(完整word版)小学奥数之裂项

合集下载

小学奥数裂项公式汇总资料

小学奥数裂项公式汇总资料

裂项运算常用公式一、分数“裂差”型运算(1) 对于分母可以写作两个因数乘积的分数,即b a ⨯1形式的,这里我们把较小的数写在前面,即 a <b ,那么有: )11(11b a a b b a --=⨯(2) 对于分母上为 3 个或 4 个连续自然数乘积形式的分数,即有:⎪⎪⎭⎫⎝⎛+⨯+-+⨯=+⨯+⨯)2()1(1)1(121)2()1(1n n n n n n n⎪⎪⎭⎫⎝⎛+⨯+⨯+-+⨯+⨯=+⨯+⨯+⨯)3()2()1(1)2()1(131)3()2()1(1n n n n n n n n n n二、分数“裂和”型运算常见的裂和型运算主要有以下两种形式:(1) a b b a b b a a b a b a 11+=⨯+⨯=⨯+(2)a bb ab a b b a a b a b a +=⨯+⨯=⨯+2222裂和型运算与裂差型运算的对比:裂差型运算的核心环节是“两两抵消达到简化的目的”,“先裂再碎,掐头去尾”分数裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。

裂和:抵消,或 凑整三、整数裂项基本公式(1))1()1(31)1(......433221+-=⨯-++⨯+⨯+⨯n n n n n(2) )1()1)(2(41)1()2(......543432321+--=⨯-⨯-++⨯⨯+⨯⨯+⨯⨯n n n n n n n (3) )1()1(31)2)(1(31)1(+--++=+n n n n n n n n n n n n +=+2)1((4) )2)(1()1(41)3)(2)(1(41)2)(1(++--+++=++n n n n n n n n n n n(5) !)!1(!n n n n -+=⨯裂项求和部分基本公式1.求和: 1)1(1......541431321211+=+++⨯+⨯+⨯+⨯=n n n n S n证:1111)111()5141()4131()3121()211(+=+-=+-++-+-+-+-=n n n n n S n2.求和:12)12)(12(1971751531311+=+-++⨯+⨯+⨯+⨯=n n n n S n证:12)1211(21)121121(21)7151(21)5131(21)311(21+=+-=+--++-+-+-=n n n n n S n3.求和:13)13)(23(11071741411+=+-++⨯+⨯+⨯=n n n n S n证:)131231(31)10171(31)7141(31)411(31+--++-+-+-=n n S n 13)1311(31+=+-=n n n4.求和:)2111211(31)2(1641531421311+-+-+=+++⨯+⨯+⨯+⨯=n n n n S n 证:)1111(21)6141(21)5131(21)4121(21)311(21+--++-+-+-+-=n n S n )2111211(31)211(21+-+--+=+-+n n n n5.求和:⎪⎪⎭⎫ ⎝⎛++-=++++⨯⨯+⨯⨯+⨯⨯=)2)(1(12121)2)(1(1543143213211n n n n n S n 证:因为])2)(1(1)1(1[21)2)(1(1++-+=++n n n n n n n , ])2)(1(121[21])2)(1(1)1(1[21)431321(21)321211(21++-=++-+++⨯-⨯+⨯-⨯=∴n n n n n n S n特殊数列求和公式2)1(321+=++n n n 212311321n n n n =++++-++-++++ )()(2127531n n =-++++)(6)12)(1(21222++=+++n n n n 3)14(3)12)(12(1253122222-⨯=-+=-++++n n n n n n )( ()()412121222333+=++=+++n n n n平方差公式 ))((22b a b a b a -+=-完全平方和(/差)公式 2222)(b ab a b a +±=±。

小学奥数专题-整数裂项

小学奥数专题-整数裂项

整数裂项基本公式 (1) 122334...(1)n n ⨯+⨯+⨯++-⨯1(1)(1)3n n n =-⨯⨯+ (2) 1123234345...(2)(1)(2)(1)(1)4n n n n n n n ⨯⨯+⨯⨯+⨯⨯++-⨯-⨯=--+【例 1】 1223344950⨯+⨯+⨯++⨯=_________【考点】整数裂项 【难度】3星 【题型】计算【解析】 这是整数的裂项。

裂项思想是:瞻前顾后,相互抵消。

设S =1223344950⨯+⨯+⨯++⨯1×2×3=1×2×32×3×3=2×3×(4-1)=2×3×4-1×2×33×4×3=3×4×(5-2)=3×4×5-2×3×4……49×50×3=49×50×(51-48)=49×50×51-48×49×503S =1×2×3+2×3×3+3×4×3+…+49×50×3=49×50×51S =49×50×51÷3=41650【答案】41650【巩固】1223344556677889910⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯=________ 【考点】整数裂项 【难度】3星 【题型】计算【解析】 本题项数较少,可以直接将每一项乘积都计算出来再计算它们的和,但是对于项数较多的情况显然不能这样进行计算.对于项数较多的情况,可以进行如下变形:()()()()()()()()()12111111211333n n n n n n n n n n n n n n ++--++==++--+, 所以原式1111112323412391011891033333⎛⎫⎛⎫=⨯⨯⨯+⨯⨯⨯-⨯⨯⨯++⨯⨯⨯-⨯⨯⨯ ⎪ ⎪⎝⎭⎝⎭1910113303=⨯⨯⨯= 另解:由于()21n n n n +=+,所以原式()()()222112299=++++++()()222129129=+++++++119101991062=⨯⨯⨯+⨯⨯330= 采用此种方法也可以得到()()()112231123n n n n n ⨯+⨯++⨯+=++这一结论. 【答案】330【例 2】 14477104952⨯+⨯+⨯++⨯=_________【考点】整数裂项 【难度】3星 【题型】计算【解析】 设S =14477104952⨯+⨯+⨯++⨯ 例题精讲 知识点拨整数裂项1×4×9=1×4×7+1×4×24×7×9=4×7×(10-1)=4×7×10-1×4×77×10×9=7×10×(13-4)=7×10×13-4×7×10………….49×52×9=49×52×(55-46)=49×52×55-46×49×529S =49×52×55+1×4×2S =(49×52×55+1×4×2)÷9=15572【答案】15572【例 3】 12323434591011⨯⨯+⨯⨯+⨯⨯++⨯⨯=【考点】整数裂项 【难度】3星 【题型】计算【解析】 ()()()()()()()()111212311244n n n n n n n n n n n ++=+++--++,所以, 原式11111123423451234910111289101144444⎛⎫⎛⎫=⨯⨯⨯⨯+⨯⨯⨯⨯-⨯⨯⨯⨯++⨯⨯⨯⨯-⨯⨯⨯⨯ ⎪ ⎪⎝⎭⎝⎭191011124=⨯⨯⨯⨯2970= 从中还可以看出,()()()()()1123234345121234n n n n n n n ⨯⨯+⨯⨯+⨯⨯++⨯+⨯+=+++ 【答案】2970【例 4】 计算:135357171921⨯⨯+⨯⨯++⨯⨯= .【考点】整数裂项 【难度】3星 【题型】计算【解析】 可以进行整数裂项.357913573578⨯⨯⨯-⨯⨯⨯⨯⨯=, 5791135795798⨯⨯⨯-⨯⨯⨯⨯⨯=, 17192123151719211719218⨯⨯⨯-⨯⨯⨯⨯⨯=, 所以原式35791357171921231517192113588⨯⨯⨯-⨯⨯⨯⨯⨯⨯-⨯⨯⨯=⨯⨯+++1719212313571358⨯⨯⨯-⨯⨯⨯=⨯⨯+171921231358⨯⨯⨯+⨯⨯=19503= 也可适用公式.原式()()()()()()323325255219219192=-⨯⨯++-⨯⨯+++-⨯⨯+()()()22222232352519219=-⨯+-⨯++-⨯ ()()333351943519=+++-⨯+++()()3333135194135193=++++-⨯+++++而()()333333333333135191232024620++++=++++-++++ 22221120218101144=⨯⨯-⨯⨯⨯19900=, 21351910100++++==,所以原式1990041003=-⨯+19503=.【答案】19503【巩固】 计算:101622162228707682768288⨯⨯+⨯⨯++⨯⨯+⨯⨯ 【考点】整数裂项 【难度】3星 【题型】计算【解析】 可进行整数裂项: 原式1016222841016221622283410162228=2424⨯⨯⨯-⨯⨯⨯⨯⨯⨯-⨯⨯⨯⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭707682886470768276828894707682882424⨯⨯⨯-⨯⨯⨯⨯⨯⨯-⨯⨯⨯⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭ 1016222841016221622283410162228=24242424⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯-+-++ 7076828864707682768288947076828824242424⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯-+- 768288944101622=2424⨯⨯⨯⨯⨯⨯- 768288944101622=24⨯⨯⨯-⨯⨯⨯ =2147376【答案】2147376【巩固】 计算:123434565678979899100⨯⨯⨯+⨯⨯⨯+⨯⨯⨯++⨯⨯⨯=【考点】整数裂项 【难度】3星 【题型】计算【解析】 一般的整数裂项各项之间都是连续的,本题中各项之间是断开的,为此可以将中间缺少的项补上,再进行计算.记原式为A ,再设23454567678996979899B =⨯⨯⨯+⨯⨯⨯+⨯⨯⨯++⨯⨯⨯,则123423453456979899100A B +=⨯⨯⨯+⨯⨯⨯+⨯⨯⨯++⨯⨯⨯197989910010119010098805=⨯⨯⨯⨯⨯=, 现在知道A 与B 的和了,如果能再求出A 与B 的差,那么A 、B 的值就都可以求出来了.12342345345645675678979899100A B -=⨯⨯⨯-⨯⨯⨯+⨯⨯⨯-⨯⨯⨯+⨯⨯⨯++⨯⨯⨯4(123345567...979899)=⨯⨯⨯+⨯⨯+⨯⨯++⨯⨯222242(21)4(41)6(61)98(981)⎡⎤=⨯⨯-+⨯-+⨯-++⨯-⎣⎦33334(24698)4(24698)=⨯++++-⨯++++221148495041004942=⨯⨯⨯⨯-⨯⨯⨯48010200= 所以,()1901009880480102002974510040A =+÷=.【答案】974510040【例 5】 2004200320032002200220012001200021⨯-⨯+⨯-⨯++⨯【考点】整数裂项 【难度】3星 【题型】计算【解析】 原式20032200123212=⨯+⨯++⨯+⨯()213520012003=⨯+++++()21200310022=⨯+⨯÷2008008=其中也可以直接根据公式()2135721n n +++++-=得出2135200120031002+++++=【答案】2008008【例 6】 11!22!33!20082008!⨯+⨯+⨯++⨯=【考点】整数裂项 【难度】4星 【题型】计算【解析】 观察发现22!221(31)213!2!⨯=⨯⨯=-⨯⨯=-,33!3321(41)3214!3!⨯=⨯⨯⨯=-⨯⨯⨯=-,……20082008!20082008200721(20091)20082007212009!2008!⨯=⨯⨯⨯⨯⨯=-⨯⨯⨯⨯⨯=-, 可见,原式1!(2!1!)(3!2!)(2009!2008!)=+-+-++- 2009!=【答案】2009!【例 7】 计算:1234569910023459899⨯+⨯+⨯++⨯=⨯+⨯++⨯ 【考点】整数裂项 【难度】5星 【题型】计算【解析】 设原式=B A122334989999100A B +=⨯+⨯+⨯++⨯+⨯()()()11230122341239910010198991003=⨯⨯-⨯⨯+⨯⨯-⨯⨯++⨯⨯-⨯⨯⎡⎤⎣⎦1991001013333003=⨯⨯⨯= 1232992501005000B A -=⨯+⨯++⨯=⨯=3333005000338333330050003283B A +==- 【答案】33833283。

小学奥数裂项公式汇总

小学奥数裂项公式汇总

裂项运算常用公式 一、分数“裂差”型运算 (1) 对于分母可以写作两个因数乘积的分数,即b a ⨯1形式的,这里我们把较小的数写在前面,即 a <b ,那么有: )11(11b a a b b a --=⨯(2) 对于分母上为 3 个或 4 个连续自然数乘积形式的分数,即有:⎪⎪⎭⎫⎝⎛+⨯+-+⨯=+⨯+⨯)2()1(1)1(121)2()1(1n n n n n n n⎪⎪⎭⎫⎝⎛+⨯+⨯+-+⨯+⨯=+⨯+⨯+⨯)3()2()1(1)2()1(131)3()2()1(1n n n n n n n n n n二、分数“裂和”型运算常见的裂和型运算主要有以下两种形式:(1) a b b a b b a a b a b a 11+=⨯+⨯=⨯+(2)a bb ab a b b a a b a b a +=⨯+⨯=⨯+2222裂和型运算与裂差型运算的对比:裂差型运算的核心环节是“两两抵消达到简化的目的”,“先裂再碎,掐头去尾”分数裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。

裂和:抵消,或 凑整三、整数裂项基本公式(1))1()1(31)1(......433221+-=⨯-++⨯+⨯+⨯n n n n n(2) )1()1)(2(41)1()2(......543432321+--=⨯-⨯-++⨯⨯+⨯⨯+⨯⨯n n n n n n n (3) )1()1(31)2)(1(31)1(+--++=+n n n n n n n n n n n n +=+2)1((4) )2)(1()1(41)3)(2)(1(41)2)(1(++--+++=++n n n n n n n n n n n(5) !)!1(!n n n n -+=⨯裂项求和部分基本公式1.求和: 1)1(1......541431321211+=+++⨯+⨯+⨯+⨯=n n n n S n证:1111)111()5141()4131()3121()211(+=+-=+-++-+-+-+-=n n n n n S n2.求和:12)12)(12(1971751531311+=+-++⨯+⨯+⨯+⨯=n n n n S n证:12)1211(21)121121(21)7151(21)5131(21)311(21+=+-=+--++-+-+-=n n n n n S n3.求和:13)13)(23(11071741411+=+-++⨯+⨯+⨯=n n n n S n证:)131231(31)10171(31)7141(31)411(31+--++-+-+-=n n S n 13)1311(31+=+-=n n n4.求和:)2111211(31)2(1641531421311+-+-+=+++⨯+⨯+⨯+⨯=n n n n S n 证:)1111(21)6141(21)5131(21)4121(21)311(21+--++-+-+-+-=n n S n )2111211(31)211(21+-+--+=+-+n n n n5.求和:⎪⎪⎭⎫ ⎝⎛++-=++++⨯⨯+⨯⨯+⨯⨯=)2)(1(12121)2)(1(1543143213211n n n n n S n 证:因为])2)(1(1)1(1[21)2)(1(1++-+=++n n n n n n n , ])2)(1(121[21])2)(1(1)1(1[21)431321(21)321211(21++-=++-+++⨯-⨯+⨯-⨯=∴n n n n n n S n特殊数列求和公式2)1(321+=++n n n 212311321n n n n =++++-++-++++ )()(2127531n n =-++++)(6)12)(1(21222++=+++n n n n 3)14(3)12)(12(1253122222-⨯=-+=-++++n n n n n n )( ()()412121222333+=++=+++n n n n平方差公式 ))((22b a b a b a -+=-完全平方和(/差)公式 2222)(b ab a b a +±=±。

小学奥数专题--分数裂项

小学奥数专题--分数裂项
解析:原式
答案
变式训练2计算:
解析:原式= + +…+ + +…+
= ( - )+ ( - )
= + = +

答案
变式训练3
解析:原式
答案
变式训练4
解析: = = - = -
= = - = -
= = - = - ……
= = -
= -
原式
答案
例9
解析:原式
答案
变式训练1
解析:原式
答案
例10计算: .
解析:如果式子中每一项的分子都相同,那么就是一道很常见的分数裂项的题目.但是本题中分子不相同,而是成等差数列,且等差数列的公差为2.相比较于2,4,6,……这一公差为2的等差数列(该数列的第 个数恰好为 的2倍),原式中分子所成的等差数列每一项都比其大3,所以可以先把原式中每一项的分子都分成3与另一个的和再进行计算.
观察可知 , ,……即每一项的分子都等于分母中前两个乘数的和,所以
所以原式 .
(法二)
上面的方法是最直观的转化方法,但不是唯一的转化方法.由于分子成等差数列,而等差数列的通项公式为 ,其中 为公差.如果能把分子变成这样的形式,再将 与 分开,每一项都变成两个分数,接下来就可以裂项了.

所以原式 .
(法三)
解析:原式
答案
例19 计算:
解析:
所以原式
答案
(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接”
(3)分母上几个因数间的差是一个定值。
2、“裂和”型运算:
常见的裂和型运算主要有以下两种形式:
(1) (2)
裂和型运算与裂差型运算的对比:

小学奥数裂项公式汇总

小学奥数裂项公式汇总

裂项运算常用公式一、分数“裂差”型运算(1) 对于分母可以写作两个因数乘积的分数,即b a ⨯1形式的,这里我们把较小的数写在前面,即 a <b ,那么有: )11(11b a a b b a --=⨯(2) 对于分母上为 3 个或 4 个连续自然数乘积形式的分数,即有:⎪⎪⎭⎫ ⎝⎛+⨯+-+⨯=+⨯+⨯)2()1(1)1(121)2()1(1n n n n n n n⎪⎪⎭⎫ ⎝⎛+⨯+⨯+-+⨯+⨯=+⨯+⨯+⨯)3()2()1(1)2()1(131)3()2()1(1n n n n n n n n n n二、分数“裂和”型运算常见的裂和型运算主要有以下两种形式:(1)ab b a b b a a b a b a 11+=⨯+⨯=⨯+(2)ab b a b a b b a a b a b a +=⨯+⨯=⨯+2222裂和型运算与裂差型运算的对比:裂差型运算的核心环节是“两两抵消达到简化的目的”,“先裂再碎,掐头去尾”分数裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。

裂和:抵消,或 凑整三、整数裂项基本公式(1))1()1(31)1(......433221+-=⨯-++⨯+⨯+⨯n n n n n(2) )1()1)(2(41)1()2(......543432321+--=⨯-⨯-++⨯⨯+⨯⨯+⨯⨯n n n n n n n (3) )1()1(31)2)(1(31)1(+--++=+n n n n n n n n n n n n +=+2)1((4) )2)(1()1(41)3)(2)(1(41)2)(1(++--+++=++n n n n n n n n n n n(5) !)!1(!n n n n -+=⨯裂项求和部分基本公式1.求和: 1)1(1......541431321211+=+++⨯+⨯+⨯+⨯=n n n n S n证:1111)111()5141()4131()3121()211(+=+-=+-++-+-+-+-=n n n n n S n2.求和:12)12)(12(1971751531311+=+-++⨯+⨯+⨯+⨯=n n n n S n证:12)1211(21)121121(21)7151(21)5131(21)311(21+=+-=+--++-+-+-=n n n n n S n3.求和:13)13)(23(11071741411+=+-++⨯+⨯+⨯=n n n n S n证:)131231(31)10171(31)7141(31)411(31+--++-+-+-=n n S n13)1311(31+=+-=n n n4.求和:)2111211(31)2(1641531421311+-+-+=+++⨯+⨯+⨯+⨯=n n n n S n 证:)1111(21)6141(21)5131(21)4121(21)311(21+--++-+-+-+-=n n S n )2111211(31)211(21+-+--+=+-+n n n n5.求和:⎪⎪⎭⎫ ⎝⎛++-=++++⨯⨯+⨯⨯+⨯⨯=)2)(1(12121)2)(1(1543143213211n n n n n S n 证:因为])2)(1(1)1(1[21)2)(1(1++-+=++n n n n n n n , ])2)(1(121[21])2)(1(1)1(1[21)431321(21)321211(21++-=++-+++⨯-⨯+⨯-⨯=∴n n n n n n S n特殊数列求和公式2)1(321+=++n n n 212311321n n n n =++++-++-++++ )()(2127531n n =-++++)(6)12)(1(21222++=+++n n n n 3)14(3)12)(12(1253122222-⨯=-+=-++++n n n n n n )( ()()412121222333+=++=+++n n n n平方差公式)()(2b2+=a--baba完全平方和(/差)公式2222±=a+±(b)baba本文档部分内容来源于网络,如有内容侵权请告知删除,感谢您的配合!。

(完整word版)六年级奥数分数裂项

(完整word版)六年级奥数分数裂项

分数裂项计算教课目的本讲知识点属于计算大板块内容,其实分数裂项很大程度上是发现规律、利用公式的过程,能够分为察看、改造、运用公式等过程。

好多时候裂项的方式不易找到,需要进行适合的变形,或许先进行一部分运算,使其变得更为简单了然。

本讲是整个奥数知识系统中的一个精髓部分, 列项与通项概括是密不行分的,因此先找通项是裂项的前提,是能力的表现,对学生要求较高。

知识点拨分数裂项一、“裂差”型运算将算式中的项进行拆分,使拆分后的项可前后抵消,这类拆项计算称为裂项法. 裂项分为分数裂项和整数裂项,常有的裂项方法是将数字分拆成两个或多个数字单位的和或差。

碰到裂项的计算题时,要认真的 察看每项的分子和分母,找出每项分子分母之间拥有的同样的关系,找出共有部分,裂项的题目无需复杂 的计算,一般都是中间部分消去的过程,这样的话, 找到相邻两项的相像部分,让它们消去才是最根本的。

(1) 关于分母能够写作两个因数乘积的分数,即 1 形式的, 这里我们把较小的数写在前方, 即 a b ,a b那么有1 1 1 1a b b a ()a b(2) 关于分母上为 3 个或 4 个连续自然数乘积形式的分数,即:1,1形式的,我们有:n ( n1) (n2)( n 1)( n 2)( n n 3)n ( n 1(n 2)1 [ 1 1) (n1 ] 1)2 n (n 1)(n 2) 11 [ 1 1n ( n 1) (n2) (n3) 3 (n 1) (n ]n 2) (n 1) (n 2) (n 3)裂差型裂项的三大重点特点:( 1)分子所有同样,最简单形式为都是 1 的,复杂形式可为都是 x(x 为随意自然数 ) 的,可是只需将 x提拿出来即可转变为分子都是1 的运算。

( 2)分母上均为几个自然数的乘积形式,而且知足相邻 2 个分母上的因数“首尾相接”( 3)分母上几个因数间的差是一个定值。

二、“裂和”型运算:( 1)a 2 2 2 2b ab1 1 ( 2)a ba bab a b a b a b b a a b a b a b b a裂和型运算与裂差型运算的比:裂差型运算的中心是“两两抵消达到化的目的” ,裂和型运算的目不有“两两抵消”型的,同有化“分数凑整”型的,以达到化目的。

小学奥数裂项公式汇总

小学奥数裂项公式汇总

裂项运算常用公式一、分数“裂差”型运算(1) 对于分母可以写作两个因数乘积的分数,即ba ⨯1形式的,这里我们把较小的数写在前面,即 a <b ,那么有:(2) 对于分母上为 3 个或 4 个连续自然数乘积形式的分数,即有:二、分数“裂和”型运算常见的裂和型运算主要有以下两种形式:(1) a b b a bb a ab a ba 11+=⨯+⨯=⨯+(2)a bb ab a b b a a b a b a +=⨯+⨯=⨯+2222裂和型运算与裂差型运算的对比:裂差型运算的核心环节是“两两抵消达到简化的目的”,“先裂再碎,掐头去尾”分数裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。

裂和:抵消,或 凑整三、整数裂项基本公式 (1))1()1(31)1(......433221+-=⨯-++⨯+⨯+⨯n n n n n(2) )1()1)(2(41)1()2(......543432321+--=⨯-⨯-++⨯⨯+⨯⨯+⨯⨯n n n n n n n (3) )1()1(31)2)(1(31)1(+--++=+n n n n n n n n (4) )2)(1()1(41)3)(2)(1(41)2)(1(++--+++=++n n n n n n n n n n n(5) !)!1(!n n n n -+=⨯裂项求和部分基本公式1.求和: 1)1(1 (541)431321211+=+++⨯+⨯+⨯+⨯=n nn n S n证:1111)111()5141()4131()3121()211(+=+-=+-++-+-+-+-=n nn n n S n2.求和:12)12)(12(1971751531311+=+-++⨯+⨯+⨯+⨯=n nn n S n证:12)1211(21)121121(21)7151(21)5131(21)311(21+=+-=+--++-+-+-=n nn n n S n3.求和:13)13)(23(11071741411+=+-++⨯+⨯+⨯=n n n n S n 证:)131231(31)10171(31)7141(31)411(31+--++-+-+-=n n S n 4.求和:)2111211(31)2(1641531421311+-+-+=+++⨯+⨯+⨯+⨯=n n n n S n 证:)1111(21)6141(21)5131(21)4121(21)311(21+--++-+-+-+-=n n S n 5.求和:⎪⎪⎭⎫ ⎝⎛++-=++++⨯⨯+⨯⨯+⨯⨯=)2)(1(12121)2)(1(1543143213211n n n n n S n 证:因为])2)(1(1)1(1[21)2)(1(1++-+=++n n n n n n n , 特殊数列求和公式平方差公式 ))((22b a b a b a -+=- 完全平方和(/差)公式 2222)(b ab a b a +±=±。

小学奥数裂项公式汇总

小学奥数裂项公式汇总

裂项运算常用公式一、分数“裂差”型运算(1) 对于分母可以写作两个因数乘积的分数,即ba ⨯1形式的,这里我们把较小的数写在前面,即 a <b ,那么有:? ? ? ? (2) 对于分母上为 3 个或 4 个连续自然数乘积形式的分数,即有: 二、分数“裂和”型运算常见的裂和型运算主要有以下两种形式:(1)a b b a b b a a b a b a 11+=⨯+⨯=⨯+? ? ? ? ? ?(2)ab b a b a b b a a b a b a +=⨯+⨯=⨯+2222 ? ? ?? ? ?裂和型运算与裂差型运算的对比:裂差型运算的核心环节是“两两抵消达到简化的目的”,“先裂再碎,掐头去尾”分数裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。

裂和:抵消,或 凑整三、整数裂项基本公式(1)?)1()1(31)1(......433221+-=⨯-++⨯+⨯+⨯n n n n n ? ? ? ? (2) )1()1)(2(41)1()2(......543432321+--=⨯-⨯-++⨯⨯+⨯⨯+⨯⨯n n n n n n n (3) )1()1(31)2)(1(31)1(+--++=+n n n n n n n n (4) )2)(1()1(41)3)(2)(1(41)2)(1(++--+++=++n n n n n n n n n n n (5) !)!1(!n n n n -+=⨯裂项求和部分基本公式1.求和: 1)1(1......541431321211+=+++⨯+⨯+⨯+⨯=n n n n S n 证:1111)111()5141()4131()3121()211(+=+-=+-++-+-+-+-=n n n n n S n2.求和:12)12)(12(1971751531311+=+-++⨯+⨯+⨯+⨯=n n n n S n 证:12)1211(21)121121(21)7151(21)5131(21)311(21+=+-=+--++-+-+-=n n n n n S n 3.求和:13)13)(23(11071741411+=+-++⨯+⨯+⨯=n n n n S n 证:)131231(31)10171(31)7141(31)411(31+--++-+-+-=n n S n 4.求和:)2111211(31)2(1641531421311+-+-+=+++⨯+⨯+⨯+⨯=n n n n S n 证:)1111(21)6141(21)5131(21)4121(21)311(21+--++-+-+-+-=n n S n 5.求和:⎪⎪⎭⎫ ⎝⎛++-=++++⨯⨯+⨯⨯+⨯⨯=)2)(1(12121)2)(1(1543143213211n n n n n S n 证:因为])2)(1(1)1(1[21)2)(1(1++-+=++n n n n n n n , 特殊数列求和公式平方差公式 ))((22b a b a b a -+=-完全平方和(/差)公式 2222)(b ab a b a +±=±。

小学奥数裂项公式汇总

小学奥数裂项公式汇总

裂项运算常用公式一、分数“裂差”型运算(1) 对于分母可以写作两个因数乘积的分数,即ba ⨯1形式的,这里我们把较小的数写在前面,即 a <b ,那么有:(2) 对于分母上为 3 个或 4 个连续自然数乘积形式的分数,即有:二、分数“裂和”型运算常见的裂和型运算主要有以下两种形式:(1) a b b a bb a ab a ba 11+=⨯+⨯=⨯+(2)a bb ab a b b a a b a b a +=⨯+⨯=⨯+2222裂和型运算与裂差型运算的对比:裂差型运算的核心环节是“两两抵消达到简化的目的”,“先裂再碎,掐头去尾”分数裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。

裂和:抵消,或 凑整三、整数裂项基本公式 (1))1()1(31)1(......433221+-=⨯-++⨯+⨯+⨯n n n n n(2) )1()1)(2(41)1()2(......543432321+--=⨯-⨯-++⨯⨯+⨯⨯+⨯⨯n n n n n n n (3) )1()1(31)2)(1(31)1(+--++=+n n n n n n n n (4) )2)(1()1(41)3)(2)(1(41)2)(1(++--+++=++n n n n n n n n n n n(5) !)!1(!n n n n -+=⨯裂项求和部分基本公式1.求和: 1)1(1 (541)431321211+=+++⨯+⨯+⨯+⨯=n nn n S n证:1111)111()5141()4131()3121()211(+=+-=+-++-+-+-+-=n nn n n S n2.求和:12)12)(12(1971751531311+=+-++⨯+⨯+⨯+⨯=n nn n S n证:12)1211(21)121121(21)7151(21)5131(21)311(21+=+-=+--++-+-+-=n nn n n S n3.求和:13)13)(23(11071741411+=+-++⨯+⨯+⨯=n n n n S n 证:)131231(31)10171(31)7141(31)411(31+--++-+-+-=n n S n 4.求和:)2111211(31)2(1641531421311+-+-+=+++⨯+⨯+⨯+⨯=n n n n S n 证:)1111(21)6141(21)5131(21)4121(21)311(21+--++-+-+-+-=n n S n 5.求和:⎪⎪⎭⎫ ⎝⎛++-=++++⨯⨯+⨯⨯+⨯⨯=)2)(1(12121)2)(1(1543143213211n n n n n S n 证:因为])2)(1(1)1(1[21)2)(1(1++-+=++n n n n n n n , 特殊数列求和公式平方差公式 ))((22b a b a b a -+=- 完全平方和(/差)公式 2222)(b ab a b a +±=±。

小学奥数裂项公式汇总

小学奥数裂项公式汇总

裂项运算常用公式
一、分数“裂差”型运算
(1) 对于分母可以写作两个因数乘积的分数,即形式的,这里我们把较小的数写在前面,即 a<
b,那么有:
(2) 对于分母上为 3 个或 4 个连续自然数乘积形式的分数,即有:
二、分数“裂和”型运算
常见的裂和型运算主要有以下两种形式:
(1)
(2)
裂和型运算与裂差型运算的对比:
裂差型运算的核心环节是“两两抵消达到简化的目的”,“先裂再碎,掐头去尾”
分数裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。

裂和:抵消,或凑整
三、整数裂项基本公式
(1)
(2)
(3)
(4)
(5)
裂项求和部分基本公式1.求和:
证:
2.求和:
证:
3.求和:
证:
4.求和:
证:
5.求和:
证:因为,特殊数列求和公式
平方差公式
完全平方和(/差)公式。

小学奥数裂项公式汇总资料

小学奥数裂项公式汇总资料

裂项运算常用公式一、分数“裂差”型运算(1) 对于分母可以写作两个因数乘积的分数,即b a ⨯1形式的,这里我们把较小的数写在前面,即 a <b ,那么有: )11(11b a a b b a --=⨯(2) 对于分母上为 3 个或 4 个连续自然数乘积形式的分数,即有:⎪⎪⎭⎫⎝⎛+⨯+-+⨯=+⨯+⨯)2()1(1)1(121)2()1(1n n n n n n n⎪⎪⎭⎫⎝⎛+⨯+⨯+-+⨯+⨯=+⨯+⨯+⨯)3()2()1(1)2()1(131)3()2()1(1n n n n n n n n n n二、分数“裂和”型运算常见的裂和型运算主要有以下两种形式:(1) a b b a b b a a b a b a 11+=⨯+⨯=⨯+(2)a bb ab a b b a a b a b a +=⨯+⨯=⨯+2222裂和型运算与裂差型运算的对比:裂差型运算的核心环节是“两两抵消达到简化的目的”,“先裂再碎,掐头去尾”分数裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。

裂和:抵消,或 凑整三、整数裂项基本公式(1))1()1(31)1(......433221+-=⨯-++⨯+⨯+⨯n n n n n(2) )1()1)(2(41)1()2(......543432321+--=⨯-⨯-++⨯⨯+⨯⨯+⨯⨯n n n n n n n (3) )1()1(31)2)(1(31)1(+--++=+n n n n n n n n n n n n +=+2)1((4) )2)(1()1(41)3)(2)(1(41)2)(1(++--+++=++n n n n n n n n n n n(5) !)!1(!n n n n -+=⨯裂项求和部分基本公式1.求和: 1)1(1......541431321211+=+++⨯+⨯+⨯+⨯=n n n n S n证:1111)111()5141()4131()3121()211(+=+-=+-++-+-+-+-=n n n n n S n2.求和:12)12)(12(1971751531311+=+-++⨯+⨯+⨯+⨯=n n n n S n证:12)1211(21)121121(21)7151(21)5131(21)311(21+=+-=+--++-+-+-=n n n n n S n3.求和:13)13)(23(11071741411+=+-++⨯+⨯+⨯=n n n n S n证:)131231(31)10171(31)7141(31)411(31+--++-+-+-=n n S n 13)1311(31+=+-=n n n4.求和:)2111211(31)2(1641531421311+-+-+=+++⨯+⨯+⨯+⨯=n n n n S n 证:)1111(21)6141(21)5131(21)4121(21)311(21+--++-+-+-+-=n n S n )2111211(31)211(21+-+--+=+-+n n n n5.求和:⎪⎪⎭⎫ ⎝⎛++-=++++⨯⨯+⨯⨯+⨯⨯=)2)(1(12121)2)(1(1543143213211n n n n n S n 证:因为])2)(1(1)1(1[21)2)(1(1++-+=++n n n n n n n , ])2)(1(121[21])2)(1(1)1(1[21)431321(21)321211(21++-=++-+++⨯-⨯+⨯-⨯=∴n n n n n n S n特殊数列求和公式2)1(321+=++n n n 212311321n n n n =++++-++-++++ )()(2127531n n =-++++)(6)12)(1(21222++=+++n n n n 3)14(3)12)(12(1253122222-⨯=-+=-++++n n n n n n )( ()()412121222333+=++=+++n n n n平方差公式 ))((22b a b a b a -+=-完全平方和(/差)公式 2222)(b ab a b a +±=±。

小学奥数裂项公式汇总

小学奥数裂项公式汇总

小学奥数裂项公式汇总 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998裂项运算常用公式一、分数“裂差”型运算(1) 对于分母可以写作两个因数乘积的分数,即ba ⨯1形式的,这里我们把较小的数写在前面,即 a <b ,那么有:(2) 对于分母上为 3 个或 4 个连续自然数乘积形式的分数,即有:二、分数“裂和”型运算常见的裂和型运算主要有以下两种形式:(1) a b b a b b a a b a b a 11+=⨯+⨯=⨯+(2)a bb ab a b b a a b a b a +=⨯+⨯=⨯+2222裂和型运算与裂差型运算的对比:裂差型运算的核心环节是“两两抵消达到简化的目的”,“先裂再碎,掐头去尾”分数裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。

裂和:抵消,或 凑整三、整数裂项基本公式 (1))1()1(31)1(......433221+-=⨯-++⨯+⨯+⨯n n n n n(2) )1()1)(2(41)1()2(......543432321+--=⨯-⨯-++⨯⨯+⨯⨯+⨯⨯n n n n n n n (3) )1()1(31)2)(1(31)1(+--++=+n n n n n n n n (4) )2)(1()1(41)3)(2)(1(41)2)(1(++--+++=++n n n n n n n n n n n(5) !)!1(!n n n n -+=⨯裂项求和部分基本公式1.求和: 1)1(1 (541)431321211+=+++⨯+⨯+⨯+⨯=n nn n S n证:1111)111()5141()4131()3121()211(+=+-=+-++-+-+-+-=n nn n n S n2.求和:12)12)(12(1971751531311+=+-++⨯+⨯+⨯+⨯=n n n n S n 证:12)1211(21)121121(21)7151(21)5131(21)311(21+=+-=+--++-+-+-=n n n n n S n 3.求和:13)13)(23(11071741411+=+-++⨯+⨯+⨯=n n n n S n 证:)131231(31)10171(31)7141(31)411(31+--++-+-+-=n n S n 4.求和:)2111211(31)2(1641531421311+-+-+=+++⨯+⨯+⨯+⨯=n n n n S n 证:)1111(21)6141(21)5131(21)4121(21)311(21+--++-+-+-+-=n n S n 5.求和:⎪⎪⎭⎫ ⎝⎛++-=++++⨯⨯+⨯⨯+⨯⨯=)2)(1(12121)2)(1(1543143213211n n n n n S n 证:因为])2)(1(1)1(1[21)2)(1(1++-+=++n n n n n n n , 特殊数列求和公式平方差公式 ))((22b a b a b a -+=-完全平方和(/差)公式 2222)(b ab a b a +±=±。

小学奥数裂项公式汇总知识分享

小学奥数裂项公式汇总知识分享

⼩学奥数裂项公式汇总知识分享裂项运算常⽤公式⼀、分数“裂差”型运算(1) 对于分母可以写作两个因数乘积的分数,即b a ?1形式的,这⾥我们把较⼩的数写在前⾯,即 a <b ,那么有: )11(11b a ab b a --=?(2) 对于分母上为 3 个或 4 个连续⾃然数乘积形式的分数,即有:+?+-+?=+?+?)2()1(1)1(121)2()1(1n n n n n n n+?+?+-+?+?=+?+?+?)3()2()1(1)2()1(131)3()2()1(1n n n n n n n n n n⼆、分数“裂和”型运算常见的裂和型运算主要有以下两种形式:(1) a b b a b b a a b a b a 11+=?+?=?+(2)a bb ab a b b a a b a b a +=?+?=?+2222裂和型运算与裂差型运算的对⽐:裂差型运算的核⼼环节是“两两抵消达到简化的⽬的”,“先裂再碎,掐头去尾”分数裂和型运算的题⽬不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化⽬的。

裂和:抵消,或凑整三、整数裂项基本公式(1))1()1(31)1(......433221+-=?-++?+?+?n n n n n(2) )1()1)(2(41)1()2(......543432321+--=?-?-++??+??+??n n n n n n n(3) )1()1(31)2)(1(31)1(+--++=+n n n n n n n nn n n n +=+2)1((4) )2)(1()1(41)3)(2)(1(41)2)(1(++--+++=++n n n n n n n n n n n (5) !)!1(!n n n n -+=?裂项求和部分基本公式1.求和: 1)1(1(541)431321211+=+++?+?+?+?=n nn n S n证:1111)111()5141()4131()3121()211(+=+-=+-++-+-+-+-=n nn n n S n Λ2.求和:12)12)(12(1971751531311+=+-++?+?+?+?=n nn n S n Λ证:12)1211(21)121121(21)7151(21)5131(21)311(21+=+-=+--++-+-+-=n n n n n S n Λ3.求和:13)13)(23(1 1071741411+=+-++?+?+?=n nn n S n Λ证:)131231(31)10171(31)7141(31)411(31+--++-+-+-=n n S n Λ13)1311(31+=+-=n nn。

小学奥数之裂项

小学奥数之裂项

这是分解与组合思想在数列求和中的具体应用.裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的.通项分解(裂项)如:(1)1/n(n+1)=1/n-1/(n+1)(2)1/(2n-1)(2n+1)=1/2[1/(2n-1)-1/(2n+1)](3)1/n(n+1)(n+2)=1/2[1/n(n+1)-1/(n+1)(n+2)](4)1/(√a+√b)=[1/(a-b)](√a-√b)(5)n·n!=(n+1)!-n!公式法、裂项相消法、错位相减法、倒序相加法等。

(关键是找数列的通项结构)1、分组法求数列的和:如an=2n+3n2、错位相减法求和:如an=n·2^n3、裂项法求和:如an=1/n(n+1)4、倒序相加法求和:如an=n5、求数列的最大、最小项的方法:①an+1-an=……如an=-2n2+29n-3②(an>0)如an=③an=f(n)研究函数f(n)的增减性如an=an^2+bn+c(a≠0)6、在等差数列中,有关Sn的最值问题——常用邻项变号法求解:(1)当a1>0,d<0时,满足{an}的项数m使得Sm取最大值.(2)当a1<0,d>0时,满足{an}的项数m使得Sm取最小值.在解含绝对值的数列最值问题时,注意转化思想的应用。

对于较长的复杂算式,单单靠一般的运算顺序和计算方法是很难求出结果的。

如果算式中每一项的排列都是有规律的,那么我们就要利用这个规律进行巧算和简算。

而裂项法就是一种行之有效的巧算和简算方法。

通常的做法是:把算式中的每一项裂变成两项的差,而且是每个裂变的后项(或前项)恰好与上个裂变的前项(或后项)相互抵消,从而达到“以短制长”的目的。

下面我们以整数裂项为例,谈谈裂项法的运用,并为整数裂项法编制一个易用易记的口诀。

例1、计算1×2+2×3+3×4+4×5+……+98×99+99×100分析:这个算式实际上可以看作是:等差数列1、2、3、4、5……98、99、100,先将所有的相邻两项分别相乘,再求所有乘积的和。

小学奥数裂项公式汇总

小学奥数裂项公式汇总

裂项运算常用公式一、分数“裂差”型运算(1) 对于分母可以写作两个因数乘积的分数,即b a ⨯1形式的,这里我们把较小的数写在前面,即 a <b ,那么有: )11(11b a a b b a --=⨯(2) 对于分母上为 3 个或 4 个连续自然数乘积形式的分数,即有:⎪⎪⎭⎫⎝⎛+⨯+-+⨯=+⨯+⨯)2()1(1)1(121)2()1(1n n n n n n n⎪⎪⎭⎫⎝⎛+⨯+⨯+-+⨯+⨯=+⨯+⨯+⨯)3()2()1(1)2()1(131)3()2()1(1n n n n n n n n n n二、分数“裂和”型运算常见的裂和型运算主要有以下两种形式:(1) a b b a bb a ab a ba 11+=⨯+⨯=⨯+(2)a bb ab a b b a a b a b a +=⨯+⨯=⨯+2222裂和型运算与裂差型运算的对比:裂差型运算的核心环节是“两两抵消达到简化的目的”,“先裂再碎,掐头去尾”分数裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。

裂和:抵消,或 凑整三、整数裂项基本公式(1))1()1(31)1(......433221+-=⨯-++⨯+⨯+⨯n n n n n(2) )1()1)(2(41)1()2(......543432321+--=⨯-⨯-++⨯⨯+⨯⨯+⨯⨯n n n n n n n (3) )1()1(31)2)(1(31)1(+--++=+n n n n n n n n n n n n +=+2)1((4) )2)(1()1(41)3)(2)(1(41)2)(1(++--+++=++n n n n n n n n n n n(5) !)!1(!n n n n -+=⨯裂项求和部分基本公式1.求和: 1)1(1......541431321211+=+++⨯+⨯+⨯+⨯=n n n n S n证:1111)111()5141()4131()3121()211(+=+-=+-++-+-+-+-=n n n n n S n Λ2.求和:12)12)(12(1971751531311+=+-++⨯+⨯+⨯+⨯=n n n n S n Λ证:12)1211(21)121121(21)7151(21)5131(21)311(21+=+-=+--++-+-+-=n n n n n S n Λ3.求和:13)13)(23(11071741411+=+-++⨯+⨯+⨯=n n n n S n Λ证:)131231(31)10171(31)7141(31)411(31+--++-+-+-=n n S n Λ 13)1311(31+=+-=n n n4.求和:)2111211(31)2(1641531421311+-+-+=+++⨯+⨯+⨯+⨯=n n n n S n Λ 证:)1111(21)6141(21)5131(21)4121(21)311(21+--++-+-+-+-=n n S n Λ )2111211(31)211(21+-+--+=+-+n n n n5.求和:⎪⎪⎭⎫ ⎝⎛++-=++++⨯⨯+⨯⨯+⨯⨯=)2)(1(12121)2)(1(1543143213211n n n n n S n Λ 证:因为])2)(1(1)1(1[21)2)(1(1++-+=++n n n n n n n , ])2)(1(121[21])2)(1(1)1(1[21)431321(21)321211(21++-=++-+++⨯-⨯+⨯-⨯=∴n n n n n n S n Λ特殊数列求和公式2)1(321+=++n n n Λ 212311321n n n n =++++-++-++++ΛΛ)()(2127531n n =-++++)(Λ6)12)(1(21222++=+++n n n n Λ 3)14(3)12)(12(1253122222-⨯=-+=-++++n n n n n n )(Λ ()()412121222333+=++=+++n n n n ΛΛ平方差公式 ))((22b a b a b a -+=-完全平方和(/差)公式 2222)(b ab a b a +±=±。

小学奥数裂项公式汇总

小学奥数裂项公式汇总

a ⨯b = b - a an ⨯ (n + 1) ⨯ (n + 2) = 1 ⎛1 2 ⎝ n ⨯ (n + 1) - (n + 1) ⨯ (n + 2) ⎭ (n + 1) ⨯ (n + 2) ⨯ (n + 3) ⎪⎭a ⨯b = aa ⨯b + b a ⨯ b = 1(1) a + b ⎝a ⨯b = a b + ba ⨯b = a ⨯ b(1)1⨯ 2 + 2 ⨯ 3 + 3 ⨯ 4 + ...... + (n - 1) ⨯ n = (n - 1)n (n + 1)裂项运算常用公式一、分数“裂差”型运算(1) 对于分母可以写作两个因数乘积的分数,即1形式的,这里我们把较小的数写在前面,a ⨯ b即 a <b ,那么有:1 1 1 1( - )b(2) 对于分母上为 3 个或 4 个连续自然数乘积形式的分数,即有:11 ⎫⎪⎪1 1 ⎛ 1 n ⨯ (n + 1) ⨯ (n + 2) ⨯ (n + 3) = 3  n ⨯ (n + 1) ⨯ (n + 2) -二、分数“裂和”型运算常见的裂和型运算主要有以下两种形式:1b + a1 ⎫⎪(2) a 2 + b 2 a 2 b 2+a裂和型运算与裂差型运算的对比:裂差型运算的核心环节是“两两抵消达到简化的目的”,“先裂再碎,掐头去尾”分数裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。

裂和:抵消,或 凑整三、整数裂项基本公式13(3)n (n + 1) = n (n + 1)(n + 2) - (n - 1)n (n + 1)(4) n (n + 1)(n + 2) = n (n + 1)(n + 2)(n + 3) - (n - 1)n (n + 1)(n + 2)证: S = (1 - ) + ( - ) + ( - ) + ( - ) + Λ + ( - ) = 1 - =证: S = (1 - ) + ( - ) + ( - ) +Λ + ( - )3 4 3 4 7 3 7 10 3 3n - 2 3n + 1(2)1⨯ 2 ⨯ 3 + 2 ⨯ 3 ⨯ 4 + 3 ⨯ 4 ⨯ 5 + ...... + (n - 2) ⨯ (n - 1) ⨯ n = 1(n - 2)(n - 1)n (n + 1)41 13 3n(n + 1) = n 2 + n1 14 4(5)n ⨯ n != (n + 1)!- n !裂项求和部分基本公式1.求和: S = n 1 1 1 1 1 n+ + + + ...... + =1⨯ 2 2 ⨯ 3 3 ⨯ 4 4 ⨯ 5 n (n + 1) n + 11 1 1 1 1 1 1 1 1 1 nn 2 2 3 3 4 4 5 n n + 1 n + 1 n + 12.求和: S = n证: S = n 1 1 1 1 1 n+ + + +Λ + =1⨯ 3 3 ⨯ 5 5 ⨯ 7 7 ⨯ 9 (2n - 1)(2n + 1) 2n + 11 1 1 1 1 1 1 1 1 1 1 1 1 n(1 - ) + ( - ) + ( - ) + Λ + ( - ) = (1 - ) =2 3 2 3 5 2 5 7 2 2n - 1 2n + 1 2 2n + 1 2n + 13.求和: S = n 1 1 1 1 n+ + +Λ + =1⨯ 4 4 ⨯ 7 7 ⨯ 10 (3n - 2)(3n + 1) 3n + 11 1 1 1 1 1 1 1 1 1 1n1 1 n= (1 - ) =3 3n + 1 3n + 1+ + +Λ + = - 1⨯ 2 ⨯ 3 2 ⨯ 3 ⨯ 4 3 ⨯ 4 ⨯ 5 n(n + 1)(n + 2) 2 ⎝ 2 (n + 1)(n + 2) ⎪⎭= [ - ] ,∴ S = 12 1⨯ 2 2 ⨯3 2 2 ⨯ 3 3 ⨯4 2 n (n + 1) (n + 1)(n + 2) 12 + 32 + 52 + Λ +(2n - 1)2 = =1 1 1 + 2+Λ + n (4.求和: S = n证: S = n5.求和: S = n证:因为 1 1 1 1 1 1 1 1 1+ + + +Λ + = (1 + - - )1⨯ 3 2 ⨯ 4 3 ⨯ 5 4 ⨯ 6 n (n + 2) 3 2 n + 1 n + 21 1 1 1 1 1 1 1 1 1 1 1 1 1(1 - ) + ( - ) + ( - ) + ( - ) +Λ + ( - )2 3 2 2 4 2 3 5 2 4 6 2 n - 1 n + 11 1 1 1 1 1 1 + ( - ) = (1 + -- - )2 n n + 23 2 n + 1 n + 21 1 1 1 1 ⎛ 1 1 ⎫1 1 1 1n (n + 1)(n + 2) 2 n (n + 1) (n + 1)(n + 2)1 1 1 1 1 1 1 1( - ) + ( - ) +Λ + [ - ]n1 1 1 = [ - ]2 2 (n + 1)(n + 2)特殊数列求和公式1 +2 + 3Λ n = n(n + 1)21 +2 +3 + Λ +(n - )+ n +(n - )+ Λ + 3 + 2 + 1 = n 21 + 3 + 5 + 7Λ +(2n - )= n 212+ 22+ Λ + n 2= n (n + 1)(2n + 1)6n (2n + 1)(2n - 1) n ⨯ (4n2 - 1)3 313 3 3 = 1 + 2 + Λ n )2=n2 (n + 1)2 4平方差公式a 2 -b 2 = (a + b )(a - b )完全平方和(/差)公式(a±b)2=a2±2ab+b2。

(完整word版)三年级 奥数 小学奥数裂项法(一)(含答案)-

(完整word版)三年级 奥数 小学奥数裂项法(一)(含答案)-

裂项法(一)同学们知道:在计算分数加减法时,两个分母不同的分数相加减,要先通分化成同分母分数后再计算。

(一)阅读思考例如1314112-=,这里分母3、4是相邻的两个自然数,公分母正好是它们的乘积,把这个例题推广到一般情况,就有一个很有用的等式:111111 1111n nnn nnn n n nn n n n-+=++-+ =+-+=+()()()()即11111 n n n n-+=+()或11111 n n n n ()+=-+下面利用这个等式,巧妙地计算一些分数求和的问题。

【典型例题】例1. 计算:119851986119861987119871988119941995⨯+⨯+⨯++⨯……+⨯+⨯+1 199519961 1996199711997分析与解答:1 1985198611985119861 1986198711986119871 1987198811987119881 199419951199411995⨯=-⨯=-⨯=-⨯=-……11995199611995119961199619971199611997⨯=-⨯=- 上面12个式子的右面相加时,很容易看出有许多项一加一减正好相互抵消变为0,这一来问题解起来就十分方便了。

11985198611986198711987198811995199611996199711997⨯+⨯+⨯++⨯+⨯+… =-+-+-++-+-+=119851198611986119871198711988119951199611996119971199711985…… 像这样在计算分数的加、减时,先将其中的一些分数做适当的拆分,使得其中一部分分数可以相互抵消,从而使计算简化的方法,我们称为裂项法。

例2. 计算:1111211231123100+++++++++++…… 公式的变式11221+++=⨯-…n n n ()当n 分别取1,2,3,……,100时,就有112121122231123234112342451121002100101=⨯+=⨯++=⨯+++=⨯+++=⨯ (1111211231)12100212223234299100210010121121231341991001100101211212131314199110011001101211101++++++++++=⨯+⨯+⨯++⨯+⨯=⨯⨯+⨯+⨯++⨯+⨯=⨯-+-+-++-+-=⨯-……………()()() =⨯==2100101200101199101例3. 设符号( )、< >代表不同的自然数,问算式1611=+<>()中这两个符号所代表的数的数的积是多少?分析与解:减法是加法的逆运算,1611=+<>()就变成1611-=<>(),与前面提到的等式11111n n n n -+=+()相联系,便可找到一组解,即1617142=+ 另外一种方法设n x y 、、都是自然数,且x y ≠,当111n x y=+时,利用上面的变加为减的想法,得算式x n nx y-=1。

小学奥数裂项公式汇总(1)

小学奥数裂项公式汇总(1)

裂项运算常用公式一、分数“裂差”型运算(1) 对于分母可以写作两个因数乘积的分数,即ba ⨯1形式的,这里我们把较小的数写在前面,即 a <b ,那么有:? ? ? ?(2) 对于分母上为 3 个或 4 个连续自然数乘积形式的分数,即有:二、分数“裂和”型运算常见的裂和型运算主要有以下两种形式:(1) a b b a bb a ab a ba 11+=⨯+⨯=⨯+? ? ?? ? ?(2)a bb ab a b b a a b a b a +=⨯+⨯=⨯+2222? ? ?? ? ?裂和型运算与裂差型运算的对比:裂差型运算的核心环节是“两两抵消达到简化的目的”,“先裂再碎,掐头去尾”分数裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。

裂和:抵消,或 凑整三、整数裂项基本公式(1)?)1()1(31)1(......433221+-=⨯-++⨯+⨯+⨯n n n n n? ? ? ? (2) )1()1)(2(41)1()2(......543432321+--=⨯-⨯-++⨯⨯+⨯⨯+⨯⨯n n n n n n n (3) )1()1(31)2)(1(31)1(+--++=+n n n n n n n n (4) )2)(1()1(41)3)(2)(1(41)2)(1(++--+++=++n n n n n n n n n n n(5) !)!1(!n n n n -+=⨯裂项求和部分基本公式1.求和: 1)1(1 (541)431321211+=+++⨯+⨯+⨯+⨯=n nn n S n证:1111)111()5141()4131()3121()211(+=+-=+-++-+-+-+-=n nn n n S n Λ2.求和:12)12)(12(1971751531311+=+-++⨯+⨯+⨯+⨯=n n n n S n Λ 证:12)1211(21)121121(21)7151(21)5131(21)311(21+=+-=+--++-+-+-=n n n n n S n Λ 3.求和:13)13)(23(11071741411+=+-++⨯+⨯+⨯=n n n n S n Λ 证:)131231(31)10171(31)7141(31)411(31+--++-+-+-=n n S n Λ 4.求和:)2111211(31)2(1641531421311+-+-+=+++⨯+⨯+⨯+⨯=n n n n S n Λ 证:)1111(21)6141(21)5131(21)4121(21)311(21+--++-+-+-+-=n n S n Λ 5.求和:⎪⎪⎭⎫ ⎝⎛++-=++++⨯⨯+⨯⨯+⨯⨯=)2)(1(12121)2)(1(1543143213211n n n n n S n Λ 证:因为])2)(1(1)1(1[21)2)(1(1++-+=++n n n n n n n , 特殊数列求和公式平方差公式 ))((22b a b a b a -+=-完全平方和(/差)公式 2222)(b ab a b a +±=±。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

这是分解与组合思想在数列求和中的具体应用.裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的.通项分解(裂项)如:
(1)1/n(n+1)=1/n-1/(n+1)
(2)1/(2n-1)(2n+1)=1/2[1/(2n-1)-1/(2n+1)]
(3)1/n(n+1)(n+2)=1/2[1/n(n+1)-1/(n+1)(n+2)]
(4)1/(√a+√b)=[1/(a-b)](√a-√b)
(5)n·n!=(n+1)!-n!
公式法、裂项相消法、错位相减法、倒序相加法等。

(关键是找数列的通项结构)
1、分组法求数列的和:如an=2n+3n
2、错位相减法求和:如an=n·2^n
3、裂项法求和:如an=1/n(n+1)
4、倒序相加法求和:如an=n
5、求数列的最大、最小项的方法:
①an+1-an=……如an=-2n2+29n-3
②(an>0)如an=
③an=f(n)研究函数f(n)的增减性如an=an^2+bn+c(a≠0)
6、在等差数列中,有关Sn的最值问题——常用邻项变号法求解:
(1)当a1>0,d<0时,满足{an}的项数m使得Sm取最大值.
(2)当a1<0,d>0时,满足{an}的项数m使得Sm取最小值.
在解含绝对值的数列最值问题时,注意转化思想的应用。

对于较长的复杂算式,单单靠一般的运算顺序和计算方法是很难求出结果的。

如果算式中每一项的排列都是有规律的,那么我们就要利用这个规律进行巧算和简算。

而裂项法就是一种行之有效的巧算和简算方法。

通常的做法是:把算式中的每一项裂变成两项的差,而且是每个裂变的后项(或前项)恰好与上个裂变的前项(或后项)相互抵消,从而达到“以短制长”的目的。

下面我们以整数裂项为例,谈谈裂项法的运用,并为整数裂项法编制一个易用易记的口诀。

例1、计算1×2+2×3+3×4+4×5+……+98×99+99×100
分析:这个算式实际上可以看作是:等差数列1、2、3、4、5……98、99、100,先将所有的相邻两项分别相乘,再求所有乘积的和。

算式的特点概括为:数列公差为1,因数个数为2。

1×2=(1×2×3-0×1×2)÷(1×3)
2×3=(2×3×4-1×2×3)÷(1×3)
3×4=(3×4×5-2×3×4)÷(1×3)
4×5=(4×5×6-3×4×5)÷(1×3)
……
98×99=(98×99×100-97×98×99)÷(1×3)
99×100=(99×100×101-98×99×100)÷(1×3)
将以上算式的等号左边和右边分别累加,左边即为所求的算式,右边括号里面诸多项相互抵消,可以简化为(99×100×101-0×1×2)÷3。

解:1×2+2×3+3×4+4×5+……+98×99+99×100
=(99×100×101-0×1×2)÷3
=333300
计算之裂项习题1
计算之裂项习题2。

相关文档
最新文档