【精选】人教版八年级上册数学 分式解答题专题练习(解析版)

合集下载

【初中数学】人教版八年级上册第2课时 列分式方程解决实际问题(练习题)

【初中数学】人教版八年级上册第2课时 列分式方程解决实际问题(练习题)

人教版八年级上册第2课时列分式方程解决实际问题(348)1.某公司在工程招标时,接到甲、乙两个工程队的投标书.甲工程队每施工一天,需付工程款1.5万元,乙工程队每施工一天,需付工程款1.1万元.工程领导小组根据甲、乙两队的投标书测算,形成下列三种施工方案:方案①:甲队单独完成此项工程刚好如期完工;方案②:乙队单独完成此项工程要比规定工期多用5天;方案③:若甲、乙两队合作4天,剩下的工程由乙队独做也正好如期完工.(1)求甲、乙两队单独完成此项工程各需多少天;(2)如果工程不能如期完工,公司每天将损失3000元,如果你是公司经理,你觉得选哪一种施工方案划算?请说明理由.2.某轻轨工程指挥部,要对某轻轨路段工程进行招标,接到了甲、乙两个工程队的投标书.根据投标书知,甲队单独完成这项工程所需天数是乙队单独.若由甲队先做20天,剩下的工程再由甲、乙两队完成这项工程所需天数的23合作60天可完成.(1)求甲、乙两队单独完成这项工程各需多少天;(2)已知甲队每天的施工费用为9.2万元,乙队每天的施工费用为6.8万元.工程预算的施工费用为1000万元.若在甲、乙工程队工作效率不变的情况下使施工时间最短,那么预算的施工费用是否够用?若不够用,需追加预算多少万元?3.小明准备利用暑假从距上海2160千米的某地去“上海迪斯尼乐园”参观游览,如图是他在火车站咨询得到的信息,根据图中信息,求小明乘坐城际直达动车到上海所需的时间.4.为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两个工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批新产品比乙工厂单独加工完成这批新产品多用10天;信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品.5.为了响应学校提出的“节能减排,低碳生活”的倡议,班会课上小李建议每位同学都践行“双面打印,节约用纸”.他举了一个实际例子:打印一份资料,如果用A4厚型纸单面打印,总质量为400克,将其全部改成双面打印,用纸将减少一半;如果用A4薄型纸双面打印,总质量为160克.已知每页薄型纸比厚型纸轻0.8克,求例子中的A4厚型纸每页的质量.(墨的质量忽略不计)6.“郁郁林间桑葚紫,茫茫水面稻苗青”说的就是味甜汁多,酸甜适口的水果——桑葚.4月份,水果店的小李用3000元购进了一批桑葚,随后的两天他很快以高于进价40%的价格卖出150千克,到了第三天,他发现剩余的桑葚卖相已不太好,于是果断地以低于进价20%的价格将剩余的全部售出,小李一共获利750元,设小李共购进桑葚x千克.(1)根据题意完成下表:(用含x的式子表示)(2)求小李共购进多少千克的桑葚.7.小明用12元买软面笔记本,小丽用21元买硬面笔记本.(1)若每本硬面笔记本比软面笔记本贵1.2元,小明和小丽能买到相同数量的笔记本吗?(2)已知每本硬面笔记本比软面笔记本贵a元,是否存在正整数a,使得硬面笔记本、软面笔记本的价格都是正整数,并且小明和小丽能买到相同数量的笔记本?若存在,求出a的值;若不存在,请说明理由.8.某乡镇对公路进行补修,甲工程队计划用若干天完成此项目,甲工程队单独工作了3天后,为缩短完成的时间,乙工程队加入此项目,且甲、乙两工程队每天补修的工作量相同,结果提前3天完成,则甲工程队计划完成此项目的天数是()A.6B.7C.8D.99.哈尔滨市政府欲将一块地建成湿地公园,动用了一台甲型挖土机,4天挖完了这块地的13,后又加一台乙型挖土机,两台挖土机同时工作,结果又用两天就挖完了整片地,那么乙型挖土机单独挖完这块地需要天.10.园林部门计划在一定时间内完成植树任务,甲队独做正好按期完成,乙队独做则要误期3天.现两队合作2天后,余下任务由乙队独做,正好按期完成任务.则原计划多少天完成植树任务?11.A,B两地相距180km,新修的高速公路开通后,在A,B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1h.若设原来的平均车速为x km/h,则根据题意可列方程为()A.180x −180(1+50%)x=1 B.180(1+50%)x−180x=1C.180x −180(1−50%)x=1 D.180(1−50%)x−180x=112.某村电路发生断电,该地供电局组织电工进行抢修.供电局距离该村15千米,抢修车装载着所需材料先从供电局出发,15分钟后,电工乘吉普车从同一地点出发,结果他们同时到达.已知吉普车速度是抢修车速度的1.5倍,则抢修车的速度是13.为加快“最美毕节”环境建设,某园林公司增加了人力进行大型树木移植,现在平均每天比原计划多植树30棵,现在植树400棵所需时间与原计划植树300棵所需时间相同,设现在平均每天植树x棵,则列出的方程为()A.400x =300x−30B.400x−30=300xC.400x+30=300xD.400x=300x+3014.某校学生利用双休时间去距学校10km的炎帝故里参观,一部分学生骑自行车先走,过了20min后,其余学生乘汽车沿相同路线出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度和汽车的速度.参考答案1(1)【答案】解:设甲队单独完成此项工程需x天,则乙队单独完成此项工程需(x+5)天.依题意,得4x +4x+5+x−4x+5=1,解得x=20.经检验,x=20是原分式方程的解且符合题意.x+5=25.答:甲队单独完成此项工程需20天,乙队单独完成此项工程需25天.(2)【答案】解:选方案③划算.理由如下:这三种施工方案需要的工程款:方案①:1.5×20=30(万元);方案②:1.1×(20+5)+5×0.3=29(万元);方案③:1.5×4+1.1×20=28(万元).∵30>29>28,∴方案③最节省工程款.2(1)【答案】解:设乙队单独完成这项工程需要x天,则甲队单独完成这项工程需要23x天.根据题意,得2023x+60(123x+1x)=1,解得x=180.经检验,x=180是原分式方程的解且符合题意.2 3x=23×180=120.答:甲、乙两队单独完成这项工程分别需120天和180天. (2)【答案】解:设甲、乙两队合作完成这项工程需要y天.则y(1120+1180)=1,解得y=72.需要施工费用:72×(9.2+6.8)=1152(万元).∵1152>1000,∴预算的施工费用不够用,需追加预算152万元.3.【答案】:解:设小明乘坐城际直达动车到上海需要x 小时. 根据题意,得2160x=2160x+6×1.6,解得x =10.经检验,x =10是原方程的根且符合题意. 答:小明乘坐城际直达动车到上海需要10小时.4.【答案】:解:设甲工厂每天加工x 件产品,则乙工厂每天加工1.5x 件产品. 依题意得1200x−12001.5x=10,解得x =40.经检验,x =40是原方程的根,且符合题意.1.5x =60.答:甲工厂每天加工40件新产品,乙工厂每天加工60件新产品.5.【答案】:解:设例子中的A 4厚型纸每页的质量为x 克. 由题意,得400x=2×160x−0.8,解得x =4.经检验,x =4为原方程的解,且符合题意. 答:例子中的A 4厚型纸每页的质量为4克. 6(1)【答案】3000(1+40%)x;3000(1−20%)x;x −150(2)【答案】解:根据题意,得150·3000(1+40%)x+(x −150)·3000(1−20%)x−3000=750解得x =200.经检验,x =200是原方程的解且符合题意. 答:小李共购进200千克桑葚. 7(1)【答案】解:设每本软面笔记本花费x元,则每本硬面笔记本花费(x+1.2)元.由题意,得12 x =21x+1.2,解得x=1.6.此时121.6=211.6+1.2=7.5(不符合题意),所以小明和小丽不能买到相同数量的笔记本.(2)【答案】解:存在.设每本软面笔记本花费m元(1≤m≤12,且m为整数),则每本硬面笔记本花费(m+a)元.由题意,得12m =21m+a,解得a=34m.∵a为正整数,∴m=4,a=3或m=8,a=6或m=12,a=9.当m=8,a=6时,128=2114=1.5(不符合题意).∴a的值为3或9.8.【答案】:D【解析】:设甲工程队计划完成此项目的天数为x天,由题意,得x−3x +x−6x=1,解得x=9,经检验,x=9是原分式方程的根,且符合题意.故选D9.【答案】:4【解析】:∵一台甲型挖土机4天挖完了这块地的13,∴甲型挖土机12天全部挖完这块地,故甲1天完成总工作量的112,设乙型挖土机单独挖这块地需要x天,根据题意可得13+212+2x=1,解得x=4.经检验,x=4是原方程的根,且符合题意.∴乙型挖土机单独挖完这块地需要4天10.【答案】:解:设原计划x天完成植树任务,则乙队单独完成植树任务的时间是(x+3)天.由题意,得2(1x +1x+3)+x−2x+3=1,解得x=6.经检验,x=6是原方程的解且符合题意.答:原计划6天完成植树任务11.【答案】:A12.【答案】:20千米/时【解析】:设抢修车的速度为x千米/时,则吉普车的速度为1.5x千米/时.由题意,得15 x −151.5x=1560,解得x=20.经检验,x=20是原方程的解且符合题意.则抢修车的速度为20千米/时13.【答案】:A14.【答案】:解:设骑车学生的速度为x km/h,则汽车的速度为2x km/h.根据题意,得10x =102x+2060,解得x=15.经检验,x=15是原方程的解且符合题意,2x=2×15=30.答:骑车学生的速度和汽车的速度分别是15km/h,30km/h.。

人教版八年级上册数学解答题专题训练50题含答案

人教版八年级上册数学解答题专题训练50题含答案

人教版八年级上册数学解答题专题训练50题含答案(2)51.如图,在每个小正方形边长为1的方格纸中,△ADC的顶点都在方格纸格点上,将△ABC向左平移1格.再向上平移1格,(1)在图中画出平移后的△A′B′C′;(2)画出AB边上的高CE;(3)过点A画BC的平行线;(4)在图中,若△BCQ的面积等于△BCA的面积.则图中满足条件且异于点A的个点Q 共有_____个.(注:格点指网格线的交点)【答案】(1)作图见解析;(2)作图见解析;(3)作图见解析;(4)4.【分析】(1)利用网格特点和平移的性质画出A、B、C的对应点A′、B′、C′即可;(2)利用网格特点找出A′C′的中点D′,然后连接B′D′即可;(3)根据平行线的性质求解;(4)过点A作BC的平行线,然后找出此平行线上的格点即可.【详解】解:(1)如图,△A′B′C′为所作;(2)如图,高线CE为所作;(3)AQ△BC;(4)图中满足条件且异于点A的个点Q共有4个.故答案为4.【点睛】本题考查了作图-平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.52.已知21(1)(2)12y A B y y y y +=+-+-+,求A 、B 的值.53.如图,矩形ABCD 的对角线AC 、BD 相交于点O ,BE AC ∥,AE BD ∥.(1)求证:四边形AOBE 是菱形;(2)若60AOB ∠=︒,8AC =,求菱形AOBE 的面积.,根据菱形的性质易得出AOB 为等边三角形,再根据等的值,最后根据菱形的面积等于对角线证明:BE AC ∥AE BD四边形AOBE 为平行四边形四边形ABCD 为矩形BD =,12OA AC ,OB OB =∠∴AOB 为等边三角形8AC =OA AB ==12AM AB =OM OA =54.设x ,y ,z 为互不相等的非零实数,且x y z y z x +=+=+.求证:2221x y z =.55.如图,将几个小正方形与小长方形拼成一个边长为a b c ++()的正方形.(1)若用不同的方法计算这个边长为a b c ++()的正方形面积,就可以得到一个等式,这个等式可以为 .(2)请利用(1)中的等式解答下列问题:△若三个实数,,a b c 满足l1a b c ++=,+38ab bc ac +=,求222a b c ++的值.△若三个实数,,x y z 满足12484x y z ⨯÷=,2224944x y z ++=,求236xy xz yz --的值. 【答案】(1)2222()222a b c a b c ab bc ac ++=+++++;(2)△45;△-20【分析】(1)根据大正方形的面积等于所有小正方形与矩形的面积和即可得解; (2)△利用(1)中等式可将(a+b+c )直接平方,然后代入式子的值求解即可;(3)△利用幂的乘方与同底数幂的乘除整理得到232x y z +-=-,然后将23x y z +-平△(a b c ++11,c +=22(b c a +=238⨯△24x y ⨯÷222x y ∴⨯÷232x y z +-∴=23x y ∴+-(23x y +-2(2)∴-=23xy xz ∴-【点睛】本题主要考查整式混合运算,幂的混合运算,解此题的关键在于根据题图得到新等式,再利用新等式进行整理计算即可56.如图,点B 、F 、C 、E 在同一直线上,AB △BE ,垂足为B ,DE △BE ,垂足为E ,AC 、DF 相交于点G ,且AC=DF ,BF CE =.求证:FG CG =.【答案】见详解【分析】首先证明借助HL 证明Rt ABC Rt DEF ≌,由全等三角形的性质可知ACB DFE ∠=∠,然后由“等角对等边”即可证明FG CG =.【详解】证明:△AB △BE ,DE △BE ,△90B E ∠=∠=︒,△BF CE =,△BF FC CE FC +=+,△=BC EF ,又△AC=DF ,△()Rt ABC Rt DEF HL ≌,△ACB DFE ∠=∠,△FG CG =.【点睛】本题主要考查了全等三角形的判定与性质、等腰三角形的判定等知识,熟练掌握相关性质和判定是解题关键.57.计算:(1)2(4)(31)x x -+(2)23331111x x x x x ----+-58.利用因式分解简便计算(要求写出完整计算过程)(1)22201199- (2)21.99 1.990.01+⨯【答案】(1)800;(2)3.98.【详解】试题分析:(1)利用平方差公式得到原式=(201+199)×(201-199),然后进行有理数运算;(2)利用提公因式得到原式=1.99×(1.99+0.01),然后进行有理数运算.试题解析:(1)原式=(201+199)×(201-199)=400×2=800;(2)原式=1.99×(1.99+0.01)=1.99×2=3.98.59.(1)计算:232-÷x x x(912)9(2)分解因式:22-+363x xy y60.如图1,网格中的每一个正方形的边长为1,△ABC为格点三角形(点A、B、C在小正方形的顶点上),直线m为格点直线(直线m经过小正方形的格点).(1)如图1,作出△ABC关于直线m的轴对称图形△A′B′C′;(2)如图2,在直线m上找到一点P,使P A+PB的值最小;(3)如图3,仅用直尺将网格中的格点三角形ABC的面积三等分,并将其中的一份用铅笔涂成阴影.(4)如图4,仅用直尺作出三角形ABC的边AB上的高,简单说明你的理由.【答案】(1)见解析(2)见解析(3)见解析(4)见解析【分析】(1)分别作出A,B,C的对应点A′,B′,C′即可.(2)作点B关于直线m的对称点B',连接AB',交直线m于点P,则点P即为所求作的点;(3)如图,取格点O,计算可知S△AOC=S△BOC=S△AOB=2(平方单位).(4)如图,选择格点D、E,证明△ACD△△BCE.于是,AC=BC.选择格点Q,证明△ACQ△△BCQ,于是,AQ=BQ.推出CQ为线段AB的垂直平分线,设CQ与AB相交于点F,则CF为所要求的△ABC的边AB上的高.(1)如图所示,△A′B′C′即为所求作,(2)如图,点P即为所求作,(3)如图,即为所作,(4)如图,选择格点D、E,证明△ACD△△BCE.于是,AC=BC.选择格点Q,证明△ACQ△△BCQ,于是,AQ=BQ.△CQ为线段AB的垂直平分线,设CQ与AB相交于点F,则CF为所要求的△ABC的边AB上的高.【点睛】本题考查作图,轴对称变换,三角形的面积等知识,解题的关键是学会利用数形结合的思想解决问题.61.如图,已知点A、C分别在△GBE的边BG、BE上,且AB=AC,AD△BE,△GBE 的平分线与AD交于点D,连接CD.(1)求证:CD平分△ECA.(2)猜想△BDC与△BAC之间有何数量关系?并对你的猜想加以证明.62.甲、乙两市之间有两条铁路线,普通快车线长600千米;高速铁路线长450千米.已知高速列车的速度是普通快车速度的3倍,普通快车先出发3小时,而比高速列车晚到2小时,求普通快车与高速列车的速度分别是多少?63.下面是小明同学设计的“过直线外一点作已知直线的平行线”的尺规作图过程.已知:如图1,直线l 和直线l 外一点P .求作:直线PQ ,使直线PQ l ∥.作法:如图2,△在直线l 上取一点A ,连接PA ;△作PA 的垂直平分线MN ,分别交直线l ,线段PA 于点B ,O ;△以O 为圆心,OB 长为半径作弧,交直线MN 于另一点Q ; △作直线PQ ,所以直线PQ 为所求作的直线.根据上述作图过程,回答问题:(1)用直尺和圆规,补全图2中的图形(保留作图痕迹);(2)完成下面的证明:证明:△直线MN 是PA 的垂直平分线,△PO =___________,90POQ AOB ∠=∠=︒.△OQ =___________,△POQ AOB △≌△.△___________=___________.△PQ l ∥(___________)(填推理的依据)【答案】(1)见解析(2)AO ;OB ;QPO ∠;BAO ∠;内错角相等,两直线平行.【分析】(1)根据题中描述即可作图;(2)根据垂直平分线的性质证明POQ AOB △≌△,得到QPO BAO ∠=∠,即可根据平行线的判定定理证明.【详解】(1)用直尺和圆规,补全图形如下;(2)证明:△直线MN 是PA 的垂直平分线,△PO AO =,90POQ AOB ∠=∠=︒.△OQ OB =,△POQ AOB △≌△.△QPO BAO ∠=∠.△PQ l ∥(内错角相等,两直线平行).故答案为:AO ;OB ;QPO ∠;BAO ∠;内错角相等,两直线平行.【点睛】本题考查了作图—复杂作图,复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了线段垂直平分线的性质,三角形全等的判定和性质,平行线的判定定理.64.如图, ABC C ∠∠=,点E 在线段AC 上,D 在AB 的延长线上,且有BD CE =,连接DE 交BC 于F ,过E 作EG BC ⊥于G .试说明线段BF 、FG 、CG 之间的数量关系.【答案】BF CG FG +=,证明见解析.【分析】如图(见解析),先根据三角形全等的判定定理得出DHB EGC ≅,再根据三角形全等的性质可得BH CG =,DH EG =,然后根据三角形全等的判定定理得出DHF EGF ≅,最后根据三角形全等的性质可得FH FG =,据此根据线段的和差、等量代换即可得证.【详解】BF CG FG +=,理由如下:如图,过点D 作DH CB ⊥,交CB 延长线于点H△ABC C ∠=∠,HBD ABC ∠=∠(对顶角相等)△HBD C ∠=∠在DHB △和EGC 中,90HBD C DHB EGC BD CE ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩△()DHB EGC AAS ≅△BH CG =,DH EG =在DHF △和EGF △中,90DFH EFG DHF EGF DH EG ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩△()DHF EGF AAS ≅△FH FG =△BF BH FH FG +==△BF CG FG +=.【点睛】本题考查了三角形全等的判定定理与性质、对顶角相等、线段的和差等知识点,通过作辅助线,构造全等三角形是解题关键.65.为响应政府“绿色出行”的号召,张老师上班由自驾车改为骑公共自行车.已知张老师家距上班地点10千米.他用骑公共自行车的方式平均每小时行驶的路程比他用自驾车的方式平均每小时行驶的路程少45千米,他从家出发到上班地点,骑公共自行车方式所用的时间是自驾车方式所用的时间的4倍.张老师用骑公共自行车方式上班比用自驾车的方式上班多用多少小时?66.小明在学习分式的运算时,计算221x +的解答过程如下:请你指出小明解答过程中第△步的理论依据是 ;过程中错误出现在第 步(写出对应的序号即可),错误的原因是 , 请你给出这道题的正确解的答过程:67.在数轴上,点A 表示数a ,点B 表示数b ,在学习绝对值时,我们知道了绝对值的几何含义:数轴上A 、B 之间的距离记作AB ,定义:AB a b =-,如:点A 表示数1,点B 表示数3,则132AB =-=;1a -表示数a 和1在数轴上对应的两点之间的距离;6a +表示数a 和6-在数轴上对应的两点之间的距离.(1)在数轴上,若点A 表示数2-,点B 表示数6,△AB = ;△动点P 表示数x ,请求出满足2610x x ++-=的x 的值.(2)小林同学对(1)中正整数x 进行如下图操作:若x 为奇数,则先把x 乘以3,再把所得数在数轴上对应的点向右平移1个单位得到另一个数若x 为偶数,则把x 乘以12,如此循环重复操作图中△处应填写___________(用含x 的代数式表示)经过操作,小林发现有循环出现的数,请画出数轴并在数轴上标出这些循环出现的数.【答案】(1)△8;△x 的值为-3或7;(2)3x +1;循环出现的数为4、2、1,数轴见解析68.计算:()()232223122a ab a b ⎛⎫-- ⎪⎝⎭ )()36461142a b a b ⎛⎫-= ⎪⎝⎭【点睛】本题主要考查幂的乘方与积的乘方,熟练掌握运算法则是关键69.先化简,再求值[x 2+y 2﹣(x+y)2+2x(x ﹣y)]÷4x ,其中x =﹣2,y =2【分析】根据整式的运算法则把所给的整式化为最简后,再代入求值即可.70.如图,点A ,M ,B 在同一直线上,以AB 为边,分别在直线两侧作等边三角形ABC 和等边三角形ABD ,连接CM ,DM ,过点M 作MN =DM ,交BC 边于点G ,交DB 的延长线于点N .(1)求证:△BCM =△BDM ;(2)求△CMN 的度数;(3)求证:AM =BN . 【答案】(1)见解析;(2)60CMN ∠=︒;(3)见解析【分析】(1)根据ABC 和ABD △为等边三角形,且AB 为公共边,可以得出条件BC BD =,CBM DBM ∠=∠,即可证明()CBM DBM SAS ≌,由性质即可得出结论;(2)根据,MN DM BCM BDM =∠=∠,得出BDM BNM ∠=∠,BCM BNM ∠=∠,又根据CGM ∠和NGB ∠为对顶角,可得CMN NBC ∠=∠,再根据ABC 和ABD △为全等三角形,DBN ∠为平角,利用等量代换即可求出60CMN ∠=︒;(3)连接CN 由(1)可知:CBM DBM ≌,即可得CM DM =,证出CMN 为等边三角形,进而证明出()AMC BNC SAS ≌,由性质即可得出结论.【详解】解:(1)证明:ABC 和ABD △为等边三角形,且AB 为公共边, ,60BC BD CBM DBM ∴=∠=∠=︒,又在CBM 和DBM △中,CB DB CBM DBM BM BM =⎧⎪∠=∠⎨⎪=⎩,()CBM DBM SAS ∴≌,BCM BDM ∴∠=∠;(2),MN DM BCM BDM =∠=∠,BDM BNM ∴∠=∠,BCM BNM ∴∠=∠,又CGM ∠和NGB ∠为对顶角,CMN NBC ∴∠=∠,又ABC 和ABD △为全等三角形,DBN ∠为平角,60CBM DBM ∴∠=∠=︒,180DBN ∠=︒,180606060CMN NBC DBN DBM CBM ∴∠=∠=∠-∠-∠=︒-︒-︒=︒,(3)证明:连接CN ,如图所示:由(1)可知:CBM DBM ≌,CM DM ∴=,又,60MN DN CMN =∠=︒,CM MN ∴=,CMN ∴为等边三角形,,60CM CN MCN ∴=∠=︒,又ABC 为等边三角形,MCB ∠是ACB ∠和MCN ∠重叠的部分,,AC BC ACM BCN ∴=∠=∠,又在AMC 和BNC 中,AC BC ACM BCN CM CN =⎧⎪∠=⎨⎪=⎩,()AMC BNC SAS ∴≌,AM BN =.【点睛】本题考查了等边三角形的判定和性质、全等三角形的判定及性质、解题的关键是掌握全等三角形的判定定理及性质,再利用等量代换的思想进行解答.712+2n+1=0.(1)求﹣2m 2+6m ﹣4n 的值;(2)求m 2+21m﹣n 2013的值.72.某商店欲购进A 、B 两种化妆品,用160元购进的A 种化妆品与用240元购进的B 种化妆品的数量相同,每件B 种化妆品的进价比A 种化妆品的进价贵10元. (1)求A 、B 两种化妆品每件的进价分别为多少元?(2)若该商店A 种化妆品每件售价32元,B 种化妆品每件件价45元,准备购进A 、B 两种化妆品共100件,且这两种化妆品全部售出后总获利高于1300元,则最多购进A 种化妆品多少件?【答案】(1)A 、B 两种化妆品分别为20元、30元;(2)66件.20x , 20x 是原方程的解,且符合题意,则两种化妆品每件的进价分别为20元、)设购进A 种化妆品件,则购进B 种化妆品由题意得:(3220)30)(100)1300m m -->2663, 73.已知m 2=169,n 3=-27,求代数式m -n 的值.【点睛】本题考查了平方根的定义,立方根的定义,求代数式的值,解题的关键是熟练掌握平方根和立方根的定义,正确得到m 、n 的值.74.对于任意一个三位数p ,若个位上数字等于百位上的数字与十位上的数字之和,则称这个三位数p 为“桃园数”.例如:112p =,因为112+=,所以112是“桃园数”;253p =,因为253+≠,所以253不是“桃园数”;(1)判断459,615是否是“桃园数”?说明理由;(2)对于“桃园数”p ,去掉个位上的数字得到的两位数记为m ,去掉百位上的数字后将十位与个位的数字交换得到的两位数记为n ,若m n +能被24整除,求所有的p .75.如图,在直角坐标系中,ABC 的三个顶点坐标分别为A (1,4),B (4,2),C (3,5),请回答下列问题:(1)写出ABC 关于x 轴的对称图形111A B C △的顶点坐标.(2)求ABC 的面积.1,4(),A B 1(1,4),A ∴-(2)1,4(),A B 5BD BF ∴==-则ABC BDEF ABD BCF ACE S S S S S =---2111222BD AD BD BF CF AE CE -⋅-⋅-⋅ 111233112222-⨯⨯-⨯⨯-⨯⨯【点睛】本题考查了坐标与图形变化等知识点,掌握点坐标关于x 轴对称的变换规律是解题关键.76.边长为a 的正方形剪掉一个边长为b 的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是_________(请选择正确的一个);A .2222()a ab b a b -+=-B .22(()a b a b a b -=+-C .2()a ab a a b +=+ (2)若22912,34x y x y -=+=,求3x y -的值;(3)计算:2222211111(1)(1)(1)(1)(1)23499100----- )边长为)229x y -3124y =÷77.如图,已知△ABC 中,E 、F 分别是AB 、AC 上的两点,且EF△BC,D 为EF 上一点,且ED=DF ,BD=CD ,请说明:BE=CF.【答案】见解析.【分析】利用SAS 证明△BDE△△CDF ,根据全等三角形的对应边相等即可得结论.【详解】△BD=CD ,△△DBC=△DCB ,又△EF△BC ,△△EDB =△DBC ,△FDC =△DCB ,△△EDB =△FDC ,又△ED =FD ,BD =CD ,△△BDE△△CDF(SAS),△BE =CF.【点睛】本题考查了等腰三角形的性质,平行线的性质,全等三角形的判定与性质,正确把握相关知识是解题的关键.78.计算:(1)()()201433π--+--;(2)()()4235243a a a a ⋅++-; (3)()()213a a +-;(4)()()22m n m m n ---;(5)2202020222021⨯-. 【答案】(1)-4;(2)11a 8;(3)2a 2-5a -3;(4))n 2;(5)-1.【分析】(1)原式利用绝对值的代数意义,零指数幂、负整数指数幂法则计算即可得到结果;(2)原式利用同底数幂的乘法,幂的乘方与积的乘方运算法则计算,合并即可得到结果;(3)原式利用多项式乘多项式法则计算,合并即可得到结果;(4)原式利用完全平方公式,以及单项式乘多项式法则计算,去括号合并即可得到结果;(5)原式变形后,利用平方差公式计算即可求出值.【详解】(1)原式=4+1-9=5-9=-4;(2)原式=a 8+a 8+9a 8=11a 8;(3)原式=2a 2-6a +a -3=2a 2-5a -3;(4)原式=(m 2-2mn +n 2)-(m 2-2mn )=m 2-2mn +n 2-m 2+2mn=n 2;(5)原式=(2021-1)×(2021+1)-20212=20212-1-20212=-1.【点睛】此题考查了整式的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键.79.如图,ABC 中,△ABC =90°,AB =BC ,P 为AB 上一动点,连接CP ,以AB为边作△BAD=△BCP,AD交CP的延长线于点D,连接BD,过点B作BE△BD交CP 于点E.(1)当△EBC=15°时,△ABD=°;(2)过点P作PH△AC于点H,是否存在点P,使得BC=HC,若存在,请求出此时△ACP 的度数,若不存在,请说明理由;(3)若AD=2,ED=7,求ADC的面积.80.先化简,再求值:(3x +2)(3x -2)-5x (x +1)-(x -1)2,其中x 2-x -10=0. 【答案】3x 2-3x -5,25【分析】原式第一项利用平方差公式化简,第二项利用单项式乘以多项式法则计算,最后一项利用完全平方公式展开,去括号合并得到最简结果,将已知的方程变形后代入即可求值.【详解】原式=()222945521x x x x x -----+=222945521x x x x x ----+-=2335x x --,当2100x x =--,即210x x =-时,原式=()235310525x x -=⨯-=-【点睛】本题考查整式的混合运算-化简求值,涉及的知识点有:完全平方公式、平方差公式、去括号法则及合并同类项法则,熟练掌握以上公式及法则是解题的关键. 81.已知:3a b +=,1x y -=,求222a ab b x y ++-+的值.【答案】8【详解】试题分析:本题可先将原代数式化简得出关于a+b 和x -y 的式子,再把已知代入即可.试题解析:△a+b=3,x−y=1,△a 2+2ab+b 2−x+y=(a+b)2−(x−y) =9−1=8.82.求证:有两边和其中一边上的高对应相等的两个锐角三角形全等. 【答案】见解析【分析】根据题意首先写出已知和求证,进而利用全等三角形的判定与性质得出Rt △ABD △ Rt △A B D '''以及△B=△B′进而得出△ABC△A B C '''.【详解】解:如图:已知:如图,在△ABC 与△A B C '''中.AB =A B '',BC =B C '',AD△BC 于D ,A D ''△B C '' 于D 且 AD =A D ''求证:△ABC△△A B C '''证明: 在Rt △ABD 与Rt △A B D '''中△AB A B AD A D ''''=⎧⎨=⎩△Rt △ABD △ Rt △A B D ''' (HL)△△B =△B '(全等三角形对应角相等)在△ABC 与△A B C '''中△AB A B B B BC B C =⎧⎪∠=∠⎨⎪=''''⎩' △△ABC△△'''A B C (SAS)【点睛】本题考查了全等三角形判定的应用,灵活运用全等三角形的判定方法是解题的关键.83.计算:2221244x x x x x x +----+.84.老师给同学们布置了一个“在平面内找一点,使该点到等腰三角形的三个顶点的距离相等”的尺规作图任务:下面是小聪同学设计的尺规作图过程:已知:如图,ABC ∆中,AB AC =,求作:一点P ,使得PA PB PC ==.作法:△作BAC ∠的平分线AM 交BC 于点D ;△作边AB 的垂直平分线EF ,EF 与AM 相交于点P ;△连接,PB PC ,所以,点P 就是所求作的点.根据小聪同学设计的尺规作图过程,(1)使用直尺和圆规,补全图形(保留作图痕迹)(2)完成下面的证明.证明:△AB AC =,AM 平分BAC ∠交BC 于点D ,△AD 是BC 的垂直平分线;( )(填推理依据)△PB PC =.△EF 垂直平分AB ,交AM 于点P ,△PA PB =;( )(填推理依据)△PA PB PC ==.【答案】(1)见解析;(2)等腰三角形的三线合一 线段垂直平分线上的点到线段两端点的距离相等.【分析】(1)利用基本作图作角平分线AD 和AB 的垂直平分线,它们相交于P 点;(2)根据等腰三角形的性质得到PB=PC .再根据线段垂直平分线上的点到线段两端的距离相等得到PA=PC ,从而得到PA=PB=PC .【详解】(1)如图,AD 、点P 为所求;(2)证明:△AB AC =,AM 平分BAC ∠交BC 于点D ,△AD 是BC 的垂直平分线;( 等腰三角形的三线合一 )(填推理依据)△PB PC =.△EF 垂直平分AB ,交AM 于点P ,△PA PB =;( 线段垂直平分线上的点到线段两端点的距离相等 )(填推理依据) △PA PB PC ==.【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作. 85.用圆规、直尺作图,不写作法,但要保留作图痕迹.已知:线段c ,求作Rt △ABC ,使△C =90°,BC =c ,AB =2c .【答案】见解析【分析】在直线l 上取点C ,作CD △l ,在CD 上截取CB =c ,分别以B ,C 为圆心,c 为半径画弧,交于点E ,连接BE 并延长交直线l 于点A ,则AB =2c .【详解】如图所示,Rt △ABC 即为所求.【点睛】本题主要考查了复杂作图,复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作. 86.△ABC 中,AD 是∠BAC 的角平分线,AE 是△ABC 的高.(1)如图1,若∠B =40°,∠C =60°,请说明∠DAE 的度数;(2)如图2(∠B <∠C ),试说明∠DAE 、∠B 、∠C 的数量关系;(3)如图3,延长AC 到点F ,∠CAE 和∠BCF 的角平分线交于点G ,请直接写出∠G 的度数 . )40B ∠=AE 是ABC ∆的高,AEC ∴∠=60C ∠=CAE ∴∠=AD 是∠CAD ∴∠=DAE ∴∠=(2)BAC ∠+180BAC ∴∠=︒-AE 是ABC ∆的高,90,AEC =︒AD 是∠CAD ∴∠=DAE ∴∠=(11802=︒1C =∠-)CAE ∠和2CAE CAG =∠CAE FCB ∠=∠2FCG AEC ∴∠-∠AE 是ABC ∆的高,AEC ∴∠=45G ∴∠=故答案为:【点睛】本题主要考查了三角形内角和定理、角平分线的定义、三角形外角的性质等知识点,灵活应用相关知识成为解答本题的关键.87.把下列各式分解因式:(1)22425x y - (2) 2x y y -(3)224()x y z -- (4)2216()()a b a b --+(5)33327xy x y -+ (6) 2222416a x a y -(7)(2)(80+6a a a +- (8)4481x y -(9)224(23)(3)p q p q +-- (10)22169()196()a b a b --+【答案】(1)(2x+5y)(2x -5y); (2)y(x+1)(x -1); (3)(2x+y -z)(2x -y+z); (4)(5a -3b)(3a -5b);(5)-3xy(y+3x)(y -3x); (6)4a 2(x+2y)(x -2y); (7)(a+4)(a -4); (8)()()229)33x y x y x y ++-(; (9)(7p+5q)(p+7q); (10)-(27a+b)(a+27b);.【详解】试题分析:(1)直接利用平方差公式进行分解即可;(2)首先提取公因式y ,再利用平方差公式进行分解即可;(3)直接利用平方差公式进行分解即可;(4)直接利用平方差公式进行分解即可;(5)首先提取公因式-3xy ,再利用平方差公式进行分解即可;(6)首先提取公因式4a 2,再利用平方差公式进行分解即可;(7)首先进行乘法运算,再利用平方差进行分解即可;(8)直接利用平方差公式进行二次分解即可;(9)首先利用平方差公式进行分解,再把括号里面的同类项进行合并即可; (10)直接利用平方差公式进行分解即可.试题解析:(1)原式=(2x+5y )(2x -5y );(2)原式=y (x 2-1)=y (x+1)(x -1);(3)原式=(2x+y -z )(2x -y+z );(4)原式=(5a -3b )(3a -5b );(5)原式=-3xy (y 2-9)=-3xy (y+3x )(y -3x );(6)原式=4a 2(x 2-4y 2 )=4a 2(x+2y )(x -2y );(7)原式=a 2-16+6a -6a=(a+4)(a -4);(8)原式=(9x 2+y 2)(3x+y )(3x -y );(9)原式=(7p+5q )(p+7q );(10)原式=-(27a+b )(a+27b ).88.在正方形ABCD 的边AB 上任取一点E ,作EF AB ⊥交BD 于点F ,取FD 的中点G ,连接EG 、CG ,如图()1,易证 EG CG =且EG CG ⊥.()1将BEF 绕点B 逆时针旋转90,如图()2,则线段EG 和CG 有怎样的数量关系和位置关系?请直接写出你的猜想.()2将BEF 绕点B 逆时针旋转180,如图()3,则线段EG 和CG 又有怎样的数量关系和位置关系?请写出你的猜想,并加以证明. 90,90EBC ∠,90BCM ∠,BEMC 是矩形.,90EMC ∠,90ABC =,45,AB ,∵BEF 为等腰直角三角形BE EF =,45.EF CM =90EMC ∠=,FG DG =,12MG FD FG ==45,∵F GMC ∠=∠.∵在GFE与GMC中,FG MG F GMC EF CM=⎧⎪∠=∠⎨⎪=⎩,∵()GFE GMC SAS≅.∵EG CG=,FGE MGC∠=∠.∵90FMC∠=,MF MD=,FG DG=,∵MG FD⊥,∵90FGE EGM∠+∠=,∵90MGC EGM∠+∠=,即90EGC∠=,∵EG CG⊥.【点睛】此题综合考查了旋转的性质及全等三角形的判断和性质,如何构造全等的三角形是难点,因此难度较大.89.如图,在平面直角坐标系中,已知点()1,A a a b-+,(),0B a,且()220a b-=,C为x轴上点B右侧的动点,以AC为腰作等腰ACD,使AD AC=,CAD OAB∠=∠,直线DB交y轴于点P.(1)求证:AO AB=;(2)求证:AOC ABD△△≌;(3)当点C运动时,点P在y轴上的位置是否发生变化,为什么?【答案】(1)见解析;(2)见解析;(3)不变,理由见解析【分析】(1)先根据非负数的性质求出a、b的值,作AE OB⊥于点E,由SAS定理得出AEO AEB∆≅∆,根据全等三角形的性质即可得出结论;(2)先根据CAD OAB∠=∠,得出OAC BAD∠=∠,再由SAS定理即可得出AEO AEB∆≅∆;(3)设AOB ABOα∠=∠=,由全等三角形的性质可得出ABD AOBα∠=∠=,故)证明:(3,9)A ,3OE ∴=在AEO ∆AE AEO =⎧⎪∠⎨⎪)证明:CAD ∠=BAC OAB =∠ABD 中,BAD ⎪∠⎨⎪,由(2OB =,OP ∴长度不变,∴点P 在【点睛】本题考查的是全等三角形的判定与性质,熟知全等三角形的判定定理是解答此题的关键.90.如图,△ABC=90°,点D、E分别在BC、AC上,AD△DE,且AD=DE,点F是AE的中点,FD与AB的延长线相交于点M,连接MC.(1)MF与AC的位置关系是:______.(2)求证:CF=MF.(3)猜想:AD与MC的位置关系,并说明理由.【答案】(1)MF△AC;(2)证明见解析;(3)AD△MC.【分析】(1)只要证明△ADE是等腰直角三角形,即可解决问题;(2)根据等腰直角三角形的性质,得出DF△AE,DF=AF=EF,再证明△DFC△△AFM,得出FC=FM;(3)依据△DFC=90°,DF=EF,△FDE=△FMC=45°,即可得到△DEF、△CFM是等腰直角三角形,进而证明DE△MC,即可得出结论.【详解】(1)△AD△DE,AD=DE,△△ADE是等腰直角三角形,△AF=EF,△DF△AE,即MF△AC.故答案为MF△AC.(2)△AD△DE,且AD=DE,F是AE的中点,△DF△AE,DF=AF=EF,△△AFM=90°,△△FAM+△AMF=90°,△△ABC=90°, △△FAM+△DCF=90°,△△DCF=△AMF ,在△DFC 和△AFM 中,90DFC AFM DCF AMFDF AF ====∠∠︒⎧⎪∠∠⎨⎪⎩, △△DFC△△AFM (AAS ),△FC=FM ;(3)AD△MC .理由:由(2)得:△DFC=90°,DF=EF ,FM=FC,△△DEF 、△CFM 是等腰直角三角形,△△FDE=△FMC=45°,△DE△MC ,△AD△DE ,△AD△MC .【点睛】本题考查了等腰直角三角形的性质与判定以及全等三角形的判定与性质的综合应用,熟练掌握全等三角形的判定方法,证明三角形全等是解决问题的关键. 91.数学课上,老师在黑板上展示了如下一道探究题:在ABC 中,AB AC m ==,BAC α∠=,点D ,E 分别在边AC ,AB 上,且CE BD =,试探究线段AE 和线段AD 的数量关系.(1)初步尝试如图△,若90α=︒,请探究AE 和AD 的数量关系,并说明理由.(2)类比探究如图△,若120α=︒,小组讨论后,有小组利用120°的角作垂线构造直角三角形,通过证明两次三角形全等,得到AE 和AD 的数量关系仍然成立,请你写出推理过程;(3)延伸拓展如图△,将第(2)中的“点E在边AB上”改为“点E在边BA的延长线上”,其它条件不变,请探究AE和AD的数量关系(用含m的式子表示),并说明理由.试卷第41页,共41页。

人教版八年级上册数学第15章《分式》单元测试卷(含答案解析)

人教版八年级上册数学第15章《分式》单元测试卷(含答案解析)

人教版八年级上册数学第15章《分式》单元测试卷一.选择题(共10小题,满分30分)1.下列式子中,属于分式的是()A.B.C.D.2.分式的值是零,则x的值为()A.3B.﹣3C.3或﹣3D.03.已知某新型感冒病毒的直径约为0.000002022米,将0.000002022用科学记数法表示为()A.2.022×10﹣5B.0.2022×10﹣5C.2.022×10﹣6D.20.22×10﹣74.计算的结果是()A.B.C.D.5.在①x2﹣x+,②﹣3=a+4,③+5x=6,④=1中,其中关于x的分式方程的个数为()A.1B.2C.3D.46.如果把分式中的x、y的值都扩大2倍,那么分式的值()A.扩大2倍B.扩大4倍C.扩大6倍D.不变7.若将分式与通分,则分式的分子应变为()A.6m2﹣6mn B.6m﹣6nC.2(m﹣n)D.2(m﹣n)(m+n)8.分式,的最简公分母是()A.a B.ab C.3a2b2D.3a3b39.计算结果等于2的是()A.|﹣2|B.﹣|2|C.2﹣1D.(﹣2)0 10.已知,则的值是()A.66B.64C.62D.60二.填空题(共10小题,满分30分)11.分式的最简公分母是.12.要使分式有意义,则分式中的字母b满足条件.13.若表示一个整数,则整数x可取的个数有个.14.约分:=.15.方程的解是.16.若解分式方程产生增根,则m=.17.用漫灌方式给绿地浇水,a天用水10吨,改用喷灌方式后,10吨水可以比原来多用5天,那么喷灌比漫灌平均每天节约用水吨.18.已知若x﹣=3,则x2+=.19.将分式化为最简分式,所得结果是.20.扶贫工作小组对果农进行精准扶贫,帮助果农将一种有机生态水果拓宽了市场.与去年相比,今年这种水果的产量增加了1000千克,每千克的平均批发价比去年降低了1元,批发销售总额比去年增加了20%.已知去年这种水果批发销售总额为10000元,则这种水果今年每千克的平均批发价是元.三.解答题(共7小题,满分90分)21.神舟十三号飞船搭载实验项目中,四川省农科院生物技术研究所共有a粒水稻种子,每粒种子质量大约0.0000325千克;甘肃省天水市元帅系苹果的b粒干燥种粒,每粒种子质量大约0.002275千克,参与航天搭载诱变选育.(1)用科学记数法表示上述两个数.(2)若参与航天搭载这两包种子的质量相等,求的值.(3)若这两包种子的质量总和为1.04千克,水稻种子粒数是苹果种子粒数10倍,求a,b的值.22.若式子无意义,求代数式(y+x)(y﹣x)+x2的值.23.下列分式中,哪些是最简分式?,,;,,,.24.(1)计算:;(2)解不等式组:.25.若关于x 的方程有增根,求实数m的值.26.一船在河流上游A港顺流而下直达B港,用一个小时将货物装船后返航,已知船在静水中的速度是50千米/时,A、B两地距离为150千米,则该船从A港出发到返回A港共用了7.25小时,如果设水流速度是x千米/时,那么x应满足怎样的方程?27.阅读理解材料:为了研究分式与分母x的变化关系,小明制作了表格,并得到如下数据:x…﹣4﹣3﹣2﹣101234…10.50.0.25……﹣0.25﹣0.﹣0.5﹣1无意义从表格数据观察,当x>0时,随着x 的增大,的值随之减小,并无限接近0;当x<0时,随着x 的增大,的值也随之减小.材料2:对于一个分子、分母都是多项式的分式,当分母的次数高于分子的次数时,我们把这个分式叫做真分式.当分母的次数不低于分子的次数时,我们把这个分式叫做假分式.有时候,需要把一个假分式化成整式和真分式的代数和,像这种恒等变形,称为将分式化为部分分式.如:.根据上述材料完成下列问题:(1)当x>0时,随着x的增大,1+的值(增大或减小);当x<0时,随着x的增大,的值(增大或减小);(2)当x>1时,随着x的增大,的值无限接近一个数,请求出这个数;(3)当0≤x≤2时,求代数式值的范围.。

人教版八年级数学上册《15.2 分式的运算》练习题-附参考答案

人教版八年级数学上册《15.2 分式的运算》练习题-附参考答案

人教版八年级数学上册《15.2 分式的运算》练习题-附参考答案一、选择题1.2020−1的值是()A.-2020 B.−12020C.12020D.12.计算a2b3⋅2b23a2的结果是()A.23a B.23b C.2bD.23b3.计算xx+1+1x+1的结果是()A.1 B.x+1C.1x+1D.x( x+1 )24.计算:(m+2+52−m )⋅2m−43−m=()A.﹣2m﹣6 B.2m+6 C.﹣m﹣3 D.m+35.一项工程,甲单独做需要m天完成,乙单独做需要n天完成,则甲、乙合作完成工程需要的天数为()A.m+n B.m+n2C.mnm+nD.m+nmn6.如果m=y x−x y,n=y x+x y那么m2−n2等于()A.4 B.2y2x2C.0 D.-47.已知ab =3,则a2−4ab+4b2a(a−2b)+2b(a−2b)的值为()A.0 B.15C.1 D.58.a、b为实数,且ab=1,设P=aa+1+bb+1,Q=1a+1+1b+1则P和Q的大小关系是()A.P>Q B.P<Q C.P=Q D.不能确定二、填空题9.计算:c2a ⋅a2bc= .10.计算:(13)−1+(−2)3×(π−2)0= ;11.化简:3y2x−2y +2xyx2−xy的计算结果是.12.计算a−1a ÷(a−1a)的结果是.13.若1a +1b=3,则分式2a+2b−5ab−a−b的值为.14.计算或化简(1)(2)15.先化简,再求值:,其中x的值从的整数解中选取.16.先化简,再求值:(2m2−4m2−1)÷m2+2mm2,其中m=(12)−1+(3.14−π)0.17.若x=a+ba−b ,y=b+cb−c,z=c+ac−a设M=(x+1)(y+1)(z+1)(1)请你任意给出一组a,b,c的值,计算出M和N的值;(2)猜想M和N的大小关系,并证明.1.C 2.D 3.A 4.A 5.C 6.D 7.B 8.C9.acb 10.-511.7y2x−2y12.1a+113.−1314.(1)解:原式= == ;(2)解:原式== . 15.解:;∵,且∴当时,原式16.解:(2m2−4m2−1)÷m2+2mm2=m2−4m2÷m2+2mm2=(m+2)(m−2)m2·m2 m(m+2)=m−2m∵m=(12)−1+(3.14−π)0∴m=2+1=3当m=3时,原式=3−23=13.17.(1)解:a=1,b=0,c=−1(a,b,c互不相等即可).x=a+ba−b =1,y=b+cb−c=−1,z=c+ac−a=0.M=(x+1)(y+1)(z+1)=(1+1)(−1+1)(0+1)=0.N=(x−1)(y−1)(z−1)=(1−1)(−1−1)(0−1)=0.(2)解:猜想M=N.证明:M=(x+1)(y+1)(z+1)=(a+ba−b +1)(b+cb−c+1)(c+ac−a+1)=2aa−b⋅2bb−c⋅2cc−a=8abc(a−b)(b−c)(c−a).N=(x−1)(y−1)(z−1)=(a+ba−b −1)(b+cb−c−1)(c+ac−a−1)=2ba−b⋅2cb−c⋅2ac−a=8abc(a−b)(b−c)(c−a).∴M=N.。

人教版八年级上册数学解答题专题训练50题-含答案

人教版八年级上册数学解答题专题训练50题-含答案

人教版八年级上册数学解答题专题训练50题含答案一、解答题1.化简: (1)2221211x x x x x x+-+--;(2)(221a a b a b --+)÷b b a -.2.甲、乙两地相距300km ,乘高铁列车从甲地到乙地比乘特快列车少用0.5h ,已知高铁列车的平均行驶速度是特快列车的1.5倍,求特快列车平均行驶的速度.经检验,x=200是原方程的解,且符合题意.答:特快列车平均行驶的速度为200km/h .【点睛】本题考查的知识点是分式方程的实际应用,读懂题意,找出题目中的等量关系式是解此题的关键.3.先化简,再求值:(x +3)(x ﹣3)﹣x (2x +3)+(x +2)2,其中x =﹣2. 【答案】5x -,-7【分析】直接利用单项式乘多项式,乘法公式化简,进而合并同类项,再把已知数据代入得出答案.【详解】解:()()()()233232x x x x x +--+++=22292344x x x x x ---+++=5x -当x =-2时,原式=-2-5=-7.【点睛】此题主要考查了整式的混合运算-化简求值,正确运用整式的混合运算法则是解题关键.4.如图,在ABC ∆中,AB AC =,DAC ∠是ABC ∆的一个外角.实验与操作:根据要求进行尺规作图,并在图中标明相应字母(保留作图痕迹,不写作法)(1)作DAC ∠的平分线AM ;(2)作线段AC 的垂直平分线,与AM 交于点F ,与BC 边交于点E ,连接,AE CF ; (3)在(1)和(2)的条件下,若15BAE ∠=︒,求B ∠的度数.(3)AB AC=B ACB∴∠=∠AM∠平分DAC∠=∠B CAM∴∠=∠EF垂直平分AE CE∴=DAM∠+DAM∴∠B55∴∠=【点睛】本题是对平行四边形知识的考查,熟练掌握尺规作图和平行四边形知识是解决本题的关键5.先化简,再求值222112211mm m m m m⎛⎫--÷⎪-+--⎝⎭,其中m满足2260m m+-=.22m m +22m m ∴+∴原式=62【点睛】本题考查了分式的化简求值;掌握好分式的运算法则,注意到代数式、方程的结构特征是解决本题的关键.6.解下列方程:(1)153x x =+; (2)32122x x x =---; (3)2212141x x =--; (4)2231022x x x x-=+-; (5)131x x x x +=--; (6)33122x x x -+=--; (7)221566x x x x +=++; (8)31523162x x -=--.7.列方程解应用题今年1月下旬以来,新冠肺炎疫情在全国范围内迅速蔓延,而比疫情蔓延速度更快的是口罩恐慌.企业复工复产急需口罩,某大型国有企业向生产口罩的A、B两厂订购口罩,向A厂支付了1.32万元,向B厂支付了2.4万元,且在B厂订购的口罩数量是A长的2倍,B厂的口罩每只比A厂低0.2元.求A、B两厂生产的口罩单价分别是多少元?8.已知3a b +=,1ab =,求:(1)22a b +的值;(2)a b -的值.9.计算4xy 2•(﹣2x ﹣2y )2.10.计算(1)2(2)(2)a a a ⋅--- (2)()()344325321510205x y x y x y x y --÷-【答案】(1)26a -;(2)32324y xy -++【分析】(1)先计算单项式乘法,幂的乘方和积的乘方,再合并;(2)直接利用多项式除以单项式法则计算.【详解】解:(1)2(2)(2)a a a ⋅---=2224a a --=26a -;(2)()()344325321510205x y x y x y x y --÷-=32324y xy -++【点睛】本题考查了整式的混合运算,解题的关键是掌握运算法则和运算顺序. 11.如图,在∠ABC 中,AD 平分∠BAC ,点P 为线段AD 上的一个点,PE ∠AD 交BC 的延长线于点E .若∠B =35°,∠ACB =85°,求∠BAD 和∠E 的度数.12.如图,线段AD 、CE 相交于点B ,BC BD =,AB EB =,求证:ACD EDC ≌.【答案】证明见详解【分析】由BC=BD ,可得∠ADC=∠ECD ,再证明CE=DA .而CD 边公共,根据SAS 即可证明∠ACD∠∠EDC .【详解】证明:∠BC=BD , ∠∠ADC=∠ECD ,又AB=EB ,∠BC+EB=BD+AB ,即CE=DA .在∠ACD 与∠EDC 中DA CE ADC ECD CD DC ⎪∠⎪⎩∠⎧⎨=== ∠∠ACD∠∠EDC (SAS ).【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.13.已知x+y=xy ,求代数式(222x x y x y x y ---)÷2222x xy x xy y --+的值. 【答案】0【分析】先把除法变成乘法,变形后整体代入,即可求出答案,需要用的公式是22x y -=(x-y )(x+y ),222x xy y -+=2x y -().【详解】原式=[﹣]•=[﹣]•=1﹣,把x+y=xy 代入得:原式=1﹣1=0.【点睛】灵活运用两个数的平方差和完全平方式.14.先化简23939x x x x --+-,再选择一个合适的x 代入求值.15.(1)计算:10211)(1)4-⎛⎫--+ ⎪⎝⎭ (2)化简:2(21)(44)a a a +-+16.(1)计算:(2)求的值: 【答案】(1)-1;(2)x=4或-2【详解】试题分析:(1)先将所给的各式求值,然后加减计算即可;(2)利用平方根的意义可求出x 的值.试题解析:(1)=-2-1+2=-1;(2)因为,2(3)9±=,所以13x -=±,所以13x =±,所以x=4或-2. 考点:实数的计算、平方根.17.解方程:(1)231x x =+ (2)31144x x x--=--18.已知:如图,点A 、B 、C 在同一直线上,AD∠CE ,AD=AC ,∠D=∠CAE.求证:DB=AE.【答案】证明见解析.【详解】试题分析:由平行的性质得到∠DAB=∠C ,从而由ASA 证明∠ABD∠∠CEA ,进而根据全等三角形边相等的性质得到DB=AE.试题解析:∠AD∠CE ,∠∠DAB=∠C,在∠ABD 和∠CEA 中,{D CAEAD AC DAB C∠=∠=∠=∠,∠∠ABD∠∠CEA(ASA).∠DB=AE.考点:1.平行的性质;2.全等三角形的判定和性质.19.如图,已知AO =DO ,∠OBC =∠OCB .求证:∠1=∠2.【答案】见解析.【详解】分析:(1)、根据∠OBC=∠OCB 得出OB=OC ,然后根据SAS 证明∠AOB 和∠DOC 全等,从而得出答案.详解:证明:∠∠OBC =∠OCB ,∠OB =OC .在∠AOB 和∠DOC 中,OA=OD ,∠AOB=∠DOC ,OB=OC ,∠∠AOB∠∠DOC (SAS), ∠∠1=∠2.点睛:本题主要考查的是三角形全等的判定与性质,属于基础题型.根据题意得出OB=OC 是解决这个问题的关键.20.如图是由边长相等的小正方形组成的网格,要求仅用无刻度的直尺在给定的网格中按步骤完成下列画图(画图过程用虚线表示,画图结果用实线表示).(1)在图1中,∠作出ΔABC 的高AH ;∠作出点B 关于AH 的对称点P ;(2)在图2中,∠过BC 上一点D 作DE ∠AB ,使四边形ABDE 为平行四边形;∠在平行四边形ABDE 中,作出∠BDE 的平分线DF . 【答案】(1)见解析;(2)见解析.【分析】(1)根据SAS 判定ADF BEC ,再根据相似三角形的对应角相等得到AFD BCE ∠=∠,结合等角的余角相等可得90B BCE B AFD ∠+∠=∠+∠=︒,继而得到AH BC ⊥,延长AH 至格点即可;∠点B 关于AH 的对称点即在AH 的右侧,取BH=HP 即可;(2)∠根据一组对边平行且相等的四边形是平行四边形,作出线段DE ,且DE =AB ,即可得到平行四边形ABDE ;∠以E 为圆心,DE 为半径作弧,交AE 边于点F ,可知DE =EF ,由等边对等角性质,得到∠=∠EFD EDF ,再由两直线平行,内错角相等性质可得EFD FDB ∠=∠,由此得到EDF FDB ∠=∠,即DF 是∠BDE 的平分线.【详解】解:(1)∠如图1所示,AH 即为所求;∠点P 即为所求的对称点;(2)∠如图1所示,DE 即为所求;∠DF 即为所求的角平分线;【点睛】本题考查尺规作图,涉及相似三角形的判定与性质、平行四边形的性质、角平分线的性质、等边对等角等知识,是重要考点,难度较易,掌握相关知识是解题关键.21.因式分解:(1)229x y -;(2)2()3()x a b b a ---;(3)322363x x y xy -+-. 【答案】(1)(3)(3)x y x y +-(2)()(23)a b x -+(3)23()x x y --【分析】(1)根据平方差公式进行因式分解;(2)提取公因式(a -b ),从而得出答案;(3)首先提取公因式-3x ,然后再利用完全平方公式进行因式分解.(1)原式=()()33x y x y +-;(2)原式=()()23x a b a b -+-=()()23a b x -+;(3)原式=()2232x x xy y --+=()23x x y --. 【点睛】本题考查了因式分解,熟知提公因式法和公式法是解题的关键.22.图,四边形ABCD 中,AD ∠BC ,∠A =90°,CE ∠BD ,垂足为E ,BE =DA .求证:AB =EC .【答案】证明见解析【分析】由“ASA ”可证∠ABD ∠∠ECB ,可得AB =CE .【详解】证明:∠AD ∠BC ,∠∠ADB =∠EBC .∠CE ∠BD ,∠∠CEB =∠A =90°,在∠ABD 和∠EBC 中,A BEC AD BEADB DBC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∠∠ABD ∠∠ECB (ASA ),∠AB =CE .【点睛】本题考查了全等三角形的判定和性质,灵活选择判定定理是解题的关键. 23.先化简,再求值:(1)(x +1)2﹣(x +2)(x ﹣3),其中x =3(2)已知2a 2+3a ﹣6=0,求代数式3a (2a +1)﹣(2a +1)(2a ﹣1)的值. 【答案】(1)3x +7,16;(2)2a 2+3a +1;7【分析】(1)先进行完全平方运算和多项式乘法,再合并同类项,最后代入求值,即可解答;(2)先将2a 2+3a ﹣6=0变形为2a 2+3a =6,再化简代数式,代入即可求解.【详解】解:(1)原式=(x 2+2x +1)﹣(x 2﹣x ﹣6)=x 2+2x+1﹣x 2+x +6=3x +7,当x =3时,原式=337⨯+= 9+7=16;(2)∠2a 2+3a ﹣6=0,即2a 2+3a =6,∠原式=6a 2+3a ﹣(4a 2﹣1)=6a 2+3a ﹣4a 2+1=2a 2+3a +1=6+1=7.【点睛】本题主要考查了整式的化简求值,熟练掌握整式的四则运算法则是解题的关键.24.如图,已知△ABC 和△ADE ,AB =AD ,∠BAD =∠CAE ,AC =AE ,AD 与BC 交于点P ,点C 在DE 上.求证:BC =DE .【答案】见解析【分析】先证∠BAC =∠DAE ,再证△ABC ∠∠ADE (ASA ),即可得出结论.【详解】∠BAD CAE ∠=∠,∠BAD DAC CAE DAC ∠+∠=∠+∠,即BAC DAE ∠=∠,在ABC 和ADE 中,AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩,∠()ABC ADE SAS △≌△,∠BC DE =.【点睛】本题考查了全等三角形的判定与性质,证明△ABC ∠∠ADE 是解题的关键. 25.如图,是一个有理数运算程序的流程图,请根据这个程序回答问题:当输入的x 为4时,求最后输出的结果y 是多少?26.已知228=0x x --,求()()241223x x x ---+的值.【答案】23【分析】原式利用完全平方公式及单项式乘以多项式法则计算,整理后将已知等式变形代入计算即可求出值.【详解】解:原式=22484243x x x x -+-++2247x x =-+()2227x x =-+,当228=0x x --,即228x x -=时,原式16723=+=.【点睛】本题考查了完全平方公式及单项式乘以多项式化简求值,整体代入是解题的关键.27.已知△ABC 是等边三角形,点D 是直线AB 上一点,延长CB 到点E ,使BE =AD ,连接DE ,DC ,(1)若点D 在线段AB 上,且AB =6,AD =2(如图∠),求证:DE =DC ;并求出此时CD 的长;(2)若点D 在线段AB 的延长线上,(如图∠),此时是否仍有DE =DC ?请证明你的结论;(3)在(2)的条件下,连接AE ,若23AB AD =,求CD :AE 的值.AB228.如图所示,小刚家门口的商店在装修,他发现工人正在一块半径为R的圆形板材上,冲去半径为r的四个小圆,小刚测得R=7dm,r=1.5dm,他想知道剩余阴影部分的面积,你能利用所学过的因式分解的知识帮助小刚计算吗?请写出求解过程(结果保留π).【答案】40πdm 2.,见解析【分析】可利用大圆的面积减去四个小圆的面积列式计算可求解. 【详解】解:∠R =7dm ,r =1.5dm ,∠阴影部分的面积为:πR 2﹣4πr 2=π(R 2﹣4r 2)=π(R +2r )(R ﹣2r )=π(7+2×1.5)(7﹣2×1.5)=10×4π=40π(dm 2),故剩余阴影部分的面积为40πdm 2..【点睛】本题主要考查因式分解的应用,根据题意列算式是解题的关键. 29.计算:(1)()3231(2)22m n mn m ⎛⎫-⋅-÷ ⎪⎝⎭; (2)2(2)(3)(3)a b a b a b --+-.30.计算题:(1)(﹣1)23×(π﹣3)0﹣(﹣12) ﹣3; (2)a •a 2•a 3+(﹣2a 3)2﹣a 8÷a 2;(3)(x +4)2﹣(x +2)(x ﹣2);(4)(a +2b ﹣3c )(a ﹣2b +3c ).31.计算:(1)21(2021)|3|2π-⎛⎫-+---⎪⎝⎭(2)()3212816(4)x x x x-+÷-【点睛】此题考查了实数的混合运算和整式的混合运算,熟记零指数幂、负整数指数幂等运算法则是解题的关键.32.有一电脑程序:每按一次按键,屏幕的A 区就会自动加上2a ,同时B 区就会自动减去3a ,且均显示化简后的结果.已知A ,B 两区初始显示的分别是25和-16,如图.如,第一次按键后,A ,B 两区分别显示:(1)从初始状态按2次后,分别求A ,B 两区显示的结果;(2)从初始状态按4次后,计算A ,B 两区代数式的和,请判断这个和能为负数吗?说明理由. 【答案】(1)2252a +;166a --;(2)24a 12a+9-;和不能为负数,理由见解析.【分析】(1)根据题意,每按一次按键,屏幕的A 区就会自动加上2a ,B 区就会自动减去3a ,可直接求出初始状态按2次后A ,B 两区显示的结果.(2)依据题意,分别求出初始状态下按4次后A ,B 两区显示的代数式,再求A ,B 两区显示的代数式的和,判断能否为负数即可.【详解】解:(1)A 区显示结果为:22225+a +a =25+2a ,B 区显示结果为:163a 3a=166a ﹣--﹣-;(2)初始状态按4次后A 显示为:2222225+a +a +a a 254a +=+B 显示为:163a 3a 3a 3a=1612a ﹣----﹣-∠A+B=225+4a +(-1612a)-=24a 12a+9-=2(2a 3)-∠2(2a 3)0≥-恒成立,∠和不能为负数.【点睛】本题考查了代数式运算,合并同类项,完全平方公式问题,解题关键在于理解题意,列出代数式进行正确运算,并根据完全平方公式判断正负.33.计算并验证:(1)()()232a b a b ++=_____________________;(2)请用图形证明上面等式. 【答案】(1)22672a ab b ++;(2)作图见详解.【分析】(1)利用多项式乘以多项式化简即可;(2)作一个边长为()2a b +和()32a b +的矩形即可.【详解】(1)解:232a b a b226432a ab ab b22672a ab b (2)如图示,作一个边长为()2a b +和()32a b +的矩形,则矩形内个矩形的面积如下图示,即有:232a b a b 22672a ab b【点睛】本题考查了多项式乘以多项式的计算与证明,能作出相应的图形,利用面积来证明是解题的关键.34.如图,在Rt∠ABC 中,∠ACB =90°,∠B =30°,AC =3,AD 是∠ABC 的角平分线,DE ∠AB 于点E ,连接CE .求CE 的长;【答案】3【分析】只要证明ACE △为特殊三角形,则CE 的长度可求,因为60BAC ∠=︒,猜测ACE △为等边三角形,只要AC AE =即可,而通过已知条件可知AED ACD ≅,所以AE AC =,则ACE △为等边三角形,CE 的长度可求.【详解】∠AD 平分∠BAC ,∠∠EAD =∠CAD . ∠∠ACB =90°,DE ∠AB ,∠∠ACD =∠AED .又∠AD =AD ,∠∠ACD ∠∠AED .∠AE =AC .∠∠ACB =90°,∠B =30°,∠∠BAC =60°.∠∠ACE 为等边三角形, ∠CE =AC =3.【点睛】本题主要考查等边三角形的性质及判定,全等三角形的性质及判定,能够证明是等边三角形是解题的关键.35.如图,已知点M 、N 和∠AOB ,用尺规作图作一点P ,使P 到点M 、N 的距离相等,且到∠AOB 两边的距离相等.(保留作图痕迹,不写作法)【答案】见解析【分析】利用角平分线的作法以及线段垂直平分线的作法进而求出其交点即可.【详解】解:(1)作∠AOB 的平分线,(2)作MN 的中垂线,两线相交于点P ,点P 即为所求【点睛】此题主要考查了复杂作图,熟练掌握角平分线以及线段垂直平分线的作法是解题关键.36.如图,已知∠A=∠F,AB∠EF,BC=DE,请说明AD∠CF.【答案】见解析【分析】根据平行线的性质得到∠B=∠E,根据全等三角形的性质得到∠ADC=∠FCE,由平行线的判定定理即可得到结论.【详解】证明:∠BC=DE,∠BD=EC,∠AB∠EF,∠∠B=∠E,在∠ABD与∠FEC中,A FB EBD CE∠=∠⎧⎪∠=∠⎨⎪=⎩∠∠ABD∠∠FEC,∠∠ADC=∠FCE,∠AD∠FC.【点睛】此题主要考查全等三角形的判定及性质,熟练掌握全等三角形的判定和性质定理是解题的关键.37.求证:线段垂直平分线上的点到这条线段两个端点的距离相等.【答案】答案见解析【分析】根据题意得出三角形全等,再根据全等三角形的性质作出证明即可.【详解】解:如图,已知AD是BC的垂直平分线,∠AD∠BC,DB=CD∠在∠ADB和∠ADC中AD=ADADB=ADCBD=DC⎧⎪∠∠⎨⎪⎩∠∠ADB∠∠ADC(SAS)∠AB=AC故线段垂直平分线上的点到这条线段两个端点的距离相等.【点睛】本题主要考查了线段垂直平分线的性质,弄清楚此性质的来源是解题的关键. 38.我们学过三角形的相关知识,在“信息技术应用”——画图找规律的实践学习中,我们发现了几个基本事实:三角形的三条中线交于一点,三角形的三条角平分线交于一点,三角形的三条高所在的直线交于一点.请根据以上的基本事实,解决下面的问题.如图,钝角三角形ABC中,AD,BE分别为BC,CA边上的高.(1)请用无刻度直尺画出AB边上的高CF(保留作图痕迹,不写作法);(2)在(1)的条件下,若4AB=,2AC=,求高CF与BE的比是多少?【答案】(1)见解析(2):1:2CF BE=【分析】(1)延长DA交BE的延长线于点G,连接CG交BA延长线于F,即可得出分别是ABC 的边ABC S =12ABC S AC BE =⋅AB CF ⋅4AB =39.(1)先化简,再求值:,其中.(2)已知,,求的值. 【答案】(1)1;(2)32【详解】(1)先根据完全平方公式、平方差公式以及多项式乘多项式把括号展开,再合并同类项,最后把a 、b 的值代入即可求值;(2)把原式变为含有(a-b )、ab 的式子,然后代入求值.(1)(2x+3)(2x ﹣3)+(x ﹣2)2-3x (1﹣x )=4x 2﹣9+x 2-4x+4+3x ﹣3x 2=2x 2 – x-5,当x=2时,原式=1.(2)a 2+b 2=(a-b)2+2ab=(-4)2+2×8=32.40.某农场开挖一条长960米的渠道,开工后工作效率比原计划提高50%,结果提前4天完成任务.问原计划每天挖多少米渠道?41.如图,点A ,E ,F ,B 在直线l 上,AE BF =,//AC BD ,且AC BD =,求证:ACF BDE ≅△△.【答案】见解析【分析】先证明AF BE =,然后根据平行线的性质得到∠CAF=∠DBE ,用SAS 即可证明∠ACF∠∠BDE .【详解】证明:AE BF =,AE EF BF EF ∴+=+,即AF BE =;//AC BD ,CAF DBE ∴∠=∠在ACF △与BDE △中,AC BD CAF DBE AF BE =⎧⎪∠=∠⎨⎪=⎩ACF BDE ∴≅.【点睛】本题考查的是全等三角形的SAS 判定、平行线的性质,掌握SAS 判定是解题的关键.42.已知 3m a =,3n b =,分别求:(1)3m n +.(2)233m n +.(3)2333m n + 的值. 【答案】(1)ab (2)23a b(3)23a b +【分析】(1)根据同底数幂乘法的逆运算计算法则求解即可;(2)根据同底数幂乘法和幂的乘方的逆运算计算法则求解即可;(3)根据幂的乘方的逆运算计算法则求解即可.(1)解:∠3m a =,3n b =,∠=333m n n m ab +⋅=;(2)解:∠3m a =,3n b =,∠()()2322323233=33333m n m n n m a b a b +⋅=⋅=⋅=;(3)解:∠3m a =,3n b =,∠()()223233+3=333n m n m a b +=+.【点睛】本题主要考查了同底数幂乘法的逆运算,幂的乘方的逆运算,熟知相关计算法则是解题的关键.43.计算:2136b a ab-.4412121)16(2--+45.计算:22353339m m m m +⎛⎫+÷ ⎪+--⎝⎭.46.先阅读理解下面的例题,再按要求解答下列问题.例题:求代数式248y y ++的最小值.解:22248444(2)4y y y y y ++=+++=++∠()220y +≥∠()2244y ++≥∠代数式248y y ++的最小值为4.(1)求代数式222x x --的最小值.(2)若269|1|0a a b -+++=,则b a =_________.(3)某居民小区要在一块一边靠墙(墙长15m )的空地上建一个长方形花园ABCD ,花园一边靠墙,另三边用总长为20m 的栅栏围成.如图,设()m AB x =,请问:当x 取何值时,花园的面积最大?最大面积是多少?由题意可得,花园的面积为:()()()2222022202102550x x x x x x x -=-+=--=--+, ∠()2250x --≤,∠当x =5时,花园的面积取得最大值,此时花园的面积是50,BC 的长是20−2×5=10<15,答:当x 取5时,花园的面积最大,最大面积是50m 2.【点睛】本题考查了完全平方公式的变形及应用,非负数的性质,解题的关键是明确题意,找出所求问题需要的条件.47.计算: (2)(2)a b c a b c -+--.【答案】22244a ab b c -+-【详解】试题分析:利用平方差公式化简,再利用完全平方公式展开即可得到结果. 试题解析:()()22a b c a b c -+--=(2a-b )2-c 2=22244a ab b c -+-48.因式分解:(1)m 4-81;(2)22363x xy y -+- 【答案】(1)原式2(9)(3)(3)m m m =++-;(2)原式23()x y =--【详解】试题分析:试题分析:(1)用“平方差公式”连续分解两次即可;(2)先提“公因式”,再用“完全平方公式”分解即可.试题解析:(1)原式()()()()()22299933m m m m m =+-=++-; (2)原式()()222323x xy y x y =--+=--. 49.先阅读下列材料,再解答下列问题:材料:因式分解:()()221x y x y ++++.解:将“x y +”看成整体,设x y A +=,则,原式()22211A A A =++=+.再将“A ”还原,得原式()21x y =++.上述解题用到的是“整体思想”,“整体思想”是数学解题中常用的一种思想方法,请你解答下列问题:(1)因式分解:()()44a b a b ++-+;(2)求证:若n 为正整数,则式子()()()21231n n n n ++++的值一定是某一个整数的平方. 【答案】(1)()22a b +-(2)证明见解析【分析】(1)把a+b 看作一个整体,去括号后利用完全平方公式即可将原式因式分解;(2)将原式转化为()()223231n n n n ++++,进一步整理为2231n n ,根据n 为正整数得到2231n n 也为正整数,从而说明原式是整数的平方.(1)解:设A a b =+,则原式()()2244442A A A A A =-+=-+=-,所以()()()2442a b a b a b ++-+=+-;(2)证明:()()()()()()212313121n n n n n n n n ⎡⎤++++=++++⎣⎦ ()()223321n n n n =++++,设23B n n =+,原式()()()22222121131B B B B B n n =++=++=+=++. ∠n 为正整数,∠231n n ++也为正整数,∠式子()()()21231n n n n ++++的值一定是某一个整数的平方.【点睛】本题考查因式分解的应用,解题的关键是仔细读题,理解题意,掌握整体思想解决问题的方法.50.若x 满足()()944x x --=,求()()2249x x -+-的值. 解:设9x a -=,4x b -=,则()()944x x ab --==,()()945a b x x +=-+-=, ∠()()()22222942522413x x a b a b ab -+-=+=+-=-⨯=请仿照上面的方法求解下面问题:(1)若x 满足()()522x x --=,求()()2252x x -+-的值. (2)若x 满足()()631x x --=,求代数式92x -的值.(3)已知正方形ABCD 的边长为x ,E ,F 分别是AD 、DC 上的点,且2AE =,5CF =,长方形EMFD 的面积是48,分别以MF 、DF 作正方形,求阴影部分的面积.∠(x-2)•(x-5)=48,∠(x-2)-(x-5)=3,∠阴影部分的面积=FM2-DF2=(x-2)2-(x-5)2.设(x-2)=a,(x-5)=b,则(x-2)(x-5)=ab=48,a-b=(x-2)-(x-5)=2,∠a=8,b=6,a+b=14,∠(x-2)2-(x-5)2=a2-b2=(a+b)(a-b)=14×2=28.即阴影部分的面积是28.【点睛】本题考查了完全平方公式和几何图形面积,解决本题的关键是要应从整体和部分两方面来理解完全平方公式的几何意义.。

八年级数学人教版上册同步练习分式的基本性质(解析版)

八年级数学人教版上册同步练习分式的基本性质(解析版)

15.1.2分式的基本性质一、单选题1.下列约分计算结果正确的是 ( )A .22a b a b a b+=++ B .a m m a n n +=+ C .1a b a b -+=-- D .632a a a= 【答案】C 【分析】利用因式分解,确定分子,分母的公因式,后约分化简,计算即可.【详解】∵22a b +与a +b 没有公因式, ∴22a b a b++无法计算, ∴22a b a b a b+=++的计算是错误的, ∴选项A 不符合题意;∵a +m 与a +n 没有公因式, ∴++a m a n 无法计算, ∴a m m a n n+=+的计算是错误的; ∴选项B 不符合题意;∵-a +b = -(a +b )与a +b 的公因式是a +b , ∴()1a b a b a b a b-+--==---, ∴选项C 符合题意; ∵642a a a=, ∴632a a a=的计算是错误的; ∴选项D 不符合题意;故选C .【点评】本题考查了分式的化简,同底数幂的除法,熟练掌握化简计算的要领是解题的关键.2.下列分式中,属于最简分式的个数是( )①42x ,②221x x +,③211x x --,④11x x --,⑤22y x x y -+,⑥2222x y x y xy++. A .1个B .2个C .3个D .4个【答案】B【分析】根据最简分式的定义判断即可. 【详解】①422x x =,③21111x x x -=-+,④111x x -=--,⑤22y x y x x y-=-+,可约分,不是最简分式; ②221x x +,⑥2222x y x y xy++分子分母没有公因式,是最简分式,一共有二个; 故选:B .【点评】本题考查了最简分式,解题关键是明确最简分式的定义,准确判断分子分母是否含有公因式. 3.下列命题中的真命题是( )A .多项式x 2-6x +9是完全平方式B .若∠A ∶∠B ∶∠C =3∶4∶5,则△ABC 是直角三角形C .分式211x x +-是最简分式 D .命题“对顶角相等”的逆命题是真命题【答案】A【分析】根据完全平方公式、直角三角形性质、分式化简、和对顶角相等的逆命题进行判断即可.【详解】∵x 2-6x +9=(x -3)2,故A 选项是真命题;∵∠A ∶∠B ∶∠C =3∶4∶5,∴∠A =45°,∠B =60°,∠C =75°,故B 选项是假命题; ∵21111x x x +=--,故C 选项是假命题; “对顶角相等”的逆命题是相等的角是对顶角,是假命题,故D 选项是假命题;故选:A【点评】本题考查了分式的性质、完全平方公式、直角三角形性质、逆命题,解题关键是熟练掌握相关知识,准确进行判断.4.化简211x x --的结果是( ) A .11x -+ B .11x - C .11x + D .11x-【答案】A【分析】分母因式分解,再约分即可. 【详解】2111(1)(1)11x x x x x x --==-+-+-, 故选:A .【点评】本题考查了分式的约分,解题关键是把多项式因式分解,然后熟练运用分式基本性质进行约分. 5.若把x ,y 的值同时扩大为原来的2倍,则下列分式的值保持不变的是( )A .()22x y x + B .xy x y + C .22x y ++ D .22x y -- 【答案】A 【分析】根据分式的基本性质即可求出答案.【详解】A 、()22224x y x +=()22x y x +,故A 的值保持不变. B 、42=22xy xy x y x y++,故B 的值不能保持不变. C 、221=221x x y y ++++,故C 的值不能保持不变. D 、221=221x x y y ----,故D 的值不能保持不变. 故选:A .【点评】本题考查了分式,解题的关键是正确理解分式的基本性质,本题属于基础题型.6.下列关于分式2x x+的各种说法中,错误的是( ). A .当0x =时,分式无意义 B .当2x >-时,分式的值为负数C .当2x <-时,分式的值为正数D .当2x =-时,分式的值为0 【答案】B【分析】根据分式的定义和性质,对各个选项逐个分析,即可得到答案.【详解】当0x =时,分式无意义,选项A 正确;当2x >-时,分式的值可能为负数,可能为正数,故选项B 错误;当2x <-时,20x +<,分式的值为正数,选项C 正确;当2x =-时,20x +=,分式的值为0,选项D 正确;故选:B .【点评】本题考查了分式的知识;解题的关键是熟练掌握分式的性质,从而完成求解.7.下列命题中,属于真命题的是( )A .如果0ab =,那么0a =B .253x x x -是最简分式C .直角三角形的两个锐角互余D .不是对顶角的两个角不相等【答案】C【分析】根据有理数的乘法、最简分式的化简、直角三角形的性质、对顶角的概念判断即可.【详解】A. 如果 ab=0,那么a=0或b=0或a 、b 同时为0,本选项说法是假命题,不符合题意; B. ()2555==333x x x x x x x ---,故253x x x-不是最简分式,本选项说法是假命题,不符合题意; C. 直角三角形的两个锐角互余,本选项说法是真命题,符合题意;D. 不是对顶角的两个角可能相等,本选项说法是假命题,不符合题意;故选:C .【点评】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉教材中的性质定理.8.若a b ,则下列分式化简中,正确的是( ) A .22a a b b+=+ B .22a a b b -=- C .33a a b b = D .22a a b b = 【答案】C【分析】根据ab ,可以判断各个选项中的式子是否正确,从而可以解答本题; 【详解】∵ab A 、22a a b b+≠+ ,故该选项错误; B 、22a a b b-≠- ,故该选项错误; C 、33a a b b= ,故该选项正确; D 、22a a b b≠ ,故该选项错误; 故选:C .【点评】本题考查了分式的混合运算,解题时需要熟练掌握分式的性质,分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,熟练掌握分式的基本性质是解题的关键;二、填空题目9.已知a 、b 、c 、d 、e 、f 都为正数,12 bcdef a =,14 acdef b =,18 abdef c =,2 abcef d=,4 abcdf e=,8 abcde f =,则222222a b c d e f +++++=________. 【答案】1198【分析】根据等式性质及分式性质进行计算即可求得结果. 【详解】由12 bcdef a =,14 acdef b =,18 abdef c =,2 abcef d =,4 abcdf e=,8 abcde f =,可将每个等式的左右两边相乘得: ()51abcdef abcdef =,∴1abcdef =,2112bcdef a a a a ⋅==⋅, ∴22a =,同理可得:24b =,28c =,212d =,214e =,218f =, ∴2222221198a b c d e f +++++=; 故答案为1198. 【点评】本题主要考查等式性质及分式性质,熟练掌握等式性质及分式性质是解题的关键. 10.已知114y x -=,则分式2322x xy y x xy y+---的值为______. 【答案】112 【分析】先根据题意得出x-y=4xy ,然后代入所求的式子,进行约分就可求出结果. 【详解】∵114y x-=,∴x-y=4xy ,∴原式=2()383112422x y xy xy xy x y xy xy xy -++==---, 故答案为:112 . 【点评】此题考查分式的基本性质,正确对已知式子进行化简,约分,正确进行变形是关键.11.已知2310x x --=,求4231x x x x ++=-__________. 【答案】4 【分析】将分式整理成()()2222131x x x x -+-,根据2310x x --=可得213x x -=,代入分式并约分即可求解.【详解】∵2310x x --=,∴213x x -=∴4231x x x x++- ()()2222131x x x x -+=- ()223343x x x x+==⋅, 故答案为:4. 【点评】本题考查分式的性质,将分式整理成()()2222131x x x x -+-的形式是解题的关键. 12.将分式132132a b a b +-的分子、分母各项系数化为整数,其结果为_______________. 【答案】6243a b a b+- 【分析】根据分式的基本性质,分子分母都乘以最小公倍数6,分式的值不变,并且其分子、分母各项系数化为整数.【详解】1623214332a b a b a ba b ++=--. 故答案为:6243a b a b+-. 【点评】本题考查了分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.三、解答题13.我们知道:分式和分数有着很多的相似点,如类比分数的基本性质,我们得到了分式的基本性质,等等.小学里,把分子比分母小的数叫做真分数.类似的,我们把分子的次数小于分母的次数的分式称为真分式,反之,称为假分式.对于任何一个假分式都可以化成整式与真分式的和的形式.如:11211x x x x +-+=--=1211x x x -+-- =1+21x -. (1)请写出分式的基本性质 ;(2)下列分式中,属于真分式的是 ;A .21x x -B .11x x -+C .﹣321x -D .2211x x +- (3)将假分式231m m ++,化成整式和真分式的形式. 【答案】(1)分式的分子和分母乘(或除以)同一个不等于0的整式,分式的分式值不变;(2)C ;(3)231m m ++=m ﹣1+41m + 【分析】(1)根据分式的基本性质回答即可;(2)根据分子的次数小于分母的次数的分式称为真分式进行判断即可;(3)先把23m +转化为214m -+得到22314111m m m m m +-=++++,其中前面一个分式约分后化为整式,后面一个是真分式.【详解】(1)分式的分子和分母乘(或除以)同一个不等于0的整式,分式的分式值不变.(2)根据题意得:选项C 的分子次数是0,分母次数是1,分子的次数小于分母的次数是真分式.而其他选项是分子的次数均不小于分母的次数的分式,故AB D 选项是假分式,故选:C .(3)∵22231441411111m m m m m m m m +-+-=+=++++++=m ﹣1+41m +, ∴故答案为:m ﹣1+41m +. 【点评】本题考察了分式的基本性质以及未知数的次数问题,解答本题的关键是熟悉掌握未知数次数的判断以及分式的分子和分母乘(或除以)同一个不等于0的整式,分式的分式值不变.14.约分(1)1232632418a x y a x; (2)ma mb mc a b c+-+-; (3)2222444a ab b a b-+-. 【答案】(1)6243a y ;(2)m ;(3)22a b a b-+ 【分析】(1)约去分子分母的公因式636a x 即可得到结果;(2)将分子进行因式分解,约去公因式(a b c +-)即可得到结果;(3)首先把分子分母分解因式,然后再约掉分子分母的公因式即可.【详解】(1)1232632418a x y a x=6362636463a x a y a x ⨯ =6243a y ; (2)ma mb mc a b c+-+- =()m a b c a b c +-+- =m ;(3)2222444a ab b a b-+-=2(2)(2)(2)a b a b a b -+- =22a b a b-+. 【点评】此题主要考查了分式的约分,关键是正确确定分子分母的公因式.15.先约分,再求值:32322444a ab a a b ab--+ 其中12,2a b ==-. 【答案】2123a b a b +-, 【分析】先把分式的分子分母分解因式,约分后把a 、b 的值代入即可求出答案.【详解】原式=2222444a a b a a ab b ()()--+ =2(2)(2)(2)a a b a b a a b +-- =22a b a b +- 当122a b ==-,时 原式=2121-+=13. 【点评】本题考查了分式的约分,解题的关键是熟练进行分式的约分,本题属于基础题型.16.已知32(1)(1)11x A B x x x x -=++--+,求A 、B 的值. 【答案】A=12, B=52 【分析】先对等式右边通分,再利用分式相等的条件列出关于A 、B 的方程组,解之即可求出A 、B 的值. 【详解】∵()()()()(1)(1)()111111A B A x B x A B x A B x x x x x x ++-++-+==-++-+- , 又∵()()321111A B x x x x x -+=-++-, ∴()()()()()321111A B x A B x x x x x ++--=+-+-,∴32A B A B +=⎧⎨-=-⎩ , 解得1252A B ⎧=⎪⎪⎨⎪=⎪⎩. ∴A =12, B =52. 【点评】本题考查了分式的基本性质.利用分式的基本性质进行通分,再利用系数对应法列出方程组是解题的关键.17.若分式,A B 的和化简后是整式,则称,A B 是一对整合分式.(1)判断22244x x x ---与22x x -是否是一对整合分式,并说明理由; (2)已知分式M ,N 是一对整合分式,2a b M a b-=+,直接写出两个符合题意的分式N . 【答案】(1)是一对整合分式,理由见解析;(2)答案不唯一,如1224,b a a b N N a b a b -+==++. 【分析】(1)根据整合分式的定义即可求出答案.(2)根据整合分式的定义以及分式的运算法则即可求出答案.【详解】(1)是一对整合分式,理由如下: ∵2222222424(2)424x x x x x x x x x x x ----+++==---, 满足一对整合分式的定义,22244x x x --∴-与22x x -是一对整合分式. (2)答案不唯一,如1224,b a a b N N a b a b-+==++. 【点评】本题考查了分式的加减法,解题的关键是熟练运用分式的运算法则,本题属于基础题型.18.已知430,4520,x y z x y z +-=⎧⎨-+=⎩0xyz ≠. (1)用含z 的代数式表示x ,y ;(2)求222232x xy z x y+++的值. 【答案】(1)13x z =,23y z =;(2)165. 【分析】(1)根据加减消元法解关于x 、y 的方程组即可(2)将(1)中的结果代入分式中进行运算即可【详解】(1)430,4520,x y z x y z +-=⎧⎨-+=⎩①② ①4⨯-②得21140y z -=,解得23y z =. 把23y z =代入①,得24303x z z +⨯-=, 解得13x z =. (2)2222222211232321633351233z z z z x xy z x y z z ⎛⎫⨯+⨯⨯+ ⎪++⎝⎭==+⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭. 【点评】本题考查了用加减法解方程组的特殊解法,把x 、y 看作未知数解方程组是解题的关键19.一个矩形的面积为223()x y -,如果它的一边为()x y +,求这个矩形的周长.【答案】这个矩形的周长为:84x y -【分析】根据整式的除法运算法则与合并同类项法则,即可求解.【详解】∵矩形的一边长为()x y +,面积为223()x y -, ∴矩形的另一边长为:223()3()()x y x y x y -=-+ ∴该矩形的周长为:2[()3()]x y x y ++-2(42)x y =-84x y =-.答:这个矩形的周长为:84x y -.【点评】本题主要考查整式的除法法则与加法法则,掌握因式分解与合并同类项法则,是解题的关键. 20.阅读理解:对于二次三项式a 2+2ab+b 2,能直接用完全平方公式进行因式分解,得到结果为(a+b )2.而对于二次三项式a 2+4ab ﹣5b 2,就不能直接用完全平方公式了,但我们可采用下述方法:a2+4ab﹣5b2=a2+4ab+4b2﹣4b2﹣5b2=(a+2b)2﹣9b2,=(a+2b﹣3b)(a+2b+3b)=(a﹣b)(a+5b).像这样把二次三项式分解因式的方法叫做添(拆)项法.解决问趣:(1)请利用上述方法将二次三项式a2+6ab+8b2分解因式;(2)如图,边长为a的正方形纸片1张,边长为b的正方形纸片8张,长为a,宽为b的长方形纸片6张,这些纸片可以拼成一个不重叠,无空隙的长方形图案,请画出示意图;(3)已知x>0,且x≠2,试比较分式2244812x xx x++++与22428xx x-+-的大小.【答案】(1)(a+2b)(a+4b);(2)见解析;(3)222244428812 x x xx x x x-++>+-++【分析】(1)根据题目的引导,先分组,后运用公式法对原式进行因式分解;(2)根据第一问的因式分解结果,对图形进行排列即可;(3)对两个分式的分子和分母分别进行因式分解,然后对分式进行化简并比较大小.【详解】(1)原式=a2+6ab+9a2﹣b2=(a+3b)2﹣b2=(a+3b﹣b)(a+3b+b)=(a+2b)(a+4b);(2)如图:(3)224(2)(2)(2)28(4)(2)(4)x x x xx x x x x-+-+==+-+-+;22244(2)(2)812(2)(6)(6)x x x xx x x x x++++==+++++;∵x>0,∴x+4<x+6,∴222244428812 x x xx x x x-++>+-++.【点评】本题考查了因式分解的应用,通过因式分解化简分式,根据分母大,分数值反而小来比较大小是解题的关键.祝福语祝你考试成功!。

人教版八年级数学上册专题03 分式方程及零指数幂、负指数幂运算(专题测试)(解析版)

人教版八年级数学上册专题03 分式方程及零指数幂、负指数幂运算(专题测试)(解析版)

专题03 分式方程及零指数幂、负指数幂运算专题测试一、单选题1.(2020·淮阴区开明中学八年级月考)下列式子①11125m π-=,②413x x=-,③2x y -中,分式方程有( )个 A .1 B .2C .3D .0【答案】A①11125m π-=分母中不含未知数,所以不是分式方程,故错误;②413x x=-,符合分式方程的概念,故正确; ③2x y-,不是方程,故错误; 所以分式方程只有1个, 故选:A .2.(2020·湖北八年级期末)在显微镜下测得“新冠”病毒的直径为0.00000000205米,用科学记数法表示为( ) A .0.205×10﹣8米 B .2.05×109米 C .20.5×10﹣10米 D .2.05×10﹣9米【答案】D解:0.00000000205米,该数据用科学记数法表示为2.05×10-9米. 故选:D .3.(2020·江西八年级期末)若分式方程1512x x a=--的解为2x =,则a 的值是( ) A .1 B .2C .-1D .-2【答案】C解:将2x =代入分式方程中,得152122a=-⨯- 解得:1a =-,经检验a=-1是方程的解,故选C .4.(2020·安仁县思源实验学校八年级期中)如果(a ﹣1)0=1成立,则( ) A .a≠0 B .a≠1C .a=1D .a=0或a=1【答案】B∵2(1)1a -=成立, ∴10a -≠, ∴1a ≠, 故选:B .5.(2020·广西七年级期末)如果方程1101ax x +-=-无解,那么a 的值为 ( ). A .±1 B .-1 C .0D .1【答案】A 对原方程进行化简:()1101ax x x +--=-,()1201a xx --=-,若此方程无解: (1)转换成整式方程,()120a x-+=此方程无解,∴10a -=即1a =时,原方程无解; (2)()120a x-+=此方程的解为1x =是原方程的增根,此时1a =-则原方程也无解;故答案选A .6.(2020·四川九年级)“某市为处理污水,需要铺设一条长为4000米的管道,为了尽量减少施工对交通所造成的影响,实际施工时×××××.设原计划每天铺设管道x 米,则可得方程400040002010x x -=+.”根据此情境,题中用“×××××”表示得缺失的条件,应补为( ) A .每天比原计划多铺设10米,结果延期20天才完成任务 B .每天比原计划少铺设10米,结果延期20天才完成任务 C .每天比原计划多铺设10米,结果提前20天完成任务 D .每天比原计划少铺设10米,结果提前20天完成任务 【答案】C解:原计划每天铺设管道x 米,那么x+10就应该是实际每天比原计划多铺了10米,而用400040002010x x -=+则表示用原计划的时间﹣实际用的时间=20天, 那么就说明每天比原计划多铺设10米,结果提前20天完成任务. 故选:C .7.(2020·江阴市长寿中学八年级月考)已知关于x 的方程22x mx +-=3的解是正数,那么m 的取值范围为( )A .m >-6且m≠-2B .m <6C .m >-6且m≠-4D .m <6且m≠-2【答案】C将分式方程转化为整式方程得:2x+m=3x-6 解得:x=m+6.∵方程得解为正数,所以m+6>0,解得:m >-6. ∵分式的分母不能为0, ∴x-2≠0,∴x≠2,即m+6≠2. ∴m≠-4.故m >-6且m≠-4. 故选C .8.(2019·邯郸市凌云中学九年级)把0.00258写成10n a ⨯(110a ≤<,n 为整数)的形式,则a n +为( ) A .2.58 B .5.58C .0.58-D .0.42-【答案】D解:将0.00258用科学记数法表示为:2.58×10-3. 故a=2.58,n=-3, 则a+n=-0.42. 故选:D .9.(2020·海南中考真题)分式方程312x =-的解是( ) A .1x =- B .1x = C .5x =D .2x =【答案】C 解:312x =- 3=x-2 x=5经检验x=5是分式方程的解 所以该分式方程的解为x=5. 故选:C .10.(2019·全国八年级课时练习)一项工程,甲、乙二人合做2天完成,已知乙单独完成此项工程比甲单独完成此项工程需多用3天,那么甲单独完成此项工程需( ) A .2天 B .3天C .4天D .5天【答案】B 【解析】设甲单独完成此项工程需用x 天, 乙单独完成此项工程需用(x+3)天,根据题意得,解得,, ,经检验,,是原方程的根,但不符合题意,舍去.∴x=3,故甲单独完成此项工程需用3天. 故选B.二、填空题11.(2019·上海市浦东新区进才实验中学七年级月考)0.000621-用科学计数法表示为_____________ 【答案】46.2110--⨯由科学计数法的定义得:40.000621 6.2110--=-⨯.12.(2019·四川七年级期中)-21=2()__________. 【答案】4 【解析】解:221=2 4.2-⎛⎫= ⎪⎝⎭故答案为:4.13.(2019·四川八年级期中)若关于x 的方程222x mx x-+--=﹣2有增根,则m 的值是_____. 【答案】0解:去分母得2﹣(x ﹣m )=﹣2(x ﹣2), 解得x =2﹣m ,当x =2时,原方程有增根,即2﹣m =2,解得m =0. 故答案为0.14.(2020·江苏南通第一初中八年级月考)已知关于x 的分式方程211a x +=+的解是负数,则a 的取值范围_____________. 【答案】1a <-且2a ≠- 解:211a x +=+ a+2=x+1 x=a+1,∵方程的解是负数,x≠-1 ∴a+1<0,且a+2≠0, 解得a<-1,且a ≠-2, 故答案为:1a <-且2a ≠-.15.(2019·上海市闵行区七宝第三中学七年级月考)比较大小:412-⎛⎫- ⎪⎝⎭______413-⎛⎫- ⎪⎝⎭.(在横线上填“>”或“<”) 【答案】<444111121116221====16-⎛⎫- ⎪⎛⎫⎝⎭⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 444111131181331====81-⎛⎫- ⎪⎛⎫⎝⎭⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 因为16<81所以412-⎛⎫- ⎪⎝⎭<413-⎛⎫- ⎪⎝⎭三、解答题16.(2019·湖北十堰市北京路中学九年级月考)计算:()1212|2|4π2-⎛⎫-+-+--- ⎪⎝⎭【答案】5--解:()1212|2|4π2-⎛⎫-+-+--- ⎪⎝⎭=1242-+--=5-17.(2020·浙江杭州市·七年级期中)解方程:(1)11322x x x --=-- (2)25231x x x x +=++ 【答案】(1)x=3;(2)无解 解:(1)去分母得: 1-3(x-2)=-(x-1), 解得:x=3,经检验:x=3是原方程的解, 即原方程的解为x=3; (2)去分母得:5x+2=3x , 解得:x=-1,经检验x=-1是分式方程的增根, 即原方程无解.18.(2020·浙江七年级期末)某商场经销A ,B 两款商品,若买20件A 商品和10件B 商品用了360元;买30件A 商品和5件B 商品用了500元. (1)求A 、B 两款商品的单价;(2)若对A 、B 两款商品按相同折扣进行销售,某顾客发现用640元购买A 商品的数量比用224元购买B 商品的数量少20件,求对A 、B 两款商品进行了几折销售?(3)若对A 商品进行5折销售,B 商品进行8折销售,某顾客同时购买A 、B 两种商品若干件,正好用完49.6元,问该顾客同时购买A 、B 两款商品各几件?【答案】(1)A 商品的单价是16元,B 商品的单价是4元;(2)8折;(3)顾客购买A 商品1件,B 商品13件;或A 商品3件,B 商品8件;A 商品5件,B 商品3件 解:(1)设A 商品单价为x 元,B 商品单价为y 元.根据题意,得:2010360 305500x yx y+=⎧⎨+=⎩解得164 xy=⎧⎨=⎩所以A商品的单价是16元,B商品的单价是4元.(2)设打折后A、B两款商品进的价格分别为16a和4a,则6402242016a4a=-解得a=0.8经检验,a=0.8为原方程的解且符合题意所以A、B两款商品进行了8折销售(3)设顾客购买A商品m件,B商品n件.则8m 3.2n49.6+=m 6.20.4n=-∵m、n都为正整数∴①m=1,n=13②m=3,n=8③m=5,n=3所以顾客购买A商品1件,B商品13件;或A商品3件,B商品8件;A商品5件,B商品3件.。

人教版八年级上册数学《分式》计算题专项练习(含答案)

人教版八年级上册数学《分式》计算题专项练习(含答案)

人教版八年级上册数学《分式》计算题专项练习学校:班级:姓名:得分:1.计算:÷(﹣1)2.化简:(﹣)÷.3.化简:•.4.化简(1﹣)•.5.化简:÷﹣6.化简:÷(1﹣).7.化简:.8.计算÷().9.化简:1+÷.10.先化简,再求值:•﹣,其中x=2.11.先化简,再求值•+.(其中x=1,y=2)12.先化简,再求值:,其中x=2.13.先化简,再求值:(+)÷,其中x=﹣.14.先化简,再求值:(x﹣)÷,其中x=.15.先化简,再求值:(1+)÷.其中x=3.16.化简分式(+)÷,并在2,3,4,5这四个数中取一个合适的数作为a的值代入求值.17.先化简,再求值:÷(a﹣1﹣),并从﹣1,0,1,2四个数中,选一个合适的数代入求值.18.先化简,再求值:÷(﹣x﹣2),其中|x|=2.19.先化简,再求值:(+)÷,且x为满足﹣3<x<2的整数.20.先化简(﹣)÷,再从﹣2,﹣1,0,1,2中选一个你认为合适的数作为x的值代入求值.21.先化简,再求值:﹣÷,其中a=﹣1.22.先化简÷(a﹣2+),然后从﹣2,﹣1,1,2四个数中选择一个合适的数作为a 的值代入求值.人教版八年级上册数学《分式》计算题专项练习参考答案与试题解析1.【解答】解:原式=÷(﹣)=÷=•=.2.【解答】解:原式=[﹣]÷=÷=•=.3.【解答】解:原式=•=.4.【解答】解:(1﹣)•==.5.【解答】解:原式=•﹣=﹣=6.【解答】解:÷(1﹣)===.7.【解答】解:原式=÷(﹣)=÷=•=.8.【解答】解:原式=÷=•=﹣(a+b)=﹣a﹣b.9.【解答】解:原式=1+•=1+=+=.10.【解答】解:原式=•﹣=﹣=﹣=,当x=2时,原式==.11.【解答】解:当x=1,y=2时,原式=•+=+==﹣312.【解答】解:原式=把x=2代入得:原式=13.【解答】解:原式=•=,当x=﹣时,原式=2.14.【解答】解:(x﹣)÷====x﹣2,当x=时,原式=﹣2=﹣.15.【解答】解:(1+)÷=×=x+2.当x=3时,原式=3+2=5.16.【解答】解:原式=[﹣]÷=(﹣)•=•=a+3,∵a≠﹣3、2、3,∴a=4或a=5,则a=4时,原式=7,a=5时,原式=8.17.【解答】解:原式=÷(﹣)=÷=•=,∵a≠﹣1且a≠0且a≠2,∴a=1,则原式==﹣1.18.【解答】解:÷(﹣x﹣2)====,∵|x|=2,x﹣2≠0,解得,x=﹣2,∴原式=.19.【解答】解:原式=[+]÷=(+)•x=x﹣1+x﹣2=2x﹣3由于x≠0且x≠1且x≠﹣2所以x=﹣1 原式=﹣2﹣3=﹣5 20.【解答】解:原式=[﹣]÷=•=,∵x≠±1且x≠﹣2,∴x只能取0或2,当x=0时,原式=﹣1.21.【解答】解:原式====当a=﹣1时,原式=22.【解答】解:原式=•=当a=2时,原式==3.。

八年级数学上册分式的基本性质课时练习(含解析)

八年级数学上册分式的基本性质课时练习(含解析)

分式的基本性质一、选择题1、下列说法正确的是( )A.2y x 与23x y x+的最简公分母是5x 2B. 313a b 与316ab 的最简公分母是3ab C. 313a b 与316ab的最简公分母是3a 3b 3 D. 2y x 与23x y x +的最简公分母是6x 2【答案】D【解析】试题分析:根据最简公分母的定义求出结果.解:A 选项:2y x 与23x y x+的最简公分母是6x 2,故A 选项错误;B 选项:313a b 与316ab的最简公分母是6a 3b 3,故B 选项错误;C 选项:313a b 与316ab的最简公分母是6a 3b 3,故C 选项错误;D 选项:2y x 与23x y x +的最简公分母是6x 2,故D 选项正确.故应选D.考点:最简公分母2、下列分式是最简分式的( )A.223a a b B.23a a a - C.22a b a b ++ D. 222a ab a b --【答案】C【解析】试题分析:根据最简分式的定义进行判断.解:A 选项:223a a b 的分子、分母中有公因式a ,故A 选项不符合题意;B 选项:23a a a-的分子、分母中有公因式a ,故B 选项不符合题意;C 选项:22a b a b++的分子、分母没有公因式,所以是最简分式,故C 选项符合题意;D 选项:222a ab a b--的分子、分母中有公因式a-b ,故D 选项不符合题意.故应选C.考点:最简分式3、分式221x y -与1x y+的最简公分母为( )A. x-yB. x+yC. x 2-y 2D. (x 2-y 2)(x+y)【答案】C【解析】试题分析:先对可以分解因式的分母分解因式,再根据求最简公分母的方法求解即可.解:∵()()22x y x y x y -=+-∴分式221x y -与1x y+的最简公分母为x 2-y 2故应选C.考点:最简公分母4、如果把分式3x y x y+中的x 和y 都扩大为2倍,则分式的值( )A. 扩大为4倍 B. 扩大为8倍 C. 不变 D. 缩小为2倍【答案】B【解析】试题分析:根据分式的基本性质对分式进行变形,根据变形结果进行判断.解:如果x 和y 都扩大为2倍,则有()()()()333322821682222x y x y x y x y x y x y x y x y ⋅⋅===++++,所以分式的值扩大为原来的8倍.故应选B.考点:分式的基本性质5、已知2334b a b =-,则a b=( )A. 6 B. 119 C. 215 D. 27-【答案】B【解析】试题分析:根据比例的性质,可得8b=9a﹣3b,根据等式的性质,可得答案.解:由比例的性质,得8b=9a﹣3b.由等式的性质,得11b=9a ,119a b =故应选:B .考点:分式的基本性质.6、不改变分式的值,将分式20.020.23x x a b-+中各项系数均化为整数,结果为 ( )A. 2223x x a b -+ B.25010150x x a b -+ C. 2502103x x a b -+ D. 2210150x x a b-+【答案】B【解析】试题分析:利用分式的基本性质把分式的分子、分母都乘以100即可得到结果.解:()()2220.021000.02500.230.2310010150x x x x x x a b a b a b-⨯--==++⨯+,故应应选B.考点:分式的基本性质7、不改变分式的值,将下列各分式中的分子、分母的系数化为整数,其结果不正确的为( )A. 113223113223a b a b a ba b ++=-- B. 1.30.813820.7207x y x y x y x y --=-- C. 134624172748x y x y x yx y --=++ D. 135320.55x y x y x x --=【答案】D【解析】试题分析:根据分式的基本性质进行变形得到结果,根据得到的结果判断正误.解:A 选项,分子、分母同乘以6,正确;B 选项,分子、分母同乘以10,正确;C 选项,分子、分母同乘以8,正确;D 选项,分子、分母同乘以2,即得13620.5x y x y x x--=,错误.故应选D.考点:分式的基本性质8、根据分式的基本性质,分式a a b--可变形为( )A. a a b -- B. a a b + C. a a b -- D. a a b -+ 【答案】C【解析】试题分析:分式的符号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变.依次分析各选项即可作出判断.解:.故应选C.考点:分式的基本性质二、填空题9、分式312x ;()216x x y -的最简公分母是_ .【答案】6x 3(x-y)【解析】试题分析:根据确定最简公分母的方法求出结果.解:分式312x ;()216x x y -的最简公分母是6x 3(x-y)考点:最简公分母10、不改变分式的值,使分式的分子与分母都不含负号.(1)5x y-=-_____________;(2)2a b--=-_____________.【答案】(1) 5x y ;(2) 2a b-【解析】试题分析:分式的符号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变.依次分析各选项即可作出判断.解:(1)55x x y y-=-;(2) 22a a b b--=--.故答案是(1) 5x y ;(2) 2a b-.考点:分式的基本性质11、把分式32223a b a b -+的分子、分母中的各项系数都化为整数,且保持分式的值不变,则结果为_________________.【答案】12946a ba b-+【解析】试题分析:根据分式的基本性质把分子、分母同时乘以6,可得结果.解:33262129222246633a b a b a b a b a b a b ⎛⎫-⨯- ⎪-⎝⎭==+⎛⎫++⨯ ⎪⎝⎭.故答案是12946a b a b-+.考点:分式的基本性质. 12、若23b a =,则a b a b -=+ .【答案】15【解析】试题分析:根据23b a =,可设a=3k ,b=2k ,然后再利用代入法求出分式的值.解:因为23b a =,设a=3k ,b=2k ,3213255a b k k k a b k k k --===++.故答案是15.考点:分式的基本性质三、解答题13、化简:2223712a a a a ---+.【答案】14a a +-【解析】试题分析:首先把分式的分子、分母分别分解因式,然后再约去公因式.解:2223712a a a a ---+()()()()3134a a a a -+=--14a a +=-.考点:约分14、约分:22211m m m-+-.【答案】11mm -+【解析】试题分析:首先把分式的分子、分母分别分解因式,然后再约去公因式.解:22211m m m -+-()()()2111m m m -=-+11m m -=+.考点:约分15、先化简,再求值.(1)22969m m m -++,其中m=5.【答案】14【解析】试题分析:首先根据分式的基本性质把分式化简,然后再把字母的值代入化简后的分式中求值.解:22969m m m -++()()()2333m m m +-=+33m m -=+,当m=5时,原式33m m -=+5353-=+14=考点:分式的化简求值.。

人教版八年级数学上册 第 15 章《分式》 单元测试题(配套练习附答案)

人教版八年级数学上册 第 15 章《分式》 单元测试题(配套练习附答案)
【答案】 ,
【解析】
【分析】
原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,将x的值代入计算即可求出值.
【详解】解:原式
当x=1时,原式= .
【点睛】本题考查了分式的化简求值,解题的关键是熟练的掌握分式的化简求值.
19.开学初,小芳和小亮去学校商店购买学习用品,小芳用30元钱购买钢笔的数量是小亮用25元钱购买笔记本数量的2倍,已知每支钢笔的价格比每本笔记本的价格少2元
11.当a=______时, 的值为零.
【答案】﹣1.
【解析】
【分析】
根据分式的值为零的条件列式计算即可.
【详解】由题意得:a2﹣1=0,a﹣1≠0,
解得:a=﹣1.
故答案为:﹣1.
【点睛】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:①分子为0;②分母不为0.这两个条件缺一不可.
(1)求每支钢笔和每本笔记本各是多少元;
(2)学校运动会后,班主任再次购买上述价格的钢笔和笔记本共50件作为奖品,奖励给校运动会中表现突出的同学,总费用不超过200元.请问至少要买多少支钢笔?
【答案】(1)每支钢笔3元,每本笔记本5元;(2)至少要买25支钢笔.
【解析】
【分析】
(1)根据小芳用30元钱购买钢笔的数量是小亮用25元钱购买笔记本数量的2倍,已知每支钢笔的价格比每本笔记本的价铬少2元,可以得到相应的方程,解方程即可求得每支钢笔和每本笔记本各是多少元;
2018-2019年人教版八年级数学上册 第 15 章《分式》经典题型单元测试题
第Ⅰ卷(选择题)
一.选择题(每小题3分,共10小题)
1.若把 变形为 ,则下列方法正确的是
A.分子与分母同时乘 B.分子与分母同时除以

人教版八年级上册数学 第十五章分式同步复习题(含详细答案)

人教版八年级上册数学 第十五章分式同步复习题(含详细答案)

人教版八年级上册数学第十五章分式复习题一.选择题1.关于x的分式方程﹣=0的解为()A.﹣3 B.﹣2 C.2 D.32.某学校食堂需采购部分餐桌,现有A、B两个商家,A商家每张餐桌的售价比B商家的优惠13元.若该校花费2万元采购款在B商家购买餐桌的张数等于花费1.8万元采购款在A商家购买餐桌的张数,则A商家每张餐桌的售价为()A.117元B.118元C.119元D.120元3.使分式的值为0,这时x应为()A.x=±1 B.x=1C.x=1 且x≠﹣1 D.x的值不确定4.一个圆柱形容器的容积为Vm3,开始用一根小水管向容器内注水,水面高度达到容器高度一半后,改用一根口径为小水管2倍的大水管注水,向容器中注满水的全过程共用时间t 分钟.设小水管的注水速度为x立方米/分钟,则下列方程正确的是()A.+=t B.+=tC.•+•=t D.+=t5.春节期间,文具店的一种笔记本8折优惠出售.某同学发现,同样花12元钱购买这种笔记本,春节期间正好可比春节前多买一本.这种笔记本春节期间每本的售价是()A.2元B.3元C.2.4元D.1.6元6.已知关于x的方程的解是正整数,且k为整数,则k的值是()A.0 B.﹣2 C.0或6 D.﹣2或67.已知,则的值为()A.5 B.6 C.7 D.88.已知关于x的方程=3的解是负数,那么m的取值范围是()A.m>﹣6且m≠﹣2 B.m<﹣6 C.m>﹣6且m≠﹣4 D.m<﹣6且m≠﹣29.要使分式有意义,x的取值是()A.x≠1 B.x≠﹣1 C.x≠±1 D.x≠±1且x≠﹣2 10.随着电子技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占有面积0.00000065mm2,0.00000065用科学记数法表示为()A.6.5×107B.6.5×10﹣6C.6.5×10﹣8D.6.5×10﹣711.下列各式中,正确的是()A.B.C.=b+1 D.=a+b12.如果分式方程无解,则a的值为()A.﹣4 B.C.2 D.﹣213.已知关于x的分式方程的解为正数,则k的取值范围为()A.﹣2<k<0 B.k>﹣2且k≠﹣1 C.k>﹣2 D.k<2且k≠1 14.某车间接了生产12000只口罩的订单,加工4800个口罩后,采用了的新的工艺,效率是原来的1.5倍,任务完成后发现比原计划少用了2个小时.设采用新工艺之前每小时可生产口罩x个,依据题意可得方程()A.=2B.=2C.=2D.=2二.填空题15.分式的值比分式的值大3,则x的值为.16.若关于x的分式方程,有负数解,则实数a的取值范围是.17.已知分式,当x=1时,分式无意义,则a=.18.清代诗人袁枚的一首诗《苔》中写到:“白日不到处,青春恰自来.苔花如米小,也学牡丹开”,若苔花的花粉直径约为0.0000084米,用科学记数法表示为米.19.对和进行通分,需确定的最简公分母是.20.已知关于x的分式方程+=.若方程有增根,则m的值为.三.解答题21.计算(1)﹣(2)+﹣(3)(+)÷22.化简求值:,其中x=.23.中国是最早发现并利用茶的国家,形成了具有独特魅力的茶文化.2020年5月21日以“茶和世界共品共享”为主题的第一届国际茶日在中国召开.某茶店用4000元购进了A 种茶叶若干盒,用8400元购进B种茶叶若干盒,所购B种茶叶比A种茶叶多10盒,且B 种茶叶每盒进价是A种茶叶每盒进价的1.4倍.(1)A,B两种茶叶每盒进价分别为多少元?(2)第一次所购茶叶全部售完后,第二次购进A,B两种茶叶共100盒(进价不变),A 种茶叶的售价是每盒300元,B种茶叶的售价是每盒400元.两种茶叶各售出一半后,为庆祝国际茶日,两种茶叶均打七折销售,全部售出后,第二次所购茶叶的利润为5800元(不考虑其他因素),求本次购进A,B两种茶叶各多少盒?24.甲、乙两个服装厂加工同种型号的防护服,甲厂每天加工的数量是乙厂每天加工数量的1.5倍,两厂各加工600套防护服,甲厂比乙厂要少用4天.(1)求甲、乙两厂每天各加工多少套防护服?(2)已知甲、乙两厂加工这种防护服每天的费用分别是150元和120元,疫情期间,某医院紧急需要3000套这种防护服,甲厂单独加工一段时间后另有安排,剩下任务只能由乙单独完成.如果总加工费不超过6360元,那么甲厂至少要加工多少天?25.新型冠状病毒肺炎疫情发生后,全社会积极参与疫情防控工作,某市为了尽快完成100万只口罩的生产任务,安排甲、乙两个大型工厂完成.已知甲厂每天能生产口罩的数量是乙厂每天能生产口罩的数量的1.5倍,并且在独立完成60万只口罩的生产任务时,甲厂比乙厂少用5天.问至少应安排两个工厂工作多少天才能完成任务?参考答案一.选择题1.解:去分母得:2x﹣6﹣5x=0,解得:x=﹣2,经检验x=﹣2是分式方程的解,故选:B.2.解:设A商家每张餐桌的售价为x元,则B商家每张餐桌的售价为(x+13),根据题意列方程得:=,解得:x=117,经检验:x=117是原方程的解.故选:A.3.解:∵分式的值为0,∴x2﹣1=0,且x+1≠0,解得:x=1.故选:B.4.解:设小水管的注水速度为x立方米/分钟,可得:,故选:C.5.解:设这种笔记本节日前每本的售价是x元,根据题意得:,解得:x=3,经检验,x=3是原方程的解,∴0.8x=0.8×3=2.4(元),答:这种笔记本节日期间每本的售价是2.4元,故选:C.6.解:方程去分母,得9﹣3x=kx,即kx+3x=9,∴x=因为原分式方程的解为正整数,且x≠3.所以x==1、2、4、5、6、7、8、9,又因为k为整数,所以k=﹣2或6.故选:D.7.解:∵,∴(a+)2=9,即a2+2+=9,则=7,故选:C.8.解:去分母,得2x﹣m=3x+6,∴x=﹣m﹣6.由于方程的解为负数,∴﹣m﹣6<0且﹣m﹣6≠﹣2,解得m>﹣6且m≠﹣4.故选:C.9.解:要使分式有意义,则x+1≠0,解得:x≠﹣1,故选:B.10.解:0.00000065=6.5×10﹣7.故选:D.11.解:与在a=0或a=b时才成立,故选项A不正确;==,故选项B正确;=b+,故选项C不正确;不能化简,故选项D不正确;故选:B.12.解:去分母得:x=2(x﹣4)﹣a解得:x=a+8根据题意得:a+8=4解得:a=﹣4.故选:A.13.解:去分母得:x﹣2(x﹣1)=k,去括号得:x﹣2x+2=k,解得:x=2﹣k,由分式方程的解为正数,得到2﹣k>0,且2﹣k≠1,解得:k<2且k≠1,故选:D.14.解:设采用新工艺之前每小时可生产口罩x个,则采用新工艺之后每小时可生产口罩1.5x个,依题意,得:﹣=2.故选:D.二.填空题(共6小题)15.解:根据题意得:﹣=3,去分母得:x﹣3﹣1=3x﹣6,移项合并得:﹣2x=﹣2,解得:x=1,经检验x=1是分式方程的解,故答案为:1.16.解:,分式方程去分母得:1﹣x﹣3=a,移项合并得:﹣x=a+2,解得:x=﹣a﹣2,∵分式方程的解为负数,∴﹣a﹣2<0且﹣a﹣2+3≠0,解得:a>﹣2且a≠1.故答案为:a>﹣2且a≠1.17.解:把x=1代入得:,此时分式无意义,∴a﹣3=0,解得a=3.故答案为:3.18.解:0.0000084=8.4×10﹣6,故答案为:8.4×10﹣6.19.解:分式和的分母分别是2(x+y)、(x+y)(x﹣y).则最简公分母是2(x+y)(x﹣y).故答案是:2(x+y)(x﹣y).20.解:若原分式方程有增根,则(x+2)(x﹣2)=0,所以x=﹣2 或x=2,当x=﹣2 时,﹣2m=﹣8.得m=4,当x=2 时,2m=﹣8.得m=﹣4,所以若原分式方程有增根,则m=±4;故答案为:±4.三.解答题(共5小题)21.解:(1)﹣=+=;(2)+﹣=+﹣===﹣;(3)(+)÷=•=x﹣1.22.解:原式=•==﹣x(x+1)=﹣x2﹣x当x=时,原式=﹣2﹣.23.解:(1)设A种茶叶每盒进价为x元,则B种茶叶每盒进价为1.4x元,依题意,得:﹣=10,解得:x=200,经检验,x=200是原方程的解,且符合题意,∴1.4x=280.答:A种茶叶每盒进价为200元,B种茶叶每盒进价为280元.(2)设第二次购进A种茶叶m盒,则购进B种茶叶(100﹣m)盒,依题意,得:(300﹣200)×+(300×0.7﹣200)×+(400﹣280)×+(400×0.7﹣280)×=5800,解得:m=40,∴100﹣m=60.答:第二次购进A种茶叶40盒,B种茶叶60盒.24.解:(1)设乙厂每天加工x套防护服,则甲厂每天加工1.5x套防护服,根据题意,得﹣=4.解得x=50.经检验:x=50是所列方程的解.则1.5x=75.答:甲厂每天加工75套防护服,乙厂每天加工50套防护服;(2)设甲厂要加工m天,根据题意,得150m+120×≤6360.解得m≥28.答:甲厂至少要加工28天.25.解:设乙厂每天能生产口罩x万只,则甲厂每天能生产口罩1.5x万只,依题意,得:﹣=5,解得:x=4,经检验,x=4是原方程的解,且符合题意,∴1.5x=6.再设应安排两个工厂工作y天才能完成任务,依题意,得:(6+4)y≥100,解得:y≥10.答:至少应安排两个工厂工作10天才能完成任务.。

部编数学八年级上册专题01运算能力课之分式的化简求值综合专练(解析版)(人教版)含答案

部编数学八年级上册专题01运算能力课之分式的化简求值综合专练(解析版)(人教版)含答案

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!专题01运算能力课之分式的化简求值综合专练(解析版)学校:___________姓名:___________班级:___________考号:___________一、解答题1.(2021·山西八年级期末)先化简:221a a +-÷(a +1)+22121a a a --+,然后让a 在-1、1、5三个数中选一个合适的数代入求值.【答案】31a a +-;当a =5时,原式值为2【分析】先化除法为乘法,然后利用提取公因式、完全平方公式、平方差公式进行因式分解,通过约分对已知分式进行化简,最后代入求值.【详解】解:原式()()()()221111213111111a a a a a a a a a a a ++-++=´+=+=-+----由题意可知:21010210a a a a -¹ìï+¹íï-+¹î解得a ≠±1. 所以当a =5时,原式=5325-1+=.【点睛】本题考查了分式的化简求值.分式中的一些特殊求值题并非是一味的化简,代入,求值.许多问题还需运用到常见的数学思想,如化归思想(即转化)、整体思想等,了解这些数学解题思想对于解题技巧的丰富与提高有一定帮助.就本节内容而言,分式求值题中比较多的题型主要有三种:转化已知条件后整体代入求值;转化所求问题后将条件整体代入求值;既要转化条件,也要转化问题,然后再代入求值.2.(2021·辽宁阜新市·八年级期末)(1)因式分解:22()9()a x y b y x -+-.(2)解不等式组10213(1)x x x ì-<ïíï-£+î.(3)先化简,再求值:2244111x x x x x x -+æö+¸ç÷---èø,其中5x =.【答案】(1)()(3)(3)x y a b a b --+;(2)22x -£<;(3)11,23x -【分析】(1)先提公因式,再用公式法因式分解;(2)分别解不等式①②,再求不等式组的解集;(3)先化简分式,再将x 的值代入求解【详解】(1)原式()2222()9()()9a x y b x y x y a b =---=--()(3)(3)x y a b a b =--+(2)10213(1)x x x ì-<ïíï-£+î①②由①得,2x <,由②得,2x ³-,∴原不等式组解集为22x -£<.(3)原式2211(2)x x x x --æö=´ç÷--èø2(2)(1)1(2)x x x x ----=´--12x =-当5x =时,原式11523==-.【点睛】本题考查了多项式的因式分解,解一元一次不等式组,分式的化简求值,熟练运用以上知识是解题的关键.3.(2021·甘肃)先化简,再求值:22242244x x x x x -æö-¸ç÷--+èø,请在2-、0、2中选择一个适合的x 的值,代入求值.【答案】42x -+;-2【分析】把括号内通分,把除法转化为乘法约分化简,然后取一个使原分式有意义的数代入计算.【详解】解:原式2224244224x x x x x x x --+æö=-×ç÷---èø2242(2)2(2)(2)x x x x x x ---æö=×ç÷-+-èø24(2)(2)(2)(2)x x x x --=×-+-42x =-+,∵当x =2或-2时原分式无意义,∴x =0,∴原式4202=-=-+.【点睛】本题考查了分式的化简求值,熟练掌握分式的运算法则是解答本题的关键.分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先算乘除,再算加减,有括号的先算括号里面的;最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.4.(2021·安徽七年级期末)先化简,再求值:25(3)(222x x x x +--¸++,其中x =4.【答案】33x x -+,17【分析】先算括号内的减法,同时把除法变成乘法,再算乘法,最后代入求出答案即可.【详解】解:25(3)(222x x x x +--¸++=2(2)(2)522(3)x x x x x -+-+++g 2292=2(3)x x x x -+++g ()()2332=2(3)x x x x x +-+++g 3=3x x -+,当x =4时,原式=4343-+=17.【点睛】本题考查了分式的化简求值,熟练掌握分式的混合运算法则,正确进行化简是解题关键.5.(2021·安徽七年级期末)先化简,再求值:21(1)11x x x x --¸++,其中x 是16的算术平方根.【答案】11x --,1-3.【分析】先求出x 的值,再运用分式的四则混合运算法则进行化简,将x 的值代入计算即可.【详解】解:4,∴x =4.21(1)11x x x x --¸++=111()11(1)x x x x x x ++-×++-=11(1)x x x x x +-×+-=11x --.当x =4时,原式=11x --=11413-=--.【点睛】本题主要考查了算术平方根、分式的化简求值,正确的运用分式的四则混合运算法则进行化简是解答本题的关键.6.(2021·安徽七年级期末)观察以下等式:①111112212-==´;②111123623-==´;③1111341234-==´…,按以上规律解决下列问题:(1)第⑤个等式是 .(2)探究:111122334++´´´…+1(1)n n ´+= (用含的等式表示);(3)计算:若111133557++´´´+…1(21)(21)n n -´+=1633,求n 的值.【答案】(1)1115656-=´;(2)1n n +;(3)16【分析】(1)根据规律写出第5个等式即可;(2)根据规律裂项相消即可;(3)根据(2)的规律整理出n 的方程,解出n 值即可.【详解】解:(1)根据规律可知,第⑤个等式是1115656-=´故答案为:1115656-=´;(2)由规律可得,()1111111111111223341223341n n n n ++=-+-+-++-´´´´++L L 111n =-+1nn =+故答案为:1n n +;(3)∵11111323æö=-ç÷´èø,111135235æö=-ç÷´èø,111157257æö=-ç÷´èø∴可以得到()()1111212122121n n n n æö=-ç÷-´+-+èø∴()()11111335572121n n ++´´´-´+1111111112335572121n n æö=-+-+-++-ç÷-+èøL 111221n æö=-ç÷+èø21n n =+∵()()111116133557212133n n ++=´´´-´+∴162133n n =+解得n =16,经检验n =16,是该分式方程的解,故n 的值为16.【点睛】本题主要考查了数字的变化规律,利用规律化简分式是解题的关键.7.(2021·山东八年级期末)先化简再求值:2222a b ab b b a ab æö+--¸ç÷èø,已知4a b =-.【答案】2a b -,-2【分析】先将括号内两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把4a b =-代入计算即可就求出值.【详解】解:原式222=()22()a b ab ab a a b a b +-×-2()2a b a a a b-=×-2a b -=. ∵4a b =-,∴a -b =-4.∴原式=-2.【点睛】本题主要考查了分式的化简求值,熟练掌握运算法则是解题的关键.8.(2021·无锡市天一实验学校八年级期中)先化简再求值:23331111x x x x x -¸--++,其中2x =-.【答案】()11x x +,12【分析】先把除法化为乘法,再进行约分,然后算分式的减法,再代入求值,即可求解.【详解】解:原式=()3(1)111(1)31x x x x x x -+×-+-+=111x x -+=()()111x x x x x x +-++=()11x x +,当x =-2时,原式=()1221-´-+=12.【点睛】本题主要考查分式的化简求值,掌握分式的约分和通分是解题的关键.9.(2021·安徽)先化简,再求值(1﹣22221m m m +++)÷(11m -),其中m =2.【答案】1m m +,23【分析】根据分式的混合运算法则把原式化简,把m 的值代入计算即可.【详解】解:22211121m m m m +æöæö-¸-ç÷ç÷++èøèø222122121m m m m m m m æö++---æö=¸ç÷ç÷++èøèø221121m m m m m æö--=¸ç÷++èø()()()21111m m mm m +-=-+g 1mm =+把2m =代入上式中原式221213m m ===++【点睛】本题考查分式的化简求值.注意运算顺序和约分法则.还需注意分式的分母不能为0.10.(2021·云南)下面是小彬同学进行分式化简的过程,请认真阅读并完成相应任务.229216926x x x x x -+-+++ 2(3)(3)21(3)2(3)x x x x x +-+=-++ 第一步32132(3)x x x x -+=-++ 第二步2(3)212(3)2(3)x x x x -+=-++ 第三步26(21)2(3)x x x --+=+ 第四步26212(3)x x x --+=+ 第五步526x =-+ 第六步任务一 填空 在以上化简步骤中,其中有一步是根据分式的基本性质:“分式的分子与分母都乘(或除以)同一个不为零的整式,分式的值不变,”对分式进行通分.这是第__________步;任务二 订正 请写出该分式化简的正确过程;任务三 求值 当114x -æö=ç÷èø时,求该分式的值.【答案】任务一:三;任务二:见解析;任务三:12-【分析】任务一:根据分式的基本性质即可判断;任务二:依据分式的加减运算法则计算可得;任务三:将x 的值化简代入计算即可.【详解】解:任务一:以上化简步骤中,第三步是进行分式的通分,通分的依据是分式的基本性质,故答案为:三;任务二:解:原式2(3)(3)21(3)2(3)x x x x x +-+=-++32132(3)x x x x -+=-++2(3)212(3)2(3)x x x x -+=-++26(21)2(3)x x x --+=+ 26212(3)x x x ---=+ 726x =-+.任务三:解:当11()44x -==时,原式71=2462=--´+.【点睛】本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则及分式的基本性质.11.(2021·苏州市景范中学校九年级二模)先化简,再求值:2222(1)32111x x x x x x x x ++-¸--+--,其中1x =+.【答案】31x -【分析】根据分式的运算法则进行化简,然后将x 的值代入原式即可求出答案.【详解】解:原式=22(1)(1)3(1)(1)(1)1x x x x x x x x ++-¸--+--=22(1)(1)(1)3(1)(1)1x x x x x x x x ++--´--+-=311x x x x ----=31x x x -+-=31x -;当1x =时,原式=【点睛】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.12.(2021·山东)化简和化简求值(1)21(11a a a a+¸--;(2)先化简2221(21)11x x x x x x -+¸++-+,再从-1,0,1中选择合适的x 值代入求值.【答案】(1)a -(2)11x -;当0x =时,原式1=-【分析】(1)先将括号里通分计算,再算除法;(2)先运用通分法则计算括号内部分,然后将除法转换为乘法计算化简后,挑一个使分式有意义的值代入计算即可.【详解】解:(1)原式11=(+)11(1)a a a a a a -¸---1(1)1a a a ´--=a =-;(2)原式2221(1)()11(1)(1)x x x x x x x -+=-+++-g 1111x x x +=+-g ,11x =-,由分式可知:1x ¹±,当0x =时,原式1=-.【点睛】本题主要考查分式的化简求值以及分式有意义的条件,熟练掌握分式的混合运算法则是解答本题的关键.13.(2021·江苏八年级期末)化简或解方程:(1)化简:21442a a a+--;(2)先化简再求值:222()111a a a a a ++¸+--,其中a 1.(3)解分式方程:11322x x x -=---.【答案】(1)124a +;(2)31a +;(3)原方程无解.【分析】(1)先把分式的分母分解因式,再通分,最后根据同分母的分式相加的法则求出答案即可;(2)先算括号内的加法,把除法变成乘法,算乘法,最后代入求出答案即可;(3)方程两边都乘以x ﹣2得出方程1=x ﹣1﹣3(x ﹣2),求出方程的解,再进行检验即可.【详解】解:(1)解:原式=()()()12222a a a a -+--,=()()()22222a a a a -++-,=()()2222a a a -+-,=()122a +,=124a +;(2)222()111a a a a a ++¸+--解:原式=()()221111a a a a a a éù+-+×êú++-êúëû,=()()()()()21211111a a a a a a a a éù-+-+×êú+-+-êúëû,=()()3111a a a a a -×+-,=31a + ,当a 1- (3)11322x x x -=---,解:方程两边都乘以x ﹣2,得1=x ﹣1﹣3(x ﹣2),解得:x =2,检验:当x =2时,x ﹣2=0,所以x =2是增根,即原方程无解.【点睛】本题主要考查分式化简求值和解分式方程,解决本题的关键是要熟练掌握分式化简求值和解分式方程的方法.14.(2021·湖北八年级期末)先化简,再求值:2222b b a a b a b ab bæö-¸ç÷--+èø,其中a =,b1.【答案】2,3b a b-【分析】根据分式的减法和除法可以化简题目中的式子,然后将a 、b 的值代入化简后的式子即可解答本题.【详解】解:2222b b a a b a b ab bæö-¸ç÷--+èø=()()()()2b a b b b a b a b a b a +-+´+-=ab a b b a -´=2b a b-当a时,3===.【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键,代值计算要仔细.15.(2021·福建莆田二中)先化简,再求值:(1﹣2a a a +)÷22121a a a -++,其中2a =.【答案】1a a -,2【分析】利用通分,因式分解,运算法则细心计算即可.【详解】解:原式=()()()222111a a a a a a a a +-+-¸++=()()()()221·111a a a a a a +++-=1a a -,当2a =时,原式2221==-.【点睛】本题考查了分式的化简,熟练运用分式的通分,因式分解,约分进行化简是解题的关键.16.(2021·河南八年级期末)下面是小彬同学进行分式化简的过程,请认真阅读并完成相应任务:22112221x x x x x ---+++=2(1)(1)12(1)(1)x x x x x +---++…第一步=1112(1)x x x x ---++…第二步=2(1)12(1)2(1)x x x x ---++…第三步=2(1)(1)2(1)x x x ---+…第四步=2212(1)x x x ---+…第五步=322x x -+…第六步任务一:填空:(1)以上化简步骤中,第一步进行的运算是 .A .整式乘法B .因式分解(2)以上化简步骤中,第 步是进行分式的通分,通分的依据: .(3)第 步开始出现错误,这一步错误的原因: .任务二:请直接写出该分式化简后的正确结果,并从不等式组211102x x +³ìïí-+>ïî的解集中选择一个合适的整数作为x 的值,代入求值;任务三:除纠正上述错误外,请你根据平时的学习经验,就分式化简时还需要注意的事项给其他同学提一条建议.【答案】任务一:(1)B ;(2)四,分式的基本性质;(3)五,去括号没有变号;任务二:122x x -+,12-或0;任务三:分式化简时需要注意分母的取值不为零.【分析】任务一:分式化简的要先因式分解,再通分;任务二:解不等式组,求得解集,选取合适的值,代入计算即可;任务三:在运算时,去括号要注意变号,代入求值时,注意分母的取值.【详解】解:(1)第一步进行因式分解,故选:B ;(2)第四步分式通分,通分根据分式的基本性质,故答案为:四,分式的基本性质;(3)第五步出现错误,原式2(1)(1)2(1)x x x ---=+2212(1)x x x --+=+,在去括号时符号错误,故答案为:五,去括号没有变号;任务二:22112221x x x x x ---+++2(1)(1)1(1)2(1)x x x x x +--=-++1112(1)x x x x --=-++2(1)12(1)2(1)x x x x --=-++2(1)(1)2(1)x x x ---=+2212(1)x x x --+=+122x x -=+,解不等式组2 1 110 2x x +³ìïí-+>ïî①②,由①得,x ≥﹣1,由②得,x <2,∴不等式组的解集为﹣1≤x ≤2,∵x ≠﹣1,∴x 可以取0,1,当x =0时,原式=12-,当x =1时,原式=0;任务三:分式化简时需要注意分母的取值不为零.【点睛】本题考查了分式的化简,解不等式组,熟练掌握分式化简的方法,掌握分式的基本性质,注意分母的取值不为零的情况是解题的关键.17.(2021·贵州八年级期末)先化简,再求值:(x ﹣2122x -+)42x x -¸+,其中x =5.【答案】﹣x ﹣4,﹣9.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x 的值代入计算即可.【详解】解:(x ﹣2122x -+)42x x -¸+()()22122x x x -+-=+•24x x +-2162x x -=+•24x x +- ()()442x x x +-=+•()24x x +-- =﹣(x +4)=﹣x ﹣4,当x =5时,原式=﹣5﹣4=﹣9.【点睛】本题主要考查分式的化简求值,解题关键是掌握分式的混合运算顺序和运算法则.18.(2021·湖南师大附中博才实验中学八年级期末)先化简,再求值:(1﹣31x +)÷2441x x x -++,其中x =3.【答案】1,12x -.【分析】先将括号里的分式通分,然后按照分式减法法则计算,再根据分式除法法则进行运算即可将分式化简,最后代入字母取值进行计算即可求解.【详解】解:原式=()2213111x x x x x -+æö-¸ç÷+++èø,=()22112x x x x -+×+-,=12x -,当x =3时,原式=1132=-.【点睛】本题主要考查分式化简求值,解决本题的关键是要熟练掌握分式的通分和分式的运算法则.19.(2021·浙江七年级期末)先化简,再求值:x y xy -÷(x y y x-),其中x =12,y =﹣13.【答案】1x y+,6【分析】根据分式的加减运算以及乘除运算法则进行化简,然后将x 与y 的值代入原式即可求出答案.【详解】解:原式=22x y x y xy xy--¸=22x y xy xy x y --g =()()x y xy xy x y x y -+-g =1x y+,当x =12,y =﹣13时,原式=116=6.【点睛】本题考查分式的化简求值,解题的关键是熟练运用分式的加减运算以及乘除运算法则进行计算,本题属于基础题型.20.(2021·辽宁八年级期末)先化简,再求值:2211121x x x x x---¸++,其中3x =.【答案】11x +,14【分析】根据分式的运算法则及运算顺序进行化简,再代入求值即可.【详解】解:2211121x x x x x---¸++()()()211111x x xx x +-=-×-+11=-+x x 11+-=+x x x 11x =+,当3x =时,原式131=+14=.【点睛】此题考查了分式的化简求值,能正确根据分式的运算法则进行化简是解此题的关键.21.(2021·四川成都市·九年级期末)先化简,再求值:232a a a --÷(a +2﹣52a -),其中a 2+3a ﹣1=0.【答案】213a a +,1【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把已知等式变形后代入计算即可求出值.【详解】解:原式=()()()225322a a a a a a +---¸--=()()()()23233a a a a a a --´-+-=()13a a +=213a a +,∵a 2+3a ﹣1=0,∴a 2+3a =1,则原式=1.【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.22.(2021·山西临汾市·八年级期中)计算:(1)101(1)12p -æö--+-ç÷èø(2)2241611a a a a a æö--+¸ç÷--èø,其中2a =-.【答案】(1(2)14a -+,12-【分析】(1)利用零指数幂,负正数指数幂,绝对值的性质化简计算即可;(2)先将括号内的分式通分计算,同时将除法转化为乘法,约分化简计算即可;【详解】解:(1)原式211=-+-=(2)原式24(1)(4)(4)111a a a a a a a a æö--+-=+¸ç÷---èø411(4)(4)a a a a a --=×-+-14a =-+.当2a =-时,原式11242=-=--+.【点睛】本题主要考查实数的混合运算及分式的混合运算,熟练运用零指数幂,负整数指数幂及绝对值的运算性质和分式的混合运算法则计算是解题的关键.23.(2021·重庆实验外国语学校八年级期末)化简求值:232228323y x x y x x y x y x xy y x yæö+-+¸×ç÷+++-èø,其中x y =【答案】x y x +-,﹣1【分析】先利用完全平方公式和提取公因式法和平方差公式分解因式,然后根据分式的运算法则进行化简,然后将x 与y 的值代入原式即可求出答案.【详解】解:2322283·23y x x y x x y x y x xy y x yæöæö+-+¸ç÷ç÷+++-èøèø()()22222383x x y y x y x x y x yx y éù+æö-+=¸êç÷+-+èøêúëûg ()()2222933x y y x x x y x x y x y +-=++-g g ()()()()223333y x y x x y x x y x x y x y+-+=++-g g x yx +=-把x =,y =原式=﹣1﹣y x =﹣1【点睛】本题主要考查了分式的化简求值,解题的关键在于能够熟练掌握分式的混合运算的相关方法.24.(2021·辽宁鞍山市·八年级期中)已知2m =2121m m m -+-的值.【答案】3【分析】结合m 值先化简分式,再将m 的值代入化简后的式子求解即可.【详解】2121m m m -+-2(1)1m m -=-11(1)m m m m -=---.Q 2m =110m \-=<,\原式1121123m m =-+===.【点睛】本题考查了分式的化简,二次根式的性质,分母有理化,正确的计算是解题的关键.25.(2021·辽宁葫芦岛市·八年级期中)给出以下式子:224114422x x x x x x æö-+-¸ç÷-+-+èø,先简化,然后从1-,2,2+【答案】22x x +-,2x =+1【分析】先根据分式的运算法则及运算顺序进行化简,再将使原式有意义的未知数的值代入计算即可.【详解】解:原式()()()22212212x x x x x x éù+-+=-×êú-+-êúëû212221x x x x x ++æö=-×ç÷--+èø1221x x x x ++=×-+x 2x 2+=-,由题意得,20x -¹,20x +¹,10x +¹,∴2x ¹,2x ¹-,1x ¹-,∴当2x =+原式==1=【点睛】本题考查了分式的化简求值和二次根式的化简求值,熟练掌握分式和二次根式的运算法则是解决本题的关键.26.(2021·河南南阳市·八年级期中)已知a 2+a =1,求代数式221312442a a a a a a a +---¸++++的值.【答案】222a a +-,-2【分析】先根据分式的运算法则进行化简,然后整体代入21a a +=即可求解.【详解】解:原式=()22122123a a a a a a +-+-´+-+=()()213221a a a a a +--++-=()()221321a a a a --++-222a a =+-21a a +=Q \原式2212==--【点睛】本题考查分式的化简求值,掌握整体代入思想是解题的关键.27.(2021·胶州市初级实验中学九年级一模)(1)计算:212111a a a a a +æö-+¸ç÷++èø(2)解不等式组:235123x x x -³-ìïí+<ïî(3)关于x 的方程()21310m x x ++-=有两个实数根,求m 的取值范围【答案】(1)2a a +;(2)不等式组的解集为3x >;(3)m 的取值范围为134m £且1m ¹-.【分析】(1)由分式的加减乘除混合运算进行化简,即可得到答案;(2)分别求出每个不等式的解集,然后取公共部分,即可得到答案;(3)根据根的判别式0D ³,即可求出m 的取值范围.【详解】解:(1)212111a a a a a +æö-+¸ç÷++èø=211111(2)a a a a a a æö-++´ç÷+++èø=211(2)a a a a a +´++=2a a +;(2)235123x x x -³-ìïí+<ïî①②解不等式①,得1x ³-;解不等式②,得3x >;∴不等式组的解集为3x >;(3)∵关于x 的方程()21310m x x ++-=有两个实数根,∴()()234110m D =-´+´-³,∴134m £;当10m +=,即1m =-时,原方程是一元一次方程,只有一个解,不符合题意;∴1m ¹-;∴m 的取值范围为134m £且1m ¹-.【点睛】本题考查了分式的加减乘除混合运算,分式的化简,解不等式组,一元二次方程根的判别式,解题的关键是熟练掌握运算法则,正确的进行计算.28.(2021·浙江七年级期末)按条件求值:①若分式52x +的值是整数,求非负整数x 的值.②已知分式321x x -+可以写成531x -+,利用上述结论解决;若分式234x x--表示一个整数,求整数x 的值.③化简:235222x x x x x x -æö¸+-¸ç÷--èø,再从0,2±,3±五个数中,选择一个你最喜欢的数代入并求值.【答案】①3;②3或5或9或-1;③13x +,1【分析】①根据分式的值是整数可得x +2=±5,从而求出x ;②将分式变形为524x ---,参照①中方法即可求出x ;③首先通分,计算括号里面分式的减法,然后再计算括号外的除法,化简后,再根据分式有意义的条件确定x 的值,然后代入x 的值即可.【详解】解:①分式52x +的值是整数,∴x +2=±5,∴x =3或x =-7,∵x 为非负整数,∴x =3;②234x x--=()42384x x --+--=524x ---,∴x -4=±1或±5,∴x =3或5或9或-1;③235222x x x x x x -æö¸+-¸ç÷--èø=()2345222x x x x x x x -æö-¸-¸ç÷---èø=()23922x x x x x x --¸¸--=()()()321233x x x x x x x--´´-+-=13x +∵x 不能取0,3,2,-3,∴x =-2时,原式=123-+=1.【点睛】此题主要考查了分式的化简求值,关键是掌握分式的除法和减法计算法则,正确把分式进行化简.29.(2021·山西八年级期中)阅读材料,完成任务.一道习题引发的思考小明在学习第16章《分式》时,遇到了一道习題,并对有关内容进行了研究:习题再现:己知12a a +=,求221a a+的值;解题过程:解:2112,4,a a a a æö+=\+=ç÷èøQ 221124a a a a \+×+=,即22124a a++=,2212a a \+=.通过以上的解题思路,小明可以总结出论:已知形如n mx a x ±=(m ,n 为常数,我们可以利用完全平方公式计算求出2222n m x x +的值.任务:(1)请你帮小明计算2222n m x x+的值;(2)①若131(0)2b b b -=>,求22194b b +的值;②在①的基础上,求132b b+的值.【答案】(1)22a mn -;(2)①4;.【分析】(1)根据阅读材料中的方法配成完全平方式即可求解;(2)①根据阅读材料中的方法将多项式变形,求出值即可;②对132b b +两边平方后,利用①的结论计算即可.【详解】解:(1)∵n mx a x +=(m ,n 为常数,0mn ¹),∴2222222222n n m n n m x m x x x x mx x x+=+-+××2()2n mx mn x=-+22a mn =-;(2)①∵131(0)2b b b -=>,∴222211211993232244b b b bb b b b -´×´+×+=+21(3)32b b=-+13=+4=;②222111(3)923224b b b b b b+=+´´+221934b b=++43=+7=,∵0b >,∴132b b+=.本题考查了配方法的应用,分式的化简求值,利用完全平方公式:a2±2ab+b2=(a±b)2配方是解题关键.。

人教版八年级上册数学分式方程专项练习题(含答案解析)

人教版八年级上册数学分式方程专项练习题(含答案解析)

人教版八年级上册数学分式方程专项练习题(含答案解析)1、甲、乙两人准备整理一批新到的实验器材,甲单独整理需要40分完工;若甲、乙共同整理20分钟后,乙需要再单独整理20分才能完工。

问:乙单独整理需多少分钟完工?解:设乙单独整理需x分钟完工,则解,得x=80经检验:x=80是原方程的解。

答:乙单独整理需80分钟完工。

2、有两块面积相同的试验田,分别收获蔬菜900千克和1500千克,已知第一块试验田每亩收获蔬菜比第二块少300千克,求第一块试验田每亩收获蔬菜多少千克?解:设第一块试验田每亩收获蔬菜x千克,则解,得x=450经检验:x=450是原方程的解。

答:第一块试验田每亩收获蔬菜450千克。

3、甲、乙两地相距19千米,某人从甲地去乙地,先步行7千米,然后改骑自行车,共用了2小时到达乙地。

已知这个人骑自行车的速度是步行速度的4倍。

求步行的速度和骑自行车的速度。

解:设步行速度是x千米/时,则解,得x=5经检验:x=5是原方程的解。

进尔4x=20(千米/时)答:步行速度是5千米/时,骑自行车的速度是20千米/时。

4、小兰的妈妈在供销大厦用12.50元买了若干瓶酸奶,但她在百货商场食品自选室发现,同样的酸奶,这里要比供销大厦每瓶便宜0.2元,因此,当第二次买酸奶时,便到百货商场去买,结果用去18.40元钱,买的瓶数比第一次买的瓶数多,问:她第一次在供销大厦买了几瓶酸奶?解:⑴设她第一次在供销大厦买了x瓶酸奶,则解,得x=5经检验:x=5是原方程的解。

答:她第一次在供销大厦买了5瓶酸奶。

5、某商店经销一种纪念品,4月份的营业额为2000元,为扩大销售,5月份该商店对这种纪念品打九折销售,结果销售量增加20件,营业额增加700元。

⑴求这种纪念品4月份的销售价格。

⑵若4月份销售这种纪念品获利800元,问:5月份销售这种纪念品获利多少元?解:⑴设4月份销售价为每件x元,则解,得x=50经检验:x=50是原方程的解。

八年级数学上册《第十五章-分式》同步练习题含答案(人教版)

八年级数学上册《第十五章-分式》同步练习题含答案(人教版)

八年级数学上册《第十五章 分式》同步练习题含答案(人教版)学校:___________班级:___________姓名:___________考号:___________知识点:一、分式1、分式的概念一般地,用A 、B 表示两个整式,A ÷B 就可以表示成B A 的形式,如果B 中含有字母,式子BA 就叫做分式。

其中,A 叫做分式的分子,B 叫做分式的分母。

分式和整式通称为有理式。

2、分式的性质(1)分式的基本性质:分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变。

(2)分式的变号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变。

3、分式的运算法则;;bcad c d b a d c b a bd ac d c b a =⨯=÷=⨯ );()(为整数n ba b a n nn = ;cb ac b c a ±=± bdbc ad d c b a ±=± 二、分式方程1、分式方程分母里含有未知数的方程叫做分式方程。

2、分式方程的一般方法解分式方程的思想是将“分式方程”转化为“整式方程”。

它的一般解法是:(1)去分母,方程两边都乘以最简公分母(2)解所得的整式方程(3)验根:将所得的根代入最简公分母,若等于零,就是增根,应该舍去;若不等于零,就是原方程的根。

3、分式方程的特殊解法换元法:换元法是中学数学中的一个重要的数学思想,其应用非常广泛,当分式方程具有某种特殊形式,一般的去分母不易解决时,可考虑用换元法。

练习题一、单选题1.化简22x y y x x y+--的结果为( ) A .﹣x ﹣y B .y ﹣x C .x ﹣y D .x+y2.把分式x x y+(x ≠0,y ≠0)中的分子、分母的x 、y 同时扩大为原来的2倍,那么分式的值( ) A .扩大为原来的2倍B .扩大为原来的4倍C .缩小为原来的12D .不改变 3.小王乘公共汽车从甲地到相距40千米的乙地办事,然后乘出租车返回,出租车的平均速度比公共汽车多20千米/时,回来时路上所花时间比去时节省了14,设公共汽车的平均速度为x 千米/时,则下面列出的方程中正确的是( ) A .4020x +=34×40x B .40x =34×4020x + C .4020x ++14=40x D .40x =4020x +-144.分式方程21124x x x -=--去分母后的结果正确的是( ) A .x 2﹣4﹣1=1B .x 2+2x ﹣(x 2﹣4)=1C .x+2﹣x 2﹣4=1D .x+2﹣1=1 5.已知1a +12b =3,则代数式254436a ab b ab a b-+--的值为( ) A .3 B .-2 C .13- D .12- 6.关于x 的方程31133x a x x-=---有增根,则a 的值是( ) A .3 B .8 C .8- D .14-7.若关于x 的分式方程2311x m x x-=--的解为正数,则m 的取值范围是( ). A .m<-2且3m ≠- B .m<2且3m ≠-C .m>-3且2m ≠-D .m>-3且2m ≠8.已知1112x y z +=+,1113y z x +=+与1114z x y +=+,则234x y z++的值为( ) A .1B .32C .2D .52二、填空题 9.当x= 时,分式 225x x -+ 的值为0.10.小成每周末要到距离家5千米的体育馆打球,他骑自行车前往体育馆比乘汽车多用10分钟,乘汽车的速度是骑自行车速度的2倍.设骑自行车的速度为x 千米/时,根据题意列方程为11.某药品原来每盒p 元,现在每盒提高3元,用200元买这种药品现在比原来少买 盒.12.若关于x 的分式方程23m x x +- ﹣1= 2x无解,则m 的值 13.若x + 1x =3,则 21x x x ++ 的值是 . 14.若关于x 的分式方程 2-1--1k x x x = 的解为正数,则满足条件的非负整数K 的值为 . 三、计算题15.解方程:12133x x x-+=--16.化简:212111a a a a +⎛⎫+÷ ⎪--⎝⎭.17.先化简2344111a a a a a -+⎛⎫-+÷ ⎪++⎝⎭,然后从22a -≤≤的范围内选择一个合适的整数作为a 的值代入求值.18.某公司开发生产的1200件新产品需要精加工后才能投放市场,现有甲、乙两个工厂都想加工这批产品.公司派出相关人员分别到这两间工厂了解生产情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;信息二:乙工厂每天比甲工厂多加工20件.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品?19.为了深入贯彻习总书记关于“双减”工作的重要指示,增强学生的体质,济南市某中学决定购买一些篮球和足球来促进学生的体育锻炼,已知每个篮球的售价比每个足球的售价单价多20元,并且花费6000元购买篮球的数量是花费3200元购买足球数量的1.25倍.(1)求篮球和足球的单价分别是多少元?(2)根据学校的实际需求,需要一次性购买篮球和足球共200个,并且要求购买篮球和足球的总费用不超过9600元,那么学校最少购入多少个足球?参考答案:1.【答案】A 2.【答案】D 3.【答案】A 4.【答案】B 5.【答案】D 6.【答案】C 7.【答案】C 8.【答案】C9.【答案】210.【答案】5x ﹣52x =1611.【答案】26003p p+ 12.【答案】﹣32 或﹣ 12 13.【答案】1414.【答案】015.【答案】解:等式两边同时乘以 3x - 原方程可化为: 123x x --=-解得 1x =经检验 1x = 是原方程的解.16.【答案】解:原式211112a a a a a++--=⋅- 2(1)(1)12a a a a a+-=⋅- 1a =+. 17.【答案】解:2344111a a a a a -+⎛⎫-+÷ ⎪++⎝⎭=()()231111(2)a a a a a --++⋅+- =()()22211(2)a a a a a +-+-⋅+- =22a a +-- 当a =0时,原式=1.18.【答案】解:设甲工厂每天能加工x 件新产品,则乙工厂每天能加工x+20件新产品,根据题意得:1200x ﹣120020x +=10解得:x=40或x=﹣60(不合题意舍去)经检验:x=40是所列方程的解.乙工厂每天加工零件为:40+20=60(件).答:甲工厂每天能加工40件新产品,乙工厂每天能加工60件新产品.19.【答案】(1)解:设每个足球的售价为x 元,则每个篮球的售价为()20x +元 由题意得600032001.2520x x =⨯+ 解得40x =经检验40x =是所列方程解且正确∴2060x +=答:每个足球售价为40元,则每个篮球售价为60元;(2)解:设购入m 个足球,则购入()200m -个篮球.由题意得()40602009600m m +-≤解得120m ≥答:学校最少购入120个足球。

八年级数学人教版上册同步练习分式方程(解析版)

八年级数学人教版上册同步练习分式方程(解析版)

15.3分式方程一、单选题1.已知关于x 的不等式组62176324()13(21)x x x a x -+⎧+≤⎪⎨⎪++<+⎩无解,关于y 的分式方程22822a y y y y -=--有整数解,则满足条件的所有整数a 的和为( )A .6B .8C .10D .13【答案】D2.石家庄某活动小组到教育基地游学,租用面包车的车费为180元.出发时又增加了2名同学,结果每名同学比原来少摊了3元车费.若设该活动小组原有x 人,则所列方程为( ) A .18018032x x -=- B .18018032x x -=+ C .18018032x x -=+ D .18018032x x -=- 【答案】B 【分析】根据总费用÷总人数为人均分摊费用,计算两次的分摊费用,后根据题意列出方程即可【详解】设该活动小组原有x 人,则出发后的人数为(x +2)人,根据题意,得18018032x x -=+, 故选B【点评】本题考查了分式方程解应用题,熟练掌握列分式方程的基本要领是解题的关键.3.暑假期间,某科幻小说的销售量急剧上升.某书店分别用600元和800元两次购进该小说,第二次购进的数量比第一次多40套,且两次购书时,每套书的进价相同.若设书店第一次购进该科幻小说x 套,由题意列方程正确的是( )A .60080040=-xx B .60080040=-x x C .60080040=+x x D .60080040=+x x 【答案】C 【分析】根据第一次进书的总钱数÷第一次购进套数=第二次进书的总钱数÷第二次购进套数列方程可得.【详解】若设书店第一次购进该科幻小说x 套, 由题意列方程正确的是60080040x x =+,故选:C .【点评】本题考查由实际问题抽象出分式方程,解题的关键是理解题意找到题目蕴含的相等关系. 4.已知关于x 的方程22x m x +-=3的解是正数,那么m 的取值范围为( ) A .m >﹣6且m ≠2B .m <6且m ≠2C .m >﹣6且m ≠﹣4D .m <6且m ≠﹣2 【答案】C【分析】先求得分式方程的解(含m 的式子),然后根据解是正数可知m +6>0,从而可求得m >-6,然后根据分式的分母不为0,可知x ≠2,即m +6≠2,由此即可求解.【详解】将分式方程转化为整式方程得:2x +m =3x -6解得:x =m +6.∵方程得解为正数,所以m +6>0,解得:m >-6.∵分式的分母不能为0,∴x -2≠0,∴x ≠2,即m +6≠2.∴m ≠-4.故m >-6且m ≠-4.故选C .【点评】本题主要考查的是解分式方程和一元一次不等式的应用,求得方程的解,从而得到关于m 的不等式是解题的关键.5.有一段全长为800米的公路,路面需整改,为了尽量减少施工对城市交通所造成的影响,实际施工时,每天的功效比原计划增加10%, 结果提前3天完成这一任务,设原计划每天整改x 米,则下列方程正确的是( )A .()800800-3x 110%x =+B .()800800-3x1-10%x = C .()800800-3x 110%x=+ D .()800800-3x 1-10%x= 【答案】C 【分析】用x 表示出计划和实际完成的时间,再结合实际比计划提前3天完成任务作为等量关系列方程即可.【详解】实际每天整改()1+10%x 米,则实际完成时间()8001+10%x 天,计划完成时间800x 天, ∵实际比计划提前3天完成任务 ∴得方程()8008003110%x x-=+. 故选C . 【点评】本题考查了分式方程的应用.列分式方程解应用题与所有列方程解应用题一样,重点在于准确地找出相等关系,这是列方程的依据.而难点则在于对题目已知条件的分析,找出等量关系,因此需围绕题中关键词进行分析.6.若关于x 的方程221933m x x x +=-+-有增根,则m 的值为( ) A .不存在B .6C .12D .6或12 【答案】D【分析】根据增根的定义确定x 的值,把分式方程去分母后,代入即可求m 的值. 【详解】221933m x x x +=-+-, 去分母得,2(3)3m x x +-=+ ∵方程221933m x x x +=-+-有增根, 当3x =时,336m =+=;当3x =-时,2(33)0m +--=,12m =;故选:D .【点评】本题考查了分式方程的增根,解题关键是明确增根的意义,确定未知数的值.7.已知关于x 的一元一次不等式组4(3)222x x x a -+<-⎧⎨+≥⎩的解集为x >7,且关于y 的分式方程53ay y +-﹣1=43y-的解为正整效,则满足条件的所有整数a 的和为( ) A .﹣3B .﹣6C .﹣8D .﹣11【答案】C【分析】不等式组整理后,根据已知解集确定出a 的范围,分式方程去分母转化为整式方程,由分式方程有正整数解,确定出a 的值,求出之和即可.【详解】不等式组整理得:72xx a>⎧⎨≥-⎩,由解集为x>7,得到2﹣a≤7,解得a≥﹣5,分式方程去分母得:ay+5﹣y +3=﹣4,解得:y=121a -,∵y为正整数解,且y≠3,∴a=0,﹣1,﹣2,﹣5,﹣11,又∵a≥﹣5,∴a=0,﹣1,﹣2,﹣5,∴满足条件的整数a的和为﹣8.故选:C.【点评】此题考查了分式方程的解,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.8.已知关于x的不等式组251333xxx a+⎧>+⎪⎨⎪≥-⎩有解,且关于y的分式方程9433y a ay y+-=---有正整数解,则所有满足条件的整数a的值的个数为()A.2 B.3 C.4 D.5 【答案】A【分析】根据分式方程的解为正整数即可得出a>32-,且a≠3,根据不等式组有解,即可得a<9,找出所有符合条件的正整数,a的个数为2.【详解】解方程9433y a ay y+-=---得:233ay+=,∵分式方程的解为正整数,∴2a+3>0,即a>-32,又y≠3,∴233a+≠3,即a≠3,则a>32-,且a≠3,251333x x x a +⎧>+⎪⎨⎪≥-⎩①②, 解不等式①,得x <2,解不等式②,得x ≥33a -, ∵此不等式组有解, ∴33a -<2, 解得a <9, 综上,a 的取值范围是32-<a <9,且a ≠3, 则符合题意的整数a 的值有0,6共2个,故选:A .【点评】本题考查了分式方程的解以及解一元一次不等式组,根据分式方程的解为正整数结合不等式组有解,找出32-<a <9,且a ≠3是解题的关键.二、填空题目9.某班在植树节时需完成一批植树任务,若由全班学生一起完成每人需植树8棵;若由女生单独完成每人需植树12棵,则由男生单独完成每人需植树_____棵.【答案】24.【分析】要求单独由男生完成,每人应植树多少棵,就要先设出未知数,根据题中的等量关系,列方程求解即可.【详解】设单独由男生完成,每人应植树x 棵.那么根据题意可得出方程:111128x +=, 解得:x =24.检验得x =24是方程的解.因此单独由男生完成,每人应植树24棵.故答案为:24.【点评】本题考查了分式方程的应用,为工作效率问题,可根据题意列出方程,判断所求的解是否符合题意即可.10.若关于x 的分式方程221111a x x x -=-+-无解,则a 的值是______. 【答案】2或-4 【分析】按照解分式方程的步骤,把方程两边乘最简公分母,化为关于x 的一元一次方程,把增根代入一元一次方程中,可求得a 的值.【详解】方程两边同乘(x +1)(x -1),得a -2(x -1)=x +1由于分式方程在增根x =1和x =-1把x =1代入a -2(x -1)=x +1中,得a =2把x =-1代入a -2(x -1)=x +1中,得a =-4所以a 的取值为2或-4故答案为:2或-4【点评】本题考查了分式方程有增根时参数的取值问题,关键要根据分式方程的分母确定方程的增根. 11.若关于x 的分式方程2111a x x =+--有增根,则a =__________. 【答案】2【分析】先将分式方程去分母转化为整式方程,根据分式方程有增根求出x 的值,代入整式方程计算即可求出a 的值. 【详解】2111a x x =+--, 去分母,得 a =2+x −1,∵分式方程有增根,∴x −1=0,解得x =1,将x =1代入整式方程,得a =2,故答案为:2.【点评】此题考查了分式方程无解问题,解答此类问题可按如下步骤进行:①化分式方程为整式方程;②确定增根;③把增根代入整式方程,计算后即可求得相关字母的值.12.已知方程232a a a -+=,且关于x 的不等式组x a x b ≥⎧⎨≤⎩只有3个整数解,那么b 的取值范围是_______. 【答案】3≤b <4【分析】首先解分式方程求得a 的值,然后根据不等式组的解集确定x 的范围,再根据只有3个整数解,确定b的范围.【详解】解方程232aa a-+=,两边同时乘以a得:2-a+2a=3,解得:a=1,∴关于x的不等式组x a x b≥⎧⎨≤⎩,则解集是1≤x≤b,∵不等式组只有3个整数解,则整数解是1,2,3,∴3≤b<4.故答案是:3≤b<4.【点评】此题考查的是一元一次不等式组的解法和解分式方程,求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.三、解答题13.某班13位同学参加每周一次的卫生大扫除,按学校的卫生要求需要完成总面积为280m的三个项目的任务,三个项目的面积比例和每人每分钟完成各项目的工作量如下图所示:(1)从上述统计图中可知:①每人每分钟擦课桌椅______2m;②擦玻璃、擦课桌椅、扫地拖地的面积分别是________2m,_______2m,________2m;(2)他们一起完成扫地和拖地的任务后,把这13人分成两组,一组去擦玻璃,一组去擦课桌椅,如果你是卫生委员,该如何分配这两组的人数,才能同时地完成任务.【答案】(1)①12;②16;20;44;(2)8人擦玻璃,5人擦课桌椅【分析】(1)①②观察统计图,直接计算;(2)把这13人分成两组,一组去擦玻璃,一组去擦课桌椅,设有x 人擦玻璃,则有(13-x )人擦课桌椅,擦玻璃的面积是16m 2,擦课桌椅的面积是20m 2,据此列出方程,解之即可.【详解】(1)①由统计图可得, 每人每分钟能擦课桌椅12m 2; ②擦玻璃的面积是80×20%=16m 2,擦课桌椅的面积是80×25%=20m 2,扫地拖地的面积是80×55%=44m 2;(2)设有x 人擦玻璃,则有(13-x )人擦课桌椅,由题意得: ()16200.250.513x x =-, 解得x =8,经检验:x =8是方程的解,∴13-x =13-8=5(人),所以派8人擦玻璃,5人擦课桌椅,能同时完成任务.【点评】本题考查条形统计图、扇形统计图、分式方程的应用,解题的关键是明确题意,找出所求问题需要的条件.14.已知关于x 的方程233x mx x 的解为非负数,求m 的取值范围.【答案】6m ≤且3m ≠【分析】先解分式方程,因为解为负数,解不等式,要注意解不能为增根.【详解】233x m x x 移项:233x m x x =+-- 去分母:2(3)x x m =-+解得:6x m =-方程的解为非负数∴0x ≥∴60m -≥∴6m ≤又3x ≠∴63m -≠∴3m ≠∴m 的取值范围为:63m m ≤≠且【点评】本题考查了,分式方程的解,解分式方程,一元一次不等式的解法;注意分式方程要检验,本题检验是解题的关键.15.2020年春,湖北省武汉市爆发新冠疫情,我校师生积极捐款,已知第一天捐款4800元,第二天捐款6000元,第二天捐款人数比第一天捐款人数多50人,且两天人均捐款数相等,那么两天共参加捐款的人数是多少?【答案】450人【分析】设第一天有x 人参加捐款,根据已知第一天捐款4800元,第二天捐款6000元,第二天捐款人数比第一天捐款人数多50人,且两天人均捐款数相等,可列出方程求解.【详解】设第一天有x 人参加捐款,则第二天有(50)x +人参加捐款 依题意得:4800600050x x =+, 解得:200x =,检验:200x =时,(50)0x x +≠ ,即200x =是原方程的解,故第一天有200人捐款,第二天有250人捐款,两天一共有450人捐款,答:两天参加捐款的人一共有450人.【点评】本题考查了分式方程的应用,找到关键描述语,找到合适的等量关系是解决问题的关键,再列分式方程解应用题时,设间接未知数,有时可使解答变得简捷.16.解下列方程:(1)23111x x x+=--; (2)11322x x x-+=-- 【答案】(1)2x =;(2)原方程无解【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】(1)23111x x x+=-- 去分母,得:231x x -=-解得,2x =检验:当2x =时,10x -≠2x ∴=是原方程的解;(2)11322x x x-+=-- 去分母得,13(2)(1)x x +-=--解得,2x =检验,当2x =时,20x -=,2x ∴=是原方程的增根∴原方程无解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.17.某公司购买了A 、B 两种不同型号的口罩,已知A 型口罩的单价比B 型口罩的单价多4.5元,且用12000元购买A 型口罩的数量与用3000元购买B 型口罩的数量相同.(1)A 、B 两种型号口罩的单价各是多少元?(2)该公司还需要增加购买一些口罩,增加购买B 型口罩数量是A 型口罩数量的4倍,若总费用不超过6000元,则增加购买A 型口罩的数量最多是多少个?【答案】(1)A 型口罩的单价为6元,则B 型口罩的单价为1.5元;(2)增加购买A 型口罩的数量最多是500个【分析】(1)设A 型口罩的单价为x 元,则B 型口罩的单价为(x ﹣4.5)元,根据数量=总价÷单价,结合用12000元购买A 型口罩的数量与用3000元购买B 型口罩的数量相同,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)设增加购买A 型口罩的数量是m 个,则增加购买B 型口罩数量是4m 个,根据总价=单价×数量,结合总价不超过6000元,即可得出关于m 的一元一次不等式,解之取其中的最大值即可得出结论.【详解】(1)设A 型口罩的单价为x 元,则B 型口罩的单价为(x ﹣4.5)元, 根据题意,得:1200030004.5x x =-.解方程,得:x=6.经检验:x=6是原方程的根,且符合题意.所以x﹣4.5=1.5.答:A型口罩的单价为6元,则B型口罩的单价为1.5元;(2)设增加购买A型口罩的数量是m个,根据题意,得:1.5×4m+6m≤6000.解不等式,得:m≤500.正整数m的最大值为500.答:增加购买A型口罩的数量最多是500个.【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.18.用电脑程序控制小型赛车进行50m比赛,“畅想号”和“和谐号”两辆赛车进入了决赛,比赛前的练习中,两辆车从起点同时出发,“畅想号”到达终点时,“和谐号”离终点还差5m,已知“畅想号”的平均速度为2.5m/s.(1)求“和谐号”的平均速度;(2)如果两车重新开始比赛,“畅想号”从起点后退5m,两车同时出发,两车能否同时到达终点?若能,求出两车到达终点的时间;若不能,在此种情况下,请重新调整一辆车的平均速度,使两车能同时到达终点.【答案】(1)2.25m/s;(2)“畅想号”的平均速度降低140m/s或“和谐号”的平均速度增加144m/s,可使两车能同时到达终点.【分析】(1)设“和谐号”的平均速度为x,根据,“畅想号”运动50m与“和谐号”运动45m所用时间相等,可得方程,解出即可.(2)分别算出两车到达终点的时间可判断不能同时到达,再设“畅想号”的平均速度降低x m/s和“和谐号”的平均速度增加x m/s,根据时间相等,得出方程求解即可.【详解】(1)设“和谐号”的平均速度为x m/s,由题意得,50505 2.5x-=,解得:x=2.25,经检验x=2.25是原方程的解.答:“和谐号”的平均速度2.25m/s .(2)“畅想号”到达终点的时间是5052.5+=22s , “和谐号”到达终点的时间是502222.259=s , ∴两车不能同时到达,“畅想号”先到.方案一:设“畅想号”的平均速度降低x m/s 时能使两车同时到达终点, 则505502.5 2.25x +=-, 解得:x =140,经检验x =140是原方程的解, 方案二:设“和谐号”的平均速度增加x m/s 时能使两车同时到达终点, 则50552.25 2.5x =+, 解得:x =144,经检验x =144是原方程的解, 答:“畅想号”的平均速度降低140m/s 或“和谐号”的平均速度增加144m/s ,可使两车能同时到达终点. 【点评】本题考查了分式方程的应用,解答本题的关键是仔细审题,找到等量关系,建立方程,难度一般. 19.3月12日是植树节,重庆市第一实验中学开展了“我与自然——一实农场”的活动:初一、初二年级以班级为单位,各自开辟了一块菜园种植蔬菜.初二某班学生经商量计划购买番茄苗和茄子苗共100株,经了解茄子苗的单价是番茄苗单价的18018032x x -=+,若花80元购进番茄苗,则购买茄子苗需要90元.(1)求番茄苗和茄子苗的单价;(2)班长在购买菜苗时了解到,在当前种植条件下,番茄的成活率为75%,一株番茄苗大约能结8个番茄,茄子的存活率为90%,一株茄子苗大约能结5个茄子,班长决定再多购买番茄和茄子苗共20株,但是不能超过预算210元,且番茄苗的总数量不低于茄子苗总数量的18018032x x -=+,班长最终应该如何购买,才能使所结的果实数量最多.【答案】(1)番茄苗单价2元,茄子苗单价为1.5元;(2)当番茄苗20珠,茄子苗0珠0时,最多 20.已知关于x 的分式方程311(1)(2)x k x x x -+=++-的解为非负数,求k 的取值范围. 【答案】8k ≥-且0k ≠.【分析】先解分式方程,再建立不等式求解即可.【详解】解分式方程,得84k x +=, 根据题意,得:804k +≥且881,244k k ++≠-≠, 解得:8k ≥-且0k ≠.【点评】本题考查了分式方程与不等式,熟练掌握分式方程及不等式的解法是解题的关键,注意不要遗漏条件:最简公分母不能为0.祝福语祝你考试成功!。

初中数学:分式方程应用题专题练习附详解(精)

初中数学:分式方程应用题专题练习附详解(精)
5.随着人们对健康生活的追求,有机食品越来越受到人们的喜爱和追捧,某商家打算花费40000元购进一批有机绿色农产品存放于冷库.实际购买时供货商促销,可以在标价基础上打8折购进这批产品,结果实际比计划多购进400千克.
(1)实际购买时,该农产品多少元每千克?
(2)据预测,该农产品的市场价格在实际购买价的基础上每天每千克上涨0.5元,已知冷库存放这批农产品,每天需要支出各种费用合计为280元,同时,平均每天将有8千克损坏不能出售.则将这批农产品存放多少天后一次性全部出售,该公司可获得利润19600元?
(1)求每盒口罩和每盒水银体温计的价格各是多少元?
(2)如果给每位学生发放2只口罩和1支水银体温计,且口罩和水银体温计均整盒购买.设购买口罩m盒(m为正整数),则购买水银体温计多少盒能和口罩刚好配套?请用含m的代数式表示.
(3)在健康大药房累计购医用品超过1800元后,超出1800元的部分可享受8折优惠.该校按(2)中的配套方案购买,共支付w元,求w关于m的函数关系式.若该校九年级有1000名学生,需要购买口罩和水银体温计各多少盒?所需总费用为多少元?
经检验,x=40原方程的解,
∴x+8=48.
答:每件乙种商品的价格为40元,每件甲种商品的价格为48元.
(2)
解:设购买y件甲种商品,则购买(80-y)件乙种商品,
根据题意得:48y+40(80-y)≤3600,
解得:y≤50.
答:最多可购买50件甲种商品.
【点睛】
本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)根据数量=总价÷单价,列出关于x的分式方程;(2)根据总价=单价×购买数量,列出关于y的一元一次不等式.
3.第十一届江苏书展在苏州国际博览中心设有400个展台,并在全省多地线上、线下同步举行.本届书展设置了“读经典、学四史、童心向党和百年辉煌”等活动.为保障书展的准备工作比原计划提前2天完成,每天准备展台的个数需比原计划增加 .

人教版八年级上册数学 15.3分式方程(应用题) 同步练习(含解析)

人教版八年级上册数学 15.3分式方程(应用题) 同步练习(含解析)

15.3分式方程(应用题) 同步练习一.选择题1.甲、乙二人做某种机械零件,已知每小时甲比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等,设乙每小时做x个零件,以下所列方程正确的是()A.B.C.D.2.成都西站至成飞工业园之间在建的9号地铁,现有甲、乙两个工程队从两头开始施工,已知,每天甲队比乙队多修8米,甲施工150米所用的时间与乙施工120米所用的时间相等,设甲每天施工x米,下列方程正确的是()A.=B.=C.=D.=3.某公益组织在国外采购某医疗物资,每名志愿者平均每天只能采购到该物资1万个,原计划采购该物资200万个.实际采购中,在当地又招募到10名志愿者,结果比原计划推迟一天结束采购任务并实际购得300万个.设原有采购志愿者x名.则据题意可列方程为()A.=1B.=1C.=1D.=14.在2018年太原国际马拉松赛中,小张参加了迷你马拉松(全程约4.2km)项目,已知小张全程匀速前进,若将速度每小时加快2km,则正好比实际提前10min到达终点.设小张的速度为xkm/h,那么可列方程为()A.B.C.D.5.南京市某花卉种植基地欲购进甲、乙两种兰花进行培育,每株甲种兰花的成本比每株乙种兰花的成本多100元,且用1200元购进的甲种兰花与用900元购进的乙种兰花数量相同,求甲、乙两种兰花每株成本分别为多少元?若设乙种兰花的成本是x元.则下列方程正确的是()A.=B.=C.=D.=6.某校为了丰富学生的校园生活,准备购进一批篮球和足球,其中篮球的单价比足球的单价多20元.李老师购买篮球花费900元,购买足球花费400元,结果购得的篮球数量是足球数量的1.5倍.设购买的足球数量是x个,则下列选项中所列方程正确的是()A.=+20B.=+20C.=+20D.=+207.某玩具厂生产一种玩具,甲车间计划生产500个,乙车间计划生产400个,甲车间每天比乙车间多生产10个,两车间同时开始生产且同时完成任务.设乙车间每天生产x个,可列方程为()A.B.C.D.8.圣湖路全长为600米,路面需整改,为了尽量减少施工对城市交通所造成的影响,实际施工时,每天的工效比原计划增加20%,结果提前5天完成这一任务,设原计划每天整改x米,则下列方程正确的是()A.﹣=5B.﹣=5C.﹣=5D.﹣=59.疫情期间嘉祥外国语学校用4200元钱到商场去购买“84”消毒液,经过协商议价,每瓶便宜1元,结果比用原价多买了140瓶,求原价每瓶多少元?若设原价每瓶x元,则可列出方程为()A.﹣=140B.﹣=140C.﹣=1D.﹣=110.“绿水青山就是金山银山”.为改造太湖水质,某工程队对2400平方公里的水域进行水质净化,实际工作时每天的工作效率比原计划提高了20%,结果提前了40天完成任务.设实际每天净化的水域面积为x平方公里,则下列方程中正确的是()A.﹣=40B.﹣=40C.﹣=40D.﹣=40二.填空题11.甲、乙两组学生去距学校4千米的敬老院开展慰问活动,甲组学生步行出发20分钟后,乙组学生骑自行车开始出发,两组学生同时到达敬老院.已知骑自行车速度是步行速度的3倍,设步行速度为x千米/时,则根据题意可以列出方程.12.某工程队修建一条长1200m的道路;采用新的施工方式,工效提升了50%,结果提前4天完成任务,设这个工程队原计划每天修建道路xm,则列出的方程为.13.甲和乙同时从A地出发,匀速行走到B地.甲走完一半路程时,乙才走了4千米,乙走完一半路程时,甲已走了9千米.当甲走完全程时,乙未走完的路程还有千米.14.某工程队由甲乙两队组成,承包我市河东东街改造工程,规定若干天完成,已知甲队单独完成这项工程所需时间比规定时间多32天,乙队单独完成这项工程所需时间比规定时间多12天,如果甲乙两队先合作20天,剩下的甲队单独做,则延误两天完成,那么规定时间是天.15.小明坐滴滴打车前去火车高铁站,小明可以选择两条不同路线:路线A的全程是25千米,但交通比较拥堵,路线B的全程比路线A的全程多7千米,但平均车速比走路线A 时能提高60%,若走路线B的全程能比走路线A少用15分钟,若设走路线A时的平均速度为x千米/小时,根据题意,可列分式方程.三.解答题16.李明到离家2.1千米的学校参加初三联欢会,到学校时发现演出道具还放在家中,此时距联欢会开始还有48分钟,于是他立即步行(匀速)回家,在家拿道具用了2分钟,然后立即骑自行车(匀速)返回学校.已知李明骑自行车到学校比他从学校步行到家用时少20分钟,且骑自行车的速度是步行速度的3倍.(1)李明步行的速度是多少?(2)李明能否在联欢会开始前赶到学校?17.某商店计划今年的圣诞节购进A、B两种纪念品若干件.若花费480元购进的A种纪念品的数量是花费480元购进B种纪念品的数量的,已知每件A种纪念品比每件B种纪念品多4元.(1)求购买一件A种纪念品、一件B种纪念品各需多少元?(2)若商店一次性购买A、B纪念品共200件,要使总费用不超过3000元,最少要购买多少件B种纪念品?参考答案一.选择题1.解:设乙每小时做x个零件,则甲每小时做(x+6)个零件,依题意,得:=.故选:C.2.解:根据题意得,=,故选:C.3.解:设原有采购志愿者x名.根据题意,得=1.故选:B.4.解:设小张的速度为xkm/h,则加快后的速度是(x+2)km/h,根据题意,得.故选:C.5.解:设乙种兰花的成本是x元,则甲种兰花的成本为(x+100)元,根据题意可得:=.故选:B.6.解:设购买的足球数量是x个,则购买篮球数量是1.5x个,根据题意,得=+20.故选:C.7.解:设乙车间每天生产x个,则=.故选:C.8.解:设原计划每天铺设x米管道,则实际施工每天铺设(1+20%)x米管道,根据题意列得:﹣=5.故选:C.9.解:设原价每瓶x元,根据题意,得﹣=140.故选:B.10.解:设实际每天净化的水域面积为x平方公里,根据题意可得:﹣=40.故选:A.二.填空题11.解:设步行速度为x千米/时,则骑自行车速度为3x千米/时,依题意,得:﹣=.故答案为:﹣=.12.解:设原计划每天修建道路x米,则实际每天修建道路(1+50%)x米,根据题意,列方程为:﹣=4.故答案是:﹣=4.13.解:设A,B两地之间的路程为x千米,依题意,得:=,化简,得:x2=144,解得:x1=12,x2=﹣12,经检验,x1=12,x2=﹣12均为原方程的解,x1=12符合题意,x2=﹣12不符合题意,舍去,∴x﹣4×2=4.故答案为:4.14.解:设规定的时间是x天,则甲队单独完成需要(x+32)天,乙队单独完成需要(x+12天),由题意,得20×+=1,解得:x=28.经检验,x=28是元方程的解.答:规定的时间是28天.故答案是:28.15.解:设走路线A时的平均速度为x千米/小时,则走路线B时的平均速度为(1+60%)x 千米/小时,依题意,得:﹣=.故答案为:﹣=.三.解答题16.解:(1)设李明步行的速度为x米/分,则骑自行车的速度为3x米/分.依题意,得:﹣=20,解得:x=70,经检验,x=70是原方程的解,且符合题意.答:李明步行的速度是70米/分.(2)++2=42(分钟),∵42<48,∴李明能在联欢会开始前赶到学校.17.解:(1)设购买一件B种纪念品需x元,则购买一件A种纪念品需(x+4)元,依题意,得:=×,解得:x=12,经检验,x=12是原方程的解,且符合题意,∴x+4=16.答:购买一件A种纪念品需16元,购买一件B种纪念品需12元.(2)设购买m件B种纪念品,则购买(200﹣m)件A种纪念品,依题意,得:16(200﹣m)+12m≤3000,解得:m≥50.答:最少要购买50件B种纪念品.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【解析】
【分析】
(1)设新能源汽车续航单价为x元/公里,则燃油车续航单价为(x+0.6)元/公里,根据等量关系式:新能源汽车续航里程:燃油车续航里程=4∶1,列出方程,解之即可.
(2)根据总价=单价×数量可得新能源汽车400公里所需费用,再用此费用÷总公里数即可得新能源汽车每公里所需电电费;由(1)知燃油汽车每公里费用,用此费用乘以总公里数可得燃油汽车总费用,再用新能源汽车的总费用÷燃油车相同里程下的所需费用即可得答案.
(1)分别求出燃油车和新能源汽车的续航单价(每公里费用);
(2)随着更多新能源车进入千家万户,有条件的小区及用户将享受0.48元/度的优惠专用电费.以新能源EV500为例,充电55度可续航400公里,试计算每公里所需电费,并求出与燃油车相同里程下的所需费用(油电)百分比.
【答案】(1)燃油车0.8;新能源汽车0.2;(2)8.25%
一、八年级数学分式解答题压轴题(难)
1.已知分式A
(1)化简这个分式;
(2)当a>2时,把分式A化简结果的分子与分母同时加上4后得到分式B,问:分式B的值较原来分式A的值是变大了还是变小了?试说明理由;
(3)若A的值是整数,且a也为整数,求出符合条件的所有a值的和.
【答案】(1) ;(2)原分式值变小了,见解析;(3)11
【点睛】
本题主要考查了分式方程的实际应用,找准等量关系,正确列出分式方程是解题的关键.
3.某商场计划销售A,B两种型号的商品,经调查,用1500元 采购A型商品的件数是用600元采购B型商品的件数的2倍,一件A型商品的进价比一件B型商品的进价多30元.
(1)求一件A,B型商品的进价分别为多少元?
(2)若该商场购进A,B型商品共100件进行试销, 其中A型商品的件数不大于B型的件数,已知A型商品的售价为200元/件,B型商品的售价为180元/件,且全部能售出,求该商品能获得的利润最小是多少?
【答案】(1)B型商品的进价为120元, A型商品的进价为150元;(2)5500元.
【解析】
分析:(1)设一件B型商品的进价为x元,则一件A型 商品的进价为(x+30)元,根据“用1500元采购A型商品的件数是用600元采购B型商品的件数的2倍”,这一等量关系列分式方程求解即可;
(2)根据题意中的不等关系求出A商品的范围,然后根据利润=单价利润×减数函数关系式,根据函数的性质求出最值即可.
∵﹣10 <0,
∴m=50时,w有最小值=5500(元)
点睛:此题主要考查了分式方程和一次函数的应用等知识,解题关键是理解题意,学会构建方程或一次函数解决问题,注意解方式方程时要检验.
4.在计算 的过程中,三位同学给出了不同的方法:
甲同学的解法:原式= ;
乙同学的解法:原式= =1;
丙同学的解法:原式=(x+3)(x﹣2)+2﹣x=x2+x﹣6+2﹣x=x2﹣4.
【详解】
解:(1)设新能源汽车续航单价为x元/公里,则燃油车续航单价为(x+0.6)元/公里,依题可得:
: =4:1,
解得:x=0.2,
∴燃油车续航单价为:x+0.6=0.2+0.6=0.8(元/公里),
答:新能源汽车续航单价为0.2元/公里,燃油车续航单价为0.8元/公里.
(2)依题可得新能源汽车400公里所需费用为:
(1)请你判断一下,同学的解法从第一步开始就是错误的,同学的解法是完全正确的.
(2)乙同学说:“我发现无论x取何值,计算的结果都.
【答案】(1)丙,乙;(2)不合理,理由见解析.
【解析】
试题分析:(1)根据分式的加减法,由分解因式和同分母的分式加减,可知甲第2步去括号时没变号;乙正确;丙第一步的计算漏掉了分母,由此可知答案;
详解:(1)设一件B型商品的进价为x元,则一件A型 商品的进价为(x+30)元.
由题意: = ×2,
解得x=120,
经检验x=120是分式方程的解,
答:一件B型商品的进价为120元,则一件A型商品的进价为150元.
(2)因为客商购进A型商品m件,销售利润为w元.
m≤100﹣m,m≤50,
由题意:w=m(200﹣150)+(100﹣m)(180﹣120)=﹣10m+6000,
(3)∵A是整数,a是整数,
则 ,
∴ 、 、 ,
∵ ,
∴ 的值可能为:3、0、4、6、-2;
∴ ;
∴符合条件的所有a值的和为11.
【点睛】
本题主要考查分式的混合运算,解题的关键是熟练掌握分式的混合运算顺序和运算法则.
2.“绿色环保,健康出行”新能源汽车越来越占领汽车市场,以“北汽”和“北汽新能源EV500”为例,分别在某加油站和某充电站加油和充电的电费均为300元,而续航里程之比则为1∶4.经计算新能源汽车相比燃油车节约0.6元/公里.
【解析】
【分析】
(1)根据分式混合运算顺序和运算法则化简即可得;
(2)根据题意列出算式 ,化简可得 ,结合a的范围判断结果与0的大小即可得;
(3)由 可知, =±1、±2、±4,结合a的取值范围可得.
【详解】
解:(1)A=
=
=
= ;
(2)变小了,理由如下:
∵ ,
∴ ,
∴ ;
∵ ,
∴ , ,
∴ ,
∴分式的值变小了;
0.48×55=26.4(元),
∴新能源汽车每公里所需电电费为:
26.4÷400=0.066(元/公里),
依题可得燃油汽车400公里所需费用为:
400×0.8=320(元),
∴新能源汽车与燃油车相同里程下的所需费用(油电)百分比为:
26.4÷320=0.0825=8.25%.
答:新能源汽车每公里所需电电费为0.066元;新能源汽车与燃油车相同里程下的所需费用(油电)百分比为8.25%.
将以上三个等式的两边分别相加,得:
+ + =1- + - + - =1- = .
(1)直接写出计算结果:
+ + +…+ =________.
(2)根据乙的正确化简结果可知最终结果与x值无关,但是要注意所选取的x不能使分式无意义.
试题解析:(1)丙同学的解法从第一步开始就是错误的,乙同学的解法是完全正确的;
故答案为:丙,乙;
(2)不合理,
理由:∵当x≠±2时, = =1,
∴乙同学的话不合理,
5.观察下列等式:
=1- , = - , = - .
相关文档
最新文档