管理运筹学复习题及部分参考答案

合集下载

管理运筹学复习题及部分参考答案

管理运筹学复习题及部分参考答案

一、名词解释 1.模型 2.线性规划 3.树 4.网络 5.风险型决策二、简答题 1.简述运筹学的工作步骤。

2.运筹学中模型有哪些基本形式 3.简述线性规划问题隐含的假设。

4.线性规划模型的特征。

5.如何用最优单纯形表判断线性规划解的唯一性或求出它的另一些最优解 6.简述对偶理论的基本内容。

7.简述对偶问题的基本性质。

8.什么是影子价格?同相应的市场价格之间有何区别,以及研究影子价格的意义。

9.简述运输问题的求解方法。

10.树图的性质。

11.简述最小支撑树的求法。

12.绘制网络图应遵循什么规则。

三、书《收据模型与决策》2.13 14. 有如下的直线方程:2x 1 +x 2 =4 a. 当x 2 =0 时确定x 1 的值。

当x 1 =0 时确定x 2 的值。

b. 以x 1 为横轴x 2 为纵轴建立一个两维图。

使用a 的结果画出这条直线。

c. 确定直线的斜率。

d. 找出斜截式直线方程。

然后使用这个形式确定直线的斜率和直线在纵轴上的截距。

答案: 14. a. 如果x 2 =0,则x 1 =2。

如果x 1 =0,则x 2 =4。

c. 斜率= -2 d. x 2 =-2 x 1 +4 2.40 你的老板要求你使用管理科学知识确定两种活动(和)的水平,使得满足在约束的前提下总成本最小。

模型的代数形式如下所示。

Maximize 成本=15 x 1 +20 x 2 约束条件约束1:x 1 + 2x 2 10 约束2:2x 1 3x 2 6 约束3:x 1 +x 2 6和x 1 0,x 2 0 a. 用图解法求解这个模型。

b. 为这个问题建立一个电子表格模型。

c. 使用Excel Solver 求解这个模型。

答案: a. 最优解:(x 1 , x 2 )=(2, 4),C=110 b c.活动获利 1 2总计水平A B C 1 2 2 3 1 1 10 10 8 6 6 6 单位成本方案15 20 2 4 $110.00 3.2 考虑具有如下所示参数表的资源分配问题: 资源每一活动的单位资源使用量可获得的资源数量 1 2 1 2 3 2 3 2 1 3 4 10 20 20 单位贡献$20 $30 单位贡献=单位活动的利润b. 将该问题在电子表格上建模。

《管理运筹学》复习题及参考答案

《管理运筹学》复习题及参考答案

四、把下列线性规划问题化成标准形式:2、minZ=2x1-x2+2x3五、按各题要求。

建立线性规划数学模型1、某工厂生产A、B、C三种产品,每种产品的原材料消耗量、机械台时消耗量以及这些资源的限量,单位产品的利润如下表所示:根据客户订货,三种产品的最低月需要量分别为200,250和100件,最大月销售量分别为250,280和120件。

月销售分别为250,280和120件。

问如何安排生产计划,使总利润最大。

2、某建筑工地有一批长度为10米的相同型号的钢筋,今要截成长度为3米的钢筋90根,长度为4米的钢筋60根,问怎样下料,才能使所使用的原材料最省?1. 某运输公司在春运期间需要24小时昼夜加班工作,需要的人员数量如下表所示:每个工作人员连续工作八小时,且在时段开始时上班,问如何安排,使得既满足以上要求,又使上班人数最少?五、分别用图解法和单纯形法求解下列线性规划问题.并对照指出单纯形迭代的每一步相当于图解法可行域中的哪一个顶点。

六、用单纯形法求解下列线性规划问题:七、用大M法求解下列线性规划问题。

并指出问题的解属于哪一类。

八、下表为用单纯形法计算时某一步的表格。

已知该线性规划的目标函数为maxZ=5x 1+3x 2,约束形式为“≤”,X 3,X 4为松驰变量.表中解代入目标函数后得Z=10(1)求表中a ~g 的值 (2)表中给出的解是否为最优解?(1)a=2 b=0 c=0 d=1 e=4/5 f=0 g=-5 (2) 表中给出的解为最优解第四章 线性规划的对偶理论五、写出下列线性规划问题的对偶问题1.minZ=2x 1+2x 2+4x 3六、已知线性规划问题应用对偶理论证明该问题最优解的目标函数值不大于25七、已知线性规划问题maxZ=2x1+x2+5x3+6x4其对偶问题的最优解为Y l﹡=4,Y2﹡=1,试应用对偶问题的性质求原问题的最优解。

七、用对偶单纯形法求解下列线性规划问题:八、已知线性规划问题(1)写出其对偶问题 (2)已知原问题最优解为X﹡=(2,2,4,0)T,试根据对偶理论,直接求出对偶问题的最优解。

《管理运筹学》期中复习题答案

《管理运筹学》期中复习题答案

《管理运筹学》期中复习题答案标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DQQTY-《管理运筹学》期中测试题 第一部分 线性规划 一、填空题 1.线性规划问题是求一个 目标函数 在一组 约束条件 下的最值问题。

2.图解法适用于含有 两个 _ 变量的线性规划问题。

3.线性规划问题的可行解是指满足 所有约束条件_ 的解。

4.在线性规划问题的基本解中,所有的非基变量等于 零 。

5.在线性规划问题中,基本可行解的非零分量所对应的列向量线性 无 关 6.若线性规划问题有最优解,则最优解一定可以在可行域的 顶点_ 达到。

7.若线性规划问题有可行解,则 一定 _ 有基本可行解。

8.如果线性规划问题存在目标函数为有限值的最优解,求解时只需在其 可行解 的集合中进行搜索即可得到最优解。

9.满足 非负 _ 条件的基本解称为基本可行解。

10.在将线性规划问题的一般形式转化为标准形式时,引入的松驰变量在目标函数中的系数为 正 。

11.将线性规划模型化成标准形式时,“≤”的约束条件要在不等式左_端加入 松弛 _ 变量。

12.线性规划模型包括 决策变量 、目标函数 、约束条件 三个要素。

13.线性规划问题可分为目标函数求 最大 _ 值和 最小 _值两类。

14.线性规划问题的标准形式中,约束条件取 等 _ 式,目标函数求 最大 _值,而所有决策变量必须 非负 。

15.线性规划问题的基本可行解与基本解的关系是 基本可行解一定是基本解,反之不然16.在用图解法求解线性规划问题时,如果取得最值的等值线与可行域的一段边界重合,则 _ 最优解不唯一 。

17.求解线性规划问题可能的结果有 唯一最优解,无穷多最优解,无界解,无可行解 。

18.如果某个约束条件是“ ”情形,若化为标准形式,需要引入一个 剩余 _ 变量。

19.如果某个变量X j 为自由变量,则应引进两个非负变量X j ′ , X j 〞, 同时令X j = X j ′ - X j 〞 j 。

《管理运筹学》考试试卷A,B卷及答案

《管理运筹学》考试试卷A,B卷及答案

《管理运筹学》考试试卷A,B卷及答案一、选择题(每题2分,共20分)1. 运筹学的英文全称是:A. Operation ResearchB. Operation ManagementC. Operational ResearchD. Operations Management2. 线性规划问题的标准形式中,目标函数是:A. 最大化B. 最小化C. 既可以是最大化也可以是最小化D. 无法确定3. 在线性规划中,约束条件可以用以下哪个符号表示?A. ≤B. ≥C. =D. A、B、C都对4. 简单线性规划问题中,如果一个变量在任何解中都不为零,则称这个变量为:A. 基变量B. 非基变量C. 独立变量D. 依赖变量5. 以下哪个方法可以用来求解线性规划问题?A. 单纯形法B. 拉格朗日乘数法C. 对偶理论D. A、B、C都可以二、填空题(每题3分,共15分)6. 在线性规划中,如果一个约束条件的形式为“≥”,则称这个约束为______约束。

7. 在线性规划问题中,若决策变量为非负整数,则该问题为______规划问题。

8. 在目标规划中,目标函数通常表示为______。

9. 在运输问题中,如果产地和销地的数量相等,则称为______。

10. 在排队论中,顾客到达的平均速率通常表示为______。

三、计算题(每题10分,共30分)11. 某工厂生产甲、乙两种产品,甲产品每件利润为200元,乙产品每件利润为150元。

工厂每月最多生产甲产品100件,乙产品150件。

同时,生产甲产品每件需要3小时,乙产品每件需要2小时,工厂每月最多可利用工时为300小时。

试建立该问题的线性规划模型,并求解。

12. 某公司有三个工厂生产同一种产品,分别供应给四个销售点。

各工厂的产量和各销售点的需求量如下表所示。

求最优的运输方案,并计算最小运输成本。

工厂\销售点 A B C D产量 20 30 50需求量 10 20 30 4013. 设某商店有三个售货员,负责四个收款台。

《管理运筹学》复习题及参考答案

《管理运筹学》复习题及参考答案

《管理运筹学》复习题及参考答案一、选择题1. 管理运筹学的研究对象是()A. 生产过程B. 管理活动C. 经济活动D. 运筹问题参考答案:D2. 以下哪个不属于管理运筹学的基本方法?()A. 线性规划B. 整数规划C. 非线性规划D. 人力资源规划参考答案:D3. 在线性规划中,约束条件是()A. 等式B. 不等式C. 方程组D. 矩阵参考答案:B4. 以下哪种方法不属于线性规划的对偶问题求解方法?()A. 单纯形法B. 对偶单纯形法C. 拉格朗日乘数法D. 牛顿法参考答案:D5. 在目标规划中,以下哪个不是目标约束的类型?()A. 等式约束B. 不等式约束C. 目标函数约束D. 线性约束参考答案:C二、填空题1. 管理运筹学的核心思想是______。

参考答案:最优化2. 在线性规划中,最优解存在的条件是______。

参考答案:可行性、有界性3. 整数规划的求解方法主要有______和______。

参考答案:分支定界法、动态规划法4. 在目标规划中,目标函数的求解方法有______、______和______。

参考答案:单纯形法、拉格朗日乘数法、动态规划法5. 非线性规划问题可以分为______、______和______。

参考答案:无约束非线性规划、约束非线性规划、非线性规划的对偶问题三、判断题1. 管理运筹学的研究对象是管理活动。

()参考答案:正确2. 在线性规划中,最优解一定存在。

()参考答案:错误3. 整数规划的求解方法比线性规划复杂。

()参考答案:正确4. 目标规划的求解方法与线性规划相同。

()参考答案:错误5. 非线性规划问题一定比线性规划问题复杂。

()参考答案:错误四、计算题1. 某工厂生产甲、乙两种产品,甲产品每件利润为10元,乙产品每件利润为8元。

生产甲产品每件需消耗2小时机器工作时间,3小时人工工作时间;生产乙产品每件需消耗1小时机器工作时间,2小时人工工作时间。

工厂每周最多可利用机器工作时间100小时,人工工作时间150小时。

《管理运筹学》试题及答案

《管理运筹学》试题及答案

中国矿业大学2010~2011学年第二学期《 管理运筹学 》模拟试卷一考试时间:120 分钟 考试方式:闭 卷1212121212max 334262180,0z x x x x x x x x x x =+⎧⎪+≤⎪⎪-+≤⎨⎪+≤⎪≥≥⎪⎩2. 用表上作业法求下表中给出的运输问题的最优解。

答案: 1.解:加入人工变量,化问题为标准型式如下:1234512312412512345max 3300042.6218,,,,0z x x x x x x x x x x x s t x x x x x x x x =++++++=⎧⎪-++=⎪⎨++=⎪⎪≥⎩(3分)下面用单纯形表进行计算得终表为:所以原最优解为 *(3,0,1,5,0)T X =2、解:因为销量:3+5+6+4+3=21;产量:9+4+8=21;为产销平衡的运输问题。

(1分)由最小元素法求初始解:(5分)用位势法检验得:(7分)所有非基变量的检验数都大于零,所以上述即为最优解且该问题有唯一最优解。

此时的总运费:min 45594103112011034150z =⨯+⨯+⨯+⨯+⨯+⨯+⨯=。

3、解:系数矩阵为:1279798966671712149151466104107109⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦(3分)从系数矩阵的每行元素减去该行的最小元素,得:50202 23000 010572 98004 06365⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦经变换之后最后得到矩阵:70202 43000 08350 118004 04143⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦相应的解矩阵:01000 00010 00001 00100 10000⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦(13分)由解矩阵得最有指派方案:甲—B,乙—D,丙—E,丁—C,戊—A 或者甲—B,乙—C,丙—E,丁—D,戊—A (2分)所需总时间为:Minz=32 (2分)中国矿业大学2010~2011学年第二学期《管理运筹学》模拟试卷二考试时间:120 分钟考试方式:闭卷1.求解下面运输问题。

《管理运筹学》第二版)课后习题参考答案

《管理运筹学》第二版)课后习题参考答案

《管理运筹学》(第二版)课后习题参考答案第1章 线性规划(复习思考题)1.什么是线性规划?线性规划的三要素是什么?答:线性规划(Linear Programming ,LP )是运筹学中最成熟的一个分支,并且是应用最广泛的一个运筹学分支。

线性规划属于规划论中的静态规划,是一种重要的优化工具,能够解决有限资源的最佳分配问题。

建立线性规划问题要具备三要素:决策变量、约束条件、目标函数。

决策变量是决策问题待定的量值,取值一般为非负;约束条件是指决策变量取值时受到的各种资源条件的限制,保障决策方案的可行性;目标函数是决策者希望实现的目标,为决策变量的线性函数表达式,有的目标要实现极大值,有的则要求极小值。

2.求解线性规划问题时可能出现几种结果,哪种结果说明建模时有错误? 答:(1)唯一最优解:只有一个最优点; (2)多重最优解:无穷多个最优解; (3)无界解:可行域无界,目标值无限增大; (4)没有可行解:线性规划问题的可行域是空集。

当无界解和没有可行解时,可能是建模时有错。

3.什么是线性规划的标准型?松弛变量和剩余变量的管理含义是什么?答:线性规划的标准型是:目标函数极大化,约束条件为等式,右端常数项0≥i b ,决策变量满足非负性。

如果加入的这个非负变量取值为非零的话,则说明该约束限定没有约束力,对企业来说不是紧缺资源,所以称为松弛变量;剩余变量取值为非零的话,则说明“≥”型约束的左边取值大于右边规划值,出现剩余量。

4.试述线性规划问题的可行解、基础解、基可行解、最优解的概念及其相互关系。

答:可行解:满足约束条件0≥=X b AX ,的解,称为可行解。

基可行解:满足非负性约束的基解,称为基可行解。

可行基:对应于基可行解的基,称为可行基。

最优解:使目标函数最优的可行解,称为最优解。

最优基:最优解对应的基矩阵,称为最优基。

它们的相互关系如右图所示:5.用表格单纯形法求解如下线性规划。

s .t . ⎪⎩⎪⎨⎧≥≤++≤++0,,86238321321321x x x x x x x x x解:标准化 32124max x x x Z ++=s .t . ⎪⎩⎪⎨⎧≥=+++=+++0,,,,862385432153214321x x x x x x x x x x x x x 列出单纯形表故最优解为T X )6,0,2,0,0(*=,即2,0,0321===x x x ,此时最优值为4*)(=X Z .6.表1—15中给出了求极大化问题的单纯形表,问表中d c c a a ,,,,2121为何值及变量属于哪一类型时有:(1)表中解为唯一最优解;(2)表中解为无穷多最优解之一;(3)下一步迭代将以1x 代替基变量5x ;(4)该线性规划问题具有无界解;(5)该线性规划问题无可行解。

大学_管理运筹学试题及答案

大学_管理运筹学试题及答案

管理运筹学试题及答案管理运筹学试题及答案(一)第一题(10分) 标准答案:设xij表示i时会见的j种家庭的人数目标函数:(2分)minZ=25x11+30x21+20x12+24x22 约束:(8分) x11+x21+x12+x22= x11+ x12=x21+ x22 x11+x21700 x12+x22450 xij0(i,j=1,2) 第二题(10分) 标准答案:a. 最优解:x1=4000;x2=10000;最小风险:6(2分)b. 年收入:6000元(2分)c. 第一个约束条件对偶价格:0.057;第二个约束条件对偶价格:-2.167;第三个约束条件对偶价格:0(2分) d. 不能判定(2分)e. 当右边值总投资额取值在780000—1500000之间时,不改变约束条件1的对偶价格;当右边值回报额取值在48000—10之间时,不改变约束条件2的对偶价格;当右边值B的投资额小于10000时,不改变约束条件3的对偶价格。

(2分) 第三题(10分) 标准答案:M为一足够大的数第四题(10分) 标准答案:设目标函数:(2分)maxZ=31x1+35x2+45x3+17x4+15x5+25x6+20x7+43x8+53x9+56x10 约束条件:(8分)110x1+130x2+160x3+90x4+80x5+100x6+90x7+150x8+170x9+190x10820x1+x2+x32 x4+x51 x6+x71 x8+x9+x102xi为0-1变量(i=1,2,…,10) 第五题(10分) 标准答案:阶段3(3分) 20(1分) 第六题(10分) 标准答案:a. 允许缺货的经济生产批量模型:D=台/年;d=台/年;p=6000台/年;C1=100元/年;C2=200元/年;C3=250元/年(3分)b. 允许缺货的经济订购批量模型:D=5000个/年;C1=4元/年; C2=1.6元/次;C3=120元/年(3分)c. 经济生产批量模型:D=250000台/年;p=600000台/年;d=250000台/年;C1=10.8元/年;C3=1350元/次(2分)d. 经济订购批量模型:D=60000件/年;C1=7元/年; C3=720元/次(2分) 第七题(10分) 标准答案:a. 多服务台泊松到达服务负指数分布模型M/M/3:C=3;=0.4人/分钟;=1/3人/分钟(1)p0+p1+p2;(2)Lq;(3)Ws(3分)b. 多服务台泊松到达服务负指数分布模型M/M/3:=30台/小时;=18台/小时(1)Ls;(2)Wq;(3)p2, p1(3分)c. 单服务台泊松到达服务时间任意模型:=2人/小时;=3人/小时(1)Ls;(2)1- p0;(3)1-(p0+p1+p2+ p3+p4)(4分)第八题(10分)标准答案:k=15;h=20;k/(k+h)=3/7;(3分)当Q=8时:;(4分)满足条件望最大。

管理运筹学试卷和答案1汇总

管理运筹学试卷和答案1汇总

《管理运筹学》考试试卷(A)一、( 20 分)下述线性规划问题Max z=-5x1+5x2+13x3ST-x1+x2+3x3 ≤ 20 ——①12x1+4x2+10x3 ≤ 90 ——②x1,x2,x3 ≥ 0先用单纯形法求出最优解,然后分析在下列条件下,最优解分别有什么变化?( 1 )约束条件①的右端常数由 20 变为 30 ;( 2 )约束条件②的右端常数由 90 变为 70 ;( 3 )目标函数中的 x3 的系数由 13 变为 8 ;( 4 )增加一个约束条件③2x1+3x2+5x3 ≤ 50( 5 )将原有约束条件②变为10x1+5x2+10x3 ≤ 100二、( 10 分)已知线性规划问题Max z= 2x1+x2+5x3+6x4 对偶变量2x1 +x3+x4 ≤ 8 y12x1+2x2+x3+2x4 ≤ 12 y2x1,x2,x3,x4 ≥ 0其对偶问题的最优解为 y1*=4 , y2*=1 ,试用对偶问题的性质,求原问题的最优解。

三、( 10 分)某地区有三个化肥厂,除供应外地区需要外,估计每年可供应本地区的数字为:化肥厂 A —— 7 万吨, B —— 8 万吨, C —— 3 万吨。

有四个产粮区需要该种化肥,需要量为:甲地区—— 6 万吨,乙地区—— 6 万吨,丙地区—— 3 万吨,丁地区—— 3 万吨。

已知从各化肥厂到各产粮区的每吨化肥的运价如下表所示(单位:元 / 吨):产粮区甲乙丙丁化肥厂A 5 8 7 3B 4 9 10 7C 8 4 2 9根据上述资料指定一个使总的运费最小的化肥调拨方案。

四、( 10 分)需要分配 5 人去做 5 项工作,每人做各项工作的能力评分见下表。

应如何分派,才能使总的得分最大?B1 B2 B3 B4 B5 A1 1.3 0.8 0 0 1.0 A2 0 1.2 1.3 1.3 0A3 1.0 0 0 1.2 0A4 0 1.05 0 0.2 1.4 A5 1.0 0.9 0.6 0 1.1五、( 10 分)用动态规划方法求解:Max F=4x 1 2 -x 2 2 +2x 3 2 +123x 1 +2x 2 +x 3 =9x1,x2,x3 ≥ 0六、( 10 分)公司决定使用 1000 万元开发 A 、 B 、 C 三种产品,。

《管理运筹学》(第二版)课后习题参考答案

《管理运筹学》(第二版)课后习题参考答案

《管理运筹学》(第二版)课后习题参考答案第1章 线性规划(复习思考题)1.什么是线性规划?线性规划的三要素是什么?答:线性规划(Linear Programming ,LP )是运筹学中最成熟的一个分支,并且是应用最广泛的一个运筹学分支。

线性规划属于规划论中的静态规划,是一种重要的优化工具,能够解决有限资源的最佳分配问题。

建立线性规划问题要具备三要素:决策变量、约束条件、目标函数。

决策变量是决策问题待定的量值,取值一般为非负;约束条件是指决策变量取值时受到的各种资源条件的限制,保障决策方案的可行性;目标函数是决策者希望实现的目标,为决策变量的线性函数表达式,有的目标要实现极大值,有的则要求极小值。

2.求解线性规划问题时可能出现几种结果,哪种结果说明建模时有错误? 答:(1)唯一最优解:只有一个最优点; (2)多重最优解:无穷多个最优解;(3)无界解:可行域无界,目标值无限增大; (4)没有可行解:线性规划问题的可行域是空集。

当无界解和没有可行解时,可能是建模时有错。

3.什么是线性规划的标准型?松弛变量和剩余变量的管理含义是什么?答:线性规划的标准型是:目标函数极大化,约束条件为等式,右端常数项0≥i b ,决策变量满足非负性。

如果加入的这个非负变量取值为非零的话,则说明该约束限定没有约束力,对企业来说不是紧缺资源,所以称为松弛变量;剩余变量取值为非零的话,则说明“≥”型约束的左边取值大于右边规划值,出现剩余量。

4.试述线性规划问题的可行解、基础解、基可行解、最优解的概念及其相互关系。

答:可行解:满足约束条件0≥=X b AX ,的解,称为可行解。

基可行解:满足非负性约束的基解,称为基可行解。

可行基:对应于基可行解的基,称为可行基。

最优解:使目标函数最优的可行解,称为最优解。

最优基:最优解对应的基矩阵,称为最优基。

它们的相互关系如右图所示:5.用表格单纯形法求解如下线性规划。

32124max x x x Z ++=s .t . ⎪⎩⎪⎨⎧≥≤++≤++0,,86238321321321x x x x x x x x x解:标准化 32124m a xx x x Z ++= s .t . ⎪⎩⎪⎨⎧≥=+++=+++0,,,,862385432153214321x x x x x x x x x x x x x 列出单纯形表故最优解为T X )6,0,2,0,0(*=,即2,0,0321===x x x ,此时最优值为4*)(=X Z . 6.表1—15中给出了求极大化问题的单纯形表,问表中d c c a a ,,,,2121为何值及变量属于哪一类型时有:(1)表中解为唯一最优解;(2)表中解为无穷多最优解之一;(3)下一步迭代将以1x 代替基变量5x ;(4)该线性规划问题具有无界解;(5)该线性规划问题无可行解。

《管理运筹学》期末考试试卷附答案

《管理运筹学》期末考试试卷附答案

《管理运筹学》期末考试试卷附答案一、判断题(共计30分,每小题3分,对的打√,错的打X)1. 无孤立点的图一定是连通图。

()2. 对于线性规划的原问题和其对偶问题,若其中一个有最优解,另一个也一定有最优解。

()3. 如果一个线性规划问题有可行解,那么它必有最优解。

()4.对偶问题的对偶问题一定是原问题。

()5.用单纯形法求解标准形式(求最小值)的线性规划问题时,与对应的变量都可以被选作换入变量。

()6.若线性规划的原问题有无穷多个最优解时,其对偶问题也有无穷多个最优解。

()7. 度为0的点称为悬挂点。

()8. 表上作业法实质上就是求解运输问题的单纯形法。

()9. 一个图G 是树的充分必要条件是边数最少的无孤立点的图。

()10. 任何线性规划问题都存在且有唯一的对偶问题。

()二、建立下面问题的线性规划模型(15分)某农场有100公顷土地及15000元资金可用于发展生产。

农场劳动力情况为秋冬季3500人日;春夏季4000人日。

如劳动力本身用不了时可外出打工,春秋季收入为25元 / 人日,秋冬季收入为20元 / 人日。

该农场种植三种作物:大豆、玉米、小麦,并饲养奶牛和鸡。

种作物时不需要专门投资,而饲养每头奶牛需投资800元,每只鸡投资3元。

养奶牛时每头需拨出1.5公顷土地种饲料,并占用人工秋冬季为100人日,春夏季为50人日,年净收入900元 / 每头奶牛。

养鸡时不占用土地,需人工为每只鸡秋冬季0.6人日,春夏季为0.3人日,年净收入2元 / 每只鸡。

农场现有鸡舍允许最多养1500只鸡,牛栏允许最多养200头。

三种作物每年需要的人工及收入情况如下表所示:试决定该农场的经营方案,使年净收入为最大。

三、已知下表为求解某目标函数为极大化线性规划问题的最终单纯形表,表中54,x x 为松弛变量,问题的约束为形式(共20分)(1)写出原线性规划问题;(10分) (2)写出原问题的对偶问题;(8分)(3)直接由上表写出对偶问题的最优解。

《管理运筹学》习题6解答

《管理运筹学》习题6解答

《管理运筹学》习题6解答(复习参考题)1. 某公司从银行获得贷款300万元,现有3个项目A 、B 、C 可供投资,投资不同项目所获收益(单位:十万元)不同,如表1所示。

问:公司如何分配这300万元资金用于以下三个项目,才能使公司总收益最大? 要求:(1)请建立该问题的动态规划模型,要求说明各变量与指标的实际意义。

(2)请用逆序解法求解,并写出最优分配方案的结论。

(1)建立动态规划模型,如下:①将问题按项目个数分为三个阶段,k=1,2,3,分别对应项目A 、B 、C 。

每个阶段决定给项目k 分配一定数量的资金。

②设状态变量 s k 表示第k 阶段初尚未分配的资金数(单位:百万元),也是项目k 到项目3所分配资金的总和。

显然s 1=3, s 4=0。

s 2和s 3的取值可以为0至3之间的任何一个整数。

③设决策变量u k 表示分配给第k 个项目的资金额(单位:百万元)。

显然u k ∈ D k (s k ) ={0,1, …,s k }。

④状态转移方程:s k +1=s k -u k 。

⑤指标函数:阶段指标函数d k (u k )表示从S k 百万元中拿出u k 百万元资金分配给项目k 所能创造的收益(单位:十万元),见表1所示。

最优指标函数f k (s k )表示s k 百万元的资金分配给第k 至第3个项目时所得到的最大总收益(单位:十万元)。

⑥逆序解法的基本方程如下:(2)用逆序解法求解33444()()(){}()k k k k k k k k k 1k 1u D (s )44f s max d s ,u f s ,k 3,2,1f s 0 ++∈⎧=+=⎪⎨⎪=⎩当n=1时,0≤u≤3,s =3-u 本题有两个最优方案:方案一:*1u =0, *2u =2 *1u =1 ***211s =s -u =3-0=3 ***322s =s -u =3-2=1即项目A 、项目B 、项目C 分别分配0、2、1百万元,最大总收益为*1f (3)=14百万元。

《管理运筹学》课后习题参考标准答案

《管理运筹学》课后习题参考标准答案

《管理运筹学》(第二版)课后习题参考答案第1章 线性规划(复习思考题)1.什么就是线性规划?线性规划的三要素就是什么?答:线性规划(Linear Programming,LP)就是运筹学中最成熟的一个分支,并且就是应用最广泛的一个运筹学分支。

线性规划属于规划论中的静态规划,就是一种重要的优化工具,能够解决有限资源的最佳分配问题。

建立线性规划问题要具备三要素:决策变量、约束条件、目标函数。

决策变量就是决策问题待定的量值,取值一般为非负;约束条件就是指决策变量取值时受到的各种资源条件的限制,保障决策方案的可行性;目标函数就是决策者希望实现的目标,为决策变量的线性函数表达式,有的目标要实现极大值,有的则要求极小值。

2.求解线性规划问题时可能出现几种结果,哪种结果说明建模时有错误? 答:(1)唯一最优解:只有一个最优点; (2)多重最优解:无穷多个最优解; (3)无界解:可行域无界,目标值无限增大;(4)没有可行解:线性规划问题的可行域就是空集。

当无界解与没有可行解时,可能就是建模时有错。

3.什么就是线性规划的标准型?松弛变量与剩余变量的管理含义就是什么? 答:线性规划的标准型就是:目标函数极大化,约束条件为等式,右端常数项0≥i b ,决策变量满足非负性。

如果加入的这个非负变量取值为非零的话,则说明该约束限定没有约束力,对企业来说不就是紧缺资源,所以称为松弛变量;剩余变量取值为非零的话,则说明“≥”型约束的左边取值大于右边规划值,出现剩余量。

4.试述线性规划问题的可行解、基础解、基可行解、最优解的概念及其相互关系。

答:可行解:满足约束条件0≥=X b AX ,的解,称为可行解。

基可行解:满足非负性约束的基解,称为基可行解。

可行基:对应于基可行解的基,称为可行基。

最优解:使目标函数最优的可行解,称为最优解。

最优基:最优解对应的基矩阵,称为最优基。

它们的相互关系如右图所示:5.用表格单纯形法求解如下线性规划。

管理运筹学复习题及部分参考答案

管理运筹学复习题及部分参考答案

管理运筹学复习题及部分参考答案一、填空题1. 运筹学起源于________时期,它是一门研究如何有效地进行决策的学科。

答案:二战2. 线性规划问题中,约束条件通常表示为________。

答案:线性不等式3. 在目标规划中,若目标函数为多个目标的加权和,则称为________目标规划。

答案:加权目标规划4. 整数规划中的0-1变量表示________。

答案:决策变量是否取值5. 动态规划是一种用于解决________决策问题的方法。

答案:多阶段二、选择题1. 在线性规划中,若约束条件均为等式,则该线性规划问题称为________。

A. 线性方程组B. 线性不等式组C. 线性规划问题D. 线性方程组与线性不等式组的混合答案:C2. 在目标规划中,以下哪项不是目标规划的约束条件?A. 目标约束B. 系统约束C. 系统等式D. 目标等式答案:D3. 在整数规划中,若决策变量必须是整数,则该问题称为________。

A. 整数规划B. 线性规划C. 非线性规划D. 动态规划答案:A4. 动态规划问题的最优策略是________。

A. 阶段决策的最优解B. 子问题的最优解C. 整个问题的最优解D. 阶段决策的最优解与子问题的最优解的组合答案:C三、判断题1. 线性规划问题的目标函数必须是线性的。

()答案:正确2. 在目标规划中,目标函数与约束条件均可以是非线性的。

()答案:错误3. 整数规划问题可以转化为线性规划问题求解。

()答案:错误4. 动态规划适用于解决线性规划问题。

()答案:错误四、计算题1. 某企业生产两种产品,甲产品每件利润为100元,乙产品每件利润为150元。

甲产品需要2小时加工时间,乙产品需要3小时加工时间。

企业每周最多可加工60小时。

求企业如何安排生产计划以使利润最大化。

答案:设甲产品生产件数为x,乙产品生产件数为y。

目标函数:Z = 100x + 150y约束条件:2x + 3y ≤ 60(加工时间)x, y ≥ 0(非负约束)求解得:x = 15,y = 10,最大利润为2000元。

《管理运筹学》(第二版)课后习题参考答案

《管理运筹学》(第二版)课后习题参考答案

《管理运筹学》(第二版)课后习题参考答案第1章 线性规划(复习思考题)1.什么是线性规划?线性规划的三要素是什么?答:线性规划(Linear Programming ,LP )是运筹学中最成熟的一个分支,并且是应用最广泛的一个运筹学分支。

线性规划属于规划论中的静态规划,是一种重要的优化工具,能够解决有限资源的最佳分配问题。

建立线性规划问题要具备三要素:决策变量、约束条件、目标函数。

决策变量是决策问题待定的量值,取值一般为非负;约束条件是指决策变量取值时受到的各种资源条件的限制,保障决策方案的可行性;目标函数是决策者希望实现的目标,为决策变量的线性函数表达式,有的目标要实现极大值,有的则要求极小值。

2.求解线性规划问题时可能出现几种结果,哪种结果说明建模时有错误? 答:(1)唯一最优解:只有一个最优点; (2)多重最优解:无穷多个最优解;(3)无界解:可行域无界,目标值无限增大; (4)没有可行解:线性规划问题的可行域是空集。

当无界解和没有可行解时,可能是建模时有错。

3.什么是线性规划的标准型?松弛变量和剩余变量的管理含义是什么?答:线性规划的标准型是:目标函数极大化,约束条件为等式,右端常数项0≥i b ,决策变量满足非负性。

如果加入的这个非负变量取值为非零的话,则说明该约束限定没有约束力,对企业来说不是紧缺资源,所以称为松弛变量;剩余变量取值为非零的话,则说明“≥”型约束的左边取值大于右边规划值,出现剩余量。

4.试述线性规划问题的可行解、基础解、基可行解、最优解的概念及其相互关系。

答:可行解:满足约束条件0≥=X b AX ,的解,称为可行解。

基可行解:满足非负性约束的基解,称为基可行解。

可行基:对应于基可行解的基,称为可行基。

最优解:使目标函数最优的可行解,称为最优解。

最优基:最优解对应的基矩阵,称为最优基。

它们的相互关系如右图所示:5.用表格单纯形法求解如下线性规划。

32124max x x x Z ++=s .t . ⎪⎩⎪⎨⎧≥≤++≤++0,,86238321321321x x x x x x x x x解:标准化 32124m a xx x x Z ++= s .t . ⎪⎩⎪⎨⎧≥=+++=+++0,,,,862385432153214321x x x x x x x x x x x x x 列出单纯形表故最优解为T X )6,0,2,0,0(*=,即2,0,0321===x x x ,此时最优值为4*)(=X Z . 6.表1—15中给出了求极大化问题的单纯形表,问表中d c c a a ,,,,2121为何值及变量属于哪一类型时有:(1)表中解为唯一最优解;(2)表中解为无穷多最优解之一;(3)下一步迭代将以1x 代替基变量5x ;(4)该线性规划问题具有无界解;(5)该线性规划问题无可行解。

《管理运筹学》期中复习题答案

《管理运筹学》期中复习题答案

《管理运筹学》期中测试题第一部分 线性规划一、填空题1.线性规划问题是求一个 目标函数 在一组 约束条件 下的最值问题。

2.图解法适用于含有 两个 _ 变量的线性规划问题。

3.线性规划问题的可行解是指满足 所有约束条件_ 的解。

4.在线性规划问题的基本解中,所有的非基变量等于 零 . 5.在线性规划问题中,基本可行解的非零分量所对应的列向量线性 无 关6.若线性规划问题有最优解,则最优解一定可以在可行域的 顶点_ 达到。

7.若线性规划问题有可行解,则 一定 _ 有基本可行解。

8.如果线性规划问题存在目标函数为有限值的最优解,求解时只需在其 可行解 的集合中进行搜索即可得到最优解。

9.满足 非负 _ 条件的基本解称为基本可行解。

10.在将线性规划问题的一般形式转化为标准形式时,引入的松驰变量在目标函数中的系数为 正 。

11.将线性规划模型化成标准形式时,“≤”的约束条件要在不等式左_端加入 松弛 _ 变量。

12.线性规划模型包括 决策变量 、目标函数 、约束条件 三个要素。

13.线性规划问题可分为目标函数求 最大 _ 值和 最小 _值两类。

14.线性规划问题的标准形式中,约束条件取 等 _ 式,目标函数求 最大 _值,而所有决策变量必须 非负 。

15.线性规划问题的基本可行解与基本解的关系是 基本可行解一定是基本解,反之不然16.在用图解法求解线性规划问题时,如果取得最值的等值线与可行域的一段边界重合,则 _ 最优解不唯一 。

17.求解线性规划问题可能的结果有 唯一最优解,无穷多最优解,无界解,无可行解 。

18。

如果某个约束条件是“ "情形,若化为标准形式,需要引入一个 剩余 _ 变量。

19。

如果某个变量X j 为自由变量,则应引进两个非负变量X j ′ , X j 〞, 同时令X j = X j ′ - X j 〞 j 。

20.表达线性规划的简式中目标函数为 线性函数 _ .21。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

管理运筹学复习题及部分参考答案(由于该课程理论性强,采用开卷考试的形式)一、名词解释1.模型2.线性规划3.树4.网络5.风险型决策二、简答题1.简述运筹学的工作步骤。

2.运筹学中模型有哪些基本形式?3.简述线性规划问题隐含的假设。

4.线性规划模型的特征。

5.如何用最优单纯形表判断线性规划解的唯一性或求出它的另一些最优解?6.简述对偶理论的基本内容。

7.简述对偶问题的基本性质。

8.什么是影子价格?同相应的市场价格之间有何区别,以及研究影子价格的意义。

9.简述运输问题的求解方法。

10.树图的性质。

11.简述最小支撑树的求法。

12.绘制网络图应遵循什么规则。

三、书《收据模型与决策》2.1314. 有如下的直线方程:2x1+x2=4a. 当x2=0时确定x1的值。

当x1=0时确定x2的值。

b. 以x1为横轴x2为纵轴建立一个两维图。

使用a的结果画出这条直线。

c. 确定直线的斜率。

d. 找出斜截式直线方程。

然后使用这个形式确定直线的斜率和直线在纵轴上的截距。

答案:14. a. 如果x2=0,则x1=2。

如果x1=0,则x2=4。

c. 斜率= -2d. x2=-2 x1+42.40你的老板要求你使用管理科学知识确定两种活动(和)的水平,使得满足在约束的前提下总成本最小。

模型的代数形式如下所示。

Maximize 成本=15 x1+20 x2约束条件约束1:x1+ 2x2≥10约束2:2x1-3x2≤6约束3:x1+x2≥6和x1≥0,x2≥0a.用图解法求解这个模型。

b.为这个问题建立一个电子表格模型。

c.使用Excel Solver求解这个模型。

答案:a.最优解:(x1, x2)=(2, 4),C=1103.2考虑具有如下所示参数表的资源分配问题:单位贡献=单位活动的利润b.将该问题在电子表格上建模。

c.用电子表格检验下面的解(x1, x2)=(2, 2), (3, 3), (2, 4), (4, 2), (3, 4), (4, 3), 哪些是可行解,可行解中哪一个能使得目标函数的值最优?d.用Solver来求解最优解。

e.写出该模型的代数形式。

f.用作图法求解该问题。

答案:Omega公司停止了生产一些已经不再获利的产品,这样就产生了相当地剩余生产力。

管理层考虑将这些剩余的生产力用于一种或几表所示。

各种产品每生产一个单位需要的机器小时如下表所示:生产系数(每单位的机器小时)销售部门表示产品1与产品2的预计销售将超过最大的生产量,而产品3的每周平均销售20单位。

三种产品的单位利润分别为$50, $20, 和$25。

目标是要确定每种产品的产量使得公司的利润最大化。

a.判别问题的各种活动以及分配给这些活动的有限的资源,从而说明该问题为什么是资源分配问题。

b.为该资源分配问题建立参数表。

c.描述该问题要作出的决策,决策的限制条件以及决策的总绩效测度。

d.将上面对于决策与绩效测度的描述以数据和决策量的定量的方式来表达。

e.为该问题建立电子表格模型,确定数据单元格,可变单元格,目标单元格以及其他的输出单元格,并且将输出单元格中使用SUMPRODUCT函数的等式表示出。

f.用Solver来求解问题。

g.将该模型以代数形式总结。

答案:c. 所需要进行的决策是每一种产品应当生产多少。

决策的约束条件是碾磨机、车床和磨工的可用时数以及产品3的潜在销量。

总的绩效测度是利润,利润必须最大化。

d. 碾磨机:9(#1的单位数)+3(#2的单位数)+5(#3的单位数)≤500机床:5(#1的单位数)+4(#2的单位数)≤350磨工:3(#1的单位数)+2(#3的单位数)≤150销售量:(#3的单位数)≤ 20非负条件:(#1的单位数)≥ 0,(#2的单位数)≥ 0,(#3的单位数)≥ 0利润=$50(#1的单位数)+$20(#2的单位数)+$25(#3的单位数)e4.6K&L公司为其冰激凌经营店供应三种口味的冰激凌:巧克力、香草和香蕉。

因为天气炎热,对冰激凌的需求大增,而公司库存的原料已经不够了。

这些原料分别为:牛奶、糖和奶油。

公司无法完成接收的订单,但是,为了在资源有限的条件下,使利润最大化,公司需要确定各种口味产品的最优组合。

巧克力、香草和香蕉三种口味的冰激凌的销售利润分别为每加仑$1.00、$0.90和$0.95。

公司现在有200加仑牛奶、150磅糖和60加仑奶油的存货。

这一问题代数形式的线性规划表示如下:假设C=巧克力冰激凌的产量(加仑)V=香草冰激凌的产量(加仑)B=香蕉冰激凌的产量(加仑)最大化利润=1.00C+0.90V+0.95B结束条件牛奶:0.45C+0.50V+0.40B≤200(加仑)糖:0.50C+0.40V+0.40B≤150(加仑)奶油:0.10C+0.15V+0.20B≤60(加仑)且C≥0 V≥0 B≥0使用Excel Solver求解,求解后的电子表格和灵敏度报告如下所示。

(注意,因为在f中将会讨论牛奶约束,所以该部分在下面的省去了。

)不用Excel Solver重新求解,尽可能详尽的回答下列问题,注意,各个部分是互不干扰,相互独立的。

a.最优解和总利润是多少?b.假设香蕉冰激凌每加仑的利润变为$1.00,最优解是否改变,对总利润又会产生怎样的影响?c.假设香蕉冰激凌每加仑的利润变为92美分,最优解是否改变,对总利润又会产生怎样的影响?d.公司发现有三加仑的库存奶油已经变质,只能扔掉,最优解是否改变,对总利润又会产生怎样的影响?e.假设公司有机会购得15磅糖,总成本$15,公司是否应该购买这批糖,为什么?f.在灵敏度报告中加入牛奶的约束,并解释如何减少各种产品的产量?变动单元格单元格名最终值减少的目标函数允许允许成本系数增加值减少值$B$8 巧克力的解0 0.0375 1 0.0375 1E+30$C$8 香草的解300 00.9 0.05 0.0125$D$8 香蕉的解75 00.95 0.021428571 0.05约束条件单元格名最终值影子右端值允许允许价格增加值减少值$E$4牛奶总计$E$5糖总计150 1.875 150 10 30$E$6 奶油总计60 1 6015 3.754.7大卫、莱蒂娜和莉迪亚是一家生产钟表的公司业主以及员工,大卫、莱蒂娜每周最多工作40个小时,而莉迪亚每周最多只能工作20个小时。

该公司生产两种不同的钟表:落地摆钟和墙钟。

大卫是机械工程师,负责装配钟表内部的机械部件,而莉迪亚是木工,负责木质外壳的手工加工,莉迪亚负责接收订单和运货。

每一项工作所需时间如下表所示:每生产并销售一个落地摆钟产生的利润是$300,每个墙钟为$200。

现在,三个业主希望能够得到各种产品产量的最优组合,以使得利润最大化。

a.为该问题建立线性规划模型。

b.使用图形法求解。

c.将模型显示在电子表格上。

d.使用Excel Solver求解最优解并生成灵敏度报告。

e.如果落地摆钟的单位利润从$300增加到$375,而模型的其他不变,运用灵敏度报告确定最优解是否会改变?f.除了e中老式表的单位利润变动之外,再加上将墙钟的单位利润从$200降到$175,重复e的问题。

g.用图表分析证明e和f的答案。

h.为了增加总利润,三个业主同意增加他们三人中的一个人的工作时间,增加该人的工作时间必须能够最大限度的增加总利润。

运用灵敏度报告,确定应该选择哪一个人。

(假设模型的其他部分没有任何的变动。

)i.解释为什么有一个人的影子价格为0。

j.如果莉迪亚将工作时间从每周的20小时增加到25小时,是否可以用影子价格分析该变动对结果的影响?如果影子价格有效,总利润将增加多少?k.在将j中加入另一变动,即大卫的工作时间从每周40小时减少到35,重新分析。

l.使用图形证明k中的结论。

4.11考虑具有如下参数表的资源分配问题:该问题的目标是确定各种活动的单位数量使得总利润最大。

a.使用作图法求解该模型。

b.增加一个单位的可获得的资源数量,用作图法再次求解,从而确定各种资源的影子价格。

c.对a和b部分用电子表格建模并求解。

d.运用Solver的灵敏度报告求得影子价格。

e.描述一下为什么在管理层有权改变可获得的资源量时,影子价格是很有用的。

5.5汤姆想要在今天买三品脱的家酿酒,明天买另外的四品脱。

迪克想要销售5品脱的家酿酒,今天的价钱为每品脱3.00美元,而明天的价钱为每品脱2.70美元。

哈里想要销售4品脱的家酿酒,今天的价钱为每品脱2.90美元,而明天的价钱为每品脱2.80美元。

汤姆想要知道他要如何进行购买才能在满足他的口渴需要的基础之上,使他的购买成本达到最小值。

为这个问题建立电子表格模型并解决它。

5.8承包商苏珊·美格想要向三个建筑工地运送沙土。

她可以在城市北面的沙土矿中购买18吨的沙土,在城市南面的沙土矿中购买14吨的沙土。

建筑工地1、2、3需要的沙土量分别为10吨、5吨和10吨。

在每个沙土矿购买一吨沙土的成本以及每一吨的运输成本如下所示。

苏珊想要确定应该从每一个沙土矿运输多少沙土到每一个工地,才能使购买和运输成本达到最低。

对这个问题进行描述并求解。

5.18考虑拥有如下所示成本表的指派问题(单位:美元)最优解是A-3,B-1,C-2,总的成本是10美元。

a.画出这个问题的网络表示图。

b.在电子表格上对这个问题进行描述。

c.使用Excel Solver得到最优解。

答案:b c.5.19考虑拥有如下所示的成本表的指派问题(单位:美元)a.画出这个问题的网络表示图。

b.在电子表格上对这个问题进行描述。

c.使用Excel Solver得到最优解。

5.20四艘货船要从一个码头向其他的四个码头运货(分别标记为1、2、3、4)。

每一艘船都能够运送到任何一个码头。

但是,由于货船和货物的不同,装船、运输和卸货成本都有些不同。

如同下表所示:(单位:美元)目标是要把这四个不同的码头指派给四艘货船,使总运输成本最小。

a.请解释为什么这个问题符合指派问题模型。

b.在电子表格中描述这个问题并求解。

6.8为下图给出的最大流问题建立一个电子表格模型并用其求解。

图中,节点A是源,节点F是6.9右方的图描述了产生于三条河(节点R1、R2和R3)而终结于一个主要城市(节点T)的人以千立方英尺为单位,下表显示了每天每条人工水道可以通过的最大水量。

城市水利管理者需要确定一个流量方案,使得到达这个城市的水流量最大。

a. 把这个问题看作是最大流问题,确定源点、收点和转运点,然后画出标有每条弧容量的完整网络。

b. 为该问题建立电子表格模型并求解。

答案: 6.8最大流量= 156.12你将驾驶着小汽车进行一次旅行,到达一个你以前从未到过的城市。

所以你需要研究地图,从而为到达这一目的地选择一条最短的路线。

相关文档
最新文档