACD4,△CBD5即为所求;(2)如图2中,菱形ABDC,菱形BECF即为所求.14.【问题提出】如何用圆规和无刻度的直尺作一条直线或圆弧平分已知扇形的面积?【初步尝试】如图1,已知扇形OAB,请你用圆规和无刻度的直尺过圆心O作一条直线,使扇形的面积被这条直线平分;【问题联想】如图2,已知线段MN,请你用圆规和无刻度的直尺作一个以MN为斜边的等腰直角三角形MNP;【问题再解】如图3,已知扇形OAB,请你用圆规和无刻度的直尺作一条以点O为圆心的圆弧,使扇形的面积被这条圆弧平分.(友情提醒:以上作图均不写作法,但需保留作图痕迹)【分析】【初步尝试】如图1,作∠AOB的角平分线OP即可;【问题联想】如图2,作线段MN的垂直平分线RT,垂足为R,在射线RT上截取RP=RM,连接MP,NP,三角形MNP即为所求;【问题再解】方法一:构造等腰直角三角形OBE,作BC⊥OE,以O为圆心,OC为半径画弧交OB于点D,交OA于点F,弧DF即为所求.方法二:作OB的中垂线交OB于点C,然后以C为圆心,CB 长为半径画弧交OB中垂线于点D,再以O为圆心,OD长为半径画弧分别交OA、OB于点E、F.则弧EF即为所求.【解答】解:【初步尝试】如图1,直线OP即为所求;【问题联想】如图2,三角形MNP即为所求;【问题再解】如图3中,即为所求.15.如图,在6×6的方格纸中,点A,B,C均在格点上,试按要求画出相应格点图形.(1)如图1,作一条线段,使它是AB向右平移一格后的图形;(2)如图2,作一个轴对称图形,使AB和AC是它的两条边;(3)如图3,作一个与△ABC相似的三角形,相似比不等于1.【分析】(1)把点B、A向右作平移1个单位得到CD;(2)作A点关于BC的对称点D即可;(3)延长CB到D使CD=2CB,延长CA到E点使CE=2CA,则△EDC满足条件.【解答】解:(1)如图1,CD为所作;(2)如图2,(3)如图3,△EDC为所作.。

2018年中考数学专题复习训练:尺规作图

2018年中考数学专题复习训练:尺规作图

中考复习训练尺规作图一、选择题1.下列关于画图的语句正确的是()A. 画直线AB=8cmB. 画射线OA=8cmC. 已知A,B,C三点,过这三点画一条直线D. 过直线AB外一点画一直线与AB平行2.下列各条件中,不能作出唯一三角形的是()A. 已知两边和夹角B. 已知两边和其中一边的对角C. 已知两角和夹边D. 已知三边3.如图,在CD上求一点P,使它到OA,OB的距离相等,则P点是()A. 线段CD的中点B. OA与OB的中垂线的交点C. OA与CD的中垂线的交点D. CD与∠AOB的平分线的交点4.如图,在▱ABCD中,AB>2BC,观察图中尺规作图的痕迹,则下列结论错误的是()A. BG平分∠ABCB. BE=BFC. AD=CHD. CH=DH5.如图,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是()A. 同位角相等,两直线平行B. 内错角相等,两直线平行C. 两直线平行,同位角相等D. 两直线平行,内错角相等6.用三角尺可以按照下面的方法画∠AOB的角平分线:在OA、OB上分别取点M、N,使OM=ON;再分别过点M、N画OA、OB的垂线,这两条垂线相交于点P,画射线OP(如图),则射线OP平分∠AOB,以上画角平分线时,用到的三角形全等的判定方法是()A. SSSB. SASC. HLD. ASA7. 用直尺和圆规作一个以线段AB为边的菱形,作图痕迹如图所示,能得到四边形ABCD是菱形的依据是()A. 一组邻边相等的四边形是菱形B. 四边相等的四边形是菱形C. 对角线互相垂直的平行四边形是菱形D. 每条对角线平分一组对角的平行四边形是菱形8.如图,根据尺规作图的痕迹,判断下列说法不正确的是()A. AE、BF是△ABC的内角平分线B. CG也是△ABC的一条内角平分线C. 点O到△ABC三边的距离相等D. AO=BO=CO9.如图,已知△ABC中,AC=3,BC=5,AB=7,在△ABC所在平面内一条直线,将△ABC分割成两个三角形,使其中有一个边长为3的等腰三角形,则这样的直线最多可画()A. 2条B. 3条C. 4条D. 5条10.小明同学画角平分,作法如下:①以O为圆心,适当长为半径作弧,交两边于D、E②分别以C、D为圆心,相同的长度为半径作弧,两弧交于E,③则射线OE就是∠AOB的平分线.小明这样做的依据是()A. SASB. ASAC. AASD. SSS11.如图,∠AOB是一个任意角,在边OA、OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M、N重合,过角尺顶点C的射线OC便是∠AOB的平分线OC,这一做法用到三角形全等的判定方法是()A. SSSB. SASC. ASAD. HL12.如图,在△ABC中,∠C=90°,∠B=32°,以A为圆心,任意长为半径画弧分别交AB,AC于点M和N,再分别以M,N为圆心,大于MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D,则下列说法:①AD是∠BAC的平分线;②CD是△ADC的高;③点D在AB的垂直平分线上;④∠ADC=61°.其中正确的有()A. 1个B. 2个C. 3个D. 4个二、填空题13.利用直尺和圆规作出一个角的角平分线的作法,其理论依据是全等三角形判定方法________ .14.下列语句是有关几何作图的叙述.①以O为圆心作弧;②延长射线AB到点C;③作∠AOB ,使∠AOB=∠1;④作直线AB ,使AB=a;⑤过三角形ABC的顶点C作它的对边AB的平行线.其中正确的有________15.已知一条线段作等边三角形,使其边长等于已知线段,则作图的依据是________.16.(2014•河南)如图,在△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于M,N两点;②作直线MN交AB于点D,连接CD,若CD=AC,∠B=25°,则∠ACB的度数为________.17.如图,在△ABC中,∠C=90°,∠B=20°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于P,连接AP并延长交BC于点D,则∠ADB= ________18.已知△ABC,小明利用下述方法作出了△ABC的一条角平分线.小明的作法:(i)过点B作与AC平行的射线BM;(边AC与射线BM位于边BC的异侧)(ii)在射线BM上取一点D,使得BD=BA;(iii)连结AD,交BC于点E.线段AE即为所求.小明的作法所蕴含的数学道理为________.19. 下面是“经过已知直线外一点作这条直线的垂线”的尺规作图过程:已知:直线l和l外一点P.(如图1)求作:直线l的垂线,使它经过点P.作法:如图2(1)在直线l上任取两点A,B;(2)分别以点A,B为圆心,AP,BP长为半径作弧,两弧相交于点Q;(3)作直线PQ.所以直线PQ就是所求的垂线.请回答:该作图的依据是________20.如图,点D是直线l外一点,在l上去两点A、B,连接AD,分别以点B、D为圆心,AD、AB的长尾半径画弧,两弧交于点C,连接CD、BC,则四边形ABCD是平行四边形,理由是________.21. 如图所示,已知∠AOB=40°,现按照以下步骤作图:①在OA,OB上分别截取线段OD,OE,使OD=OE;②分别以D,E为圆心,以大于DE的长为半径画弧,在∠AOB内两弧交于点C;③作射线OC.则∠AOC的大小为________.三、解答题22.已知:在△ABC中,AB=AC.(1)尺规作图:作AD⊥BC于点D.(不要求写作法,保留作图痕迹)(2)延长AD至E点,使得DE=AD.求证:四边形ABEC是菱形.23.利用直尺或圆规画图(不写画法、保留作图痕迹,以答卷上的图为准)(1)利用图a中的网格,过P点画直线AB的平行线;(2)已知:如图b,线段a,b;请按下列步骤画图;①画线段BC,使得BC=a﹣b;②在直线BC外取一点A,使线段BA=a﹣b,画线段AB和射线AC.24. 如图,在▱ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B、F为圆心,大于BF的相同长为半径画弧,两弧交于点P;连接AP并延长交BC于点E,连接EF,则所得四边形ABEF是菱形.(Ⅰ)根据以上尺规作图的过程,求证:四边形ABEF是菱形;(Ⅱ)若菱形ABEF的周长为16,AE=4 ,求∠C的大小.参考答案一、选择题D B D D A C B D C D A C二、填空题13. SSS14.③⑤15.SSS16.105°17.125°18.等边对等角;两直线平行,内错角相等19.到线段两个端点的距离相等的点在线段的垂直平分线上(A、B都在线段PQ的垂直平分线上)20.两组对边分别相等的四边形是平行四边形21.20°三、解答题22.解:(1)如图所示:(2)证明:如图所示:∵AB=AC,AD⊥BC,∴CD=BD,∵AD=DE,∴四边形ABEC是平行四边形,又∵AD⊥BC,∴四边形ABEC是菱形.23.解:(1)如图a所示.(2)请按下列步骤画图:①画线段BC,使得BC=a﹣b;②在直线BC外任取一点A,使线段BA=a﹣b,画直线AB和射线AC.24.解:(Ⅰ)在△AEB和△AEF中,,∴△AEB≌△AEF,∴∠EAB=∠EAF,∵AD∥BC,∴∠EAF=∠AEB=∠EAB,∴BE=AB=AF.∵AF∥BE,∴四边形ABEF是平行四边形,∵AB=BE,∴四边形ABEF是菱形;(Ⅱ)如图,连结BF,交AE于G.∵菱形ABEF的周长为16,AE=4 ,∴AB=BE=EF=AF=4,AG= AE=2 ,∠BAF=2∠BAE,AE⊥BF.在直角△ABG中,∵∠AGB=90°,∴cos∠BAG= = = ,∴∠BAG=30°,∴∠BAF=2∠BAE=60°.∵四边形ABCD是平行四边形,∴∠C=∠BAF=60°.。

尺规作图(解析版)2018年数学全国中考真题-2

尺规作图(解析版)2018年数学全国中考真题-2

2018年数学全国中考真题尺规作图(试题二)解析版一、选择题1.(2018浙江嘉兴,8,3)用尺规在一个平行四边形内作菱形ABCD,下列作法中错误的是()【答案】C 【解析】根据尺规作图以及菱形的判定方法.二、填空题△中,用直尺和圆规作AB、AC的垂直平分线,分1.(2018年江苏省南京市,14,2分).如图,在ABCBC=,则DE=cm.别交AB、AC于点D、E,连接DE.若10cm【答案】5【解析】∵用直尺和圆规作AB、AC的垂直平分线,∴D为AB的中点,E为AC的中点,∴DE是△ABC的中位线,∴DE=BC=5cm.故答案为:5.【知识点】线段垂直平分线中位线2.(2018吉林省,11, 2分)如图,在平面直角坐标系中,A(4,0),B(0,3),以点A为圆心,AB长为半径画弧,交x轴的负半轴于点C,则点C坐标为__________【答案】(-1,0)【解析】由题意知,OA=4,OB=3,∴AC=AB=5,则OC=1.则点C坐标为(-1,0)【知识点】尺规作图,实数与数轴的一一对应关系3.(2018山西省,14题,3分)如图,直线MN∥PQ.直线AB分别与MN,PQ相交于点A,B.小宇同学利用尺规按以下步骤作图:①以点A为圆心,以任意长为半径作弧交AN于点C,交AB于点D;②分别以C,D为圆心,以大于12CD 长为半径作弧,两弧在∠NAB 内交于点E;③作射线AE 交PQ 于点F.若AB=2.∠ABP =60°则线段AF 的长为 .【答案】2√3【解析】解:过点A 作AG ⊥PQ 交PQ 与点G由作图可知,AF 平分∠NAB∵ MN ∥PQ ;AF 平分∠NAB ;∠ABP =60°∴ ∠AFG =30°在Rt △ABG 中,∠ABP =60°,AB=2;∴ AG =√3在Rt △AFG 中,∠AFG =30°,AG =√3;∴ AF =2√3【知识点】角平分线、特殊角三角函数4. (2018内蒙古通辽,16,3分)如图,在△ABC 中,按以下步骤作图:①分别以点A 和点C 为圆心,以大于12AC 的长为半径作弧,两弧相交于M 、N 两点;②作直线MN 交BC 于点D ,连接A D .若AB =BD ,AB =6,∠C =30°,则△ACD 的面积为 .【答案】93【解析】依题意MN 是AC 的垂直平分线,所以∠C =∠DAC =30°,所以∠ADB =∠C +∠DAC =60°,又AB =BD ,所以△ABD 为等边三角形,∠BAD =60°,所以∠BAC =∠DAC +∠BAD =90°,因为AB =6,所以AC =63,所以△ABC 的面积为12×6×63=183.又BD =AD =DC ,所以S △ACD =12S △ABC =93,故应填:93.5. (2018辽宁省抚顺市,题号16,分值3)如图,ABCD 中,AB=7,BC=3,连接AC ,分别以点A 和点C 为圆PP【答案】10【解析】由题可知,直线MN 是线段AC 的垂直平分线,∴AE=EC.∵在ABCD 中DE+EC=CD=AB=7,AD=BC=3,∴△AED 的周长为AD+DE+AE=BC+DE+EC=BC+CD=10.【知识点】用尺规作垂直平分线,垂直平分线的性质.三、解答题1. (2018广东省,题号,分值) 如图,BD 是菱形ABCD 的对角线,︒=∠75CBD ,(1)请用尺规作图法,作AB 的垂直平分线EF ,垂足为E ,交AD 于F ;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF ,求DBF ∠的度数.【思路分析】(1)根据尺规作图步骤作垂直平分线,保留痕迹即可;(2)先利用菱形性质求得∠DBA 的度数,再利用垂直平分线性质求得∠ABF 的度数,进而求得∠DBF 的度数.【解题过程】(1)如图直线MN 为所求(2)解:∵四边形ABCD 是菱形∴AD =AB ,AD ∥AB ,∵∠DBC =75°,∴∠ADB =75°,CA∴∠ABD =75°∴∠A =30°∵EF 为AB 的垂直平分线∴∠A =∠FBE =30°,∴∠DBE =45°【知识点】菱形性质;线段垂直平分线性质;尺规作图2. (2018甘肃省兰州市,20,6分)如图,在Rt △ABC 中.(1)利用尺度作图,在BC 边上求作一点P ,使得点P 到AB 的距离(PD 的长)等于PC 的长;(2)利用尺规作图,作出(1)中的线段PD .(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)【思路分析】PC ⊥AC ,要使P 到AB 的距离(PD 的长)等于PC 的长,即求∠A 的角平分线与BC 的交点.【解题过程】(1)作∠A 的平分线AD ,交BC 于P ;(2)过点P 作直线AB 的垂线,垂中为D 。【知识点】尺规作图19题答案图2FE C DA BMN C A B第20题图3. (2018湖北省江汉油田潜江天门仙桃市,18,5分)图①、图②都是由边长为1的小菱形构成的网格,每个小菱形的顶点称为格点.点O ,M ,N ,A ,B 均在格点上,请仅用无刻度直尺在网格中完成下列画图.(1)在图①中,画出∠MON 的平分线OP ;(2)在图②中,画一个Rt △ABC ,使点C 在格点上.【思路分析】(1)在只能用直尺画角平分线的情况下,就设法将∠MON 放置在能画出角平分线的图形中,如菱形.(2)原图是由全等的小菱形组成的,∴要想找到直角就要从菱形的对角线方面入手考虑.设法找让三角形中的一个顶点处在两个菱形的对角线交点位置,并且在格点上.【解题过程】解:(1)如图①,将∠MON 放在菱形AOBC 中,连接对角线OC ,并取格点P ,OP 即为所求. 2分 如图②所示,△ABC 或△ABC 1均可.4. (湖北省咸宁市,18,7)已知:AOB ∠.求作:,'''B O A ∠使'''AO B AOB ∠=∠ 作法:(1)如图1,以点O 为圆心,任意长为半径画弧,分别交OA ,OB 于点C ,D ;(2)如图2,画一条射线''A O ,以点'O 为圆心OC 长为半径画弧,交于点''A O 于点'C ;(3)以点'C 为圆心,D C ,长为半径画弧,与第2 步中所画的弧交于点'D ;(4)过点 'D 画射线'OB ,则 '''AO B AOB ∠=∠. 根据以上作图步骤,请你证明AOB B O A ∠=∠'''.(第18题图) 图①图② BAO N M第18题答图 P A 图① ON MB C C 1 C图②B A【思路分析】由画一条射线''A O ,以点'O为圆心OC 长为半径画弧,交于点''A O 于点'C 可得OC =O′C′,由以点'C 为圆心,D C ,长为半径画弧,与第 2 步中所画的弧交于点'D 可得OD =O′D′,CD =C′D′,从而'''.COD C O D ∆≅∆【解题过程】证明:由作图步骤可知,在COD ∆和'''D O C ∆中,''''''OC O C OD O D CD C D ⎧=⎪=⎨⎪=⎩,'''().COD C O D SSS ∴∆≅∆COD D O C ∠=∠∴'''.即AOB B O A ∠=∠'''.【知识点】三角形全等;尺规作图5. (2018广西贵港,20,5分)尺规作图(只保留作图痕迹,不要求写出作法).如图,已知∠α和线段a ,求作:△ABC ,使∠A =∠α,∠C =90°,AB =a .【思路分析】先作∠A 等于已知角∠α,再在角的一边上截取线段AB =a ,再过B 点作角的另一边的垂线,垂足为C ,则△ABC 即为所求.【解答过程】所作图形如下a A6.(2018江苏常州,27,10)(本小题满分10分)(1)如图1,已知EK垂直平分BC,垂足为D,AB与EK相交于点F,连接CF.求证:∠AFE=∠CFD;(2)如图2,在Rt△GMN中,∠M=90°,P为MN的中点.①用直尺和圆规在GN边上求作点Q,使得∠GQM=∠PQN(保留作图痕迹,不要求写作法).②在①的条件下,如果∠G=60°,那么Q是GN的中点吗?为什么?【解答过程】(1)∵EK垂直平分BC,点F在EK上,∴FC=FB,且∠CFD=∠BFD ∵∠AFE=∠BFD,∴∠AFE=∠CFD(2)如图所示,点Q为所求作的点.(3)Q是GN的中点。

中考数学专题训练:尺规作图技巧+典型题全汇总

中考数学专题训练:尺规作图技巧+典型题全汇总

初中数学尺规作图专题讲解
尺规作图是起源于古希腊的数学课题,是指用没有刻度的直尺和圆规作图。

其中直尺必须没有刻度,只能用来作直线、线段、射线或延长线段;圆规可以开至无限宽,但上面也不能有刻度,只能用来作圆和圆弧.因此,尺规作图与一般的画图不同,一般画图可以动用一切画图工具,包括三角尺、量角器等,在操作过程中可以度量,但尺规作图在操作过程中是不可以度量的.
1、尺规作图规范用语
2、尺规作图基本步骤
3、五种基础的尺规作图题型(掌握基础才能挑战复杂题型)
基本作图一:作一条线段等于已知线段。

基本作图二:作一个角等于已知角。

基本作图三:作已知线段的垂直平分线。

基本作图四:作已知角的角平分线
基本作图五:过一点作已知直线的垂线。

4、典型例题分析
5、题目练习。

中考数学考点32尺规作图总复习(解析版)

中考数学考点32尺规作图总复习(解析版)

尺规作图【命题趋势】中考对尺规作图的考查涉及多种形式,不再是单一的对作图技法操作进行考查,而是把作图与计算、证明、分析、判断等数学思维活动有效融合,既体现了动手实践的数学思维活动,也考查了学生运用数学思考解决问题的能力.【中考考查重点】一、根据尺规作图的痕迹、步骤判断结论和计算。

二、尺规作图及相关证明与计算考点:五种基本尺规作图类型图示步骤作图依据1.作一条线段等于已知线段O A P (1)画射线OP(2)在射线OP上截取OA=a圆上的点到圆心的距离等于半径2.作一个角等于已知角(1)以点O为圆心.任意长为半径画弧.分别交OA.OB于点C,D(2)画一条射线PO.以点P为圆心.OC长为半径画弧.交PO于点C′(3)以P为圆心.CD长为半径画弧.与第(2)步中所画的弧相交于点D′(4)过点P、P画射线PB′.则∠B′PO=∠BOC三边分别相等的两个三角形全等;全等三角形的对应角相等;两点确定一条直线3.作一个角的平分线(1)以点 O 为圆心.适当长为半径画弧.交 OA 于点 M.交 OB 于点 N.(2)分别以点M、N 为圆心.大于MN21的长为半径画弧.两弧在∠AOB 的内部交于点 C.(3)画出射线OC .射线 OC 即为所求点在直•广元)观察下列作图痕迹A.B.C.D.【答案】C【解答】解:根据基本作图.A、D选项中为过C点作AB的垂线.B选项作AB的垂直平分线得到AB边上的中线CD.C选项作CD平分∠ACB.故选:C.2.(2021秋•广州期中)如图.在△ABC中.以A为圆心.任意长为半径画弧.分别交AB、AC于点M、N;再分别以M、N为圆心.大于MN的长为半径画弧.两弧交于点P;连结AP并延长交BC于点D.则下列说法正确的是()A.AD+BD<AB B.AD一定经过△ABC的重心C.∠BAD=∠CAD D.AD是三角形的高【答案】C【解答】解:由题可知AD是∠BAC的角平分线.∴∠BAD=∠CAD.故选:C.3.(2021•济宁)如图.已知△ABC.(1)以点A为圆心.以适当长为半径画弧.交AC于点M.交AB于点N.(2)分别以M.N为圆心.以大于MN的长为半径画弧.两弧在∠BAC的内部相交于点P.(3)作射线AP交BC于点D.(4)分别以A.D为圆心.以大于AD的长为半径画弧.两弧相交于G.H两点.(5)作直线GH.交AC.AB分别于点E.F.依据以上作图.若AF=2.CE=3.BD=.则CD的长是()A.B.1C.D.4【答案】C【解答】解:由作法得AD平分∠BAC.EF垂直平分AD.∴∠EAD=∠F AD.EA=ED.F A=FD.∵EA=ED.∴∠EAD=∠EDA.∴∠F AD=∠EDA.∴DE∥AF.同理可得AE∥DF.∴四边形AEDF为平行四边形.而EA=ED.∴四边形AEDF为菱形.∴AE=AF=2.∵DE∥AB.∴=.即=.∴CD=.故选:C.4.(2021秋•开封期末)已知线段AB如图所示.延长AB至C.使BC=AB.反向延长AB 至D.使AD=BC.点M是CD的中点.点N是AD的中点.(1)依题意补全图形;(2)若AB长为10.求线段MN的长度.【答案】略【解答】解:(1)如图.(2)∵BC=AD=AB=10.∴DC=30.∵点M是CD的中点.∴DM=CD=15.∵点N是AD的中点.∴DN=AD=5.∴MN=DM﹣DN=15﹣5=10.答:线段MN的长度为10.5.(2022•雨花区校级开学)下面是小华设计的“作三角形一边上的高”的尺规作图过程.已知:△ABC.求作:△ABC的边BC上的高AD.作法:①以点A为圆心.适当长为半径画弧.交直线BC于点M.N;②分别以点M.N为圆心.以大于MN的长为半径画弧.两弧相交于点P;③作直线AP交BC于点D.则线段AD即为所求△ABC的边BC上的高.根据小华设计的尺规作图过程:(1)AP是线段MN的;(2)证明AD是△ABC的高.【答案】(1)垂直平分线(2)略【解答】(1)解:由作法得AP为线段MN的垂直平分线;故答案为:垂直平分线;(2)证明:∵AM=AN.PM=PN.∴A点和P点在MN的垂直平分线上.∴即AP垂直平分MN.即AD是△ABC的高.6.(2021•烟台)如图.已知Rt△ABC中.∠C=90°.(1)请按如下要求完成尺规作图(不写作法.保留作图痕迹).①作∠BAC的角平分线AD.交BC于点D;②作线段AD的垂直平分线EF与AB相交于点O;③以点O为圆心.以OD长为半径画圆.交边AB于点M.(2)在(1)的条件下.求证:BC是⊙O的切线;(3)若AM=4BM.AC=10.求⊙O的半径.【答案】略【解答】解:(1)如图所示.①以A为圆心.以任意长度为半径画弧.与AC、AB相交.再以两个交点为圆心.以大于两点之间距离的一半为半径画弧相交于∠BAC内部一点.将点A与它连接并延长.与BC交于点D.则AD为∠BAC的平分线;②分别以点A、点D为圆心.以大于AD长度为半径画圆.将两圆交点连接.则EF为AD的垂直平分线.EF与AB交于点O;③如图.⊙O与AB交于点M;(2)证明:∵EF是AD的垂直平分线.且点O在EF上.∴∠OAD=∠ODA.∵AD是∠BAC的平分线.∴∠OAD=∠CAD.∴∠ODA=∠CAD.∴OD∥AC.∵AC⊥BC.∴OD⊥BC.故BC是⊙O的切线.(3)根据题意可知OM=OA=OD=AM.AM=4BM.∴OM=2BM.BO=3BM.AB=5BM.∴==.由(2)可知Rt△BOD与Rt△BAC有公共角∠B.∴Rt△BOD∽Rt△BAC.∴=.即=.解得DO=6.故⊙O的半径为6.1.(2021秋•盱眙县期末)如图.在Rt△ABC中.∠C=90°.以顶点A为圆心.适当长为半径画圆弧.分别交AB、AC于点D、E.再分别以点D、E为圆心.大于DE长为半径画圆弧.两弧交于点F.作射线AF交边BC于点G.若CG=4.AB=10.则△ABG的面积是()A.10B.20C.30D.40【答案】B【解答】解:如图.过点G作GH⊥AB于点H.由作图过程可知:AG平分∠BAC.∵∠C=90°.∴GC⊥AC.∴GH=GC=4.∴△ABG的面积=AB•GH=10×4=20.故选:B.2.(2021秋•宁波期末)如图.在Rt△ABC中.∠B=90°.分别以A.C为圆心.大于AC长为半径作弧.两弧相交于点M.N.作直线MN.与AC.BC分别交于D.E.连结AE.若AB=6.AC=10.则△ABE的周长为()A.13B.14C.15D.16【答案】B【解答】解:由作法得ED垂直平分AC.∴EA=EC.在Rt△ABC中.BC===8.∴△ABE的周长=AB+BE+AE=AB+BE+CE=AB+BC=6+8=14.故选:B.3.(2021秋•定西期末)下列选项中的尺规作图.能推出P A=PC的是()A.B.C.D.【答案】B【解答】解:∵P A=PC.∴P点为AC的垂直平分线的上的点.故选:B.4.(2021秋•郧阳区期末)如图为用直尺和圆规作一个角等于已知角.那么能得出∠A′O′B′=∠AOB的依据是运用了我们学习的全等三角形判定()A.角角边B.边角边C.角边角D.边边边【答案】D【解答】解:由作法得OD=OC=OC′=OD′.CD=C′D′.则可根据“SSS”可判定△OCD≌△OC′D′.所以∠A′O′B′=∠AOB.故选:D.5.(2021秋•朝阳区校级期末)如图.在Rt△ABC中.∠ACB=90°.分别以点B和点C 为圆心.大于BC的长为半径作弧.两弧相交于D、E两点.作直线DE交AB于点F.交BC与点G.连接CF.若AC=3.CG=2.则CF的长为.【答案】【解答】解:由作图可知.DE垂直平分线段BC.∴CG=GB=2.FG⊥CB.∴∠FGB=∠ACB=90°.∴FG∥AC.∵CG=GB.∴AF=FB.∴FG=AC=.∵∠FGC=90°.∴CF===.故答案为.1.(2021•阿坝州)如图.在△ABC中.∠BAC=70°.∠C=40°.分别以点A和点C为圆心.大于AC的长为半径画弧.两弧相交于点M.N.作直线MN交BC于点D.连接AD.则∠BAD的大小为()A.30°B.40°C.50°D.60°【答案】A【解答】解:由作图可知.直线MN是线段AC的垂直平分线.∴DA=DC.∴∠DAC=∠C=40°.∵∠BAC=70°.∴∠BAD=∠BAC﹣∠DAC=70°﹣40°=30°.故选:A.2.(2021•百色)如图.在⊙O中.尺规作图的部分作法如下:(1)分别以弦AB的端点A、B为圆心.适当等长为半径画弧.使两弧相交于点M;(2)作直线OM交AB于点N.若OB=10.AB=16.则tan B等于()A.B.C.D.【答案】B【解答】解:如图.连接OA.∴OA=OB.根据作图过程可知:OM是AB的垂直平分线.∴AN=BN=AB=8.在Rt△OBN中.OB=10.BN=8.根据勾股定理.得ON==6.∴tan B===.故选:B.3.(2021•黄石)如图.在Rt△ABC中.∠ACB=90°.按以下步骤作图:①以B为圆心.任意长为半径作弧.分别交BA、BC于M、N两点;②分别以M、N为圆心.以大于MN 的长为半径作弧.两弧相交于点P;③作射线BP.交边AC于D点.若AB=10.BC=6.则线段CD的长为()A.3B.C.D.【答案】A【解答】解:由作法得BD平分∠ABC.过D点作DE⊥AB于E.如图.则DE=DC.在Rt△ABC中.AC===8.∵S△ABD+S△BCD=S△ABC.∴•DE×10+•CD×6=×6×8.即5CD+3CD=24.∴CD=3.故选:A.4.(2021•铜仁市)如图.在Rt△ABC中.∠C=90°.AB=10.BC=8.按下列步骤作图:步骤1:以点A为圆心.小于AC的长为半径作弧分别交AC、AB于点D、E.步骤2:分别以点D、E为圆心.大于DE的长为半径作弧.两弧交于点M.步骤3:作射线AM交BC于点F.则AF的长为()A.6B.3C.4D.6【答案】B【解答】解:由作法得AF平分∠BAC.过F点作FH⊥AB于H.如图.∵AF平分∠BAC.FH⊥AB.FC⊥AC.∴FH=FC.在△ABC中.∵∠C=90°.AB=10.BC=8.∴AC==6.设CF=x.则FH=x.∵S△ABF+S△ACF=S△ABC.∴×10•x+×6•x=×6×8.解得x=3.在Rt△ACF中.AF===3.故选:B.5.(2021•永州)如图.在△ABC中.AB=AC.分别以点A.B为圆心.大于AB的长为半径画弧.两弧相交于点M和点N.作直线MN分别交BC、AB于点D和点E.若∠B=50°.则∠CAD的度数是()A.30°B.40°C.50°D.60°【答案】A【解答】解:由作法得MN垂直平分AB.∴DA=DB.∴∠DAB=∠B=50°.∵AB=AC.∴∠C=∠B=50°.∴∠BAC=180°﹣∠B﹣∠C=180°﹣50°﹣50°=80°.∴∠CAD=∠BAC﹣∠DAB=80°﹣50°=30°.故选:A.6.(2021•长春)在△ABC中.∠BAC=90°.AB≠AC.用无刻度的直尺和圆规在BC边上找一点D.使△ACD为等腰三角形.下列作法不正确的是()A.B.C.D.【答案】A【解答】解:A、由作图可知AD是△ABC的角平分线.推不出△ADC是等腰三角形.本选项符合题意.B、由作图可知CA=CD.△ADC是等腰三角形.本选项不符合题意.C、由作图可知DA=CD.△ADC是等腰三角形.本选项不符合题意.D、由作图可知DA=CD.△ADC是等腰三角形.本选项不符合题意.故选:A.7.(2021•贵阳)如图.已知线段AB=6.利用尺规作AB的垂直平分线.步骤如下:①分别以点A.B为圆心.以b的长为半径作弧.两弧相交于点C和D.②作直线CD.直线CD就是线段AB的垂直平分线.则b的长可能是()A.1B.2C.3D.4【答案】D【解答】解:根据题意得b>AB.即b>3.故选:D.8.(2021•荆州)如图.在△ABC中.AB=AC.∠A=40°.点D.P分别是图中所作直线和射线与AB.CD的交点.根据图中尺规作图痕迹推断.以下结论错误的是()A.AD=CD B.∠ABP=∠CBP C.∠BPC=115°D.∠PBC=∠A 【答案】D【解答】解:由作图可知.点D在AC的垂直平分线上.∴DA=DC.故选项A正确.∴∠A=∠ACD=40°.由作图可知.BP平分∠ABC.∴∠ABP=∠CBP.故选项B正确.∵AB=AC.∠A=40°.∴∠ABC=∠ACB=(180°﹣40°)=70°.∵∠PBC=∠ABC=35°.∠PCB=∠ACB﹣∠ACD=30°.∴∠BPC=180°﹣35°﹣30°=115°.故选项C正确.若∠PBC=∠A.则∠A=36°.显然不符合题意.故选:D.1.(2021•广陵区二模)用直尺和圆规作已知角∠AOB的平分线的作法如图.能得出∠AOC=∠BOC的依据是()A.(SAS)B.(SSS)C.(AAS)D.(ASA)【答案】B【解答】解:由作图可知.OD=OE.PD=PE.在△OPD和△OPE中..∴△OPD≌△OPE(SSS).∴∠AOC=∠BOC.故选:B.2.(2021•河南模拟)如图.在Rt△ABC中.∠ACB=90°.AC=BC=2.按以下步骤作图:①以点A为圆心.适当长度为半径作弧.分别交AC.AB于M.N两点;②分别以点M.N为圆心.大于MN的长为半径作弧.两弧相交于点P;③作射线AP.交BC于点E.则EC的长为()A.B.1C.D.【答案】C【解答】解:由作法得AP平分∠BAC.作EH⊥AB于H.如图.∵AE为角平分线.EC⊥AC.EH⊥AB.∴EC=EH.∵∠ACB=90°.AC=BC=2.∴∠B=45°.AB=BC.∴△BEH为等腰直角三角形.∴BH=EH=BE.设EH=x.则BH=EC=x.BE=x.∴x+x=2.∴x=2﹣2.∴EC=2﹣2.故选:C.3.(2021•高阳县模拟)如图.已知∠MAN=60°.AB=6.依据尺规作图的痕迹可求出BD的长为()A.2B.3C.3D.6【答案】B【解答】解:由题意.AB=AC.∠BAC=60°.∴△ABC是等边三角形.∴AB=BC=AC=6.∵AD平分∠BAC.∴AD⊥BC.BD=CD=3.故选:B.4.(2021•范县模拟)如图.在Rt△ABC中.∠ACB=90°.AC=2BC.分别以点A和B为圆心.以大于AB的长为半径作弧.两弧相交于点M和N.作直线MN.交AC于点E.连接BE.若CE=3.则BE的长为()A.5B.4C.3D.6【答案】A【解答】解:解:由作图可知.MN垂直平分线段AB.∴AE=EB.设AE=EB=x.∵EC=3.AC=2BC.∴BC=(x+3).在Rt△BCE中.∵BE2=BC2+EC2.∴x2=32+[(x+3)]2.解得.x=5或﹣3(舍弃).∴BE=5.故选:A.5.(2021•开平区一模)用尺规作图作直线l的一条垂线.下面是甲.乙两个同学作图描述:甲:如图1.在直线l上任取一点C.以C为圆心任意长为半径画弧.与直线l相交于点A、B两点.再分别以A、B为圆心以大于长为半径画弧.两弧相交于点D.作直线CD 即为所求.乙:如图2在直线l上任取两点M.N作线段MN的垂直平分线.下面说法正确的是()A.甲对.乙不对B.乙对甲不对C.甲乙都对D.甲乙都不对【答案】C【解答】解:根据过一点作已知直线的垂线的方法可知:甲正确;根据作已知线段的垂直平分线的方法可知:乙正确.所以甲乙都对.故选:C.6.(2021•莲都区校级模拟)下列三幅图都是“作已知三角形的高”的尺规作图过程.其中作图正确的是()A.(1)(2)(3)B.(1)(2)C.(1)(3)D.(2)(3)【答案】A【解答】解:图(1)和图(2)中.由“到线段两端距离相等的点在线段的垂直平分线上”可知.AJ垂直平分GH.BC垂直平分AK.故作图正确;图(3)中.依据“直径所对的圆周角等于90°”可知.BC所对的圆周角为直角.故作图正确;故选:A.7.(2021•马山县模拟)如图.已知AB=AC.AB=5.BC=3.以A.B两点为圆心.大于AB 的长为半径画弧.两弧相交于点M.N.连接MN与AC相交于点D.则△BDC的周长为()A.10B.8C.11D.13【答案】B【解答】解:由作法得MN垂直平分AB.∴DA=DB.∴△BDC的周长=DB+DC+BC=DA+DC+BC=AC+BC=AB+BC=5+3=8.故选:B.8.(2021•平泉市一模)如图.已知直线AB和AB外一点C.用尺规过点C作AB的垂线.步骤如下:第一步:任意取一点K.使点K和点C在AB的两旁;第二步:以C为圆心.以a为半径画弧.交直线AB于点D.E;第三步:分别以D.E为圆心.以b为半径画弧.两弧交于点F;第四步:画直线CF.直线CF即为所求.下列正确的是()A.a.b均无限制B.a=CK.b>DE的长C.a有最小限制.b无限制D.a≥CK.b<DE的长【答案】B【解答】解:由作图可知.a=CK.b>DE的长.故选:B.9.(2021•河北一模)嘉淇在用直尺和圆规作一个角等于已知角的步骤如下:已知:∠AOB求作:∠A'O'B'.使∠A'O'B'=∠AOB.作法:(1)如图.以点O为圆心.m为半径画弧.分别交OA.OB于点C.D;(2)画一条射线O'A'.以点O'为圆心.n为半径画弧.交O'A'于点C';(3)以点C'为圆心.p为半径画弧.与第(2)步中所画的弧相交于点D';(4)过点D'画射线O'B'.则∠A'O'B'=∠AOB.下列说法正确的是()A.m=p>0B.n=p>0C.D.m=n>0【答案】D【解答】解:由作图得OD=OC=OD′=OC′.CD=C′D′.则m=n>0.故选:D.10.(2021•定兴县一模)如图.在Rt△ABC中.∠C=90°.以顶点A为圆心.适当长为半径画弧.分别交AC.AB于点M.N.再分别以点M.N为圆心.大于MN长为半径画弧.两弧交于点P.作射线AP交边BC于点D.若CD=2.AB=7.则△ABD的面积是()A.7B.30C.14D.60【答案】A【解答】解:如图.过点D作DH⊥AB于H.∵AP平分∠CAB.DC⊥AC.DH⊥AB.∴DC=DH=2.∴S△ABD=×7×2=7.故选:A.。

2018年中考数学复习试题汇编----尺规作图(含答案)

2018年中考数学复习试题汇编----尺规作图(含答案)

2018年中考数学复习试题汇编----尺规作图1.阅读以下作图过程:第一步:在数轴上,点O表示数0,点A表示数1,点B表示数5,以AB为直径作半圆;第二步:以B点为圆心,1为半径作弧交半圆于点C(如图);第三步:以A点为圆心,AC为半径作弧交数轴的正半轴于点M.请你在下面的数轴中完成第三步的画图(保留作图痕迹,不写画法),并写出点M表示的数为________.151(作图正确1分.答案正确1分)2.下面是“作已知圆的内接正方形”的尺规作图过程.请回答:该尺规作图的依据是______________________________________________.到线段两端距离相等的点在这条线段的中垂线上;两点确定一条直线;互相垂直的直径将圆四等分;(圆内接正多边形定义)3.下面是“作顶角为120°的等腰三角形的外接圆”的尺规作图过程.请回答:该尺规作图的依据是_____________________________________________.4.石景山区八角北路有一块三角形空地(如图1)准备绿化,拟从点A 出发,将△ABC 分成面积相等的三个三角形,栽种三种不同的花草.下面是小美的设计(如图2).请回答,C AC C AC ABC S S S2211成立的理由是:①;②.16.①两条直线被一组平行线所截,所得的对应线段成比例;②等底同高的三角形面积相等16.在数学课上,老师提出利用尺规作图完成下面问题:已知:∠ACB 是△ABC 的一个内角.求作:∠APB= ∠ACB.小路的作法如下:如图,P①作线段AB 的垂直平分线m;②作线段BC的垂直平分线n,与直线m交于点O;On③以点O 为圆心,OA 为半径作△ABC 的外接圆;AB④在弧ACB 上取一点P,连结AP,BP.m所以∠APB= ∠ACB.老师说:“小路的作法正确.”)的依据是;请回答:(1)点O为△ABC外接圆圆心(即OA=OB=OC(2)∠APB=∠ACB的依据是.16.(1)线段垂直平分线上的点与这条线段两个端点的距离相等;(2)同弧所对的圆周角相等.6.阅读下面材料:在数学课上,老师提出利用尺规作图完成下面问题:小明的作法如下:请回答:这样做的依据是.16.圆的定义,直径的定义,直径所对的圆周角为90°,到线段两端点距离相等的点在线段的垂直平分线上,经过半径的外端并且垂直于这条半径的直线是圆的切线.7.下面是“过圆外一点作圆的切线”的尺规作图过程.请回答以下问题:(1)连接OA,OB,可证∠OAP =∠OBP = 90°,理由是;(2)直线PA,PB是⊙O的切线,依据是.16.直径所对的圆周角是直角;经过半径的外端,并且垂直于这条半径的直线是圆的切线.8.下面是“作出所在的圆”的尺规作图过程.。

(完整版)中考数学尺规作图专题复习(含答案)

(完整版)中考数学尺规作图专题复习(含答案)

中考尺规作图专题复习(含答案)尺规作图定义:用无刻度的直尺和圆规画图,中考中常见画的图是线段的垂线,垂直平分线,角平分线、画等长的线段,画等角。

1.直线垂线的画法:【分析】:以点C为圆心,任意长为半径画弧交直线与A,B两点,再分别以点A,B为圆心,大于12AB的长为半径画圆弧,分别交直线l两侧于点M,N,连接MN,则MN即为所求的垂线2.线段垂直平分线的画法【分析】:作法如下:分别以点A,B为圆心,大于12AB的长为半径画圆弧,分别交直线AB两侧于点C,D,连接CD,则CD即为所求的线段AB的垂直平分线.3.角平分线的画法【分析】1.选角顶点O为圆心,任意长为半径画圆,分别交角两边A,B点,再分别以A,B为圆心,大于12AB的长为半径画圆弧,交H点,连接OH,并延长,则射线OH即为所求的角平分线.4.等长的线段的画法直接用圆规量取即可。

5.等角的画法【分析】以O为圆心,任意长为半径画圆,交原角的两边为A,B两点,连接AB;画一条射线l,以上面的那个半径为半径,l的顶点K为圆心画圆,交l与L,以L为圆心,AB 为半径画圆,交以K为圆心,KL为半径的圆与M点,连接KM,则角LKM即为所求.备注:1.尺规作图时,直尺主要用作画直线,射线,圆规主要用作截取相等线段和画弧;2.求作一个三角形,其实质是依据三角形全等的基本事实或判定定理来进行的;3.当作图要满足多个要求时,应逐个满足,取公共部分.例题讲解例题1.已知线段a,求作△ABC,使AB=BC=AC=a.解:作法如下:①作线段BC=a;(先作射线BD,BD截取BC=a).②分别以B、C为圆心,以a半径画弧,两弧交于点A;③连接AB、AC.则△ABC 要求作三角形.例2.已知线段a 和∠α,求作△ABC ,使AB=AC=a ,∠A=∠α.解:作法如下:①作∠MAN=∠α;②以点A 为圆心,a 为半径画弧,分别交射线AM ,AN 于点B ,C. ③连接B ,C.△ABC 即为所求作三角形.例3.(深圳中考)如图,已知△ABC ,AB <BC ,用尺规作图的方法在BC 上取一点P ,使得PA +PC =BC ,则下列选项中,正确的是(D )【解析】由题意知,做出AB 的垂直平分线和BC 的交点即可。

2018年 中考数学专题之尺规作图分类总结

2018年 中考数学专题之尺规作图分类总结

专题二尺规作图类型一角平分线尺规作图题型一:如图,在△ABC中,AB=AC,∠ABC=72°.(1)用直尺和圆规作∠ABC的平分线BD交AC于点D(保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC的平分线BD后,求∠BDC的度数.变式一:如图,AC是⊙O的直径,点B在⊙O上,∠ACB=30°(1)利用尺规作∠ABC的平分线BD,交AC于点E,交⊙O于点D,连接CD(保留作图痕迹,不写作法)(2)在(1)所作的图形中,求△ABE与△CDE的面积之比.变式二:如图,在平行四边形ABCD中,AB<BC.(1)利用尺规作图,在BC边上确定点E,使点E到边AB,AD的距离相等(不写作法,保留作图痕迹);(2)若BC=8,CD=5,则CE=.类型二垂直平分线(即中垂线)尺规作图题型一:如图,在△ABC中,∠C=60°,∠A=40°.(1)用尺规作图作AB的垂直平分线,交AC于点D,交AB于点E(保留作图痕迹,不要求写作法和证明);(2)求证:BD平分∠CBA.变式一:如图,BD是矩形ABCD的一条对角线.(1)作BD的垂直平分线EF,分别交AD、BC于点E、F,垂足为点O.(要求用尺规作图,保留作图痕迹,不要求写作法);(2)求证:DE=BF.变式二:如图,已知在△ABC中,∠A=90°(1)请用圆规和直尺作出⊙P,使圆心P在AC边上,且与AB,BC两边都相切(保留作图痕迹,不写作法和证明).(2)若∠B=60°,AB=3,求⊙P的面积.类型三角平分线与中垂线尺规作图题型一:某地区要在区域S内(即∠COD内部)建一个超市M,如图所示,按照要求,超市M到两个新建的居民小区A,B的距离相等,到两条公路OC,OD的距离也相等.这个超市应该建在何处?(要求:尺规作图,不写作法,保留作图痕迹)变式一:如图,在图中求作⊙P,使⊙P满足以线段MN为弦且圆心P到∠AOB两边的距离相等.(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔加黑)变式二:如图,在△ABC中,AB=AC,∠DAC是△ABC的一个外角.实验与操作:根据要求进行尺规作图,并在图中标明相应字母(保留作图痕迹,不写作法)(1)作∠DAC的平分线AM;(2)作线段AC的垂直平分线,与AM交于点F,与BC边交于点E,连接AE,CF.猜想并证明:判断四边形AECF的形状并加以证明.类型四垂线尺规作图题型一:如图,AE∥BF,AC平分∠BAE,交BF于C.(1)尺规作图:过点B作AC的垂线,交AC于O,交AE于D,(保留作图痕迹,不写作法);(2)在(1)的图形中,找出两条相等的线段,并予以证明.变式一:根据要求画图,并回答问题.已知:直线AB、CD相交于点O,且OE⊥AB(1)过点O画直线MN⊥CD;(2)若点F是(1)所画直线MN上任意一点(O点除外),且∠AOC=34°,求∠EOF的度数.变式二:如图,△ABC是直角三角形,∠ACB=90°.(1)尺规作图:作⊙C,使它与AB相切于点D,与AC相交于点E,保留作图痕迹,不写作法,请标明字母.(2)在你按(1)中要求所作的图中,若BC=3,∠A=30°,求的长.类型五作角相等尺规作图题型一:已知:∠AOB求作:∠A′O′B′使∠A′O′B′=∠AOB(不写作法,保留作图痕迹)变式一:如图,利用尺规,在△ABC的边AC上方作∠CAE=∠ACB,在射线AE上截取AD=BC,连接CD,并证明:CD∥AB(尺规作图要求保留作图痕迹,不写作法)变式二:已知∠BAD,C是AD边上一点,按要求画图,并保留作图痕迹(1)用尺规作图法在AD的右侧以C为顶点作∠DCP=∠DAB;(2)在射线CP上取一点E,使CE=AB,连接BE,AE;(3)画出△ABE的边BE上的高AF和AB边上的高EG.中考真题(2017广东)20.(7分)如图,在△ABC中,∠A>∠B.(1)作边AB的垂直平分线DE,与AB,BC分别相交于点D,E(用尺规作图,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连接AE,若∠B=50°,求∠AEC的度数.(2016广东)19.(6分)如图,已知△ABC中,D为AB的中点.(1)请用尺规作图法作边AC的中点E,并连接DE(保留作图痕迹,不要求写作法);(2)在(1)的条件下,若DE=4,求BC的长.(2015广东)19.(6分)如图,已知锐角△ABC.(1)过点A作BC边的垂线MN,交BC于点D(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,若BC=5,AD=4,tan∠BAD=,求DC的长.。

人教版2018年中考数学第七单元尺规作图专题复习含答案

人教版2018年中考数学第七单元尺规作图专题复习含答案

⼈教版2018年中考数学第七单元尺规作图专题复习含答案第七单元图形的变化尺规作图1.如图,⽤尺规作图作∠AOC=∠AOB的第⼀步是以点O为圆⼼,以任意长为半径画弧①,分别交OA、OB于点E、F,那么第⼆步的作图痕迹②的作法是()第1题图A. 以点F为圆⼼,OE长为半径画弧B. 以点F为圆⼼,EF长为半径画弧C. 以点E为圆⼼,OE长为半径画弧D. 以点E为圆⼼,EF长为半径画弧2.下列四种基本尺规作图分别表⽰:①作⼀个⾓等于已知⾓;②作⼀个⾓的平分线;③作⼀条线段的垂直平分线;④过直线外⼀点P作已知直线的垂线,则对应选项中作法错误的是()A. ①B. ②C. ③D. ④3.如图,依据尺规作图的痕迹,计算∠α=________°.第3题图第4题图第5题图4. 如图所⽰,已知∠AOB =40°,现按照以下步骤作图:①在OA ,OB 上分别截取线段OD ,OE ,使OD =OE ;②分别以D ,E 为圆⼼,以⼤于12DE 的长为半径画弧,在∠AOB 内两弧交于点C ;③作射线OC .则∠AOC 的⼤⼩为________.5.如图,在?ABCD 中,按以下步骤作图:①以A 为圆⼼,任意长为半径作弧,分别交AB ,AD 于点M ,N ;②分别以M ,N 为圆⼼,以⼤于12MN 的长为半径作弧,两弧相交于点P ; ③作射线AP ,交边CD 于点Q ,若DQ =2QC ,BC =3,则?ABCD 的周长为__________.6. (8分)如图,△ABC 中,∠ACB >∠ABC.(1)⽤直尺和圆规在∠ACB 的内部作射线CM ,使∠ACM =∠ABC ;(不要求写作法,保留作图痕迹)(2)若(1)中的射线CM 交AB 于点D ,AB =9,AC =6,求AD 的长.第6题图7. (8分)如图,在△ABC 中,∠A >∠B .(1)作边AB 的垂直平分线DE ,与AB 、BC 分别相交于点D 、E (⽤尺规作图,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连接AE ,若∠B =50°,求∠AEC 的度数.8. (9分) “直⾓”在初中⼏何学习中⽆处不在.如图①,已知∠AOB,请仿照⼩丽的⽅式,再⽤两种不同的⽅法判断∠AOB是否为直⾓(仅限⽤直尺和圆规).⼩丽的⽅法如图②,在OA、OB上分别取点C、D,以C为圆⼼,CD长为半径画弧,交OB的反向延长线于点E.若OE=OD.则∠AOB=90°.答案1.D【解析】设弧①与弧②的交点为点G,由解图可知,当△EOG≌△EOF时,∠AOC=∠AOB,要使△EOG≌△EOF,则EG=EF,∴以点E为圆⼼,EF长为半径画弧可使得EG=EF,∴第⼆步的作图痕迹的作法是以点E为圆。

中考数学尺规作图专题复习(含答案)

中考数学尺规作图专题复习(含答案)

中考尺规作图专题复习(含答案)尺规作图定义:用无刻度的直尺和圆规画图,中考中常见画的图是线段的垂线,垂直平分线,角平分线、画等长的线段,画等角。

1.直线垂线的画法:【分析】:以点C为圆心,任意长为半径画弧交直线与A,B两点,再分别以点A,B为圆心,大于12AB的长为半径画圆弧,分别交直线l两侧于点M,N,连接MN,则MN即为所求的垂线2.线段垂直平分线的画法【分析】:作法如下:分别以点A,B为圆心,大于12AB的长为半径画圆弧,分别交直线AB两侧于点C,D,连接CD,则CD即为所求的线段AB的垂直平分线.3.角平分线的画法【分析】1.选角顶点O为圆心,任意长为半径画圆,分别交角两边A,B点,再分别以A,B为圆心,大于12AB的长为半径画圆弧,交H点,连接OH,并延长,则射线OH即为所求的角平分线.4.等长的线段的画法直接用圆规量取即可。

5.等角的画法【分析】以O为圆心,任意长为半径画圆,交原角的两边为A,B两点,连接AB;画一条射线l,以上面的那个半径为半径,l的顶点K为圆心画圆,交l与L,以L为圆心,AB 为半径画圆,交以K为圆心,KL为半径的圆与M点,连接KM,则角LKM即为所求.备注:1.尺规作图时,直尺主要用作画直线,射线,圆规主要用作截取相等线段和画弧;2.求作一个三角形,其实质是依据三角形全等的基本事实或判定定理来进行的;3.当作图要满足多个要求时,应逐个满足,取公共部分.例题讲解例题1.已知线段a,求作△ABC,使AB=BC=AC=a.解:作法如下:①作线段BC=a;(先作射线BD,BD截取BC=a).②分别以B、C为圆心,以a半径画弧,两弧交于点A;③连接AB、AC.则△ABC 要求作三角形.例2.已知线段a 和∠α,求作△ABC ,使AB=AC=a ,∠A=∠α.解:作法如下:①作∠MAN=∠α;②以点A 为圆心,a 为半径画弧,分别交射线AM ,AN 于点B ,C. ③连接B ,C.△ABC 即为所求作三角形.例3.(深圳中考)如图,已知△ABC ,AB <BC ,用尺规作图的方法在BC 上取一点P ,使得PA +PC =BC ,则下列选项中,正确的是(D )【解析】由题意知,做出AB 的垂直平分线和BC 的交点即可。

中考数学专题练习:尺规作图(含答案)

中考数学专题练习:尺规作图(含答案)

中考数学专题练习:尺规作图(含答案)1.(·随州)如图,用尺规作图作∠AOC=∠AOB的第一步是以点O为圆心,以任意长为半径画弧①,分别交OA、OB于点E、F,那么第二步的作图痕迹②的作法是( )A. 以点F为圆心,OE长为半径画弧B. 以点F为圆心,EF长为半径画弧C. 以点E为圆心,OE长为半径画弧D. 以点E为圆心,EF长为半径画弧2.(·河北) 尺规作图要求,Ⅰ.过直线外一点作这条直线的垂线;Ⅱ.做线段的垂直平分线;Ⅲ.过直线上一点作这条直线的垂线.Ⅳ.作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是( )A.①—Ⅳ,②—Ⅱ,③—Ⅰ,④—ⅢB.①—Ⅳ,②—Ⅲ,③—Ⅱ,④—ⅠC.①—Ⅱ,②—Ⅳ,③—Ⅲ,④—ⅠD.①—Ⅳ,②—Ⅰ,③—Ⅱ,④—Ⅲ3.(·潍坊) 如图,木工师傅在板材边角处作直角时,往往使用“三弧法”,其作法是:(1)作线段AB,分别以A,B为圆心,以AB长为半径作弧,两弧的交点为C;(2)以C为圆心,仍以AB长为半径作弧交AC的延长线于点D;(3)连接BD,BC.下列说法不正确的是( ) A. ∠CBD=30°B. S △BDC =34AB 2 C. 点C 是△ABD 的外心 D. sin 2A +cos 2D =14. (·湖州) 尺规作图特有魅力曾使无数人沉湎其中.传说拿破仑通过下列尺规作图考他的大臣:①将半径为r 的⊙O 六等分,依次得到A 、B 、C 、D 、E 、F 六个分点; ②分别以A ,D 为圆心,AC 长为半径画弧,G 是两弧的一个交点; ③连接OG.问:OG 的长是多少?大臣给出的正确答案应是( ) 3rB. (1+22)r C. (1+32)rD. 2r5. (·河南) 如图,已知▱AOBC 的顶点O(0,0),A(-1,2),点B 在x 轴正半轴上按以下步骤作图:①以点O 为圆心,适当长度为半径作弧,分别交边OA ,OB 于点D ,E ;②分别以点D ,E 为圆心,大于12DE 的长为半径作弧,两弧在∠AOB 内交于点F ;③作射线OF ,交边AC 于点G.则点G 的坐标为( )A.(5-1,2) B. (5,2)C.(3-5,-2) D. (5-2,2)6.(·南通) 如图,Rt△ABC中,∠ACB=90°,CD平分∠ACB交AB于点D,按下列步骤作图.步骤1:分别以点C和点D为圆心,大于12CD的长为半径作弧,两弧相交于M,N两点;步骤2:作直线MN,分别交AC,BC于点E,F;步骤3:连接DE,DF.若AC=4,BC=2,则线段DE的长为( )A. 53B.32C. 2D.437.(·南京) 如图,在△ABC中,用直尺和圆规作AB、AC的垂直平分线,分别交AB、AC于点D、E,连接DE.若BC=10 cm,则DE=________cm.8.(·山西) 如图,直线MN∥PQ,直线AB分别与MN,PQ相交于点A,B.小宇同学利用尺规按以下步骤作图:①以点A为圆心,以任意长为半径作弧交AN于点C,交AB于点D;②分别以C,D为圆心,以大于12CD长为半径作弧,两弧在∠NA B内交于点E;③作射线AE交PQ于点F.若AB=2,∠ABP=60°,则线段AF的长为______.9.(·创新) 下面是“作一个30°角”的尺规作图过程.已知:平面内一点A.求作:∠A,使得∠A=30°.作图:如图,(1)作射线AB;(2)在射线AB上取一点O,以O为圆心,OA为半径作圆,与射线AB相交于点C;(3)以C为圆心,OC为半径作弧,与⊙O交于点D,作射线AD,∠DAB即为所求的角.请回答:该尺规作图的依据是__________________________________________________________________________________________________________.10.(·广东) 如图,BD是菱形ABCD的对角线,∠CBD=75°,(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF,求∠DBF的度数.11.(·福建)求证:相似三角形对应边上的中线之比等于相似比.要求:①根据给出的△ABC及线段A′B′,∠A′(∠A′=∠A).以线段A′B′为一边,在给出的图形上用尺规作出△A′B′C′,使得:△A′B′C′∽△ABC.不写作法,保留作图痕迹;②在已有的图形上画出一组对应中线,并据此写出已知、求证和证明过程.12.(·北京) 下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:直线及直线外一点P.求作:PQ,使得PQ∥l.作法:如图,①在直线上取一点A,作射线PA,以点A为圆心,AP长为半径画弧,交PA的延长线于点B;②在直线上取一点C(不与点A重合),作射线BC,以点C为圆心,CB长为半径画弧,交BC的延长线于点Q;③作直线PQ.∴直线PQ就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵AB=________,CB=________,∴PQ∥l(____________________________________)(填推理的依据).13.(·绥化) 如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,D、E分别是斜边AB、直角边BC上的点,把△ABC沿着直线DE折叠.(1)如图1,当折叠后点B和点A重合时,用直尺和圆规作出直线DE (不写作法和证明,保留作图痕迹).(2)如图2,当折叠后点B落在AC边上点P处,且四边形PEBD是菱形时,求折痕DE的长.参考答案【基础训练】1.D 2.D 3.D 4.D 5.A 6.D7.5 8.2 39.直径所对的圆周角是直角,等边三角形的每个内角为60°,直角三角形两锐角互余等10.解:(1)如解图所示;(2)∵菱形ABCD,∠CBD=75°,∴CD=CB,∠CBD=∠CDB=75°,∴∠C=180°-∠CBD-∠CDB=180°-75°-75°=30°,∴∠A=∠C=30°,∵EF是AB的垂直平分线,∴∠A=∠FBA=30°,∵∠ABD=∠CBD=75°,∴∠DBF=∠ABD-∠FBA=75°-30°=45°.11.解:①如解图,△A′B′C′即为所求作的三角形.②已知:△A′B′C′∽△ABC,CD和C′E分别为AB和A′B′边上的中线,求证:CDC′E=BCB′C′.证明:∵C D和C′E分别为AB和A′B′边上的中线,∴BD=12AB,B′E=12A′B′,∴BDAB=B′EA′B′=12,∴BDB′E=ABA′B′,∵△A′B′C′∽△ABC,∴∠CBA=∠C′B′A′,BCB′C′=ABA′B′,∴BDB′E=BCB′C′,∴△B′C′E∽△BCD,∴CDC′E=BCB′C′.12.解:(1)尺规作图如解图所示:(2)PA,CQ,三角形中位线平行于三角形的第三边.13.解:(1)如解图1,DE为所求作的直线.(2)如解图2,连接BP,∵四边形PEBD是菱形,∴PE=BE,设CE=x,则BE=PE=4-x,∵PE∥AB,∴△PCE∽△ACB,∴CECB=PEAB,∴x4=4-x5,∴x=169,∴CE=169,∴BE=PE=209,在Rt△PCE中,∵PE=209,CE=169,∴PC=43在Rt△PCB中,∵PC=43,BC=4,∴BP=4310,又∵S菱形PEBD =BE·PC=12DE·BP,∴12×4310DE=209×43,∴DE=4910.。

【小初高学习]2018年中考数学考点总动员系列 专题29 尺规作图(含解析)

【小初高学习]2018年中考数学考点总动员系列 专题29 尺规作图(含解析)

考点二十九:尺规作图聚焦考点☆温习理解1.尺规作图的作图工具限定只用圆规和没有刻度的直尺2.基本作图(1)作一条线段等于已知线段,以及线段的和﹑差;(2)作一个角等于已知角,以及角的和﹑差;(3)作角的平分线;(4)作线段的垂直平分线;(5)过一点作已知直线的垂线.3.利用基本作图作三角形(1)已知三边作三角形;(2)已知两边及其夹角作三角形;(3)已知两角及其夹边作三角形;(4)已知底边及底边上的高作等腰三角形;(5)已知一直角边和斜边作直角三角形.4.与圆有关的尺规作图(1)过不在同一直线上的三点作圆(即三角形的外接圆);(2)作三角形的内切圆;(3)作圆的内接正方形和正六边形.5.有关中心对称或轴对称的作图以及设计图案是中考的常见类型6.作图的一般步骤尺规作图的基本步骤:(1)已知:写出已知的线段和角,画出图形;(2)求作:求作什么图形,它符合什么条件,一一具体化;(3)作法:应用“五种基本作图”,叙述时不需重述基本作图的过程,但图中必须保留基本作图的痕迹;(4)证明:为了验证所作图形的正确性,把图作出后,必须再根据已知的定义、公理、定理等,结合作法来证明所作出的图形完全符合题设条件;(5)讨论:研究是不是在任何已知的条件下都能作出图形;在哪些情况下,问题有一个解、多个解或者没有(6)结论:对所作图形下结论.名师点睛☆典例分类考点典例一、应用角平分线、线段的垂直平分线性质画图【例1】(2017四川自贡第22题)两个城镇A,B与一条公路CD,一条河流CE的位置如图所示,某人要修建一避暑山庄,要求该山庄到A,B的距离必须相等,到CD和CE的距离也必须相等,且在∠DCE的内部,请画出该山庄的位置P.(不要求写作法,保留作图痕迹.)【答案】作图见解析.【解析】试题分析:根据角平分线的性质可知:到CD和CE的距离相等的点在∠DCE的角平分线上,所以第一步作:∠ECD的平分线CF;根据中垂线的性质可得:到A、B的距离相等的点在AB的垂直平分线上,所以第二步作线段AB的垂直平分线MN,其交点就是P点.试题解析:作法:①作∠ECD的平分线CF,②作线段AB的中垂线MN,③MN与CF交于点P,则P就是山庄的位置.考点:作图设计.【点睛】本题借助实际场景,考查了几何基本作图的能力,考查了线段垂直平分线和角平分线的性质及应【举一反三】A B C为某公园的三个景点,景点A和景点B之间有一条笔直的小路,(2017黑龙江绥化第22题)如图,,,现要在小路上建一个凉亭P,使景点B、景点C到凉亭P的距离之和等于景点B到景点A的距离.请用直尺和圆规在所给的图中作出点P.(不写作法和证明,只保留作图痕迹)【答案】作图见解析.【解析】考点:作图—应用与设计作图.考点典例二、画已知直线的平行线,垂线【例2】(北京市燕山区2017届九年级一模)下面是“经过已知直线外一点作这条直线的平行线”的尺规作图过程.请回答:该作图依据是__________________________________________________.【答案】四边相等的四边形是菱形,菱形对边平行,两点确定一条直线【解析】四边相等的四边形是菱形,菱形对边平行,两点确定一条直线。

中考数学一轮复习:第32课时尺规作图课件

中考数学一轮复习:第32课时尺规作图课件

作图原理 到线段两个端
两弧交于M、N两点,可得到AM= 点距离相等的
BM=BN=AN;
点在这条线段
2.作直线MN,则直线MN即为所 的垂直平分线
求作的线段的垂直平分线,到线段两 上;两点确定
端点距离相等的点在这条线段的垂 一条直线
直平分线上
第32课时 尺规作图
返回目录
类型
图示
步骤
作图原理
1. 以点P为圆心,适当长为半径向
图痕迹).
(1)证明:∵AE∥BF,
(2)解:作图如解图:
∴∠EAC=∠ACB.
又∵AC平分∠BAE,
∴∠BAC=∠EAC. ∴∠BAC=∠ACB. ∴AB=BC;
第5题解图
第5题图
第32课时 尺规作图
返回目录
6. (202X莆田5月质检20题8分)如图,△ABC中,AB=AC,∠A=80°,点D, E分别在边AB,AC上,且DA=DE=CE. (1)求作点F,使得四边形BDEF为平行四边形;(要求:尺规作图,保留作图 痕迹,不写作法) (2)连接CF,写出图中经过旋转可完全重合的两个三角形,并指出旋转中心和 旋转角.
点P两侧作弧,交直线l于点A、B,
到线段两端点
过一点作
可得到PA=PB;
已知直线
2. 分别以点A、B为圆心,以大于 1 距离相等的点
2 在这条线段的
的垂线
AB的长为半径向直线l两侧作弧,
垂直平分线上
(已知点
交点分别为M、N,可得到AM=
;两点确定一
P和直线l) 点P在直线l上 BM=BN=AN;
条直线
第3题解图
返回目录
第32课时 尺规作图
返回目录
4. (202X龙岩5月质检20题8分) 证明:三角形的中位线平行于三角形的第三边, 并且等于第三边的一半. (要求:在给出的△ABC中用尺规作出AB,AC边的中点M,N,保留作图痕迹, 不要求写作法,并根据图形写出已知、求证和证明)

中考数学必考考点专题32尺规作图含解析

中考数学必考考点专题32尺规作图含解析

专题32 尺规作图问题专题知识回顾1.尺规作图的定义:只用不带刻度的直尺和圆规通过有限次操作,完成画图的一种作图方法.尺规作图可以要求写作图步骤,也可以要求不一定要写作图步骤,但必须保留作图痕迹。

2.尺规作图的五种基本情况:(1)作一条线段等于已知线段;(2)作一个角等于已知角;(3)作已知线段的垂直平分线;(4)作已知角的角平分线;(5)过一点作已知直线的垂线。

3.对尺规作图题解法:写出已知,求作,作法(不要求写出证明过程)并能给出合情推理。

4.中考要求:(1)能完成以下基本作图:作一条线段等于已知线段,作一个角等于已知角,作角的平分线,作线段的垂直平分线.(2)能利用基本作图作三角形:已知三边作三角形;已知两边及其夹角作三角形;已知两角及其夹边作三角形;已知底边及底边上的高作等腰三角形.(3)能过一点、两点和不在同一直线上的三点作圆.(4)了解尺规作图的步骤,对于尺规作图题,会写已知、求作和作法(不要求证明).专题典型题考法及解析【例题1】(2019•湖南长沙)如图,Rt△ABC中,∠C=90°,∠B=30°,分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于M、N两点,作直线MN,交BC于点D,连接AD,则∠CAD的度数是()A.20°B.30°C.45°D.60°【答案】B【解析】根据内角和定理求得∠BAC=60°,由中垂线性质知DA=DB,即∠DAB=∠B=30°,从而得出答案.在△ABC中,∵∠B=30°,∠C=90°,∴∠BAC=180°﹣∠B﹣∠C=60°,由作图可知MN为AB的中垂线,∴DA=DB,∴∠DAB=∠B=30°,∴∠CAD=∠BAC﹣∠DAB=30°。

【例题2】(2019山东枣庄)如图,BD是菱形ABCD的对角线,∠CBD=75°,(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF,求∠DBF的度数.【答案】见解析。

中考数学必考考点专题32尺规作图含解析

中考数学必考考点专题32尺规作图含解析

专题32尺规作图问题专题知识回顾1.尺规作图的定义:只用不带刻度的直尺和圆规通过有限次操作,完成画图的一种作图方法.尺规作图可以要求写作图步骤,也可以要求不一定要写作图步骤,但必须保留作图痕迹。

2.尺规作图的五种基本情况:(1)作一条线段等于已知线段;(2)作一个角等于已知角;(3)作已知线段的垂直平分线;(4)作已知角的角平分线;(5)过一点作已知直线的垂线。

3.对尺规作图题解法:写出已知,求作,作法(不要求写出证明过程)并能给出合情推理。

4.中考要求:(1)能完成以下基本作图:作一条线段等于已知线段,作一个角等于已知角,作角的平分线,作线段的垂直平分线.(2)能利用基本作图作三角形:已知三边作三角形;已知两边及其夹角作三角形;已知两角及其夹边作三角形;已知底边及底边上的高作等腰三角形^(3)能过一点、两点和不在同一直线上的三点作圆^(4) 了解尺规作图的步骤,对于尺规作图题,会写已知、求作和作法(不要求证明) ^专题典型题考法及解析【例题1】(2019?胡南长沙) 如图,RHABC中,/ C= 90°, / B= 30°,分别以点A和点B为圆心,于§AB的长为半径作弧,两弧相交于M N两点,作直线MN交BC于点D,连接AD则/ CAM度数是( ^^1(2)根据/ DBF= / ABID- / ABF 计算即可。

••・四边形ABC 虚菱形,C. 45D. 60°【解析】根据内角和定理求得/ BAC= 60° ,由中垂线性质知 DA= DB 即/DAB= / B= 30 在△ABC43, / B= 30 , / C= 90 ,/ BAC= 180 - / B- / C= 60 ,由作图可知MN 为AB 的中垂线,DA= DB・ ./ DAB= / B= 30° ,・ ./ CAD= / BAG / DAB= 30° 。

,从而得出答案.【例题2】(2019山东枣庄)如图,BD 是菱形ABCD 勺对角线,/ CBD= 75(1)请用尺规作图法,作 AB 的垂直平分线 EF,垂足为E,交AD 于F;(不要求写作法, 保留作图痕迹)【解析】(1)分别以A .B 为圆心,大于 L AB 长为半径画弧,过两弧的交点作直线即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018中考数学试题分类汇编:考点32 尺规作图一.选择题(共13小题)1.(2018•襄阳)如图,在△ABC中,分别以点A和点C为圆心,大于AC长为半径画弧,两弧相交于点M,N,作直线MN分别交BC,AC于点D,E.若AE=3cm,△ABD的周长为13cm,则△ABC的周长为()A.16cm B.19cm C.22cm D.25cm【分析】利用线段的垂直平分线的性质即可解决问题.【解答】解:∵DE垂直平分线段AC,∴DA=DC,AE=EC=6cm,∵AB+AD+BD=13cm,∴AB+BD+DC=13cm,∴△ABC的周长=AB+BD+BC+AC=13+6=19cm,故选:B.2.(2018•河北)尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是()A.①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣ⅢB.①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣ⅠC.①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣ⅠD.①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ【分析】分别利用过直线外一点作这条直线的垂线作法以及线段垂直平分线的作法和过直线上一点作这条直线的垂线、角平分线的作法分别得出符合题意的答案.【解答】解:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是:①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ.故选:D.3.(2018•河南)如图,已知▱AOBC的顶点O(0,0),A(﹣1,2),点B在x轴正半轴上按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边OA,OB于点D,E;②分别以点D,E为圆心,大于DE的长为半径作弧,两弧在∠AOB内交于点F;③作射线OF,交边AC于点G,则点G的坐标为()A.(﹣1,2)B.(,2)C.(3﹣,2)D.(﹣2,2)【分析】依据勾股定理即可得到Rt△AOH中,AO=,依据∠AGO=∠AOG,即可得到AG=AO=,进而得出HG=﹣1,可得G(﹣1,2).【解答】解:∵▱AOBC的顶点O(0,0),A(﹣1,2),∴AH=1,HO=2,∴Rt△AOH中,AO=,由题可得,OF平分∠AOB,∴∠AOG=∠EOG,又∵AG∥OE,∴∠AGO=∠EOG,∴∠AGO=∠AOG,∴AG=AO=,∴HG=﹣1,∴G(﹣1,2),故选:A.4.(2018•宜昌)尺规作图:经过已知直线外一点作这条直线的垂线,下列作图中正确的是()A.B.C.D.【分析】根据过直线外一点向直线作垂线即可.【解答】已知:直线AB和AB外一点C.求作:AB的垂线,使它经过点C.作法:(1)任意取一点K,使K和C在AB的两旁.(2)以C为圆心,CK的长为半径作弧,交AB于点D和E.(3)分别以D和E为圆心,大于DE的长为半径作弧,两弧交于点F,(4)作直线CF.直线CF就是所求的垂线.故选:B.5.(2018•潍坊)如图,木工师傅在板材边角处作直角时,往往使用“三弧法”,其作法是:(1)作线段AB,分别以A,B为圆心,以AB长为半径作弧,两弧的交点为C;(2)以C为圆心,仍以AB长为半径作弧交AC的延长线于点D;(3)连接BD,BC.下列说法不正确的是()A.∠CBD=30°B.S△BDC=AB2C.点C是△ABD的外心D.sin2A+cos2D=1【分析】根据等边三角形的判定方法,直角三角形的判定方法以及等边三角形的性质,直角三角形的性质一一判断即可;【解答】解:由作图可知:AC=AB=BC,∴△ABC是等边三角形,由作图可知:CB=CA=CD,∴点C是△ABD的外心,∠ABD=90°,BD=AB,=AB2,∴S△ABD∵AC=CD,=AB2,∴S△BDC故A、B、C正确,故选:D.6.(2018•郴州)如图,∠AOB=60°,以点O为圆心,以任意长为半径作弧交OA,OB于C,D两点;分别以C,D为圆心,以大于CD的长为半径作弧,两弧相交于点P;以O为端点作射线OP,在射线OP上截取线段OM=6,则M点到OB的距离为()A.6 B.2 C.3 D.【分析】直接利用角平分线的作法得出OP是∠AOB的角平分线,再利用直角三角形的性质得出答案.【解答】解:过点M作ME⊥OB于点E,由题意可得:OP是∠AOB的角平分线,则∠POB=×60°=30°,∴ME=OM=3.故选:C.7.(2018•台州)如图,在▱ABCD中,AB=2,BC=3.以点C为圆心,适当长为半径画弧,交BC于点P,交CD于点Q,再分别以点P,Q为圆心,大于PQ的长为半径画弧,两弧相交于点N,射线CN交BA的延长线于点E,则AE的长是()A.B.1 C.D.【分析】只要证明BE=BC即可解决问题;【解答】解:∵由题意可知CF是∠BCD的平分线,∴∠BCE=∠DCE.∵四边形ABCD是平行四边形,∴AB∥CD,∴∠DCE=∠E,∠BCE=∠AEC,∴BE=BC=3,∵AB=2,∴AE=BE﹣AB=1,故选:B.8.(2018•嘉兴)用尺规在一个平行四边形内作菱形ABCD,下列作法中错误的是()A. B.C.D.【分析】根据菱形的判定和作图根据解答即可.【解答】解:A、由作图可知,AC⊥BD,且平分BD,即对角线平分且垂直的四边形是菱形,正确;B、由作图可知AB=BC,AD=AB,即四边相等的四边形是菱形,正确;C、由作图可知AB=DC,AD=BC,只能得出ABCD是平行四边形,错误;D、由作图可知对角线AC平分对角,可以得出是菱形,正确;故选:C.9.(2018•昆明)如图,点A在双曲线y═(x>0)上,过点A作AB⊥x轴,垂足为点B,分别以点O和点A为圆心,大于OA的长为半径作弧,两弧相交于D,E两点,作直线DE交x轴于点C,交y轴于点F(0,2),连接AC.若AC=1,则k的值为()A.2 B.C.D.【分析】如图,设OA交CF于K.利用面积法求出OA的长,再利用相似三角形的性质求出AB、OB即可解决问题;【解答】解:如图,设OA交CF于K.由作图可知,CF垂直平分线段OA,∴OC=CA=1,OK=AK,在Rt△OFC中,CF==,∴AK=OK==,∴OA=,由△FOC ∽△OBA ,可得==,∴==,∴OB=,AB=,∴A (,),∴k=.故选:B .10.(2018•湖州)尺规作图特有的魅力曾使无数人沉湎其中.传说拿破仑通过下列尺规作图考他的大臣:①将半径为r 的⊙O 六等分,依次得到A ,B ,C ,D ,E ,F 六个分点; ②分别以点A ,D 为圆心,AC 长为半径画弧,G 是两弧的一个交点; ③连结OG .问:OG 的长是多少?大臣给出的正确答案应是( )A . rB .(1+)rC .(1+)rD . r【分析】如图连接CD ,AC ,DG ,AG .在直角三角形即可解决问题;【解答】解:如图连接CD ,AC ,DG ,AG .∵AD是⊙O直径,∴∠ACD=90°,在Rt△ACD中,AD=2r,∠DAC=30°,∴AC=r,∵DG=AG=CA,OD=OA,∴OG⊥AD,∴∠GOA=90°,∴OG===r,故选:D.11.(2018•台湾)如图,锐角三角形ABC中,BC>AB>AC,甲、乙两人想找一点P,使得∠BPC与∠A互补,其作法分别如下:(甲)以A为圆心,AC长为半径画弧交AB于P点,则P即为所求;(乙)作过B点且与AB垂直的直线l,作过C点且与AC垂直的直线,交l于P 点,则P即为所求对于甲、乙两人的作法,下列叙述何者正确?()A.两人皆正确B.两人皆错误C.甲正确,乙错误 D.甲错误,乙正确【分析】甲:根据作图可得AC=AP,利用等边对等角得:∠APC=∠ACP,由平角的定义可知:∠BPC+∠APC=180°,根据等量代换可作判断;乙:根据四边形的内角和可得:∠BPC+∠A=180°.【解答】解:甲:如图1,∵AC=AP,∴∠APC=∠ACP,∵∠BPC+∠APC=180°∴∠BPC+∠ACP=180°,∴甲错误;乙:如图2,∵AB⊥PB,AC⊥PC,∴∠ABP=∠ACP=90°,∴∠BPC+∠A=180°,∴乙正确,故选:D.12.(2018•安顺)已知△ABC(AC<BC),用尺规作图的方法在BC上确定一点P,使PA+PC=BC,则符合要求的作图痕迹是()A.B.C.D.【分析】利用线段垂直平分线的性质以及圆的性质分别分得出即可.【解答】解:A、如图所示:此时BA=BP,则无法得出AP=BP,故不能得出PA+PC=BC,故此选项错误;B、如图所示:此时PA=PC,则无法得出AP=BP,故不能得出PA+PC=BC,故此选项错误;C、如图所示:此时CA=CP,则无法得出AP=BP,故不能得出PA+PC=BC,故此选项错误;D、如图所示:此时BP=AP,故能得出PA+PC=BC,故此选项正确;故选:D.13.(2017•南宁)如图,△ABC中,AB>AC,∠CAD为△ABC的外角,观察图中尺规作图的痕迹,则下列结论错误的是()A.∠DAE=∠B B.∠EAC=∠C C.AE∥BC D.∠DAE=∠EAC【分析】根据图中尺规作图的痕迹,可得∠DAE=∠B,进而判定AE∥BC,再根据平行线的性质即可得出结论.【解答】解:根据图中尺规作图的痕迹,可得∠DAE=∠B,故A选项正确,∴AE∥BC,故C选项正确,∴∠EAC=∠C,故B选项正确,∵AB>AC,∴∠C>∠B,∴∠CAE>∠DAE,故D选项错误,故选:D.二.填空题(共7小题)14.(2018•南京)如图,在△ABC中,用直尺和圆规作AB、AC的垂直平分线,分别交AB、AC于点D、E,连接DE.若BC=10cm,则DE=5cm.【分析】直接利用线段垂直平分线的性质得出DE是△ABC的中位线,进而得出答案.【解答】解:∵用直尺和圆规作AB、AC的垂直平分线,∴D为AB的中点,E为AC的中点,∴DE是△ABC的中位线,∴DE=BC=5cm.故答案为:5.15.(2018•淮安)如图,在Rt△ABC中,∠C=90°,AC=3,BC=5,分别以点A、B为圆心,大于AB的长为半径画弧,两弧交点分别为点P、Q,过P、Q两点作直线交BC于点D,则CD的长是.【分析】连接AD由PQ垂直平分线段AB,推出DA=DB,设DA=DB=x,在Rt△ACD 中,∠C=90°,根据AD2=AC2+CD2构建方程即可解决问题;【解答】解:连接AD.∵PQ垂直平分线段AB,∴DA=DB,设DA=DB=x,在Rt△ACD中,∠C=90°,AD2=AC2+CD2,∴x2=32+(5﹣x)2,解得x=,∴CD=BC﹣DB=5﹣=,故答案为.16.(2018•山西)如图,直线MN∥PQ,直线AB分别与MN,PQ相交于点A,B.小宇同学利用尺规按以下步骤作图:①以点A为圆心,以任意长为半径作弧交AN于点C,交AB于点D;②分别以C,D为圆心,以大于CD长为半径作弧,两弧在∠NAB内交于点E;③作射线AE交PQ于点F.若AB=2,∠ABP=60°,则线段AF的长为2.【分析】作高线BG,根据直角三角形30度角的性质得:BG=1,AG=,可得AF的长.【解答】解:∵MN∥PQ,∴∠NAB=∠ABP=60°,由题意得:AF平分∠NAB,∴∠1=∠2=30°,∵∠ABP=∠1+∠3,∴∠3=30°,∴∠1=∠3=30°,∴AB=BF,AG=GF,∵AB=2,∴BG=AB=1,∴AG=,∴AF=2AG=2,故答案为:2.17.(2018•东营)如图,在Rt△ABC中,∠B=90°,以顶点C为圆心,适当长为半径画弧,分别交AC,BC于点E,F,再分别以点E,F为圆心,大于EF的长为半径画弧,两弧交于点P,作射线CP交AB于点D.若BD=3,AC=10,则△ACD 的面积是15.【分析】作DQ⊥AC,由角平分线的性质知DB=DQ=3,再根据三角形的面积公式计算可得.【解答】解:如图,过点D作DQ⊥AC于点Q,由作图知CP是∠ACB的平分线,∵∠B=90°,BD=3,∴DB=DQ=3,∵AC=10,=•AC•DQ=×10×3=15,∴S△ACD故答案为:15.18.(2018•通辽)如图,在△ABC中,按以下步骤作图:①分别以点A和点C为圆心,以大于AC的长为半径作弧,两弧相交于M、N两点;②作直线MN交BC于点D,连接AD.若AB=BD,AB=6,∠C=30°,则△ACD的面积为9.=S△ABD即可【分析】只要证明△ABD是等边三角形,推出BD=AD=DC,可得S△ADC解决问题;【解答】解:由作图可知,MN垂直平分线段AC,∴DA=DC,∴∠C=∠DAC=30°,∴∠ADB=∠C+∠DAC=60°,∵AB=AD,∴△ABD是等边三角形,∴BD=AD=DC,=S△ABD=×62=9,∴S△ADC故答案为9.19.(2018•成都)如图,在矩形ABCD中,按以下步骤作图:①分别以点A和C为圆心,以大于AC的长为半径作弧,两弧相交于点M和N;②作直线MN交CD于点E.若DE=2,CE=3,则矩形的对角线AC的长为.【分析】连接AE,如图,利用基本作图得到MN垂直平分AC,则EA=EC=3,然后利用勾股定理先计算出AD,再计算出AC.【解答】解:连接AE,如图,由作法得MN垂直平分AC,∴EA=EC=3,在Rt△ADE中,AD==,在Rt△ADC中,AC==.故答案为.20.(2018•湖州)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.以顶点都是格点的正方形ABCD的边为斜边,向内作四个全等的直角三角形,使四个直角顶点E,F,G,H都是格点,且四边形EFGH为正方形,我们把这样的图形称为格点弦图.例如,在如图1所示的格点弦图中,正方形ABCD的边长为,此时正方形EFGH的而积为5.问:当格点弦图中的正方形ABCD的边长为时,正方形EFGH的面积的所有可能值是13或49或9(不包括5).【分析】当DG=,CG=2时,满足DG2+CG2=CD2,此时HG=,可得正方形EFGH的面积为13.当DG=8,CG=1时,满足DG2+CG2=CD2,此时HG=7,可得正方形EFGH的面积为49.当DG=7,CG=4时,满足DG2+CG2=CD2,此时HG=3,可得正方形EFGH的面积为9.【解答】解:当DG=,CG=2时,满足DG2+CG2=CD2,此时HG=,可得正方形EFGH的面积为13.当DG=8,CG=1时,满足DG2+CG2=CD2,此时HG=7,可得正方形EFGH的面积为49.当DG=7,CG=4时,满足DG2+CG2=CD2,此时HG=3,可得正方形EFGH的面积为9.故答案为13或49或9.三.解答题(共21小题)21.(2018•广州)如图,在四边形ABCD中,∠B=∠C=90°,AB>CD,AD=AB+CD.(1)利用尺规作∠ADC的平分线DE,交BC于点E,连接AE(保留作图痕迹,不写作法);(2)在(1)的条件下,①证明:AE⊥DE;②若CD=2,AB=4,点M,N分别是AE,AB上的动点,求BM+MN的最小值.【分析】(1)利用尺规作出∠ADC的角平分线即可;(2)①延长DE交AB的延长线于F.只要证明AD=AF,DE=EF,利用等腰三角形三线合一的性质即可解决问题;②作点B关于AE的对称点K,连接EK,作KH⊥AB于H,DG⊥AB于G.连接MK.由MB=MK,推出MB+MN=KM+MN,根据垂线段最短可知:当K、M、N共线,且与KH重合时,KM+MN的值最小,最小值为KH的长;【解答】解:(1)如图,∠ADC的平分线DE如图所示.(2)①延长DE交AB的延长线于F.∵CD∥AF,∴∠CDE=∠F,∵∠CDE=∠ADE,∴∠ADF=∠F,∴AD=AF,∵AD=AB+CD=AB+BF,∴CD=BF,∵∠DEC=∠BEF,∴△DEC≌△FEB,∴DE=EF ,∵AD=AF ,∴AE ⊥DE .②作点B 关于AE 的对称点K ,连接EK ,作KH ⊥AB 于H ,DG ⊥AB 于G .连接MK .∵AD=AF ,DE=EF ,∴AE 平分∠DAF ,则△AEK ≌△AEB ,∴AK=AB=4,在Rt △ADG 中,DG==4,∵KH ∥DG ,∴=,∴=,∴KH=, ∵MB=MK ,∴MB +MN=KM +MN ,∴当K 、M 、N 共线,且与KH 重合时,KM +MN 的值最小,最小值为KH 的长,∴BM +MN 的最小值为.22.(2018•广东)如图,BD 是菱形ABCD 的对角线,∠CBD=75°,(1)请用尺规作图法,作AB 的垂直平分线EF ,垂足为E ,交AD 于F ;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF ,求∠DBF 的度数.【分析】(1)分别以A 、B 为圆心,大于AB 长为半径画弧,过两弧的交点作直线即可;(2)根据∠DBF=∠ABD﹣∠ABF计算即可;【解答】解:(1)如图所示,直线EF即为所求;(2)∵四边形ABCD是菱形,∴∠ABD=∠DBC=∠ABC=75°,DC∥AB,∠A=∠C.∴∠ABC=150°,∠ABC+∠C=180°,∴∠C=∠A=30°,∵EF垂直平分线线段AB,∴AF=FB,∴∠A=∠FBA=30°,∴∠DBF=∠ABD﹣∠FBE=45°.23.(2018•安徽)如图,⊙O为锐角△ABC的外接圆,半径为5.(1)用尺规作图作出∠BAC的平分线,并标出它与劣弧的交点E(保留作图痕迹,不写作法);(2)若(1)中的点E到弦BC的距离为3,求弦CE的长.【分析】(1)利用基本作图作AE平分∠BAC;(2)连接OE交BC于F,连接OC,如图,根据圆周角定理得到=,再根据垂径定理得到OE⊥BC,则EF=3,OF=2,然后在Rt△OCF中利用勾股定理计算出CF=,在Rt△CEF中利用勾股定理可计算出CE.【解答】解:(1)如图,AE为所作;(2)连接OE交BC于F,连接OC,如图,∵AE平分∠BAC,∴∠BAE=∠CAE,∴=,∴OE⊥BC,∴EF=3,∴OF=5﹣3=2,在Rt△OCF中,CF==,在Rt△CEF中,CE==.24.(2018•自贡)如图,在△ABC中,∠ACB=90°.(1)作出经过点B,圆心O在斜边AB上且与边AC相切于点E的⊙O(要求:用尺规作图,保留作图痕迹,不写作法和证明)(2)设(1)中所作的⊙O与边AB交于异于点B的另外一点D,若⊙O的直径为5,BC=4;求DE的长.(如果用尺规作图画不出图形,可画出草图完成(2)问)【分析】(1)作∠ABC的角平分线交AC于E,作EO⊥AC交AB于点O,以O 为圆心,OB为半径画圆即可解决问题;(2)作OH ⊥BC 于H .首先求出OH 、EC 、BE ,利用△BCE ∽△BED ,可得=,解决问题;【解答】解:(1)⊙O 如图所示;(2)作OH ⊥BC 于H .∵AC 是⊙O 的切线,∴OE ⊥AC ,∴∠C=∠CEO=∠OHC=90°,∴四边形ECHO 是矩形,∴OE=CH=,BH=BC ﹣CH=,在Rt △OBH 中,OH==2,∴EC=OH=2,BE==2,∵∠EBC=∠EBD ,∠BED=∠C=90°,∴△BCE ∽△BED ,∴=,∴=,∴DE=.25.(2018•北京)下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:直线l 及直线l 外一点P .求作:直线PQ ,使得PQ ∥l .作法:如图,①在直线l上取一点A,作射线PA,以点A为圆心,AP长为半径画弧,交PA的延长线于点B;②在直线l上取一点C(不与点A重合),作射线BC,以点C为圆心,CB长为半径画弧,交BC的延长线于点Q;③作直线PQ.所以直线PQ就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵AB=AP,CB=CQ,∴PQ∥l(三角形中位线定理)(填推理的依据).【分析】(1)根据题目要求作出图形即可;(2)利用三角形中位线定理证明即可;【解答】(1)解:直线PQ如图所示;(2)证明:∵AB=AP,CB=CQ,∴PQ∥l(三角形中位线定理).故答案为:AP,CQ,三角形中位线定理;26.(2018•白银)如图,在△ABC中,∠ABC=90°.(1)作∠ACB的平分线交AB边于点O,再以点O为圆心,OB的长为半径作⊙O;(要求:不写做法,保留作图痕迹)(2)判断(1)中AC与⊙O的位置关系,直接写出结果.【分析】(1)首先利用角平分线的作法得出CO,进而以点O为圆心,OB为半径作⊙O即可;(2)利用角平分线的性质以及直线与圆的位置关系进而求出即可.【解答】解:(1)如图所示:;(2)相切;过O点作OD⊥AC于D点,∵CO平分∠ACB,∴OB=OD,即d=r,∴⊙O与直线AC相切,27.(2018•无锡)如图,平面直角坐标系中,已知点B的坐标为(6,4).(1)请用直尺(不带刻度)和圆规作一条直线AC,它与x轴和y轴的正半轴分别交于点A和点C,且使∠ABC=90°,△ABC与△AOC的面积相等.(作图不必写作法,但要保留作图痕迹.)(2)问:(1)中这样的直线AC是否唯一?若唯一,请说明理由;若不唯一,请在图中画出所有这样的直线AC,并写出与之对应的函数表达式.【分析】(1)①作线段OB的垂直平分线AC,满足条件,②作矩形OA′BC′,直线A′C′,满足条件;(2)分两种情形分别求解即可解决问题;【解答】(1)解:如图△ABC即为所求;(2)解:这样的直线不唯一.①作线段OB的垂直平分线AC,满足条件,此时直线的解析式为y=﹣x+.②作矩形OA′BC′,直线A′C′,满足条件,此时直线A′C′的解析式为y=﹣x+4.28.(2018•孝感)如图,△ABC中,AB=AC,小聪同学利用直尺和圆规完成了如下操作:①作∠BAC的平分线AM交BC于点D;②作边AB的垂直平分线EF,EF与AM相交于点P;③连接PB,PC.请你观察图形解答下列问题:(1)线段PA,PB,PC之间的数量关系是PA=PB=PC;(2)若∠ABC=70°,求∠BPC的度数.【分析】(1)根据线段的垂直平分线的性质可得:PA=PB=PC;(2)根据等腰三角形的性质得:∠ABC=∠ACB=70°,由三角形的内角和得:∠BAC=180°﹣2×70°=40°,由角平分线定义得:∠BAD=∠CAD=20°,最后利用三角形外角的性质可得结论.【解答】解:(1)如图,PA=PB=PC,理由是:∵AB=AC,AM平分∠BAC,∴AD是BC的垂直平分线,∴PB=PC,∵EP是AB的垂直平分线,∴PA=PB,∴PA=PB=PC;故答案为:PA=PB=PC;(2)∵AB=AC,∴∠ABC=∠ACB=70°,∴∠BAC=180°﹣2×70°=40°,∵AM平分∠BAC,∴∠BAD=∠CAD=20°,∵PA=PB=PC,∴∠ABP=∠BAP=∠ACP=20°,∴∠BPC=∠ABP+∠BAC+∠ACP=20°+40°+20°=80°.29.(2018•深圳)已知菱形的一个角与三角形的一个角重合,然后它的对角顶点在这个重合角的对边上,这个菱形称为这个三角形的亲密菱形,如图,在△CFE中,CF=6,CE=12,∠FCE=45°,以点C为圆心,以任意长为半径作AD,再分别以点A和点D为圆心,大于AD长为半径作弧,交EF于点B,AB∥CD.(1)求证:四边形ACDB为△FEC的亲密菱形;(2)求四边形ACDB的面积.【分析】(1)根据折叠和已知得出AC=CD,AB=DB,∠ACB=∠DCB,求出AC=AB,根据菱形的判定得出即可;(2)根据相似三角形的性质得出比例式,求出菱形的边长和高,根据菱形的面积公式求出即可.【解答】(1)证明:∵由已知得:AC=CD,AB=DB,由已知尺规作图痕迹得:BC是∠FCE的角平分线,∴∠ACB=∠DCB,又∵AB∥CD,∴∠ABC=∠DCB,∴∠ACB=∠ABC,∴AC=AB,又∵AC=CD,AB=DB,∴AC=CD=DB=BA∴四边形ACDB是菱形,∵∠ACD与△FCE中的∠FCE重合,它的对角∠ABD顶点在EF上,∴四边形ACDB为△FEC的亲密菱形;(2)解:设菱形ACDB的边长为x,∵四边形ABCD是菱形,∴AB∥CE,∴∠FAB=∠FCE,∠FBA=∠E,△EAB∽△FCE则:,即,解得:x=4,过A点作AH⊥CD于H点,∵在Rt△ACH中,∠ACH=45°,∴,∴四边形ACDB的面积为:.30.(2018•贵港)尺规作图(只保留作图痕迹,不要求写出作法).如图,已知∠α和线段a,求作△ABC,使∠A=∠α,∠C=90°,AB=a.【分析】根据作一个角等于已知角,线段截取以及垂线的尺规作法即可求出答案.【解答】解:如图所示,△ABC为所求作31.(2018•江西)如图,在四边形ABCD中,AB∥CD,AB=2CD,E为AB的中点,请仅用无刻度直尺分别按下列要求画图(保留画图痕迹).(1)在图1中,画出△ABD的BD边上的中线;(2)在图2中,若BA=BD,画出△ABD的AD边上的高.【分析】(1)连接EC,利用平行四边形的判定和性质解答即可;(2)连接EC,ED,FA,利用三角形重心的性质解答即可.【解答】解:(1)如图1所示,AF即为所求:(2)如图2所示,BH即为所求.32.(2018•青岛)已知:如图,∠ABC,射线BC上一点D.求作:等腰△PBD,使线段BD为等腰△PBD的底边,点P在∠ABC内部,且点P 到∠ABC两边的距离相等.【分析】根据角平分线的性质、线段的垂直平分线的性质即可解决问题.【解答】解:∵点P在∠ABC的平分线上,∴点P到∠ABC两边的距离相等(角平分线上的点到角的两边距离相等),∵点P在线段BD的垂直平分线上,∴PB=PD(线段的垂直平分线上的点到线段的两个端点的距离相等),如图所示:33.(2018•宁波)在5×3的方格纸中,△ABC的三个顶点都在格点上.(1)在图1中画出线段BD,使BD∥AC,其中D是格点;(2)在图2中画出线段BE,使BE⊥AC,其中E是格点.【分析】(1)将线段AC沿着AB方向平移2个单位,即可得到线段BD;(2)利用2×3的长方形的对角线,即可得到线段BE⊥AC.【解答】解:(1)如图所示,线段BD即为所求;(2)如图所示,线段BE即为所求.34.(2018•河南)如图,反比例函数y=(x>0)的图象过格点(网格线的交点)P.(1)求反比例函数的解析式;(2)在图中用直尺和2B铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点O,点P;②矩形的面积等于k的值.【分析】(1)将P点坐标代入y=,利用待定系数法即可求出反比例函数的解析式;(2)根据矩形满足的两个条件画出符合要求的两个矩形即可.【解答】解:(1)∵反比例函数y=(x>0)的图象过格点P(2,2),∴k=2×2=4,∴反比例函数的解析式为y=;(2)如图所示:矩形OAPB、矩形OCDP即为所求作的图形.35.(2018•金华)如图,在6×6的网格中,每个小正方形的边长为1,点A在格点(小正方形的顶点)上.试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形.【分析】利用数形结合的思想解决问题即可;【解答】解:符合条件的图形如图所示:36.(2018•济宁)在一次数学活动课中,某数学小组探究求环形花坛(如图所示)面积的方法,现有以下工具;①卷尺;②直棒EF;③T型尺(CD所在的直线垂直平分线段AB).(1)在图1中,请你画出用T形尺找大圆圆心的示意图(保留画图痕迹,不写画法);(2)如图2,小华说:“我只用一根直棒和一个卷尺就可以求出环形花坛的面积,具体做法如下:将直棒放置到与小圆相切,用卷尺量出此时直棒与大圆两交点M,N之间的距离,就可求出环形花坛的面积”如果测得MN=10m,请你求出这个环形花坛的面积.【分析】(1)直线CD与C′D′的交点即为所求的点O.(2)设切点为C,连接OM,OC.旅游勾股定理即可解决问题;【解答】解:(1)如图点O即为所求;(2)设切点为C,连接OM,OC.∵MN是切线,∴OC⊥MN,∴CM=CN=5,∴OM2﹣OC2=CM2=25,2﹣π•OC2=25π.∴S圆环=π•OM37.(2018•广安)下面有4张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长都是1,请在方格纸中分别画出符合要求的图形,所画图形各顶点必须与方格纸中小正方形的顶点重合,具体要求如下:(1)画一个直角边长为4,面积为6的直角三角形.(2)画一个底边长为4,面积为8的等腰三角形.(3)画一个面积为5的等腰直角三角形.(4)画一个边长为2,面积为6的等腰三角形.【分析】(1)利用三角形面积求法以及直角三角形的性质画即可;(2)利用三角形面积求法以及等腰三角形的性质画出即可.(3)利用三角形面积求法以及等腰直角三角形的性质画出即可;(4)利用三角形面积求法以及等腰三角形的性质画出即可.【解答】解:(1)如图(1)所示:(2)如图(2)所示:(3)如图(3)所示;(4)如图(4)所示.38.(2018•青岛)问题提出:用若干相同的一个单位长度的细直木棒,按照如图1方式搭建一个长方体框架,探究所用木棒条数的规律.问题探究:我们先从简单的问题开始探究,从中找出解决问题的方法.探究一用若干木棒来搭建横长是m,纵长是n的矩形框架(m、n是正整数),需要木棒的条数.如图①,当m=1,n=1时,横放木棒为1×(1+1)条,纵放木棒为(1+1)×1条,共需4条;如图②,当m=2,n=1时,横放木棒为2×(1+1)条,纵放木棒为(2+1)×1条,共需7条;如图③,当m=2,n=2时,横放木棒为2×(2+1))条,纵放木棒为(2+1)×2条,共需12条;如图④,当m=3,n=1时,横放木棒为3×(1+1)条,纵放木棒为(3+1)×1条,共需10条;如图⑤,当m=3,n=2时,横放木棒为3×(2+1)条,纵放木棒为(3+1)×2条,共需17条.问题(一):当m=4,n=2时,共需木棒22条.问题(二):当矩形框架横长是m,纵长是n时,横放的木棒为m(n+1)条,纵放的木棒为n(m+1)条.探究二用若干木棒来搭建横长是m,纵长是n,高是s的长方体框架(m、n、s是正整数),需要木棒的条数.如图⑥,当m=3,n=2,s=1时,横放与纵放木棒之和为[3×(2+1)+(3+1)×2]×(1+1)=34条,竖放木棒为(3+1)×(2+1)×1=12条,共需46条;如图⑦,当m=3,n=2,s=2时,横放与纵放木棒之和为[3×(2+1)+(3+1)×2]×(2+1)=51条,竖放木棒为(3+1)×(2+1)×2=24条,共需75条;如图⑧,当m=3,n=2,s=3时,横放与纵放木棒之和为[3×(2+1)+(3+1)×2]×(3+1)=68条,竖放木棒为(3+1)×(2+1)×3=36条,共需104条.问题(三):当长方体框架的横长是m,纵长是n,高是s时,横放与纵放木棒条数之和为[m(n+1)+n(m+1)](s+1)条,竖放木棒条数为(m+1)(n+1)s条.实际应用:现在按探究二的搭建方式搭建一个纵长是2、高是4的长方体框架,总共使用了170条木棒,则这个长方体框架的横长是4.拓展应用:若按照如图2方式搭建一个底面边长是10,高是5的正三棱柱框架,需要木棒1320条.【分析】从特殊到一般探究规律后利用规律即可解决问题;【解答】解:问题(一):当m=4,n=2时,横放木棒为4×(2+1)条,纵放木棒为(4+1)×2条,共需22条;问题(二):当矩形框架横长是m,纵长是n时,横放的木棒为m(n+1)条,纵放的木棒为n(m+1)条;问题(三):当长方体框架的横长是m,纵长是n,高是s时,横放与纵放木棒条数之和为[m(n+1)+n(m+1)](s+1)条,竖放木棒条数为(m+1)(n+1)s条.实际应用:这个长方体框架的横长是s,则:[3m+2(m+1)]×5+(m+1)×3×4=170,解得m=4,拓展应用:若按照如图2方式搭建一个底面边长是10,高是5的正三棱柱框架,横放与纵放木棒条数之和为165×6=990条,竖放木棒条数为66×5=330条需要木棒1320条.故答案为22,m(n+1),n(m+1),[m(n+1)+n(m+1)](s+1),(m+1)(n+1)s,4,1320;39.(2018•香坊区)如图,在每个小正方形的边长均为1的方格纸中,有线段AB和线段CD,点A、B、C、D均在小正方形的顶点上.(1)在方格纸中画出以AB为斜边的等腰直角三角形ABE,点E在小正方形的顶点上;(2)在方格纸中画出以CD为对角线的矩形CMDN(顶点字母按逆时针顺序),且面积为10,点M、N均在小正方形的顶点上;(3)连接ME,并直接写出EM的长.【分析】(1)利用等腰直角三角形的性质画出即可;(2)利用矩形的性质画出即可;(3)根据勾股定理解答即可.【解答】解:(1)如图所示;(2)如图所示;(3)如图所示,EM=40.(2018•天门)图①、图②都是由边长为1的小菱形构成的网格,每个小菱形的顶点称为格点.点O,M,N,A,B均在格点上,请仅用无刻度直尺在网格中完成下列画图.(1)在图①中,画出∠MON的平分线OP;(2)在图②中,画一个Rt△ABC,使点C在格点上.【分析】(1)构造全等三角形,利用全等三角形的性质即可解决问题;(2)利用菱形以及平行线的性质即可解决问题;【解答】解:(1)如图所示,射线OP即为所求.(2)如图所示,点C即为所求;41.(2018•哈尔滨)如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.(1)在图中画出以线段AB为一边的矩形ABCD(不是正方形),且点C和点D 均在小正方形的顶点上;(2)在图中画出以线段AB为一腰,底边长为2的等腰三角形ABE,点E在小正方形的顶点上,连接CE,请直接写出线段CE的长.【分析】(1)利用数形结合的思想解决问题即可;(2)利用数形结合的思想解决问题即可;【解答】解:(1)如图所示,矩形ABCD即为所求;。

相关文档
最新文档