基于Matlab软件平台的光伏并网系统仿真实训

基于Matlab软件平台的光伏并网系统仿真实训
基于Matlab软件平台的光伏并网系统仿真实训

绪论

新能源是21世纪世界经济发展中最具决定力的五大技术领域之一。随着世界经济的快速发展,对能源需求逐年增长,而地球上以石油和煤为主的矿物资源日渐枯竭,能源已成为制约各国经济发展的瓶颈。同时,随着化石燃料的燃烧,所产生的二氧化碳在大气中的浓度急剧增加,生态环境逐渐恶化,使地球逐渐变暖。随着人类社会的发展,改善生态环境的呼声越来越高,开发利用无污染的新能源,对促进社会文明与进步,发展经济,改善人民生活具有重大的意义。太阳能作为一种清洁、高效和永不衰竭的新能源,在日常生活中受到了各国政府的重视,各国都将太阳能资源利用作为国家可持续发展战略的重要内容。

太阳能并网发电系统通过把太阳能转化为电能,不经过蓄电池储能,直接通过并网逆变器,把电能送上电网。太阳能并网发电代表了太阳能电源的发展方向,是21世纪最具吸引力的能源利用技术。光伏发电技术根据负载的不同分为离网型和并网型两种,早期的光伏发电技术受制于太阳能电池组件成本因素,主要以小功率离网型为主,满足边远地区无电网居民用电问题。随着光伏组件成本的下降,光伏发电的成本不断下降,预计到2013年安装成本可降至1.5美元/Wp,电价成本为6美分/(kWh),光伏并网已经成为可能。并网型光伏系统逐步成为主流。

目录

第一章基于Matlab软件平台的光伏并网系统仿真实训......................... 错误!未定义书签。

1.1 Matlab软件介绍...................................... 错误!未定义书签。

1.2 光伏并网系统 (8)

第二章光伏并网逆变器电路工作原理 (13)

2.1 逆变器定义 (13)

2.3 逆变器功能作用 (13)

2.3.2 孤岛检测技术 (14)

2.3.3 智能电量管理及系统状况监控系统 (14)

第三章SG3525芯片 (15)

3.1芯片特点 (15)

3.2 管脚功能管脚图 (16)

3.3 结构设计内部结构图 (17)

第四章制图 (18)

4.1 用protel绘制原理图 (18)

4.2 根据原理图生成PCB电路板图 (18)

第五章焊接与调试 (19)

5.1 电路前面板的设计 (19)

5.2 调试结果 (20)

第六章实训结论 (21)

第一章基于Matlab软件平台的光伏并网系统仿真实训

1.1 、Matlab软件介绍

MATLAB是矩阵实验室(Matrix Laboratory)的简称,是美国MathWorks 公司

出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。

时至今日,经过Math Works公司的不断完善,MATLAB已经发展成为适合多学科、多种工作平台的功能强劲的大型软件。在国外,MATLAB已经经受了多年考验。在欧美等高校,MATLAB已经成为线性代数、自动控制理论、数理统计、数字信号处理、时间序列分析、动态系统仿真等高级课程的基本教学工具;成为攻读学位的大学生、硕士生、博士生必须掌握的基本技能。在设计研究单位和工业部门,MATLAB被广泛用于科学研究和解决各种具体问题

基本功能

MATLAB是由美国mathworks公司发布的主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非

交互式程序设计语言(如C、Fortran)的编辑模式,代表了当今国际科学计算软件的先进水平。

MATLAB的基本数据单位是矩阵,它的指令表达式与数学、工程中常用的形式十分相似,故用MATLAB来解算问题要比用C,FORTRAN等语言完成相同的事情简捷得多,并且MATLAB也吸收了像Maple等软件的优点,使MATLAB成为一个强大的数学软件。在新的版本中也加入了对,FORTRAN,C++,JAVA的支持。可以直接调用,用户也可以将自己编写的实用程序导入到MATLAB函数库中方便自己以后调用,此外许多的MATLAB爱好者都编写了一些经典的程序,用户可以直接进行下载就可以用

MATLAB和Mathematica、Maple并称为三大数学软件。它在数学类科技应用软件中在数值计算方面首屈一指。MATLAB可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其他编程语言的程序等,主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。

1.2、光伏并网系统

太阳能电池发电系统是利用光生伏打效应原理制成的,它是将太阳辐射能量直接转换成电能的发电系统。它主要由太阳能电池方阵和逆变器两部分组成。如下图所示:白天有日照时,太阳能电池方阵发出的电经过并网逆变器将电能直接输送到交流电网上,或将太阳能所发出的电经过并网逆变器直接为交流负载供电。

1.1.2 MTTP跟踪法仿真

跟踪波形如图1.2所示

图1.2 跟踪波形

图1.3 跟踪波形

PWM 输出波形如图1.4所示

图1.1 MTTP 仿真图

图1.4 PWM 波形

Battery蓄电池系统仿真图如图1.5所示

图1.5 蓄电池系统仿真图

MPPT最大功率点跟踪系统如图1.6所示

SPWM 波形如图1.7所示

锯齿波波形如图1.8所示

图1.7 SPWM 波形

图1.8 锯齿波形

1.2 逆变系统仿真

PWM 波形发生系统如图1.11所示

图1.9 逆变系统

图1.10 仿真波形

图1.11 PWM 发生系统

第二章光伏并网逆变器电路工作原理

2.1 逆变器定义

1.要求具有较高的效率。由于目前太阳电池的价格偏高,为了最大限度地利用太阳电池,提高系统效率,必须设法提高逆变器的效率。

2.要求具有较高的可靠性。目前光伏发电系统主要用于边远地区,许多电站无人值守和维护,这就要求逆变器具有合理的电路结构,严格的元器件筛选,并要求逆变器具备各种保护功能,如输入直流极性接反保护,交流输出短路保护,过热、过载保护等。

3.要求直流输入电压有较宽的适应范围,由于太阳电池的端电压随负载和日照强度而变化,蓄电池虽然对太阳电池的电压具有重要作用,但由于蓄电池的电压随蓄电池剩余容量和内阻的变化而波动,特别是当蓄电池老化时其端电压的变化范围很大,如12V 蓄电池,其端电压可在10V~16V之间变化,这就要求逆变器必须在较大的直流输入电压范围内保证正常工作,并保证交流输出电压的稳定。

4.在中、大容量的光伏发电系统中,逆变电源的输出应为失真度较小的正弦波。这是由于在中、大容量系统中,若采用方波供电,则输出将含有较多的谐波分量,高次谐波将产生附加损耗,许多光伏发电系统的负载为通信或仪表设备,这些设备对电网品质有较高的要求,当中、大容量的光伏发电系统并网运行时,为避免与公共电网的电力污染,也要求逆变器输出正弦波电流。

2.2 逆变器功能作用

由dc/ac转换提升或降低输入的电压,调节其输出以实现最大的效率。在经过一些附加的电压缓冲之后,左侧电桥中通常由18~20khz的开关频率,把dc电压转换为ac 电压。一般来说,单相h桥是dc/ac级的常见配置,但是,也可以采用三相和其他配置。最后,通过低通滤波器产生用于并网光伏发电系统的正弦交流电输出。2.3.1 并网保护装置

并网保护装置主要实现以下保护功能:低电压保护、过电压保护、低频率保护、国频率保护、过电流保护以及孤岛保护策略等内容。通常大型光伏电站需要设置冗余保护装置,保证系统故障时及时处理。

2.3 孤岛检测技术

孤岛效应是指并网逆变器在电网断电时,并网装置仍然保持对失压电网中的某一部分线路继续供电的状态。当电网的某一区域处于光伏发电的孤岛状态时,电网将不再控制这个电力孤岛的电压和频率。孤岛效应会对光伏发电系统与电网的重连接制造困难,同时可能引起电气元件以及人身安全危害,因此孤岛效应必须避免。目前常用的孤岛效应检测方法主要有两种,分别是被动检测方法和主动式检测方法。

(A)被动式孤岛检测:

孤岛的发生和电网脱离时的负载特性及与电网之间的有功和无功交换有很大的关系。电网脱离后有功的波动会引起光伏系统端口电压的变化,无功的波动会引起光伏系统输出频率的变化。电网脱离后,如果有功或者无功的波动比较明显,通过监测并网系统的端口电压或者输出频率就可以检测到孤岛的发生,这就是被动式孤岛检测方法的原理。然而在电网脱离后,如果有功和无功的波动都很小,此时被动式检测方法就存在检测盲区。

(B)主动式孤岛检测:

主动式孤岛检测方法中用的比较多的是主动频移法(AFD),其基本原理是在并网系统输出中加入频率扰动,在并网的情况下,其频率扰动可以被大电网校正回来,然而在孤岛发生时,该频率扰动可以使系统变得不稳定,从而检测到孤岛的发生。这类方法也存在"检测盲区",在负载品质因数比较高时,若电压幅值或频率变化范围小于某一值,系统无法检测到孤岛状态。另外,频率扰动会引起输出电流波形的畸变,同时分析发现,当需要进行电能质量治理时,频率的扰动会对谐波补偿效果造成较严重的影响。

2.4 智能电量管理及系统状况监控系统

大型光伏电站由于地处偏远地区,常常为无人值守电站。为了准确计量电站的电能输出及系统运行状况需要设立智能电量管理及系统状况监控系统。系统往往基于计算机数据处理平台以及互联网技术将分散的发电系统信息收集到集中控制中心进行数据分析处理工作,这部分的工作原理及系统结构在本文中不在详述。

第三章SG3525芯片

SG3525 是一种性能优良、功能齐全和通用性强的单片集成PWM控制芯片,它简单可靠及使用方便灵活,输出驱动为推拉输出形式,增加了驱动能力;内部含有欠压锁定电路、软启动控制电路、PWM锁存器,有过流保护功能,频率可调,同时能限制最大占空比。

3.1、芯片特点

1)工作电压范围宽: 8~35V。

2)内置 5.1 V±1.0%的基准电压源。

3)芯片内振荡器工作频率宽 100Hz~400 kHz。

4)具有振荡器外部同步功能。

5)死区时间可调。为了适应驱动快速场效应管的需要,末级采用推拉式工作电路,使开关速度更陕,末级输出或吸入电流最大值可达400mA。

6)内设欠压锁定电路。当输入电压小于 8V 时芯片内部锁定,停止工作(基准源及必要电路除外),使消耗电流降至小于 2mA。

7)有软启动电路。比较器的反相输入端即软启动控制端芯片的引脚 8,可外接软启动电容。该电容器内部的基准电压 Uref由恒流源供电,达到2.5V的时间为t=(2.5V/50μA)C,占空比由小到大(50%)变化。

8)内置PWM(脉宽调制)。锁存器将比较器送来的所有的跳动和振荡信号消除。只有在下一个时钟周期才能重新置位,系统的可靠性高。

3.2、管脚功能管脚图

直流电源 Vs 从脚 15 接入后分两路,一路加到或非门;另一路送到基准电压稳压器的输入端,产生稳定的元器件作为电源。振荡器脚 5 须外接电容 CT,脚 6 须外接电阻 RT。振荡器频率厂由外接电阻RT 和电容CT决定,振荡器的输出分为两路,一路以时钟脉冲形式送至双稳态触发器及两个或非门;另一路以锯齿波形式送至比较器的同相输入端,比较器的反向输入端接误差放大器的输出,误差放大器的输出与锯齿波电压在比较器中进行比较,输出一个随误差放大器输出电压高低而改变宽度的方波脉冲,再将此方波脉冲送到或非门的一个输入端。或非门的另两个输入端分别为双稳态触发器和振荡器锯齿波。双稳态触发器的两个输出互补,交替输出高低电平,将PwM脉冲送至三极管VT1 及 VT2的基极,锯齿波的作用是加入死区时间,保证 VT1 及VT2不同时导通。最后,VTl及VT2分别输出相位相差为 180°的 PWM波。

3.3、结构设计内部结构图

本电源输入电压是由带隔离变压器的+30V 电源提供,选用 SG3525 设计的 DC—DC 直流变换器原理图。性能指标是:输入电压为DC24~35V可调,输入额定电压为 30V,输出为 5V/lA。本系统由SG3525 产生两路反向方波来控制 MOSFET 的导通与关闭,MOSFET驱动采用推挽方式,本设计在变压器的中心抽头加入30V直流电压,输出部分采用全波整流,在输出点上有分压电阻给TL431 提供参考电压,并通过光电隔离反馈到 SG3525,以调节控制输出方波占空比来稳定输出电压。由于本设计采用推挽式功率变换电路,在输入回路中仅有一个开关的通态压降,而半桥和全桥电路有2个,因此在同样的条件下,产生的通态损耗较小,这种拓扑特别适合输入电压较低的场合,这也是本设计为什么采用推挽变换器的原因。其中的变压器可同时实现直流隔离和电压变换的功能,磁性元件数目较少,成本较低。

第四章 制图

4.1 用protel 绘制原理图

4.2 根据原理图生成PCB 电路板图

图4.1 逆变系统原理图

图4.2 PCB 电路板图

第五章焊接与调试5.1电路板面的设计

5.2、调试结果

第六章实训总结

此次实训让我收获颇多。实训的题目是太阳能光伏并网发电技术,不仅对我们所学知识的一个考察,也是对我们的动手能力的一次锻炼。

焊接技术对于我来说本应该是很简单的事情,但是在这次的实训中我竟然犯了很严重的失误。因为对焊接很有信心所以就急于把它焊完,所以在检查元器件的时候就只是大略的看了一下就开始着手去焊接了,结果焊到最后发现我少了个电容。费了很大的劲儿才找到,在此过程中浪费了大量的时间。

通过此次事件,我知道了细节是非常的重要的。不能自以为这件事你很熟,就可以省略掉其中的一步。

基于Matlab的光伏电池建模及MPPT方法研究

基于Matlab的光伏电池建模及MPPT方法研究 自工业化以来的近三百年间,世界能源工业飞速发展,有力支撑了全球经济与社会发展。在这个发展的过程中,传统化石能源的大量开发及使用导致了资源紧张、环境污染、气候变化等问题日益突出,严重的威胁了人类生存和可持续发展。近年来,太阳能作为一种高效无污染的新能源,逐渐受到各国乃至全球的广泛关注。本文首先简要介绍了光伏发电的背景及意义,对光伏发电历史以及国内外光伏发电发展现状进行了综述,然后阐述了光伏并网发电系统及其基本工作原理,并详细描述了运用Matlab/Simulink 建立光伏阵列仿真模型的过程,最后对光伏发电系统最大功率点跟踪的理论依据以及工作原理进行了分析,介绍了常见的MPPT方法及仿真分析,并根据文献[6]详细描述了一种改进的基于最优梯度的滞环比较法的原理,并对改进的基于最优梯度的扰动观察法与传统的扰动观察法做了仿真对比,验证了改进算法的优越性。 目录 1 绪论 (2) 1.1 光伏发电的背景及意义 (2) 1.1.1 研究背景 (2) 1.1.2 我国太阳能资源的分布 (3) 1.2太阳能发电发展概况 (4) 1.2.1 光伏发电的历史 (4) 1.2.2 太阳能发电的国内外发展概况 (4) 1.3 本文研究的主要内容 (5) 2 光伏并网发电系统及基本原理 (5) 2.1 光伏发电系统的分类 (5) 2.2光伏并网发电系统组成 (5) 2.3光伏电池 (7) 2.3.1光伏电池的工作原理 (7) 2.3.2 光伏电池的种类 (7) 3 光伏电池建模与仿真分析 (8) 3.1光伏电池数学模型 (8) 3.2 光伏电池模型 (10) 3.3 光伏电池仿真分析 (12) 4 光伏阵列最大功率点跟踪方法研究 (14) 4.1 最大功率点跟踪的理论依据 (14) 4.2 基于DC/DC 变换电路MPPT的实现 (15) 4.2.1 BOOST电路的基本工作原理 (16) 4.2.2 BOOST电路实现MPPT的理论依据 (16) 4.3常用最大功率点跟踪算法及其仿真 (17) 4.3.1 恒定电压法 (17)

控制系统MATLAB仿真基础

系统仿真 § 4.1控制系统的数学模型 1、传递函数模型(tranfer function) 2、零极点增益模型(zero-pole-gain) 3、状态空间模型(state-space) 4、动态结构图(Simulink结构图) 一、传递函数模型(transfer fcn-----tf) 1、传递函数模型的形式 传函定义:在零初始条件下,系统输出量的拉氏变换C(S)与输入量的拉氏变换R(S)之比。 C(S) b1S m+b2S m-1+…+b m G(S)=----------- =- -------------------------------- R(S) a1S n + a2S n-1 +…+ a n num(S) = ------------ den(S) 2、在MATLAB命令中的输入形式 在MATLAB环境中,可直接用分子分母多项式系数构成的两个向量num、den表示系统: num = [b1, b2, ..., b m]; den = [a1, a2, ..., a n]; 注:1)将系统的分子分母多项式的系数按降幂的方式以向量的形式输入两个变量,中间缺项的用0补齐,不能遗漏。 2)num、den是任意两个变量名,用户可以用其他任意的变量名来输入系数向量。 3)当系统种含有几个传函时,输入MATLAB命令状态下可用n1,d1;n2,d2…….。 4)给变量num,den赋值时用的是方括号;方括号内每个系数分隔开用空格或逗号;num,den方括号间用的是分号。 3、函数命令tf( ) 在MATLAB中,用函数命令tf( )来建立控制系统的传函模型,或者将零极点增益模型、状态空间模型转换为传函模型。 tf( )函数命令的调用格式为: 圆括号中的逗号不能用空格来代替 sys = tf ( num, den ) [G= tf ( num, den )]

MATLAB实训报告

一、实训目的 1. 熟悉MATLAB语言的使用 2. 了解MATLAB在电子信息课程中的应用 3. 掌握MATLAB矩阵输入、运算以及MATLAB数值的运算功能 4.掌握各种数据的创建、访问、扩建及缩减 5.了解利用MATLAB计算系统响应的方法;验证信号与系统的基本概念、基本理论,掌握信号与系统的分析方法。 二、实训任务和要求 1、熟练利用MATLAB语言编程对系统S平面分析 2、掌握利用MATLAB分析系统时域的方法,熟悉系统的零输入响应,零状态响应及冲击响应的步骤。 3、MATLAB是目前国际上最流行,应用最广泛的科学与工程计算软件,它由MATLAB语言,MATLAB工作环境,MATLAB图像处理系统,MATLAB数据函数库,MATLAB 应用程序接口五大部分组成的集数值计算,图形处理,程序开发为一体的功能强大的系统.它应用于自动控制,数学计算,信号分析,计算机技术,图像信号处理,财务分析,航天工业,汽车工业,生物医学工程,语音处理和雷达工程等各行业,也是国内高校和研究部门进行许多科学研究的重要工具。 MATLAB的基本数据单位是矩阵,它的指令表达式与数学,工程中常用的形式十分相似,故用MATLAB来解算问题要比用C,FORTRAN等语言完相同的事情简捷得多。MATLAB是“矩阵实验室”(MATrix LABoratoy)的缩写,它是以矩阵运算为基础的交互式程序语言,能够满足科学、工程计算和绘图的需求。与其它计算机语言相比,其特点是简洁和智能化,适应科技专业人员的思维方式和书写习惯,使得编程和调试效率大大提高。它用解释方式工作,键入持续后立即得出结果,人机交互性能好,易于调试并被科技人员所乐于接受。特别是它可适应多种平台,并且随着计算机硬软件的更新及时升级,因此MATLAB语言在国外的大学工学院中,特别是频繁进行数值计算的电子信息类学科中,已经成为每个学生都掌握的工具了。它大大提高了课程教学、解题作业、分析研究的效率。 4、系统S平面分析的基本理论 MATLAB在系统S平面分析中,一般是求系统函数的零极点分布图,画单位冲激响应和幅频响应的图形,通常按常规方法这些波形很难画出,但是应用MATLAB就可简便快捷的画出图形,使系统的分析更加便捷.例如,已知系统函数为H,利用MATLAB 画出该系统的零极点分布图,求出该系统的单位冲激响应和幅频响应,并判断系统的稳定性。

Matlab通信系统仿真实验报告

Matlab通信原理仿真 学号: 2142402 姓名:圣斌

实验一Matlab 基本语法与信号系统分析 一、实验目的: 1、掌握MATLAB的基本绘图方法; 2、实现绘制复指数信号的时域波形。 二、实验设备与软件环境: 1、实验设备:计算机 2、软件环境:MATLAB R2009a 三、实验内容: 1、MATLAB为用户提供了结果可视化功能,只要在命令行窗口输入相应的命令,结果就会用图形直接表示出来。 MATLAB程序如下: x = -pi::pi; y1 = sin(x); y2 = cos(x); %准备绘图数据 figure(1); %打开图形窗口 subplot(2,1,1); %确定第一幅图绘图窗口 plot(x,y1); %以x,y1绘图 title('plot(x,y1)'); %为第一幅图取名为’plot(x,y1)’ grid on; %为第一幅图绘制网格线 subplot(2,1,2) %确定第二幅图绘图窗口 plot(x,y2); %以x,y2绘图 xlabel('time'),ylabel('y') %第二幅图横坐标为’time’,纵坐标为’y’运行结果如下图: 2、上例中的图形使用的是默认的颜色和线型,MATLAB中提供了多种颜色和线型,并且可以绘制出脉冲图、误差条形图等多种形式图: MATLAB程序如下: x=-pi:.1:pi; y1=sin (x); y2=cos (x); figure (1); %subplot (2,1,1); plot (x,y1); title ('plot (x,y1)'); grid on %subplot (2,1,2); plot (x,y2);

春MATLAB仿真期末大作业

MATLAB仿真 期末大作业 姓名:班级:学号:指导教师:

2012春期末大作业 题目:设单位负反馈控制系统前向通道传递函数由)()(21s G s G 和串联,其中: ) 1(1)()(21++==s A s G s K s G A 表示自己学号最后一位数(可以是零),K 为开环增益。要求: (1)设K=1时,建立控制系统模型,并绘制阶跃响应曲线(用红色虚线,并标注坐标和标题);求取时域性能指标,包括上升时间、超调量、调节时间、峰值时间; (2)在第(1)问中,如果是在命令窗口绘制阶跃响应曲线,用in1或者from workspace 模块将命令窗口的阶跃响应数据导入Simulink 模型窗口,用示波器显示阶跃响应曲线;如果是在Simulink 模型窗口绘制阶跃响应曲线,用out1或者to workspace 模块将Simulink 模型窗口的阶跃响应数据导入命令窗口并绘制阶跃响应曲线。 (3)用编程法或者rltool 法设计串联超前校正网络,要求系统在单位斜坡输入信号作用时,速度误差系数小于等于0.1rad ,开环系统截止频率s rad c /4.4''≥ω,相角裕度大于等于45度,幅值裕度大于等于10dB 。

仿真结果及分析: (1)、(2)、将Simulink模型窗口的阶跃响应数据导入命令窗口并绘制阶跃响应曲线 通过在Matlab中输入命令: >> plot(tout,yout,'r*-') >> title('阶跃响应曲线') 即可得出系统阶跃响应曲线,如下: 求取该控制系统的常用性能指标:超调量、上升时间、调节时间、峰值时间的程序如下: G=zpk([],[0,-1],5)。 S=feedback(G,1)。

光伏发电的MATLAB仿真

一、实验过程记录 1.画出实验接线图 图1 实验接线图 图2 光伏电池板图3 实验接线实物图 2.实验过程记录与分析 (1)给出实验的详细步骤 ○1 实验前根据指导书要求完成预习报告 ○2 按预习报告设计的实习步骤,利用MATLAB建立光伏数学模型,如下图4所示。

图4 光伏电池模型其中PV Array模块里子模块如下图5所示。 图5 PV Array模型其中Iph,Uoc,Io,Vt子模块如下图6-9所示。 图6Iph子模块

图7Uoc子模块 图8 Io子模块 图9Vt子模块 ○3 在光伏电池建模的基础上,输入实际光伏电池参数值,研究不同光照强度下、不同温度下光伏电池的I-V、P-V特性曲线,并得出结论。 ○4 设计光伏电池测试平台,在不同光照、温度情况下测试光伏电池输出电压、输出电流值,对实测数据进行处理并加以分析,记录实际光伏电池的I-V、P-V 特性曲线,与仿真结果进行对比,得出有意义的结论。 ○5 确定电力变换电路拓扑结构,设计电路中的相关参数值,通过MATLAB搭 建电路并仿真分析,搭建电路如图10所示。

图10离网型光伏发电系统 ○6 确定系统MPPT控制策略,建立MPPT模块仿真模型,并仿真分析。 系统联调,调节离网型光伏发电系统的电路和控制参数值,仿真并分析最大功率跟踪控制效果。 (2)记录实验数据 m2 表1当T=290K时S=1305W/时的测试数据 I(A)0 1.03 1.25 2.65 3.79 5.97 6.287.867.98 U(V)27.326.226252421.516 1.10 P(W)026.98632.566.2590.96128.35100.488.6460 m2 表2当T=287K时S=1305W/时的测试数据 I(A)01 1.5 2.6 3.93 6.0 6.688.048.12 U(V)27.626.225.825.123.921.620.510 P(W)026.238.765.2693.93129.6136.948.040 m2 表3当T=287K时S=1278W/时的测试数据 I(A)0 1.04 1.49 2.25 3.66 6.06 6.737.98.06 U(V)26.826.22625.424.321.913.40.50 P(W)027.24838.7457.1588.94132.7190.18 3.950

控制系统的MATLAB仿真与设计课后答案

控制系统的MATLAB仿真与设计课后答案

>>z=-4*sqrt(2)*sin(t); >>plot3(x,y,z,'p'); >>title('Line in 3-D Space'); >>text(0,0,0,'origin'); >>xlabel('X'),ylable('Y'),zlable('Z');grid; 4>>theta=0:0.01:2*pi; >>rho=sin(2*theta).*cos(2*theta); >>polar(theta,rho,'k'); 5>>[x,y,z]=sphere(20); >>z1=z; >>z1(:,1:4)=NaN; >>c1=ones(size(z1)); >>surf(3*x,3*y,3*z1,c1); >>hold on >>z2=z; >>c2=2*ones(size(z2)); >>c2(:,1:4)=3*ones(size(c2(:,1:4))); >>surf(1.5*x,1.5*y,1.5*z2,c2); >>colormap([0,1,0;0.5,0,0;1,0,0]); >>grid on >>hold off 第四章 1>>for m=100:999 m1=fix(m/100); m2=rem(fix(m/10),10); m3=rem(m,10); if m==m1*m1*m1+m2*m2*m2+m3*m3*m3 disp(m) end end 2M文件:function[s,p]=fcircle(r) s=pi*r*r; p=2*pi*r; 主程序: [s,p]=fcircle(10) 3>>y=0;n=100; for i=1:n y=y+1/i/i; end >>y

MATLAB实验报告(1-4)

信号与系统MATLAB第一次实验报告 一、实验目的 1.熟悉MATLAB软件并会简单的使用运算和简单二维图的绘制。 2.学会运用MATLAB表示常用连续时间信号的方法 3.观察并熟悉一些信号的波形和特性。 4.学会运用MATLAB进行连续信号时移、反折和尺度变换。 5.学会运用MATLAB进行连续时间微分、积分运算。 6.学会运用MATLAB进行连续信号相加、相乘运算。 7.学会运用MATLAB进行连续信号的奇偶分解。 二、实验任务 将实验书中的例题和解析看懂,并在MATLAB软件中练习例题,最终将作业完成。 三、实验内容 1.MATLAB软件基本运算入门。 1). MATLAB软件的数值计算: 算数运算 向量运算:1.向量元素要用”[ ]”括起来,元素之间可用空格、逗号分隔生成行向量,用分号分隔生成列向量。2.x=x0:step:xn.其中x0位初始值,step表示步长或者增量,xn为结束值。 矩阵运算:1.矩阵”[ ]”括起来;矩阵每一行的各个元素必须用”,”或者空格分开; 矩阵的不同行之间必须用分号”;”或者ENTER分开。2.矩阵的加法或者减法运算是将矩阵的对应元素分别进行加法或者减法的运算。3.常用的点运算包括”.*”、”./”、”.\”、”.^”等等。

举例:计算一个函数并绘制出在对应区间上对应的值。 2).MATLAB软件的符号运算:定义符号变量的语句格式为”syms 变量名” 2.MATLAB软件简单二维图形绘制 1).函数y=f(x)关于变量x的曲线绘制用语:>>plot(x,y) 2).输出多个图像表顺序:例如m和n表示在一个窗口中显示m行n列个图像,p 表示第p个区域,表达为subplot(mnp)或者subplot(m,n,p) 3).表示输出表格横轴纵轴表达范围:axis([xmax,xmin,ymax,ymin]) 4).标上横轴纵轴的字母:xlabel(‘x’),ylabel(‘y’) 5).命名图像就在subplot写在同一行或者在下一个subplot前:title(‘……’) 6).输出:grid on 举例1:

电机学matlab仿真大作业报告

. 基于MATLAB的电机学计算机辅助分析与仿真 实验报告

一、实验内容及目的 1.1 单相变压器的效率和外特性曲线 1.1.1 实验内容 一台单相变压器,N S =2000kVA, kV kV U U N N 11/127/21=,50Hz ,变压器的参数 和损耗为008.0* ) 75(=C k o R ,0725.0*=k X ,kW P 470=,kW P C KN o 160)75(=。 (1)求此变压器带上额定负载、)(8.0cos 2滞后=?时的额定电压调整率和额定效率。 (2)分别求出当0.1,8.0,6.0,4.0,2.0cos 2=?时变压器的效率曲线,并确定最大效率和达到负载效率时的负载电流。 (3)分析不同性质的负载(),(8.0cos 0.1cos ),(8.0cos 222超前,滞后===???)对变压器输出特性的影响。 1.1.2 实验目的 (1)计算此变压器在已知负载下的额定电压调整率和额定效率 (2)了解变压器效率曲线的变化规律 (3)了解负载功率因数对效率曲线的影响 (4)了解变压器电压变化率的变化规律 (5)了解负载性质对电压变化率特性的影响 1.1.3 实验用到的基本知识和理论 (1)标幺值、效率区间、空载损耗、短路损耗等概念 (2)效率和效率特性的知识 (3)电压调整率的相关知识 1.2串励直流电动机的运行特性 1.2.1实验内容 一台16kw 、220V 的串励直流电动机,串励绕组电阻为0.12Ω,电枢总电阻为0.2Ω。电动势常数为.电机的磁化曲线近似的为直线。其中为比例常数。假设电枢电流85A 时,磁路饱和(为比较不同饱和电流对应的效果,饱和电流可以自己改变)。

基于Matlab_Simulink的三相光伏发电并网系统的仿真

题目:基于Matlab/ Simulink的三相光伏发电并网系 统的仿真 院系: 姓名: 学号: 导师:

目录 一、背景与目的 (3) 二、实验原理 (3) 1.并网逆变器的状态空间及数学模型 (3) 1.1主电路拓扑 (4) 1.2三相并网逆变器dq坐标系下数学模型 (4) 1.3基于电流双环控制的原理分析 (5) 2.LCL型滤波器的原理 (6) 三、实验设计 (8) 1.LCL型滤波器设计 (8) 1.1LCL滤波器参数设计的约束条件 (8) 1.2LCL滤波器参数计算 (8) 1.3LCL滤波器参数设计实例 (9) 2.双闭环控制系统的设计 (10) 2.1网侧电感电流外环控制器的设计 (10) 2.2电容电流内环控制器的设计 (11) 2.3控制器参数计算 (12) 四、实验仿真及分析 (12) 五、实验结论 (16)

一、背景与目的 伴随着传统化石能源的紧缺,石油价格的飞涨以及生态环境的不断恶化,这些问题促使了可再生能源的开发利用。而太阳能光伏发电的诸多优点,使其研究开发、产业化制造技术以及市场开拓已经成为令世界各国,特别是发达国家激烈竞争的主要热点。近年来世界太阳能发电一直保持着快速发展,九十年代后期世界光伏电池市场更是出现供不应求的局面,进一步促进了发展速度。 目前太阳能利用主要有光热利用,光伏利用和光化学利用等三种主要形式,而光伏发电具有以下明显的优点: 1. 无污染:绝对零排放-没有任何物质及声、光、电、磁、机械噪音等“排放”; 2. 可再生:资源无限,可直接输出高质量电能,具有理想的可持续发展属性; 3. 资源的普遍性:基本上不受地域限制,只是地区之间是否丰富之分; 4. 通用性、可存储性:电能可以方便地通过输电线路传输、使用和存储; 5. 分布式电力系统:将提高整个能源系统的安全性和可靠性,特别是从抗御自然灾害和战备的角度看,它更具有明显的意义; 6. 资源、发电、用电同一地域:可望大幅度节省远程输变电设备的投资费用; 7. 灵活、简单化:发电系统可按需要以模块化集成,容量可大可小,扩容方便,保持系统运转仅需要很少的维护,系统为组件,安装快速化,没有磨损、损坏的活动部件; 8. 光伏建筑集成(BIPV-Building Integrated Photovoltaic):节省发电基地使用的土地面积和费用,是目前国际上研究及发展的前沿,也是相关领域科技界最热门的话题之一。 我国是世界上主要的能源生产和消费大国之一,也是少数几个以煤炭为主要能源的国家之一,提高能源利用效率,调整能源结构,开发新能源和可再生能源是实现我国经济和社会可持续发展在能源方面的重要选择。随着我国能源需求的不断增长,以及化石能源消耗带来的环境污染的压力不断加剧,新能源和可再生能源的开发利用越来越受到国家的重视和社会的关注。 二、实验原理 1.并网逆变器的状态空间及数学模型

MATLAB实验报告

MATLAB程序设计语言 实 验 报 告 专业及班级:电子信息工程 姓名:王伟 学号:1107050322 日期 2013年6月20日

实验一 MATLAB 的基本使用 【一】 实验目的 1.了解MATALB 程序设计语言的基本特点,熟悉MATLAB 软件的运行环境; 2.掌握变量、函数等有关概念,掌握M 文件的创建、保存、打开的方法,初步具备将一般数学问题转化为对应计算机模型处理的能力; 3.掌握二维图形绘制的方法,并能用这些方法实现计算结果的可视化。 【二】 MATLAB 的基础知识 通过本课程的学习,应基本掌握以下的基础知识: 一. MATLAB 简介 二. MATLAB 的启动和退出 三. MATLAB 使用界面简介 四. 帮助信息的获取 五. MATLAB 的数值计算功能 六. 程序流程控制 七. M 文件 八. 函数文件 九. MATLAB 的可视化 【三】上机练习 1. 仔细预习第二部分内容,关于MATLAB 的基础知识。 2. 熟悉MATLAB 环境,将第二部分所有的例子在计算机上练习一遍 3. 已知矩阵???? ??????=??????????=123456789,987654321B A 。求A*B ,A .* B ,比较二者结果是否相同。并利用MATLAB 的内部函数求矩阵A 的大小、元素和、长度以 及最大值。 程序代码: >> A=[1 2 3;4 5 6;7 8 9]; >> B=[9 8 7;6 5 4;3 2 1]; >> A*B ans =

30 24 18 84 69 54 138 114 90 >> A.*B ans = 9 16 21 24 25 24 21 16 9 两者结果不同 >> [m,n]=size(A) m = 3 n = 3 >> b=sum(A) b = 12 15 18 >> a=length(A) a = 3 >>max(A) ans =

MATLAB仿真实验全部

实验一 MATLAB 及仿真实验(控制系统的时域分析) 一、实验目的 学习利用MATLAB 进行控制系统时域分析,包括典型响应、判断系统稳定性和分析系统的动态特性; 二、预习要点 1、 系统的典型响应有哪些? 2、 如何判断系统稳定性? 3、 系统的动态性能指标有哪些? 三、实验方法 (一) 四种典型响应 1、 阶跃响应: 阶跃响应常用格式: 1、)(sys step ;其中sys 可以为连续系统,也可为离散系统。 2、),(Tn sys step ;表示时间围0---Tn 。 3、),(T sys step ;表示时间围向量T 指定。 4、),(T sys step Y =;可详细了解某段时间的输入、输出情况。 2、 脉冲响应: 脉冲函数在数学上的精确定义:0 ,0)(1)(0 ?==?∞ t x f dx x f 其拉氏变换为:)()()()(1 )(s G s f s G s Y s f === 所以脉冲响应即为传函的反拉氏变换。 脉冲响应函数常用格式: ① )(sys impulse ; ② ); ,();,(T sys impulse Tn sys impulse ③ ),(T sys impulse Y = (二) 分析系统稳定性 有以下三种方法: 1、 利用pzmap 绘制连续系统的零极点图; 2、 利用tf2zp 求出系统零极点; 3、 利用roots 求分母多项式的根来确定系统的极点 (三) 系统的动态特性分析 Matlab 提供了求取连续系统的单位阶跃响应函数step 、单位脉冲响应函数impulse 、零输入响应函数initial 以及任意输入下的仿真函数lsim.

matlab 大作业

上海电力学院 通信原理Matlab仿真 实验报告 实验名称: 8QAM误码率仿真 试验日期: 2014年 6月3日 专业:通信工程 姓名:罗侃鸣 班级: 2011112班 学号: 20112272

一、实验要求 写MATLAB程序,对图示的信号星座图完成M=8的QAM通信系统Monte Carlo仿真,在不同SNRindB=0:15时,对N=10000(3比特)个符号进行仿真。画出该QAM系统的符号误码率。 二、实验原理 1 QAM调制原理 QAM(Quadrature Amplitude Modulation)正交幅度调制技术,是用两路独立的基带信号对两个相互正交的同频载波进行抑制载波双边带调幅,利用这种已调信号的频谱在同一带宽内的正交性,实现两路并行的数字信息的传输。该调制方式通常有8QAM,16QAM,64QAM。 QAM调制实际上就是幅度调制和相位调制的组合,相位+ 幅度状态定义了一个数字或数字的组合。QAM的优点是具有更大的符号率,从而可获得更高的系统效率。通常由符号率确定占用带宽。因此每个符号的比特(基本信息单位)越多,频带效率就越高。 调制时,将输入信息分成两部分:一部分进行幅度调制;另一部分进行相位调制。对于星型8QAM信号,每个码元由3个比特组成,可将它分成第一个比特和后两个个比特两部分。前者用于改变信号矢量的振幅,后者用于差分相位调制,通过格雷编码来改变当前码元信号矢量相位与前一码元信号矢量相位之间的相位差。 QAM是一种高效的线性调制方式,常用的是8QAM,16QAM,64QAM等。当随着M 的增大,相应的误码率增高,抗干扰性能下降。 2 QAM星座图 QAM调制技术对应的空间信号矢量端点分布图称为星座图。QAM的星座图呈现星状分

matlab实验报告

MATLAB 数学实验报告 指导老师: 班级: 小组成员: 时间:201_/_/_

Matlab 第二次实验报告 小组成员: 1 题目:实验四,MATLAB 选择结构与应用实验 目的:掌握if 选择结构与程序流程控制,重点掌握break,return , pause语句的应用。 问题:问题1:验证“哥德巴赫猜想” ,即:任何一个正偶数(n>=6)均可表示为两个质数的和。要求编制一个函数程序,输入一个正偶数,返回两个质数的和。 问题分析:由用户输入一个大于6 的偶数,由input 语句实现。由if 判断语句判断是否输入的数据符合条件。再引用质数判断函数来找出两个质数,再向屏幕输出两个质数即可。 编程:function [z1,z2]=gede(n); n=input('please input n')

if n<6 disp('data error'); return end if mod(n,2)==0 for i=2:n/2 k=0; for j=2:sqrt(i) if mod(i,j)==0 k=k+1; end end for j=2:sqrt(n-i) if mod(n-i,j)==0 k=k+1; end end if k==0 fprintf('two numbers are') fprintf('%.0f,%.0f',i,n- i) break end

end end 结果分析 如上图,用户输入了大于6的偶数返回两个质数5和31,通过 不断试验,即可验证哥德巴赫猜想。 纪录:if判断语句与for循环语句联合嵌套使用可使程序结构更加明晰,更快的解决问题。 2题目:实验四,MATLAB选择结构与应用实验 目的:用matlab联系生活实际,解决一些生活中常见的实际问 题。

MATLAB Simulink系统建模与仿真 实验报告

MATLAB/Simulink 电力系统建模与仿真 实验报告 姓名:****** 专业:电气工程及其自动化 班级:******************* 学号:*******************

实验一无穷大功率电源供电系统三相短路仿真 1.1 无穷大功率电源供电系统仿真模型构建 运行MATLAB软件,点击Simulink模型构建,根据电路原理图,添加下列模块: (1)无穷大功率电源模块(Three-phase source) (2)三相并联RLC负荷模块(Three-Phase Parallel RLC Load) (3)三相串联RLC支路模块(Three-Phase Series RLC Branch) (4)三相双绕组变压器模块(Three-Phase Transformer (Two Windings)) (5)三相电压电流测量模块(Three-Phase V-I Measurement) (6)三相故障设置模块(Three-Phase Fault) (7)示波器模块(Scope) (8)电力系统图形用户界面(Powergui) 按电路原理图连接线路得到仿真图如下: 1.2 无穷大功率电源供电系统仿真参数设置 1.2.1 电源模块 设置三相电压110kV,相角0°,频率50Hz,接线方式为中性点接地的Y形接法,电源电阻0.00529Ω,电源电感0.000140H,参数设置如下图:

1.2.2 变压器模块 变压器模块参数采用标幺值设置,功率20MVA,频率50Hz,一次测采用Y型连接,一次测电压110kV,二次侧采用Y型连接,二次侧电压11kV,经过标幺值折算后的绕组电阻为0.0033,绕组漏感为0.052,励磁电阻为909.09,励磁电感为106.3,参数设置如下图: 1.2.3 输电线路模块 根据给定参数计算输电线路参数为:电阻8.5Ω,电感0.064L,参数设置如下图: 1.2.4 三相电压电流测量模块 此模块将在变压器低压侧测量得到的电压、电流信号转变成Simulink信号,相当于电压、电流互感器的作用,勾选“使用标签(Use a label)”以便于示波器观察波形,设置电压标签“Vabc”,电流标签“Iabc”,参数设置如下图:

matlab机电系统仿真大作业

一曲柄滑块机构运动学仿真 1、设计任务描述 通过分析求解曲柄滑块机构动力学方程,编写matlab程序并建立Simulink 模型,由已知的连杆长度和曲柄输入角速度或角加速度求解滑块位移与时间的关系,滑块速度和时间的关系,连杆转角和时间的关系以及滑块位移和滑块速度与加速度之间的关系,从而实现运动学仿真目的。 2、系统结构简图与矢量模型 下图所示是只有一个自由度的曲柄滑块机构,连杆与长度已知。 图2-1 曲柄滑块机构简图 设每一连杆(包括固定杆件)均由一位移矢量表示,下图给出了该机构各个杆件之间的矢量关系 图2-2 曲柄滑块机构的矢量环

3.匀角速度输入时系统仿真 3.1 系统动力学方程 系统为匀角速度输入的时候,其输入为输出为;。 (1) 曲柄滑块机构闭环位移矢量方程为: (2)曲柄滑块机构的位置方程 (3)曲柄滑块机构的运动学方程 通过对位置方程进行求导,可得 由于系统的输出是与,为了便于建立A*x=B形式的矩阵,使x=[], 将运动学方程两边进行整理,得到 将上述方程的v1与w3提取出来,即可建立运动学方程的矩阵形式 3.2 M函数编写与Simulink仿真模型建立 3.2.1 滑块速度与时间的变化情况以及滑块位移与时间的变化情况 仿真的基本思路:已知输入w2与,由运动学方程求出w3和v1,再通过积分,即可求出与r1。 (1)编写Matlab函数求解运动学方程 将该机构的运动学方程的矩阵形式用M函数compv(u)来表示。 设r2=15mm,r3=55mm,r1(0)=70mm,。 其中各个零时刻的初始值可以在Simulink模型的积分器初始值里设置

M函数如下: function[x]=compv(u) %u(1)=w2 %u(2)=sita2 %u(3)=sita3 r2=15; r3=55; a=[r3*sin(u(3)) 1;-r3*cos(u(3)) 0]; b=[-r2*u(1)*sin(u(2));r2*u(1)*cos(u(2))]; x=inv(a)*b; (2)建立Simulink模型 M函数创建完毕后,根据之前的运动学方程建立Simulink模型,如下图: 图3-1 Simulink模型 同时不要忘记设置r1初始值70,如下图: 图3-2 r1初始值设置

基于MATLAB的光伏电池通用数学模型

本文由qpadm贡献 pdf文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。 第 25 卷第 4 期 2009 年 4 月 电 力 For personal use only in study and research; not for commercial use 科 学 与 For personal use only in study and research; not for commercial use 工 程 Vol.25, No.4 Apr., 2009 11 For personal use only in study and research; not for commercial use Electric Power Science and Engineering 基于 MATLAB 的光伏电池通用数学模型 王长江 For personal use only in study and research; not for commercial use (华北电力大学电气与电子工程学院,北京 102206)摘要:针对光伏电池输出特性具有强烈的非线性,根据太阳能电池的直流物理模型,利用 MATLAB 建立了太阳能光伏阵列通用的仿真模型。利用此模型,模拟任意环境、太阳辐射强度、电池板参数、电池板串并联方式下的光伏阵列 I-V 特性。模型内部参数经过优化,较好地反应了电池实际特性。模型带有最大功率点跟踪功能,能很好地实现光伏发电系统最佳工作点的跟踪。关键词:光伏电池;MPPT;I-V 特性中图分类号:TM615 文献标识码:A 引 言 1 光伏电池特性 随着化石能源的消耗,全球都在面临能源危机,太阳能依靠其清洁、分布广泛等特点成为当今发展速度居第二位的能源 [1] 。光伏阵列由多个单体太阳能电池进行串并联封装而成,是光伏发电的能源供给中心,其 I V 特性曲线随日照强度和太阳能电池温度变化,即 I=f ( V, S, T ) 。目前而厂家通常仅为用户提供标准测试的短路电流 I sc 、开路电压 Voc、最大功率点电流 I m 、最大功率点电压 V m 值,所以如何根据已有的标准测试数据来仿真光伏阵列在不同日照、温度下的 I V,P V 特性曲线,在光伏发电系统分析研究中显得至关重要 [2] 。文献 [ 3~4 ] 介绍了一些光伏发电相关的仿真模型,但这些模型都需要已知一些特定参数,使得分析研究有一些困难。文献 [ 5 ] 介绍了经优化的光伏电池模型,但不能任意改变原始参数。文献 [ 6 ] 给出了光伏电池的原理模型,但参数选用典型值,会造成较大的误差。本文考虑工程应用因素,基于太阳能电池的物理模型,建立了适用于任何条件下的工程用光伏电池仿真模型。

实验一 典型环节的MATLAB仿真汇总

实验一 典型环节的MATLAB 仿真 一、实验目的 1.熟悉MATLAB 桌面和命令窗口,初步了解SIMULINK 功能模块的使用方法。 2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。 3.定性了解各参数变化对典型环节动态特性的影响。 二、SIMULINK 的使用 MATLAB 中SIMULINK 是一个用来对动态系统进行建模、仿真和分析的软件包。利用SIMULINK 功能模块可以快速的建立控制系统的模型,进行仿真和调试。 1.运行MATLAB 软件,在命令窗口栏“>>”提示符下键入simulink 命令,按Enter 键或在工具栏单击按钮,即可进入如图1-1所示的SIMULINK 仿真 环境下。 2.选择File 菜单下New 下的Model 命令,新建一个simulink 仿真环境常规模板。 3.在simulink 仿真环境下,创建所需要的系统 三、实验内容 按下列各典型环节的传递函数,建立相应的SIMULINK 仿真模型,观察并记录其单位阶跃响应波形。 ① 比例环节1)(1=s G 和2)(1=s G 实验处理:1)(1=s G SIMULINK 仿真模型

波形图为: 实验处理:2)(1=s G SIMULINK 仿真模型 波形图为: 实验结果分析:增加比例函数环节以后,系统的输出型号将输入信号成倍数放大. ② 惯性环节11)(1+= s s G 和15.01)(2+=s s G 实验处理:1 1 )(1+=s s G SIMULINK 仿真模型

波形图为: 实验处理:1 5.01 )(2+= s s G SIMULINK 仿真模型 波形图为: 实验结果分析:当1 1 )(1+= s s G 时,系统达到稳定需要时间接近5s,当

电机大作业(MATLAB仿真-电机特性曲线)

电机大作业 专业班级:电气XXXX 姓名:XXX 学号:XXX 指导老师:张威

一、研究课题(来源:教材习题 4-18 ) 1. 74 、R 2 0.416 、X 2 3.03 、R m 6. 2 X m 75 。电动机的机械损耗p 139W,额定负载时杂散损耗p 320W, 试求额定负载时的转差率、定子电流、定子功率因数、电磁转矩、输出转矩和效 率。 二、编程仿真 根据T 形等效电路: 3D - R Q 运用MATLAB 进行绘图。MATLAB 文本中,P N PN ,U N UN ,尺 R 1, X 1 X1 , R 2 R 2,X 2 X 2,R m Rm, X m Xm ,p pjixiesunh ao , p pzasansunhao 。定子电流I11,定子功率因数 Cosangle1,电磁转矩Te , 效率 Xiaolv 。 1.工作特性曲线绘制 MATLA 文本: R1=0.715;X 仁1.74;Rm=6.2;Xm=75;R2=0.416;X2=3.03;pjixiesu nhao=139; pzasa nsu nhao=320;p=2;m 仁 3; ns=1500;PN=17000;UN=380;fN=50; Z1=R1+j*X1; Zm=Rm+j*Xm; for i=1:2500 s=i/2500; nO=n s*(1-s); Z2=R2/s+j*X2; Z=Z1+Zm*Z2/(Zm+Z2); 有一台三相四极的笼形感应电动机, 参数为P N 17kW 、U N 380V (△联 Rm 结)、尺 0. 715 、X j lcr S

U1=UN; I1=U1/Z; l110=abs(l1); An gle 仁an gle(ll); Cosa ngle10=cos(A ngle1); P仁3*U1*l110*Cosa ngle10; l2=l1*Zm/(Zm+Z2); Pjixie=m1*(abs(I2))A2*(1-s)/s*R2; V=(1-s)*pi*fN; Te0=Pjixie/V; P20=Pjixie-pjixies un hao-pzasa nsun hao; Xiaolv0=P20/P1; P2(i)=P20; n (i)=n0; l11(i)=l110; Cosa ngle1(i)=Cosa ngle10; Te(i)=Te0; Xiaolv(i)=Xiaolv0; hold on; end figure(1) plot(P2, n); xlabel('P2[W]');ylabel(' n[rpm]'); figure(2) plot(P2,l11); xlabel('P2[W]');ylabel('l1[A]'); figure(3) plot(P2,Cosa nglel); xlabel('P2[W]');ylabel('go nglvyi nshu'); figure(4) plot(P2,Te); xlabel('P2[W]');ylabel('Te[Nm]'); figure(5) plot(P2,Xiaolv); xlabel('P2[W]');ylabel('xiaolv');

MATLAB控制系统与仿真设计

MATLAB控制系统与仿真 课 程 设 计 报 告 院(系):电气与控制工程学院 专业班级:测控技术与仪器1301班 姓名:吴凯 学号:1306070127

指导教师:杨洁昝宏洋 基于MATLAB的PID恒温控制器 本论文以温度控制系统为研究对象设计一个PID控制器。PID控制是迄今为止最通用的控制方法,大多数反馈回路用该方法或其较小的变形来控制。PID控制器(亦称调节器)及其改进型因此成为工业过程控制中最常见的控制器(至今在全世界过程控制中用的84%仍是纯PID调节器,若改进型包含在内则超过90%)。在PID控制器的设计中,参数整定是最为重要的,随着计算机技术的迅速发展,对PID参数的整定大多借助于一些先进的软件,例如目前得到广泛应用的MATLAB仿真系统。本设计就是借助此软件主要运用Relay-feedback法,线上综合法和系统辨识法来研究PID控制器的设计方法,设计一个温控系统的PID控制器,并通过MATLAB中的虚拟示波器观察系统完善后在阶跃信号下的输出波形。 关键词:PID参数整定;PID控制器;MATLAB仿真。 Design of PID Controller based on MATLAB Abstract This paper regards temperature control system as the research object to design a pid controller. Pid control is the most common control method up until now; the great majority feedback loop is controlled by this method or its small deformation. Pid controller (claim regulator also) and its second generation so become the most common controllers in the industry process control (so far, about 84% of the controller being used is the pure pid controller, it’ll exceed 90% if the second generation included). Pid parameter setting is most important in pid controller designing, and with the rapid development of the computer technology, it mostly recurs to some advanced software, for example, mat lab simulation software widely used now. this design is to apply that soft mainly use Relay feedback law and synthetic method on the line to study pid

相关文档
最新文档