新版北师大初中数学九年级(上)概率的进一步认识练习题(带答案)
(常考题)北师大版初中数学九年级数学上册第三单元《概率的进一步认识》测试题(含答案解析)
一、选择题1.在一个不透明的袋子中,装有红球、黄球、篮球、白球各1个,这些球除颜色外无其他差别,从袋中随机取出一个球,取出红球的概率为()A.12B.13C.14D.12.某鱼塘里养了1600条鲤鱼,若干条草鱼和800条罗非鱼,该鱼塘主通过多次捕捞试验后发现,捕捞到草鱼的频率稳定在0.5左右,则该鱼塘捞到鲤鱼的概率约为().A.23B.12C.13D.163.连续掷两次骰子,出现点数之和等于4的概率为()A.136B.118C.112D.194.如图,4×2的正方形的网格中,在A,B,C,D四个点中任选三个点,能够组成等腰三角形的概率为()A.1 B.12C.13D.145.抛掷一枚质地均匀的硬币,若抛掷95次都是正面朝上,则抛掷第100次正面朝上的概率是()A.小于12B.等于12C.大于12D.无法确定6.从1,2,3--三个数中,随机抽取两个数相乘,积是正数的概率是()A.13B.23C.16D.17.如图,转盘的红、黄、蓝、紫四个扇形区域的圆心角分别记为α,β,γ,θ.自由转动转盘,则下面说法错误的是()A.若90α>︒,则指针落在红色区域的概率大于0.25B.若αβγθ>++,则指针落在红色区域的概率大于0.5C .若αβγθ-=-,则指针落在红色或黄色区域的概率和为0.5D .若180γθ+=︒,则指针落在红色或黄色区域的概率和为0.58.一个不透明的盒子里只装有白色和红色两种颜色的球,这些球除颜色外没有其他不同。
若从盒子里随机摸取一个球,有三种可能性相等的结果,设摸到的红球的概率为P ,则P 的值为( )A .13B .12C . 13或12D . 13或239.下列命题正确的是( )A .1x -有意义的x 取值范围是1x >.B .一组数据的方差越大,这组数据波动性越大.C .若7255'a ∠=︒,则a ∠的补角为10745'.D .布袋中有除颜色以外完全相同的3个黄球和5个白球,从布袋中随机摸出一个球是白球的概率为3810.均匀的四面体的各面上依次标有1,2,3,4四个数字,同时抛掷两个这样的正四面体,着地的一面数字之和为5的概率是( )A .316B .14C .168D .11611.某商场举办有奖销售活动,每张奖券获奖的可能性相同,以每10000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖100个,问:一张奖券中奖的概率是多少( )A .110000B .1110000C .11110000D .1100012.把同一副扑克牌中的红桃2、红桃3、红桃4三张牌背面朝上放在桌子上,从中随机抽取两张,牌面的数字之和为奇数的概率为( )A .49B .13C .12D .23二、填空题13.大数据分析技术为打赢疫情防控阻击战发挥了重要作用.如图是刘军老师的健康码示意图,用打印机打印于边长为2cm 的正方形区域内.为了估计图中阴影部分的总面积,刘军老师在正方形区域内随机掷点,经过大量重复试验,发现点落在阴影部分的频率稳定在0.65左右,由此可估计阴影部分的总面积约为__________2cm .14.在一个不透明的布袋中装有52个白球和若干个黑球,除颜色外其他都相同,小强每次摸出一个球记录下颜色后并放回,通过多次试验后发现,摸到黑球的频率稳定在0.2左右,则布袋中黑球的个数可能有________.15.一个小球在如图所示的地板上自由滚动,最终停在阴影区域的概率为_______.16.有五张正面分别标有数﹣2,0,1,3,4的纸片做成无差别的纸团,洗匀后从中任取一个纸团,若展开后将纸片上的数记为a ,则使关于x 的方程ax ﹣1﹣3(x +1)=﹣3x 的解是正整数的概率为_____.17.“上升数”是一个数中右边数字比左边数字大的自然数(如:34,568,2469等).任取一个两位数,是“上升数”的概率是_________ .18.为丰富学生的校园文化生活,振兴中学举办了一次学生才艺比赛,三个年级都有男、女各一名选手进入决赛,初一年级选手编号为男1号、女1号,初二年级选手编号为男2号、女2号,初三年级选手编号为男3号、女3号.比赛规则是男、女各一名选手组成搭档展示才艺.()1用列举法说明所有可能出现搭档的结果;()2求同一年级男、女选手组成搭档的概率;()3求高年级男选手与低年级女选手组成搭档的概率.19.把一袋黑豆中放入红豆100粒,搅匀后取出100粒豆子,其中红豆5粒,则该袋中约有黑豆_______粒.20.现有6张正面分别标有数字1,0,1,2,3,4-的不透明卡片,这些卡片除数字不同外其余全部相同现将它们背面朝上,洗均匀后从中任取一张,将该卡片上的数字记为a ,则使得关于x 的一元二次方程2220x x a -+-=有实数根的概率为____.三、解答题21.现有四张完全相同的不透明卡片,其正面分别写有数字﹣2,﹣1,0,2,把这四张卡片背面朝上洗匀后放在桌面上.(1)随机的取一张卡片,求抽取的卡片上的数字为非负数的概率.(2)先随机抽取一张卡片,其上的数字作为点A 的横坐标;然后放回并洗匀,再随机抽取一张卡片,其上的数字作为点A 的纵坐标,用列表的方法求出点A 在直线y =2x +2上的概率.22.在一个不透明的布袋里装有3个大小、质地均相同的乒乓球,球上分别标有数字为1、2、3(1)随机从布袋中一次摸出两个乒乓球,写出两个乒乓球上的数字都是奇数的概率是_________;(2)随机从布袋中摸出一个乒乓球,记下数字后放回布袋里,再随机从布袋中摸出一个乒乓球,请用列表或画树状图的方法求出两个乒乓球上的数字之和不小于4的概率. 23.平定县位于山西中部东侧,是三晋东大门.境内山川秀丽,有著名旅游景区娘子关,有名扬三晋的冠山古书院,建于秦长城一百年之前的周关长城,省级森林公园药林寺等等,这些都是人们周末游的好去处,小明计划某个周末和妹妹一起去旅游,他收集了如图所示四个景点的卡片,卡片分别用N ,G ,C ,Y 表示,卡片大小、形状及背面完全相同,通过游戏规则,选择景点,请用列表法或画树状图的方法,求下列随机事件的概率:(1)若选择其中一个景点游戏规则:把这四张图片背面朝上洗匀后,妹妹从中随机抽取一张,作好记录后,将图片放回洗匀,哥哥再抽取一张求两人抽到同一景点的概率;(2)若选择其中两个景点,游戏规则:把这四张图片背面朝上洗匀后,妹妹和哥哥从中各随机抽取一张(不放回).求两人抽到娘子关和固关长城的概率.24.为了了解同学们体育锻炼的情况,初三体育老师随机抽取了部分同学进行调査,并按同学课后锻炼的时间x (分钟)的多少分为以下四类:A 类(015)x ≤≤,B 类(1530)x <≤,C 类(3045)x <≤,D 类()45x >对调査结果进行整理并绘制了如图所示的不完整的折线统计图和扇形统计图,请结合图中信息解答下列问题:(1)扇形统计图中D 类所对应的圆心角度数为_________,并补全折线统计图;(2)现从A 类中选出两名男同学和三名女同学,从以上五名同学中随机抽取两名同学进行采访,请利用画树状图或列表的方法求出抽到的学生恰好为一男一女的概率. 25.在一个不透明的口袋中装有4个依次写有数字1,2,3,4的小球,它们除数字外都相同,每次摸球前都将小球摇匀.(1)从中随机摸出一个小球,小球上写的数字不大于3的概率是 .(2)若从中随机摸出一球不放回,再随机摸出一球,请用画树状图或列表的方法,求两次摸出小球上的数字和恰好是奇数的概率.26.为了解某校九年级男生1000米跑的水平,从中随机抽取部分男生进行测试,并把测试成绩分为A 、B 、C 、D 四个等次,绘制成如图所示的不完整的统计图,请你依图解答下列问题:(1)a = ,b = ,c = ;(2)请将条形统计图补充完整,并计算表示C 等次的扇形所对的圆心角的度数为 °; (3)学校决定从A 等次的甲、乙、丙、丁四名男生中,随机选取两名男生参加全市中学生1000米跑比赛,请用列表法或画树状图法,求甲、乙两名男生同时被选中的概率.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【详解】解:∵共有4个球,红球有1个,∴摸出的球是红球的概率是:P=14. 故选C .【点睛】本题考查概率公式. 2.C解析:C【分析】根据捕捞到草鱼的频率可以估计出放入鱼塘中鱼的总数量,从而可以得到捞到鲤鱼的概率.【详解】∵捕捞到草鱼的频率稳定在0.5左右设草鱼的条数为x ,可得:0.51600800x x =++ ∴x =2400∴捞到鲤鱼的概率为:16001160080024003=++ 故选:C .【点睛】本题考察了概率、一元一次方程的知识;求解的关键是熟练掌握概率的定义,通过求解方程,从而得到答案.3.C解析:C【分析】列举出所有情况,看点数之和等于4的情况数占总情况数的多少即可.【详解】解:如图所示:4的情况为13,22,31共3种,于是P(点数之和等于4)=31= 3612.故选:C.【点睛】本题考查概率的求法与运用,由于两次实验出现的情况较多,用列表法较好.用到的知识点为:概率=所求情况数与总情况数之比.4.B解析:B【分析】根据题意,先列举所有的可能结果,然后选取能组成等腰三角形的结果,根据概率公式即可求出答案.【详解】解:根据题意,在A,B,C,D四个点中任选三个点,有:△ABC、△ABD、△ACD、△BCD,共4个三角形;其中是等腰三角形的有:△ACD、△BCD,共2个;∴能够组成等腰三角形的概率为:2142P==;故选:B.【点睛】本题考查了列举法求概率,等腰三角形的性质,勾股定理与网格问题,解题的关键是熟练掌握列举法求概率,以及正确得到等腰三角形的个数.5.B解析:B【分析】根据概率的意义分析即可.【详解】解:∵抛掷一枚质地均匀的硬币是随机事件,正面朝上的概率是1 2∴抛掷第100次正面朝上的概率是12故答案选:B【点睛】本题主要考查概率的意义,熟练掌握概率的计算公式是解题的关键.6.A解析:A【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与积是正数的情况,再利用概率公式即可求得答案.【详解】解:画树状图如下:共有6种情况,积是正数的有2种情况,所以,P(积是正数)=21 63 ,故选:A.【点睛】考查了列表法与树状图法,本题用到的知识点为:概率=所求情况数与总情况数之比.7.C解析:C【分析】根据概率公式计算即可得到结论.【详解】解:A、∵α>90°,900.25360360α∴>=,故A 正确; B 、∵α+β+γ+θ=360°,α>β+γ+θ, 1800.5360360α∴>=,故B 正确; C 、∵α-β=γ-θ,∴α+θ=β+γ,∵α+β+γ+θ=360°,∴α+θ=β+γ=180°, 1800.5360︒︒∴= ∴指针落在红色或紫色区域的概率和为0.5,故C 错误;D 、∵γ+θ=180°,∴α+β=180°,1800.5360∴= ∴指针落在红色或黄色区域的概率和为0.5,故D 正确;故选:C .【点睛】本题考查了概率公式,熟练掌握概率公式是解题的关键.8.D解析:D【分析】分情况讨论后,直接利用概率公式进行计算即可.【详解】解:当白球1个,红球2个时:摸到的红球的概率为:P=23 当白球2个,红球1个时:摸到的红球的概率为:P=13 故摸到的红球的概率为:13或23故选:D【点睛】本题考查了概率公式,掌握概率公式及分类讨论是解题的关键. 9.B解析:B【分析】分别分析各选项的题设是否能推出结论,即可得到答案.【详解】解:x 取值范围是1x ≥,故选项A 命题错误;B. 一组数据的方差越大,这组数据波动性越大,故选项B 命题正确;C. 若7255'a ∠=︒,则a ∠的补角为1075',故选项C 命题错误;D. 布袋中有除颜色以外完全相同的3个黄球和5个白球,从布袋中随机摸出一个球是白球的概率为58,故选项D 命题错误; 故答案为B.【点睛】 本题考查了命题真假的判断,掌握分析各选项的题设能否退出结论的知识点是解答本题的关键.10.B解析:B【分析】列举出所有情况,看着地的一面数字之和为5的情况占总情况的多少即可.【详解】同时抛掷两个这样的正四面体,可能出现的结果有16种,数字之和为5的有4种,所以着地的一面数字之和为5的概率是41164= 故选:B.【点睛】本题考查了概率的求法.用到的知识点为:概率=所求情况数与总情况数之比. 11.C解析:C【分析】根据题中信息得到中奖的可能有111次,共有10000次机会,再利用概率计算公式计算即可.【详解】由题意知,中奖的可能有111次,共有10000次机会,∴中奖的概率为11110000, 故选:C.【点睛】此题考查概率的计算,需根据题意找到事件的所有次数与事件A 可能出现的次数,再代入计算公式计算. 12.D解析:D【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与从中随机抽取两张,牌面的数字之和为奇数的情况,再利用概率公式求解即可求得答案.【详解】解:根据题意画树状图如下:∵共有6种等可能的结果,从中随机抽取两张,牌面的数字之和为奇数的有4种情况,∴从中随机抽取两张,牌面的数字之和为奇数的概率为:42;故选:D.63【点睛】本题考查了用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.二、填空题13.【分析】根据频率可以估计阴影部分占正方形的65求出正方形面积即可求【详解】解:因为经过大量重复试验发现点落在阴影部分的频率稳定在左右所以估计阴影部分面积大约占正方形面积的65正方形的面积为:2×2=解析:2.6【分析】根据频率可以估计阴影部分占正方形的65%,求出正方形面积即可求.【详解】解:因为经过大量重复试验,发现点落在阴影部分的频率稳定在0.65左右,所以,估计阴影部分面积大约占正方形面积的65%,正方形的面积为:2×2=4(cm2),由此可估计阴影部分的总面积约为:4×65%=2.6(cm2)故答案为:2.6.【点睛】本题考查了用频率估计概率,解题关键是明确频率估计概率的方法及应用.14.13【分析】在同样条件下大量反复试验时随机事件发生的频率逐渐稳定在概率附近可以从比例关系入手设出未知数列出方程求解【详解】解:设袋中有黑球x个由题意得:=02解得:x=13经检验x=13是原方程的解解析:13【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,设出未知数列出方程求解.【详解】解:设袋中有黑球x 个,由题意得:52xx +=0.2, 解得:x=13,经检验x=13是原方程的解, 则布袋中黑球的个数可能有13个. 故答案为:13. 【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.15.【分析】先求出黑色方砖在整个地板中所占的比值再根据其比值即可得出结论【详解】∵由图可知黑色方砖5块共有25块方砖∴黑色方砖在整个地板中所占的比值∴它停在黑色区域的概率是故答案为:【点睛】本题考查了几解析:15【分析】先求出黑色方砖在整个地板中所占的比值,再根据其比值即可得出结论. 【详解】∵由图可知,黑色方砖5块,共有25块方砖, ∴黑色方砖在整个地板中所占的比值51255=, ∴它停在黑色区域的概率是15. 故答案为:15. 【点睛】本题考查了几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A );然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A )发生的概率.16.【分析】根据题意由当a 分别取20134时解方程ax ﹣1﹣3(x+1)=﹣3x 得到正整数的个数然后根据概率公式求解【详解】解:当a =﹣2时方程ax ﹣1﹣3(x+1)=﹣3x 化为﹣2x ﹣1﹣3x ﹣3=﹣解析:25【分析】根据题意由当a 分别取2,0,1,3,4时,解方程ax ﹣1﹣3(x+1)=﹣3x 得到正整数的个数,然后根据概率公式求解.【详解】解:当a=﹣2时,方程ax﹣1﹣3(x+1)=﹣3x化为﹣2x﹣1﹣3x﹣3=﹣3x,解得x=﹣2;当a=0时,方程ax﹣1﹣3(x+1)=﹣3x化为﹣1﹣3x﹣3=﹣3x,无解;当a=1时,方程ax﹣1﹣3(x+1)=﹣3x化为x﹣1﹣3x﹣3=﹣3x,解得x=4;当a=3时,方程ax﹣1﹣3(x+1)=﹣3x化为3x﹣1﹣3x﹣3=﹣3x,解得x=43;当a=4时,方程ax﹣1﹣3(x+1)=﹣3x化为4x﹣1﹣3x﹣3=﹣3x,解得x=1;所以使关于x的方程ax﹣1﹣3(x+1)=﹣3x的解是正整数的结果数为2,所以展开后将纸片上的数记为a,则使关于x的方程ax﹣1﹣3(x+1)=﹣3x的解是正整数的概率=25.故答案为:25.【点睛】本题考查概率公式以及解一元二次方程,注意掌握某事件的概率=某事件所占的情况数与总情况数之比.17.4【分析】先列举出所有上升数再根据概率公式解答即可【详解】解:两位数一共有99-10+1=90个上升数为:共8+7+6+5+4+3+2+1=36个概率为36÷90=04故答案为:04解析:4【分析】先列举出所有上升数,再根据概率公式解答即可.【详解】解:两位数一共有99-10+1=90个,上升数为:共8+7+6+5+4+3+2+1=36个.概率为36÷90=0.4.故答案为:0.4.18.可能出现共种情况;;【分析】(1)用列举法列举时要不重不漏按一定规律来列举;(2)根据用列举法概率的求法找准两点:①符合条件的情况数目②全部情况的总数;二者的比值就是其发生的概率;(3)根据(1)中解析:()1可能出现共9种情况;()12 3;()133.【分析】(1)用列举法列举时,要不重不漏,按一定规律来列举;(2)根据用列举法概率的求法,找准两点:①符合条件的情况数目,②全部情况的总数;二者的比值就是其发生的概率;(3)根据(1)中高年级男选手与低年级女选手组成搭档的情况,求概率即可.【详解】()1可能出现搭档的结果有男1号、女1号,男1号、女2号,男1号、女3号,男2号、女1号,男2号、女2号,男2号、女3号,男3号、女1号,男3号、女2号,男3号、女3号,共9种情况;()2在()1中同一年级男、女选手组成搭档有3种情况,故其概率为3193=;()3在()1中高年级男选手与低年级女选手组成搭档有3种情况,故其概率为3193=.【点睛】本题考查的是列举法求概率.列举法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.19.1900【分析】先根据取出100粒豆子其中有红豆5粒确定取出红豆的概率为5然后用100÷5求出豆子总数最后再减去红豆子数即可【详解】解:由题意得:取出100粒豆子红豆的概率为5则豆子总数为100÷5解析:1900【分析】先根据取出100粒豆子,其中有红豆5粒,确定取出红豆的概率为5%,然后用100÷5%求出豆子总数,最后再减去红豆子数即可.【详解】解:由题意得:取出100粒豆子,红豆的概率为5%,则豆子总数为100÷5%=2000粒,所以该袋中黑豆约有2000-100=1900粒.故答案为1900.【点睛】本题考查了用频率估计概率,弄清题意、学会用样本估计总体的方法是解答本题的关键.20.【分析】先由一元二次方程x2-2x+a-2=0有实数根得出a的取值范围最后根据概率公式进行计算即可【详解】解:∵一元二次方程x2-2x+a-2=0有实数根∴4-4(a-2)≥0∴a≤3∴a=-101解析:5 6【分析】先由一元二次方程x2-2x+a-2=0有实数根,得出a的取值范围,最后根据概率公式进行计算即可.【详解】解:∵一元二次方程x2-2x+a-2=0有实数根,∴4-4(a-2)≥0,∴a≤3,∴a=-1,0,1,2,3.∴使得关于x的一元二次方程x2-2x+a-2=0有实数根概率为:56.【点睛】考查概率的求法;用到的知识点为:概率=所求情况数与总情况数之比.得到使一元二次方程x2-2x+a-2=0有实数根情况数是解决本题的关键.三、解答题21.(1)随机的取一张卡片,求抽取的卡片上的数字为非负数的概率为12;(2)点A在直线y=2x+2上的概率为3 16.【分析】(1)由概率公式即可得出结果;(2)直接利用列表法列举出所有可能,找出点A在直线y=2x+2上的结果,进而得出答案.【详解】解:(1)∵抽取的非负数可能为0,2,∴抽取的卡片上的数字为非负数的概率为P=2142,∴随机的取一张卡片,求抽取的卡片上的数字为非负数的概率为12;(2)列表如下(0,2)共3种,∴点A 在直线y=2x+2上的概率为316P '=, ∴点A 在直线y =2x +2上的概率为316. 【点睛】本题主要考查了树状图法求概率、概率公式、一次函数图象上点的坐标特征,正确列举出所有可能是解题关键. 22.(1)13;(2)23【分析】(1)用列举法展示所有可能的结果数,然后根据概率公式求解;(2)画树状图展示所有9种等可能的结果数,再找出两个兵乒球上的数字之和不小于4的结果数,然后根据概率公式求解. 【详解】(1)可能出现的结果有:()12,,()13,,()23,,共3种, 两个数字都是奇数的只有()13,一种,∴两个乒乓球上的数字都是奇数的概率是13, 故答案为:13; (1)画树状图如下:一共有9种可能的结果,其中大于或等于4的有6种, ∴两个乒乓球上的数字之和不小于4的概率为:6293=. 【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率. 23.(1)14;(2)16【分析】(1)画树状图,共有16种等可能的结果,其中两人抽到同一景点的结果有4个,则由概率公式求解即可;(2)画树状图,共有12种等可能的结果,其中两人抽到娘子关和固关长城的结果有2个,则由概率公式求解即可. 【详解】解:(1)画树状图如下:由树状图可以看出,所有可能出现的结果共有16种,而且每种结果出现的可能性相同,其中抽到的两个景点相同的结果共有4种, ∴P (抽到同一景点)41164==; (2)画树状图如下:由树状图可以看出,所有可能出现的结果共有12种,而且每种结果出现的可能性相同,其中抽到的娘子关和固关长城的结果共有2种, ∴P (抽到同一景点)21126==. 【点睛】本题考查列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率. 24.(1)18°,图见详解;(2)35【分析】(1)由折线统计图及扇形图可得出被调查的学生总人数,然后再求出D 类人数所占百分比,进而可求解D 类所对应的圆心角度数,最后按要求作图即可; (2)根据树状图可得总的可能性,然后可求解恰好为一男一女的概率. 【详解】解:(1)由折线统计图及扇形图可得: 被调查的总人数为:4840120÷=%(人), ∴D 类同学所占百分比为:61201005÷⨯=%%, ∴D 类所对应的圆心角的度数为360518︒⨯=︒%; ∴B 类同学的人数为1204824642---=(人), 折线统计图如图所示:故答案为18°;(2)假设2男3女分别代表1、2、3、4、5,由题意可得:∴抽取刚好是一男一女的概率为:123205P==.【点睛】本题主要考查折线统计图和扇形统计图,树状图法求概率,熟练掌握统计图及概率的求法是解题的关键.25.(1)34;(2)23【分析】(1)根据口袋中数字不大于3的小球有3个,即可确定概率;(2)通过列表或画树状图写出所有的等可能结果,然后数出两次摸出小球上的数字和恰好是奇数的结果,即可得到概率.【详解】解:(1)34;(2)列表得:1234 1——(1,2)(1,3)(1,4)2(2,1)——(2,3)(2,4)3(3,1)(3,2)——(3,4)4 (4,1) (4,2) (4,3) ——两次摸出小球上的数字和恰好是奇数的情况有8种:即:(1,2),(1,4),(2,1),(2,3),(3,2),(3,4),(4,1),(4,3). ∴P (两次摸出小球上的数字和恰好是奇数)=82123=. 【点睛】本题考查了概率的计算,熟练掌握画树状图或列表法求概率是解题的关键. 26.(1)2,45,20;(2)图见解析,72;(3)16【分析】(1)用A 等次的人数除以它所占的百分比得到调查的总人数,再分别求出a 和B 等次的人数,然后计算出b 、c 的值;(2)先补全条形统计图,然后用360°乘以C 等次所占的百分比得到C 等次的扇形所对的圆心角的度数;(3)画树状图展示所有12种等可能的结果数,再找出甲、乙两名男生同时被选中的结果数,然后根据概率公式求解. 【详解】解:(1)1230%40÷=, 405%2a =⨯=; 401282%100%45%40b ---=⨯=,即45b =; 8%100%20%40c =⨯=,即20c =; 故答案为:2,45,20;(2)B 等次人数为40128218---=, 条形统计图补充为:C 等次的扇形所对的圆心角的度数20%36072=⨯︒=︒; 故答案为72︒; (3)画树状图为:共有12种等可能的结果数,其中甲、乙两名男生同时被选中的结果数为2,所以甲、乙两名男生同时被选中的概率21 126 ==.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.也考查了统计图.。
(常考题)北师大版初中数学九年级数学上册第三单元《概率的进一步认识》测试卷(包含答案解析)
一、选择题1.掷一枚均匀的硬币两次,两次均为反面朝上的概率是( ) A .12B .13C .23D .142.有三张正面分别标有数字-2 ,3, 4 的不透明卡片,它们除数字不同外,其余全部相同,现将它们背面朝上洗匀后, 从中任取一张(不放回),再从剩余的卡片中任取一张, 则两次抽取的卡片上的数字之积为正偶数的概率是( ) A .49B .112C .13D .163.从{3,2,1,0,1,2,3}---这七个数中随机抽取一个数记为a ,则a 的值是不等式组352132x x x x ⎧+>⎪⎪⎨⎪<+⎪⎩的解,但不是方程2320x x -+=的实数解的概率为( ). A .17B .27C .37D .474.经过某十字路口的汽车,它可能继续直行,也可能向左或向右转.若这三种可能性大小相同,则两辆汽车经过该十字路口全部继续直行的概率为( ) A .13B .23C .19D .125.若在“正三角形、平行四边形、菱形、正五边形、正六边形”这五种图形中随机抽取一种图形,则抽到的图形属于中心对称图形的概率是( ) A .15B .25C .35D .456.从1,2,3,4四个数中任取一个数作为十位上的数字,再从2,3,4三个数中任取一个数作为个位上的数字,那么组成的两位数是3的倍数的概率是( ) A .14B .13C .512D .237.从拼音“nanhai”中随机抽取一个字母,抽中a 的概率为( ) A .12B .13C .15D .168.一个密闭不透明的盒子里有若干个白球,在不许将球倒出来数的情况下,为了估计白球数,小刚向其中放入了8个黑球,搅匀后从中随意摸出一个球记下颜色,再把它放回盒中,不断重复这一过程,共摸球400次,其中80次摸到黑球,你估计盒中大约有白球( ) A .32个B .36个C .40个D .42个9.某市初中学业水平实验操作考试中,要求每名学生从物理、化学、生物三个学科中随机抽取一科参加测试,小明和小颖抽到相同学科的概率是( )A .13B .14C .16D .1910.为了解历下区九年级男生的身高情况,随机抽取了100名九年级男生,他们的身高()x cm 统计如下,根据以上结果,抽查一名九年级男生,估计他的身高不低于180cm 的概率是()A .0.85B .0.57C .0.42D .0.1511.在一个口袋中有4个完全相同的小球,它们的标号分别为1,2,3,4,从中随机摸出两个小球,则摸出的两个小球标号之和大于4的概率是( ) A .38B .12C .58D .2312.小张和小王相约去参加“抗疫情党员志愿者进社区服务”活动现在有A 、B 、C 三个社区可供随机选择,他们两人恰好进入同一社区的概率是( ) A .19B .13C .29D .23二、填空题13.四张背面相同的卡片,分别为12,1,2,3,洗匀后背面朝上,先从中抽取一张,把抽到的点数记为a ,再在剩余的卡片中抽取一张点数记为b ,则点(a ,b )恰好落在一次函数y=-2x+4与坐标轴所围成的三角形区域内(含边界)的概率为______________; 14.在四张完全相同的卡片上分别写上12-,0,1,2四个数字,然后放入一个不透明的袋中摇匀.现从中随机抽取第一张卡片记下数字a ,放回摇匀,然后再随机抽取第二张卡片,记下数字b ,且a b m +=,则m 的值使关于x 的一元二次方程232102m x x ⎛⎫-++= ⎪⎝⎭有实数解的概率为________.15.从“线段,等边三角形,圆,矩形,正六边形”这五个图形中任取一个,取到既是轴对称图形又是中心对称图形的概率是_____.16.一个不透明的袋子中装有1个白球和3个红球,这些球除颜色外都相同.搅匀后从中任意摸出2个球,摸出两个颜色不同的小球的概率为_____.17.在5张完全相同的卡片上分别画上等边三角形、平行四边形、直角梯形、正方形和圆.在看不见图形的情况下随机摸出1张,这张卡片上的图形是中心对称图形的概率是________.18.投掷一枚质地均匀的骰子两次,第一次出现的点数记为a ,第二次出现的点数记为b .那么方程20x ax b -+= 有解的概率是__________。
新北师大版九年级数学上册第三章《概率的进一步认识》章末训练题含答案解析 (1)
一、选择题1.某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是( )A.19B.16C.13D.232.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同,小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率稳定在15%和45%,则口袋中白色球的个数可能是( )A.24B.18C.16D.63.同时抛掷两枚质地均匀的硬币,则一枚硬币正面向上、一枚硬币反面向上的概率是( )A.14B.13C.12D.234.有四张质地相同的卡片,它们的背面相同,其中两张的正面印有“粽子”的图案,另外两张的正面印有“龙舟”的图案,现将它们背面朝上,洗均匀后排列在桌面,任意翻开两张,那么两张图案一样的概率是( )A.13B.12C.23D.345.用图中两个可自由转动的转盘做“配紫色”游戏:分别旋转两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色,那么可配成紫色的概率是( )A.14B.34C.13D.126.让图中两个转盘分别自由转动一次,当转盘停止转动时,两个指针分别落在某两个数所表示的区域,则这两个数的和是2的倍数或是3的倍数的概率等于( )7.以下说法合适的是( )A.小明做了3次掷图钉的实验,发现2次钉尖朝上,由此他说钉尖朝上的概率是23 B.某彩票的中奖概率是5%,那么买100张彩票一定有5张中奖C.某射击运动员射击一次只有两种可能的结果:中靶与不中靶,所以他击中靶的概率是12 D.小明做了3次掷均匀硬币的实验,一次正面朝上,2次正面朝下,他再掷一次,正面朝上的概率还是128.太原是我国生活垃圾分类的46个试点城市之一,垃圾分类的强制实施也即将提上日程.根据规定,我市将垃圾分为了四类:可回收物、厨余垃圾、有害垃圾和其他垃圾(如图).现有投放这四类垃圾的垃圾桶各1个,若将用不透明垃圾袋分类打包好的两袋不同垃圾随机投进两个不同的垃圾桶,则投放正确的概率是( )A.16B.18C.112D.1169.下列四种说法:①如果一个角的两边与另一个角的两边分别平行,那么这两个角相等;②将2020减去它的12,再减去剩下的13,再减去余下的14,再减去余下的15,⋯⋯,依次减下去,一直到减去余下的12020,结果是1;③实验的次数越多,频率越靠近理论概率;④对于任何实数x,y,多项式x2+y2−4x−2y+7的值不小于2.其中正确的个数是( )A.1B.2C.3D.4 10.同时抛掷两枚均匀硬币,则两枚硬币都出现反面向上的概率是( )二、填空题11.在一个不透明的盒子中装有红、白两种除颜色外完全相同的球,其中有3个红球,每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在0.25左右,则白球的个数约为.12.在一个不透明的盒子中装有x颗白色棋子和y颗黑色棋子,它们除颜色外完全相同,现从该盒,将取出的棋子放回,再往该盒子中放进6颗子中随机取出一颗棋子,取得白色棋子的概率是25同样的黑色棋子,此时从盒子中随机取出一颗棋子,取得白色棋子的概率是1,那么原来盒子中4的白色棋子有颗.13.当一次试验要涉及,并且可能出现的结果数目较多时,为不重不漏地列出所有结果,通常采用列表法.14.在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些球除标注的数字外完全相同.现从中随机依次取出两个球(不放回),则取出的两个小球标注的数字之和为6的概率是.15.有三张卡片分别写着数字1,2,3,将它们背面向上任意放置(背面花色相同),小明先后从中取两张卡片,那么取得的第一张卡片所写数字大于第二张卡片所写数字的概率是.16.小强掷两枚质地均匀的骰子,每个骰子的六个面上分别刻有1到6的点数,则两枚骰子点数相同的概率为.17.一个不透明的口袋中,装有除颜色以外其余都相同的红、黄两种球共15个,摇匀后从中任意摸出一球,记下颜色放回,摇匀再摸出一个,记下颜色放回⋯.经过大量的重复试验,发现摸到红球的频率为0.4,则估计袋中有红球个.三、解答题18.现有A,B两个不透明的袋子,分别装有3个除颜色外完全相同的小球,其中A袋中装有2个白球,1个红球;B袋中装有2个红球,1个白球.小林和小华商定了一个游戏规则:从摇匀后的A,B两袋中各随机摸出一个小球,摸出的这两个小球,若颜色相同,则小林获胜;若颜色不同,19.如图,有一游戏棋盘和一个质地均匀的正四面体骰子(各面依次标有1,2,3,4四个数字).游戏规则是游戏者每投掷一次骰子,棋子按骰子着地一面所示的数字前进相应的格数.例如:若棋子位于A处,游戏者所投掷骰子着地一面所示数字为3,则棋子由A处前进3个方格到达B 处.请用画树形图法(或列表法)求投掷骰子两次后,棋子恰好由A处前进6个方格到达C处的概率.20.甲、乙两所医院分别有一男一女共4名医护人员支援武汉抗击疫情.(1) 若从这4名医护人员中随机选1名,则选中的是男医护人员的概率是.(2) 若从支援的4名医护人员中随机选2名,求出这两名医护人员来自不同医院的概率.21.为了解某校学生的课余兴趣爱好情况,某调查小组设计了“阅读”、“打球”、“书法”和“舞蹈”四个选项,用随机抽样的方法调查了该校部分学生的课余兴趣爱好情况(每个学生必须选一项且只能选一项),并根据调查结果绘制了如图所示的统计图.根据统计图所提供的倍息,解答下列问题.(1) 本次抽样调查中的学生人数是;(2) 补全条形统计图;(3) 若该校共有2000名学生,请根据统计结果估计该校课余兴趣爱好为“打球”的学生人数;(4) 现有爱好舞蹈的两名男生两名女生想参加舞蹈社,但只能选两名学生,请你用列表或画树状图的方法,求出正好选到一男一女的概率.22.甲、乙、丙、丁4名同学进行一次羽毛球单打比赛,要从中选2名同学打第一场比赛,求下列事件的概率.(1) 已确定甲打第一场,再从其余3名同学中随机选取1名,怡好选中乙同学.(2) 随机选取2名同学,其中有乙同学.23.为了完成“舌尖上的中国”的录制,节目组随机抽查了某省“A.奶制品类,B.肉制品类,C.面制品类,D.豆制品类”四类特色美食若干种,将收集的数据整理并绘制成下面两幅尚不完整的统计图,请根据图中信息完成下列问题:(1) 这次抽查了四类特色美食共种,扇形统计图中a=,扇形统计图中A部分圆心角的度数为;(2) 补全条形统计图;(3) 如果节目组想从A类的甲、乙、丙、丁四种特色美食中随机选择两种进行节目录制,请用列表或画树状图的方法求出恰好选中甲和乙两种美食的概率.24.某市“半程马拉松”的赛事共有两项:A“半程马拉松”,B“欢乐跑”.小明参加了该项赛事的志愿者服务工作,组委会随机将志愿者分配到两个项目组.(1) 小明被分配到“半程马拉松”项目组的概率为.(2) 为估算本次赛事参加“半程马拉松”的人数,小明对部分参赛选手作如下调查:调查总人数2050100200500①估算本次赛事参加“半程马拉参加"半程马拉松"人数153372139356参加"半程马拉松"频率0.7500.6600.7200.6950.712松”人数的概率为.(精确到0.1)②若参加“欢乐跑”的人数大约有300人,估计本次参赛选手的人数是多少?25.庆祝改革开放40周年暨我爱我家⋅美丽青羊群众文艺展演圆满落幕,某学习小组对文艺展演中的A舞蹈《不忘初心》,B独舞《梨园一生》,C舞蹈《炫动的玫瑰》,D朝鲜组歌舞《阿里郎+atep》这四个节目开展“我最喜爱的舞蹈节目”调查,随机调查了部分观众(每位观众必选且只能选这四个节目中的一个)并将得到的信息绘制了下面两幅不完整的统计图:(1) 本次一共调查了名观众;并将条形统计图补充完整;(2) 学习小组准备从4个节目中随机选取两个节目的录像带回学校给同学们观看,请用树状图或者列表的方法求恰好选中A舞蹈《不忘初心》和C舞蹈《炫动的玫瑰》的概率.答案一、选择题 1. 【答案】C【解析】将三个小区分别记为 A ,B ,C ,列表如下:A B C A (A,A )(B,A )(C,A )B (A,B )(B,B )(C,B )C(A,C )(B,C )(C,C )由表可知,共有 9 种等可能结果,其中两个组恰好抽到同一个小区的结果有 3 种,∴ 两个组恰好抽到同一个小区的概率为 39=13. 【知识点】列表法求概率2. 【答案】C【解析】∵ 摸到红色球、黑色球的频率稳定在 15% 和 45%,∴ 摸到白球的频率为 1−15%−45%=40%,故口袋中白色球的个数可能是 40×40%=16 个. 【知识点】用频率估算概率3. 【答案】C【解析】画树形图得:由树形图可知共 4 种等可能的结果,一枚硬币正面向上,一枚硬币反面向上的有 2 种结果, ∴ 一枚硬币正面向上,一枚硬币反面向上的的概率为 24=12.【知识点】树状图法求概率4. 【答案】A【解析】根据题意,画出树形图.由图可知,任意翻开两张,共有 12 种等可能情况,其中两张图案一样的共有 4 种情况, 故任意翻开两张,其中两张图案一样的概率为 412=13.【知识点】树状图法求概率5. 【答案】D【解析】方法一:如图,将第二个转盘中的蓝色部分等分成两部分,画树状图得: ∵ 共有 6 种等可能的结果,可配成紫色的有 3 种情况, ∴ 可配成紫色的概率是:36=12. 方法二:列表如下:红蓝红(红,红)(蓝,红)蓝(红,蓝)(蓝,蓝)蓝(红,蓝)(蓝,蓝)由表格知共有 6 种等可能出现的结果数,其中能配成紫色的结果数有 3 种,则 P (配成紫色)=36=12.【知识点】树状图法求概率6. 【答案】C【知识点】树状图法求概率7. 【答案】D【知识点】概率的概念及意义、用频率估算概率8. 【答案】C【解析】可回收物、厨余垃圾、有害垃圾和其他垃圾对应的垃圾桶分别用 A ,B ,C ,D 表示,垃圾分别用 a ,b ,c ,d 表示.设分类打包好的两袋不同垃圾为 a ,b ,画树状图如图:共有 12 个等可能的结果,分类打包好的两袋不同垃圾随机投进两个不同的垃圾桶,投放正确的结果有 1 个,∴ 分类打包好的两袋不同垃圾随机投进两个不同的垃圾桶,投放正确的概率为 112.【知识点】树状图法求概率9. 【答案】C【知识点】用频率估算概率、完全平方公式10. 【答案】B【知识点】树状图法求概率二、填空题 11. 【答案】 9【解析】设白球的个数约为 a , 根据题意得 3a+3=0.25, 解得:a =9,经检验:a =9 是分式方程的解, 故答案为:9.【知识点】用频率估算概率12. 【答案】 4【解析】根据题意得 {xx+y=25,x x+y+6=14, 解得 {x =4,y =6, 经检验,{x =4,y =6 是方程组的解,所以原来盒子中的白色棋子有 4 颗. 【知识点】公式求概率13. 【答案】两个因素【知识点】列表法求概率14. 【答案】 15【解析】根据题意画树状图如下:共有 20 种等可能的结果,其中取出的两小球标注的数字之和为 6 的有 4 种情况, 所以取出的两小球标注的数字之和为 6 的概率 =420=15.【知识点】树状图法求概率15. 【答案】 12【解析】列出所有等可能情况,如下表.由表可知,取两张卡片的等可能情况共有 6 种,取得的第一张卡片所写数字大于第二张卡片所写数字的情况有 3 种,所以取得的第一张卡片所写数字大于第二张卡片所写数字的概率为 36=12.12311,21,322,12,333,13,2【知识点】列表法求概率16. 【答案】 16【解析】列表得:(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)(1,5)(2,5)(3,5)(4,5)(5,5)(6,5)(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)(1,3)(2,3)(3,3)(4,3)(5,3)(6,3)(1,2)(2,2)(3,2)(4,2)(5,2)(6,2)(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)由表可知一共有 36 种情况,两枚骰子点数相同的有 6 种,所以两枚骰子点数相同的概率 =636=16. 【知识点】列表法求概率17. 【答案】 6【解析】设袋中有红球 x 个,根据题意得:x15=0.4, 解得:x =6.答:袋中有红球 6 个. 【知识点】用频率估算概率三、解答题18. 【答案】列表法如下:或画树状图如下:由上表或树状图可知,一共有 9 种等可能的结果,其中颜色相同的结果有 4 种,颜色不同的结果有 5 种.∴P(颜色相同)=49,P(颜色不同)=59. ∵49<59,∴ 这个游戏规则对双方不公平. 【知识点】树状图法求概率19. 【答案】∵共有16种等可能的结果,掷骰子两次后,棋子恰好由A处前进6个方格到达C处的有(2,4),(3,3),(4,2),∴掷骰子两次后,棋子恰好由A处前进6个方格到达C处的概率为316.【知识点】树状图法求概率20. 【答案】(1) 12(2) 画树状图为:(a,b表示甲医院的男女医护人员c,d示乙医院的男女医护人员).共有12种等可能的结果数,其中这两名医护人员来自不同医院的结果数为8,∴这两名医护人员来自不同医院的概率=812=23.【解析】(1) ∵4名医护人员中有两男两女,从中随机抽取一名,共有四种结果,每种结果的概率相同,其中选中的是男医护人员的结果有两种,∴选中的是男医护人员的概率=24=12.【知识点】树状图法求概率、公式求概率21. 【答案】(1) 100(2)(3) 2000×(1−30%−10%−20100)=800(名),∴爱好打球的学生有800名.(4) 画树状图如图所示,共有12种等可能的情况产生,其中满足条件的情况共两种.∴P(一男一女)=812=23.【知识点】树状图法求概率、条形统计图、扇形统计图、用样本估算总体22. 【答案】(1) 已确定甲打第一场,再从其余3名同学中随机选取1名,恰好选中乙同学的概率是13.(2) 从甲、乙、丙、丁4名同学中随机选取2名同学,所有可能出现的结果有:(甲,乙),(甲,丙),(甲,丁),(乙,丙),(乙,丁),(丙,丁),共有6种,共有6种,它们出现的可能性相同,所有的结果中,满足“随机选取2名同学,其中有乙同学”(记为事件A)的结果有3种,所以P(A)=36=12.【知识点】列表法求概率、公式求概率23. 【答案】(1) 20;40;72∘;(2) B类的种数为20−4−8−6=2,条形统计图为:(3) 画树状图为:共有12种等可能的结果数,其中恰好选中甲和乙两种美食的结果数为2,∴恰好选中甲和乙两种美食的概率=212=16.【解析】(1) 4÷20%=20,所以这次抽查了四类特色美食共20种,扇形统计图中C类所占的百分比=820×100%=40%,即a=40;扇形统计图中A部分圆心角的度数为360∘×20%=72∘.【知识点】条形统计图、扇形统计图、树状图法求概率24. 【答案】(1) 12(2) ① 0.7.②参加欢乐跑的人数为300人,概率为1−0.7=0.3,本次参赛选手总人数为300÷0.3=1000人.【解析】(1) 共有两项,被分配到其中一项的概率为12.(2) ①观察表格可知:估算本次参加“半程马拉松”的人数概率为0.7.【知识点】公式求概率、用频率估算概率25. 【答案】(1) 50补全条形图如下:(2) 如图所示:一共有12种可能,恰好选中A舞蹈《不忘初心》和C舞蹈《炫动的玫瑰》的有2种,故恰好选中A舞蹈《不忘初心》和C舞蹈《炫动的玫瑰》的概率为212=16.【解析】(1) 次调查的总人数为15÷30%=50(人),则B节目的人数为50−(16+15+7)=12(人).【知识点】条形统计图、树状图法求概率。
第3章 概率的进一步认识 北师大版数学九年级上册单元测试卷(含答案)
第三章 概率的进一步认识时间:90分钟 满分:100分一、选择题(共8小题,每小题3分,共24分.每小题有四个选项,其中只有一个选项符合题意)1.用频率估计概率,可以发现抛掷硬币“正面向上”的概率为0.5,那么掷一枚质地均匀的硬币10次,下列说法正确的是( )A.每两次必有1次正面向上B.可能有5次正面向上C.必有5次正面向上D.不可能有10次正面向上2.[教材变式P 61练习](2021·辽宁阜新中考)小颖有两顶帽子,分别为红色和黑色,有三条围巾,分别为红色、黑色和白色,她随机拿出一顶帽子和一条围巾戴上,恰好为红色帽子和红色围巾的概率是( )A.12 B.23 C.56 D.163.(2022·山东济南历城区期末)一个不透明的袋子里装有白棋子、黑棋子共20个,这些棋子除颜色外都相同.小明从中随机摸出一颗棋子,记下颜色后放回,通过多次重复试验发现,摸出白棋子的频率稳定在0.6,则袋子中白棋子的个数最有可能是( )A.5B.8C.12D.154.(2022·安徽宿州期中)2022年冬奥会吉祥物为“冰墩墩”,冬残奥会吉祥物为“雪容融”.现有三张正面印有吉祥物的不透明卡片,卡片除正面图案不同外,其余均相同,其中两张正面印有“冰墩墩”图案,一张正面印有“雪容融”图案,将三张卡片正面向下洗匀,从中随机一次性抽取两张卡片,则抽出的两张卡片正面都印有“冰墩墩”图案的概率是( )A.13 B.12 C.49 D.235.(2021·重庆期末)一个不透明的袋子中装有3个白球,2个黑球,它们除颜色外都相同.将球摇匀后,从中随机摸出一个球,记下颜色后不放回,再随机摸出一个球.两次摸到的球颜色相同的概率是( )A.23 B.25 C.1325 D.13206.(2022·河南许昌一中月考)某市教委部门高度重视自然灾害中的安全教育,要求各级各类学校从认识安全警示标志入手开展安全教育活动.某数学兴趣小组准备了4张印有安全警示标志的卡片,正面图案如图所示,它们除此之外完全相同,把这4张卡片背面朝上洗匀,从中随机抽取两张卡片,则这两张卡片上的正面图案中有一张是轴对称图形的概率是( )A.12B.13C.14D.167.(2021·辽宁铁岭期末)若从1,2,3,4这四个数字中任选一个记为a ,再从这四个数字中任选一个记为c ,则关于x 的一元二次方程ax 2+4x+c=0没有实数根的概率为( )A.14B.13C.12D.238.(2022·江苏南京鼓楼区期中)如图是用画树状图的方法画出的某个试验的所有可能发生的结果,则这个试验不可能是( )A.在一个不透明的袋中有3个除颜色外完全相同的小球,其中2个黑球,1个白球,从中随机取出2个球B.小明,小王两个人分别去买一个盲盒,在三款盲盒中买到同一款盲盒C.从某学习小组的两名男生和一名女生中随机选取两名学生进行竞答D.体育测试中,随机从足球、篮球、排球三个项目中选择两个项目二、填空题(共5小题,每小题4分,共20分)9.(2022·北京期末)经过某个十字路口的汽车,可能直行,也可能向左转或向右转.如果这三种可能性大小相同,那么甲汽车经过这个十字路口时,向右转的概率是 .10.为积极响应“无偿献血,传递温暖”的号召,某高校一寝室的4个同学参与到爱心献血的活动中,他们其中有2个A 型血,1个B 型血,还有1个O 型血,现从该寝室随机抽取2个同学参与第一批次献血,则2个同学都是A 型血的概率为 .11.(2021·广东汕头潮阳区模拟)在如图所示的电路图中,随机闭合开关S 1,S 2,S 3中的两个,能让灯泡L 1发光的概率是 .12.(2022·辽宁锦州期中)一张纸片上有一个不规则的图案,小雅想了解该图案的面积是多少,她采取了以下的试验办法:用一个长为5 cm,宽为3 cm的长方形,将不规则图案围起来如图(1)所示,然后在适当位置随机地向长方形区域扔小球,并记录小球落在不规则图案内的次数(球落在界线上或长方形区域外不计入试验结果),她将若干次有效试验的结果绘制成了图(2)所示的折线统计图,由此她估计此不规则图案的面积为 cm2.(结果保留整数)图(1)图(2)13.(2021·江苏镇江中考)一只不透明的袋子中装有1个黄球,现放若干个红球进去,它们与黄球除颜色外都相同,搅匀后从中任意摸出两个球,若使得P(摸出一红一黄)=P(摸出两红),则放入的红球个数为 .三、解答题(共6小题,共56分)14.(8分)近几年,各式各样的共享经济模式在各个领域迅速普及应用,如图是某同学收集的四个共享经济领域的图标,将收集到的图标制成编号为A,B,C,D的四张卡片(除编号和内容外,其余完全相同),背面朝上,洗匀放好.(1)从中随机抽取一张,抽到的卡片上的图标恰好是“共享知识”的概率为 ;(2)从中随机抽取一张卡片,放回后洗匀,再从中随机抽取一张卡片,请用列表或画树状图的方法求抽到的两张卡片上的图标恰好是“共享出行”和“共享知识”的概率.15.(8分)某商场在“五一”促销活动中规定,顾客每消费100元就能获得一次抽奖机会.为了活跃气氛,设计了两种抽奖方案.方案一:转动转盘A一次,指针指向红的部分可领取一份奖品.方案二:转动转盘B两次,两次指针都指向红的部分可领取一份奖品.(两个转盘都被平均分成3份,若指针指向分界线,则重转)(1)转动一次转盘A,获得奖品的概率是 ;(2)如果你获得一次抽奖机会,你会选择哪种方案?请用列表法或画树状图法说明理由.16.(9分)(2022·辽宁抚顺新抚区期末)一个黑箱子里装有红、白两种颜色的球共4只,它们除颜色外,其他都相同.小明将球搅匀后从箱子中随机摸出一个球,记下颜色,再把它放回,不断重复试验,根据多次试验结果画出如下的折线统计图.(1)当试验次数很大时,摸到白球的频率将会接近 (精确到0.01),从箱子中摸一次球,摸到红球的概率是 ;(2)从该箱子里随机摸出一个球,不放回,再摸出一个球.用画树状图法或列表法求摸到一个红球和一个白球的概率.17.(10分)甲、乙、丙、丁四名同学进行一次乒乓球单打比赛,要从中选两位同学打第一场比赛.(1)请用画树状图法或列表法求出恰好选中甲、乙两位同学的概率;(2)请利用若干个除颜色外其他都相同的球,设计一个摸球试验(至少摸两次),并根据该试验写出一个发生概率与(1)中所求概率相同的事件.18.(10分)(2021·黑龙江大庆期中)如图(1),一枚质地均匀的正四面体骰子,它有四个面,每个面上分别以1,2,3,4标号;如图(2),等边三角形ABC的三个顶点处各有一个圆圈.明明和亮亮想玩跳圈游戏,游戏的规则为:游戏者从圈A起跳,每投掷一次骰子,骰子着地的一面点数是几,就沿着三角形的边逆时针方向连续跳跃几个边长.如:若第一次掷得点数为2,就逆时针连续跳2个边长,落到圈C;若第二次掷得点数为4,就从圈C继续逆时针连续跳4个边长,落到圈A.(1)明明随机掷一次骰子,她跳跃后落到圈A的概率为 ;(2)明明和亮亮一起玩跳圈游戏:明明随机投掷一次骰子,亮亮随机投掷两次骰子,以最终落到圈A为胜者.这个游戏公平吗?请说明理由. 图(1) 图(2)19.(11分)(2021·辽宁本溪期末)为了解学生对食品安全知识的了解情况,学校随机抽取了部分学生进行问卷调查,将调查结果按照“A:非常了解,B:了解,C:了解较少,D:不了解”四类分别进行统计,并绘制了下列两幅统计图(不完整).请根据图中信息,解答下列问题:(1)此次共调查了 名学生;扇形统计图中D所在扇形的圆心角为 ;(2)将上面的条形统计图补充完整;(3)若该校共有800名学生,请你估计对食品安全知识“非常了解”的学生的人数;(4)现有“非常了解”的男生2名,女生2名,从这4名学生中随机抽取2名学生进行座谈,刚好抽到同性别学生的概率是多少?第三章 概率的进一步认识12345678BD C A B A C B9.1310.1611.1312.613.31.B 抛掷硬币“正面向上”的概率为0.5,那么掷一枚质地均匀的硬币10次,可能有5次正面向上.2.D 画树状图如图所示,可知共有6种等可能的结果,恰好拿到红色帽子和红色围巾的结果有1种,∴恰好拿到红色帽子和红色围巾的概率为16.3.C 设袋子中白棋子有x 个,根据题意,得x20=0.6,解得x=12,∴袋子中白棋子的个数最有可能是12.4.A 把两张正面印有“冰墩墩”图案的卡片分别记为A 1,A 2,正面印有“雪容融”图案的卡片记为B,根据题意画树状图如下:从树状图可知,共有6种等可能的结果,其中抽出的两张卡片正面都印有“冰墩墩”图案的结果有2种,故P (抽出的两张卡片正面都印有“冰墩墩”图案)=26=13.5.B 画树状图如图:由树状图可知,共有20种等可能的结果,两次摸到的球颜色相同的结果有8种,∴两次摸到的球颜色相同的概率为820=25.6.A 把4张卡片从左到右依次标记为A,B,C,D,画树状图如图所示:由树状图可知,共有12种等可能的结果,因为只有C 卡片上的正面图案是轴对称图形,所以这两张卡片上的正面图案中有一张是轴对称图形的结果有6种,故P (这两张卡片上的正面图案中有一张是轴对称图形)=612=12.7.C 画树状图如图:由树状图可知,共有16种等可能的结果,其中使Δ=42-4ac<0,即ac>4的结果有8种,∴关于x 的一元二次方程ax 2+4x+c=0没有实数根的概率为816=12.8.B 在一个不透明的袋中有3个除颜色外完全相同的小球,其中2个黑球,1个白球,从中随机取出2个球,设A ,B 表示黑球,C 表示白球,则可画出题中的树状图;从某学习小组的两名男生和一名女生中随机选取两名学生进行竞答,设A ,B 表示男生,C 表示女生,则可画出题中的树状图;体育测试中,随机从足球、篮球、排球三个项目中选择两个项目,设A 表示足球,B 表示篮球,C 表示排球,则可画出题中的树状图;而小明,小王两个人分别去买一个盲盒,在三款盲盒中买到同一款盲盒,设A ,B ,C 分别表示三款盲盒,树状图为:9.1310.16 列表如下:AA B O A(A,A)(A,B)(A,O)A(A,A)(A,B)(A,O)B(B,A)(B,A)(B,O)O (O,A)(O,A)(O,B)由表可知共有12种等可能的结果,其中2个同学都是A 型血的结果有2种,∴P (2个同学都是A 型血)=212=16.11.13 根据题意画出树状图如下.由树状图可知,共有6种等可能的情况,其中能让灯泡L 1发光的情况有2种,即S 1S 2,S 2S 1,所以能让灯泡L 1发光的概率为26=13.12.6 假设不规则图案的面积为x cm 2,由题意得长方形的面积为15 cm 2,当事件A 试验次数足够多,即样本足够大时,其频率可估计事件A 发生的概率,故由题中折线统计图可知,小球落在不规则图案内的概率大约为0.4,所以x 15=0.4,解得x=6,所以估计此不规则图案的面积为6 cm 2.13.3 假设袋中的红球个数为1,此时袋中有1个黄球、1个红球,搅匀后从中任意摸出两个球,P (摸出一红一黄)=1,P (摸出两红)=0,不符合题意;假设袋中的红球个数为2,画树状图如下:由树状图可知,共有6种等可能的结果,其中两次摸到红球的结果有2种,摸出一红一黄的结果有4种,∴P (摸出一红一黄)=46=23,P (摸出两红)=26=13,不符合题意;假设袋中的红球个数为3,画树状图如下:由树状图可知,共有12种等可能的结果,其中两次摸到红球的结果有6种,摸出一红一黄的结果有6种,∴P (摸出一红一黄)=P (摸出两红)=612=12,符合题意,∴放入的红球个数为3.14.【参考答案】(1)14(3分)(2)根据题意画出如图所示的树状图:由树状图可知,共有16种等可能的结果,其中抽到的两张卡片上的图标是“共享出行”和“共享知识”的结果有2种,所以抽到的两张卡片上的图标是“共享出行”和“共享知识”的概率是216=18.(8分)15.【参考答案】(1)13(3分)(2)选择方案二.(4分)理由:画树状图如下.由树状图可知,共有9种等可能的结果,其中两次指针都指向红的部分的结果有4种,所以P (转动转盘B 两次,领取一份奖品)=49.(6分)由(1)知转动转盘A 一次,领取一份奖品的概率是13,因为13<49,所以选择方案二.(8分)16.【解题思路】(1)当试验次数达到1 500次时,摸到白球的频率接近于0.75,由此可估计摸到红球的概率;(2)先根据(1)的结论求出白球的个数和红球的个数,再列表得出所有等可能的结果,从中找到符合条件的结果,进而可求得概率.【参考答案】(1)0.75 14(4分)解法提示:由折线统计图可知,当试验次数很大时,摸到白球的频率将会接近0.75,从箱子中摸一次球,摸到红球的概率为1-0.75=0.25=14.(2)由(1)知,箱中白球的个数为4×0.75=3,则红球的个数为4-3=1,列表如下:白白白红白(白,白)(白,白)(红,白)白(白,白)(白,白)(红,白)白(白,白)(白,白)(红,白)红(白,红)(白,红)(白,红)由表知,共有12种等可能的结果,其中摸到一个红球和一个白球的结果有6种,∴摸到一个红球和一个白球的概率为612=12.(9分)17.【参考答案】(1)根据题意,画树状图如下: (3分)由树状图,可知共有12种等可能的结果,其中恰好选中甲、乙两位同学的结果有2种,所以P (恰好选中甲、乙两位同学)=212=16.(5分)(2)答案不唯一.如:在一个不透明的袋子中,放入四个除颜色外其他都相同的球,它们的颜色分别为白、黄、粉、橙,从袋中随机摸出一个球记下颜色,不放回,再从袋中随机摸出一个球,记下颜色.事件:两次摸出的球一个是白球,一个是粉球.(10分)18.【参考答案】(1)14(3分)(2)这个游戏不公平.(4分)理由:画树状图如图,共有16种等可能的结果,其中亮亮随机投掷两次骰子,最终落到圈A 的结果数为5,即共跳3个边长或6个边长,所以P (亮亮随机投掷两次骰子,最终落回到圈A )=516.(8分)因为14<516,所以这个游戏不公平.(10分)19.【参考答案】(1)120 54°(2分)解法提示:(25+23)÷40%=120(名),360°×10+8120=54°.(2)D 所占的百分比为(10+8)÷120×100%=15%,A 中的人数为120×(1-40%-20%-15%)=30(名),其中男生有30-16=14(名),C 中的人数为120×20%=24(名),其中女生有24-12=12(名).补全条形统计图如图所示:(4分)(3)800×(1-40%-20%-15%)=200(名),答:估计对食品安全知识“非常了解”的学生的人数为200.(7分)(4)画树状图:由树状图可知,共有12种等可能的结果,抽到同性别学生的结果有4种,所以P (刚好抽到同性别学生)=412=13.(11分)。
(常考题)北师大版初中数学九年级数学上册第三单元《概率的进一步认识》测试卷(含答案解析)
一、选择题1.甲、乙两位同学在一次用频率估计概率的实验中统计了某一结果出现的频率,并绘出了如下统计图,则符合这一结果的实验可能是()A.掷一枚正六面体的骰子,出现5点的概率B.掷一枚硬币,出现正面朝上的概事C.一个不透明的袋子中装着除颜色外都相同的两个红球和一个黄球,从中任意取出一个是黄球的概率D.任意写出一个两位数,能被2整除的概率2.有三张正面分别标有数字-2 ,3, 4 的不透明卡片,它们除数字不同外,其余全部相同,现将它们背面朝上洗匀后,从中任取一张(不放回),再从剩余的卡片中任取一张,则两次抽取的卡片上的数字之积为正偶数的概率是()A.49B.112C.13D.163.从{3,2,1,0,1,2,3}---这七个数中随机抽取一个数记为a,则a的值是不等式组352132xxxx⎧+>⎪⎪⎨⎪<+⎪⎩的解,但不是方程2320x x-+=的实数解的概率为().A.17B.27C.37D.474.若在“正三角形、平行四边形、菱形、正五边形、正六边形”这五种图形中随机抽取一种图形,则抽到的图形属于中心对称图形的概率是()A.15B.25C.35D.455.如图是一个正八边形,向其内部投一枚飞镖,投中阴影部分的概率是()A.13B.12C2D.346.一个不透明的袋子中装有白球4个,黑球若干个,这些球除颜色外其余完全一样.如果随机从袋中摸出一个球是白球的概率为13,那么袋中有多少个黑球( ) A .4个 B .12个 C .8个 D .不确定 7.现有两组相同的牌,每组三张且大小一样,三张牌的牌面数字分别是1、2、3,从每组牌中各摸出一张牌.两张牌的牌面数字之和等于4的概率是( )A .29B .13C .59D .238.某单位进行内部抽奖,共准备了100张抽奖券,设一等奖10个,二等奖20个,三等奖30个.若每张抽奖券获奖的可能性相同,则1张抽奖券中奖的概率是( ) A .0.1 B .0.2 C .0.3 D .0.69.如图,转盘的红、黄、蓝、紫四个扇形区域的圆心角分别记为α,β,γ,θ.自由转动转盘,则下面说法错误的是( )A .若90α>︒,则指针落在红色区域的概率大于0.25B .若αβγθ>++,则指针落在红色区域的概率大于0.5C .若αβγθ-=-,则指针落在红色或黄色区域的概率和为0.5D .若180γθ+=︒,则指针落在红色或黄色区域的概率和为0.510.一个密闭不透明的盒子里有若干个白球,在不许将球倒出来数的情况下,为了估计白球数,小刚向其中放入了8个黑球,搅匀后从中随意摸出一个球记下颜色,再把它放回盒中,不断重复这一过程,共摸球400次,其中80次摸到黑球,你估计盒中大约有白球( )A .32个B .36个C .40个D .42个11.一个不透明的布袋中,装有红、黄、白三种只有颜色不同的小球,其中红色小球有6个,黄、白色小球的数量相同,为估计袋中黄色小球的数量,每次将袋中小球搅匀后摸出一个小球记下颜色放回,再搅匀多次试验发现摸到红色的频率是18,则估计黄色小球的个数是( )A .21B .40C .42D .4812.把同一副扑克牌中的红桃2、红桃3、红桃4三张牌背面朝上放在桌子上,从中随机抽取两张,牌面的数字之和为奇数的概率为( )A .49B .13C .12D .23二、填空题13.一个小球在如图所示的地板上自由滚动,最终停在阴影区域的概率为_______.14.有六张大小形状相同的卡片,分别写有1~6这六个数字,将它们背面朝上洗匀后,任意抽取一张,记卡片上的数字为a,则a的值使得关于x的分式方程26122 axx x--=--有整数解的概率为_____.15.从“武汉加油!中国加油!”这句励志句中任选一个汉字,这个字是“油”的概率是___________.16.在一个布袋中装有四个完全相同的小球,它们分别写有“美”、“丽”、“罗”、“山”的文字.先从袋中摸出1个球后放回,混合均匀后再摸出1个球,求两次摸出的球上是含有“美”“丽”二字的概率为_____.17.技术变革带来产品质量的提升.某企业技术变革后,抽检某一产品2020件,欣喜发现产品合格的频率已达到0.9911,依此我们可以估计该产品合格的概率为_______.(结果要求保留两位小数)18.在一个不透明的袋子里装有4个白球,若干个黄球,每个球除颜色外均相同,将球搅匀,从中任意摸出一个球,摸到黄球的概率为45,则袋子内共有球____个.19.微信给甲、乙、丙三人,若微信的顺序是任意的,则第一个微信给甲的概率为_____.20.如图,一飞镖游戏板由大小相等的小正方形格子构成,向游戏板随机投掷一枚飞镖,击中黑色区域的概率是_____.三、解答题21.一个不透明的口袋里装有分别标有汉字“优”、“秀”、“学”、“生”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀.(1)若从中任取一个球,球上的汉字刚好是“优”的的概率是______;(2)从中任取一球,不放回,再从中任取一球,请用树状图或列表的方法,求取出两个球上的汉字能组成“优秀”或“学生”的概率.22.电视台为了开展线上“百人合唱一首歌”的“云演出”活动,需招募青少年歌手.甲、乙、丙、丁报名参加了应聘活动,其中甲、乙为男歌手,丙、丁为女歌手.现对这四名歌手采取随机抽取的方式进行线上面试.(1)若随机抽取一名歌手,求恰好抽到丁的概率;(2)若随机抽取两名歌手,请用列表或画树状图表示所有可能的结果,并求出恰好抽到一男一女的概率.23.在一个不透明的布袋里装有3个大小、质地均相同的乒乓球,球上分别标有数字为1、2、3(1)随机从布袋中一次摸出两个乒乓球,写出两个乒乓球上的数字都是奇数的概率是_________;(2)随机从布袋中摸出一个乒乓球,记下数字后放回布袋里,再随机从布袋中摸出一个乒乓球,请用列表或画树状图的方法求出两个乒乓球上的数字之和不小于4的概率.24.在一次数学兴趣小组活动中,李燕和刘凯两位同学设计了如图所示的两个转盘做游戏(每个转盘被分成面积相等的几个扇形,并在每个扇形区域内标上数字).游戏规则如下:两人分别同时转运甲、乙转盘,转盘停止后,若指针所指区域内两数和小于12,则李燕获胜;若指针所指区域内两数和等于12,则为平局;若指针所指区域内两数和大于12,则刘凯获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止).(1)请用列表或画树状图的方法表示出上述游戏中两数和的所有可能的结果;(2)计算平局的概率.(3)刘凯说:“这种规则不公平”,你认同他的说法吗?请说明理由.(4)若你认为不公平,请你帮他们修改规则使游戏公平?25.平定县位于山西中部东侧,是三晋东大门.境内山川秀丽,有著名旅游景区娘子关,有名扬三晋的冠山古书院,建于秦长城一百年之前的周关长城,省级森林公园药林寺等等,这些都是人们周末游的好去处,小明计划某个周末和妹妹一起去旅游,他收集了如图所示四个景点的卡片,卡片分别用N,G,C,Y表示,卡片大小、形状及背面完全相同,通过游戏规则,选择景点,请用列表法或画树状图的方法,求下列随机事件的概率:(1)若选择其中一个景点游戏规则:把这四张图片背面朝上洗匀后,妹妹从中随机抽取一张,作好记录后,将图片放回洗匀,哥哥再抽取一张求两人抽到同一景点的概率;(2)若选择其中两个景点,游戏规则:把这四张图片背面朝上洗匀后,妹妹和哥哥从中各随机抽取一张(不放回).求两人抽到娘子关和固关长城的概率.26.生活在数字时代的我们,很多场合用二维码(如图①)来表示不同的信息,类似地,可通过在网格中,对每一个小方格涂色或不涂色所得的图形来表示不同的信息,例如:网格中只有一个小方格(如图②),通过涂色或不涂色可表示两个不同的信息.(1)用树状图或列表格的方法,求图③可表示不同信息的总个数(图中标号1、2表示两个不同位置的小方格,下同)(2)图④为22⨯的网格图,它可表示不同信息的总个数为________;(3)某校需要给每位师生制作一张“校园出入证”,准备在证件的右下角采用n n⨯的网格图来表示个人身份信息,若该校师生共506人,则n的最小值为________.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的概率,约为0.33者即为正确答案.【详解】根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,A、掷一枚正六面体的骰子,出现5点的概率为16,故此选项错误;B、掷一枚硬币,出现正面朝上的概率为12,故此选项错误;C、一个不透明的袋子中装着除颜色外都相同的两个红球和一个黄球,从中任意取出一个是黄球的概率为10.333≈,故此选项正确;D、任意写出一个两位数,能被2整除的概率为12,故此选项错误.故选:C.【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.同时此题在解答中要用到概率公式.2.C解析:C【详解】画树状图得:∵共有6种等可能的结果,两次抽取的卡片上的数字之积为正偶数的有2种情况, ∴两次抽取的卡片上的数字之积为正偶数的概率是:2163=. 故选C.【点睛】本题考查运用列表法或树状图法求概率.注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件. 3.B解析:B【分析】先解不等式,再解一元二次方程,利用概率公式得到概率【详解】352132x x x x ⎧+>⎪⎪⎨⎪<+⎪⎩①② 解①得,2x >-,解②得,34x >-. ∴34x >-. ∵a 的值是不等式组352132x x x x ⎧+>⎪⎪⎨⎪<+⎪⎩的解, ∴0,1,2,3a =.方程23120x x -+=,解得11x =,22x =. ∵a 不是方程232x x -+的解,∴0a =或3.∴满足条件的a 的值为1,2(2个).∴概率为27. 故选B .4.C解析:C【解析】试题 这五种图形中,平行四边形、菱形和正六边形是中心对称图形,所以这五种图形中随机抽取一种图形,则抽到的图形属于中心对称图形的概率=35.故选C .考点:1.概率公式;2.中心对称图形. 5.B解析:B【分析】根据几何概率的求法:飞镖落在阴影部分的概率就是阴影区域的面积与总面积的比值.根据正八边形性质求出阴影部分面积占总面积之比,进而可得到答案【详解】 解:由正八边形性质可知∠EFB=∠FED=135°,故可作出正方形ABCD .则AEF 是等腰直角三角形,设AE x =,则AF x =,2EF x =,正八边形的边长是2x . 则正方形的边长是(22)x +.则正八边形的面积是:(2221(22)44122x x x ⎡⎤-=+⎣⎦, 阴影部分的面积是:2212[(22)2]2(21)2x x x x -⨯=. ()2221241122x x ++=, 故选:B .【点睛】 本题考查了几何概率的求法:一般用阴影区域表示所求事件(A );首先根据题意将代数关系用面积表示出来;然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A )发生的概率.同时也考查了正多边形的计算,根据正八边形性质构造正方形求面积比是关键.6.C解析:C 【分析】首先设黑球的个数为x个,根据题意得:4143=x+,解此分式方程即可求得答案.【详解】设黑球的个数为x个,根据题意得:41 43=x+,解得:x=8,经检验:x=8是原分式方程的解;∴黑球的个数为8.故选:C.【点睛】此题考查概率公式的应用.解题关键在于掌握概率=所求情况数与总情况数之比.7.B解析:B【分析】画树状图列出所有情况,看数字之和等于4的情况数占总情况数的多少即可.【详解】画树状图得:则共有9种等可能的结果,其中两张牌的牌面数字之和等于4的有3种结果,∴两张牌的牌面数字之和等于4的概率为39=13,故选:B.【点睛】本题考查列表法和树状图法,解题的关键是可以不重复不遗漏的列出所有可能的结果.8.D解析:D【分析】直接利用概率公式进行求解,即可得到答案.【详解】解:∵共准备了100张抽奖券,设一等奖10个,二等奖20个,三等奖30个.∴1张抽奖券中奖的概率是:102030100++=0.6, 故选:D .【点睛】 本题考查了概率公式:随机事件A 的概率P (A )=事件A 可能出现的结果数除以所有可能出现的结果数.9.C解析:C【分析】根据概率公式计算即可得到结论.【详解】解:A 、∵α>90°,900.25360360α∴>=,故A 正确; B 、∵α+β+γ+θ=360°,α>β+γ+θ, 1800.5360360α∴>=,故B 正确; C 、∵α-β=γ-θ,∴α+θ=β+γ,∵α+β+γ+θ=360°,∴α+θ=β+γ=180°, 1800.5360︒︒∴= ∴指针落在红色或紫色区域的概率和为0.5,故C 错误;D 、∵γ+θ=180°,∴α+β=180°,1800.5360∴= ∴指针落在红色或黄色区域的概率和为0.5,故D 正确;故选:C .【点睛】本题考查了概率公式,熟练掌握概率公式是解题的关键.10.A解析:A【分析】可根据“黑球数量÷黑白球总数=黑球所占比例”来列等量关系式,其中“黑白球总数=黑球个数+白球个数“,“黑球所占比例=随机摸到的黑球次数÷总共摸球的次数”【详解】设盒子里有白球x 个,根据=黑球个数摸到黑球次数小球总数摸球总次数得: 8808400x =+ 解得:x=32.经检验得x=32是方程的解.答:盒中大约有白球32个.故选;A .【点睛】此题主要考查了利用频率估计概率,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解,注意分式方程要验根.11.A解析:A【分析】 根据多次试验发现摸到红球的频率是18,则可以得出摸到红球的概率为18,再利用红色小球有6个,黄、白色小球的数目相同进而表示出黄球概率,得出答案即可.【详解】设黄球的数目为x ,则黄球和白球一共有2x 个, ∵多次试验发现摸到红球的频率是18,则得出摸到红球的概率为18, ∴662x +=18, 解得:x =21, 经检验x=21是所列方程的根,则黄色小球的个数是21个.故选:A .【点睛】本题考查了利用频率估计概率,根据题目中给出频率可知道概率,从而可求出黄色小球的数目是解题关键.12.D解析:D【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与从中随机抽取两张,牌面的数字之和为奇数的情况,再利用概率公式求解即可求得答案.【详解】解:根据题意画树状图如下:∵共有6种等可能的结果,从中随机抽取两张,牌面的数字之和为奇数的有4种情况,∴从中随机抽取两张,牌面的数字之和为奇数的概率为:4263=;故选:D.【点睛】本题考查了用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.二、填空题13.【分析】先求出黑色方砖在整个地板中所占的比值再根据其比值即可得出结论【详解】∵由图可知黑色方砖5块共有25块方砖∴黑色方砖在整个地板中所占的比值∴它停在黑色区域的概率是故答案为:【点睛】本题考查了几解析:1 5【分析】先求出黑色方砖在整个地板中所占的比值,再根据其比值即可得出结论.【详解】∵由图可知,黑色方砖5块,共有25块方砖,∴黑色方砖在整个地板中所占的比值51255=,∴它停在黑色区域的概率是15.故答案为:15.【点睛】本题考查了几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.14.【分析】先把分式方程化为整式方程解整式方程得到x=且x≠2利用有理数的整除性得到a=2或3然后根据概率公式求解【详解】把分式方程去分母得ax﹣2﹣(x﹣2)=6∴(a﹣1)x=6∵分式方程有整数解∴解析:13.【分析】先把分式方程化为整式方程,解整式方程得到x =61a -且x ≠2,利用有理数的整除性得到a =2或3,然后根据概率公式求解. 【详解】把分式方程26122ax x x --=--去分母得ax ﹣2﹣(x ﹣2)=6, ∴(a ﹣1)x =6, ∵分式方程有整数解,∴x =61a -且x ≠2, ∴a =2或3,∴a 的值使得关于x 的分式方程26122ax x x --=--有整数解的概率=13.故答案为13. 【点睛】本题考查了分式方程的解:求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解.分式方程的增根是令分母等于0的未知数的值,不是原分式方程的解.也考查了概率公式.15.【分析】根据概率的求法找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率【详解】解:∵在武汉加油!中国加油!这8个字中油字有2个∴这句话中任选一个汉字这个字是油的概率是故答解析:14【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率. 【详解】解:∵在“武汉加油!中国加油!”这8个字中,“油”字有2个, ∴这句话中任选一个汉字,这个字是“油”的概率是21=84, 故答案为:14. 【点睛】本题考查概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n. 16.【分析】画树状图展示所有16种等可能的结果数再找出两次摸出的球上是写有美丽二字的结果数然后根据概率公式求解【详解】(1)用1234别表示美丽罗山画树形图如下:由树形图可知所有等可能的情况有16种其中解析:1 8【分析】画树状图展示所有16种等可能的结果数,再找出两次摸出的球上是写有“美丽”二字的结果数,然后根据概率公式求解.【详解】(1)用1、2、3、4别表示美、丽、罗、山,画树形图如下:由树形图可知,所有等可能的情况有16种,其中“1,2”出现的情况有2种,∴P(美丽)21168==.故答案为:18.【点睛】本题考查了用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.17.99【分析】根据产品合格的频率已达到09911保留两位小数所以估计合格件数的概率为099【详解】解:合格频率为:09911保留两位小数为099则根据产品合频率估计该产品合格的概率为099故答案为09解析:99【分析】根据产品合格的频率已达到0.9911,保留两位小数,所以估计合格件数的概率为0.99.【详解】解:合格频率为:0.9911,保留两位小数为0.99,则根据产品合频率,估计该产品合格的概率为0.99.故答案为0.99.【点睛】本题考查了利用频率估计概率.用到的知识点为:概率=所求情况数与总情况数之比及运用样本数据去估计总体数据的基本解题思想.18.20【分析】设袋子内共有球x个利用概率公式得到然后利用比例性质求出x即可【详解】解:设袋子内共有球x个根据题意得解得x=20经检验x=20为原方程的解即袋子内共有球20个故答案为20【点睛】本题考查解析:20设袋子内共有球x个,利用概率公式得到445xx-=,然后利用比例性质求出x即可.【详解】解:设袋子内共有球x个,根据题意得445xx-=,解得x=20,经检验x=20为原方程的解,即袋子内共有球20个.故答案为20.【点睛】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.19.【分析】根据题意微信的顺序是任意的微信给甲乙丙三人的概率都相等均为【详解】∵微信的顺序是任意的∴微信给甲乙丙三人的概率都相等∴第一个微信给甲的概率为故答案为【点睛】此题考查了概率的求法:如果一个事件解析:1 3【分析】根据题意,微信的顺序是任意的,微信给甲、乙、丙三人的概率都相等均为13.【详解】∵微信的顺序是任意的,∴微信给甲、乙、丙三人的概率都相等,∴第一个微信给甲的概率为13.故答案为13.【点睛】此题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.20.【分析】利用黑色区域的面积除以游戏板的面积即可【详解】解:黑色区域的面积=3×3﹣×3×1﹣×2×2﹣×3×1=4∴击中黑色区域的概率==故答案是:【点睛】本题考查了几何概率:求概率时已知和未知与几解析:1 5利用黑色区域的面积除以游戏板的面积即可.【详解】解:黑色区域的面积=3×3﹣12×3×1﹣12×2×2﹣12×3×1=4,∴击中黑色区域的概率=420=15.故答案是:15.【点睛】本题考查了几何概率:求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等.三、解答题21.(1)14;(2)13【分析】(1)直接利用概率公式求解即可;(2)列表法列出所有等可能的结果,从中找到符合条件的结果数,再根据概率公式求解即可;【详解】解:(1)∵共有4个数,∴若从中任取一个球,球上的汉字刚好是“优”的概为14;(2)列出下表:∴按要求能组成“优秀”或“学生”的概率为41 123 ==.【点睛】本题考查了列表法和树状图法,以及用概率公式求解概率;正确掌握知识点是解题的关键;22.(1)14;(2)23【分析】(1)共有4种可能出现的结果,抽到丁的只有1种,可求出抽到丁的概率; (2)用列表法表示所有可能出现的结果,进而求出恰好抽到一男一女的概率. 【详解】解:(1)共有4种可能出现的结果,抽到丁的只有1种, 因此()14P =抽到丁, 故答案为:14; ()2根据题意,列表如下:因为、乙为男歌手,丙、丁为女歌手,所以其中恰好一男一女的结果有8种, 则()82123P ==一男一女, 所以,恰好抽到一男一女的概率是23. 【点睛】本题考查列表法或树状图法求随机事件发生的概率,列举出所有可能出现的结果情况是正确解答的前提. 23.(1)13;(2)23【分析】(1)用列举法展示所有可能的结果数,然后根据概率公式求解;(2)画树状图展示所有9种等可能的结果数,再找出两个兵乒球上的数字之和不小于4的结果数,然后根据概率公式求解. 【详解】(1)可能出现的结果有:()12,,()13,,()23,,共3种, 两个数字都是奇数的只有()13,一种,∴两个乒乓球上的数字都是奇数的概率是13,故答案为:13;(1)画树状图如下:一共有9种可能的结果,其中大于或等于4的有6种,∴两个乒乓球上的数字之和不小于4的概率为:6293=.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.24.(1)见解析,12种;(2)14;(3)认同,见解析;(4)见解析.【分析】(1)根据题意画出树状图,得出游戏中两数和的所有可能的结果数;(2)根据(1)得出两数和共有的情况数和其中和等于12的情况数,再根据概率公式即可得出答案;(3)根据(1)得出两数和共有的情况数和其中和小于12的情况、和大于12的情况数,再根据概率公式即可得出答案;(4)应保证双方赢的概率相同.【详解】解:(1)画树状图:可见,两数和共有12种等可能性;(2)两数和共有12种等可能性,其中平局的情况有3种,∴P(出现平局)31124==;(3)由(1)可知,两数和共有12种等可能的情况,其中和小于12的情况有6种,和大于12的情况有3种,P∴(李燕获胜)61 122 ==,P(刘凯获胜)31 124 ==,∵1142<,∴这个游戏规则对双方不公平.(4)游戏规则:(答案不唯一)如:两人分别同时转运甲、乙转盘,转盘停止后,若指针所指区域内两数等于12,则李燕胜;若指针所指区域内两数和大于12,则刘凯获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止).或:两人分别同时转运甲、乙转盘,转盘停止后,若指针所指区域内两数小于12,则李燕胜;否则就刘凯获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止).【点睛】本题考查了用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.游戏双方获胜的概率相同,游戏就公平,否则游戏不公平.用到的知识点为:概率=所求情况数与总情况数之比.25.(1)14;(2)16【分析】(1)画树状图,共有16种等可能的结果,其中两人抽到同一景点的结果有4个,则由概率公式求解即可;(2)画树状图,共有12种等可能的结果,其中两人抽到娘子关和固关长城的结果有2个,则由概率公式求解即可.【详解】解:(1)画树状图如下:由树状图可以看出,所有可能出现的结果共有16种,而且每种结果出现的可能性相同,其中抽到的两个景点相同的结果共有4种,∴P(抽到同一景点)41164==;(2)画树状图如下:。
北师大版九年级数学上册期末复习概率的进一步认识专题(附答案)
北师大版九年级数学上册期末复习概率的进一步认识专题(附答案)一、单选题1.如图是一次数学活动课上制作的两个转盘,甲转盘被平均分为三部分,上面分别写着9,8,5三个数字,乙转盘被平均分为四部分,上面分别写着1,6,9,8四个数字,同时转动两个转盘,停止转动后两个转盘上指针所指的数字恰好都能被3整除的概率是( )A. B. C. D.2.有两把不同的钥匙和三把锁,其中两把钥匙分别能打开两把锁,且不能打开第三把锁,随机取出一把钥匙开任意一把锁,一次打开锁的概率是( )A. B. C. D.3.在一个不透明的口袋里,装有仅颜色不同的黑球、白球若干只,某小组做摸球实验:将球搅匀后从中随机摸出一个,记下颜色,再放入袋中,不断重复,右表是活动中的一组数据,则摸到白球的概率约是()A. 0.4B. 0.5C. 0.6D. 0.7二、填空题(共2题;共2分)4.某校九年级二班举办主题演讲比赛活动.经过初赛,共有2名男生,3名女生进入决赛.决赛采用随机抽签方式确定选手的出场顺序,前两位出场的选手中,都是男选手的概率是________。
5.在一个不透明的盒子里装有4个标有1,2,3,4的小球,它们形状、大小完全相同.小明从盒子里随机取出一个小球,记下球上的数字,作为点P的横坐标x,放回然后再随机取出一个小球,记下球上的数字,作为点P的纵坐标y.则点P在以原点为圆心,5为半径的圆上的概率为________.三、解答题(共2题;共10分)6.亮亮有3张扑克牌.冬冬有2张扑克牌,扑克牌上的数字如图所示。
两人用这些扑克牌做游戏,他们先分别从自己的扑克牌中随机抽取一张,然后将他们抽出这两张扑克牌上的数字比较大小,数字大的一方获胜。
请用画树状图或列表的方法,求亮亮获胜的概率。
7.有甲乙两个不透明的口袋,甲袋中有3个球,分别标有0,2,5;乙袋中有3个球,分别标有0,1,4,这6个球除所标数字以外没有任何其他区别.从甲、乙两袋各随机模出1个球,用树状图(或列表)的方法,求摸出的两个球上数字之和是6的概率.四、综合题8.小明参加某网店的“翻牌抽奖”活动,如图,4张牌分别对应价值5,10,15,20 (单位:元)的4件奖品。
(北师大版)北京市九年级数学上册第三单元《概率的进一步认识》测试(答案解析)
一、选择题1.在一个不透明的袋子中,装有红球、黄球、篮球、白球各1个,这些球除颜色外无其他差别,从袋中随机取出一个球,取出红球的概率为()A.12B.13C.14D.12.在一个不透明的布袋中装有若干个只有颜色不同的小球,如果袋中有红球5个,黄球4个,其余为白球,从袋子中随机摸出一个球,“摸出黄球”的概率为13,则袋中白球的个数为()A.2 B.3 C.4 D.123.有三张正面分别标有数字-2 ,3, 4 的不透明卡片,它们除数字不同外,其余全部相同,现将它们背面朝上洗匀后,从中任取一张(不放回),再从剩余的卡片中任取一张,则两次抽取的卡片上的数字之积为正偶数的概率是()A.49B.112C.13D.164.如图,正方形ABCD中,点E是以AB为直径的半圆与对角线AC的交点.现随机向正方形ABCD内投掷一枚小针,则针尖落在阴影区域的概率为()A.18B.14C.13D.125.如图所示,一个大正方形的面上,编号为1,2,3,4的地块,是四个全等的等腰直角三角形空地,中间是小正方形绿色草坪,一名训练有素的跳伞运动员,每次跳伞都能落在大正方形地面上,则跳伞运动员一次跳伞落在草坪上的概率是()A.12B.14C.16D.186.一个不透明的袋子中装有白球4个,黑球若干个,这些球除颜色外其余完全一样.如果随机从袋中摸出一个球是白球的概率为13,那么袋中有多少个黑球()A.4个B.12个C.8个D.不确定7.现有两组相同的牌,每组三张且大小一样,三张牌的牌面数字分别是1、2、3,从每组牌中各摸出一张牌.两张牌的牌面数字之和等于4的概率是()A.29B.13C.59D.238.小冬和小松正在玩“掷骰子,走方格”的游戏.游戏规则如下:(1)掷一枚质地均匀的正方体骰子(骰子六个面的数字分别是1至6),落地后骰子向上一面的数字是几,就先向前走几格,然后暂停.(2)再看暂停的格子上相应的文字要求,按要求去做后,若还有新的文字要求,则继续按新要求去做,直至无新要求为止,此次走方格结束.下图是该游戏的部分方格:例如:小冬现在的位置在大本营,掷骰子,骰子向上一面的数字是2,则小冬先向前走两格到达方格2,然后执行方格2的文字要求“后退一格”,则退回到方格1,再执行方格1的文字要求:对自己说“加油!”.小冬此次“掷骰子,走方格”结束,最终停在了方格1.如果小松现在的位置也在大本营,那么他掷一次骰子最终停在方格6的概率是()A.16B.13C.12D.239.老师组织学生做分组摸球实验.给每组准备了完全相同的实验材料,一个不透明的袋子,袋子中装有除颜色外都相同的3个黄球和若干个白球.先把袋子中的球搅匀后,从中随意摸出一个球,记下球的颜色再放回,即为一次摸球.统计各组实验的结果如下:请你估计袋子中白球的个数是()A.1个B.2个C.3个D.4个10.一个袋子里装有一双红色、一双绿色手套,两双手套除颜色外,其他完全相同,随机地从袋中摸出两只,恰好是一双的概率()A.12B.13C.14D.1611.为了解历下区九年级男生的身高情况,随机抽取了100名九年级男生,他们的身高()x cm统计如下,根据以上结果,抽查一名九年级男生,估计他的身高不低于180cm的概率是()A.0.85 B.0.57 C.0.42 D.0.1512.一个不透明的盒子中装有10个黑球和若干个白球,它们除颜色不同外,其余均相同.从盒子中随机摸出一球记下其颜色,再把它放回盒子中摇匀,重复上述过程,共试验400次,其中有240次摸到白球,由此估计盒子中的白球大约有()A.6个B.10个C.15个D.30个二、填空题13.现有四张分别标有数字-5、-2、1、2的卡片,它们除数字不同外其余完全相同,把卡片背面朝上洗匀,从中任意抽取一张,将上面的数字记为a,放回后从卡片中再任意抽取一张,将上面的数字记为b,则点(a,b)在直线y=2x-1的概率为___________.14.在3×3的方格纸中,点A、B、C、D、E、F分别位于如图所示的小正方形的顶点上,从A、D、E、F中任取两点,以所取这两点和点B、C作四边形,则所作四边形是平行四边形的概率为____.15.在一个不透明的口袋中装有5个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球实验后发现,摸到红球的频率稳定在0.25附近,则估计口袋中大约共有___个球.16.有4张看上去无差别的卡片,上面分别写着2,3,4,6,小红随机抽取1张后,放回并混在一起,再随机抽取1张,则小红第二次取出的数字能够整除第一次取出的数字的概率为________.17.把一袋黑豆中放入红豆100粒,搅匀后取出100粒豆子,其中红豆5粒,则该袋中约有黑豆_______粒.18.往如图所示的地板中随意抛一颗石子(石子看作一个点),石子落在阴影区域的概率为___________19.投掷一枚质地均匀的骰子两次,第一次出现的点数记为a,第二次出现的点数记为b.那么方程20-+=有解的概率是__________。
北师大版数学九年级上册第三章《概率的进一步认识》试卷含答案
北师大版数学九上第三章《概率的进一步认识》试卷、答案一、选择题(共12小题;共36分)1. 甲、乙两人用如图所示的两个转盘(每个转盘被分成面积相等的个扇形)做游戏.游戏规则:转动两个转盘各一次,当转盘停止后,指针所在区域的数字之和为偶数时甲获胜;数字之和为奇数时乙获胜.若指针落在分界线上,则需要重新转动转盘.甲获胜的概率是A. B. C. D.2. 甲、乙两名同学在一次用频率去估计概率的实验中,统一了某一结果出现的频率绘出的统计图如图所示,则符合这一结果的实验可能是A. 从一个装有个白球和个红球的袋子中任取两球,取到两个白球的概率B. 任意写一个正整数,它能被整除的概率C. 抛一枚硬币,连续两次出现正面的概率D. 掷一枚正六面体的骰子,出现点的概率3. 小茜课间活动中,上午大课间活动时可以先从跳绳、乒乓球、健美操中随机选择一项运动,上午课外活动再从篮球、武术、太极拳中随机选择一项运动.则小茜上午、下午都选中球类运动的概率是A. B. C. D.4. 将分别标有“孔”“孟”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀.随机摸出一球,不放回;再随机摸出一球.两次摸出的球上的汉字能组成“孔孟”的概率是A. B. C. D.5. 在不透明的袋子中有黑棋子枚和白棋子若干(它们除颜色外都相同),现随机从中摸出枚记下颜色后放回,这样连续做了次,记录了如下的数据:次数黑棋数根据以上数据,估算袋中的白棋子数量为A. 枚B. 枚C. 枚D. 枚6. 现有两枚质地均匀的骰子,每枚骰子的六个面上都分别标上数字,,,,,.同时投掷这两枚骰子,以朝上一面所标的数字为掷得的结果,那么所得结果之和为的概率是A. B. C. D.7. 小明和小华玩“石头、剪子、布”的游戏,若随机出手一次,则小华获胜的概率是A. B. C. D.8. 小明在一次用频率估计概率的实验中,统计了某一结果出现的频率,并绘制了如图所示的统计图,则符合这一结果的实验可能是A. 掷一枚质地均匀的硬币,正面朝上的概率B. 从一个装有个白球和个红球的不透明袋子中任意摸出一球(小球除颜色外,完全相同),摸到红球的概率C. 从一副去掉大小王的扑克牌,任意抽取一张,抽到黑桃的概率D. 任意买一张电影票,座位号是的倍数的概率9. 学校新开设了航模、彩绘、泥塑三个社团,如果征征、舟舟两名同学每人随机选择参加其中一个社团,那么征征和舟舟选到同一社团的概率是A. B. C. D.10. 小明和小华参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时“参加社会调查”的概率为A. B. C. D.11. 王大伯为了估计他家鱼塘里有多少条鱼,从鱼塘里捞出条鱼,将它们做上标记,然后放回鱼塘.经过一段时间后,再从鱼塘中随机捕捞条鱼,其中有标记的鱼有条,请你估计鱼塘里鱼的数量大约有A. 条B. 条C. 条D. 条12. 一个布袋内只装有个黑球和个白球,这些球除颜色外其余都相同,随机摸出一个球后放回并搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是A. B. C. D.二、填空题(共6小题;共24分)13. 在一个暗箱里放有个除颜色外其余完全相同的球,这个球中红球只有个,每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球试验后发现,摸到红球的频率稳定在,那么可以推测出大约是.14. 淘淘和丽丽是非常要好的九年级学生,在月份进行的物理、化学、生物实验技能考试中,考试科目要求三选一,并且采取抽签方式取得,那么他们两人都抽到物理实验的概率是.15. 一个不透明的袋子中装有除颜色外均相同的个黑球、个白球和若干个红球.每次摇匀随机摸出一个球,记下颜色后再放回袋子中,通过大量重复摸球试验后,发现摸到红球的频率稳定于,由此可估计袋子中约有红球个.16. 在一个不透明的口袋中,装有,,,四个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是.17. 如图,随机地闭合开关,,,,中的三个,能够使灯泡,同时发光的概率是.18. 在一只不透明的口袋中放人红球个,黑球个,黄球个,这些球除色不同外其他完全相同.搅匀后随机从中摸出一个,恰好是黄球的概率为,则放人口袋中的黄球总数.三、解答题(共7小题;共60分)19.(8分)甲、乙两个人做游戏:在一个不透明的口袋中装有张相同的纸牌,它们分别标有数字,,,.从中随机摸出一张纸牌然后放回,再随机摸出一张纸牌,若两次摸出的纸牌上数字之和是的倍数,则甲胜;否则乙胜.这个游戏对双方公平吗?请列表格或画树状图说明理由.20.(10分)在一个不透明的口袋里装有仅颜色不同的黑、白两种颜色球只,某学习小组做摸球实验.将球搅匀后从中随机摸出一个球,记下颜色,再把它放回袋中,不断重复,下表是活动进行中记下的一组数据摸球的次数摸到白球的次数摸到白球的频率(1)请你估计,当很大时,摸到白球的频率将会接近(精确到).(2)假如你去摸一次,你摸到白球的概率是,摸到黑球的概率是.(3)试估算口袋中黑、白两种颜色的球有多少只.21. (8分)小华和小军做摸球游戏,袋中装有编号为,,的三个小球,袋中装有编号为,,的三个小球,两袋中的所有小球除编号外都相同,从两个袋子中分别随机摸出一个小球,若袋摸出的小球的编号与袋摸出小球的编号之差为偶数,则小华胜,否则小军胜.这个游戏对双方公平吗?请说明理由.22. (8分)小明和小亮用如图所示的两个转盘(每个转盘被分成三个面积相等的扇形)做游戏,转动两个转盘各一次,若两次数字之和为奇数,则小明胜;若两次数字之和为偶数,则小亮胜,这个游戏对双方公平吗?说说你的理由.23. (8分)在一个不透明的纸箱里装有红、黄、蓝三种颜色的小球,它们除颜色外完全相同,其中红球有个,黄球有个,蓝球有个.现有一张电影票,小明和小亮决定通过摸球游戏定输赢,赢的一方得电影票.游戏规则是:两人各摸次球,先由小明从纸箱里随机摸出个球,记录颜色后放回,将小球摇匀,再由小亮随机摸出个球.若两人摸到的球颜色相同,则小明赢,否则小亮赢.这个游戏规则对双方公平吗?请你利用树状图或列表法说明理由.24.(10分)“六一”期间,某公园游戏场举行“游园”活动.有一种游戏的规则是:在一个装有个红球和若干个白球(每个球除颜色外其他都相同)的袋中,随机摸一个球,摸到一个红球就得到一个喜羊羊玩具.已知共有人次参加这种游戏,公园游戏场发放的喜羊羊玩具为个.(1)求参加一次这种游戏活动得到喜羊羊玩具的频率.(2)请你估计袋中白球接近多少个.25. (8分)甲、乙两人进行摸牌游戏.现有三张形状大小完全相同的牌,正面分别标有数字,,.将三张牌背面朝上,洗匀后放在桌子上.(1)甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张.请用列表法或画树状图的方法,求两人抽取相同数字的概率;(2)若两人抽取的数字和为的倍数,则甲获胜;若抽取的数字和为的倍数,则乙获胜.这个游戏公平吗?请用概率的知识加以解释.答案第一部分1. C2. A3. A4. B5. C6. C7. C8. B9. C 【解析】本题考查列表法求概率.将征征、舟舟两名同学参加社团的可能情况列表如下:航模征征彩绘征征泥塑征征航模舟舟航模舟舟航模征征航模舟舟彩绘征征航模舟舟泥塑征征彩绘舟舟彩绘舟舟航模征征彩绘舟舟彩绘征征彩绘舟舟泥塑征征泥塑舟舟泥塑舟舟航模征征泥塑舟舟彩绘征征泥塑舟舟泥塑征征由上表可知征征和舟舟选择的可能情况有种,其中征征和舟舟选到同一社团的可能情况有种,所以概率为.10. A11. C12. D 【解析】列表法:符合题意的情况用“”表示,不符合题意用“”表示.黑白白黑白白所以(两次黑).第二部分13.14.15.16.17.【解析】随机地闭合开关,,,,中的三个共有种可能,能够使灯泡,同时发光有种可能(,,或,,).随机地闭合开关,,,,中的三个,能够使灯泡,同时发光的概率是.18.第三部分19. 不公平,根据题意列表如下:所有等可能的情况有种,其中两次摸出的纸牌上数字之和是的倍数的情况有:,,,,,共种,所以甲获胜,乙获胜,则该游戏不公平.20. (1)【解析】根据题意可得当很大时,摸到白球的频率将会接近.(2);【解析】因为当很大时,摸到白球的频率将会接近;所以摸到白球的概率是;摸到黑球的概率是.(3)因为摸到白球的概率是,摸到黑球的概率是,所以口袋中黑、白两种颜色的球,有白球是个,黑球是个.21. 列表如下共有种等可能结果,其中袋中数字减去袋中数字为偶数有种等可能结果.;小华胜则小军胜的概率为.,不公平.22. 这个游戏对双方不公平.理由如下:画树状图为:共有种等可能的结果数,其中两次数字之和为奇数的结果数为,两次数字之和为偶数的结果数为,小明胜的概率,小亮胜的概率,而,这个游戏对双方不公平.23. 不公平,画树状图如图所示.由上述树状图知,所有可能出现的结果共有种.小明赢,小亮赢.此游戏对双方不公平,小亮赢的可能性大.24. (1)因为所以参加一次这种游戏活动得到喜羊羊玩具的频率为.(2)因为试验次数很大,频率接近概率,所以估计从袋中任意摸出一个球恰好是红球的概率是.设袋中白球有个,则根据题意,得,解得.经检验是方程的解.所以估计袋中白球接近个.25. (1)所有可能出现的结果如图:【解析】树状图法:甲乙所有可能出现的结果从上面的表格(或树状图)可以看出,总共有种结果,每种结果出现的可能性相同,其中两人抽取相同.数字的结果有种,所以两人抽取相同数字(2)不公平.从上面的表格(或树状图)可以看出,两人抽取数字和为的倍数有种,两人抽取数字和为的倍数有种,所以甲获胜;乙获胜.因为,所以甲获胜的概率大,游戏不公平.。
北师大九年级上《第三章概率的进一步认识》单元测试题(含答案)
第三章概率的进一步认识第Ⅰ卷(选择题共30分)一、选择题(每小题3分,共30分)1.三张外观相同的卡片上分别标有数字1,2,3,从中随机一次性抽出两张,这两张卡片上的数字恰好都小于3的概率是( )A.13B.23C.16D.192.某学校在八年级开设了数学史、诗词赏析、陶艺三门课程,若小波和小睿两名同学每人随机选择其中一门课程,则小波和小睿选到同一门课程的概率是( )A.12B.13C.16D.193.布袋中有红、黄、蓝三种颜色的球各一个,从中摸出一个球之后不放回布袋,再摸第二个球,这时得到的两个球的颜色中有“一红一黄”的概率是( )A.16B.29C.13D.234.有3个整式x,x+1,2,先随机取一个整式作为分子,再从余下的整式中随机取一个作为分母,恰能组成分式的概率是( )A.13B.12C.23D.565.在物理课上,某实验的电路图如图1所示,其中S1,S2,S3表示电路的开关,L表示小灯泡,R为保护电阻.若闭合开关S1,S2,S3中的任意两个,则小灯泡L发光的概率为( )图1A.16B.13C.12D.236.如图2,两个转盘分别自由转动一次,当它们都停止转动时,两个转盘的指针都指向2的概率为( )图2A.12B.14C.18D.1167.在一个不透明的口袋里装了只有颜色不同的黄球、白球若干只.某小组做摸球试验:将球搅匀后从中随机摸出一个,记下颜色,再放回袋中,不断重复这一过程.下表是活动中的一组数据,则摸到黄球的概率约是( )A.0.4 B.0.5 C.0.6 D.0.78.某学习小组做“用频率估计概率”的试验时,统计了某一结果出现的频率,绘制了如下表格,则符合这一结果的试验最有可能的是( )A.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃B.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”C.抛一个质地均匀的正六面体骰子,向上的面点数是5D.抛一枚硬币,出现反面的概率9.为了估计不透明的袋子里装有多少个球,先从袋中摸出10个球都做上标记,然后放回袋中去,充分摇匀后再摸出10个球,发现其中有一个球有标记,那么你估计袋中大约有球( )A.10个 B.20个 C.100个 D.121个10.有A,B两粒质地均匀的正方体骰子(骰子每个面上的点数分别为1,2,3,4,5,6),小王掷骰子A,朝上的数字记作x;小张掷骰子B,朝上的数字记作y.在平面直角坐标系中有一矩形,四个点的坐标分别为(0,0),(6,0),(6,4)和(0,4),小王、小张各掷一次所确定的点P (x ,y )落在矩形内(不含矩形的边)的概率是( )A.23B.512C.12D.712请将选择题答案填入下表:第Ⅱ卷 (非选择题 共90分)二、填空题(每小题3分,共18分)11.一个不透明的袋子中装有2个红球,1个绿球,这些球除颜色不同外其余都相同,从袋子中随机摸出一个小球记下颜色后放回,再随机摸出一个小球,则一次摸到红球一次摸到绿球的概率为________.12.从-1,0,1,2这四个数中,任取两个不同的数作为点的坐标,则该点在第一象限的概率为________.13.小明和小亮做游戏,先是各自背着对方在纸上写一个自然数,然后同时呈现出来.他们约定:若两人所写的数都是奇数或都是偶数,则小明获胜;否则,小亮获胜.这个游戏对双方________.(填“公平”或“不公平”).14.点P 的坐标是(a ,b),从-2,-1,0,1,2这五个数中任取一个数作为a 的值,再从余下的四个数中任取一个数作为b 的值,则点P(a ,b)在平面直角坐标系中第二象限内的概率是________.15.在围棋盒中有x 颗白色棋子和y 颗黑色棋子,从盒中随机取出一颗棋子,取到白色棋子的概率是25.若再往盒中放进3颗黑色棋子,则取到白色棋子的概率变为14,原来围棋盒中有白色棋子______颗.16.如果任意选择一对有序整数(m ,n),其中|m|≤1,|n|≤3,每一对这样的有序整数被选择的可能性是相等的,那么关于x 的方程x 2+nx +m =0有两个相等实数根的概率是________.三、解答题(共72分)17.(6分)不透明的文具袋中装有规格相同的红、黑两种颜色的通用中性笔芯,其中红色的有3支,黑色的有2支.(1)从文具袋中随机抽取1支笔芯,求恰好抽到的是红色笔芯的概率;(2)从文具袋中随机抽取2支笔芯,求恰好抽到的都是黑色笔芯的概率.(请用画树状图法或列表法求解)18.(6分)研究问题:一个不透明的盒中装有若干个只有颜色不一样的红球和黄球.怎样估算不同颜色球的数量?操作方法:先从盒中摸出8个球,画上记号放回盒中,再进行摸球试验.摸球试验的要求:先搅拌均匀,每次摸出1个球,放回盒中再继续.活动结果:摸球试验活动一共做了50次,统计结果如下表:由上述摸球试验可推算:(1)盒中红球、黄球占总球数的百分比分别是多少?(2)盒中有红球多少个?19.(8分)甲、乙、丙三名同学站成一排进行毕业合影留念,请用列表或画树状图的方法列出所有可能的情形,并求出甲、乙两人相邻的概率是多少.20.(8分)九年级某班组织全班活动,班委会准备买一些奖品.班长王倩拿15元钱去商店全部用来购买圆珠笔和铅笔两种奖品,已知圆珠笔的价格为2元/支,铅笔的价格为1元/支,且每种笔至少买一支.(1)有多少种购买方案?请列举所有可能的结果;(2)从上述方案中任选一种方案购买,求买到的圆珠笔与铅笔数量相等的概率.21.(10分)小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率是________;(2)如果小明将“求助”留在第二题使用,请用画树状图或者列表的方法来分析小明顺利通关的概率;(3)从概率的角度分析,你建议小明在第几题使用“求助”?22.(10分)小明、小芳做一个“配色”的游戏.如图3是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形,并涂上图中所示的颜色.同时转动两个转盘,如果转盘A转出了红色,转盘B转出了蓝色,或者转盘A转出了蓝色,转盘B转出了红色,则红色和蓝色在一起配成紫色,这种情况下小芳获胜;同样,蓝色和黄色在一起配成绿色,这种情况下小明获胜;在其他情况下不分胜负.(1)利用列表或画树状图的方法表示此游戏所有可能出现的结果;(2)此游戏规则对小明、小芳公平吗?试说明理由.图323.(12分)一个暗箱中有大小相同的1个黑球和n个白球(记为白1、白2、…、白n),每次从中取出一个球,取到白球得1分,取到黑球得2分,甲从暗箱中有放回地依次取出2个球,而乙从暗箱中一次性取出2个球.(1)若n=2,分别求甲取得3分的概率和乙取得3分的概率;(请用“画树状图”或“列表”等方式给出分析过程)(2)若乙取得3分的概率小于120,则白球至少有多少个?(请直接写出结果)24.(12分)五一假期,某公司组织部分员工分别到A,B,C,D四地旅游,公司按定额购买了前往各地的车票.图4是未制作完的车票种类和数量的条形统计图,根据统计图回答下列问题:(1)若去D地的车票占全部车票的10%,求去D地车票的数量,并补全条形统计图;(2)若公司采用随机抽取的方式分发车票,每人抽取一张(所有车票的形状、大小、质地完全相同且充分洗匀),则员工小胡抽到去A地的车票的概率是多少?(3)若有一张车票,小王、小李都想要,最后决定采取抛掷一枚各面分别标有数字1,2,3,4的正四面体骰子的方法来确定,具体规则是:“每人各抛掷一次,若小王掷得着地一面的数字比小李掷得着地一面的数字小,车票给小王,否则给小李”.试用列表或画树状图的方法分析这个规则对双方是否公平.图4详解详析1.A [解析] 列表如下:3的情况有2种,∴P(两张卡片上的数字都小于3)=26=13.解题突破从m(m >2)张卡片中一次性抽出两张卡片,可以理解为先抽出一张,再从剩下的里面抽出一张,即属于“抽出不放回”试验问题,可见为两步试验问题,可用列表法求解.2.B [解析] 列表如下:共有9所以其概率为39=13.故选B . 3.C [解析] 画树状图如下:一共有6种情况,“一红一黄”的情况有2种,∴P(一红一黄)=26=13.故选C .4.C [解析] 画树状图如下:共有6种等可能的结果,其中恰能组成分式的结果数为4种, 所以恰能组成分式的概率为46=23.5.B [解析] 列表如下:共有613L 发光的概率是26=13.故选B . 6.D [解析] 列表如下:∵共有指针都指向2的概率为116.故选D .7.B [解析] 观察表格得:通过多次摸球试验后发现摸到黄球的频率稳定在0.5左右,则P(摸到黄球)=0.5.8.B [解析] A .一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃的概率为14,不符合题意;B .在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”的概率是13,符合题意;C .抛一个质地均匀的正六面体骰子,向上的面点数是5的概率为16,不符合题意;D .抛一枚硬币,出现反面的概率为12,不符合题意.故选B .9.C10.B [解析] 画树状图如下:∵共有36种等可能的结果,小王、小张各掷一次所确定的点P(x ,y)落在矩形内(不含矩形的边)的有15种情况,∴小王、小张各掷一次所确定的点P(x ,y)落在矩形内(不含矩形的边)的概率是1536=512.故选B .11.49[解析] 画树状图如下:∵共有9种等可能的结果,一次摸到红球一次摸到绿球的有4种情况,∴一次摸到红球一次摸到绿球的概率是49.12.16[解析] 画树状图如下:∵共有12种等可能的结果,点落在第一象限的可能是(1,2),(2,1)两种情形, ∴该点在第一象限的概率为212=16. 13.公平 [解析] 两人写的数共有奇偶、偶奇、偶偶、奇奇四种情况,因此同为奇数或同为偶数的概率为24=12,一奇一偶的概率也为24=12,所以这个游戏对双方公平.14.15[解析] 画树状图如下:共有20种等可能的结果,其中点P(a ,b)在平面直角坐标系中第二象限内的结果数为4,所以点P(a ,b)在平面直角坐标系中第二象限内的概率=420=15.15.216.17 [解析] 依题意知m =0,±1,n =0,±1,±2,±3,∴有序整数(m ,n)共有3×7=21(种).∵方程x 2+nx +m =0有两个相等的实数根,∴Δ=n 2-4m =0,有(0,0),(1,2),(1,-2)三种可能,∴关于x 的方程x 2+nx +m =0有两个相等实数根的概率是321=17.17.[解析] (1)由不透明的文具袋中装有规格相同的红、黑两种颜色的通用中性笔芯,其中红色的有3支,黑色的有2支,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好抽到的都是黑色笔芯的情况,再利用概率公式即可求得答案.解:(1)∵不透明的文具袋中装有规格相同的红、黑两种颜色的通用中性笔芯,其中红色的有3支,黑色的有2支,∴恰好抽到的是红色笔芯的概率为33+2=35.(2)画树状图如下:∵共有20种等可能的结果,恰好抽到的都是黑色笔芯的只有2种情况, ∴恰好抽到的都是黑色笔芯的概率为220=110.18.解:(1)由题意可知,50次摸球试验活动中,出现红球20次,黄球30次, 所以红球所占百分比为20÷50×100%=40%,黄球所占百分比为30÷50×100%=60%.答:盒中红球占总球数的40%,黄球占总球数的60%.(2)由题意可知,50次摸球试验活动中,出现有记号的球4次,所以总球数为8÷450=100,所以红球有40%×100=40(个).答:盒中有红球40个. 19.解:用树状图分析如下:∵一共有6种等可能的情况,甲、乙两人相邻的有4种情况, ∴甲、乙两人相邻的概率是46=23.20.解:(1)设买圆珠笔x 支,铅笔y 支, 则2x +y =15,所以y =15-2x. 当x =1时,y =13; 当x =2时,y =11; 当x =3时,y =9; 当x =4时,y =7; 当x =5时,y =5; 当x =6时,y =3; 当x =7时,y =1. 所以共有7种购买方案.(2)在这7种方案中,买到的圆珠笔与铅笔数量相等的只有1种,所以P(买到的圆珠笔与铅笔数量相等)=17.21.解:(1)∵第一道单选题有3个选项,∴如果小明第一题不使用“求助”,那么小明答对第一道题的概率是13.故答案为:13.(2)分别用A ,B ,C 表示第一道单选题的3个选项,a ,b ,c 表示第二道单选题剩下的3个选项.画树状图如下:∵共有9种等可能的结果,小明顺利通关的只有1种情况, ∴小明顺利通关的概率为19.(3)∵如果在第一题使用“求助”,小明顺利通关的概率为18,如果在第二题使用“求助”,小明顺利通关的概率为19,∴建议小明在第一题使用“求助”. 解题突破(1)直接利用概率公式求解;(2)此问属于两次试验概率问题,注意第二次试验时只有三种可能;(3)比较第一题使用“求助”小明顺利通关的概率与第二题使用“求助”小明顺利通关的概率的大小,把“求助”用在通关概率大的那一次上.22.解:(1)用列表法将所有可能出现的结果表示如下:(2)不公平.理由:上面等可能出现的12种结果中,有3种情况能配成紫色,故配成紫色的概率是312,即小芳获胜的概率是14;但只有2种情况能配成绿色,故配成绿色的概率是212,即小明获胜的概率是16.而14>16,故小芳获胜的可能性大,这个“配色”游戏规则对双方是不公平的.23.解:(1)得3分,即为取到黑球、白球各1个. 甲从暗箱中有放回地依次取出2个球,画树状图如下:∴甲取得3分的概率为49;乙从暗箱中一次性取出2个球,画树状图如下:∴乙取得3分的概率=46=23.(2)若乙取得3分的概率小于120,则2n +1<120,∴n >39,∴白球至少有40个. 24.解:(1)设去D 地的车票有x 张,则x =(x +20+40+30)×10%,解得x =10. 答:去D 地的车票有10张. 补全条形统计图如图所示.(2)小胡抽到去A 地的车票的概率为2020+40+30+10=15.答:员工小胡抽到去A 地的车票的概率是15.(3)列表如下:小的有6种:(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),∴小王掷得着地一面的数字比小李掷得的着地一面数字小的概率为616=38.则小王掷得着地一面的数字不小于小李掷得的着地一面数字的概率为1-38=58.∵58≠38,∴这个规则对双方不公平.。
九年级数学上册第三章概率的进一步认识单元清新版北师大版(含答案)
九年级数学上册新版北师大版:检测内容:第三章 概率的进一步认识得分________ 卷后分________ 评价________一、选择题(每小题3分,共30分)1.用频率估计概率,可以发现某种幼树在一定条件下移植成活的概率为0.9,则下列说法正确的是( D )A .种植10棵幼树,结果一定有9棵幼树成活B .种植100棵幼树,结果一定有90棵幼树成活和10棵幼树不成活C .种植10n 棵幼树,恰好有n 棵幼树不成活D .种植n 棵幼树,当n 越来越大时,种植成活幼树的频率会越来越稳定于0.92.一个不透明的袋子中有三个完全相同的小球,把它们分别标号为1,2,3,随机摸出一个小球,记下标号后放回,再随机摸出一个小球并记下标号,两次摸出的小球标号的和是偶数的概率是( D )A .13B .49C .12D .593.某班从甲、乙、丙、丁四位选手中随机选取两人参加校乒乓球比赛,恰好选中甲、乙两位选手的概率是( C )A .13B .14C .16D .184.现有4条线段,长度依次是2,4,6,7,从中任选三条,能组成三角形的概率是( B ) A .14 B .12 C .35 D .345.(邓州期末)如图是智慧小组做“用频率估计概率”的试验时,绘出的某一结果出现的频率分布折线图,则符合这一结果的试验可能是( D )A .抛掷一枚质地均匀的硬币,出现反面朝上B .投掷一个质地均匀正六面体的骰子,出现2点朝上C .一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是梅花D .从装有大小和质地都相同的1个红球和2个黑球的袋子中任取一球,取到的是红球6.如图,随机闭合开关K 1,K 2,K 3中的两个,则能让灯泡L 2发光的概率为( D ) A .14 B .12 C .23 D .13 第6题图 第8题图第13题图7.我们要遵守交通规则,文明出行,做到“红灯停,绿灯行”,小刚每天从家到学校需经过三个路口,且每个路口都安装了红绿灯,每个路口红灯和绿灯亮的时间相同,那么小刚从家出发去学校,他遇到两次红灯的概率是( B )A .18B .38C .58D .1 8.某展览大厅有2个入口和2个出口,其示意图如图所示,参观者可从任意一个入口进入,参观结束后可从任意一个出口离开.小明从入口1进入并从出口A 离开的概率是( C )A .12B .13C .14D .169.质地均匀的骰子六个面分别刻有1到6的点数,掷两次骰子,得到向上一面的两个点数,则下列事件中,发生的概率最大的是( C )A .点数都是偶数B .点数的和为奇数C .点数的和小于13D .点数的和小于210.小兰和小潭用分别掷A ,B 两枚质地均匀的正六面体骰子的方法来确定P(x ,y)的位置,她们规定:小兰掷得的点数为x ,小潭掷得的点数为y ,那么,她们各掷一次所确定的点落在已知直线y =-2x +6上的概率为( B )A .16B .118C .112D .19二、填空题(每小题3分,共15分)11.从-2,-1,1,2四个数中随机抽取两个数相乘,积大于-4小于2的概率是__12__.12.在一个不透明的口袋中装有4个红球和若干个白球,他们除颜色外其他完全相同,通过多次摸球实验后发现,摸到白球的频率稳定在20%附近,则估计口袋中的球大约有__5__个.13.如图所示,小明和小龙玩转陀螺游戏,他们分别同时转动一个陀螺,当两个陀螺都停下来时,与桌面相接触的边上的数字都是奇数的概率是__14__. 14.某养鱼专业户为了估计鱼塘中鱼的总条数,他先从鱼塘中捞出100条,将每条鱼作了记号后放回水中,当它们完全混合于鱼群后,再从鱼塘中捞出100条鱼,发现其中带记号的鱼有10条,估计该鱼塘里约有__1_000__条鱼.15.箱子中装有4个只有颜色不同的球,其中2个白球,2个红球,4个人依次从箱子中任意摸出一个球,不放回,则第二个人摸出红球且第三个人摸出白球的概率是__13__. 三、解答题(共75分)16.(8分)从一副扑克牌中取出红桃J ,Q ,K 和黑桃J ,Q ,K 这两种花色的六张扑克牌.(1)将这六张牌背面朝上,洗匀,随机抽取一张,求这张牌是红桃K 的概率;(2)将这三张红桃分为一组,三张黑桃分为一组,分别将这两组牌背面朝上洗匀,然后从这两组牌中各随机抽取一张,请利用列表或画树状图的方法,求其中一张是J 一张是Q 的概率.解:(1)将这六张牌背面朝上,洗匀,随机抽取一张,则这张牌是红桃K 的概率为16(2)画树状图如图:共有9种等可能的结果,其中一张是J 一张是Q 的结果有2种,∴其中一张是J 一张是Q 的概率为2917.(8分)在3张相同的小纸条上分别标上1,2,3这3个号码,做成3支签,放在一个不透明的盒子中.(1)搅匀后从中随机抽出1支签,抽到1号签的概率是__13 __; (2)搅匀后先从中随机抽出1支签(不放回),再从余下的2支签中随机抽出1支签,求抽到的2支签上签号的和为奇数的概率.解:(2)用列表法表示所有可能出现的结果情况如下:第1次和第2次 1 2 31 3 42 3 53 4 5共有6种可能出现的结果,其中“和为奇数”的有4种,∴P(和为奇数)=46 =2318.(10分)甲口袋中装有2个相同小球,它们分别写有数字1,2;乙口袋中装有3个相同小球,它们分别写有数字3,4,5;丙口袋中装有2个相同小球,它们分别写有数字6,7.从三个口袋各随机取出1个小球.用画树状图或列表的方法求:(1)取出的3个小球上恰好有一个偶数的概率;(2)取出的3个小球上全是奇数的概率.解:(1)画树状图如图,共有12种等可能的结果,其中取出的3个小球上恰好有一个偶数的结果数为5,所以取出的3个小球上恰好有一个偶数的概率为512(2)取出的3个小球上全是奇数的结果数为2,所以取出的3个小球上全是奇数的概率=212 =1619.(11分)为了更好地解决养老问题,某服务中心引入优质社会资源为甲,乙两个社区共30名老人提供居家养老服务,收集得到这30名老人的年龄(单位:岁)如下:甲社区67 68 73 75 76 78 80 82 83 84 85 85 90 92 95 乙社区66 69 72 74 75 78 80 81 85 85 88 89 91 96 98 (1)求甲社区老人年龄的中位数和众数;(2)现从两个社区年龄在70岁以下的4名老人中随机抽取2名了解居家养老服务情况,求这2名老人恰好来自同一个社区的概率.解:(1)众数是85岁,中位数是82岁(2)年龄小于70岁甲社区的有2人,乙社区的有2人,从4人中任取2人,所有可能出 第1人第2人 甲1 甲2 乙1 乙2甲1 甲2甲1 乙1甲1 乙2甲1甲2 甲1甲2 乙1甲2 乙2甲2乙1 甲1乙1 甲2乙1 乙2乙1乙2 甲1乙2 甲2乙2 乙1乙2共有12种可能出现的结果,其中“来自同一个社区”的有4种,∴P(来自同一个社区)=412 =1320.(12分)分别把带有指针的圆形转盘A ,B 分成4等份、3等份的扇形区域,并在每一个小区域内标上数字(如图所示).欢欢、乐乐两个人玩转盘游戏,游戏规则是:同时转动两个转盘,当转盘停止时,若指针所指两区域的数字之积为奇数,则欢欢胜;若指针所指两区域的数字之积为偶数,则乐乐胜;若有指针落在分割线上,则无效,需重新转动转盘.(1)试用列表或画树状图的方法,求欢欢获胜的概率;(2)请问这个游戏规则对欢欢、乐乐双方公平吗?试说明理由.解:(1)画树状图如图:由树状图可知共有12种等可能的情况,其中积为奇数的情况有6种,∴欢欢获胜的概率是612 =12(2)由(1)得乐乐胜的概率为1-12 =12,∴两人获胜的概率相同,∴游戏公平 21.(13分)某校调查了若干名家长对“初中生带手机上学”现象的看法,统计整理并制作了如下的条形统计图与扇形统计图.根据图中提供的信息,完成以下问题:(1)本次共调查了__200__名家长,扇形统计图中“很赞同”所对应的圆心角的度数是__27°__,并补全条形统计图;(2)该校共有3 600名家长,通过计算估计其中“不赞同”的家长有多少名;(3)从“不赞同”的五位家长中(3女2男)随机选取两位家长对全校家长进行“学生使用手机危害性”的专题讲座,请用画树状图或列表的方法,求出选中“1男1女”的概率.解:(1)本次调查的家长人数为45÷22.5%=200(人),扇形统计图中“很赞同”所对应的圆心角度数是360°×15200=27°,不赞同的人数为200-(15+50+45)=90(名),补全条形统计图略(2)估计其中“不赞同”的家长有3 600×90200=1 620(名) (3)画树状图如下:由树状图可知所有等可能的结果有20种,其中选中“1男1女”的结果有12种,∴P(选中“1男1女”)=1220 =3522.(13分)图①是一枚质地均匀的正四面体形状的骰子,每个面上分别标有数字1,2,3,4,图②是一个正六边形棋盘,现通过掷骰子的方式玩跳棋游戏,规则是:将这枚骰子掷出后,看骰子向上三个面(除底面外)的数字之和是几,就从图②中的A 点开始沿着顺时针方向连续跳动几个顶点,第二次从第一次的终点处开始,按第一次的方法跳动.(1)随机掷一次骰子,则棋子跳动到点C 处的概率是__14__; (2)随机掷两次骰子,用画树状图或列表的方法求,棋子最终跳动到点C 处的概率. 解:(2)列表如下:第一次的和两次的和 第二次的和 9 8 7 69 18 17 16 158 17 16 15 147 16 15 14 136 15 14 13 12图① 图②由表可知共有16种等可能的结果,两次的和为14可以到达点C ,有3种情形,∴棋子最终跳动到点C 处的概率为316。
北师大版九年级数学上册 第三章 概率的进一步认识(含答案)
种等可能的结果,而恰好选中两名男学生的情况有
1
恰好是一男一女的有12种情况,所以P(恰好是一男一女
D.13 16
D.2
3
3
图是一个能自由转动的正六边形转盘,这个转盘被三条分割线分成形状相同
三个数字,指针的位置固定不动.
记录指针指向的数(当指针指向分割线时,视其指向分割线左边的区域
都是奇数的有4种结果,
种等可能的结果,其中抽到的座位恰好和小明的座位相邻的结果数为
由于正方形内的阴影部分是由四个直角边长都是
(A,A),(A,B),(A,C),(B,A),(B,B),(B,C),(C,A),(C,B),(C,C).
9种等可能的结果,其中是同班的有3种.所以
小明和小军两人一起做的游戏总共有16种结果,小军获胜的结果有.
1
4我市某校开展了以“梦想中国”为主题的摄影大赛,要求参赛学生每人交一件作品
种等可能的结果,其中恰好抽到学生A和A的结果数为2,所以所求的概率为
10
的所有取值为(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),
分别在两端随机选两个绳头打结总共有9种情况其中左、右打结是相同字母(不考虑下标)的情况不可能连接成一根长绳。
北师大版九年级数学上册第三章概率的进一步认识测试题(答案)
第三章概率的进一步认识测试题(答案)考试总分: 100 分考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(共 12 小题,每小题 3 分,共 36 分)1.展览馆有,两个入口,、、三个出口,则从入口进,出口出的概率是()A. B. C. D.2.袋子里有个红球和若干个蓝球,小明从袋子里有放回地任意摸球,共摸次,其中摸到红球次数是次,则袋子里蓝球大约有()A. B. C. D.3.随机掷一枚均匀的硬币次,其中有次出现正面,次出现反面,则掷这枚均匀硬币出现正面的概率是()A. B. C. D.4.甲、乙两人做“锤子、剪刀、布”的游戏,游戏规则是:剪刀胜布,布胜锤子,锤子胜剪刀;若两人一样,则算打平.若游戏只进行一局,那么两人打平的概率是()A. B. C. D.5.“服务他人,提升自我”,某学校积极开展志愿者服务活动,来自初三的名同学(男女)成立了“交通秩序维护”小分队,若从该小分队中任选两名同学进行交通秩序维护,则恰好是一男一女的概率是()A. B. C. D.6.一箱灯泡的合格率是,小刚由箱中任意买一个,则他买到次品的概率是()A. B. C. D.7.在做“抛掷两枚硬币实验”时,有部分同学没有硬币,因而需要用别的实物来替代进行实验,在以下所选的替代物中,你认为较合适的是()A.两张扑克牌,一张是红桃,另一张是黑桃B.两个乒乓球,一个是黄色,另一个是白色C.两个相同的矿泉水瓶盖D.四张扑克牌,两张是红桃,另两张是黑桃8.一个口袋里有黑球个和若干个黄球,从口袋中随机摸出一球记下其颜色,再把它放回口袋中摇匀,重复上述过程,共试验次,其中有次摸到黄球,由此估计袋中的黄球有()A. B. C. D.9.关于对不等式组的整数解仅有,,那么适合这个不等式组的整数,,满足的概率为()A. B. C. D.10.年某市中考体育考试包括必考和选考两项.必考项目:男生米跑;女生米跑;选考项目(五项中任选两项):.掷实心球、.篮球运球、.足球运球、.立定跳远、.一分钟跳绳.那么小丽同学考“米跑、立定跳远、一分钟跳绳”的概率是()A. B. C. D.11.在□□的空格□中,分别填上“+”或“-”,在所得的代数式中,能构成完全平方式的概率是()A. B. C. D.12.某小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如图的折线统计图,则符合这一结果的实验最有可能的是()A.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃1 / 3C.暗箱中有个红球和个黄球,它们只有颜色上的区别,从中任取一球是黄球D.掷一个质地均匀的正六面体骰子,向上的面点数是二、填空题(共 4 小题,每小题 3 分,共 12 分)13.不透明的布袋里有个红色小汽车,个白色小汽车模型(小汽车除颜色不同外,其它都相同),从布袋中随机摸出个小汽车记下颜色后放回袋中摇匀,然后重新再摸出个小汽车,则摸出的两个小汽车都是红色的概率是________.14.如右图,在某十字路口,汽车可直行、可左转、可右转.若这三种可能性相同,则两辆汽车经过该路口都向右转的概率为________.每辆私家车乘客的数目私家车的数目根据以上结果,估计抽查一辆私家车且它载有超过名乘客的概率是________.16.如图,是某射手在相同条件下进行射击训练的结果统计图,该射手击中靶心的概率的估计值为________.三、解答题(共 5 小题,共 52 分)17.(10分) 小明将在春节期间去给爷爷、奶奶和外公、外婆拜年,小明从家里去爷爷家有、、、四条路线可走,从爷爷家去外公家有、、三条路线可走,如果小明随机选择一条从家里出发先到爷爷家给爷爷、奶奶拜年,然后再从爷爷家去外公家给外公、外婆拜年.画树状图分析小明所有可能选择的路线.若小明恰好选到经过路线的概率是多少?18.(10分)如图所示的转盘,分成三个相同的扇形,指针位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置,并相应得到一个数(指针指向两个扇形的交线时,视为无效,重新转动一次转盘),此过程称为一次操作.请用树状图或列表法,求事件“两次操作,第一次操作得到的数与第二次操作得到的数的绝对值相等”发生的概率.19.(10分) 某商场设立了一个可以自由转动的转盘,并规定:顾客购物元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是活动进行中的一组统计数据:请估计,当很大时,频率将会接近________.(精确到)假如你去转动该转盘一次,你获得铅笔的概率约是________.(精确到)在该转盘中,表示“铅笔”区域的扇形的圆心角约是多少(精确到)20.(10分) 小红和小明在操场做游戏,如图,他们先在地上画了半径分别为和的同心,圆蒙上眼睛在一定距离外向圈内投掷小石子,若掷中阴影,则小红胜,否则小明胜(未掷中圈内不算)你认为游戏公平吗?为什么?能否利用上面的游戏中用到的“用频率来估算概率”的原理,来估算图长方形中的不规则图形的面积?其中,(说明设计方案的实施步骤和如何估算阴影部分的面积)21.(12分) 在“首届中国西部(银川)房•车生活文化节”期间,某汽车经销商推出、、、四种型号的小轿车共辆进行展销.型号轿车销售的成交率为,其它型号轿车的销售情况绘制在图和图两幅尚不完整的统计图中.参加展销的型号轿车有多少辆?请你将图的统计图补充完整;通过计算说明,哪一种型号的轿车销售情况最好?若对已售出轿车进行抽奖,现将已售出、、、四种型号轿车的发票(一车一票)放到一起,从中随机抽取一张,求抽到型号轿车发票的概率.答案1.C2.B3.B4.C5.D6.D7.D8.A9.D10.D11.A12.D13.14.15.16.17.解:画树状图得:则所有可能选择的路线有:,,,,,,,,,,,;所以小明选择的路线有种.由知道从小明家到外公家共有条路线,经过的路线有条.∴小明恰好选到经过路线的概率是:.18.解:画树状图如下:所有可能出现的结果共有种,其中满足条件的结果有种.所以(所指的两数的绝对值相等).19.;扇形的圆心角约是度.20.解:圆环的面积为:;小圆的面积为:,所以;,所以游戏不公平;蒙上眼睛在一定距离外向矩形投掷小石子,落在矩形内(尽可能多)次,不规则图形内次,则不规则图形的面积为平方米.21.参加销展的型轿车有辆;如图,;四种型号轿车的成交率:;;;∴种型号的轿车销售情况最好.∵.∴抽到型号轿车发票的概率为.3 / 3。
新北师大版九年级数学上册第三章《概率的进一步认识》章末练习题含答案解析 (15)
一、选择题1.将一个篮球和一个足球随机放入三个不同的篮子中,则恰有一个篮子为空的概率为( )A.23B.12C.13D.162.在课外实践活动中,甲、乙、丙、丁四个小组用投掷一元硬币的方法估算正面朝上的概率,其实验次数分别为10次、50次、100次、200次,其中实验相对科学的是( )A.甲组B.乙组C.丙组D.丁组3.学校要举行运动会,小亮和小刚报名参加100米短跑项目的比赛,预赛分A,B,C三组进行,小亮和小刚恰好在同一个组的概率是( )A.12B.13C.16D.194.在一个不透明的袋子中只装有黑,白两种颜色的球,这些球的形状,质地等完全相同,其中白色球有2个,黑色球有n个,从袋子中随意摸出一个球,记下颜色后,放回袋子中并摇匀.同学们进行了大量重复试验,发现摸出白球的频率稳定在0.4附近,则n的值为( )A.2B.3C.4D.55.从长度分别为1,3,5,7的四条线段中任取三条为边,能构成三角形的概率为( )A.12B.13C.14D.156.将一枚质地均匀的硬币先后抛掷两次,则至少出现一次正面向上的概率为( )A.34B.23C.12D.147.一个不透明的盒子中装有4个除颜色外都相同的小球,其中3个是白球,1个是红球,从中随机同时摸出两个小球,那么摸出小球的颜色不同的概率为( )A.12B.13C.14D.238.在一个不透明的盒子中装有a个除颜色外完全相同的球,这a个球中只有3个红球,若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值约为( )A.12B.15C.18D.219.在一个不透明的口袋中,装有若干个红球和3个黄球,它们除颜色外没有任何区别,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球实验发现,摸到黄球的频率是0.2,则估计盒子中红球的个数大约是( )A.20个B.16个C.15个D.12个10.在一个暗箱里放有P个除颜色外完全相同的球,这P个球中红球只有3个.每次将球充分摇匀后,随机从中摸出一球,记下颜色后放回.通过大量的重复试验后发现,摸到红球的频率在20%,由此可推算出P约为( )A.15B.12C.9D.6二、填空题11.“双十一”期间,某商场进行促销活动,到商场购物消费满100元就可转动转盘(如图,转盘为五等分的圆盘)一次进行抽奖,满200元转两次,以此类推(奖金累加).转盘的指针落在A区域中一等奖.奖10元,落在C,E区域中二等奖,奖5元,落在其他区域则不中奖.如果晓丽有两次转动转盘的机会,则她至少获得一次一等奖的概率是.12.有3张看上去无差别的卡片,上面分别写着2,3,4.随机抽取1张后,放回并混在一起,再随机抽取1张,则两次取出的数字之和是奇数的概率为.13.小明和小花在玩纸牌游戏,有两组牌,每组各有两张,分别标有数字1,2,每人每次从每组中抽出一张,两张牌的数字之积为2的概率为.14.为了满足广大师生的饮食用餐要求,学校餐厅为师生准备了A,B,C,D四种特制套餐,丁老师和小明同学一起去吃饭,他们每人随机选取一份套餐(套餐量满足师生选择需求),则丁老师和小明选到不同种套餐的概率是.15.在a2▫4a▫4空格▫中,任意填上“+”或“−”,在所得到的代数式中,可以构成完全平方式的概率是.16.某小组做“用频率估计概率”的试验时,统计了某一事件发生的频率,绘制了如图所示的折线图.该事件最有可能是(填写一个你认为正确的序号).①掷一个质地均匀的正六面体骰子,向上一面的点数是2;②掷一枚硬币,正面朝上;③暗箱中有1个红球和2个黄球,这些球除了颜色外无其他差别,从中任取一球是红球.,大量重复做这种试验,事件A平均每100次发生的次数是.17.事件A发生的概率为120三、解答题18.一个不透明的箱子里装有3个红色小球和若干个白色小球,每个小球除颜色外其他完全相同,每次把箱子里的小球摇匀后随机摸出一个小球,记下颜色后再放回箱子里,通过大量重复试验后,发现摸到红色小球的频率稳定于0.75左右.(1) 请你估计箱子里白色小球的个数;(2) 现从该箱子里摸出1个小球,记下颜色后放回箱子里,摇匀后,再摸出1个小球,求两次摸出的小球颜色恰好不同的概率(用画树状图或列表的方法).19.“垃圾分类工作就是新时尚”,为了改善生态环境,有效利用垃圾剩余价值,2020年起,我市将生活垃圾分为四类:厨余垃圾、有害垃圾、可回收垃圾、其他垃圾.某学习研究小组在对我市垃圾分类实施情况的调查中,绘制了生活垃圾分类扇形统计图,如图所示.(1) 图中其他垃圾所在的扇形的圆心角度数是度;(2) 据统计,生活垃圾中可回收物每吨可创造经济总价值约为0.2万元.若我市某天生活垃圾清运总量为500吨,请估计该天可回收物所创造的经济总价值是多少万元?(3) 为了调查学生对垃圾分类知识的了解情况,某校开展了相关知识竞赛,要求每班派2名学生参赛.甲班经选拔后,决定从2名男生和2名女生中随机抽取2名学生参加比赛,求所抽取的学生中恰好一男一女的概率.20.一只不透明的箱子里共有3个球,其中2个白球,1个红球,它们除颜色外均相同.(1) 从箱子中随机摸出一个球是白球的概率是多少?(2) 从箱子中随机摸出一个球,记录下颜色后不将它放回箱子,搅均后再摸出一个球,求两次摸出的球都是白球的概率,并画出树状图.21.甲、乙两所医院分别有一男一女共4名医护人员支援湖北武汉抗击疫情.(1) 若从甲、乙两医院支援的医护人员中分别随机选1名,则所选的2名医护人员性别相同的概率是.(2) 若从支援的4名医护人员中随机选2名,用列表或画树状图的方法求出这2名医护人员来自同一所医院的概率.22.如图,甲、乙两个转盘分别被分成了3等份与4等份,每份内均标有数字,分别旋转这两个转盘,将转盘停止后指针所指区域内的两数相乘.(1) 请将所有可能出现的结果填入下表:(2) 积为9的概率为;积为偶数的概率为;(3) 从1∼12这12个整数中,随机选取1个整数,该数不是(1)中所填数字的概率为.23.一只不透明的袋子中装有2个白球和1个红球,这些球除颜色外都相同,搅匀后从中任意摸出1个球(不放回),再从余下的2个球中任意摸出1个球.(1) 用树状图或列表等方法列出所有可能出现的结果.(2) 求两次摸到的球的颜色不同的概率.24.某电脑公司现有A,B,C三种型号的甲品牌电脑和D,E两种型号的乙品牌电脑.某中学要从甲、乙两种品牌电脑中各选购一种型号的电脑.(1) 写出所有选购方案(利用树状图或列表方法表示);(2) 如果(1)中各种选购方案被选中的可能性相同,求A型号电脑被选中的概率.25.2021年成都将举办世界大学生运动会,这是在中国西部第一次举办的世界综合性运动会.目前,运动会相关准备工作正在有序进行,比赛项目已经确定.某校体育社团随机调查了部分同学在田径、跳水、篮球、游泳四种比赛项目中选择一种观看的意愿,并根据调查结果绘制成了如图两幅不完整的统计图.根据以上信息,解答下列问题:(1) 这次被调查的同学共有人;(2) 扇形统计图中“篮球”对应的扇形圆心角的度数为;(3) 现拟从甲、乙、丙、丁四人中任选两名同学担任大运会志愿者,请利用列表的方法,求恰好选中甲、乙两位同学的概率.答案一、选择题1. 【答案】A【解析】三个不同的篮子分别用A,B,C表示,根据题意画图如下:共有9种等可能的情况数,其中恰有一个篮子为空的有6种,则恰有一个篮子为空的概率为69=23.【知识点】树状图法求概率2. 【答案】D【知识点】用频率估算概率3. 【答案】B【解析】如图,总共有9种可能出现的结果,每种结果出现的可能性相同,其中,小亮和小刚在同一个组的结果有3种:(A,A),(B,B),(C,C),∴小亮和小刚恰好在同一个组的概率=39=13.故选:B.【知识点】树状图法求概率4. 【答案】B【解析】根据题意得:22+n=0.4,解得:n=3,则n的值为3.【知识点】用频率估算概率5. 【答案】C【解析】∵可能的结果有(1,3,5),(1,3,7),(1,5,7),(3,5,7),共4种,而能构成三角形的只有(3,5,7)这1种结果,∴P(能构成三角形)=14.【知识点】列表法求概率、三角形的三边关系6. 【答案】A【解析】由图可知,共有4种等可能情况,其中至少出现一次正现的有3种情况,∴P=34.【知识点】树状图法求概率7. 【答案】A【解析】列表如下,白白白红白(白,白)(白,白)(红,白)白(白,白)(白,白)(红,白)白(白,白)(白,白)(红,白)红(白,红)(白,红)(白,红)由表可知,共有12种等可能结果,其中摸出小球的颜色不同的有6种结果,∴从中随机同时摸出两个小球,那么摸出小球的颜色不同的概率为612=12.【知识点】列表法求概率8. 【答案】B【解析】由题意可得,3a×100%=20%,解得,a=15.【知识点】用频率估算概率9. 【答案】D【解析】设红球有x个,根据题意得,3:(3+x)=1:5,解得x=12,经检验:x=12是原分式方程的解,所以估计盒子中红球的个数大约有12个,故选:D.【知识点】用频率估算概率10. 【答案】A【解析】在每次试验中,摸到某一颜色的球的概率为=该种颜色球的数量口袋中球的总数,根据利用频率估计概率的知识,可知3P=20%,解得P=15,经检验,P=15是原分式方程的解,因此,P大约是15.【知识点】用频率估算概率二、填空题11. 【答案】925【解析】列表如下:由表格可知,共有25种等可能的结果,其中符合条件的有9种结果,所以她至少获得一次一等奖的概率是925.【知识点】列表法求概率12. 【答案】49【知识点】树状图法求概率13. 【答案】12【解析】画树形图得:由树状图可知共有2×2=4种可能,两张牌的和为3的有2种,∴概率24=12.【知识点】树状图法求概率14. 【答案】34【解析】根据题意画树状图如下:共有16种等情况数,其中丁老师和小明选到不同种套餐的12种,则老师和小明选到不同种套餐的概率是1216=34,故答案为:34.【知识点】树状图法求概率15. 【答案】12【知识点】列表法求概率、完全平方公式16. 【答案】③【知识点】用频率估算概率17. 【答案】5【解析】事件A发生的概率为120,大量重复做这种试验,则事件A平均每100次发生的次数为:100×120=5.故答案为:5.【知识点】用频率估算概率三、解答题18. 【答案】(1) ∵通过多次摸球试验后发现,摸到红球的频率稳定在0.75左右,∴估计摸到红球的概率为0.75,设白球有x个,根据题意,得:33+x=0.75.解得x=1.经检验x=1是分式方程的解,∴估计箱子里白色小球的个数为1;(2) 画树状图为:共有16种等可能的结果数,其中两次摸出的球恰好颜色不同的结果数为6,∴两次摸出的小球颜色恰好不同的概率为616=38.【知识点】树状图法求概率、用频率估算概率19. 【答案】(1) 64.8(2) 500×20%=100(吨),100×0.2=20(万元),答:该天可回收物所创造的经济总价值是20万元.(3) 由题意可列树状图:∴P(一男一女)=812=23.【解析】(1) 由题意可知,其他垃圾所占的百分比为:1−20%−7%−55%=18%,∴其他垃圾所在的扇形的圆心角度数是:360∘×18%=64.8∘.【知识点】树状图法求概率、用样本估算总体、扇形统计图20. 【答案】(1) 因为共有3个球,2个白球,所以随机摸出一个球是白球的概率为23.(2) 根据题意画出树状图图下:一共6种等可能的情况,两次摸出的球都是白球的情况有2种,所以,P(两次摸出的球都是白球)=26=13.【知识点】树状图法求概率、公式求概率21. 【答案】(1) 12(2) 将甲、乙两所医院的医护人员分别记为甲1、甲2、乙1、乙2(注:1表示男医护人员,2表示女医护人员),树状图如图所示:共有12种等可能的结果,满足要求的有4种.则P(2名医生来自同一所医院的概率)=412=13.【解析】(1) 根据题意画图如下:共有4种等可能的情况数,其中所选的2名医护人员性别相同的有2种,则所选的 2 名医护人员性别相同的概率是 24=12.【知识点】树状图法求概率22. 【答案】(1) 补全表格如下:(2) 112;23(3) 13【解析】(2) 由表知,共有 12 种等可能的结果,其中积为 9 的有 1 种,积为偶数的有 8 种,所以积为 9 的概率为 112,积为偶数的概率为 812=23.(3) 从 1−12 这 12 个整数中,随机选取 1 个整数,该数不是(1)中所填数字的有 5,7,10,11 这 4 个,∴ 此事件的概率为 412=13.【知识点】列表法求概率23. 【答案】(1) 如图:(2) 共有 6 种情况,两次摸到的球的颜色不同的情况有 4 种,概率为 46=23.【知识点】公式求概率、树状图法求概率24. 【答案】(1) 列表或树状图表示正确.项目A B CD AD BD CDE AE BE CE共有 6 种.(2) A 型号电脑被选中的概率 P =13.【知识点】列表法求概率25. 【答案】(1) 180(2) 126∘(3) 列表如下:甲乙丙丁甲—(乙,甲)(丙,甲)(丁,甲)乙(甲,乙)—(丙,乙)(丁,乙)丙(甲,丙)(乙,丙)—(丁,丙)丁(甲,丁)(乙,丁)(丙,丁)—∵共有12种等可能的情况,恰好选中甲、乙两位同学的有2种,∴P(选中甲、乙)=212=16.【解析】(1) 根据题意,得54÷30%=180(人),∴这次被调查的学生共有180人.(2) 根据题意,得360∘×(1−20%−15%−30%)=126∘.∴扇形统计图中“篮球”对应的扇形圆心角的度数为126∘.【知识点】列表法求概率、扇形统计图。
九年级数学上册第三章《概率的进一步认识》测试卷-北师大版(含答案)
九年级数学上册第三章《概率的进一步认识》测试卷-北师大版(含答案)(满分120分)一、选择题(每题3分,共30分)1.在一个不透明的盒子中装有12个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球是白球的概率是13,则黄球的个数为()A.18B.20C.24D.282.在一个口袋中有4个完全相同的小球,把它们分别标号为①,②,③,④.随机摸出一个小球,记录后放回,再随机摸出一个小球,则两次摸出的小球的标号相同的概率是()A.116B.316C.14D.5163.如图,是一个可以自由转动的转盘,它被分成三个面积相等的扇形,任意转动转盘两次,当转盘停止后,指针所指颜色相同的概率为()A. 13B.23C.19D.164.绿豆在相同条件下的发芽试验,结果如下表所示:每批粒数n则绿豆发芽的概率估计值是()A. 0.96B. O.95C. 0.94D. 0.905.从1,2,3 ,4中任取两个不同的数,其乘积大于4的概率是()A. 16B.13C.12D.236.如图,直线a//b,直线C与直线a、b都相交,从所标识的∠1、∠2、∠3、∠4、∠5这五个角中任意选取两个角,则所选取的两个角互为补角的概率是()A. 35B.25C.15D.237.某超市为了吸引顾客,设计了一种促销活动:在- -个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”、“30元”的字样规定:顾客在本超市一次性消费满200元,就可以在箱子里先后摸出两个小球(每一次摸出后不放回).某顾客刚好消费200元,则该顾客所获得购物券的金额不低于30元的概率为()A. 13B.12C.23D.348.从长度分别为1、3、5、7的四条线段中任选三条作边,能构成三角形的概率为()A. 12B.13C.14D.159.掷两枚普通正六面体骰子,所得点数之和为11的概率为()A.118B.136C.112D.11510.一个盒子里有完全相同的三个小球,球上分别标有数字-2,1 ,4.随机摸出一个小球(不放回),其数字为p,随机摸出另一个小球,其数字记为q,则满足关于x的方程x2 +p x+q=0有实数根的概率是()A. 14B.12C.13D.23二、填空题(每题4分,共28分)11.一个盒子内装有大小、形状相同的四个球,其中红球1个,绿球1个,白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是_____________.12.在一个不透明的袋子里装有黄色、白色乒乓球共40个,除颜色外其他完全相同.小明从这个袋子中随机模出一球,放回.通过多次摸球实验后发现,摸到黄色球的概率稳定在15%附近,则袋中黄色球可能有_____个.13.甲、乙两人玩抽扑克牌游戏,游戏规则是:从牌面数字分别为5、6、7的三张扑克牌中,随机抽取-张,放回后,再随机抽取--张若所抽的两张牌面数字的积为奇数,则甲获胜;若所抽的两张牌面数字的积为偶数,则乙获胜,这个游戏______ (选填“公平”或“不公平”).14.在x² 2xy□y²的空格□中,分别填上“+”或“-" ,在所得的代数式中,能构成完全平方式的概率是_______.15.从-2,-1,2这三个数中任取两个不同的数作为点的坐标,该点在第四象限的概率是___________.16.三名同学同一天生日,她们做了一个游戏:买来3张相同的贺卡,各自在其中一张内写上祝福的话,然后放在一起,每人随机拿一张,则她们拿到的贺卡都不是自己所写的概率是_____________.17.一口袋中装有四根长度分别为1c m,3c m,4c m和5c m的细木棒,小明手中有一根长度为3c m的细木棒,现随机从袋内取出两根细木棒与小明手中的细木棒放在一起,则这三根细木棒能构成等腰三角形的概率为___________.三解答题(一)(每题6分,共18分)18.甲、乙、丙、丁4名同学进行一次羽毛球单打比赛,要从中选2名同学打第一场比赛,求下列事件的概率.(1)已确定甲打第一场,再从其余3名同学随机选取1名,恰好选中乙同学;(2)随机选取2名同学,其中有乙同学.19. 一个不透明的布袋里装有2个白球、1个黑球和若干个红球,它们除颜色外其余都相同,从中任意摸出1个球,是白球的概率为1 2 .(1)布袋里红球有多少个?(2)先从布袋中摸出1个球后不放回,再摸出1个球,请用列表或画树状图等方法求出两次摸到的球都是白球的概率。
北师大版九年级数学上册第三单元概率的进一步认识 检测试题 含答案
单元测试(三) 概率的进一步认识(满分:150分,考试用时120分钟)一、选择题(本大题共15个小题,每小题3分,共45分)1.将一枚质地均匀的硬币抛掷两次,则两次都是正面向上的概率为( )A.12B.13C.23D.142.在一个口袋中有4个完全相同的小球,把它们分别标号为①,②,③,④.随机地摸出一个小球,记录后放回,再随机摸出一个小球,则两次摸出的小球的标号相同的概率是( )A.116B.316C.14D.5163.中考体育男生抽测项目规则是:从立定跳远、实心球、引体向上中随机抽一项,从50米、50×2米、100米中随机抽一项,恰好抽中实心球和50米的概率是( )A.13B.16C.23D.194.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是( )A.12B.14C.16D.1125.在一个不透明的盒子中装有a个除颜色外完全相同的球,这a个球中只有3个红球.若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子,通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值大约为( )A.12 B.15 C.18 D.216.用图中两个可自由转动的转盘做“配紫色”游戏:分别旋转两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色.那么可配成紫色的概率是( )A.14B.34C.13D.127.假定鸟卵孵化后,雏鸟为雌与雄的概率相同.如果三枚卵全部成功孵化,那么三只雏鸟中有两只雌鸟的概率是( )A.16B.38C.58D.238.一个布袋内只装有1个黑球和2个白球,这些球除颜色外其余都相同,随机摸出一个球后放回并搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是( )A.49B.13C.16D.199.学校组织校外实践活动,安排给九年级三辆车,小明与小红都可以从这三辆车中任选一辆搭乘,小明与小红同车的概率是( )A.19B.16C.13D.1210.有一箱子装有3张分别标示为4,5,6的号码牌,已知小武以每次取一张且取后不放回的方式,先后取出2张牌,组成一个两位数,取出第1张牌的号码为十位数,第2张牌的号码为个位数,若先后取出2张牌组成两位数的每一种结果发生的机会都相同,则组成的两位数为6的倍数的概率为( )A.16B.14C.13D.1211.小明和小亮做游戏,先是各自背着对方在纸上写一个不大于100的正整数,然后都拿给对方看.他们约定:若两人所写的数都是奇数或都是偶数,则小明获胜;若两个人所写的数一个是奇数,另一个是偶数,则小亮获胜.这个游戏( )A.对小明有利 B.对小亮有利C.是公平的D.无法确定对谁有利12.如图,随机闭合开关S1,S2,S3中的两个,则灯泡发光的概率是( )A.34B.23C.13D.1213.从1,2,3,4中任取两个不同的数,其乘积大于4的概率是( )A.16B.13C.12D.2314.如图,直线a∥b,直线c与直线a、b都相交,从所标识的∠1、∠2、∠3、∠4、∠5这五个角中任意选取两个角,则所选取的两个角互为补角的概率是( )A.35B.25C.15D.2315.某口袋中有20个球,其中白球x个,绿球2x个,其余为黑球.甲从袋中任意摸出一个球,若为绿球则甲获胜,甲摸出的球放回袋中,乙从袋中摸出一个球,若为黑球则乙获胜.则当x=________时,游戏对甲、乙双方公平( ) A.3 B.4 C.5 D.6二、填空题(本大题共5小题,每小题5分,共25分)16.学校要从小明、小红与小华三人中随机选取两人作为升旗手,则小明和小红同时入选的概率是________.17.小颖妈妈经营的玩具店某次进了一箱黑白两种颜色的塑料球共3 000个,为了估计两种颜色的球各有多少个,她将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后,她发现摸到黑球的频率在0.7附近波动,据此可以估计黑球的个数约是________.18.从长度分别为2,4,6,7的四条线段中随机取三条,能构成三角形的概率是________.19.“服务社会,提升自我”凉山州某学校积极开展志愿者服务活动,来自九年级的5名同学(三男两女)成立了“交通秩序维护”小分队.若从该小分队任选两名同学进行交通秩序维护,则恰是一男一女的概率是________.20.让图中两个转盘分别自由转动一次,当转盘停止转动时,两个指针分别落在某两个数所表示的区域,则这两个数的和是2的倍数或是3的倍数的概率等于________.三、解答题(本大题共7个小题,各题分值见题号后,共80分)21.(8分)一只不透明的袋子中,装有分别标有数字1,2,3的三个球,这些球除所标的数字外都相同,搅匀后从中摸出1个球,记录下数字后放回袋中并搅匀,再从中任意摸出1个球,记录下数字,请用列表方法,求出两次摸出的球上的数字之和为偶数的概率.22.(8分)如图的方格地面上,标有编号A、B、C的3个小方格地面是空地,另外6个小方格地面是草坪,除此以外小方格地面完全相同.(1)一只自由飞行的鸟,将随意地落在图中的方格地面上,则小鸟落在草坪上的概率是________;(2)现从3个小方格空地中任意选取2个种植草坪,则刚好选取A和B的2个小方格空地种植草坪的概率是多少?(用树形图或列表法求解)23.(10分)在四边形ABCD中,①AB∥CD;②AD∥BC;③AB=CD;④AD=BC,在这四个条件中任选两个作为已知条件,能判定四边形ABCD是平行四边形的概率是多少?24.(12分)“石头、剪子、布”是小朋友都熟悉的游戏,游戏时小聪、小明两人同时做“石头、剪子、布”三种手势中的一种,规定“石头”(记为A)胜“剪子”,“剪子”(记为B)胜“布”,“布”(记为C)胜“石头”,同种手势不分胜负,继续比赛.(1)请用树状图或表格列举出同一回合中所有可能的对阵情况;(2)假定小聪、小明两人每次都等可能地做这三种手势,那么同一回合中两人“不谋而合”(即同种手势)的概率是多少?25.(12分)一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有3、4、5、x,甲、乙两人每次同时从袋中各随机摸出1个小球,并计算摸出的这2个小球上数字之和,记录后都将小球放回袋中搅匀,进行重复试验,试验数据如表:摸球总10 20 30 60 90 120 180 240 330 450(1)如果试验继续进行下去,根据上表数据,出现“和为8”的频率将稳定在它的概率附近,估计出现“和为8”的概率是________;(2)如果摸出的这两个小球上数字之和为9的概率是13,那么x 的值可以取7吗?请用列表法或画树状图说明理由;如果x 的值不可以取7,请写出一个符合要求的x 值.26.(14分)某中学要在全校学生中举办“中国梦·我的梦”主题演讲比赛,要求每班选一名代表参赛.九年级(1)班经过投票初选,小亮和小丽票数并列班级第一,现在他们都想代表本班参赛.经班长与他们协商决定,用他们学过的掷骰子游戏来确定谁去参赛(胜者参赛).规则如下:两人同时随机各掷一枚完全相同且质地均匀的骰子一次,向上一面的点数都是奇数,则小亮胜;向上一面的点数都是偶数,则小丽胜;否则,视为平局.若为平局,继续上述游戏,直至分出胜负为止.如果小亮和小丽按上述规则各掷一次骰子,那么请你解答下列问题:(1)小亮掷得向上一面的点数为奇数的概率是多少?(2)该游戏是否公平?请用列表或树状图等方法说明理由.(骰子:六个面上分别刻有1、2、3、4、5、6个小圆点的小正方体)27.(16分)为决定谁获得仅有的一张电影票,甲和乙设计了如下游戏:在三张完全相同的卡片上,分别写上字母A,B,B,背面朝上,每次活动洗均匀.甲说:我随机抽取一张,若抽到字母B,电影票归我;乙说:我随机抽取一张后放回,再随机抽取一张,若两次抽取的字母相同电影票归我.(1)求甲获得电影票的概率;(2)求乙获得电影票的概率;(3)此游戏对谁有利?参考答案1.D 2.C 3.D 4.C 5.B 6.D 7.B 8.D 9.C10.A 11.C 12.B 13.C 14.A 15.B 16.13 17.2 100个 18.12 19.35 20.5821.1 2 3 1 2 3 4 2 3 4 5 3456∴两次摸出的球上的数字之和为偶数的概率为59. 22.(1)23(2)P(编号为A 、B 的2个小方格空地种植草坪)=26=13.23.画树状图如下:由树状图可知,所有等可能的结果共12种,满足条件的结果有8种.所以能判定四边形ABCD 是平行四边形的概率是812=23. 24.(1)略.(2)P(不谋而合)=13.,3,4,5,7 3,,7,8,10 4,7,,9,11 5,8,9,,12 7,10,11,12, 25.(1)0.33 (2)不可以取7.∵当x =7时,列表如下(也可以画树状图):∴两个小球上数字之和为9的概率是212=16≠13,当x =5时,两个小球上数字之和为9的概率是13.(答案不唯一,也可以是4). 26.(1)P =36=12.(2)游戏公平.理由如下:小亮 小丽1 2 3 4 5 6 1 (1,1) (1,2) (1,3) (1,4) (1,5) (1,6) 2(2,1)(2,2)(2,3)(2,4)(2,5)(2,6)3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)5 (5,1) (5,2) (5,3) (5,4) (5,5)(5,6) 6(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)由上表可知,共有36种等可能的结果,其中小亮、小丽获胜各有9种结果. ∴P(小亮胜)=936=14,P(小丽胜)=936=14.∴该游戏是公平的. 27.(1)P(甲获得电影票)=23.(2)可能出现的结果如下(列表 A B B A (A ,A) (A ,B) (A ,B) B (B ,A) (B ,B) (B ,B) B(B ,A)(B ,B)(B ,B)共有9种等可能结果,其中两次抽取字母相同的结果有5种.∴P(乙获得电影票)=59.(3) ∵23>59, ∴此游戏对甲更有利.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九(上)
1、 在抛一枚质地均匀的硬币的实验中,如果没有硬币,则下列实验不能作为替代物的是( )
A 、一枚均匀的骰子,
B 、瓶盖,
C 、两张相同的卡片,
D 、两张扑克牌
2、如右图,在这三张扑克牌中任意抽取一张,抽到“红桃7” 的概率是 .
3、密码锁的密码是一个四位数字的号码,每位上的数字都可以是0到9中的任一个,某人忘了密码的最后一位号码, 此人开锁时,随意拔动最后一位号码正好能把锁打开的概率是______.若此人忘了中间两位号码,随意拔动中间两位号码正好能把锁打开的概率是______.
4、某商场在“五一”期间推出购物摸奖活动,摸奖箱内有除颜色以外完全相同的红色、白色乒乓球各两个.顾客摸奖时,一次摸出两个球,如果两个球的颜色相同就得奖,颜色不同则不得奖.那么顾客摸奖一次,得奖的概率是 .
5、从一个装有2黄2黑的袋子里有放回地两次摸到的都是黑球的概率是 .
6、如图所示的两个圆盘中,指针落在每一个数上的机会均等,那么两个指针同时落在偶数上的概率是……( )
A .1925 ;
B .1025 ;
C .625 ;
D .525
7、为了估计湖里有多少条鱼,我们从湖里捕上100条做上标记,然后放回湖里,经过一段时间待带标记的鱼完全混合于鱼群中后,第二次捕得200条,发现其中带标记的鱼25条,通过这种调查方式,我们可以估计出这个湖里有______条鱼.
8、在一个密闭不透明的盒子里有若干个白球,在不允许将球倒出来的情况下,为了估计白球的个数,小刚向其中 放入8个黑球,摇匀后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复,共摸球400次,其中88次摸到黑球,估计盒中大约有白球( )
A 、28个
B 、30个
C 、36个
D 、42个
9、有一个抛两枚硬币的游戏,规则是:若出现两个正面,则甲赢;若出现一正一反,则乙赢;若出现两个反面, 则甲、乙都不赢。
(1)这个游戏是否公平?请说明理由;
(2)如果你认为这个游戏不公平,那么请你改变游戏规则,设计一个公平的游戏;如果你认为这个游戏公平,那
么请你改变游戏规则,设计一个不公平的游戏。
10、如图,用两个相同的转盘(每个圆都平均分成六个扇形)玩配紫色游戏(一个转盘转出“红”,另一个转盘转出“蓝”, 则为配成紫色).在所给转盘中的扇形里,分别填上“红”、“蓝”或“白”,使得到紫色的概率是
61.
11、【2012年陕西中考第22题】
小峰和小轩用两枚质地均匀的骰子做游戏,规则如下:每人随机掷两枚骰子一次(若掷出的两枚骰子摞在一起,则重掷),点数和大的获胜;点数和相同为平局.
依据上述规则,解答下列问题:
(1)随机掷两枚骰子一次,用列表法求点数和为2的概率;
(2)小峰先随机掷两枚骰子一次,点数和是7,求小轩随机掷两枚骰子一次,胜小峰的概率.
(骰子:六个面分别刻有1、2、3、4、5、6个小圆点的立方块.点数和:两枚骰子朝上的点数之和.)
12、【2013年陕西中考第22题】
甲、乙两人用手指玩游戏,规则如下:ⅰ)每次游戏时,两人同时随机地各伸出一根手指:ⅱ)两人伸出的手指中,大拇指只胜食指、食指只胜中指、中指只胜无名指、无名指只胜小拇指,小拇指只胜大拇指,否则不分胜负.依据上述规则,当甲、乙两人同时随机地各伸出一根手指时.
(1)求甲伸出小拇指取胜的概率;
(2)求乙取胜的概率.
13、【2014年陕西中考第22题】
小英与她的父亲,母亲计划外出旅游,初步选择了延安、西安、汉中、安康四个城市,由于时间仓促,他们只能去其中一个城市,到底去哪一个城市三人意见不统一,在这种情况下,小英父亲建议,用小英学过的摸球游戏来决定,规则如下:
①在一个不透明的袋子中装一个红球(延安)、一个白球(西安)、一个黄球(汉中)和一个黑球(安康),这四个球除颜色的不同外,其余完全相同;
②小英父亲先将袋中球摇匀,让小英从袋中随机摸出一球,父亲记录下其颜色,并将这个球放回袋中摇匀;然后让小英母亲从袋中随机摸出一球,父亲记录下它的颜色;
③若两人所摸出球的颜色相同,则去该球所表示的城市旅游。
否则,前面的记录作废,按规则②重新摸球,直到两人所摸出的球的颜色相同为止。
按照上面的规则,请你解答下列问题:
(1)已知小英的理想旅游城市是西安,小英和母亲随机各摸球一次,均摸出白球的概率是多少?
(2)已知小英母亲的理想旅游城市是汉中,小英和母亲随机各摸球一次,至少有一人摸出黄球的概率是多少?
九(上) 概率 综合复习题 答案
1、【答案】选B
2、【答案】 31
3、【答案】1001,101;
4、【答案】 3
1 5、【答案】41 6、【答案】 选C 7、【答案】 800 8、【答案】选A
9、【答案】解:(1)不公平。
所以出现两个正面的概率为14,出现一正一反的概率为2142。
因为二者概率不等,所以游戏不公平。
(2)游戏规则一:若出现两个相同面,则甲赢;若出现一正一反(一反一 正),则乙赢;
游戏规则二:若出现两个正面,则甲赢;若出现两个反面,则乙赢;若出现一正一反,则甲、乙都不赢。
……7分
10、【答案】一个转盘的六个扇形都填“红”,另一个转盘的一个扇形填“蓝”,余下的五个扇形不填或填其它色. (注:一个填两个“红”,另一个填三个“蓝”等也可
11、【答案】(1)
136 (2)512 12、【答案】 (1)251; (2)51. 13、【答案】 (1)161;(2)16
7.。