幂函数 知识点总结及典例

合集下载

幂函数知识点笔记总结

幂函数知识点笔记总结

幂函数知识点笔记总结一、基本概念1. 幂函数的定义幂函数是指以底数为自变量,指数为常数的函数,一般形式为 f(x) = a*x^n,其中a为常数,n为整数。

特殊情况下,指数可以是分数或负数。

2. 幂函数的图像特征当底数为正数且指数为正整数时,幂函数为增函数,图像从左下到右上逐渐上升;当底数为正数且指数为负整数时,幂函数为减函数,图像从左上到右下逐渐下降;当底数为负数且指数为奇数时,幂函数为增减函数,图像在原点对称;当底数为负数且指数为偶数时,幂函数为非定义域。

3. 幂函数的定义域和值域幂函数的定义域为实数集合R,值域取决于底数a的正负和指数n的奇偶性,可以是整个实数集合、正实数集合或负实数集合。

4. 幂函数的奇偶性当指数n为奇数时,幂函数为奇函数,具有原点对称性;当指数n为偶数时,幂函数为偶函数,具有y轴对称性。

二、函数性质1. 增减性当指数n为正数时,幂函数为增函数,图像从左下到右上逐渐上升;当指数n为负数时,幂函数为减函数,图像从左上到右下逐渐下降。

2. 奇偶性当指数n为奇数时,幂函数为奇函数,具有原点对称性;当指数n为偶数时,幂函数为偶函数,具有y轴对称性。

3. 定义域和值域幂函数的定义域为实数集合R,值域取决于底数a的正负和指数n的奇偶性。

4. 图像特征底数为正数且指数为正整数时,幂函数为增函数;底数为正数且指数为负整数时,幂函数为减函数;底数为负数且指数为奇数时,幂函数为增减函数;底数为负数且指数为偶数时,幂函数为非定义域。

5. 渐近线当底数a为正数且指数n为正数时,幂函数的渐近线为y=0(x轴);当底数a为正数且指数n为负数时,幂函数的渐近线为x=0(y轴);其他情况下,幂函数没有渐近线。

三、常见变形1. 幂函数的平移对于幂函数f(x) = a*x^n,当a>0时,平移y轴时,可以通过加减常数来实现;当a<0时,平移x轴时,也可以通过加减常数来实现。

2. 幂函数的伸缩对于幂函数 f(x) = a*x^n,当a>0时,伸缩x轴时,可以通过系数a来实现;当a<0时,伸缩y轴时,也可以通过系数a来实现。

幂函数知识点

幂函数知识点

幂函数知识要点一.定义:形如y=x a(是常数)的函数,叫幂函数。

二.图象幂函数的图象和性质;由d取值不同而变化,如图如示:三.幂函数的性质:n>0时,(1)图象都通过点(0,0),(1,1)(2)在(0,+∞),函数随的增大而增大n<0时,(1)图象都通过(1,1)(2)在(0,+∞),函数随x的增加而减小(3)在第一象限内,图象向上与y轴无限地接近,向右与x轴无限地接近。

注意事项:1.判断幂函数的定义域的方法可概括为(对指数)“先看正负,是负去零,再看奇偶,是偶非负”2.根据幂函数的定义域,值域及指数特点画其图象。

函数位于第一象限的图象在“n>1”时,往上翘;0<n<1,往右拐;n<0向下滑。

四.例析:分析:底数分别不同而指数相同,可以看作是和。

两个幂函数,利用幂函数的单调性质去理解。

解:(1)(0,+∞)是递增的又∵1.1<1.4 ∴利用幂函数的性质比较数的大小。

例3.比较的大小。

分析:三个量比较大小,先考虑取值的符号。

启示:当直接比较大小难以进行时,可以考虑借助一些中间量特殊值,如0,1或其他数来解决。

分析:在指数运算中,注重运算顺序和灵活运用乘法合成。

启示:此处化简过程可与初中代数式的运算联系。

五.自测题:1.计算的值()2.下列命题中正确的是()A.当n=0时,函数y=x n的图象是一条直线B.幂函数的图象都经过(0,0),(1,1)两点C.若幂函数y=x n的图象关于原点对称,则y=x n在定义域内y随x的增大而增大D.幂函数的图象不可能在第四象限3.实数a,b满足0<c<b<1,则下列不等式正确的是()A.a b<ba B.a-b<b-b C.a-a<b-b D.b b<a a4.在幂函数y=x a,y=x b,y=x c,y=x d在第1象限的图象中(右图),的大小关系为()A.a>b>c>d B.d>b>c>a C.d>c>b>aD.b>c>d>a5.下列函数中是幂函数的是)6.设幂函数y=x n的图象经过(8,4),则函数y=x n的值域为_______。

高中幂函数知识点总结

高中幂函数知识点总结

引言:高中幂函数是高中数学中的重要部分,它在数学研究和实际问题中有着广泛的应用。

本文将对高中幂函数的知识点进行总结和整理,帮助学生完善对幂函数的理解和掌握。

概述:幂函数是指形如y=x^n的函数,其中n是常数。

幂函数的特点是具有单调性和奇偶性,其图象通常为一条曲线。

在研究幂函数时,需要掌握其定义、性质和应用。

正文:一、幂函数的定义1.1 幂函数的基本形式幂函数的基本形式是y=x^n,其中n是常数。

幂函数的定义域为所有实数,且n可以是正整数、负整数、零和有理数。

1.2 幂函数的图象当n为正奇数时,幂函数的图象在第一象限和第三象限上单调递增;当n为正偶数时,幂函数的图象在第一象限上单调递增,且具有对称轴y=0;当n为负数时,幂函数的图象在第一、三象限上单调递减。

1.3 幂函数的特殊情况当n=1时,幂函数变为一次函数;当n=0时,幂函数变为常数函数;当n为正无穷大时,幂函数趋向于正无穷大;当n为负无穷大时,幂函数趋向于零。

二、幂函数的性质2.1 幂函数的单调性幂函数在定义域上的单调性与n的值有关。

当n为正奇数时,幂函数是增函数;当n为正偶数时,在非负区间上是增函数,在负区间上是减函数;当n为负数时,在非负区间上是减函数,在负区间上是增函数。

2.2 幂函数的奇偶性幂函数的奇偶性与n的奇偶性有关。

当n为奇数时,幂函数是奇函数;当n为偶数时,幂函数是偶函数。

2.3 幂函数的零点当n为正奇数时,幂函数的零点为x=0;当n为正偶数时,幂函数的零点为x=0;当n为负奇数时,幂函数没有零点;当n为负偶数时,幂函数的零点为x=0。

三、幂函数的图象变换3.1 幂函数的平移幂函数的平移是指将幂函数的图象沿横轴或纵轴方向移动。

平移的方向和距离与平移的规律有关,具体可利用平移的公式进行计算。

3.2 幂函数的伸缩幂函数的伸缩是指将幂函数的图象进行纵向或横向的拉伸或压缩。

伸缩的方式和伸缩的规律有关,可利用伸缩的公式进行计算。

3.3 幂函数的翻折幂函数的翻折是指将幂函数的图象进行关于横轴或纵轴的翻折。

高考数学知识点 幂函数知识点_知识点总结

高考数学知识点 幂函数知识点_知识点总结

高考数学知识点幂函数知识点_知识点总结幂函数是高中数学中重要的知识点之一,它在高考数学考试中经常出现。

掌握幂函数的知识点对于顺利解决各类与幂函数相关的数学题目至关重要。

本文将对幂函数的相关知识点进行总结和归纳,帮助同学们理清思路,加强对该知识点的掌握。

一、幂函数的定义幂函数是指函数y = x^n,其中x为自变量,n为常数。

在幂函数中,x的指数是常数,y与x之间存在特定的关系。

二、幂函数的图像特点1. 当n为正整数时,幂函数的图像是以原点为中心的相似变换。

当n为正奇数时,函数具有奇对称性,图像关于坐标原点对称;当n为正偶数时,函数具有偶对称性,图像关于y轴对称,并且右侧都是正数部分;当n为正数时,函数图像都通过第一象限。

2. 当n为负整数时,幂函数的图像将关于x轴对称,并且经过第一象限和第三象限的两点。

3. 当n为0时,幂函数的图像为直线y = 1,是一个常数函数。

三、幂函数的性质1. 定义域:所有实数。

2. 值域:当n为正奇数时,函数的值域为(-∞, +∞);当n为正偶数时,函数的值域为[0, +∞);当n为负奇数时,函数的值域为(-∞, 0);当n为负偶数时,函数的值域为[0, +∞)。

3. 单调性:当n为正数时,幂函数在定义域上是递增函数;当n为负数时,幂函数在定义域上是递减函数。

4. 对称性:当n为正奇数时,幂函数的图像关于原点对称;当n为正偶数时,幂函数的图像关于y轴对称;当n为负整数时,幂函数的图像关于x轴对称。

5. 渐近线:当n为正数时,幂函数的图像与x轴无交点;当n为负整数时,幂函数的图像与y轴无交点。

四、幂函数的应用幂函数广泛应用于数学中的各种实际问题中,比如面积、体积、变量关系等。

在解决这些问题时,我们可以通过列方程、求导等方法将其转化为幂函数的求解过程。

例如,求解一个正方形的面积与边长之间的关系。

我们可以将正方形的面积设为y,边长设为x,那么根据正方形的性质可得 y = x^2,这就是一个幂函数的表达式,通过对该函数进行数学分析,我们可以得出边长与面积之间的关系,并解决相关的数学问题。

幂函数——知识点、考点总结

幂函数——知识点、考点总结

精品PPT
求f x的解析式.
2.若幂函数y m2 3m 17 x4mm2的图象不过原点,求实数m的取值范围. 3.幂函数y m2 m 1 xm22m3,当x 0, 时为减函数,则实数m的值为
. A m 2; B m 1;C m 1或2;D m 1 5 .
2
精品PPT
题型三——幂函数的图象与性质的应用
-
2 3
-2
3

-
6
-2
3
的大小
练习:
7
例2.比较下列各组数的大小
5
5
1.32 和3.12;
7
2
.
8
7 8
和-
1 9
8

3.
2 3
2 3

-
6
-2 3
.
1.比较下列各组数的大小:1
-
.3
5 2
和3.1
5 2
;
2
.
8
7 8

1 9
பைடு நூலகம்
8
;
已知幂函数f
x
3 k 1 k2 x2 2
k
Z
Y=x
R
值域 R
奇偶性 奇
Y=x2 Y=x3 Y=x1/2 Y=x-1
R
〔0,+∞) 偶
R
R
〔0,+∞)
(-∞,0)∪(0,+∞)

精非品P奇PT非偶 奇
单调性
过定点
(-∞,0〕 〔0,+∞)
〔0,+∞)
(1,1)
(-∞,0) (0,+∞)
6.高考中的题型: 题型一——幂函数值的大小比较

高考数学知识点幂函数知识点总结

高考数学知识点幂函数知识点总结

高考数学知识点幂函数知识点总结幂函数是高考数学中的重要知识点之一。

它在求解各类问题中具有广泛的应用。

本文将对幂函数的定义、性质以及解题技巧进行总结,以帮助考生全面掌握相关知识。

一、幂函数的定义与性质1. 定义:幂函数是指形如f(x) = a^x的函数,其中a为实数且a>0且a≠1。

2. 幂函数的基本性质:(1) 当a>1时,幂函数是递增函数;(2) 当0<a<1时,幂函数是递减函数;(3) 幂函数的图象是关于y轴对称的;(4) 当x取整数时,幂函数的函数值为恒定值。

3. 幂函数的特殊情况:(1) 当a>1时,幂函数的图象在x轴正半轴上逼近y轴;(2) 当0<a<1时,幂函数的图象在x轴正半轴上逼近x轴;(3) 当a=1时,幂函数为常数函数。

二、幂函数的常见解题技巧1. 求解幂函数的零点:对于幂函数f(x) = a^x = 0,可以通过求解a^x = 0的条件来得到幂函数的零点。

由于指数函数a^x的定义域为实数集,而等式0^x没有意义,因此幂函数的零点不存在。

2. 求解幂函数的最值:当幂函数f(x) = a^x存在最值时,可以通过导数法求解。

具体步骤为:(1) 求得f'(x) = a^x * ln(a),其中ln(a)表示以e为底的对数;(2) 令f'(x) = 0,解得x = ln(a);(3) 将x = ln(a)带入幂函数,得到最值点或者端点的函数值;(4) 比较得到最值。

3. 幂函数与其他函数的复合:幂函数和其他常见函数的复合,如幂函数与线性函数、指数函数、对数函数的复合等,可以通过替换变量或者利用函数关系进行求解。

具体步骤需要根据题目的要求和已知条件进行灵活运用。

4. 幂函数在实际问题中的应用:幂函数在生活和工作中有广泛的应用,比如指数增长与衰减问题,利润与销售量关系的建模,物理中的涉及到指数增长和衰减的问题等,需要考生能够将幂函数与实际问题相结合,进行建模和求解。

根据幂函数的增减性知识点及题型归纳总结

根据幂函数的增减性知识点及题型归纳总结

根据幂函数的增减性知识点及题型归纳总结一、增减性的概念幂函数是指形如 y = ax^n (其中a ≠ 0 且 n 是整数)的函数。

增减性是指函数图像在定义域内的上升和下降趋势。

二、幂函数的增减性质1. 当 a > 0 时,a) 若 n > 0,函数是递增的。

b) 若 n = 0,函数是常数函数。

c) 若 n < 0,函数是递减的。

2. 当 a < 0 时,a) 若 n > 0 且 n 为奇数,函数是递增的。

b) 若 n > 0 且 n 为偶数,函数在 x > 0 时递减,在 x < 0 时递增。

c) 若 n < 0,函数是递减的。

三、常见题型归纳1. 判断题型:给定一个幂函数的函数式,判断它的增减性质。

示例:对于函数 y = 2x^3,其中 a = 2,n = 3,由于 a > 0 且 n > 0,所以函数是递增的。

2. 求解题型:根据幂函数的增减性,求解满足一定条件的未知数。

示例:求解不等式 5x^2 - 3x ≥ 0 的解集。

首先判断函数 y =5x^2 - 3x 的增减性,由于 a = 5,n = 2,a > 0 且 n > 0,所以函数是递增的。

然后求解方程 y = 5x^2 - 3x = 0 的解集,得到 x = 0 和 x =3/5。

根据函数的增减性,不等式的解集为x ≤ 0 或x ≥ 3/5。

3. 应用题型:应用幂函数的增减性解决实际问题,如最值问题、图像分析等。

示例:某电商平台上一种商品的售价为 p 元,每天的销量为 q 件,销售总额 E(p) = pq。

已知单位售价 p 提高 10%,销量 q 降低 5% 后,求销售总额的变化情况。

根据幂函数的增减性质,当 p 上升 10% 时,E(p) 的变化趋势与 p 的变化趋势相同;当 q 降低 5% 时,E(p) 的变化趋势与 q 的变化趋势相反。

因此,销售总额的变化情况为:增加 10% ×减少 5%= 增加 5%。

《幂函数》 讲义

《幂函数》 讲义

《幂函数》讲义一、幂函数的定义形如y =x^α(α 为常数)的函数,叫做幂函数。

其中x 是自变量,α 是常数。

需要注意的是,幂函数的系数必须为 1 ,例如 y = 2x^3 就不是幂函数,而 y = x^3 就是幂函数。

二、幂函数的图像1、当α > 0 时(1)当α 为整数时若α 为偶数,幂函数的图像在第一、二象限,关于 y 轴对称,在第一象限,函数单调递增;在第二象限,函数单调递减。

例如,y = x^2 的图像是一个开口向上的抛物线,顶点在原点,对称轴为 y 轴。

若α 为奇数,幂函数的图像在第一、三象限,关于原点对称,在第一象限,函数单调递增;在第三象限,函数单调递减。

比如,y =x^3 的图像是一个经过原点,穿过第一、三象限的曲线。

(2)当α 为分数时若α 的分子为奇数,分母为偶数,幂函数的图像在第一象限,函数单调递增。

若α 的分子为偶数,分母为奇数,幂函数的图像在第一象限,函数单调递增,且图像在 x 轴上方。

2、当α < 0 时幂函数的图像在第一、二象限,在第一象限,函数单调递减。

例如,y = x^(-1) ,也就是 y = 1/x ,其图像是双曲线,分布在第一、三象限。

三、幂函数的性质1、定义域当α 为整数时,定义域为 R;当α 为分数时,分母为偶数时,定义域为 0, +∞),分母为奇数时,定义域为 R。

2、值域与定义域和α 的取值有关。

3、奇偶性当α 为整数时,若α 为偶数,函数为偶函数;若α 为奇数,函数为奇函数。

当α 为分数时,需要根据具体情况判断奇偶性。

4、单调性当α > 0 时,函数在第一象限单调递增;当α < 0 时,函数在第一象限单调递减。

四、幂函数的应用1、在物理学中的应用例如在研究自由落体运动时,下落的距离与时间的关系可以用幂函数来表示。

2、在经济学中的应用如成本与产量的关系,可能符合幂函数的特征。

3、在数学建模中的应用通过建立幂函数模型来解决实际问题,如人口增长、资源消耗等。

幂函数知识点

幂函数知识点

幂函数知识点一、幂函数的定义形如$y = x^{\alpha}$($\alpha$为常数)的函数,称为幂函数。

其中$x$是自变量,$\alpha$是常数。

需要注意的是,幂函数的底数是自变量$x$,指数是常数$\alpha$,这是幂函数的重要特征。

例如,$y = x^2$,$y = x^{1/2}$,$y= x^{-1}$等都是幂函数。

二、幂函数的图像和性质1、当$\alpha > 0$时(1)$\alpha$为偶数时,幂函数的图像关于$y$轴对称。

例如,$y = x^2$的图像是一个开口向上的抛物线,顶点在原点。

(2)$\alpha$为奇数时,幂函数的图像关于原点对称。

比如,$y = x^3$的图像是经过原点的单调递增曲线。

2、当$\alpha < 0$时(1)幂函数的图像在第一、二象限,在第一象限内,函数值随$x$的增大而减小。

例如,$y = x^{-1}$的图像是双曲线,位于第一、三象限。

(2)当$x > 1$时,幂函数的图像在$y = x$的下方;当$0 < x <1$时,幂函数的图像在$y = x$的上方。

3、当$\alpha = 0$时$y = 1$($x \neq 0$),图像是一条平行于$x$轴的直线,去掉点$(0, 1)$。

三、幂函数的单调性1、当$\alpha > 0$时(1)若$\alpha > 1$,幂函数在$0, +\infty)$上单调递增。

(2)若$0 <\alpha <1$,幂函数在$0, +\infty)$上单调递增,但增长速度较慢。

2、当$\alpha < 0$时幂函数在$(0, +\infty)$上单调递减。

四、幂函数的奇偶性1、若$\alpha$为整数(1)当$\alpha$为偶数时,幂函数为偶函数。

(2)当$\alpha$为奇数时,幂函数为奇函数。

2、若$\alpha$为分数将其化为最简分数形式$\frac{p}{q}$($p$,$q$互质)(1)若$q$为偶数,幂函数是非奇非偶函数。

幂函数高考知识点总结

幂函数高考知识点总结

幂函数高考知识点总结幂函数是高中数学中非常重要的一部分内容,也是高考中经常出现的知识点之一。

幂函数在数学中具有广泛的应用,不仅仅体现在纵坐标的数值关系上,更是涉及到图像特征、函数性质以及解题方法等方面。

下面我将对幂函数的相关知识进行总结和梳理,希望对大家复习和备考有所帮助。

1、幂函数的定义和性质幂函数的一般形式可以表示为:f(x) = ax^b,其中a和b是常数,而x是变量。

其中,a称为幂函数的系数,b称为幂函数的指数。

幂函数的定义域由指数b的正负决定,若b为正整数,则定义域是全体实数;若b为负整数,则定义域是x ≠ 0的一切实数;若b为0,则幂函数的定义域是x > 0的一切实数。

当只考虑幂函数f(x)在正数定义域上的取值时,幂函数的图像可以分为两种情况:当a > 1时,图像呈现递增趋势;当0 < a < 1时,图像则呈现递减趋势。

2、幂函数的图像特征通过观察幂函数的图像,我们可以得出一些重要的结论。

首先,当幂函数的系数a为正数时,图像都经过第一象限的点(1, a)。

其次,当幂函数的指数b为奇数时,幂函数的图像对称于y轴;当幂函数的指数b为偶数时,幂函数的图像具有原点对称性。

除此之外,我们还可以通过改变系数a和指数b的值,来改变幂函数图像的特征,如峰值的高低、函数图像的陡峭程度等。

3、幂函数的运算与应用幂函数的求导是高中数学中的重要内容之一。

对于幂函数f(x) =ax^b,其中a为常数,b为实数,我们可以通过求导的方法来确定幂函数的导函数形式。

具体来说,当指数为整数时,我们可以利用幂函数的定义进行求导;当指数为实数且不为整数时,我们则需要利用对数函数的性质来求导。

此外,由于幂函数具有多种性质和特点,在解决实际问题时也能够提供很多启示和方法。

4、幂函数的解题技巧和例题分析在高考中,幂函数常常出现在各种数学题目中,因此熟练掌握幂函数的解题方法是非常重要的。

对于幂函数的解题技巧,我们可以利用以下几点进行分析和总结:首先,要熟悉幂函数的性质和特点,了解其图像形态和函数性质;其次,要能够根据题目给出的条件和要求,建立幂函数方程或不等式;最后,要善于运用数学方法和思维工具,进行合理的推导和计算。

高考数学知识点幂函数知识点知识点总结

高考数学知识点幂函数知识点知识点总结

高考数学知识点幂函数知识点知识点总结幂函数知识点总结幂函数是数学中重要的函数之一,也是高考数学中的考点内容。

本文将对幂函数的相关知识点进行总结,包括定义、性质、图像和应用等内容。

一、定义幂函数是指函数y = ax^n,其中a和n均为常数,且a ≠ 0,n为正整数。

其中,a称为幂函数的底数,n称为幂函数的指数。

幂函数的定义域为全体实数,值域根据指数的奇偶性而定。

当指数n为奇数时,值域为全体实数;当指数n为偶数时,值域为非负实数。

二、性质1. 当底数a大于1时,幂函数的图像随着自变量x的增大而增大;当底数a介于0和1之间时,幂函数的图像随着自变量x的增大而减小。

2. 当指数n为正整数时,幂函数的图像在第一象限上且经过点(1,a)。

3. 当指数n为奇数时,幂函数的图像关于y轴对称;当指数n为偶数时,幂函数的图像关于原点对称。

三、图像根据幂函数的性质,我们可以画出幂函数的大致图像。

以y = 2x^2为例,我们可以按照以下步骤绘制图像:1. 计算出若干个点的坐标,取x的值为-2,-1,0,1,2,3等,并计算出对应的y值。

2. 将这些点连接起来,形成平滑的曲线。

3. 注意幂函数的对称性,根据对称轴上的点可以在其他位置上找到对应的点。

四、应用幂函数在实际问题中有广泛的应用,其中一些典型的应用包括:1. 复利计算:由于幂函数的特性,它可以很好地描述复利增长的情况。

例如,存款的本金在每年按一定的比例增长,这就可以用幂函数来表示。

2. 科学实验:在某些科学实验中,现象的变化与自变量并非线性关系,而是呈现幂函数的规律。

通过研究幂函数的图像和性质,可以更好地理解实验结果。

3. 经济增长:幂函数也可以描述经济增长的规律。

例如,某地区的GDP每年按一定的比例增长,可以用幂函数来表示。

总结:幂函数是高考数学中的重要知识点,掌握了幂函数的定义、性质、图像和应用,能够解决与幂函数相关的各种问题。

在学习过程中,我们还可以通过练习题加深对幂函数的理解和应用能力。

幂函数知识点及题型归纳总结

幂函数知识点及题型归纳总结

幂函数知识点及题型归纳总结知识点精讲一、幂函数的定义一般地,函数()y x R αα=∈叫做幂函数,其中x 是自变量,α是常数.注:判断一个函数是否为幂函数,关键是看其系数是否为1,底数是否为变量x .二、幂函数的图像幂函数的图像一定会出现在第一象限内,一定不会出现在第四项县内,至于是否出现在第二、三象限内,要看函数的奇偶性;幂函数的图像如果与坐标轴相交,则交点一定是原点. 当11,2,3,,12α=-时,在同一坐标系内的函数图像如图2-18所示.三、幂函数的性质当0α>时,幂函数y x α=在(0,)+∞上是增函数,当1α>时,函数图像是向下凸的;当01α<<时,图像是向上凸的,恒过点(0,0)(1,1)和;当0α<时,幂函数y x α=在(0,)+∞上是减函数.幂函数y x α=的图像恒过点(1,1).题型归纳及思路提示题型1 幂函数的定义及其图像思路提示确定幂函数y x α=的定义域,当α为分数时,可转化为根式考虑,是否为偶次根式,或为则被开方式非负.当0α≤时,底数是非零的.例2.68函数2223()(1)a a f x a a x --=--为幂函数(a 为常数),且在(0,)+∞上是减函数,则a =______. 分析根据幂函数的定义及单调性求解a .解析依题意,得2211230a a a a ⎧--=⎪⎨--<⎪⎩,解得2a =. 变式1 函数32204(42)(1)y mx x m x mx -=++++-+的定义域为R ,求实数m 的取值范围.变式2 幂函数()y f x =的图像经过点1(2,)8--,则满足()27f x =的x 的值是______.. 变式3 设11,1,,32a ⎧⎫∈-⎨⎬⎩⎭,则使函数y x α=为奇函数且定义域为R 的所有α的值为( ) .1,3A .1,1B - .1,3C - .1,1,3D -题型2 幂函数性质的综合应用思路提示紧扣幂函数y x α=的定义、图像、性质,特别注意它的单调性在不等式中的作用,这里注意α为奇数时,x α为奇函数,α为偶数时,x α为偶函数.例2.69已知幂函数223()()m m f x x m Z --=∈为偶函数,且在区间(0,)+∞上是减函数.(1)求函数()f x 的解析式;(2)求满足33(1)(32)mma a --+<-的a 的取值范围.分析利用函数()f x 在区间(0,)+∞上是减函数且为偶函数求m ,从而得到()f x 的解析式.解析(1)因为幂函数在区间(0,)+∞上是减函数,所以2230m m --<得 13,m m Z -<<∈又,当0m =时,2233m m --=-;当1m =时,2234m m --=-;当2m =时,2233m m --=-.又因为()f x 为偶函数,所以4()f x x -=.(2)由1m =得1133(1)(32)a a --+<-. 即113311132a a ⎛⎫⎛⎫< ⎪ ⎪+-⎝⎭⎝⎭又13y x =在R 上单调递增,故11132a a <+-,整理得 (1)(32)(23)0a a a +--<,解得23132a a <-<<或,如图所示.故a 的取值范围为23(,1)(,)32-∞-. 评注突破点为由单调性得m 的取值范围,进而验证满足偶函数的值,若从偶函数的条件入手,则不易向下转化.分类讨论时,确定分类标准,做到不重不漏.变式1 已知函数2()f x x =,设函数[]()()(21)()1g x qf f x q f x =-+-+,问是否存在实数(0)q q <,使()g x 在区间(],4-∞-上是减函数,且在区间(4,0)-上是增函数?若存在,求出q ;若不存在,请说明理由.最有效训练题1.下列函数中,既是偶函数又在(,0)-∞上是增函数的是( )43.A y x =32.B y x = 2.C y x -= 14.D y x = 2.幂函数2232()m m y x m Z --=∈的图像如图2-20所示,则m 的值为( ).1A .2B .3C.4D3.幂函数()f x 的图像经过点11(,)42A ,则它在点A 处的切线方程为( ) .4410A x y ++= .4410B x y -+= .20C x y -=.20D x y += 4.若幂函数()f x 的图像经过点13,9⎛⎫⎪⎝⎭则其定义域为( ){}.,0A x x R x ∈> {}.,0B x x R x ∈< {}.,0C x x R x ∈≠ .D R 5.设232555322,,555a b c ⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则,,a b c 的大小关系是( ) .Aa c b >>.B a b c >> .C c a b >> .Db c a >> 6.设1112,1,,,,1,2,3232a ⎧⎫∈---⎨⎬⎩⎭,则使y x α=为奇函数且在(0,)+∞上单调递减的α值的个数为( ) .1A .2B .3C .4D7.已知幂函数()y f x =的图像过点(2,2),则(8)f 的值为_______.8.已知幂函数265()()m m f x x m Z -+=∈为奇函数,且在区间(0,)+∞上是减函数,则()f x 的解析式为32 231- 图 2-19_______.9.已知函数12()f x x =,且(21)(3)f x f x -<,则x 的取值范围是_______.10.设函数()1()f x x Q αα=+∈的定义域为[][],,b a a b --,其中0a b <<,若函数()f x 在区间[],a b 上的最大值为6,最小值为3,则()f x 在[],b a --上的最大值与最小值的和为_______.11.已知函数12()f x x =,给出下列命题:①若1()1x f x >>则;②若120x x <<,则2121()()f x f x x x ->-;③若120x x <<,则2112()()x f x x f x <;④若120x x <<,则1212()()22f x f x x x f ++⎛⎫< ⎪⎝⎭. 其中,所有正确命题的序号是_______.12.点在幂函数()f x 的图像上,点12,4⎛⎫- ⎪⎝⎭在幂函数()g x 的图像上,问当x 为何值时有: (1)()()(2)()()(3)()()f xg x f x g x f x g x >=<。

高一数学知识点幂函数知识点知识点总结

高一数学知识点幂函数知识点知识点总结

高一数学知识点幂函数知识点知识点总结高一数学知识点─ 幂函数知识点总结幂函数是数学中的一种基本函数类型,在高一数学课程中占据重要地位。

幂函数的表达形式为$f(x) = ax^b$,其中$a$和$b$为常数($a \neq 0$)。

一、幂函数的定义域和值域幂函数$f(x) = ax^b$的定义域为实数集,即$(-\infty, +\infty)$。

幂函数的值域则取决于$a$和$b$的取值范围。

当$b > 0$时,幂函数的值域为$(0, +\infty)$。

此时,函数图像从第三象限逐渐上升到第一象限。

当$b < 0$时,幂函数的值域为$(-\infty, 0)$。

此时,函数图像从第一象限逐渐下降到第三象限。

二、幂函数的对称性幂函数的对称性可以分为以下两种情况:1. 当$b$为偶数时,幂函数$f(x) = ax^b$关于$y$轴对称。

即对于任意$x$都有$f(-x) = f(x)$。

2. 当$b$为奇数时,幂函数$f(x) = ax^b$关于原点对称。

即对于任意$x$都有$f(-x) = -f(x)$。

三、幂函数的增减性与极值幂函数$f(x) = ax^b$的增减性与$b$的正负性相关。

1. 当$b > 0$时,幂函数在定义域上是递增函数。

随着$x$的增大,函数值也随之增大。

2. 当$b < 0$时,幂函数在定义域上是递减函数。

随着$x$的增大,函数值反而减小。

对于幂函数$f(x) = ax^b$而言,只有$b > 0$且$a > 0$时,才会存在极大值;只有$b < 0$且$a < 0$时,才会存在极小值。

四、幂函数的图像特征对于幂函数$f(x) = ax^b$,根据参数$a$和$b$的取值范围,其图像可以表现出不同的特征。

1. 当$a > 0$,$b > 1$时,函数图像呈现上升的指数形态。

2. 当$a < 0$,$b > 1$时,函数图像呈现下降的指数形态。

幂函数――知识点、考点总结.

幂函数――知识点、考点总结.

'溶函数一功识点、考点总结3•竹质:(1) .所右罪函数在区间(0.+O0)都仃定义,II.都过(1・1)点.(2) /p ia>0Ul,都过(<W)点.H.m[o•十s)匕为增函数.半avOH寸,右mj(O<bs)上为减函数.(3) av0fl寸,当x从右边趋向于y轴时,图傲在y轴右方无限地逼近y轴・'%无PU增大时,图彖在x轴I:方,「I•无限逊近谕1|“4弄函数图象的作法:描点法一列表.描点、连线.5卫义域值域奇偶性单调性过怎点Y=x R R奇1Y=x2R(0,*«)偶(・•%0) (),+ *») fY=x3R R奇](1, 1)Y=x1/2(0*8)非奇非偶(0. +«)Y=x1(--.0) u(0+*)命 C. 0) 1 ()• +*)[6. P 'J 蹲中的题帀:題型——幕函数值的人小比较例1.比较(弓『和「彳「的大小 练习:2上匕较F 列各组中三个值的大小,并说明理由:(2).0.16 2,0.25 S6.254.题粮二——求幕换数的解析式例2•己知P 月呦(x) = (加2十2加)”5二加为何值时,/⑴为:(1) |E 比例旳数: (2) 反比例旳数' (3) 二次函数: (4) 廉函数.练习:1.己知函数(keZ)为偶函敌,H.任区间(0,+o>) I .足增函数 舸(x)的解析式. 2.若藉函数,=(肿+ 3”-17)_?旷川的图彖不过恥丄・求实数汹嵌伪范1乩 3綁函数),=(/-,”-1)/亠二当"(0,g)时为减函数,则实数加的值为 ().(4)/n = 2;(〃)加= -l;(C)m = -1 或2;(Q)m* '丄乎・题型三一邪函数的图象与件质的应用例3.⑴已知(0.7*3 f < (1,307.求戚范用・(2)比较大小08°"与0.7皿乞习:1 .若(°+ 1)1 < (3-2ap •则册取值范用是 _________________1•比较卜•列各组数的大小 55 _?:(1).3空和 3.1乜;(2)•-82.设*{・2,・1弓討,1,2亠,则使〉,=甘为奇p始数n在(o・+s)上单凋递减的&值的个数为____________题粮川——综合应用2例4.讨论函数的定义域、奇偶性,作出图彖,并宙图彖指出函数的单调性.例5 .用总义证明:>•=)足(0.+8 )上的增函数.例6.L!他容函数尸x宀""(/疋2)的图彖关丁y轴对称,且在(0,2)上函数p P值随着増人而减小.求满足仗+1戸<(4-2“戸的a的取值范I札6・I •猱函数),=X”‘亠」(加W Z )的图象如图所示, 则加的值为()(A )-l<m<3;(B )0;(C )l;(D )2 ・2.已知函数/'(〃)=依—丄.求证;(l”(x )A 足义域I:为増函蓟:X(2)满足等式/(x ) =啲实数大的值至形只仃1个・ 3•利用幕函数图象,画出卜•列函数的图象(写淸步骤)设w (o ・i )时.函数〉・-小的图彖在n 线〉•二乂的上力.求加勺収值范何 求函数/(小 {,'的单凋区何,并L 匕找/•(-“)丄#|-迄练习: ,(l)y =F + 2x+2x 2+ 2x+ 1,(2)y = (x-2)3-l4.5.的人小.x + 4x + 4 I 2 丿己知y = </15-2x-x2.⑴求总义域、值域:(2)判斷奇偶性:(3)求单•调区间.6・。

(整理版)幂函数要点精析

(整理版)幂函数要点精析

幂函数要点精析一、重点与难点学习幂函数重点是掌握幂函数的图形特征,即图象语言,要熟记α= 1,2,3,12,-1时幂函数的图象、性质,把握幂函数的关键点(1,1)和利用直线y =x来刻画其它幂函数在第一象限的凸向.二、重点知识精析1.幂函数的一般形式为y = xα,其中x 是自变量,α是常数,其定义域是使xα有意义的x值的集合.幂函数的定义域随幂指数的变化而变化,所以应根据各种幂指数的意义来确定幂函数的定义域.2.由幂函数定义可知,函数y = 2x2、y = x2-1等都不是幂函数.反比例函数y =kx(k≠0),一次函数y = kx+b (k≠0),二次函数y = ax2+bx+c (a≠0)中,分别当k = 1,k = 1且b = 0,a = 1且b = c = 0时,即y = x1-,y = x,y = x2是幂函数,当这些条件不具备时,它们均不符合幂函数的定义,但它们是由幂函数经过算术运算而得到的初等函数.3.幂函数与指数函数的主要区别是:幂函数是底数为变量,指数函数是指数为变量.因此,当遇到一个有关幂的形式的问题时,就要看变量所在的位置决定是用幂函数知识解决,还是用指数函数知识去解决.4.幂函数的图象和性质:幂函数的图象的位置和形状变化复杂,只要幂指数稍有不同,图象的位置和形状就可能发生和大的变化.⑴幂函数的图象都过点(1,1),除原点外,任何幂函数的图象与坐标轴都不相交.当α= 1,3和-1时,幂函数y = xα的图象在第一或第三象限;当α= 2时,幂函数y = xα的图象在第一或第二象限;α=12时,幂函数y = xα的图象在第一象限.就是说,任何幂函数的图象一定经过第一象限且一定不经过第四象限.⑵当α= 1,2,3,12时,幂函数图象过原点,且在[0,+∞)上是增函数,此性质还可以推广到当α>0时也成立.⑶当α=-1时,幂函数图象不过原点,且在(0,+∞)上是减函数,在第一象限内,函数y = x 1-的图象向上与y 轴无限接近,向右与x 轴无限接近.(假设再用描点法做出α=-2或α=-3等函数的图象,还可以得到α=-1时的幂函数图象的性质就是α<0时的幂函数图象的根本性质).⑷按照函数奇偶性定义,函数y = x 、y = x 3和y = x 1-都是奇函数,函数y = x 2是偶函数,由于函数y = x 12的定义域关于原点不对称,函数在其它象限无图象,只在第一象限有图象,所以函数y = x 12是非奇非偶函数.⑸任何两个幂函数的图象最多有三个公共点.5.应用幂函数的单调性比拟大小时,应将幂指数变为相同,且幂的底数为正数,分别比拟,并且注意分别与0与1,与-1比拟,从而确定大小关系.6.利用幂函数知识解题时,要注意数形结合,并且注意幂函数的图象在第一象限内凸凹情况需和直线y = x 比拟.作幂函数的图象关键是利用幂函数的有关特性先作出在第一象限内的图象,然后再根据定义域、值域以及奇偶性作出在其它象限内的图象(如果存在的话).三、典型例题解析例1 确定m 的值,使幂函数()f x = (m 2-m +1)x221m m --的图象在第一象限内呈下降趋势.分析:对于带字母参数的函数是幂函数时,一定要使系数为1,而幂指数按题设情况而定.解:依题意有:2211210m m m m ⎧-+=⎪⎨--<⎪⎩⇒0111m m m ==⎧⎪⎨<⎪⎩或⇒m= 0或m = 1. 例2 如果幂函数()f x = x α(α∈Q)为奇函数,且图象过原点,求证()f x = x α(α∈Q)在(-∞,+∞)上为增函数.证明:由幂函数()f x = x α的图象过坐标原点,从而有α>0,(0)f = 0. 由幂函数的特性知()f x 在(0,+∞)上是递增函数,又据()f x 是奇函数可知,()f x 在(-∞,0)上也是递增函数, 设x 1<0<x 2,那么1()f x <(0)f <2()f x .故()f x = x α(α∈Q)在(-∞,+∞)上为增函数.例3 幂函数()f x = x 21m-(m ∈Z)的图象与x 、y 轴都无交点,且关于原点对称.⑴求函数()f x = x 21m -的解析式;⑵讨论函数()F x =-()b f x 的奇偶性. 解:⑴因为函数图象与x 轴、y 轴都无交点,所以m 2-1≤0,解得-1≤m ≤1,又图象关于原点对称,且m ∈Z ,所以m = 0.∴()f x = x 1-.⑵()F x =()b f x =||a x -bx . 因此,()F x 的奇偶性,由参数a 、b 是否为零决定.①当a ≠0且b ≠0时,()F x 是非奇非偶函数;②a = 0且b ≠0时,()F x 是奇函数;③当a ≠0且b = 0时,()F x 是偶函数;④当a = 0且b = 0时,()F x 既是奇函数又是偶函数.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

幂 函 数
一、知识清单
1.幂函数的概念:形如y x α
=
注意:幂函数与指数函数的区别. 2.幂函数的性质:
(1)幂函数的图象都过点 (1,1) ; 任何幂函数都不过 四 象限;
(2)当0α>时,幂函数在[0,)+∞上 递增 ; 当0α<时,幂函数在(0,)+∞上 递减 ;(3)画出α=1,2,3,-1,1/2时,幂函数的图像 二、典例回顾
例1.已知函数()()
2531m f x m m x --=--,当 m 为何值时,()f x 是幂函数,且是()0,+∞上的增函数;
【变式训练】.幂函数2
23
m
m y x --=(m Z ∈)的图象与x 、y 轴都无交点,且关于原点对称,求m 值.
例2.下列函数在(),0-∞上为减函数的是( ) A.1
3y x = B.2y x = C.3
y x = D.2y x -=
例3、(1)当01x <<时,()()()1
2
22
,,f x x g x x h x x -===的大小关系是( )
A. ()()()h x g x f x <<
B. ()()()h x f x g x <<
C. ()()()g x h x f x <<
D. ()()()f x g x h x << (2)当3
2x x >成立时,x 的取值范围是 ( )
A x<1且x ≠0
B 0<x<1
C x>1
D x<1 例4、当()+∞∈,1x 时,下列函数恒在x y =下方的偶函数是( ) A. 2
1x y = B. 2
-=x y C. 2x y = D.1
-=x
y
三、练习 A 组
1、下列命题①幂函数的图象都经过点()()0,01,1和 ②幂函数的图象不可能在第四象限;③当0=n 时
n x y =的图象是一条直线 ④幂函数n x y =,当0>n 时,是增函数;⑤幂函数n x y =当0<n 时
在第一象限内函数值随x 的增大而减小。

为真命题的是( ) A. ①④ B. ④⑤ C. ②③ D. ②⑤ 2.下列函数中,不是幂函数的是 ( ) A.x
y 2= B.1
-=x y C.x y =
D.2x y =
3.设⎭
⎬⎫⎩⎨⎧-
--∈,3,2,1,21,31,21,1,2α,则使αx x f =)(为奇函数且在),0(+∞内单调递减的α值的个数是 ( )
A. 1
B. 2
C. 3
D. 4 4.如果幂函数y=
()
2
2
2
33--+-m m
x m m
的图象不过原点,则m 的值是( )
A.21≤≤-m
B.2,1==m m
C.2=m
D.1=m 5. 幂函数的图象过点( 2 , 41
),则它的单调递增区间是
6.已知函数()
233a y a a x =-+(a 为常数)为幂函数,则a = 7.若幂函数)(x f y =的图象经过点⎪⎭
⎫ ⎝⎛31,9,则)25(f = 8.设幂函数α
x
y =的图象经过点()4,8,则函数α
x
y =的值域是 [)+∞,0
9.求下列幂函数的定义域,并指出它们的奇偶性。

(1)3
2x
y =(2)
6
5x
y =(3)5
4-=x
y (4)
2
3-=x
y
10、若()2
12
123a a
-<,则实数a 的取值范围是
11.已知点
(
)
22,在幂函数)(x f 的图象上,点⎪⎭⎫ ⎝

-41,2在幂函数)(x g 的图象上,问当x 为何值时,
(1))()(x g x f >;(2))()(x g x f =;(3))()(x g x f <
12.已知函数()
5
522
23+-⋅+-=a a
x a a y
(1) a 为何值时此函数为幂函数? (2) a 为何值时此函数为正比例函数? (3) a 为何值时此函数为反比例函数
13.已知(
)
2
1
2
1
2223m y m m x n -=+-⋅+-是幂函数,求m 、n 的值.
B 组
14、比较下列各组数的大小
(1)3
23
2)
2.1(,
3.1--- (2)3
2313
2)
4(,)4.2(,1
.2--- (3)7
3324
3)
8.0(,5.2,3.6
--
15.设231
22
11)(,)(,)(x x f x
x f x x f ===-则[{})]2009(321f f f =
16.已知幂函数的图象过点()
2,2,则它的最小值是
17.已知函数()()2221
21
mx mx m f x m R x x -+-=∈-+,试比较()5f 与()f π-的大小
18.已知函数()()223
m m f x x
m Z -++=∈为偶函数,且()()35f f <.
⑴求m 的值,并确定()f x 的解析式
⑵若()()()log 01a g x f x ax a a =->≠⎡⎤⎣⎦且在[]2,3上为增函数,求实数a 的取值范围.。

相关文档
最新文档