七年级下册数学易错题

合集下载

七年级下册数学易错题50道

七年级下册数学易错题50道

七年级下册数学易错题50道一、相交线与平行线1. 判断题:不相交的两条直线叫做平行线。

(错误)解析:必须是在同一平面内不相交的两条直线才叫做平行线,如果不在同一平面内,不相交的直线不一定平行。

2. 若∠1与∠2是同旁内角,∠1 = 50°,则∠2的度数是()A.50°B.130°C.50°或130°D.不能确定答案:D解析:两直线平行,同旁内角互补;两直线不平行,同旁内角的关系不确定,只知道∠1 = 50°,不知道两直线的位置关系,所以∠2的度数不能确定。

3. 如图,AB∥CD,直线EF分别交AB、CD于点E、F,EG平分∠BEF,若∠1 = 72°,求∠2的度数。

解:因为AB∥CD,∠1 = 72°,所以∠BEF = 180°∠1 = 180°-72° = 108°。

因为EG平分∠BEF,所以∠BEG=公式∠BEF=公式。

又因为AB∥CD,所以∠2 = ∠BEG = 54°。

二、实数4. 公式的平方根是()A.2B.±2C.4D.±4答案:B解析:先计算公式,然后求4的平方根,因为公式,所以4的平方根是±2。

5. 下列说法正确的是()A.无限小数都是无理数B.带根号的数都是无理数C.无理数是无限不循环小数D.实数包括正实数和负实数答案:C解析:无限循环小数是有理数,A错误;公式是有理数,B错误;无理数是无限不循环小数,C正确;实数包括正实数、0和负实数,D错误。

6. 计算:公式解:公式,公式,公式。

则原式公式。

三、平面直角坐标系7. 点P(m + 3,m + 1)在x轴上,则点P的坐标为()A.(0,-2)B.(2,0)C.(4,0)D.(0,-4)答案:B解析:因为点P在x轴上,所以P点的纵坐标为0,即m + 1 = 0,解得m=-1。

七年级下数学-第5章--分式-经典易错题带答案-可直接打印2013浙教版版新教材

七年级下数学-第5章--分式-经典易错题带答案-可直接打印2013浙教版版新教材

七年级下数学-第5章--分式-经典易错题带答案-可直接打印2013浙教版版新教材第5章 分式1.若分式(x +1)(x -2)(x +1)(x +2)的值为0,则x 的值是( C )A .-1B .-1或2C .2D .-2【解析】 依题意(x +1)(x -2)=0,而分母(x +1)(x +2)≠0.由(x +1)(x -2)=0得x +1=0或x -2=0.∴x =-1或x =2.当x =-1时分母为0,当x =2时分母不为0.故x =2.选C.2.如果分式x 2-13x +3的值为0,则x =__1__. 【解析】 依题意得x 2-1=0且3x +3≠0,所以x =1.3.若|x |-3(x -3)(x +1)的值为零,则x 的值是__-3__. 4.[2011·内江]如果分式3x 2-27x -3的值为0,则x 的值应为__-3__. 【解析】 依题意分子3x 2-27=0且分母x -3≠0,所以x =-3.5.已知x +1x =3,求x 2x 4+x 2+1的值. 解:将x +1x=3两边同时乘以x ,得x 2+1=3x , ∴x 2x 4+x 2+1=x 2(x 2+1)2-x 2=x 29x 2-x 2=18. 6.下列化简结果中,正确的是( D )A.x 2-y 2x 2+z 2=-y 2z 2【解析】根据分式的基本性质,分子分母都除以xy ,得5y +1-5x 1y -1-1x=-3×5+1-3-1=72. 9.若1x =1y ,则分式2x +3xy -2y x -2xy -y的值为__-32__. 【解析】由已知1x =1y ,得x =y ,把x =y 代入得2x +3x 2-2x x -2x 2-x=-32. 10.计算:(1)(81-a 4)÷(a 2+9)÷(a -3);(2)(16a 4-b 4)÷(4a 2+b 2)÷(2a -b ).解:(1)原式=(9+a 2)(9-a 2)÷(a 2+9)÷(a -3)=(9-a 2)÷(a -3)=-a -3;(2)原式=(4a 2-b 2)÷(2a -b )=2a +b .11.阅读下列解题过程,然后解题:题目:已知x a -b =y b -c =z c -a(a 、b 、c 互不相等),求x +y +z 的值. 解:设x a -b =y b -c =z c -a =k , 则x =k (a -b ),y =k (b -c ),z =k (c -a ),∴x +y +z =k (a -b +b -c +c -a )=0,∴x +y +z =0.依照上述方法解答下列问题:已知y +z x =z +x y =x +y z ,其中x +y +z ≠0,求x +y -z x +y +z的值. 解:设y +z x =z +x y =x +y z =k ,则⎩⎨⎧y +z =kx , ①x +z =ky , ②x +y =kz , ③①+②+③得:2x +2y +2z =k (x +y +z ),∵x +y +z ≠0,∴k =2,∴原式=2z -z 2z +z =z3z =13.12.先阅读(1)小题的解题过程,再解答第(2)小题.(1)已知a 2-3a +1=0,求a 2+1a 2的值.解:由a 2-3a +1=0,知a ≠0.所以等式两边同除以a ,得a -3+1a =0,即a +1a =3.所以a 2+1a 2=⎝ ⎛⎭⎪⎫a +1a 2-2=7.(2)已知y 2+3y -1=0,求y 4+1y 4的值.解:由y 2+3y -1=0,知y ≠0.所以等式两边同除以y ,得y +3-1y =0,即y -1y =-3.所以y 4+1y 4=(y 2)2+1(y 2)2=⎝ ⎛⎭⎪⎫y 2+1y 22-2=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫y -1y 2+22-2=[(-3)2+2]2-2=121-2=119.13.计算:x 2-4y 2x 2+2xy +y 2÷x +2y2x 2+2xy .解:原式=(x +2y )(x -2y )(x +y )2·2x (x +y )x +2y=2x (x -2y )x +y =2x 2-4xyx +y .14.先化简,再求值:81-a 2a 2+6a +9÷9-a 2a +6·1a +9,其中a =3.解:原式=(9-a )(9+a )(a +3)2·2(a +3)9-a ·1a +9=2a +3.当a =3时,原式=13.15.化简:(1)[2011·衢州]a -3b a -b +a +ba -b ;(2)[2011·佛山]x 2+4x -2+4x2-x ;(3)x 2x -3-6x x -3+9x -3.解:(1)原式=a -3b +a +b a -b =2a -2ba -b =2(a -b )a -b =2;(2)原式=x 2+4x -2-4x x -2=(x -2)2x -2=x -2;(3)原式=x 2-6x +9x -3=(x -3)2x -3=x -3.16.先化简,再求值:⎝ ⎛⎭⎪⎫x 2x -3-9x -3·1x 2+3x ,其中x =13.解:原式=x 2-9x -3·1x (x +3)=(x -3)(x +3)x -3·1x (x +3)=1x .当x =13时,原式=1x =113=3. 17.已知P =a 2+b 2a 2-b 2,Q =2ab a 2-b 2,用“+”或“-”连结P ,Q 共有三种不同的形式:P +Q ,P -Q ,Q -P ,请选择其中一种进行化简求值,其中a =3,b =2.解:如选P +Q 进行计算:P +Q =a 2+b 2a 2-b 2+2aba 2-b 2=a 2+b 2+2aba 2-b 2=(a +b )2(a +b )(a -b )=a +ba -b .当a =3,b =2时,P +Q =3+23-2=5.18.(1)[2012·泰安]化简:⎝ ⎛⎭⎪⎫2m m +2-m m -2÷mm 2-4=__m -6__.(2)[2012·枣庄]化简⎝ ⎛⎭⎪⎫1-1m +1(m +1)的结果是__m __.(3)[2012·山西]化简x 2-1x 2-2x +1·x -1x 2+x +2x 的结果是__3x __.(4)[2012·聊城]计算⎝ ⎛⎭⎪⎫1+4a 2-4÷a a -2=__aa +2__.19.[2012·黄冈]化简⎝ ⎛⎭⎪⎫x 2-1x 2-2x +1+1-x x +1÷xx -1的结果是__4x +1__.【解析】原式=⎝ ⎛⎭⎪⎫x +1x -1-x -1x +1×x-1x=(x +1)2-(x -1)2(x +1)(x -1)×x -1x =4x (x +1)(x -1)×x -1x =4x +1. 20.化简⎝ ⎛⎭⎪⎫1x -3-x +1x 2-1·(x -3)的结果是 ( B ) A .2 B.2x -1 C.2x -3 D.x -4x -121.[2012·常德]化简:⎝ ⎛⎭⎪⎫x +x x 2-1÷⎝ ⎛⎭⎪⎫2+1x -1-1x +1.解:原式=x 3-x +x()x -1()x +1÷2x 2-2+x +1-x +1()x +1()x -1=x3()x +1()x -1·()x +1()x -12x 2=x 2.22.解方程:(1)[2012·重庆]2x -1=1x -2;(2)[2012·苏州]3x +2+1x =4x 2+2x ;(3)[2012·梅州]4x 2-1+x +21-x =-1.解:(1)2(x -2)=x -1,2x -4=x -1,x =3,检验:当x =3时,(x -1)(x -2)=2≠0,所以原方程的解为x =3.(2)去分母,得3x +x +2=4.解得x =12.经检验,x =12是原方程的解.(3)方程两边都乘以(x +1)(x -1),得4-(x +1)(x +2)=-(x 2-1),整理,得3x =1,解得x =13. 经检验,x =13是原方程的解. 故原方程的解是x =13. 23.[2012·巴中]若关于x 的方程2x -2+x +m 2-x=2有增根,则m 的值是__0__. 【解析】方程两边都乘以(x -2),得2-x -m =2(x -2),∵分式方程有增根,∴x -2=0,解得x =2,∴2-2-m =2×(2-2), 解得m =0.24.[2012·泉州]计算:m m -1-1m -1=__1__. 25.[2012·成都]化简:⎝ ⎛⎭⎪⎫1-b a +b ÷a a 2-b 2. 解:⎝ ⎛⎭⎪⎫1-b a +b ÷a a 2-b 2=a +b -b a +b·a 2-b 2a =a a +b·(a +b )(a -b )a =a -b .26. 化简分式x 2-1x 2+2x +1-x +1x -1.并从-2,-1,0,1,2中选一个能使分式有意义的数代入求值.解:原式=(x -1)(x +1)(x +1)2-x +1x -1=x -1x +1-x +1x -1=(x -1)2-(x +1)2(x -1)(x +1)=-4x x 2-1.把x=0代入,原式=0.或把x=-2代入,原式=-4×(-2)(-2)2-1=83.或把x=2代入,原式=-4×222-1=-83.类型之四解分式方程27.[2012·宜宾]分式方程12x2-9-2x-3=1x+3的解为(C)A.3 B.-3C.无解D.3或-3【解析】方程的两边同乘(x+3)(x-3),得12-2(x+3)=x-3,解得:x=3.检验:把x=3代入(x+3)(x-3)=0,即x=3不是原分式方程的解.28.某商店第一次用600元购进2B铅笔若干支,第二次又用600元购进该款铅笔,但这次每支的进价是第一次的54倍,购进数量比第一次少了30支.(1)求第一次每支铅笔的进价是多少元?(2)若要求这两次购进的铅笔按同一价格全部销售完毕后获利为420元,问每支铅笔的售价是多少元?解:(1)设第一次每支铅笔的进价为x元,由题意得方程600 x-60054x=30,解得x=4.经检验,x=4是原方程的根.答:第一次每支铅笔的进价是4元.(2)设每支售价为y元,第一次购买了600÷4=150(支),则第二次购买了120枝,由题意得(150+120)y-2×600=420,解得y=6.答:每支铅笔的售价是6元.29.[2012·桂林]李明到离家2.1千米的学校参加班级联欢会,到学校时发现演出道具还放在家中,此时距联欢会开始还有42分钟,于是他立即步行(匀速)回家,在家拿道具用了1分钟,然后骑自行车(匀速)返回学校,已知李明骑自行车的速度是步行速度的3倍,李明骑自行车到学校比他从学校步行到家少用了20分钟.(1)李明步行的速度是多少米/分?(2)李明能否在联欢会开始前赶到学校?解:(1)设李明步行的速度是x米/分,由题意得2100 x-21003x=20,解得x=70.答:李明步行的速度是70米/分.(2)因为210070+21003×70+1=41<42,所以李明能在联欢会开始前赶到学校.30.[2012·泰安]一项工程,甲,乙两公司合做,12天可以完成,共需付施工费102000元;如果甲,乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元.(1)甲,乙两公司单独完成此项工程,各需多少天?(2)若让一个公司单独完成这项工程,哪个公司的施工费较少?解:(1)设甲公司单独完成此项工程需x天,则乙公司单独完成此项工程需1.5x天.根据题意,得1x+11.5x=112,解得x=20,经检验知x=20是方程的解且符合题意.1.5x=30.答:甲,乙两公司单独完成此项工程各需20天,30天.(2)设甲公司每天的施工费为y元,则乙公司每天的施工费为(y-1500)元,根据题意得12(y+y-1500)=102000,解得y=5000,甲公司单独完成此项工程所需的施工费:20×5000=100000(元);乙公司单独完成此项工程所需的施工费:30×(5000-1500)=105000(元),故甲公司的施工费较少.。

《易错题》初中七年级数学下册第六单元《实数》习题(培优练)

《易错题》初中七年级数学下册第六单元《实数》习题(培优练)

一、选择题1.观察下列运算:81=8,82=64,83=512,84=4 096,85=32 768,86=262 144,…,则81+82+83+84+…+82 017的和的个位数字是( )A .2B .4C .6D .8D 解析:D【分析】根据规律可得底数为8的幂的个位数字依次为8,4,2,6,以4个为周期,个位数字相加为0. 2017除以4余数是1,故得到和的个位数字是8.【详解】解:2017÷4=504…1,循环了504次,还有1个个位数字为8,所以81+82+83+84+…+82017的和的个位数字是504×0+8=8.故选:D .【点睛】本题主要考查了数字的变化类,尾数的特征,得到底数为8的幂的个位数字的循环规律是解决本题的突破点.2 )A .3B .﹣3C .±3D .6A解析:A【分析】9,再利用算术平方根的定义求出答案.【详解】 ∵9,∴3,故选:A .【点睛】. 3.下列说法中,错误的有( )①符号相反的数与为相反数;②当0a ≠时,0a >;③如果a b >,那么22a b >;④数轴上表示两个有理数的点,较大的数表示的点离原点较远;⑤数轴上的点不都表示有理数.A .0个B .1个C .2个D .3个D解析:D【分析】根据相反数、绝对值、数轴表示数以及有理数的乘法运算等知识综合进行判断即可.【详解】解:符号相反,但绝对值不等的两个数就不是相反数,例如5和-3,因此①不正确; a≠0,即a >0或a <0,也就是a 是正数或负数,因此|a|>0,所以②正确;例如-1>-3,而(-1)2<(-3)2,因此③不正确;例如-5表示的点到原点的距离比1表示的点到原点的距离远,但-5<1,因此④不正确; 数轴上的点与实数一一对应,而实数包括有理数和无理数,因此⑤正确;综上所述,错误的结论有:①③④,故选:D .【点睛】本题考查相反数、绝对值、数轴表示数,对每个选项进行判断是得出正确答案的前提.4.若3a =,则a 在( ) A .3-和2-之间 B .2-和1-之间 C .1-和0之间 D .0和1之间C 解析:C【分析】案.【详解】解:∵4<5<9,∴23.∴-1<0.故选:C .【点睛】5.0.31,3π,27-12- 1.212212221…(每两个1之间依次多一个2)中,无理数的个数为( ) A .1B .2C .3D .4C 解析:C【分析】无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,据此逐一判断即可得.【详解】解∵3=2=,∴在所列的83π,1.212 212 221…(每两个1之间依次多一个2)这3个,【点睛】本题主要考查的是无理数的概念,熟练掌握无理数的三种类型是解题的关键.6 )A .8B .8-C .D .± D 解析:D【分析】8=,再根据平方根的定义,即可解答.【详解】8=,8的平方根是±故选:D .【点睛】8=.7.在1.414,213,5π,2中,无理数的个数是( ) A .1B .2C .3D .4C解析:C【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:1.414是有限小数,属于有理数;213是分数,属于有理数; 5π是无理数;2是无理数,∴无理数的个数是3个,故选:C .【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…等有这样规律的数.8.下列各数中是无理数的是( )A .227B .1.2012001C .2πD 解析:C无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:A、227分数,是有理数,选项不符合题意;B、1.2012001是有理数,选项不符合题意;C、2π是无理数,选项符合题意;D、81=9,9是整数是有理数,,选项不符合题意.故选:C.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.9.在 -1.414,2,16,π,2+3,3.212212221…,227,3.14这些数中,无理数的个数为()A.2 B.3 C.4 D.5C解析:C【分析】先计算算术平方根,再根据无理数的定义即可得.【详解】164=,223.1428577=小数点后的142857是无限循环的,则在这些数中,无理数有2,,23,3.212212221π+⋯,共4个,故选:C.【点睛】本题考查了算术平方根、无理数,熟记无理数的定义是解题关键.10.如图,四个有理数m,n,p,q在数轴上对应的点分别为M,N,P,Q,若n+p=0,则m,n,p,q四个有理数中,绝对值最大的一个是()A.p B.q C.m D.n B解析:B【分析】根据n+p=0可以得到n和p互为相反数,原点在线段PN的中点处,从而可以得到绝对值最大的数.【详解】解:∵n+p=0,∴n 和p 互为相反数,∴原点在线段PN 的中点处,∴绝对值最大的一个是Q 点对应的q .故选B .【点睛】本题考查了实数与数轴及绝对值.解题的关键是明确数轴的特点.二、填空题11.计算:()214322--⨯-(【分析】利用实数的混合运算法则计算得出答案【详解】解:原式=4+9=4+9=4+93=4+27=31【点睛】本题主要考查了实数的运算正确化简各数是解题的关键解析:【分析】利用实数的混合运算法则计算得出答案.【详解】解:原式=4+9⨯12-(2)2⎡⎤⨯-⎢⎥⎣⎦=4+9⨯[]2+1=4+9⨯3=4+27=31.【点睛】本题主要考查了实数的运算,正确化简各数是解题的关键.12.求出x 的值:()23227x +=x =1或x =﹣5【分析】依据平方根的性质可得到x+2的值然后解关于x 的一元一次方程即可【详解】解:∵3(x+2)2=27∴(x+2)2=9∴x+2=±3解得:x =1或x =﹣5【点睛】本题主要考查的是 解析:x =1或x =﹣5【分析】依据平方根的性质可得到x +2的值,然后解关于x 的一元一次方程即可.【详解】解:∵3(x +2)2=27,∴(x +2)2=9,∴x +2=±3,解得:x =1或x =﹣5.【点睛】本题主要考查的是平方根的性质,熟练掌握平方根的性质是解题的关键.13.计算:(12(2)22(2)8x -=(1)1;(2)【分析】(1)实数的混合运算利用算术平方根和立方根的概念逐个进行化简计算;(2)直接用平方根的概念求解【详解】解:(1)===1(2)∴【点睛】本题考查实数的混合运算及利用平方根解方 解析:(1)1;(2)124,0x x ==【分析】(1)实数的混合运算,利用算术平方根和立方根的概念逐个进行化简计算;(2)直接用平方根的概念求解.【详解】解:(12=4(2)23----=4+223--=1(2)22(2)8x -=2(2)4x -=22x -=±22x =±∴124,0x x ==.【点睛】本题考查实数的混合运算及利用平方根解方程,掌握相关概念和性质正确计算是解题关键.14.计算:(1(2)0(0)|2|π--(3)解方程:4x 2﹣9=0.(1)-8;(2)1﹣;(3)x =±【分析】(1)利用算数平方根立方根及二次根式性质计算即可;(2)利用零指数幂立方根及绝对值的代数意义进行化简即可;(3)方程变形后利用开方运算即可求解【详解】解:解析:(1)-8;(2)13)x =±32. 【分析】(1)利用算数平方根、立方根及二次根式性质计算即可;(2)利用零指数幂、立方根及绝对值的代数意义进行化简即可;(3)方程变形后,利用开方运算即可求解.【详解】解:(1)原式=()935358÷--=--=-;(2)原式=1221-+-=(3)方程变形得:294x =,开方得:32x =±. 【点睛】本题考察实数的运算,熟练掌握运算法则是解题的关键.15.(22-平方根然后进行加减运算即可【详解】解:===【点睛】此题考查了实数的运算熟练掌握算术平方根和立方根的性质是解本题的关键解析:8-【分析】先化简绝对值、立方根、算术平方根,然后进行加减运算即可.【详解】(22=2243--⨯+()=412-=8-【点睛】此题考查了实数的运算,熟练掌握算术平方根和立方根的性质是解本题的关键. 16.一个正方体的木块的体积是3343cm ,现将它锯成8块同样大小的小正方体木块,则每个小正方体木块的表面积是________.5cm3【分析】先根据正方体的体积求出正方体的边长要使它锯成8块同样大小的小正方体木块只需要将正方体的每条棱长平均分为两份即可得到小正方体的棱长即可求出表面积【详解】解:∵一个正方体的木块的体积是∴解析:5cm 3.【分析】先根据正方体的体积求出正方体的边长,要使它锯成8块同样大小的小正方体木块,只需要将正方体的每条棱长平均分为两份即可,得到小正方体的棱长,即可求出表面积.【详解】解:∵一个正方体的木块的体积是3343cm ,∴(cm 3),要将它锯成8块同样大小的小正方体木块,则每个小正方体的棱长为7÷2=3.5(cm 3), ∴每个小正方体的表面积为6×3.52=73.5(cm 3).故答案为73.5cm 3.【点睛】本题考查了立方根.解题的关键是能够通过空间想象得出如何将正方体分成8块同样大小的小正方体木块.17.2-.4【分析】原式利用平方根立方根定义及绝对值化简计算即可得到结果【详解】解:原式【点睛】本题考查了实数的运算熟练掌握平方根立方根定义是解本题的关键解析:4【分析】原式利用平方根、立方根定义及绝对值化简计算即可得到结果.【详解】解:原式282=-+-4=【点睛】本题考查了实数的运算,熟练掌握平方根、立方根定义是解本题的关键.18.规定新运算:()*4a b a ab =+.已知算式()3*2*2x =-,x =_______.【分析】根据新运算可得由得到关于x 的一元一次方程求解即可【详解】解:根据新运算可得∵∴解得故答案为:【点睛】本题考查新定义运算解一元一次方程根据题意得出一元一次方程是解题的关键 解析:43- 【分析】根据新运算可得()3*334x x =+,()()2*22440-=⨯-+=,由()3*2*2x =-得到关于x 的一元一次方程,求解即可.【详解】解:根据新运算可得()3*334x x =+,()()2*22440-=⨯-+=,∵()3*2*2x =-,∴()3340x +=,解得43x =-, 故答案为:43-. 【点睛】本题考查新定义运算、解一元一次方程,根据题意得出一元一次方程是解题的关键.19.计算20201|-+=_________.-5【分析】本题涉及乘方绝对值立方根以及二次根式化简等知识点在计算时需要针对每个知识点分别进行计算然后根据实数的运算法则求得计算结果【详解】解:===-5故答案为:-5【点睛】本题主要考查了实数的综解析:-5【分析】本题涉及乘方、绝对值、立方根以及二次根式化简等知识点.在计算时,需要针对每个知识点分别进行计算,然后根据实数的运算法则求得计算结果.【详解】解:20201|-+=12|2|----=122---=-5.故答案为:-5.【点睛】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握乘方、二次根式、三次根式、绝对值等知识点的运算.20.一个正数的两个平方根分别是21a -与2a -+,则这个正数是______.9【分析】根据一个正数的两个平方根互为相反数可得关于a 的方程解方程即可求出a 进一步即可求出答案【详解】解:因为一个正数的两个平方根分别是与所以+()=0解得:a=﹣1所以这个正数是故答案为:9【点睛解析:9【分析】根据一个正数的两个平方根互为相反数可得关于a 的方程,解方程即可求出a ,进一步即可求出答案.【详解】解:因为一个正数的两个平方根分别是21a -与2a -+,所以21a -+(2a -+)=0,解得:a =﹣1,所以这个正数是()22119⨯--=⎡⎤⎣⎦.故答案为:9.【点睛】本题考查了平方根的定义,属于基础题型,掌握解答的方法是解题的关键. 三、解答题21.计算:(1)⎛- ⎝;(2|1--解析:(1;(2)12-【分析】(1)先去括号,再利用二次根式加减运算法则进行计算;(2)直接利用绝对值的性质和立方根的性质、二次根式的性质分别化简后再相加减即可;【详解】(1)⎛- ⎝=;(2|1--=914++-=12-【点睛】考查了实数的运算,解题关键是掌握运算法则和运算顺序.22. 1.414≈,于是我们说:的整数部分为1,小数部分则可记为1”.则:(11的整数部分是__________,小数部分可以表示为__________;(22的小数部分是a ,7-b ,那么a b +=__________;(3x 的小数部分为y ,求1(x y --的平方根.解析:(1)21;(2)1;(3)3±.【分析】(11的整数部分和小数部分;(22和7-a 与b 的值,最后代入代数式计算即可;(3的取值范围,再确定x 、y 的值,最后代入代数式计算即可.【详解】解:(1)∵1<2<4∴1<2 ∴1, ∴1的整数部分为212+-1故答案为21;(2)∵1<3<4∴12∴1,∴2的整数部分为3,小数部分为21-;7-的整数部分为5,小数部分为b=75--=2∴1+2=1故答案为1;(3)∵9<11<16∴3<4 ∴x=3,小数部分为-3∴()3211(3==3=9x y --- ∵3±.故答案为3±.【点睛】本题主要考查了估算无理数的大小,掌握运用逼近法比较无理数的大小成为解答本题的关键.23.已知一个正数m 的平方根为2n +1和4﹣3n .(1)求m 的值;(2)|a ﹣3|(c ﹣n )2=0,a +b +c 的立方根是多少?解析:(1)m =121;(2)a +b +c 的立方根是2【分析】(1)由正数的平方根互为相反数,可得2n +1+4﹣3n =0,可求n =5,即可求m ; (2)由已知可得a =3,b =0,c =n =5,则可求解.【详解】解:(1)正数m 的平方根互为相反数,∴2n +1+4﹣3n =0,∴n =5,∴2n +1=11,∴m =121;(2)∵|a ﹣3|(c ﹣n )2=0,∴a =3,b =0,c =n =5,∴a +b +c =3+0+5=8,∴a +b +c 的立方根是2.【点睛】本题考查平方根的性质;熟练掌握正数的平方根的特点,绝对值和偶次方根数的性质是解题的关键.24.(1)小明解方程2x 1x a 332-+=-去分母时,方程右边的−3忘记乘6,因而求出的解为x=2,则原方程正确的解为多少?(2)设x ,y 是有理数,且x ,y 满足等式2x 2y 17++=-x-y 的值. 解析:(1)x =−13;(2)(2)x-y 的值为9或-1.【分析】(1)将错就错把x =2代入计算求出a 的值,即可确定出正确的解;(2)根据题意可以求得x 、y 的值,从而可以求得x−y 的值.【详解】(1)把x =2代入2(2x−1)=3(x +a )−3中得:6=6+3a−3,解得:a =1, 代入方程得:2x 1x 1332-+=-, 去分母得:4x−2=3x +3−18,解得:x =−13;(2)∵x 、y 是有理数,且 x ,y 满足等式2x 2y 17++=-∴22174x y y ⎧+=⎨=-⎩, 解得,54x y =⎧⎨=-⎩或54x y =-⎧⎨=-⎩, ∴当x =5,y =−4时,x−y =5−(−4)=9,当x =−5,y =−4时,原式=−5−(−4)=−1.故x-y 的值为9或-1.【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.也考查了实数.25.计算:()214322--⨯-( 解析:【分析】 利用实数的混合运算法则计算得出答案.【详解】解:原式=4+9⨯12-(2)2⎡⎤⨯-⎢⎥⎣⎦=4+9⨯[]2+1=4+9⨯3=4+27=31.【点睛】本题主要考查了实数的运算,正确化简各数是解题的关键.26.求下列各式中x 的值(1)()328x -=(2)21(3)753x -=解析:(1)4x =;(2)18x =或12x =-.【分析】(1)利用立方根的定义得到22x -=,然后解一次方程即可;(2)先变形为()23225x -=,然后利用平方根的定义得到x 的值.【详解】(1)∵()328x -=,∴22x -=,∴4x =;(2)21(3)753x -=,整理得:()23225x -=,∴315x -=或315x -=-,∴18x =或12x =-.【点睛】本题考查了解一元一次方程,平方根和立方根,熟练掌握各自的定义是解本题的关键. 27.解方程:(1)2810x -=;(2)38(1)27x +=. 解析:(1)9x =±;(2)12x =. 【分析】 (1)移项,利用平方根的性质解方程;(2)方程两边同时除以8,然后利用立方根的性质解方程.【详解】(1)2810x -=,移项得:281x =,解得:9x =±;(2)()38127x +=,方程两边同时除以8,得:()32718x +=, ∴312x +=, 解得:31122x =-=. 【点睛】本题考查了平方根和立方根,熟练掌握平方根和立方根的定义与性质是解题关键.--28.计算:(1)225(2)1+解析:(1)-4;(2)1.【分析】(1)根据乘方、开方、绝对值的意义化简,再计算即可;(2)先根据绝对值的意义脱去绝对值,再计算即可求解.【详解】--解:(1)225=-4+6-1-5=-4;(2)1)=++1=+1=-+1=-1+2=1.【点睛】本题考查了实数的性质与运算,熟知实数的运算法则和性质是解题关键.。

人教版七年级数学易错题(含解析)

人教版七年级数学易错题(含解析)

七年级数学易错题1、a -一定负数吗?错解:一定.剖析:带有负号的数不一定就是正数,关键是确定a 是一个什么数,这就要应用分类讨论的思想进行讨论.解:不一定, a -可能是正数,0,负数 分析:若a 是正数,则a -就是负数, 若a =0则a -=0若a 是负数,则a -就是正数.2、在数轴上点A 表示的数是7.点B ,C 表示的两个数互为相反数且C 与A 之间的距离为2,求点B ,C 对应的数. 错解: 点C 与点A 之间的距离为2, ∴点C 表示的数为5.点B 和点C 表示的数互为相反数, ∴B 表示的数为-5.剖析:点C 与点A 之间的距离为2,则点C 有可能在点A 的左侧也有可能在点A 右侧.故要分情况讨论.正解: 点C 与点A 之间的距离为2,∴点C 在点A 的左侧2个单位长度或点C 在点A 的右侧2个单位长度. ①点C 在点A 的左侧2个单位长度,则点C 表示的数为5. 点B 和点C 表示的数互为相反数, ∴B 表示的数为-5.②点C 在点A 的右侧2个单位长度,则点C 表示的数为9. 点B 和点C 表示的数互为相反数, ∴B 表示的数为-9.3、.计算:200520011171311391951511⨯+⨯+⨯+⨯+⨯错解:原式=2005120011171131131919151511--+-+-+- =200511-=20052004 剖析:由于学生在长期的学习中形成的思维定式,用类似于解200520041200420031431321211⨯+⨯++⨯+⨯+⨯ 方法直接去求解.而忽视本题54511=-, 4549151=-结果中分子是4而不是1.故这样做是错的.正解:原式=41⎪⎭⎫ ⎝⎛--+-+-+-⨯2005120011171131131919151511=41)200511(-⨯ =2005501.4、计算: 17391326-⨯.【错解】原式17391313261750721515.2=-⨯+⨯=-+=-【错解剖析】本题错误原因是把173926-看成173926-与的和,而它应是39-与1726-的和. 【正确解答】原式171713913135075152622=-⨯-⨯=--=-. 5、计算:(1)[]24)3(2611--⨯--; 【错解】错解一:原式=1-16×(2-9)=1-16×(-7)=1+76=136. 错解二:原式=-1-16×(2-9)=-1-16×(-7)=-1-76=-136. 【错解剖析】错解一中是将41-计算成1得到136,错解二中是去括号符号出错得到136-.【正确答案】原式=-1-16×(2-9)=-1-16×(-7)=-1+76=-16(2)42221(1)32()2--÷⨯-.【错解】原式=1-9÷1=-8.【错解剖析】没有按照运算顺序计算,而是先计算2212()2⨯-.【正确答案】原式=1-9×14×14=1-916 =716. 6、用代数式表示下列语句:(1)比x 与y 的和的平方小x 与y 的和的数;(2)a 的2倍与b 的31的差除以a 与b 的差的立方.错解:(1)()()y x y x +-+22 (2)()3312b a b a -÷⎪⎭⎫ ⎝⎛-.剖析:(1)要表示的是“比x 与y 的和的平方小x 与y 的和的数”,应该先求和再求平方即应该是)()(2y x y x +-+,而不应该是()()y x y x +-+22.(2)是书写不规范,除号要用分数线代替,即应该写成3)(312b a ba --. 正解:(1))()(2y x y x +-+ (2)3)(312b a ba -- 7、用代数式表示下列语句:(1)比x 与y 的和的平方小x 与y 的和的数;(2)a 的2倍与b 的31的差除以a 与b 的差的立方.错解:(1)()()y x y x +-+22 (2)()3312b a b a -÷⎪⎭⎫ ⎝⎛-.剖析:(1)要表示的是“比x 与y 的和的平方小x 与y 的和的数”,应该先求和再求平方即应该是)()(2y x y x +-+,而不应该是()()y x y x +-+22.(2)是书写不规范,除号要用分数线代替,即应该写成3)(312b a ba --. 正解:(1))()(2y x y x +-+ (2)3)(312b a ba -- 8、已知方程24)3(2-=+--m x m m 是关于x 的一元一次方程.求:(1)m 的值;(2)写出这个关于x 的一元一次方程. 【错解】m =±3.【剖析】忘记m -3≠0这个条件.【正解】(1)由⎩⎨⎧≠-=-0312m m 得m =-3.(2)-6x +4=-5.9、解方程7x -112(1)(1)223x x x ⎡⎤--=-⎢⎥⎣⎦. 【错解】 7x -)1(32)1(2121-=--x x x .)1(4)1(3342-=---x x x x . 4433342-=+--x x x x . 32x =-7.x =327- .【剖析】 去中括号时)1(21--x 漏乘系数21,另外,同样在这一步去括号时忘记了考虑符号问题.【正解】第一次去分母,得42x -13(1)4(1)2x x x ⎡⎤--=-⎢⎥⎣⎦.第一次去括号,得 42x -44)1(233-=-+x x x .第二次去分母,得 84x -6x +3x -3=8x -8. 移项,合并同类项,得 73x =-5.把系数化为1,得 x =735-. 10. 解方程1-x =5.【错解】由1-x =5得到x -1=5.∴x =6.【剖析】去绝对值符号必须考虑正负性x -1=5或x -1=-5. 【正解】由1-x =5得到x -1=5或x -1=-5. ∴x =6或x =-4.11、某水果批发市场香蕉的价格如下表:强第一次、第二次分别购买香蕉多少千克?【错解】⑴当第一次购买香蕉少于20千克,第二次购买香蕉20千克以上但不超过40千克时,设第一次购买x 千克香蕉,第二次购买(50-x )千克香蕉,根据题意,得:6x +5(50-x )=264, 解得:x =14.50-14=36(千克).∴第一次购买14千克香蕉,第二次购买36千克香蕉.⑵当第一次购买香蕉少于20千克,第二次香蕉超过40千克的时候,设第一次购买x 千克香蕉,第二次购买(50-x )千克香蕉,根据题意,得:6x +4(50-x )=264, 解得:x =32.∴第一次购买32千克香蕉,第二次购买18千克香蕉.【剖析】本题是一道分类讨论题,分类讨论的关键是第二次的购买量,关键得考虑第二次多于第一次,解题时应该重点考虑.【正解】⑴当第一次购买香蕉少于20千克,第二次香蕉20千克以上但不超过40千克的时候,设第一次购买x 千克香蕉,第二次购买(50-x )千克香蕉,根据题意,得:6x +5(50-x )=264, 解得:x =14.50-14=36(千克).∴第一次购买14千克香蕉,第二次购买36千克香蕉.⑵当第一次购买香蕉少于20千克,第二次香蕉超过40千克的时候,设第一次购买x 千克香蕉,第二次购买(50-x )千克香蕉,根据题意,得:6x +4(50-x )=264,解得:x =32(不符合题意,舍去).答:第一次购买14千克香蕉,第二次购买36千克香蕉.12、下列哪些空间图形是柱体?错解:A 、B 、C 、D 都是柱体.错解剖析:柱体的主要特征是上下两个底面形状、大小完全一样且互相平行.此题错误 地认为C 、D 也是柱体.图形C 因为上下底面不平行,所以不是柱体;图形D 上下底面大小不等,所以也不是柱体.正确答案:A 和B 是柱体(A 是圆柱,B 是棱柱).13、已知点B 在直线AC 上,AB =6,AC =10,P 、Q 分别是AB 、AC 的中点,求PQ 的长.错解: PQ =2.错解分析:这是一道典型的数形结合题,用几何的思想,代数的方法进行计算,重点要画出符合条件的两种图形,注重分类的完备性.正确答案:本题B 点有在线段AC 上或在射线CA 上两种可能.由P 、Q 分别为AB 、AC 的中点可知AP=21AB =3,AQ =21AC =5,所以PQ =AQ -AP =2或PQ =AQ +AP =8.所以PQ 的长为2或8.14、(1)计算14°41′25″×5;(2)把26.29°转化为度、分、秒表示的形式. 错解一:(1)14°41′25″×5=70°205′125″=72°6′25″; (2)26.29°=26°29′.错解二:(1)14°41′25″×5=70°205′125″=91°7′5″; (2)26.29°=26°2′9″.剖析:角的度量单位度、分、秒之间是六十进制(即满60进1),而不是百进制或十进制,在由大单位化成下一级小单位时应乘以60,由小单位化成上一级大单位时应除以60,上述错解均因单位间的进制关系不清而致错.正解:(1)14°41′25″×5=70°205′125″=73°27′5″; (2)26.29°=26°+0.29°=26°+0.29×60′ =26°+17.4′=26°+17′+0.4×60″=26°17′24″.15、如图,已知∠AOC =∠BOC =∠DOE =90°,问图中是否有与∠COE 互补的角?A BC PQ APQCB错解:观察图形可知,图中没有与∠COE互补的角.剖析:图中真的没有与∠COE互补的角吗?还是让我们分析后再下结论吧!由∠AOC =90°可知:∠AOD与∠COD互为余角;由∠DOE=90°可知:∠COE与∠COD互为余角,根据“同角的余角相等”得∠COE=∠AOD.可见,要找与∠COE互补的角,可转化为找与∠AOD互补的角,观察图形知:∠BOD与∠AOD互为补角,因此与∠COE互补的角是∠BOD.由上可知,在识图时,我们不单单要认真观察图形,而且还要仔细分析题设条件,这样才能作出正确的判断.正解:图中有与∠COE互补的角,它是∠BOD.思考:图中有没有与∠COD互补的角?。

七年级下册数学 期末试卷易错题(Word版 含答案)

七年级下册数学 期末试卷易错题(Word版 含答案)

七年级下册数学 期末试卷易错题(Word 版 含答案)一、选择题1.116的平方根是() A .-14B .14C .14±D .12±2.如图所示的图案分别是四种汽车的车标,其中可以看作是由“基本图案”经过平移得到的是( )A .B .C .D .3.点()3,5A -在平面直角坐标系中所在的象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限4.下列语句中,是假命题的是( ) A .有理数和无理数统称实数B .在同一平面内,过一点有且只有一条直线与已知直线垂直C .在同一平面内,垂直于同一条直线的两条直线互相平行D .两个锐角的和是锐角5.如图,直线a ,b 被直线c ,d 所截,若12∠=∠,3125∠=︒,则4∠的度数是( )A .65︒B .60︒C .55︒D .75︒6.下列计算正确的是( ) A .38-=±2B .(﹣3)0=0C .(﹣2a 2b )2=4a 4b 2D .2a 3÷(﹣2a )=﹣a 37.如图,ABC 中,AE 平分BAC ∠,BE AE ⊥于点E ,//ED AC ,34BAE ∠=︒,则BED ∠的度数为( )A .134°B .124°C .114°D .104°8.如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O 1,O 2,O 3,… 组成一条平滑的曲线,点P 从原点O 出发,沿这条曲线向右运动,速度为每秒2π个单位长度,则第2021秒时,点P 的坐标是( )A .(2020,0)B .(2021,-1)C .(2021,1)D .(2022,0)二、填空题9.若,则()m a b +的值为10.点A (-2,1)关于x 轴对称的点的坐标是____________________.11.三角形ABC 中,∠A=60°,则内角∠B ,∠C 的角平分线相交所成的角为_____. 12.如图,//AB EF ,设90C ∠=︒,那么x ,y ,z 的关系式______.13.图,直线//AB CD ,直线l 与直线AB ,CD 相交于点E 、F ,点P 是射线EA 上的一个动.点.(不包括端点E ),将EPF 沿PF 折叠,使顶点E 落在点Q 处.若∠PEF =75°,2∠CFQ =∠PFC ,则EFP ∠=________.14.如图,按照程序图计算,当输入正整数x 时,输出的结果是161,则输入的x 的值可能是__________.15.平面直角坐标系中,已知点A (2,0),B (0,3),点P (m ,n )为第三象限内一点,若△PAB 的面积为18,则m ,n 满足的数量关系式为________.16.在平面直角坐标系中,若干个边长为1个单位长度的等边三角形,按如图中的规律摆放.点P 从原点O 出发,以每秒1个单位长度的速度沿着等边三角形的边“112233445OA A A A A A A A A →→→→”的路线运动,设第n 秒运动到点n P (n 为正整数),则点2021P 的坐标是______.三、解答题17.计算:(1)()4129-⨯- (2)()432054⎛⎫-⨯- ⎪⎝⎭18.求下列各式中的x :(1)3641250x -=; (2)3(1)8x +=; (3)3(21)270x -+=. 19.完成下面的证明.如图,AB ∥CD ,∠B +∠D =180°,求证:BE ∥DF . 分析:要证BE ∥DF ,只需证∠1=∠D . 证明:∵AB ∥CD (已知) ∴∠B +∠1=180°( ) ∵∠B +∠D =180°(已知) ∴∠1=∠D ( ) ∴BE ∥DF ( )20.如图,在平面直角坐标系中,ABC ∆的顶点都在格点上,点C (41)-,. (1)写出点A ,B 的坐标; (2)求ABC ∆的面积.21.已知:31a +的立方根是2-,21b -的算术平方根3,c 是43的整数部分. (1)求,,a b c 的值;(2)求922a b c -+的平方根.二十二、解答题22.教材中的探究:如图,把两个边长为1的小正方形沿对角线剪开,用所得到的4个直角三角形拼成一个面积为2的大正方形.由此,得到了一种能在数轴上画出无理数对应点的方法(数轴的单位长度为1).(1)阅读理解:图1中大正方形的边长为________,图2中点A 表示的数为________; (2)迁移应用:请你参照上面的方法,把5个小正方形按图3位置摆放,并将其进行裁剪,拼成一个大正方形.①请在图3中画出裁剪线,并在图3中画出所拼得的大正方形的示意图.②利用①中的成果,在图4的数轴上分别标出表示数-0.5以及 35-+ 的点,并比较它们的大小.二十三、解答题23.直线AB ∥CD ,点P 为平面内一点,连接AP ,CP .(1)如图①,点P 在直线AB ,CD 之间,当∠BAP =60°,∠DCP =20°时,求∠APC 的度数;(2)如图②,点P 在直线AB ,CD 之间,∠BAP 与∠DCP 的角平分线相交于K ,写出∠AKC 与∠APC 之间的数量关系,并说明理由;(3)如图③,点P 在直线CD 下方,当∠BAK =23∠BAP ,∠DCK =23∠DCP 时,写出∠AKC 与∠APC 之间的数量关系,并说明理由.24.已知,如图①,∠BAD =50°,点C 为射线AD 上一点(不与A 重合),连接BC . (1)[问题提出]如图②,AB ∥CE ,∠BCD =73 °,则:∠B = .(2)[类比探究]在图①中,探究∠BAD 、∠B 和∠BCD 之间有怎样的数量关系?并用平行....线的性质....说明理由. (3)[拓展延伸]如图③,在射线BC 上取一点O ,过O 点作直线MN 使MN ∥AD ,BE 平分∠ABC 交AD 于E 点,OF 平分∠BON 交AD 于F 点,//OG BE 交AD 于G 点,当C 点沿着射线AD 方向运动时,∠FOG 的度数是否会变化?若变化,请说明理由;若不变,请求出这个不变的值.25.在ABC 中,射线AG 平分BAC ∠交BC 于点G ,点D 在BC 边上运动(不与点G 重合),过点D 作//DE AC 交AB 于点E .(1)如图1,点D 在线段CG 上运动时,DF 平分EDB ∠.①若100BAC ︒∠=,30C ︒∠=,则AFD ∠=_____;若40B ︒∠=,则AFD ∠=_____; ②试探究AFD ∠与B 之间的数量关系?请说明理由;(2)点D 在线段BG 上运动时,BDE ∠的角平分线所在直线与射线AG 交于点F .试探究AFD ∠与B 之间的数量关系,并说明理由.26.(生活常识)射到平面镜上的光线(入射光线)和变向后的光线(反射光线)与平面镜所夹的角相等.如图 1,MN 是平面镜,若入射光线AO 与水平镜面夹角为∠1,反射光线OB 与水平镜面夹角为∠2,则∠1=∠2 .(现象解释)如图 2,有两块平面镜OM,ON,且OM⊥ON,入射光线AB 经过两次反射,得到反射光线CD.求证AB∥CD.(尝试探究)如图 3,有两块平面镜OM,ON,且∠MON =55︒,入射光线AB 经过两次反射,得到反射光线CD,光线AB 与CD 相交于点E,求∠BEC 的大小.(深入思考)如图 4,有两块平面镜OM,ON,且∠MON =α ,入射光线AB 经过两次反射,得到反射光线CD,光线AB 与CD 所在的直线相交于点E,∠BED=β , α 与β 之间满足的等量关系是 .(直接写出结果)【参考答案】一、选择题1.C解析:C【分析】根据平方根的定义(如果一个数的平方等于a,那么这个数叫做a的平方根)即可得.【详解】解:因为211416⎛⎫±=⎪⎝⎭,所以116的平方根是14±,故选:C.【点睛】本题考查了平方根,熟练掌握平方根的定义是解题关键.2.C 【分析】根据平移变换的定义可得结论. 【详解】解:由平移变换的定义可知,选项C 可以看作由“基本图案”经过平移得到的. 故选:C . 【点睛】本题考查利用平移设计图案,解题的关键是理解平移变换解析:C 【分析】根据平移变换的定义可得结论. 【详解】解:由平移变换的定义可知,选项C 可以看作由“基本图案”经过平移得到的. 故选:C . 【点睛】本题考查利用平移设计图案,解题的关键是理解平移变换的定义,属于中考基础题. 3.B 【分析】根据坐标的特点即可求解. 【详解】点()3,5A -在平面直角坐标系中所在的象限是第二象限 故选B . 【点睛】此题主要考查坐标所在象限,解题的关键是熟知直角坐标系的特点. 4.D 【分析】根据实数的分类,垂直的性质,平行线的判定,锐角的定义逐项分析即可 【详解】A. 有理数和无理数统称实数,正确,是真命题,不符合题意;B. 在同一平面内,过一点有且只有一条直线与已知直线垂直,正确,是真命题,不符合题意;C. 在同一平面内,垂直于同一条直线的两条直线互相平行,正确,是真命题,不符合题意;D. 两个锐角的和不一定是锐角,例如505010090︒+︒=︒>︒,故D 选项是假命题,符合题意 故选D 【点睛】本题考查了真假命题的判定,实数的分类,垂直的性质,平行线的判定,锐角的定义,掌握相关性质定理是解题的关键.5.C【分析】首先证明a∥b,推出∠4=∠5,求出∠5即可.【详解】解:∵∠1=∠2,∴a∥b,∴∠4=∠5,∵∠5=180°﹣∠3=55°,∴∠4=55°,故选:C.【点睛】本题考查平行线的判定和性质,解题的关键是熟练掌握基本知识,属于中考常考题型.6.C【分析】根据整式的运算法则,立方根的概念,零指数幂的意义即可求出答案.【详解】A.原式=﹣2,故A错误;B.原式=1,故B错误;C、(﹣2a2b)2=4a4b2,计算正确;D、原式=﹣a2,故D错误;故选C.【点睛】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.7.B【分析】已知AE平分∠BAC,ED∥AC,根据两直线平行,同旁内角互补可知∠DEA的度数,再由周角为360°,求得∠BED的度数即可.【详解】解:∵AE平分∠BAC,∴∠BAE=∠CAE=34°,∵ED∥AC,∴∠CAE+∠AED=180°,∴∠DEA =180°-34°=146°, ∵BE ⊥AE , ∴∠AEB =90°,∵∠AEB +∠BED +∠AED =360°, ∴∠BED =360°-146°-90°=124°, 故选:B . 【点睛】本题考查了平行线的性质和周角的定义,熟记两直线平行,同旁内角互补是解题的关键.8.C 【分析】根据图象可得移动4次图象完成一个循环,从而可得出点P 的坐标. 【详解】解:半径为1个单位长度的半圆的周长为×2π×1=π,∵点P 从原点O 出发,沿这条曲线向右运动,速度为每秒个单位长解析:C 【分析】根据图象可得移动4次图象完成一个循环,从而可得出点P 的坐标. 【详解】解:半径为1个单位长度的半圆的周长为12×2π×1=π, ∵点P 从原点O 出发,沿这条曲线向右运动,速度为每秒2个单位长度, ∴点P 每秒走12个半圆,∴当点P 从原点O 出发,沿这条曲线向右运动,运动时间为1秒时,点P 的坐标为(1,1),当点P 从原点O 出发,沿这条曲线向右运动,运动时间为2秒时,点P 的坐标为(2,0), 当点P 从原点O 出发,沿这条曲线向右运动,运动时间为3秒时,点P 的坐标为(3,-1), 当点P 从原点O 出发,沿这条曲线向右运动,运动时间为4秒时,点P 的坐标为(4,0), 当点P 从原点O 出发,沿这条曲线向右运动,运动时间为5秒时,点P 的坐标为(5,1), 当点P 从原点O 出发,沿这条曲线向右运动,运动时间为6秒时,点P 的坐标为(6,0), …,∵2021÷4=505余1, ∴P 的坐标是(2021,1), 故选:C . 【点睛】此题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,解决问题.二、填空题9.-1 【解析】解:有题意得,,,,则解析:-1 【解析】 解:有题意得,,,,则()ma b10.(-2,-1) 【分析】根据“关于x 轴对称的点,横坐标相同,纵坐标互为相反数”解答. 【详解】解:点(-2,1)关于x 轴对称的点的坐标是(-2,-1), 故答案为:(-2,-1). 【点睛】 本解析:(-2,-1) 【分析】根据“关于x 轴对称的点,横坐标相同,纵坐标互为相反数”解答. 【详解】解:点(-2,1)关于x 轴对称的点的坐标是(-2,-1), 故答案为:(-2,-1). 【点睛】本题考查了关于x 轴、y 轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x 轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y 轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.11.120°和60° 【详解】试题分析:因为三角形的内角和是180度,所以∠B+∠C=180°-∠A=180°-60°=120°,又因为∠DFE=∠BFC ,∠BFC=180°-(∠FBC+∠FCB ),解析:120°和60° 【详解】试题分析:因为三角形的内角和是180度,所以∠B+∠C=180°-∠A=180°-60°=120°,又因为∠DFE=∠BFC ,∠BFC=180°-(∠FBC+∠FCB ),因为角平分线CD 、EF 相交于F ,所以∠FBC+∠FCB=(∠B+∠C )÷2=120°÷2=60°,再代入∠DFE=∠BFC=180°-(∠FBC+∠FCB ),即可解答.试题解析:∠B+∠C=180°-∠A=180°-60°=120°, 又因为∠DFE=∠BFC ,∠BFC=180°-(∠FBC+∠FCB ),因为角平分线CD 、EF 相交于F ,所以∠FBC+∠FCB=(∠B+∠C )÷2=120°÷2=60°,∠DFE=180°-(∠FBC+∠FCB ),=180°-60°,=120°;∠DFE 的邻补角的度数为:180°-120°=60°.考点:角的度量.12.【分析】过作,过作,根据平行线的性质可知,然后根据平行线的性质即可求解;【详解】如图,过作,过作,∴,∴,,,∵,∴,∴,∴,∴,∴.故答案为:.【点睛】本题考查了平解析:90x y z +-=︒【分析】过C 作//CN AB ,过D 作//DM AB ,根据平行线的性质可知//////AB CN DM EF ,然后根据平行线的性质即可求解;【详解】如图,过C 作//CN AB ,过D 作//DM AB ,∴//////AB CN DM EF ,∴1x =∠,23∠∠=,4z ∠=,∵90BCD ∠=︒,∴1290∠+∠=︒,∴390x +∠=︒,∴3490x z +∠+∠=︒+,∴90x y z +=︒+,∴90x y z +-=︒.故答案为:90x y z +-=︒.【点睛】本题考查了平行线的性质,两直线平行同位角相等,两直线平行内错角相等,正确理解平行线的性质是解题的关键;13.或【分析】分两种情形:①当点Q在平行线AB,CD之间时.②当点Q在CD下方时,分别构建方程即可解决问题.【详解】解:①当点Q在平行线AB,CD之间时,如图1.∵AB//CD∴∠PEF+解析:35︒或63︒【分析】分两种情形:①当点Q在平行线AB,CD之间时.②当点Q在CD下方时,分别构建方程即可解决问题.【详解】解:①当点Q在平行线AB,CD之间时,如图1.∵AB//CD∴∠PEF+∠CFE=180°设∠PFQ=x,由折叠可知∠EFP=x,∵2∠CFQ=∠CFP,∴∠PFQ=∠CFQ=x,∴75°+3x=180°,∴x=35°,∴∠EFP=35°.②当点Q在CD下方时,如图2设∠PFQ=x,由折叠可知∠EFP=x,∵2∠CFQ=∠CFP,∴∠PFC=2x,3∴75°+2x+x=180°,3解得x=63°,∴∠EFP=63°.故答案为:35︒或63︒【点睛】本题主要考查了平行线的性质以及翻折问题的综合应用,正确掌握平行线的性质和轴对称的性质是解题的关键.14.、、、.【详解】解:∵y=3x+2,如果直接输出结果,则3x+2=161,解得:x=53;如果两次才输出结果:则x=(53-2)÷3=17;如果三次才输出结果:则x=(17-2)÷3=5;解析:53、17、5、1.【详解】解:∵y=3x+2,如果直接输出结果,则3x+2=161,解得:x=53;如果两次才输出结果:则x=(53-2)÷3=17;如果三次才输出结果:则x=(17-2)÷3=5;如果四次才输出结果:则x=(5-2)÷3=1;则满足条件的整数值是:53、17、5、1.故答案为53、17、5、1.点睛:此题的关键是要逆向思维.它和一般的程序题正好是相反的.15.【分析】连接OP,将PAB的面积分割成三个小三角形,根据三个小三角形的面积的和为18进行整理即可解答.【详解】解:连接OP ,如图:∵A (2,0),B (0,3),∴OA=2,OB=3,解析:3230m n +=-【分析】连接OP ,将∆PAB 的面积分割成三个小三角形,根据三个小三角形的面积的和为18进行整理即可解答.【详解】解:连接OP ,如图:∵A (2,0),B (0,3),∴OA=2,OB=3,∵∠AOB=90°, ∴11=23322OAB S OA OB ⋅=⨯⨯=, ∵点P (m ,n )为第三象限内一点,m <0,n <0∴,11y 222OAP P S OA n n ∴=⋅=⨯⋅=-, 1133222OBP P S OB x m m =⋅=⨯⋅=-, 33182PAB OAB OAP OBP S S S S n m ∴=++=--+=, 整理可得:3230m n +=-;故答案为:3230m n +=-.【点睛】本题考查的是平面直角坐标系中面积的求解,要注意在计算面积的时候,可根据题意适当添加辅助线,帮助自己分割图形.16.【分析】通过观察可得,An 每6个点的纵坐标规律:,0,,0,-,0,点An 的横坐标规律:1,2,3,4,5,6,…,n ,点从原点出发,以每秒个单位长度的速度沿着等边三角形的边“…”的路线运动,1 解析:20213,22⎛⎫- ⎪ ⎪⎝⎭ 【分析】 通过观察可得,A n 每6个点的纵坐标规律:32,0,32,0,-32,0,点A n 的横坐标规律:1,2,3,4,5,6,…,n ,点P 从原点O 出发,以每秒1个单位长度的速度沿着等边三角形的边“112233445OA A A A A A A A A →→→→…”的路线运动,1秒钟走一段,P 运动每6秒循环一次,点P 运动n 秒的横坐标规律: 12,1,32,2,52,3,…,2n ,点P 的纵坐标规律:32,0,32,0,032-,0,…,确定P 2021循环余下的点即可. 【详解】解:∵图中是边长为1个单位长度的等边三角形,∴113,22A ⎛⎫ ⎪ ⎪⎝⎭A 2(1,0)333,22A ⎛⎫ ⎪ ⎪⎝⎭A 4(2,0)553,22A ⎛⎫- ⎪ ⎪⎝⎭A 6(3,0)773,22A ⎛⎫ ⎪ ⎪⎝⎭…∴A n 中每6303030, 点P 从原点O 出发,以每秒1个单位长度的速度沿着等边三角形的边“112233445OA A A A A A A A A →→→→…”的路线运动,1秒钟走一段,P 运动每6秒循环一次点P 00,0,…, 点P 的横坐标规律: 12,1,32,2,52,3,…,2n , ∵2021=336×6+5,∴点P 2021的纵坐标为, ∴点P 2021的横坐标为20212,∴点P 2021的坐标20212⎛ ⎝⎭,,故答案为:20212⎛ ⎝⎭,. 【点睛】本题考查点的规律,平面直角坐标系中点的特点及等边三角形的性质,确定点的坐标规律是解题的关键.三、解答题17.(1)-1;(2)-1【分析】(1)根据乘方及二次根式的化简即可求解;(2)根据乘法的分配率计算即可.【详解】(1)(2)【点睛】本题考查的是实数的运算,掌握运算法则及乘法的分配率是解析:(1)-1;(2)-1【分析】(1)根据乘方及二次根式的化简即可求解;(2)根据乘法的分配率计算即可.【详解】(1)()412-⨯ (2)()()()434320=-20--20=-1615=-15454⎛⎫-⨯-⨯⨯+ ⎪⎝⎭【点睛】本题考查的是实数的运算,掌握运算法则及乘法的分配率是关键.18.(1);(2)1;(3)-1.【分析】(1)根据立方根的定义解方程即可;(2)根据立方根的定义解方程即可;(3)根据立方根的定义解方程即可.【详解】解:(1),∴ ,∴,∴;(2解析:(1)54;(2)1;(3)-1. 【分析】(1)根据立方根的定义解方程即可;(2)根据立方根的定义解方程即可;(3)根据立方根的定义解方程即可.【详解】解:(1)3641250x -=,∴ ()334=5x , ∴4=5x , ∴5=4x ; (2)3(1)8x +=∴33(1)2x +=∴12x +=∴1x =;(3)3(21)270x -+=,∴()33(21)3x -=-, ∴213x -=-,∴1x =-.【点睛】本题考查了利用立方根的含义解方程,熟知立方根的定义是解决问题的关键. 19.两直线平行,同旁内角互补;同角的补角相等;同位角相等,两直线平行【分析】要证BE ∥DF ,只需证∠1=∠D ,由AB ∥CD 可知∠B+∠1=180°,又有∠B+∠D=180°,由此即可证得.【详解】解析:两直线平行,同旁内角互补;同角的补角相等;同位角相等,两直线平行【分析】要证BE ∥DF ,只需证∠1=∠D ,由AB ∥CD 可知∠B +∠1=180°,又有∠B +∠D =180°,由此即可证得.【详解】证明:∵AB ∥CD (已知)∴∠B +∠1=180°(两直线平行,同旁内角互补)∵∠B +∠D =180°(已知)∴∠1=∠D (同角的补角相等),∴BE ∥DF (同位角相等,两直线平行)故答案为:两直线平行,同旁内角互补;同角的补角相等;同位角相等,两直线平行.【点睛】本题主要考查了平行线的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解. 20.(1),;(2)9【分析】(1)根据坐标的特性以及C 点坐标,直接可以得出A 、B 的坐标(2)利用面积的和差求解:三角形ABC 的面积等于一个长方形的面积减去三个直角三角形的面积.【详解】解:(解析:(1)(3,4)A ,(0,1)B ;(2)9【分析】(1)根据坐标的特性以及C 点坐标,直接可以得出A 、B 的坐标(2)利用面积的和差求解:三角形ABC 的面积等于一个长方形的面积减去三个直角三角形的面积.【详解】解:(1)(3,4)A ,(0,1)B(2)3ABC S S S =-△长方形个三角形11145241533222=⨯-⨯⨯-⨯⨯-⨯⨯ =9【点睛】本题考查了坐标上的点以及求坐标上图形的面积,熟练掌握网格结构准确找出对应点的位置是解题的关键.21.(1);(2)其平方根为.【分析】(1)根据立方根,算术平方根,无理数的估算即可求出的值;(2)将(1)题求出的值代入,求出值之后再求出平方根.【详解】解:(1)由题得..又,解析:(1)3,5,6a b c =-==;(2)其平方根为4±.【分析】(1)根据立方根,算术平方根,无理数的估算即可求出,,a b c 的值;(2)将(1)题求出的值代入922a b c -+,求出值之后再求出平方根. 【详解】解:(1)由题得318,219a b +=--=.3,5a b ∴=-=. 364349<6437∴<.6c ∴=.3,5,6a b c ∴=-==.(2)当3,5,6a b c =-==时,()99223561622a b c -+=⨯--+⨯=. ∴其平方根为164±±.【点睛】本题考查了立方根,平方根,无理数的估算.正确把握相关定义是解题的关键. 二十二、解答题22.(1);(2)①见解析;②见解析,【分析】(1)设正方形边长为a,根据正方形面积公式,结合平方根的运算求出a值,则知结果;(2)① 根据面积相等,利用割补法裁剪后拼得如图所示的正方形;②解析:(1)2,2-;(2)①见解析;②见解析,350.5-+<-【分析】(1)设正方形边长为a,根据正方形面积公式,结合平方根的运算求出a值,则知结果;(2)① 根据面积相等,利用割补法裁剪后拼得如图所示的正方形;②由题(1)的原理得出大正方形的边长为5,然后在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M,再把N点表示出来,即可比较它们的大小.【详解】解:设正方形边长为a,∵a2=2,∴a=2±,故答案为:2,2-;(2)解:①裁剪后拼得的大正方形如图所示:②设拼成的大正方形的边长为b,∴b2=5,∴b=±5,在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M,则M表示的数为-3+5,看图可知,表示-0.5的N点在M点的右方,∴比较大小:350.5-+<-.【点睛】本题主要考查平方根与算术平方根的应用及实数的大小比较,熟练掌握平方根与算术平方根的意义及实数的大小比较是解题的关键.二十三、解答题23.(1)80°;(2)∠AKC=∠APC,理由见解析;(3)∠AKC=∠APC,理由见解析【分析】(1)先过P作PE∥AB,根据平行线的性质即可得到∠APE=∠BAP,∠CPE=∠DCP,再根据∠解析:(1)80°;(2)∠AKC=12∠APC,理由见解析;(3)∠AKC=23∠APC,理由见解析【分析】(1)先过P作PE∥AB,根据平行线的性质即可得到∠APE=∠BAP,∠CPE=∠DCP,再根据∠APC=∠APE+∠CPE=∠BAP+∠DCP进行计算即可;(2)过K作KE∥AB,根据KE∥AB∥CD,可得∠AKE=∠BAK,∠CKE=∠DCK,进而得到∠AKC=∠AKE+∠CKE=∠BAK+∠DCK,同理可得,∠APC=∠BAP+∠DCP,再根据角平分线的定义,得出∠BAK+∠DCK=12∠BAP+12∠DCP=12(∠BAP+∠DCP)=12∠APC,进而得到∠AKC=12∠APC;(3)过K作KE∥AB,根据KE∥AB∥CD,可得∠BAK=∠AKE,∠DCK=∠CKE,进而得到∠AKC=∠BAK﹣∠DCK,同理可得,∠APC=∠BAP﹣∠DCP,再根据已知得出∠BAK﹣∠DCK=23∠BAP﹣23∠DCP=23∠APC,进而得到∠BAK﹣∠DCK=23∠APC.【详解】(1)如图1,过P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠APE=∠BAP,∠CPE=∠DCP,∴∠APC=∠APE+∠CPE=∠BAP+∠DCP=60°+20°=80°;(2)∠AKC=12∠APC.理由:如图2,过K作KE∥AB,∵AB∥CD,∴KE∥AB∥CD,∴∠AKE=∠BAK,∠CKE=∠DCK,∴∠AKC=∠AKE+∠CKE=∠BAK+∠DCK,过P作PF∥AB,同理可得,∠APC=∠BAP+∠DCP,∵∠BAP与∠DCP的角平分线相交于点K,∴∠BAK+∠DCK=12∠BAP+12∠DCP=12(∠BAP+∠DCP)=12∠APC,∴∠AKC=12∠APC;(3)∠AKC =23∠APC 理由:如图3,过K 作KE ∥AB ,∵AB ∥CD ,∴KE ∥AB ∥CD ,∴∠BAK =∠AKE ,∠DCK =∠CKE ,∴∠AKC =∠AKE ﹣∠CKE =∠BAK ﹣∠DCK ,过P 作PF ∥AB ,同理可得,∠APC =∠BAP ﹣∠DCP ,∵∠BAK =23∠BAP ,∠DCK =23∠DCP , ∴∠BAK ﹣∠DCK =23∠BAP ﹣23∠DCP =23(∠BAP ﹣∠DCP )=23∠APC , ∴∠AKC =23∠APC .【点睛】本题考查了平行线的性质和角平分线的定义,解题的关键是作出平行线构造内错角相等计算.24.(1);(2),见解析;(3)不变,【分析】(1)根据平行线的性质求出,再求出的度数,利用内错角相等可求出角的度数;(2)过点作∥,类似(1)利用平行线的性质,得出三个角的关系; (3)运用解析:(1)23︒;(2)BCD A B ∠=∠+∠,见解析;(3)不变, 25FOG ∠=︒【分析】(1)根据平行线的性质求出50A DCE ∠=∠=︒,再求出BCE ∠的度数,利用内错角相等可求出角的度数;(2)过点C 作CE ∥AB ,类似(1)利用平行线的性质,得出三个角的关系;(3)运用(2)的结论和平行线的性质、角平分线的性质,可求出FOG ∠的度数,可得结论.【详解】(1)因为CE ∥AB ,所以50A DCE ∠=∠=︒,B BCE ∠=∠因为∠BCD =73 °,所以23BCE BCD DCE ∠=∠-∠=︒,故答案为:23︒(2)BCD A B ∠=∠+∠,如图②,过点C 作CE ∥AB ,则A DCE ∠=∠,B BCE ∠=∠.因为BCD DCE BCE ∠=∠+∠,所以BCD BAD B ∠=∠+∠,(3)不变,设ABE x ∠=,因为BE 平分ABC ∠,所以CBE ABE x ∠=∠=.由(2)的结论可知BCD BAD ABC ∠=∠+∠,且50BAD ︒∠=,则:502BCD x ∠=︒+.因为MN ∥AD ,所以502BON BCD x ∠=∠=︒+,因为OF 平分BON ∠, 所以1252COF NOF BON x ∠=∠=∠=︒+. 因为OG ∥BE ,所以COG CBE x ∠=∠=,所以2525FOG COF COG x x ∠=∠-∠=+-=︒︒.【点睛】本题考查了平行线的性质和角平分线的定义,解题关键是熟练运用平行线的性质证明角相等,通过等量代换等方法得出角之间的关系.25.(1)①115°,110°;②,证明见解析;(2),证明见解析.【解析】【分析】(1)①根据角平分线的定义求得∠CAG=∠BAC=50°;再由平行线的性质可得∠EDG=∠C=30°,∠FMD=解析:(1)①115°,110°;②1902AFD B ︒∠=+∠,证明见解析;(2)1902AFD B ︒∠=-∠,证明见解析. 【解析】【分析】(1)①根据角平分线的定义求得∠CAG=12∠BAC=50°;再由平行线的性质可得∠EDG=∠C=30°,∠FMD=∠GAC=50°;由三角形的内角和定理求得∠AFD 的度数即可;已知AG 平分∠BAC ,DF 平分∠EDB ,根据角平分线的定义可得∠CAG=12∠BAC ,∠FDM=12∠EDG;由DE//AC,根据平行线的性质可得∠EDG=∠C,∠FMD=∠GAC;即可得∠FDM +∠FMD=12∠EDG +∠GAC=12∠C+12∠BAC=12(∠BAC+∠C)=12×140°=70°;再由三角形的内角和定理可求得∠AFD=110°;②∠AFD=90°+12∠B,已知AG平分∠BAC,DF平分∠EDB,根据角平分线的定义可得∠CAG=12∠BAC,∠FDM=12∠EDG;由DE//AC,根据平行线的性质可得∠EDG=∠C,∠FMD=∠GAC;由此可得∠FDM +∠FMD=12∠EDG +∠GAC=12∠C+12∠BAC=12(∠BAC+∠C)=12×(180°-∠B)=90°-12∠B;再由三角形的内角和定理可得∠AFD=90°+12∠B;(2)∠AFD=90°-12∠B,已知AG平分∠BAC,DF平分∠EDB,根据角平分线的定义可得∠CAG=12∠BAC,∠NDE=12∠EDB,即可得∠FDM=∠NDE=12∠EDB;由DE//AC,根据平行线的性质可得∠EDB=∠C,∠FMD=∠GAC;即可得到∠FDM=∠NDE=12∠C,所以∠FDM+∠FMD =12∠C+12∠BAC=12(∠BAC+∠C)=12×(180°-∠B)=90°-12∠B;再由三角形外角的性质可得∠AFD=∠FDM +∠FMD=90°-12∠B.【详解】(1)①∵AG平分∠BAC,∠BAC=100°,∴∠CAG=12∠BAC=50°;∵//DE AC,∠C=30°,∴∠EDG=∠C=30°,∠FMD=∠GAC=50°;∵DF平分∠EDB,∴∠FDM=12∠EDG=15°;∴∠AFD=180°-∠FMD-∠FDM=180°-50°-15°=115°;∵∠B=40°,∴∠BAC+∠C=180°-∠B=140°;∵AG平分∠BAC,DF平分∠EDB,∴∠CAG=12∠BAC,∠FDM=12∠EDG,∵DE//AC,∴∠EDG=∠C,∠FMD=∠GAC;∴∠FDM +∠FMD=12∠EDG +∠GAC=12∠C+12∠BAC=12(∠BAC+∠C)=12×140°=70°;∴∠AFD=180°-(∠FDM +∠FMD)=180°-70°=110°;故答案为115°,110°;②∠AFD=90°+12∠B,理由如下:∵AG平分∠BAC,DF平分∠EDB,∴∠CAG=12∠BAC,∠FDM=12∠EDG,∵DE//AC,∴∠EDG=∠C,∠FMD=∠GAC;∴∠FDM +∠FMD=12∠EDG +∠GAC=12∠C+12∠BAC=12(∠BAC+∠C)=12×(180°-∠B)=90°-12∠B;∴∠AFD=180°-(∠FDM +∠FMD)=180°-(90°-12∠B)=90°+12∠B;(2)∠AFD=90°-12∠B,理由如下:如图,射线ED交AG于点M,∵AG平分∠BAC,DF平分∠EDB,∴∠CAG=12∠BAC,∠NDE=12∠EDB,∴∠FDM=∠NDE=12∠EDB,∵DE//AC,∴∠EDB=∠C,∠FMD=∠GAC;∴∠FDM=∠NDE=12∠C,∴∠FDM +∠FMD =12∠C+12∠BAC=12(∠BAC+∠C)=12×(180°-∠B)=90°-12∠B;∴∠AFD=∠FDM +∠FMD=90°-1∠B.2【点睛】本题考查了角平分线的定义、平行线的性质、三角形的内角和定理及三角形外角的性质,根据角平分线的定义、平行线的性质、三角形的内角和定理及三角形外角的性质确定各角之间的关系是解决问题的关键.26.【现象解释】见解析;【尝试探究】BEC 70;【深入思考】2.【分析】[现象解释]根据平面镜反射光线的规律得∠1=∠2,∠3=∠4,再利用∠2+∠3=90°得出∠1+∠2+∠解析:【现象解释】见解析;【尝试探究】∠BEC = 70︒;【深入思考】β= 2α.【分析】[现象解释]根据平面镜反射光线的规律得∠1=∠2,∠3=∠4,再利用∠2+∠3=90°得出∠1+∠2+∠3+∠4=180°,即可得出∠DCB+∠ABC=180°,即可证得AB∥CD;[尝试探究]根据三角形内角和定理求得∠2+∠3=125°,根据平面镜反射光线的规律得∠1=∠2,∠3=∠4,再利用平角的定义得出∠1+∠2+∠EBC+∠3+∠4+∠BCE=360°,即可得出∠EBC+BCE=360°-250°=110°,根据三角形内角和定理即可得出∠BEC=180°-110°=70°;[深入思考]利用平角的定义得出∠ABC=180°-2∠2,∠BCD=180°-2∠3,利用外角的性质∠BED=∠ABC-∠BCD=(180°-2∠2)-(180°-2∠3)=2(∠3-∠2)=β,而∠BOC=∠3-∠2=α,即可证得β=2α.【详解】[现象解释]如图2,∵OM⊥ON,∴∠CON=90°,∴∠2+∠3=90°∵∠1=∠2,∠3=∠4,∴∠1+∠2+∠3+∠4=180°,∴∠DCB+∠ABC=180°,∴AB∥CD;【尝试探究】如图3,在△OBC中,∵∠COB=55°,∴∠2+∠3=125°,∵∠1=∠2,∠3=∠4,∴∠1+∠2+∠3+∠4=250°,∵∠1+∠2+∠EBC+∠3+∠4+∠BCE=360°,∴∠EBC+BCE=360°-250°=110°,∴∠BEC=180°-110°=70°;【深入思考】如图4,β=2α,理由如下:∵∠1=∠2,∠3=∠4,∴∠ABC=180°-2∠2,∠BCD=180°-2∠3,∴∠BED=∠ABC-∠BCD=(180°-2∠2)-(180°-2∠3)=2(∠3-∠2)=β,∵∠BOC=∠3-∠2=α,∴β=2α.【点睛】本题考查了平行线的判定,三角形外角的性质以及三角形内角和定理,熟练掌握三角形的性质是解题的关键.。

(易错题)初中数学七年级数学下册第四单元《二元一次方程组》测试(有答案解析)

(易错题)初中数学七年级数学下册第四单元《二元一次方程组》测试(有答案解析)

一、选择题1.如图,正方形ABCD 由四个相同的大长方形,四个相同的小长方形以及一个小正方形组成.其中四个大长方形的长和宽分别是小长方形长和宽的3倍,若中间小正方形的面积为1,则大正方形ABCD 的面积是( )A .49B .64C .81D .1002.如图,周长为78cm 的长方形团由10个形状大小完全相同的小长方形拼成,其汇总一个小长方形的面积为( )A .232cmB .235cmC .236cmD .240cm 3.如图,在数轴上标出若干个点,每相邻的两个点之间的距离都是1个单位,点A 、B 、C 、D 表示的数分别是整数a 、b 、c 、d ,且满足2319a d ,则b c +的值为( )A .3-B .2-C .1-D .04.用如图①中的长方形和正方形纸板作侧面和底面,做成如图②的竖式和横式的两种无盖纸盒.现在仓库里有若干张正方形和若干张长方形纸板,如果做两种纸盒若干个,恰好使库存的纸板用完,则库存中正方形纸板与长方形纸板之和的值可能是( )A .2018B .2019C .2020D .2021 5.解为12x y =⎧⎨=⎩的方程组是( ) A .135x y x y -=⎧⎨+=⎩ B .135x y x y -=-⎧⎨+=-⎩ C .331x y x y -=⎧⎨-=⎩ D .2335x y x y -=-⎧⎨+=⎩6.已知:关于x 、y 的方程组2423x y a x y a +=-+⎧⎨+=-⎩,则x-y 的值为( ) A .-1 B .a-1 C .0 D .17.已知x ,y 满足方程组4,5,x m y m +=⎧⎨-=⎩则无论m 取何值,x ,y 恒有的关系式是( ) A .1x y += B .1x y +=-C .9x y +=D .9x y -=- 8.已知1,2x y =⎧⎨=⎩是二元一次方程24x ay +=的一组解,则a 的值为( ) A .2 B .2- C .1 D .1-9.已知关于x 、y 的二元一次方程组356310x y x ky +=⎧⎨+=⎩给出下列结论:①当5k =时,此方程组无解;②若此方程组的解也是方程61516x y +=的解,则10k =;③无论整数k 取何值,此方程组一定无整数解(x 、y 均为整数),其中正确的是( )A .①②③B .①③C .②③D .①② 10.若关于x y ,的二元一次方程组232320x y k x y k +=⎧⎨-=⎩的解也是二元一次方程236x y +=的解,则k 的值为( )A .34-B .34C .43D .43-11.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有醇酒一斗,值钱五十;行酒一斗,值钱一十;今将钱三十,得酒二斗,问醇、行酒各得几何?”意思是:今有醇酒(优质酒)1斗,价值50钱;行酒(劣质酒)1斗,价值10钱;现用30钱,买得2斗酒,问分别能买到多少醇酒与行酒?设用30钱能买得的2斗酒里,买到醇酒x 斗,买到行酒y 斗,根据题意可列方程组为( )A .5010302x y x y +=⎧⎨+=⎩B .5010302y x x y +=⎧⎨+=⎩C .5010230x y x y +=⎧⎨+=⎩D .5010230y x x y +=⎧⎨+=⎩12.如图,由33⨯组成的方格中每个方格内均有代数式(图中只列出了部分代数式),方格中每一行(横)、每一列(竖)以及每一条对角线(斜)上的三个代数式的和均相等,则方格中“a ”的数是( )B .7C .8D .9二、填空题13.已知关于x ,y 的方程组35223x y m x y m +=+⎧⎨+=⎩,给出下列结论:①34x y =⎧⎨=-⎩是方程组的解;②2m =时,x ,y 的值互为相反数;③无论m 的x ,y 都满足的关系式22x y +=;④x ,y 的都为自然数的解有2对,其中正确的为__________.(填正确的序号)14.若关于x ,y 的方程组4,44ax by cx dy -=⎧⎨+=⎩的解是8,4,x y =⎧⎨=⎩则关于x ,y 的方程组()()()()214,2144a x b y c x d y ⎧+--=⎪⎨++-=⎪⎩的解是______. 15.如图,已知∠AOE =100°,∠DOF =80°,OE 平分∠DOC ,OF 平分∠AOC ,求∠EOF 的度数.16.一辆货车、一辆客车、一辆小轿车在一条笔直的公路上朝同一方向匀速行驶,在某一时刻,货车在前,小轿车在后,客车在货车与小轿车的正中间,过了20min ,小轿车追上了客车;又过了10min ;小轿车追上了货车;再过了________min 客车追上了货车. 17.由于2020年新冠疫情影响,全国经济严重滑坡,为了促进经济发展,全国多地放宽摆摊政策,小华的爸爸积极响应国家的政策,在步行街摆摊经营学生学习用品,主要销售甲,乙,丙,丁四种用品,其中甲,乙两种用品的定价一样,丁的定价是丙定价的6倍.四种用品的定价均为整数.10月1日四种用品均按各自的定价销售,甲,丙用品的销售件数相同,乙的销售件数是丁的6倍,甲,乙的总销售额比丙,丁的总销售额多816元.10月2日,由于用品丁库存较多,按定价的八折销售,其余用品售价不变,乙的销量较10月1日下降了20%,其余用品销量不变,小华的爸爸为了考考小华,没有告诉小华确切的售价和数量,只是说:甲,丙的单价之差低于17元,不少于10元,乙,丁的单价之和不超过32元,10月1日、2日两天甲的销量不少于20件,不多于40件.请你帮小华算算10月2日甲,乙,丙,丁,四种用品的销售额最多_____元.18.若方程2x 2a +b -4+4y 3a -2b -3=1是关于x ,y 的二元一次方程,则a =________,b =________.19.某水稻种植中心培育了甲、乙、丙三种水稻,将这三种水稻分别种植于三块大小各不相同的试验田里.去年,三种水稻的平均亩产量分别为300kg ,500kg ,400kg ,总平均亩产量为450kg ,且丙种水稻的的总产量是甲种水稻总产量的4倍,今年初,研究人员改良了水稻种子,仍按去年的方式种植,三种水稻的平均亩产量都增加了.总平均亩产量增长了40%,甲、丙两种水稻的总产量增长了30%,则乙种水稻平均亩产量的增长率为_______.20.为了节省空间,家里的饭碗一般是竖直摆放的,如果4只饭碗(形状、大小相同)竖直摆放的高度为11,8cm 只饭碗竖直摆放的高度为17cm .如图所示,小颖家的碗橱每格的高度为35,cm则一摞碗竖直放人橱柜时,每格最多能放________________________.三、解答题21.解方程组:(1)524365yxx y-⎧=⎪⎨⎪+=⎩①②(2)3519 8367 x yx y①②+=⎧⎨-=⎩22.2019年12月3日,140余件从明末清初延续至民国时期的民间晋绣在山西省太原美术馆展出,这是山西首次将这一传承百年的工艺品进行系统梳理.某校组织学生前去参观,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,其余客车恰好坐满.问这批学生的人数是多少?原计划租用45座客车多少辆?23.如图,线段AB上有一点C,D为线段BC的中点,E为线段AC上一点,EC=4AE,AB=25(1)若AD=20,求AE的长;(2)若DE=14,求BC的长24.解方程组:(1)35 5223x yx y-=⎧⎨+=⎩(2)5225 3415 x yx y+=⎧⎨-=⎩(3)131 2223x yx y⎧-=-⎪⎨⎪+=⎩(4)231 342 457 5615u vu v⎧+=⎪⎪⎨⎪+=⎪⎩25.(1)解方程31215 23x x-+-=(2)解方程组23167 x yx y-=⎧⎨+=-⎩26.列方程解应用题:为让同学们幸福成长,年级准备组织师生秋游.关于租车问题:若只租45座的客车若干辆,则刚好坐满;若只租60座的客车,则可少租4辆,且余30个座位.(1)若只租45座的客车,求需要多少辆车?(2)已知一辆45座的客车租金每天2500元,一辆60座的客车租金每天3000元,若可以同时租用这两种类型的客车,则两种客车分别租多少辆最省钱?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】设小长方形的长为a,宽为b,则大长方形的长为3a,宽为3b,观察图形,根据各边之间的组合关系,找出关于a、b的二元一次方程组,解方程组即可求出a、b值,进而即可得出正方形ABCD的边长,根据正方形的面积公式即可得出结论.【详解】设小长方形的长为a,宽为b,则大长方形的长为3a,宽为3b,由已知得:133a ba b a b=+⎧⎨=++⎩,解得:21ab=⎧⎨=⎩,∴正方形ABCD的边长AB=3a+3b=3×(2+1)=9,∴正方形ABCD的面积为9×9=81.故选:C.【点睛】本题考查了二元一次方程组的应用,解题的关键是找出关于a、b的二元一次方程组.本题属于基础题,难度不大,解决该题型题目时,观察图形根据各边之间的关系找出方程(或方程组)是关键.2.C解析:C【分析】设小长方形的长为x ,宽为y ,列出二元一次方程组并求解,即可得出结论.【详解】解:设小长方形的长为x ,宽为y ,根据图形可得:45678x y x y =⎧⎨+=⎩, 解得123x y =⎧⎨=⎩, ∴一个小长方形的面积为212336cm ⨯=,故选:C .【点睛】本题考查二元一次方程组的实际应用,根据图形找出等量关系是解题的关键.3.C解析:C【分析】先根据数轴上各点的位置可得到d-a=8,与2319a d -=-组成方程组可求出a 、d ,然后根据d-c=3,d-b=4求出b 、c 的值,再代入b+c 即可.【详解】解:由数轴上各点的位置可知d-a=8,d-c=3,d-b=4,82319d a a d -=⎧⎨-=-⎩, 所以35d a =⎧⎨=-⎩故c=d-3=0,b=d-4=-1,代入b+c=-1.故选:C .【点睛】本题考查的是数轴上两点间的距离及二元一次方程组的应用,根据题意列出方程组是解题关键.4.C解析:C【分析】设竖式纸盒x 个,横式纸盒y 个,正方形纸板a 张,长方形纸板b 张,由题意列出方程组可求解.【详解】解:设竖式纸盒x 个,横式纸盒y 个, 正方形纸板a 张,长方形纸板b 张,根据题意得:432x y b x y a+⎧⎨+⎩==, ∴5x+5y=5(x+y )=a+b∴a+b是5的倍数故选:C.【点睛】本题考查了二元一次方程组,根据题意列出正确的方程组是本题的关键.5.D解析:D【分析】根据方程组的解的定义,只要检验12xy=⎧⎨=⎩是否是选项中方程的解即可.【详解】A、把12xy=⎧⎨=⎩代入方程x-y=-1,左边=1≠右边,把12xy=⎧⎨=⎩代入方程y+3x=5,左边=5=右边,故不是方程组的解,故选项错误;B、把12xy=⎧⎨=⎩代入方程3x+y=-5,左边=5≠右边,故不是方程组的解,故选项错误;C、把12xy=⎧⎨=⎩代入方程x-y=3,左边=-1≠右边,故不是方程组的解,故选项错误;D、把12xy=⎧⎨=⎩代入方程x-2y=-3,左边=-3=右边=-3,把12xy=⎧⎨=⎩代入方程3x+y=5,左边=5=右边,故是方程组的解,故选项正确.故选D.【点睛】本题主要考查了二元一次方程组的解的定义,正确理解定义是关键.6.D解析:D【解析】分析:由x、y系数的特点和所求式子的关系,可确定让①-②即可求解.详解:2423x y ax y a+=-+⎧⎨+=-⎩①②,①−②,得x−y=−a+4−3+a=1.故选:D.点睛:此题考查了解二元一次方程组,一般解法是用含有a的代数式表示x、y,再计算,但也要注意能简便的则简便.此题中注意整体思想的渗透.7.C解析:C【分析】由方程组消去m,得到一个关于x,y的方程,化简这个方程即可.【详解】解:将5m y =-代入4x m +=,得54x y +-=,所以9x y +=.故选C.【点睛】解二元一次方程组的基本思想是“消元”,基本方法是代入法和加减法,此题实际是消元法的考核.8.C解析:C【分析】把x 与y 的值代入方程计算即可求出a 的值.【详解】把1,2x y =⎧⎨=⎩代入方程24x ay +=,得224a +=, 解得1a =.故选C.【点睛】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值. 9.A解析:A【分析】根据二元一次方程组的解法逐个判断即可.【详解】当5k =时,方程组为3563510x y x y +=⎧⎨+=⎩,此时方程组无解 ∴结论①正确由题意,解方程组35661516x y x y +=⎧⎨+=⎩得:2345x y ⎧=⎪⎪⎨⎪=⎪⎩把23x =,45y =代入310x ky +=得2431035k ⨯+= 解得10k =,则结论②正确 解方程组356310x y x ky +=⎧⎨+=⎩得:20231545x k y k ⎧=-⎪⎪-⎨⎪=⎪-⎩又k 为整数 x 、y 不能均为整数∴结论③正确综上,正确的结论是①②③故选:A.【点睛】本题考查了二元一次方程组的解与解法,掌握二元一次方程组的解法是解题关键.10.B解析:B【分析】首先解关于x的方程组,求得x,y的值,然后代入方程2x+3y=6,即可得到一个关于k 的方程,从而求解.【详解】解232320x y kx y k+=⎧⎨-=⎩得72x ky k=⎧⎨=-⎩,由题意知2×7k+3×(−2k)=6,解得k=34.故选:B【点睛】此题考查了解二元一次方程组,二元一次方程组的解,能使方程组中每个方程的左右两边相等的未知数的值即是方程组的解.解题的关键是要知道两个方程组之间解的关系.11.A解析:A【分析】设醇酒为x斗,行酒为y斗,根据两种酒共用30钱,共2斗的等量关系列出方程组即可.【详解】解:由题意,得2 501030 x yx y+=⎧⎨+=⎩,故选A.【点睛】本题考查了二元一次方程组的应用,弄清题意,找准等量关系列出相应的方程是解题的关键.12.B解析:B【分析】根据第一列、第三行、对角线建立关于x、y的方程组,解方程组求出x、y的值,由此即可得.【详解】由题意得:29411299211y y y x y y x ++=-+⎧⎨++=-+⎩, 整理得:4222311x y x y +=⎧⎨+=⎩, 解得25x y =-⎧⎨=⎩, 则2949y y a x ++=-+,即()5259429a +⨯+=-⨯-+,解得7a =,故选:B .【点睛】本题考查了二元一次方程组的应用,依据题意,正确建立方程组是解题关键.二、填空题13.②③④【分析】先解方程组用m 表示出x 与y 根据方程组解的情况即可作出判断【详解】解:解出方程组得①由x =3得2m-6=3解得m =由y =-4得4-m =-4解得m =8∴不是方程组的解故①不正确;②若xy 的 解析:②③④【分析】先解方程组用m 表示出x 与y ,根据方程组解的情况即可作出判断.【详解】解:解出方程组得264x m y m =-⎧⎨=-⎩, ①由x =3得,2m -6=3,解得m =92, 由y =-4得,4-m =-4,解得m =8, ∴34x y =⎧⎨=-⎩不是方程组的解, 故①不正确;②若x ,y 的值互为相反数,2m -6+4-m =0,解得m =2,故②正确;③∵2m -6+2(4-m )=2,∴无论m 取何值,x ,y 都是满足关系式x +2y =2,故③正确;④∵x ,y 的都为自然数,∴m =3,4,共2个,即01x y =⎧⎨=⎩,20x y =⎧⎨=⎩.故④正确;故答案为:②③④. 【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.14.【分析】利用已知方程组的解和换元法求解即可;【详解】设则原方程组可化为∵关于的方程组的解是∴∴即∴关于的方程组的解是;故答案是【点睛】本题主要考查了二元一次方程组的求解准确分析计算是解题的关键解析:65x y =⎧⎨=⎩【分析】利用已知方程组的解和换元法求解即可; 【详解】设2x m +=,1y n -=, 则原方程组可化为4,44am bn cm dn -=⎧⎨+=⎩,∵关于x ,y 的方程组4,44ax by cx dy -=⎧⎨+=⎩的解是84x y =⎧⎨=⎩,∴84m n =⎧⎨=⎩, ∴2814x y +=⎧⎨-=⎩,即65x y =⎧⎨=⎩,∴关于x ,y 的方程组()()()()214,2144a x b y c x d y ⎧+--=⎪⎨++-=⎪⎩的解是65x y =⎧⎨=⎩;故答案是65x y =⎧⎨=⎩.【点睛】本题主要考查了二元一次方程组的求解,准确分析计算是解题的关键.15.【分析】由OE 平分∠DOCOF 平分∠AOC 则设∠DOE=∠EOC=x ∠COF=∠FOA=y 得出∠AOE=2y+x=100°∠DOF=2x+y=80°然后列二元一次方程组求出xy 最后根据∠EOF=∠E 解析:60【分析】由OE 平分∠DOC ,OF 平分∠AOC ,则设∠DOE=∠EOC=x ,∠COF=∠FOA=y ,得出∠AOE=2y+x=100°,∠DOF=2x+y=80°,然后列二元一次方程组求出x 、y ,最后根据∠EOF=∠EOC+∠COF 解答即可. 【详解】解:设∠DOE=∠EOC=x ,∠COF=∠FOA=y则2100280y x x y +=⎧⎨+=⎩,解得2040x y ⎧=⎨=⎩∴∠EOF=∠EOC+∠COF=x+y=60. 故答案为60. 【点睛】本题主要考查了角平分线的定义、二元一次方程组的应用以及角的和差的相关知识,根据题意列出二元一次方程组并求解是解答本题的关键.16.【分析】由于在某一时刻货车在前小轿车在后客车在货车与小轿车的中间所以设在某一时刻客车与货车小轿车的距离均为S 千米小轿车货车客车的速度分别为abc (千米/分)由过了分钟小轿车追上了客车可以列出方程由又 解析:30【分析】由于在某一时刻,货车在前,小轿车在后,客车在货车与小轿车的中间,所以设在某一时刻,客车与货车、小轿车的距离均为S 千米,小轿车、货车、客车的速度分别为a 、b 、c (千米/分),由过了20分钟,小轿车追上了客车可以列出方程()20a c s -=,由又过了10分钟,小轿车追上了货车列出方程()302a b s -=,由再过t 分钟,客车追上了货车列出方程()()30t c b s +-=,联立所有方程求解即可求出t 的值. 【详解】解:设在某一时刻,客车与货车、小轿车的距离均为S 千米,再过t 分钟,客车追上了货车,小轿车、货车、客车的速度分别为a 、b 、c (千米/分),由题意可得:()()()()2030230a c s a b s t c b s -=⎧⎪-=⎨⎪+-=⎩①②③由②×2-①×3 得:60sc b -=④, ④代入③中得:3060t +=, ∴30t =(分).故答案为:30. 【点睛】此题主要考查了三元一次方程组的应用,解题的关键是正确理解题意,准确变为题目的数量关系,然后列出方程组解决问题.17.4【分析】先分别设10月1日的甲乙丙丁的单价销量再根据题意设出10月2日甲乙丙丁的单价及销量进而列出10月2日的销售额代数式再根据题中的数量关系列方程和不等式分两种情况进行求解:①当时;②当时进而代解析:4. 【分析】先分别设10月1日的甲乙丙丁的单价、销量,再根据题意设出10月2日甲乙丙丁的单价及销量,进而列出10月2日的销售额代数式,再根据题中的数量关系列方程和不等式分两种情况进行求解:①当12m n -=,658x y +=时;②当16m n -=,651x y +=时,进而代入W 求值比较即可求解. 【详解】解:由题意,设未知数列表:设10月2日销售额:)4.8 4.8 4.8W mx my nx ny m n x y =+++=++ 由题意得:66816mx my nx ny +--=, 化简得()()6816m n x y -+=, 且1017m n ≤-≤,m +6n≤32,20≤2a≤40 ∵m ,n ,x ,y 都为正整数,所以可得12m n -=,658x y +=或者16m n -=,651x y +=. ①当12m n -=,658x y +=时,m =12+n , 代入到m +6n≤32可得:7n ≤20, ∴n 最大为2,此时m 最大为14,把m =14,n =2代入()()6816m n x y -+=得: x +6y =68, ∴4.8y =54.4-0.8x ,∴()()()21454.40.81654.40.2W x x x =++-=+ ∵20240x ≤<,∴当20x时,W 最大为()1654.40.220934.4⨯+⨯=②当16m n -=,651x y +=时,得4.840.80.8y x =-, ∵632m n +≤,∴n 最大为2,此时m 最大为18,∴()()()21454.40.82040.80.2W x x x =++-=+ ∵20240x ≤≤, ∴当20x时,W 最大为()2040.80.220816⨯+⨯=∵816934.4<, ∴W 最大为934.4元. 【点睛】本题主要考查不定方程和不等式的应用,解题的关键是正确解读题意列出方程和不等式.18.1【分析】根据二元一次方程的定义列出关于ab 的二元一次方程组通过解方程组来求ab 的值【详解】根据题意得解得:故答案是:21【点睛】本题主要考查了二元一次方程定义关键是掌握含有两个未知数并且含有未知数解析:1 【分析】根据二元一次方程的定义列出关于a 、b 的二元一次方程组,通过解方程组来求a ,b 的值. 【详解】根据题意,得2413231a b a b +-=⎧⎨--=⎩,解得:21a b =⎧⎨=⎩.故答案是:2,1. 【点睛】本题主要考查了二元一次方程定义,关键是掌握含有两个未知数,并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程.19.45【分析】设甲乙丙三种水稻各种植了a 亩b 亩c 亩乙种水稻平均亩产量的增长率为x 根据题意列出方程组进行解答便可【详解】解:设甲乙丙三种水稻各种植了a 亩b 亩c 亩乙种水稻平均亩产量的增长率为x 根据题意得化解析:45% 【分析】设甲、乙、丙三种水稻各种植了a 亩,b 亩,c 亩,乙种水稻平均亩产量的增长率为x ,根据题意列出方程组进行解答便可. 【详解】解:设甲、乙、丙三种水稻各种植了a 亩,b 亩,c 亩,乙种水稻平均亩产量的增长率为x ,根据题意得,300500400450()4003004300(130%)500(1)400(130%)450()(140%)a b c a b c c a a b x c a b c ++=++⎧⎪=⨯⎨⎪+++++=+++⎩化简整理得:30350241311a b c c a bx a b c -+=⎧⎪=⎨⎪=++⎩, 解得:0.4545%x ==; 故答案为:45%. 【点睛】本题主要考查了方程组解应用题,关键是读懂题意正确列出方程组.20.【分析】由题意得碗的高度和碗的个数的关系式为y=kx+b 然后代入题中的两种情况得根据每格橱柜最高35cm 即可求出答案【详解】设碗的个数为xcm 碗摞起来的高度为ycm 可得碗的高度和碗的个数的关系式为y 解析:20【分析】由题意得,碗的高度和碗的个数的关系式为y=kx+b ,然后代入题中的两种情况得352y x =+, 根据每格橱柜最高35cm ,即可求出答案. 【详解】设碗的个数为x cm ,碗摞起来的高度为y cm ,可得碗的高度和碗的个数的关系式为y=kx+b ,根据4只碗摞起来的高度为11cm ,8只碗摞起来的高度为17cm ,列方程组411817k b k b +=⎧⎨+=⎩ ,解得:325k b ⎧=⎪⎨⎪=⎩ ,352y x =+, 碗橱每格的高度为35cm ,33552x =+, 解得:20x,所以每格最多能放20个碗,故答案为:20. 【点睛】本题考查了二元一次方程的应用,关键是根据题意,找出合适的等量关系式,列出方程组求解.三、解答题21.(1)515x y =⎧⎨=⎩;(2)81x y =⎧⎨=-⎩【分析】(1)由4⨯①-②消去x ,求出y 的值,再把y 的值代入①求出x 的值即可;(2)由3⨯①+5⨯②消去y ,求出x 的值,再把x 的值代入①求出y 的值即可. 【详解】解:(1)4⨯①-②,得44321065x x y y --=--,解得15y =, 把15y =代入①,得15552x -==, ∴515x y =⎧⎨=⎩;(2)3⨯①+5⨯②,得915401557335x y x y ++-=+,解得8x =, 把8x =代入①,得24519y +=,解得1y =-, ∴81x y =⎧⎨=-⎩.【点睛】本题考查二元一次方程组,解题的关键是掌握二元一次方程组的解法. 22.学生人数为240人,原计划租用45座客车5辆 【分析】此题注意总人数是不变的,设原计划租用45座客车x 辆,学生人数为y 人.根据“原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,其余客车恰好坐满”列出方程组并解答. 【详解】解:设原计划租用45座客车x 辆,学生人数为y 人. 根据题意,得154560(1)y xx y -=⎧⎨-=⎩.解,得5240x y =⎧⎨=⎩.答:学生人数为240人,原计划租用45座客车5辆. 【点睛】本题考查了二元一次方程组的应用.此题要抓住不变量,可以有不同的解法,本题关键是找到等量关系.23.(1)AE=3;(2)BC=20 【分析】(1)设AE =a ,CD =b ,根据线段的和差倍数关系即可求解; (2)设AE =a ,CD =b ,根据线段的和差倍数关系即可求解;【详解】解:(1)设AE=a,CD=b,∵EC=4AE,D为线段BC的中点,∴CE=4a,AC=AE+CE=5a,BC=2b,∵AD=20,AB=25∴AC+CD=5a+b=20AC+BC=5a+2b=25解得:a=3,b=5即AE=a=3;(2)设AE=a,CD=b,∵EC=4AE,D为线段BC的中点,∴CE=4a,BC=2b,∵DE=CE+CD=4a+b=14AB=AE+CE+BC=5a+2b=25解得:a=1,b=10即BC=2b=20.【点睛】本题考查两点间的距离和二元一次方程组,解题的关键是熟练掌握线段中点的性质及线段的和差倍数.24.(1)34xy=⎧⎨=⎩;(2)5xy=⎧⎨=⎩;(3)11xy=⎧⎨=⎩;(4)322uv⎧=-⎪⎨⎪=⎩【分析】根据二元一次方程组的运算法则求解即可.【详解】(1)35 5223x yx y-=⎧⎨+=⎩①②,①×2+②,得:11x=33,解得:x=3,将x=3代入②,得:15+2y=23,解得:y=4,则方程组的解为34 xy=⎧⎨=⎩;(2)5225 3415x yx y+=⎧⎨-=⎩①②,①×2+②,得:13x=65,解得:x=5,将x=5代入①,得:25+2y=25,解得:y =0, 所以方程组的解为5x y =⎧⎨=⎩; (3)1312223x y x y ⎧-=-⎪⎨⎪+=⎩①②, ②﹣①×4,得:7y =7, 解得:y =1,将y =1代入②,得:2x +1=3, 解得:x =1,则方程组的解为11x y =⎧⎨=⎩;(4)原方程组整理可得:896242514u v u v +=⎧⎨+=⎩①②,①×3﹣②,得:2v =4, 解得:v =2,将v =2代入①,得:8u +18=6, 解得:u =32-, 所以方程组的解为322u v ⎧=-⎪⎨⎪=⎩.【点睛】本题主要考查的是解二元一次方程组,熟练掌握加减消元法解二元一次方程组是解答本题的关键.25.(1)7x =;(2)11x y =-⎧⎨=-⎩.【分析】(1)方程去分母,去括号,移项,合并同类项,把x 系数化为1,即可求出解; (2)方程组利用加减消元法求出解即可. 【详解】(1)去分母得:()()33122130x x --+=, 去括号得:934230x x ---=, 移项合并得:535x =, 解得:7x =; (2)23167x y x y -=⎧⎨+=-⎩①②,①2⨯+②得:55x =-, 解得:1x =-,把1x =-代入①得:1y =-,则方程组的解为11x y =-⎧⎨=-⎩.【点睛】本题考查了解二元一次方程组,以及解一元一次方程,解方程组利用了消元的思想,消元的方法有:加减消元法与代入消元法.26.(1) 18辆;(2) 租45座的客车2辆,租60座客车最省钱. 【分析】(1)设单租45座客车x 辆,则参加春游的师生总人数为45x 人,根据人数与客车的数量关系建立方程求出其解即可;(2)等量关系为:45座客车能坐的人数+60座客车能坐的人数=秋游的师生总人数,选取正整数解,比较即可. 【详解】解:(1)设单租45座客车x 辆,则参加春游的师生总人数为45x 人.根据题意,得 45x =60(x−4)−30, 解得:x =18.答:只租45座的客车,需要18辆车; (2)解:45×18=810(人)设租45座客车x 辆,60座客车y 辆. 根据题意得: 45x +60y =810. ∵x ,y 均为正整数,∴x =2,y =12;或x=6,y=9;或x=10,y=6;或 x=14,y=3. 2500×2+3000×12=41000(元) 2500×6+3000×9=42000(元) 2500×10+3000×6=43000(元) 2500×14+3000×3=44000(元) ∵41000﹤42000﹤43000﹤44000∴租45座的客车2辆,租60座客车12辆最省钱. 【点睛】本题主要考查了用一元一次方程及二元一次方程解决实际问题,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系.。

七年级下册数学易错题100道

七年级下册数学易错题100道

七年级下册数学易错题100道1.甲、乙、丙三人在a、b两块地植树,a地要植棵,b地要植棵.已知甲、乙、丙每天分别能植树24,30,32棵,甲在a地植树,丙在b地植树,乙先在a地植树,然后转到b地植树.两块地同时开始同时结束,乙应在开始后第几天从a地转到b地?2.有三块草地,面积分别是5,15,24亩.草地上的草一样厚,而且长得一样快.第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天?3.某工程,由甲、乙两队承揽,2.4天可以顺利完成,须要缴付元;由乙、丙两队承揽,3+3/4天可以顺利完成,须要缴付元;由甲、丙两队承揽,2+6/7天可以顺利完成,须要缴付元.在确保一星期内顺利完成的前提下,挑选哪个队单独承揽费用最少?4.一个圆柱形容器内放有一个长方形铁块.现打开水龙头往容器中灌水.3分钟时水面恰好没过长方体的顶面.再过18分钟水已灌满容器.已知容器的高为50厘米,长方体的高为20厘米,求长方体的底面面积和容器底面面积之比.5.甲、乙两位老板分别以同样的价格供货一种时装,乙供货的套数比甲多1/5,然后甲、乙分别按赢得80%和50%的利润定价出售.两人都全部售罄后,甲仍比乙多赢得一部分利润,这部分利润又恰好这么他再供货这种时装10套,甲原来供货这种时装多少套?6.有甲、乙两根水管,分别同时给a,b两个大小相同的水池注水,在相同的时间里甲、乙两管注水量之比是7:5.经过2+1/3小时,a,b两池中注入的水之和恰好是一池.这时,甲管注水速度提高25%,乙管的注水速度不变,那么,当甲管注满a池时,乙管再经过多少小时注满b池?7.小明早上从家步行回去学校,步上一半路程时,爸爸辨认出小明的数学书偷在家里,随即骑车去给小明送书,甩开时,小明除了3/10的路程未步上,小明随即上了爸爸的车,由爸爸送至学校,这样小明比独自步行提前5分钟回校.小明从家至学校全部步行须要多少时间?8.甲、乙两车都从a地出发经过b地驶往c地,a,b两地的距离等于b,c两地的距离.乙车的速度是甲车速度的80%.已知乙车比甲车早出发11分钟,但在b地停留了7分钟,甲车则不停地驶往c地.最后乙车比甲车迟4分钟到c地.那么乙车出发后几分钟时,甲车就超过乙车.9.甲、乙两辆洁净车继续执行东、西城间的公路打扫任务.甲车单独打扫须要10小时,乙车单独打扫须要15小时,两车同时从东、西城并肩送出,碰面时甲车比乙车多打扫12千米,问东、西两城距离多少千米?10.今有重量为3吨的集装箱4个,重量为2.5吨的集装箱5个,重量为1.5吨的集装箱14个,重量为1吨的集装箱7个.那么最少需要用多少辆载重量为4.5吨的汽车可以一次全部运走集装箱?小学数学应用题综合训练(02)11. 师徒二人共同加工个零件,师傅加工零件个数的1/3比徒弟加工零件个数的1/4还多10个,那么徒弟一共加工了几个零件?12.一辆大轿车与一辆小轿车都从甲地驶向乙地.大轿车的速度就是小轿车速度的80%.未知大轿车比小轿车晚启程17分钟,但在两地中点停在了5分钟,才稳步驶向乙地;而小轿车启程后中途没停在,轻易驶向乙地,最后小轿车比大轿车早4分钟抵达乙地.又言大轿车就是上午10时从甲地启程的.那么小轿车就是在上午什么时候冲上大轿车的.13.一部书稿,甲单独打字要14小时完成,,乙单独打字要20小时完成.如果甲先打1小时,然后由乙接替甲打1小时,再由甲接替乙打1小时.......两人如此交替工作.那么打完这部书稿时,甲乙两人共用多少小时?14. 徐气球2元3个,花掉气球3元2个,学校共买了32个气球,其中花掉气球比黄气球太少4个,学校卖哪种气球用的钱多?15.一只帆船的速度是60米/分,船在水流速度为20米/分的河中,从上游的一个港口到下游的某一地,再返回到原地,共用3小时30分,这条船从上游港口到下游某地共走了多少米?16.甲粮仓装43吨面粉,乙粮仓装37吨面粉,如果把乙粮仓的面粉放入甲粮仓,那么甲粮仓装进后,乙粮仓里剩的面粉占到乙粮仓容量的1/2;如果把甲粮仓的面粉放入乙粮仓,那么乙粮仓装进后,甲粮仓里剩的面粉占到甲粮仓容量的1/3,每个粮仓各可以上装面粉多少吨?17. 甲数除以乙数,乙数除以丙数,商相等,余数都是2,甲、乙两数之和是.那么甲、乙丙三数之和是几?18.一辆车从甲地驶往乙地.如果把车速增加10%,那么必须比原定时间晚1小时抵达,如果以原速高速行驶千米,再把车速提升20%,那么基数排序原定时间早1小时抵达.甲、乙两地之间的距离就是多少千米?19.某校参加军训队列表演比赛,组织一个方阵队伍.如果每班60人,这个方阵至少要有4个班的同学参加,如果每班70人,这个方阵至少要有3个班的同学参加.那么组成这个方阵的人数应为几人?20.甲、乙、丙三台车床加工方形和圆形的两种零件,未知甲车床每加工3个零件中存有2个就是圆形的;乙车床每加工4个零件中存有3个就是圆形的;丙车床每加工5个零件中存有4个就是圆形的.这天三台车床共加工了58个圆形零件,而加工的方形零件个数的比为4:3:3,那么这天三台车床共加工零件几个?小学数学应用题综合训练(03)21.圈金属线长30米,撷取长度为a的金属线3根,长度为b的金属线5根,剩的金属线如果再撷取2根长度为b的金属线还差0.4米,如果再撷取2根长度为a的金属线则还差2米,长度为a的等同于几米?22.某公司要往工地运送甲、乙两种建筑材料.甲种建筑材料每件重千克,共有件,乙种建筑材料每件重千克,共有80件,已知一辆汽车每次最多能运载4吨,那么5辆相同的汽车同时运送,至少要几次?23.从王力家至学校的路程比至体育馆的路程长1/4,一天王力在体育馆看看回去球赛后用17分钟的时间跑到家,稍稍歇息后,他又用了25分钟跑至学校,其速度比从体育馆回去时每分钟快15米,王力家至学校的距离就是多少米?24.师徒两人合作完成一项工程,由于配合得好,师傅的工作效率比单独做时要提高1/10,徒弟的工作效率比单独做时提高1/5.两人合作6天,完成全部工程的2/5,接着徒弟又单独做6天,这时这项工程还有13/30未完成,如果这项工程由师傅一人做,几天完成?25.六年级五个班的同学共植树棵.未知每个班植树的棵数都不相同,且按数量从多至太少的位列恰好就是一、二、三、四、五班.又言一班冈本的棵数就是二、三班冈本的棵数之和,二班冈本的棵数就是四、五班冈本的棵数之和,那么三班最多植树多少棵?26. 甲每小时跑13千米,乙每小时跑11千米,乙比甲多跑了20分钟,结果乙比甲多跑了2千米.乙总共跑了多少千米?27.存有高度成正比的a,b两个圆柱形容器,内口半径分别为6厘米和8厘米.容器a中装满水,容器b就是觑的,把容器a中的水全部放入容器b中,测得容器b中的水深比容器低的7/8还高2厘米.容器的高度就是多少厘米?28. 有吨的货物,用载重为9吨的汽车运送.已知汽车每次往返需要1小时,实际上汽车每次多装了1吨,那么可提前几小时完成.29.师、徒二人第一天共加工零件个,第二天使用了新工艺,师傅加工的零件比第一天减少了24%,徒弟减少了45%,两人共加工零件个,第二天师傅加工了多少个零件?徒弟加工了几个零件?30. 奋斗小学组织六年级同学到百花山进行野营拉练,行程每天增加2千米.去时用了4天,回来时用了3天,问学校距离百花山多少千米?小学数学应用题综合训练(04)31.某地收取电费的标准是:每月用电量不超过50度,每度收5角;如果超出50度,超出部分按每度8角收费.每月甲用户比乙用户多交3元3角电费,这个月甲、乙各用了多少度电?32.王师傅计划用2小时加工一批零件,当还剩个零件时,机器发生故障,效率比原来减少1/5,结果比原计划延后20分钟顺利完成任务,这批零件存有多少个?33.妈妈给了红红一些钱去买贺年卡,有甲、乙、丙三种贺年卡,甲种卡每张1.20元.用这些钱买甲种卡要比买乙种卡多8张,买乙种卡要比买丙种卡多买6张.妈妈给了红红多少钱?乙种卡每张多少钱?34.一位老人存有五个儿子和三间房子,临终前立下遗嘱,将三间房子让给三个儿子各一间.做为补偿,分后至房子的三个儿子每人掏出元,平分给没抽到房子的两个儿子.大家都说道这样的分配公平合理,那么每间房子的价值就是多少元?35.小明和小燕的画册都不足20本,如果小明给小燕a本,则小明的画册就是小燕的2倍;如果小燕给小明a本,则小明的画册就是小燕的3倍.原来小明和小燕各有多少本画册?36.存有白、徐、黑三种球共个.如果抽出红球的1/3,黄球的1/4,白球的1/5,则还剩个;如果抽出红球的1/5,黄球的1/4,白球的1/3,则剩个,问(1)旧有黄球几个?(2)旧有红球、白球各几个?37.爸爸、哥哥、妹妹三人现在的年龄和是64岁,当爸爸的年龄是哥哥年龄的3倍时,妹妹是9岁.当哥哥的年龄是妹妹年龄的2倍时,爸爸是34岁.现在三人的年龄各是多少岁?38.b在a,c两地之间.甲从b地至a地回去写信,启程10分钟后,乙从b地启程回去送来另一封信.乙启程后10分钟,丙辨认出甲乙刚好把两封信拎倒转了,于是他从b地启程骑车去追上甲和乙,以便把信调来.未知甲、乙的速度成正比,丙的速度就是甲、乙速度的3倍,丙从启程至把信调来后回到b地至少必须用多少时间?39.甲、乙两个车间共有94个工人,每天共加工竹椅.由于设备和技术的不同,甲车间平均每个工人每天只能生产15把竹椅,而乙车间平均每个工人每天可以生产43把竹椅.甲车间每天竹椅产量比乙车间多几把?40.甲放学回家东行10分钟,乙放学回家东行14分钟.未知乙回家的路程比甲回家的路程多1/6,甲每分钟比乙多跑12米,那么乙回家的路程就是几米?小学数学应用题综合训练(05)41.某商品每件成本72元,原来按定价出售,每天可以卖出件,每件利润为成本的25%,后来按定价的90%出售,每天销售量提升至原来的2.5倍,照这样排序,每天的利润比原来减少几元?42.甲、乙两列火车的速度比是5:4.乙车先发,从b站开往a站,当走到离b站72千米的地方时,甲车从a站发车往b站,两列火车相遇的地方离a,b两站距离的比是3:4,那么a,b两站之间的距离为多少千米?43.小、小猴子共35只,它们一起回去栽种水蜜桃.猴王无此的时候,一只小猴子一小时可以栽种15千克,一只小猴子一小时可以栽种11千克.猴王到场监督的时候,每只猴子不论大小每小时都可以栽种12千克.一天,栽种了8小时,其中只有第一小时和最后一小时存有猴王到场监督,结果共栽种千克水蜜桃.在这个猴群中,共计小猴子几只?44.某次数学竞赛设一、二等奖.已知(1)甲、乙两校获奖的人数比为6:5.(2)甲、乙来年感校获二等奖的人数总和占两校获奖人数总和的60%.(3)甲、乙两校获二等奖的人数之比为5:6.问甲校获二等奖的人数占该校获奖总人数的百分数是几?45.未知小明与小强步行的速度比是2:3,小强与小刚步行的速度比是4:5.未知小刚10分钟比小明多跑米,那么小明在20分钟里比小强太少跑几米?46.加工一批零件,原计划每天加工15个,若干天可以完成.当完成加工任务的3/5时,采用新技术,效率提高20%.结果,完成任务的时间提前10天,这批零件共有几个?47.甲、乙二人在米的圆形滑行道上展开米比赛.两人从起点同时同向启程,已经开始时甲的速度为8米/秒,乙的速度为6米/秒,当甲每次甩开乙以后,甲的速度每秒增加2米,乙的速度每秒增加0.5米.这样下去,直至甲辨认出乙第一次从后面冲上自己已经开始,两人都把自己的速度每秒减少0.5米,直至终点.那么者抵达终点时,另一人距离终点多少米?48.小明从家去学校,如果他每小时比原来多走1.5千米,他走这段路只需原来时间的4/5;如果他每小时比原来少走1.5千米,那么他走这段路的时间就比原来时间多几分几之?49. 甲、乙、丙、丁现在的年龄和就是64岁.甲21岁时,乙17岁;甲18岁时,丙的年龄就是丁的3倍.丁现在的年龄就是几岁?50.加工一批零件,原计划每天加工30个.当加工完1/3时,由于改进了技术,工作效率提高了10%,结果提前了4天完成任务.问这批零件共有几个?小学数学应用题综合训练(06)51.自动扶梯以均匀的速度向上行驶,一男孩与一女孩同时从自动扶梯向上走,男孩的速度是女孩的2倍,已知男孩走了27级到达扶梯的顶部,而女孩走了18级到达顶部.问扶梯露在外面的部分有多少级?52. 两堆苹果一样轻,第一堆上买进2/3,第二堆上买进50千克,如果第一堆上剩的苹果比第二堆上剩的苹果太少,那么两堆剩的苹果至少存有多少千克?53.甲、乙两车同时从a地出发,不停的往返行驶于a、b两地之间.已知甲车的速度比乙车快,并且两车出发后第一次和第二次相遇都杂途中c地,甲车的速度是乙车的几倍?54.一只小船从甲地至乙地来往一次共用2小时,回去时顺水,比去时的速度每小时多行8千米,因此第二小时比第一小时多行6千米.谋甲、乙两地的距离.55.甲、乙两车分别从a、b两地出发,并在a,b两地间不断往返行驶.已知甲车的速度是15千米/小时,甲、乙两车第三次相遇地点与第四次相遇地点相差千米.求a、b两地的距离.56.某人沿着向上移动的自动扶梯从顶部朝底下用了7分后30秒,而他沿着自动扶梯从底朝上追到顶部就用了1分后30秒.如果此人不跑,那么乘着扶梯从底上浮必须多少时间?如果停水,那么此人沿扶梯从底跑上浮必须多少时间?57.甲、乙两个圆柱体容器,底面积比为5:3,甲容器水深20厘米,乙容器水深10厘米.再往两个容器中注入同样多的水,使得两个容器中的水深相等.这时水深多少厘米?58.a、b两地距离千米,甲、乙两车8:00同时从a地启程至b地,速度分别为60千米/小时,54千米/小时,丙车8:30从b地启程至a地,速度为48千米/小时.丙车与甲、乙两车距离成正比时就是几点几分?59. 一个长方形的周长是厘米,如果它的宽增加1/5,长减少1/8,就得到一个相同周长的新长方形.求原长方形的面积.60. 存有一长方形,它的短与阔的比是5:2,对角线长29厘米,谋这个长方形的面积.小学数学应用题综合训练(07)61.存有一个果园,去年结果的果树比不结果的果树的2倍还多60棵,今年又存有棵果树吴厝庄了果,这时结果的果树刚好就是不结果的果树的5倍.果园里共计多少棵果树?62.小明步行从甲地出发到乙地,李刚骑摩托车同时从乙地出发到甲地.48分钟后两人相遇,李刚到达甲地后马上返回乙地,在第一次相遇后16分钟追上小明.如果李刚不停地往返于甲、乙两地,那么当小明到达乙地时,李刚共追上小明几次?63.同样跑米,小明必须持球,父亲必须持球.父子同时同方向从同一地点启程,如果每跑一步所用的时间相同,那么父亲踏进米后往回跑,还要跑多少步就可以碰到小明?64. 一艘轮船在两个港口间航行,水速为6千米/小时,顺水航行需要4小时,逆水航行需要7小时,求两个港口之间的距离.65.有甲、乙、丙三辆汽车,各以一定的速度从a地驶往b地,乙比丙晚启程10分钟,启程后40分钟甩开丙;甲比乙又晚启程10分钟,启程后60分钟甩开丙,问甲启程后几分钟甩开乙?66.甲、乙合作完成一项工作,由于配合的好,甲的工作效率比单独做时提高1/10,乙的工作效率比单独做时提高1/5,甲、乙合作6小时完成了这项工作,如果甲单独做需要11小时,那么乙单独做需要几小时?67.a、b、c、d、e五名学生排好一纵排,他们的手中共拿着20面小旗.现晓得,东站在c右边的学生共拿着11面小旗,东站在b左边的学生共拿着10面小旗,东站在d左边的学生共拿着8面小旗,东站在e左边的学生共拿着16面小旗.五名学生从左至右依次就是谁?各拎几面小旗?68. 小明在米长的环行的跑道上跑了一圈,已知他前一半时间每秒跑5米,后一半时间每秒跑4米,问他后一半路程用了多少时间?69.小英和小明为了测量直冲而过的火车的长度和速度,他们拎了两块秒表,小英用一块念法下火车从他面前通过所花的时间就是15秒,小明用另一块念法下了从车头过第一根电线杆至车尾过第二根电线杆所花的时间就是18秒,未知两根电线杆之间的距离就是60米,谋火车的全长和速度.70.小明从家到学校时,前一半路程步行,后一半路程乘车;他从学校到家时,前1/3时间乘车,后2/3时间步行.结果去学校的时间比回家的时间多20分钟,已知小明从家到学校的路程是多少千米?小学数学应用题综合训练(08)71. 数学练习共举行了20次,共出试题道,每次出的题数是16,21,24问出16,21,24题的分别有多少次?72. 一个整数除以2余1,用税金的商除以5余4,再用税金的商除以6余1.用这个整数除以60,余数就是多少?73.少先队员在校园里栽的苹果树苗是梨树苗的2倍.如果每人栽3棵梨树苗,则余2棵;如果每人栽7棵苹果树苗,则少6棵.问共有多少名少先队员?苹果和梨树苗共有多少棵?74.某人上开汽车从a城至b城要行千米,已经开始时他以56千米/小时的速度高速行驶,但途中因汽车故障停放维修用回去半小时,为了按时抵达,他必须把速度减少14千米/小时,跑完以后的路程,他洗车的地方距离a城多少千米?75.甲、乙两人分别从a、b两地同时出发,相向而行,乙的速度是甲的2/3,两人相遇后继续前进,甲到达b地,乙到达a地立即返回,已知两人第二次相遇的地点距离第一次相遇的地点是米,求a、b两地的距离.76.一条船来往于甲、乙两港之间,未知船在静水中的速度为9千米/小时,平时顺行与逆行所用时间的比为2:1.一天因下雪,水流速度为原来的2倍,这条船来往共用10小时,问甲、乙两港距离多少千米?77.某学校入学考试,确定了录取分数线,报考的学生中,只有1/3被录取,录取者平均分比录取分数线高6分,没有被录取的同学其平均分比录取分数线低15分,所有考生的平均分是80分,问录取分数线是多少分?78.一群学生弄砖,如果存有12人每人各搬7块,其余的每人弄5块,那么最后余下块;如果存有30人每人各搬8块,其余的每人弄7块,那么最后余下20块.问学生共计多少人?砖存有多少块?79.甲、乙两车分别从a、b两地同时相向而行,已知甲车速度与乙车速度之比为4:3,c 地在a、b之间,甲、乙两车到达c地的时间分别是上午8点和下午3点,问甲、乙两车相遇是什么时间?80. 一次棋赛,记分方法就是,胜者得2分后,负者得0分后,和棋两人各得1分后,每位球手都与其他球手各对局一次,现晓得球手中男生就是女后生的10倍,但其总得分只为女生罚球的4.5倍,问共计几名女生参赛?女生共得几分?小学数学应用题综合训练(09)81.存有若干个自然数,它们的算术平均数就是10,如果从这些数中换成的一个,则余下的算术平均数为9;如果换成最轻的一个,则余下的算术平均数为11,这些数最多存有多少个?这些数中的数值就是几?82. 某班有少先队员35人,这个班有男生23人,这个班女生少先队员比男生非少先队员多几人?83.小东计划至周口店参观猿人遗址.如果他坐汽车以40千米/小时的速度高速行驶,那么比骑车去晚至3小时,如果他以8千米/小时的速度步行回去,那么比骑车晚至5小时,小东的出发点至周口店存有多少千米?84. 甲、乙两船在相距90千米的河上航行,如果相向而行,3小时相遇,如果同向而行则15小时甲船追上乙船.求在静水中甲、乙两船的速度.85.二年级两个班共计学生90人,其中少先队员存有71人,一班少先队员占到本班人数的75%,二班少先队员占到本班人数的5/6.一班少先队员人数比二班少先队员人数多几人?86.一个容器中已注满水,有大、中、小三个球.第一次把小球沉入水中,第二次把小球取出,把中球沉入水中,第三次把中球取出,把小球和大球一起沉入水中,现知道每次从容器中溢出水量的情况是:第一次是第二次的1/2,第三次是第二次的1.5倍.求三个球的体积之比.87. 某人翻过一座山用了2小时,回到用了2.5小时,他上山的速度就是米/小时,下山的速度就是米/小时.问翻过这座山必须跑多少米?88.钢筋原材料每根长7.3米,每套钢筋架子用长2.4米、2.1米和1.5米的钢筋各一段.现需要绑好钢筋架子套,至少要用去原材料多少根?89. 存有一块铜锌合金,其中铜和锌的比2:3.现晓得再重新加入6克锌,熔融后共得崭新合金36克,崭新合金中铜和锌的比是多少?90.小明通常总是步行上学,有一天他想锻炼身体,前1/3路程快跑,速度是步行速度的4倍,后一段的路程慢跑,速度是步行速度的2倍.这样小明比平时早35分到校,小明步行上学需要多少分钟?小学数学应用题综合训练(10)91.甲、乙、丙三人,甲的年龄比乙的年龄的2倍还大3岁,乙的年龄比丙的年龄的2倍小2岁,三个人的年龄之和是岁,分别求出甲、乙、丙的年龄.92.快车以60千米/小时的速度从甲站向乙站送出,1.5小时后,慢车以40千米/小时的速度从乙站行甲站送出,.两车碰面时,碰面点距两站的中点70千米.甲、乙两站距离多少千米?93.甲、乙两车先后离开学校以相同的速度开往博物馆,已知8:32分甲车与学校的距离是乙车与学校距离的3倍,8:39分甲车与学校的距离是乙车与学校距离的2倍,求甲车离开学校的时间.94.存有一个工作小组,当每个工人在各自的工作岗位上工作时,7小时可以生产一批零件,如果互换工人甲、乙的岗位,其他人维持不变,那么可以提早1小时,顺利完成这批零件,如果互换工人丙、丁的岗位,其他人维持不变,也可以提早1小时,问如果同时互换甲与乙、丙与丁的岗位,其他人维持不变,那么顺利完成这批零件须要多长的时间.95. 用10块长7厘米、宽5厘米、高3厘米的长方体积木,拼成一个长方体,这个长方体的表面积最小是多少?96.公圆只购两种门票:个人票每张5元,10人一张的团体票每张30元,出售10张以上的团体票的可以优惠10%.(1)甲单位45人月华,按以上规定买票,最少应付多少钱?(2)乙单位人月华,按以上的规定买票,最少应付多少钱?97. 甲、乙、丙三人,参加一次考试,共得分,已知甲得分的1/3,乙得分的1/4与丙得分的一半减去22分都相等,那么丙得分多少?。

人教版七年级数学易错题(含解析)

人教版七年级数学易错题(含解析)

七年级数学易错题1、a一定负数吗?错解:一定.剖析:带有负号的数不一定就是正数,关键是确定a是一个什么数,这就要应用分类讨论的思想进行讨论.解:不一定,a 可能是正数,0,负数分析:若a 是正数,则a就是负数,若a=0 则a=0 若a 是负数,则a 就是正数.2、在数轴上点A表示的数是7.点B,C表示的两个数互为相反数且C与A之间的距离为2,求点B,C 对应的数.错解:点C与点A 之间的距离为2,点C 表示的数为5.点B 和点C 表示的数互为相反数,B 表示的数为-5.剖析:点C与点A之间的距离为2,则点C有可能在点A的左侧也有可能在点A右侧.故要分情况讨论.正解:点C与点A 之间的距离为2,点C在点A的左侧2个单位长度或点C在点A的右侧2个单位长度.① 点C在点A的左侧2个单位长度,则点C表示的数为5.点B 和点C 表示的数互为相反数,B 表示的数为-5.② 点C在点A的右侧2个单位长度,则点C表示的数为9.点B 和点C 表示的数互为相反数,B 表示的数为-9.1 1 1 13、.计算:1 5 5 9 9 13 13 17 2001 2005错解:原式=1 1 1 1 1 1 1 1 1 15 5 9 9 13 13 17 2001 20051=120052004=2005剖析:由于学生在长期的学习中形成的思维定式,用类似于解1 1 1 1 11 1 1 1 1方法直接去求解.而忽视本12 23 34 2003 2004 2004 20051 4 1 1 4413 13 17 20011 2005题1 1 4,1 1 4结果中分子是4而不是1.故这样做是错的.5 5 5 9 451正解:原式=55991 1 1 156= (1 )4 2005 = 501.=2005174、计算: 391713 . 2617错解】原式 39 13 17 1326 17 507 21 515 .2错解剖析】本题错误原因是把 3917 看成 39与17 的和,而它应是 39与26 2617 17的和. 26正确解答】原式 39 13 17 13 507 17 5151 .26 2 25、计算:1) 14 61 2 ( 3)2 ;错解剖析】错解一中是将 14计算成 1得到163,错解二中是去括号符号出错解】错解一:原式 =1- 16 =1-16 =1+76=13.=6.错解二:原式 =-1- 1 × 6 =-1- 1 ×6 =-1-76 13 =- . 62-9) -7)2-9) -7)13错得到7正确答案】原式 =-1- 1×( 2-9)6 1=-1- 1 ×(-7)6=- 1+ 76 162) ( 1)4 32 22 ( 1)2.2错解】原式 =1- 9÷ 1=-8.错解剖析】没有按照运算顺序计算,而是先计算 22 ( 3)2 .2正确答案】原式 =1-9× 1 × 144=1-916 7=16.1)要表示的是“比 x 与 y 的和的平方小 x 与 y 的和的数”,应该先求和再求平方即应该是 (x y)2 (x y) ,而不应该是 x 2y7、用代数式表示下列语句:1)比 x 与 y 的和的平方小 x 与 y 的和的数;a 的 2倍与b 的1 的差除以 a 与b 的差的立方 .32) 错解: 1) x 2y 2x y 2) 2a 13b a b 3. 6、 用代数式表示下列语句:1) 比 x 与 y 的和的平方小 x 与 y 的和的数;剖析: 2)是书写不规范,除号要用分数线代替,即应该写成1 2a b3 (a b)3正解:(1)(x y) 2 (x y) (2)12a b3 (a b) 3222)a的2倍与b的1的差除以a与b的差的立方.37373剖析:(1)要表示的是“比 x 与 y 的和的平方小 x 与 y 的和的数”,应该先求和 再求平方即应该是 (x y)2 (x y) ,而不应该是 x 2 y 2x y .2a1b正解:(1)(x y)2 (x y) (2)33(a b) 38、已知方程 (m 3)x 4 m 2是关于 x 的一元一次方程. 求:(1) m 的值; (2) 写出这个关于 x 的一元一次方程. 【错解】 m=±3. 【剖析】忘记 m-3≠0 这个条件.m 2 1 【正解】(1)由 m 2 1得 m=-3.m 3 0 (2)-6x +4=-5.9、解方程 7x -1 x 1(x 1) 2(x 1).2 23 1 1 2【错解】 7 x - 1 x 1(x 1) 2(x 1).2 2 342x 3x 3(x 1) 4(x 1) . 42x 3x 3x 3 4x 4 . 32x=-7.7x= .3211 【剖析】 去中括号时 1(x 1)漏乘系数 1 ,另外,同样在这一步去括号时忘 22记了考虑符号问题. 【正解】第一次去分母,得142 x - 3 x (x 1) 4(x 1).2第一次去括号,得 42 x - 3x 3(x 1) 4x 4 .2 第二次去分母,得 84 x- 6x + 3x -3=8x-8. 移项,合并同类项,得 73 x =- 5. 把系数化为 1,得x =10. 解方程 x 1 = 5.错解:(1) x 2 y 2x y2) 2a 1b a b 3.32)是书写不规范,除号要用分数线代替,即应该写成1 2a b3 (a b)3【错解】由x 1=5 得到x- 1=5.∴ x=6.【剖析】去绝对值符号必须考虑正负性x-1=5 或x-1=-5.【正解】由x 1=5得到x- 1=5或x- 1=- 5.∴ x=6 或x=-4.11、某水果批发市场香蕉的价格如下表:张强两次共购买香蕉50千克(第二次多于第一次),共付264元,请问张强第一次、第二次分别购买香蕉多少千克?【错解】⑴当第一次购买香蕉少于20千克,第二次购买香蕉20 千克以上但不超过40千克时,设第一次购买x 千克香蕉,第二次购买(50-x)千克香蕉,根据题意,得:6x+5(50-x)=264,解得:x=14.50-14=36(千克).∴第一次购买14 千克香蕉,第二次购买36 千克香蕉.⑵当第一次购买香蕉少于20 千克,第二次香蕉超过40千克的时候,设第一次购买x 千克香蕉,第二次购买(50-x)千克香蕉,根据题意,得:6x+4(50-x)=264,解得:x=32.∴第一次购买32 千克香蕉,第二次购买18 千克香蕉.【剖析】本题是一道分类讨论题,分类讨论的关键是第二次的购买量,关键得考虑第二次多于第一次,解题时应该重点考虑.【正解】⑴当第一次购买香蕉少于20千克,第二次香蕉20 千克以上但不超过40 千克的时候,设第一次购买x 千克香蕉,第二次购买(50-x)千克香蕉,根据题意,得:6x+5(50-x)=264,解得:x=14.50-14=36(千克).∴第一次购买14 千克香蕉,第二次购买36 千克香蕉.⑵当第一次购买香蕉少于20 千克,第二次香蕉超过40千克的时候,设第一次购买x 千克香蕉,第二次购买(50-x)千克香蕉,根据题意,得:6x+4(50-x)=264,解得:x=32(不符合题意,舍去).答:第一次购买14 千克香蕉,第二次购买36 千克香蕉.12、下列哪些空间图形是柱体?错解:A 、B 、C 、D 都是柱体. 错解剖析:柱体的主要特征是上下两个底面形状、大小完全一样且互相平行.此题错误 地认为 C 、D 也是柱体.图形 C 因为上下底面不平行,所以不是柱体;图形 D 上下底面 大小不等,所以也不是柱体.正确答案: A 和B 是柱体( A 是圆柱, B 是棱柱).13、已知点 B 在直线 AC 上,AB =6,AC =10,P 、Q 分别是 AB 、AC 的中点,求PQ 的长. 错解: PQ=2.错解分析: 这是一道典型的数形结合题, 用几何的思想, 代数的方法进行计算,重点要画 出符合条件的两种图形 ,注重分类的完备性.正确答案:本题 B 点有在线段 AC 上或在射线 CA 上两种可能.由 P 、Q 分别为 AB 、AC 的 11 中点可知 AP = AB =3,AQ = AC =5,所以 PQ =AQ -AP =2 或 PQ =AQ + AP =8.22AP Q B CB P A Q C所以 PQ 的长为 2 或 8.14、 (1)计算 14° 41′ 25;″×5(2)把 26.29 °转化为度、分、秒表示的形式. 错解一 :( 1) 14°41′25″=×750°205′12=5″72°6′2;5″( 2) 26 . 29°= 26°29.′错解二 :( 1) 14°41′25″=×750°205′12=5″91°7′;5″ ( 2) 26 . 29°= 26°2′.9″剖析:角的度量单位度、分、秒之间是六十进制(即满 60 进1),而不是百进制或十进 制,在由大单位化成下一级小单位时应乘以 60,由小单位化成上一级大单位时应除以 60 ,上述错解均因单位间的进制关系不清而致错.正解:( 1)14°41′25″=×750°205′12=5″73°27′;5″ ( 2) 26 . 29°= 26°+0.29°=26°+0.29×60′ =26°+17.4′=26°+ 17′+0.4×60″=26°17′2.4″15、如图,已知∠ AOC =∠ BOC =∠ DOE =90°,问图中是否有与∠ COE 互补的角?错解:观察图形可知,图中没有与∠ COE 互补的角.剖析:图中真的没有与∠ COE 互补的角吗?还是让我们分析后再下结论吧!由∠ AOC =90°可知:∠AOD 与∠COD 互为余角;由∠ DOE=90°可知:∠ COE与∠ COD 互为余角,根据“同角的余角相等”得∠ COE=∠ AOD.可见,要找与∠ COE 互补的角,可转化为找与∠AOD 互补的角,观察图形知:∠ BOD 与∠ AOD 互为补角,因此与∠ COE 互补的角是∠ BOD .由上可知,在识图时,我们不单单要认真观察图形,而且还要仔细分析题设条件,这样才能作出正确的判断.正解:图中有与∠ COE 互补的角,它是∠ BOD .思考:图中有没有与∠ COD 互补的角?。

人教版七年级下册数学第十章 数据的收集、整理与描述含答案(易错题)

人教版七年级下册数学第十章 数据的收集、整理与描述含答案(易错题)

人教版七年级下册数学第十章数据的收集、整理与描述含答案一、单选题(共15题,共计45分)1、下列调查中,最适合采用全面调查的是()A.对全国中学生视力和用眼卫生情况的调查B.对某班学生的身高情况的调查C.对某鞋厂生产的鞋底能承受的弯折次数的调查D.对某池塘中现有鱼的数量的调查2、下列调查适合用全面调查的是()A.检查嫦娥五号探测器的零部件B.调查长江水质情况C.调查一批LED灯的使用寿命D.调查全国初三学生的视力情况3、能清楚的看出每个项目的具体数量的统计图是()A.扇形统计图B.折线统计图C.条形统计图D.以上三种均可4、甲、乙二人在相同条件下各射靶10次,每次射靶成绩如图所示,经计算得:=1,S =1.2,S =5.8,则下列结论中不正确的是()A.甲、乙的总环数相等B.甲的成绩稳定C.甲、乙的众数相同 D.乙的发展潜力更大5、一组数据共40个,分成6组,第1~4组的频数分别是10,5,7,6,第5组的频率是0.10,则第6组的频率是()A.0.15B.0.20C.0.25D.0.306、下列说法不正确的是()A.某种彩票中奖的概率是,买1000张该种彩票一定会中奖B.了解一批电视机的使用寿命适合用抽样调查C.若甲组数据方差=0.39,乙组数据方差=0.27,则乙组数据比甲组数据稳定 D.在一个装有白球和绿球的袋中摸球,摸出黑球是不可能事件7、下面调查统计中,适合采用普查方式的是()A.华为手机的时长占有率B.乘坐飞机的旅客是否携带了违禁物品C.某市市民对中美贸易摩擦的知晓情况D.“比亚迪”汽车每百公里的耗油量8、下图中以OA为边的角出现的频率为()A.20%B.40%C.60%D.80%9、为了准确反映某车队8名司机6月份耗去的汽油费用,且便于比较,那么选用最合适、直观的统计图是()A.折线统计图B.扇形统计图C.条形统计图D.统计表10、从500个数据中用适当的方法抽取50个作为样本进行统计,在频数分布表中,落在126.5~130.5这一组的频率是0.12,那么估计总体数据在126.5~130.5之间的个数为()A.60B.120C.12D.611、某班组织了针对全班同学关于“你最喜欢的一项体育活动”的问卷调查后,绘制出频数分布直方图,由图可知,下列结论正确的是( )A.最喜欢篮球的人数最多B.最喜欢羽毛球的人数是最喜欢乒乓球人数的两倍C.全班共有50名学生D.最喜欢田径的人数占总人数的10%12、下面的折线图描述了某地某日的气温变化情况.根据图中信息,下列说法错误的是()A.4:00气温最低B.6:00气温为24℃C.14:00气温最高D.气温是30℃的时刻为16:0013、为了解中学300名男生的身高情况,随机抽取若干名男生进行身高测量,将所得数据整理后,画出频数分布直方图(如图).估计该校男生的身高在169.5cm~174.5cm之间的人数有()A.12B.48C.72D.9614、为了解某新品种黄瓜的生长情况,抽查了部分黄瓜株上长出的黄瓜根数,得到下面的条形图,观察该图,可知共抽查了60株黄瓜,并可估计出这个新品种黄瓜平均每株结出的黄瓜根数是()A.12B.12.5C.13D.1415、下列说法正确的是( )A.一个游戏的中奖概率是,则做10次这样的游戏一定会中奖B.为了解全国中学生的心理健康情况,应该采用普查的方式 C.一组数据6,8,7,8,8,9,10的众数和中位数都是8 D.若甲组数据的方差S 2甲=0.1,则乙组数据比甲组数据稳定=0.01,乙组数据的方差S 2乙二、填空题(共10题,共计30分)16、在开展“国学诵读”活动中,某校为了解全校1300名学生课外阅读的情况,随机调查了50名学生一周的课外阅读时间,并绘制成如图所示的条形统计图.根据图中数据,估计该校1300名学生一周的课外阅读时间不少于7小时的人数是________.17、给出下列10个数据:63,62,67,69,66,64,65,68,64,65,对这些数据编制频数分布表,其中这组的频数是________.18、为了了解某校七年级500名学生的身高情况,从中抽取了100名学生进行测量,这个样本的容量(即样本中个体的数量)是________.19、在一个不透明的布袋中装有红色、白色玻璃球共40个,除颜色外其他完全相同,小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在0.15左右,则口袋中红色球可能有________个.20、某班女学生人数与男生人数之比是4:5,把男女学生人数分布情况制成扇形统计图,则表示女生人数的扇形圆心角的度数是________.21、小明想了解自己一学期数学成绩的变化趋势,应选用________ 统计图来描述数据.22、从某市不同职业的居民中抽取200户调查各自的年消费额,在这个问题中样本是________23、在大课间活动中,同学们积极参加体育锻炼,小红在全校随机抽取一部分同学就“一分钟跳绳”进行测试,并以测试数据为样本绘制如图所示的部分频数分布直方图(从左到右依次分为六个小组,每小组含最小值,不含最大值)和扇形统计图,若“一分钟跳绳”次数不低于130次的成绩为优秀,全校共有1200名学生,根据图中提供的信息,估计该校学生“一分钟跳绳”成绩优秀的人数为________人.24、教育部规定,初中生每天的睡眠时间应为9个小时,皓皓记录了他一周的睡眠时间,并将统计结果绘制成如图所示的折线统计图,则皓皓这一周的睡眠够9个小时的有________天.25、小明统计了他家今年5月份打电话的次数及通话时间,并列出了如下的频数分布表,则他家通话时间不超过15min的频率为________.通话时间x/min0<x≤55<x≤1010<x≤1515<x≤20频数/通话次数20 16 9 5三、解答题(共6题,共计25分)26、红星小学对全校同学进行最喜欢的运动项目调查,调查情况具体如图,其中150名同学喜欢羽毛球,喜欢跳绳的同学有多少名?27、李明对某校九年级(2)班进行了一次社会实践活动调查,从调查的内容中抽出两项.调查一:对小聪、小亮两位同学的毕业成绩进行调查,其中毕业成绩按综合素质、考试成绩、体育测试三项进行计算,计算的方法按4:4:2进行,毕业成绩达80分以上为“优秀毕业生”,小聪、小亮的三项成绩如右表:(单位:分)综合素质考试成绩体育测试满分100 100 100小聪72 98 60小亮90 75 95调查二:对九年级(2)班50名同学某项跑步成绩进行调查,并绘制了一个不完整的扇形统计图,请你根据以上提供的信息,解答下列问题:(1)小聪和小亮谁能达到“优秀毕业生”水平?哪位同学的毕业成绩更好些?(2)升入高中后,请你对他俩今后的发展给每人提一条建议.(3)扇形统计图中“优秀率”是多少?(4)“不及格”在扇形统计图中所占的圆心角是多少度?28、2011年,陕西西安被教育部列为“减负”工作改革试点地区.学生的学业负担过重会严重影响学生对待学习的态度.为此我市教育部门对部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A 级:对学习很感兴趣;B级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了多少名学生;(2)将图①补充完整;(3)求出图②中C级所占的圆心角的度数;(4)根据抽样调查结果,请你估计我市近80000名八年级学生中大约有多少名学生学习态度达标(达标包括A级和B级)?29、琪琪想了解全市八年级学生每天写作业的时间,她对某校八年级(4)班全体学生每天写作业的时间进行了一次调查.(1)调查的问题是什么?(2)调查的范围有多大?用了哪种调查方式?30、电信公司最近推出多种话费套餐,小亮为帮助爸爸选择哪种套餐更合算,将爸爸上月的手机费中各项费用情况绘制成两幅统计图(不完整):(1)上月爸爸一共消费多少元话费?(2)补全两幅统计图;(3)若接听免费,长途话费0.6元/分,求爸爸长途通话时间为多少分钟?参考答案一、单选题(共15题,共计45分)1、B2、A3、C4、C5、B6、A7、B8、B9、C10、A11、C13、C14、C15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共6题,共计25分)26、28、29、30、。

《易错题》初中七年级数学下册第五章《相交线与平行线》经典题(专题培优)

《易错题》初中七年级数学下册第五章《相交线与平行线》经典题(专题培优)

一、选择题1.下列语句不是命题的是( ).A .两直线平行,同位角相等B .作直线AB 垂直于直线CDC .若a b =,则22a b =D .等角的补角相等B解析:B【分析】根据“判断一件事情的语句叫做命题”进行判断即可得到答案.【详解】解:A 、两直线平行,同位角相等,是命题,不符合题意;B 、作直线AB 垂直于直线CD 是描述了一种作图的过程,故不是命题,符合题意;C 、正确,是判断语句,不符合题意;D 、正确,是判断语句,不符合题意.故选:B .【点睛】主要考查了命题的概念.判断一件事情的语句叫做命题.2.如图,下列条件中,不能判断直线a ∥b 的是( )A .∠1=∠3B .∠2=∠3C .∠4=∠5D .∠2+∠4=180°B解析:B【分析】 根据平行线的判定定理逐项判断即可.【详解】A 、当∠1=∠3时,a ∥b ,内错角相等,两直线平行,故正确;B 、∠2与∠3不是同位角,也不是内错角,无法判断,故错误;C 、当∠4=∠5时,a ∥b ,同位角相等,两直线平行,故正确;D 、当∠2+∠4=180°时,a ∥b ,同旁内角互补,两直线平行,故正确.故选:B .【点睛】本题考查了平行线的判定,熟记判定定理是解题的关键.3.下列所示的四个图形中,∠1和∠2是同位角的是( )A .②③B .①②③C .①②④D .①④C解析:C【分析】 根据同位角的定义逐一判断即得答案.【详解】图①中的∠1与∠2是同位角,图②中的∠1与∠2是同位角,图③中的∠1与∠2不是同位角,图④中的∠1与∠2是同位角,所以在如图所示的四个图形中,图①②④中的∠1和∠2是同位角.故选:C .【点睛】本题考查了同位角的定义,属于基础概念题型,熟知概念是关键.4.如图,1∠与2∠是同位角的共有( )个A .1个B .2个C .3个D .4个B解析:B【分析】 根据同位角的概念对每个图形一一判断,选出正确答案即可.【详解】图1:1∠与2∠是同位角;图2:1∠与2∠不是同位角;图3:1∠与2∠不是同位角;图4:1∠与2∠是同位角;只有图1、图4中1∠与2∠是同位角.故选:B .【点睛】本题主要考查同位角的概念,熟记同位角的概念是解题关键.5.已知//AB CD ,∠EAF=13∠EAB ,∠ECF=13∠ECD ,若∠E=66°,则∠F 为( )A .23°B .33°C .44°D .46°C解析:C【分析】 如图(见解析),先根据平行线的性质、角的和差可得66EAB EC C D AE ∠+∠=∠=︒,同样的方法可得F FAB FCD ∠=∠+∠,再根据角的倍分可得,2323FAB EAB FCD ECD ∠=∠∠=∠,由此即可得出答案. 【详解】如图,过点E 作//EG AB ,则////EG AB CD ,,EAB CE C A D G G E E ∴∠=∠∠∠=,66AEG EAB ECD CE A C G E ∴∠+=∠+=∠=∠∠︒,同理可得:F FAB FCD ∠=∠+∠,11,33EAF EAB ECF ECD ∠=∠∠=∠, ,2323FAB EAB FCD ECD ∴∠=∠∠=∠, ()266443333222F FAB FCD EAB ECD EAB ECD ∴∠=∠+∠=∠+∠=∠+∠=⨯︒=︒,故选:C .【点睛】本题考查了平行线的性质、角的和差倍分,熟练掌握平行线的性质是解题关键. 6.如图,△ABC 经平移得到△EFB ,则下列说法正确的有 ( )①线段AC的对应线段是线段EB;②点C的对应点是点B;③AC∥EB;④平移的距离等于线段BF的长度.A.1 B.2 C.3 D.4D解析:D【分析】根据平移的特点分别判断各选项即可.【详解】∵△ABC经平移得到△EFB∴点A、B、C的对应点分别为E、F、B,②正确∴BE是AC的对应线段,①正确∴AC∥EB,③正确平移距离为对应点连线的长度,即BF的长度,④正确故选:D【点睛】本题考查平移的特点,注意,在平移过程中,一定要把握住对应点,仅对应点的连线之间才有平行、相等的一些关系.7.下列命题是真命题的有()个①对顶角相等,邻补角互补②两条直线被第三条直线所截,同位角的平分线平行③垂直于同一条直线的两条直线互相平行④过一点有且只有一条直线与已知直线平行A.0 B.1 C.2 D.3B解析:B【分析】根据平行线的性质定理、平行公理、对顶角和邻补角的概念判断即可.【详解】解:对顶角相等,邻补角互补,故①是真命题;两条平行线被第三条直线所截,同位角的平分线平行,故②是假命题;在同一平面内,垂直于同一条直线的两条直线互相平行,故③是假命题;过直线外一点有且只有一条直线与已知直线平行,故④是假命题;故正确的个数只有1个,【点睛】本题考查的是平行的公理和应用,命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.8.如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠1=35°,则∠2的度数为()A.10°B.20°C.25°D.30°C解析:C【解析】分析:如图,延长AB交CF于E,∵∠ACB=90°,∠A=30°,∴∠ABC=60°.∵∠1=35°,∴∠AEC=∠ABC﹣∠1=25°.∵GH∥EF,∴∠2=∠AEC=25°.故选C.9.下列命题中,属于假命题的是()A.如果三角形三个内角的度数比是1:2:3,那么这个三角形是直角三角形B.内错角不一定相等C.平行于同一直线的两条直线平行>-,则a一定小于0DD.若数a使得a a解析:D【分析】利用三角形内角和对A进行判断;根据内错角的定义对B进行判断;根据平行线的判定方法对C进行判断;根据绝对值的意义对D进行判断.【详解】解:A、如果三角形三个内角的度数比是1:2:3,则三个角的度数分别为30°,60°,90°,所以这个三角形是直角三角形,所以A选项为真命题;B、内错角不一定相等,所以B选项为真命题;C、平行于同一直线的两条直线平行,所以C选项为真命题;D、若数a使得|a|>-a,则a为不等于0的实数,所以D选项为假命题.故选:D.本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.10.如图,将△ABE 向右平移50px 得到△DCF ,如果△ABE 的周长是400px(1px=0.04cm ),那么四边形ABFD 的周长是( )A .16cmB .18cmC .20cmD .21cm C解析:C【分析】 根据平移的性质可得DF=AE ,然后判断出四边形ABFD 的周长=△ABE 的周长+AD+EF ,然后代入数据计算即可得解.注意:1px = 0.04cm .【详解】∵1px = 0.04cm ,∴50px=2cm ,400px=16cm ,∵△ABE 向右平移2cm 得到△DCF ,∴DF=AE ,∴四边形ABFD 的周长=AB+BE+DF+AD+EF=AB+BE+AE+AD+EF=△ABE 的周长+AD+EF .∵平移距离为2cm ,∴AD=EF=2cm ,∵△ABE 的周长是16cm ,∴四边形ABFD 的周长=16+2+2=20cm .故选:C .【点睛】本题考查了平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.二、填空题11.如图,直线AB ,CD 相交于点O ,AO 平分COE ∠,且50EOD ∠=︒,则DOB ∠的度数是________.【分析】根据求出利用AO 平分求得即可得到∠DOB=【详解】∵∴∵AO 平分∴∴∠DOB=故答案为:【点睛】此题考查求一个角的补角角平分线的性质对顶角相等正确理解补角定义求出是解题的关键解析:65︒【分析】根据180COE EOD ∠+∠=︒,50EOD ∠=︒,求出130COE ∠=︒,利用AO 平分COE ∠,求得65AOC ∠=︒,即可得到∠DOB=65AOC ∠=︒.【详解】∵180COE EOD ∠+∠=︒,50EOD ∠=︒,∴130COE ∠=︒,∵AO 平分COE ∠,∴65AOC ∠=︒,∴∠DOB=65AOC ∠=︒,故答案为:65︒.【点睛】此题考查求一个角的补角,角平分线的性质,对顶角相等,正确理解补角定义求出130COE ∠=︒是解题的关键.12.如图,直线AB 与CD 相交于点O ,EO ⊥CD 于点O ,OF 平分∠AOD ,且∠BOE =50°,则∠DOF 的度数为__.【分析】利用垂直定义可得∠COE =90°进而可得∠COB 的度数再利用对顶角相等可得∠AOD 再利用角平分线定义可得答案【详解】解:∵EO ⊥CD 于点O ∴∠COE =90°∵∠BOE =50°∴∠COB =90解析:70︒【分析】利用垂直定义可得∠COE =90°,进而可得∠COB 的度数,再利用对顶角相等可得∠AOD ,再利用角平分线定义可得答案.【详解】解:∵EO ⊥CD 于点O ,∴∠COE =90°,∵∠BOE =50°,∴∠COB =90°+50°=140°,∴∠AOD =140°,∵OF 平分∠AOD ,∴∠FOD =12∠AOD =70°, 故答案为:70°.【点睛】此题主要考查了垂直定义,关键是理清图中角之间的和差关系.13.两个角的两边两两互相平行,且一个角的12等于另一个角的13,则这两个角中较小角的度数为____︒.72【分析】如果两个角的两边互相平行则这两个角相等或互补根据题意这两个角只能互补然后列方程求解即可【详解】解:设其中一个角是x°则另一个角是(180-x)°根据题意得解得x=72∴180-x=108解析:72【分析】如果两个角的两边互相平行,则这两个角相等或互补.根据题意,这两个角只能互补,然后列方程求解即可.【详解】解:设其中一个角是x°,则另一个角是(180-x)°,根据题意,得11(180)23x x =-, 解得x=72,∴180-x=108°;∴较小角的度数为72°.故答案为:72.【点睛】本题考查了平行线的性质,一元一次方程的应用,运用“若两个角的两边互相平行,则两个角相等或互补”,而此题中显然没有两个角相等这一情况是解决此题的突破点. 14.阅读下面材料:在数学课上,老师提出如下问题:如图,需要在A 、B 两地和公路l 之间修地下管道.请你设计一种最节省材料的修路方案:小丽设计的方案如下:如图,(1)连接AB ;(2)过点A 画线段AC ⊥直线l 于点C ,所以线段BA 和线段AC 即为所求.老师说:“小丽的画法正确”请回答:小丽的画图依据是___.两点之间线段最短;直线外一点到这条直线上所有点连结的线段中垂线段最短(或垂线段最短)【分析】根据线段的概念和垂线的性质即可求解【详解】由垂线段最短可知点A 到直线l 的最短距离为AC 由两点之间线段最短可解析:两点之间线段最短;直线外一点到这条直线上所有点连结的线段中,垂线段最短(或垂线段最短)【分析】根据线段的概念和垂线的性质即可求解.【详解】由垂线段最短可知,点A 到直线l 的最短距离为AC ,由两点之间线段最短可知,点B 到点A 的最短距离为AB .故答案为:两点之间线段最短;直线外一点到这条直线上所有点连结的线段中,垂线段最短(或垂线段最短);【点睛】本题考察线段的概念和垂线的性质,熟练掌握其概念和性质是解题的关键.15.如图,//EF AD ,//AD BC ,CE 平分BCF ∠,120DAC ∠=︒,20ACF ∠=︒,FEC ∠为______°.20【分析】根据平行线的性质可得进而可得∠ACB =60°根据角平分线的性质和角的和差可得∠BCE 根据平行线的性质可得∠FEC 【详解】∵∴∵∴∵又∵∴∵平分∴∠BCE =∠ECF =∠BCF =20°∵∴∴解析:20【分析】根据平行线的性质可得180DAC ACB ∠+∠=︒,进而可得∠ACB =60°,根据角平分线的性质和角的和差可得∠BCE ,根据平行线的性质可得∠FEC .【详解】∵//AD BC ,∴180DAC ACB ∠+∠=︒.∵120DAC ∠=︒,∴180********ACB DAC ∠=︒-∠=︒-︒=︒.∵60BCF ACF ACB ∠+∠=∠=︒.又∵20ACF ∠=︒,∴602040BCF ACB ACF ∠=∠-∠=︒-︒=︒.∵CE 平分BCF ∠,∴∠BCE =∠ECF =12∠BCF =20° ∵//EF BC ,∴20FEC BCE ∠=∠=︒,∴20FEC ∠=︒.故答案为:20.【点睛】本题主要考查平行线的性质,涉及到角的和差,角平分线的性质,解题的关键是求得∠BCE .16.直线//,a b Rt ABC ∆的直角顶C 点在直线a 上,若135∠=︒,则2∠等于_______. 【分析】先根据直角为90°即可得到∠3的度数再根据平行线的性质即可得出∠2的度数【详解】解:∵Rt △ABC 的直角顶点C 在直线a 上∠1=35°∴∠3=90°-35°=55°又∵a ∥b ∴∠2=∠3=55解析:55【分析】先根据直角为90°,即可得到∠3的度数,再根据平行线的性质,即可得出∠2的度数.【详解】解:∵Rt △ABC 的直角顶点C 在直线a 上,∠1=35°,∴∠3=90°-35°=55°,又∵a ∥b ,∴∠2=∠3=55°,故答案为:55°.【点睛】本题主要考查了平行线的性质,直角三角形两个锐角互余的性质,解题时注意:两直线平行同位角相等.17.如图,AC ⊥AB ,AC ⊥CD ,垂足分别是点A 、C ,如果∠CDB=130°,那么直线AB 与BD 的夹角是________度.50【分析】先根据平行线的判定可得再根据平行线的性质两直线的夹角的定义即可得【详解】∵∴∵∴∴直线AB 与BD 的夹角是50度故答案为:50【点睛】本题考查了平行线的判定与性质两直线的夹角的定义熟练掌握解析:50【分析】先根据平行线的判定可得//AB CD ,再根据平行线的性质、两直线的夹角的定义即可得.【详解】∵AC AB ⊥,AC CD ⊥,∴//AB CD ,∵130CDB ∠=︒,∴18050ABD CDB ∠=︒-∠=︒,∴直线AB 与BD 的夹角是50度,故答案为:50.【点睛】本题考查了平行线的判定与性质、两直线的夹角的定义,熟练掌握平行线的判定与性质是解题关键.18.如图是某公园里一处矩形风景欣赏区ABCD ,长AB=50米,宽BC=30米,为方便游人观赏,公园特意修建了如图所示的小路(图中非阴影部分),小路的宽均为1米,那么小明沿着小路的中间出口A到出口B所走的路线(图中虚线)长为______米.98【解析】∵利用已知可以得出此图形可以分为横向与纵向分析水平距离等于AB铅直距离等于(AD-1)×2又∵长AB=50米宽BC=25米∴小明沿着小路的中间出口A到出口B所走的路线(图中虚线)长为50解析:98【解析】∵利用已知可以得出此图形可以分为横向与纵向分析,水平距离等于AB,铅直距离等于(AD-1)×2,又∵长AB=50米,宽BC=25米,∴小明沿着小路的中间出口A到出口B所走的路线(图中虚线)长为50+(25-1)×2=98米,故答案为98.19.如图,直线AB,CD相交于点O,OA平分∠EOC,∠EOD=120°,则∠BOD=__________°.30°【分析】先利用补角的定义求出∠EOC=60°再根据角平分线的性质计算【详解】解:∵∠EOD=120°∴∠EOC=60°(邻补角定义)∵OA平分∠EOC∴∠AOC=∠EOC=30°(角平分线定义解析:30°【分析】先利用补角的定义求出∠EOC=60°,再根据角平分线的性质计算.【详解】解:∵∠EOD=120°,∴∠EOC=60°(邻补角定义).∠EOC=30°(角平分线定义),∵OA平分∠EOC,∴∠AOC=12∴∠BOD=30°(对顶角相等).故答案为:30.【点睛】本题考查由角平分线的定义,结合补角的性质,易求该角的度数.20.假设一家旅馆一共有30个房间,分别编以1~30三十个号码,现在要在每个房间的钥匙上刻上数字,要求所刻的数字必须使服务员很容易辨认是哪一个房间的钥匙,而使局外人不容易猜到.现在有一种编码的方法是:在每把钥匙上刻上两个数字,左边的一个数字是这把钥匙原来的房间号码除以5所得的余数,而右边的一个数字是这把钥匙原来的房间号码除以7所得的余数.那么刻的数是25的钥匙所对应的原来房间应该是__________号.12【分析】根据编码的方法分析在1~30中除以5余2的数有712172227而其中除以7余5的数只有12故可求得答案【详解】解:∵1~30中除以5余2的数有712172227而其中除以7余5的数只有解析:12【分析】根据编码的方法分析,在1~30中,除以5余2的数有7,12,17,22,27,而其中除以7余5的数只有12,故可求得答案.【详解】解:∵1~30中,除以5余2的数有7,12,17,22,27,而其中除以7余5的数只有12,∴刻的数是25的钥匙所对应的原来房间应该是12,故答案为:12.【点睛】此题考查了带余数除法的知识.此题难度适中,解题的关键是理解题意,抓住1~30中,除以5余2的数有7,12,17,22,27,而其中除以7余5的数只有12.三、解答题21.如图,点D 、E 分别为AB 、AC 上的点,点F 、G 为BC 上的点,连接DE ,连接DG 、EF 交于点H .已知12180∠+∠=︒,3B ∠=∠,若66C ∠=︒,求DEC ∠的度数.请你将下面解答过程填写完整.解:∵12180∠+∠=︒∴//AB ________∴3ADE ∠=∠(________________________)∵3B ∠=∠∴_______B =∠∴//DE BC (____________________________)∴180C DEC ∠+∠=︒∵66C ∠=︒∴114DEC ∠=︒解析:见解析.【分析】先根据平行线的判定可得//AB EF ,再根据平行线的性质可得3ADE ∠=∠,从而可得ADE B ∠=∠,然后根据平行线的判定与性质可得.【详解】解:∵12180∠+∠=︒,∴//AB EF ,∴3ADE ∠=∠(两直线平行,内错角相等),∵3B ∠=∠,∴ADE B ∠=∠,∴//DE BC (同位角相等,两直线平行),∴180C DEC ∠+∠=︒,∵66C ∠=︒,∴114DEC ∠=︒.【点睛】本题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解题关键.22.如图,直线AB ,CD 相交于点O ,OA 平分∠EOC .(1)∠AOC 的对顶角为______,∠AOC 的邻补角为______;(2)若∠EOC =70°,求∠BOD 的度数;(3)若∠EOC :∠EOD =2:3,求∠BOD 的度数.解析:(1)∠BOD ,∠BOC 或∠AOD ;(2)∠BOD =35°;(3)∠BOD =36°.【分析】(1)根据对顶角、邻补角的意义,结合图形即可得出答案;(2)根据角平分线的意义和对顶角的性质,即可得出答案;(3)根据平角、按比例分配,角平分线的意义、对顶角性质可得答案.【详解】(1)根据对顶角、邻补角的意义得:∠AOC 的对顶角为∠BOD , ∠AOC 的邻补角为∠BOC 或∠AOD ,故答案为:∠BOD ,∠BOC 或∠AOD(2)∵OA 平分∠EOC.∠EOC =70°,∴∠AOE =∠AOC 12=∠EOC =35°, ∵∠AOC =∠BOD ,∴∠BOD =35°,(3)∵∠EOC :∠EOD =2:3,∠EOC+∠EOD =180°,∴∠EOC =180°×25=72°,∠EOD =180°×35=108°, ∵OA 平分∠EOC , ∴∠AOE =∠AOC 12=∠EOC =36°, 又∵∠AOC =∠BOD ,∴∠BOD =36°.【点睛】本题考查对顶角、邻补角、角平分线、平角的意义和性质,通过图形具体理解这些角的意义是正确计算的前提.23.如图,直线AB ,CD 相交于点O ,EO AB ⊥,垂足为O ,35EOC ∠=︒,求AOD ∠的度数.解析:125°.【分析】由两直线垂直,求得∠AOE=90°;由∠AOC 与∠EOC 互余,∠EOC=35°,即可得到∠AOC 的度数;再由∠AOD 与∠AOC 互补,即可得出∠AOD 的度数.【详解】∵EO ⊥AB ,∴∠AOE=90°,又∵∠EOC=35°,∴∠AOC=∠AOE-∠EOC=90°-35°= 55°,∴∠AOD=180°-∠AOC=180°-55°=125°.【点睛】本题主要考查补角、余角和垂直的定义.解题的关键是熟练利用补角、余角关系求角的度数.24.如图,直线AB 、CD 相交于点O ,OE 平分BOD ∠,72AOC ∠=︒,OF CD ⊥.∠互余的角是______;(1)与BOF∠的度数.(2)求EOF解析:(1)∠BOD、∠AOC;(2)54°【分析】(1)根据垂直的定义得到∠FOD=90°,于是得到∠BOF+∠BOD=90°,根据对顶角的性质得到∠BOD=∠AOC,等量代换得到∠BOF+∠AOC=90°,即可得到结论.(2)根据已知条件得到∠BOF=90°﹣72°=18°,再由OE平分∠BOD,得出∠BOE=1∠BOD=36°,因此∠EOF=36°+18°=54°.2【详解】解:(1)∵OF⊥CD,∴∠FOD=90°,∴∠BOF+∠BOD=90°,∵∠BOD=∠AOC,∴∠BOF+∠AOC=90°,∴图中互余的角有∠BOF与∠BOD,∠BOF与∠AOC.故答案为:∠BOD、∠AOC;(2)∵直线AB和CD相交于点O,∴∠BOD=∠AOC=72°,∵OF⊥CD,∴∠BOF=90°﹣72°=18°,∵OE平分∠BOD,∠BOD=36°,∴∠BOE=12∴∠EOF=36°+18°=54°.【点睛】本题考查了对顶角、垂线以及角平分线的定义;弄清各个角之间的关系是解题的关键.25.已知:如图,DE∥BC,BE∥FG.求证:∠1=∠2.解析:证明见解析.【分析】由//DE BC ,利用“两直线平行,内错角相等”可得出1CBE ∠=∠,由//BE FG ,利用“两直线平行,同位角相等”可得出2CBE,进而可证出12∠=∠.【详解】 证明://DE BC ,1CBE ∴∠=∠.//BE FG ,2CBE ,12∠∠∴=.【点睛】 本题考查了平行线的性质,牢记平行线的各性质定理是解题的关键.26.如图,已知BC AE ⊥,DE AE ⊥,23180∠+∠=︒.(1)请你判断1∠与ABD ∠的数量关系,并说明理由;(2)若170∠=︒,BC 平分ABD ∠,试求ACF ∠的度数.解析:(1)∠1=∠ABD ,证明见解析;(2)∠ACF=55°.【分析】(1)先根据在平面内,垂直于同一条直线的两条直线互相平行得出BC ∥DE ,再根据平行线的性质结合23180∠+∠=︒可得∠2=∠CBD ,从而可得CF ∥DB 得出∠1=∠ABD ; (2)利用平行线的性质以及角平分线的定义,即可得出∠2的度数,再根据∠ACB 为直角,即可得出∠ACF .【详解】解:(1)∠1=∠ABD ,理由:∵BC ⊥AE ,DE ⊥AE ,∴BC ∥DE ,∴∠3+∠CBD=180°,又∵∠2+∠3=180°,∴∠2=∠CBD ,∴CF ∥DB ,∴∠1=∠ABD .(2)∵∠1=70°,CF ∥DB ,∴∠ABD=70°,又∵BC 平分∠ABD , ∴1352DBC ABD ︒∠=∠=, ∴∠2=∠DBC=35°,又∵BC ⊥AG , ∴∠ACF=90°-∠2=90°-35°=55°.【点睛】本题主要考查了平行线的判定与性质,平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.27.试用举反例的方法说明下列命题是假命题.例如:如果ab <0,那么a +b <0.反例:设a =4,b =-3,ab =4⨯(-3)=-12<0,而a +b =4+(-3)=1>0,所以这个命题是假命题.(1)如果a +b >0,那么ab >0.(2)如果a 是无理数,b 也是无理数,那么a +b 也是无理数.解析:(1)见解析;(2)见解析.【分析】(1)此题是一道开放题,可举的例子多,但只举一例就可.如果a+b >0,那么ab >0;所举的反例就是,a 、b 一个为正数,一个为负数,且正数的绝对值大于负数.(2)可利用平方差公式找这样的无理数,比如【详解】解:(1)取a=2,b=-1,则a+b=1>0,但ab=-2<0.所以此命题是假命题.(2)取,,a 、b 均为无理数.但a+b=2是有理数,所以此命题是假命题.【点睛】本题主要锻炼了学生的逆向思维.在证明几何题的过程中,有时需从反例上先去判断,然后再证明.28.如图,已知直线AB 及直线AB 外一点P ,按下列要求完成画图和解答:(1)连接PA ,PB ,用量角器画出∠APB 的平分线PC ,交AB 于点C ;(2)过点P 作PD ⊥AB 于点D ;(3)用刻度尺取AB 中点E ,连接PE ;(4)根据图形回答:点P 到直线AB 的距离是线段 的长度.解析:(1)答案见解析;(2)答案见解析;(3)答案见解析;(4)PD.【详解】试题分析:(1)、用量角器量出∠APB的度数,然后求出一半的度数得出答案;(2)、根据垂线的作法得出答案;(3)、用刻度尺量出AB的长度,然后找出中点,从而得出答案;(4)、点到直线的距离是指点到直线垂线段的长度.试题(1)、如图所示;(2)、如图所示;(3)、如图所示;(4)、PD.。

2020-2021学年人教版七年级数学下册第五章《相交线与平行线》易错题【含答案】

2020-2021学年人教版七年级数学下册第五章《相交线与平行线》易错题【含答案】

人教版七年级数学下册第五章《相交线与平行线》 易错题________________________一,单项选择题(本大题共10小题,每小题3分,共30分)1.如图,直线m 和n 相交于点O ,若∠1=40°,则∠2的度数是( )A .40°B .50°C .140°D .150°C【分析】 根据邻补角的性质,邻补角互补进行计算,可得答案.【详解】解:直线m 和n 相交于点O ,若∠1=40°,则∠2的度数为180°-∠1= 140°, 故选:C .本题考查了邻补角,理解概念正确计算是解题关键.2.如图,1∠的同位角是( )A .2∠B .3∠C .4∠D .5∠A【分析】根据同位角定义可得答案.【详解】解:两条直线被第三条直线所截,在截线的同旁,被截两直线的同一侧的角,我们把这样的两个角称为同位角.即∠2是∠1的同位角.故选:A .此题主要考查了同位角,关键是掌握同位角的边构成“F”形.3.如图,DAF △沿直线AD 平移得到CDE △,CE ,AF 的延长线交于点B .若∠AFD =111°,则∠CED =( )A .110°B .111°C .112°D .113°B【分析】 根据平移的性质即可得到结论.【详解】∠DAF △沿直线AD 平移得到CDE △,且111AFD ∠=︒,∠111CED AFD ∠=∠=︒,故选:B .本题考查了平移的性质,掌握理解平移的性质是解题关键.4.将一把直尺和一块三角板如图叠放,直尺的一边刚好经过直角三角板的直角顶点且与斜边相交,则1∠与2∠一定满足的数量关系是( )A .221∠=∠B .21180∠+∠=︒C .221180∠+∠=︒D .2190∠-∠=︒D【分析】 根据直角和邻补角的定义列出关系式,从而利用等式的性质计算求解.【详解】解:由题意可得:∠1+∠3=90°,∠2+∠3=180°∠∠3=90°-∠1,∠3=180°-∠2∠90°-∠1=180°-∠2∠2190∠-∠=︒故选:D .本题考查直角和邻补角的概念及等式的性质,掌握相关性质正确列关系式求解是关键.5.如图,已知1l AB ∕∕,AC 为角平分线,下列说法错误的是( )A .14∠=∠B .15∠=∠C .23∠∠=D .13∠=∠B【分析】 利用平行线的性质得到∠2=∠4,∠3=∠2,∠5=∠1+∠2,再根据角平分线的定义得到∠1=∠2=∠4=∠3,∠5=2∠1,从而可对各选项进行判断.【详解】∠l 1∠AB ,∠∠2=∠4,∠3=∠2,∠5=∠1+∠2,∠AC 为角平分线,∠∠1=∠2=∠4=∠3,∠5=2∠1.故选B .本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.6.把一块直尺与一块三角板如图放置,若∠1=40°,则∠2的度数为( )A.125°B.120°C.140°D.130°D如图,∠EF∠GH,∠∠FCD=∠2.∠∠FCD=∠1+∠A,∠1=40°,∠A=90°.∠∠2=∠FCD=130°.故选D.7.如图,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.两直线平行,同位角相等D.两直线平行,内错角相等A【分析】由已知可知∠DPF=∠BAF,从而得出同位角相等,两直线平行.∠∠DPF=∠BAF,∠AB∠PD(同位角相等,两直线平行).故选A.此题主要考查了基本作图与平行线的判定,正确理解题目的含义是解决本题的关键.8.如图,将矩形ABCD沿GH折叠,点C落在点Q处,点D落在AB边上的点E处,若∠AGE=32°,则∠GHC等于()A.112°B.110°C.108°D.106°D分析:由折叠可得:∠DGH=12∠DGE=74°,再根据AD∠BC,即可得到∠GHC=180°﹣∠DGH=106°.详解:∠∠AGE=32°,∠∠DGE=148°,由折叠可得:∠DGH=12∠DGE=74°.∠∠GHC=180°﹣∠DGH=106°.故选D.点睛:本题主要考查了平行线的性质,解题时注意:两直线平行,同旁内角互补.9.如图,直线AB∠CD,∠C=44°,∠E为直角,则∠1等于()A.132°B.134°C.136°D.138°B过E作EF∠AB,求出AB∠CD∠EF,根据平行线的性质得出∠C=∠FEC,∠BAE=∠FEA,求出∠BAE,即可求出答案.解:过E作EF∠AB,∠AB∠CD,∠AB∠CD∠EF,∠∠C=∠FEC,∠BAE=∠FEA,∠∠C=44°,∠AEC为直角,∠∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∠∠1=180°﹣∠BAE=180°﹣46°=134°,故选B.“点睛”本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.10.如图,已知AB∠CD,BE和DF分别平分∠ABF和∠CDE,2∠E-∠F=48°,则∠CDE 的度数为( ).A.16°B.32°C.48°D.64°B【分析】已知BE和DF分别平分∠ABF和∠CDE,根据角平分线分定义可得∠ABE=12∠ABF,∠CDF=12∠CDE;过点E作EM//AB,点F作FN//AB,即可得////AB CD EM//FN,由平行线的性质可得∠ABE=∠BEM,∠MED=∠EDC,∠ABF=∠BFN,∠CDF=∠DFN,由此可得∠BED=∠BEM+∠DEM=∠ABE+∠CDE=12∠ABF+∠CDE,∠BFD=∠BFN+∠DFN=∠ABF+∠CDF=∠ABF +12∠CDE,又因2∠BED-∠BFD=48°,即可得2(12∠ABF+∠CDE)-(∠ABF +12∠CDE)=48°,由此即可求得∠CDE=32°.【详解】∠BE和DF分别平分∠ABF和∠CDE,∠∠ABE=12∠ABF,∠CDF=12∠CDE,过点E作EM//AB,点F作FN//AB,∠//AB CD,∠////AB CD EM//FN,∠∠ABE=∠BEM,∠MED=∠EDC,∠ABF=∠BFN,∠CDF=∠DFN,∠∠BED=∠BEM+∠DEM=∠ABE+∠CDE=12∠ABF+∠CDE,∠BFD=∠BFN+∠DFN=∠ABF+∠CDF=∠ABF +12∠CDE,∠2∠BED-∠BFD=48°,∠2(12∠ABF+∠CDE)-(∠ABF +12∠CDE)=48°,∠∠CDE=32°.故选B.本题考查了平行线的性质,根据平行线的性质确定有关角之间的关系是解决问题的关键.二、填空题(本大题共7小题,每小题3分,共21分)11.如图,把小河里的水引到田地A处就作AB∠l,垂足为B,沿AB挖水沟,水沟最短.理由是_______________________.垂线段最短试题分析:点到直线的所有线段中垂线段最短.考点:垂线段的性质12.如图,AB与BC被AD所截得的内错角是_________;DE与AC被直线AD所截得的内错角是__________;图中∠4的内错角是________.∠1和∠3 ∠2和∠4 ∠5和∠2【分析】根据内错角的概念,结合图形中各角的位置即可顺利完成填空.【详解】结合图形可得AB与BC被AD所截得的内错角是∠1和∠3;DE与AC被直线AD所截得的内错角是∠2和∠4;因为∠4和∠5是直线AB和AD被直线ED所截构成的内错角,∠4和∠2是直线DE和AC被直线AD所截构成的内错角,所以图中∠4的内错角是∠5和∠2.本题考查了内错角的概念,熟练掌握两个角分别在截线的两侧,且在两条直线之间,具有这样位置关系的一对角叫做内错角是解题的关键.13.如图,在四边形ABCD中,AD∠BC,若∠B与∠C互余,将AB,DC分别平移到EF和EG的位置,则∠FEG的度数为_____.90°【分析】利用平移的性质可以知∠B+∠C=∠EFG+∠EGF,然后根据三角形内角和定理在∠EFG中求得∠FEG=90°.【详解】∠AB,CD分别平移到EF和EG的位置后,∠B的对应角是∠EFG,∠C的对应角是∠EGF.又∠∠B与∠C互余,∠∠EFG与∠EGF互余.∠∠EFG+∠EGF+∠FEG=180°,∠∠FEG=90°(三角形内角和定理).故答案为90°.本题考查了平移的性质,对应线段平行(或共线)且相等,对应角相等,对应点所连接的线段平行且相等.14.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是________15°【分析】如下图,过点E作EF∠BC,然后利用平行线的性质结合已知条件进行分析解答即可.【详解】由题意可得AD∠BC ,∠DAE=∠1+45°,∠AEB=90°,∠EBC=30°,过点E 作EF∠BC , 则AD∠EF∠BC ,∠∠AEF=∠DAE=∠1+45°,∠FEB=∠EBC=30°,又∠∠AEF=∠AEB -∠FEB ,∠∠AEF=90°-30°=60°,∠∠1+45°=60°,∠∠1=60°-45°=15°.故15°.15.如图,AB CD ∥,ABD ∠的平分线与BDC ∠的平分线交于点E ,则12∠+∠=_____.90°【分析】根据平行线的性质可得180ABD CDB ∠+∠=,再根据角平分线的定义即可得出答案.【详解】解:∠AB CD ∥,∠180ABD CDB ∠+∠=,∠BE 是ABD ∠的平分线,∠112ABD ∠=∠, ∠DE 是BDC ∠的平分线,∠122CDB ∠=∠, ∠1290∠+∠=,故90.此题主要考查了平行线的性质,关键是掌握两直线平行,同旁内角互补.16.如图,现给出下列条件:∠1B ∠∠=,∠25∠∠=,∠34∠∠=,∠1D ∠∠=,∠B BCD 180∠∠+=︒.其中能够得到AB//CD 的条件是_______.(只填序号)∠∠∠【分析】根据平行线的判定定理对各小题进行逐一判断即可【详解】解:∠∠∠1=∠B ,∠AB∠CD ,故本小题正确;∠∠∠2=∠5,∠AB∠CD ,故本小题正确;∠∠∠3=∠4,∠AD∠BC ,故本小题错误;∠∠∠1=∠D ,∠AD∠BC ,故本小题错误;∠∠∠B+∠BCD=180°,∠AB∠CD ,故本小题正确.故答案为∠∠∠.本题考查的是平行线的判定,熟知同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行是解答此题的关键.17.如图,有两个正方形夹在AB与CD中,且AB//CD,若∠FEC=10°,两个正方形临边夹角为150°,则∠1的度数为________度(正方形的每个内角为90°)70.【详解】作IF∠AB,GK∠AB,JH∠AB因为AB∠CD所以,AB∠CD∠ IF∠GK∠JH所以,∠IFG=∠FEC=10°所以,∠GFI=90°-∠IFG=80°所以,∠KGF=∠GFI=80°所以,∠HGK=150°-∠KGF=70°所以,∠JHG=∠HGK=70°同理,∠2=90°-∠JHG=20°所以,∠1=90°-∠2=70°故答案为70本题考查了平行线的性质,正确作出辅助线是关键,注意掌握平行线的性质:两直线平行,内错角相等.三、解答题(本大题共6小题,共49分)18.如图,已知直线AB 和CD 相交于O 点,射线OE AB ⊥于O ,射线OF CD ⊥于O ,且BOF 25.∠=求:AOC ∠与EOD ∠的度数.∠AOC =115°, ∠EOD =25°.【分析】根据垂线的性质和余角及补角的定义可求出∠ AOC ,由垂线的性质和余角的定义可求出∠EOD【详解】解:∠OF∠CD ,∠∠COF =90°,∠∠BOC =90°-∠BOF =65°,∠∠AOC =180°-65°=115°.∠OE∠AB ,∠∠BOE =90°,∠∠EOF =90°-25°=65°,∠OF∠CD∠∠DOF=90°∠∠EOD=∠DOF −∠EOF=90°-65°=25°.垂线的性质及补角和余角的定义都是本题的考点,正确找出角之间的关系是解题的关键.19.如图,AD是∠EAC的平分线,AD∠BC,∠B=30o,∠EAD、∠DAC、∠C的度数.∠=∠=∠=︒EAD DAC C30【分析】根据角平分线、平行线的性质即可得到结果.【详解】解:∠AD∠BC(已知),∠∠EAD=∠B=30°(两直线平行,同位角相等).∠AD平分∠EAC(已知),∠∠DAC=∠EAD=30°(角平分线的定义).∠∠C=∠DAC=30°(两直线平行,内错角相等).此题主要考查学生对平行线的性质及角平分线的定义的理解及运用能力.20.已知:如图,∠ABC=∠ADC,BF、DE分别平分∠ABC与∠ADC.∠1=∠3,求证:AB∠DC.证明:∠∠ABC=∠ADC ( )∠1122ABC ADC∠=∠( )∠BF、DE分别平分∠ABC与∠ADC ( )∠111,222ABC ADC∠=∠∠=∠( )∠∠______=∠______ ( )∠∠1=∠3( )∠∠2=∠______ (等量代换)∠____∠____ ( )已知,等式的性质;已知,角平分线的定义;1,2,等量代换;已知,3,AB,DC,内错角相等,两直线平行.【分析】根据等式的性质,角平分线的定义,等量代换,平行线的判定方法求解即可.【详解】证明:∠∠ABC=∠ADC (已知),∠1122ABC ADC∠=∠(等式的性质).∠BF、DE分别平分∠ABC与∠ADC(已知),∠111,222ABC ADC∠=∠∠=∠(角平分线的定义),∠∠1=∠2(等量代换).∠∠2=∠3(等量代换),∠AB∠DC (内错角相等,两直线平行).故已知,等式的性质;已知,角平分线的定义;1,2,等量代换;已知,3,AB,DC,内错角相等,两直线平行.本题考查了等式的性质,角平分线的定义,等量代换,平行线的判定方法等知识.解答本题的关键是熟练掌握平行线的判定方法.21.如图,在∠ABC中,CD∠AB,垂足为D,点E在BC上,EF∠AB,垂足为F.(1) CD与EF平行吗?为什么?(2)如果∠1=∠2,且∠3=115°,求∠ACB的度数.(1)平行;(2)115°.【分析】(1)先根据垂直的定义得到∠CDB=∠EFB=90°,然后根据同位角相等,两直线平行可判断EF∠CD;(2)由EF∠CD,根据平行线的性质得∠2=∠BCD,而∠1=∠2,所以∠1=∠BCD,根据内错角相等,两直线平行得到DG∠BC,所以∠ACB=∠3=115°.【详解】解:(1)CD与EF平行.理由如下:CD∠AB,EF∠AB,∠EF∠CD(2) 如图:EF∠CD,∠∠2=∠BCD又∠1=∠2,∠∠1=∠BCD∠DG∠BC,∠∠ACB=∠3=115°.本题考查了平行线的判定与性质:同位角相等,两直线平行;内错角相等,两直线平行;两直线平行,同位角相等.22.如图,已知点E、F在直线AB上,点G在线段CD上,ED与FG交于点H,∠C =∠EFG,∠CED=∠GHD.(1)求证:CE∠GF;(2)试判断∠AED与∠D之间的数量关系,并说明理由;(3)若∠EHF=80°,∠D=30°,求∠AEM的度数.(1)证明见解析;(2)∠AED+∠D=180°,理由见解析;(3)110°【分析】(1)依据同位角相等,即可得到两直线平行;(2)依据平行线的性质,可得出∠FGD=∠EFG,进而判定AB∠CD,即可得出∠AED+∠D =180°;(3)依据已知条件求得∠CGF的度数,进而利用平行线的性质得出∠CEF的度数,依据对顶角相等即可得到∠AEM的度数.【详解】(1)∠∠CED=∠GHD,∠CB∠GF;(2)∠AED+∠D=180°;理由:∠CB∠GF,∠∠C=∠FGD,又∠∠C=∠EFG,∠∠FGD=∠EFG,∠AB∠CD,∠∠AED+∠D=180°;(3)∠∠GHD=∠EHF=80°,∠D=30°,∠∠CGF=80°+30°=110°,又∠CE∠GF,∠∠C=180°﹣110°=70°,又∠AB∠CD,∠∠AEC=∠C=70°,∠∠AEM=180°﹣70°=110°.本题主要考查了平行线的判定与性质,平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.23.如图∠,已知AB∠CD,点E、F分别是AB、CD上的点,点P是两平行线之间的一点,设∠AEP=α,∠PFC=β,在图∠中,过点E作射线EH交CD于点N,作射线FI,延长PF到G,使得PE、FG分别平分∠AEH、∠DFl,得到图∠.(1)在图∠中,过点P作PM∠AB,当α=20°,β=50°时,∠EPM=度,∠EPF=度;(2)在(1)的条件下,求图∠中∠END与∠CFI的度数;(3)在图∠中,当FI∠EH时,请直接写出α与β的数量关系.(1)20,70;(2)80°;(3)90°;【分析】(1)由PM∠AB根据两直线平行,内错角相等可得∠EPM=∠AEP=20°,根据平行公理的推论可得PM∠CD,继而可得∠MPF=∠CFP=50°,从而即可求得∠EPF;(2)由角平分线的定义可得∠AEH=2α=40°,再根据AD∠BC,由两直线平行,内错角相等可得∠END=∠AEH=40°,由对顶角相等以及角平分线定义可得∠IFG=∠DFG=β=50°,再根据平角定义即可求得∠CFI的度数;(3)由(2)可得,∠CFI=180°-2β,由AB∠CD,可得∠END=2α,当FI∠EH时,∠END=∠CFI,据此即可得α+β=90°.【详解】(1)∠PM∠AB,α=20°,∠∠EPM=∠AEP=20°,∠AB∠CD,PM∠AB,∠PM∠CD,∠∠MPF=∠CFP=50°,∠∠EPF=20°+50°=70°,故答案为20,70;(2)∠PE平分∠AEH,∠∠AEH=2α=40°,∠AD∠BC,∠∠END=∠AEH=40°,又∠FG平分∠DFI,∠∠IFG=∠DFG=β=50°,∠∠CFI=180°-2β=80°;(3)由(2)可得,∠CFI=180°-2β,∠AB∠CD,∠∠END=∠AEN=2α,∠当FI∠EH时,∠END=∠CFI,即2α=180°-2β,∠α+β=90°.本题考查了平行线的判定与性质,熟练掌握平行线的判定与性质定理是解题的关键.。

(完整版)七年级下数学第3章整式的乘除经典易错题带答案可直接打印2013浙教版新教材

(完整版)七年级下数学第3章整式的乘除经典易错题带答案可直接打印2013浙教版新教材

第3章整式的乘除1.计算:(1)(-2)×(-2)2×(-2)3;(2)(-x)9·x5·(-x)5·(-x)3;(3)a n+4·a2n-1·a;(4)4m-3·45-m·4.解:(1)26(2)-x22(3)a3n+4(4)432.如果x m-3·x n=x2,则n等于(D) A.m-1B.m+5C.4-m D.5-m【解析】x m-3·x n=x m+n-3=x2,∴m+n-3=2,∴n=5-m.选D.3.(1)已知x3·x a·x2a+1=x31,求a的值;(2)已知x3=m,x5=n,试用含m,n的代数式表示x11.解:(1)x3a+4=x31,3a+4=31,a=9.(2)x11=x6·x5=x3·x3·x5=m·m·n=m2n.4.计算-(-3a)2的结果是(B) A.-6a2B.-9a2C.6a2D.9a25.计算:(1)-p2·(-p)4·[(-p)3]5;(2)(m-n)2·[(n-m)3]5;(3)25×84×162.解:(1)原式=-p2·p4·(-p)15=p21;(2)原式=(m-n)2·(n-m)15=-(m-n)17;(3)原式=25×(23)4×(24)2=25×212×28=225.6.已知10m=2,10n=3,求103m+2n的值.解:103m+2n=(10m)3·(10n)2=23×32=8×9=72. 7.计算:(1)(-ab2)2(-a4b3)3(-3a2b);(2)(-x n)2(-y n)3-(x2y3)n;(3)[(a+b)3]4·[(a+b)2]3;(4)(a4)5-(-a2·a3)4+(-a2)10-a·(-a2)5·(-a3)3. 解:(1)原式=a2b4(-a12b9)(-3a2b)=3a16b14;(2)原式=-x2n y3n-x2n y3n=-2x2n y3n;(3)原式=(a+b)12·(a+b)6=(a+b)18;(4)原式=a20-a20+a20-a20=0.8.求值:(1)已知2×8n×16n=222,求n的值;(2)若q m=4,q n=16,求q2m+2n的值;(3)已知x3n=2,求x6n+x4n·x5n的值.解:(1)21×23n×24n=222,27n+1=222,∴7n=21,n=3.(2)q2m+2n=(q m)2×(q n)2=42×162=16×256=4096.(3)x6n+x4n·x5n=x6n+x9n=22+23=4+8=12. 9.计算:(1)4y·(-2xy2);(2)(3x2y)3·(-4x);(3)(-2a)3·(-3a)2;(4)(-3×106)×(4×104)(结果用科学记数法表示).解:(1)原式=-8xy3;(2)原式=27x6y3·(-4x)=-108x7y3;(3)原式=-8a 3·9a 2=-72a 5;(4)原式=-12×1010=-1.2×1011.10.计算:(1)(-4x 2)·(3x +1);(2)⎝ ⎛⎭⎪⎫23ab 2-2ab ·12ab ; (3)a (3+a )-3(a +2).解:(1)原式=(-4x 2)·(3x )+(-4x 2)·1=-12x 3-4x 2;(2)原式=23ab 2·12ab +(-2ab )·12ab =13a 2b 3-a 2b 2; (3)原式=3a +a 2-3a -6=a 2-6.11.[2012·杭州]化简:2[(m -1)m +m (m +1)]·[(m -1)m -m (m +1)].若m 是任意整数,请观察化简后的结果,你发现原式表示一个什么数?解:2[(m -1)m +m (m +1)][(m -1)m -m (m +1)]=2(m 2-m +m 2+m )(m 2-m -m 2-m )=2·2m 2·(-2m )=-8m 3,即原式=(-2m )3,表示任意一个偶数的立方.12.计算:(1)[2012·安徽](a +3)(a -1)+a (a -2);(2)(a 2+3)(a -2)-a (a 2-2a -2).解:(1)(a +3)(a -1)+a (a -2)=a 2+2a -3+a 2-2a =2a 2-3;(2)原式=a 3-2a 2+3a -6-a 3+2a 2+2a=5a -6.13.已知a +b =m ,ab =-4,则计算(a -1)(b -1)的结果是( D ) A .3B.mC.3-mD.-3-m【解析】(a-1)(b-1)=ab-(a+b)+1=-4-m+1=-3-m.选D.14.若M=(a+3)(a-4),N=(a+2)(2a-5),其中a为有理数,则M,N的大小关系是(B) A.M>NB.M<NC.M=ND.无法确定【解析】M-N=(a+3)(a-4)-(a+2)(2a-5)=(a2-a-12)-(2a2-a-10)=a2-a-12-2a2+a+10=-a2-2<0,∴M<N.选B.15.[2012·吉林改编]先化简,再求值:(a+b)(a-b)+2a2,其中a=1,b=2. 解:原式=a2-b2+2a2=3a2-b2.当a=1,b=2时,3a2-b2=3×1-22=-1.16.已知x2-2x=1,求(x-1)(3x+1)-(x+1)2的值.解:原式=3x2+x-3x-1-x2-2x-1=2x2-4x-2.当x2-2x=1时,原式=2(x2-2x)-2=2×1-2=0.16.解方程:(x-2)2-(x+3)(x-3)=4x-1.解:(x-2)2-(x+3)(x-3)=4x-1,去括号,得x2-4x+4-x2+9=4x-1,合并同类项,得8x=14,系数化为1,得x=74.17.李老师刚买了一套2室2厅的新房,其结构如图3-3-5所示(单位:米).施工方已经把卫生间和厨房根据合同约定铺上了地板砖,李老师打算把卧室1铺上地毯,其余铺地板砖.问:(1)他至少需要多少平方米的地板砖?(2)如果这种地砖板每平方米m元,那么李老师至少要花多少钱?图3-3-5解:(1)用总面积减去厨房和卫生间的面积,再减去卧室1的面积即是所铺地板砖的面积.列式为:5b·5a-(5b-3b)·(5a-3a)-(5a-3a)·2b,化简得17ab,即他至少需要17ab平方米的地板砖.(2)所花钱数:17ab×m=17abm(元).18.运用平方差公式计算:(1)31×29;(2)498×502.解:(1)31×29=(30+1)×(30-1)=900-1=899;(2)498×502=(500-2)×(500+2)=5002-22=249996.19.[2012·无锡]计算:3(x2+2)-3(x+1)(x-1).解:原式=3x2+6-3(x2—1) =3x2+6-3x2+3=9.20.(1)[2012·遵义]已知x + y =-5 ,xy =6,则x 2 +y 2=__13__.(2)若x +y =3,xy =1,则x 2+y 2=__7__,x 2-xy +y 2=__6__.(3)[2012·江西]已知(m -n )2=8,(m +n )2=2,则m 2+n 2=__5__.(4)已知ab =-1,a +b =2,则代数式b a +a b 的值为__-6__.(5)已知x +1x =3,则代数式x 2+1x 2的值为__7__.(6)已知a -b =1,ab =6,则a 2+b 2=__13__.21.有两个正方形的边长的和为20 cm ,面积的差为40 cm 2.求这两个正方形的面积分别是多少?解:设这两个正方形的边长分别为x cm ,y cm(x >y ),则⎩⎪⎨⎪⎧x +y =20, ①x 2-y 2=40, ②由②得(x +y )(x -y )=40,∴x -y =2. ③由①③得方程组⎩⎪⎨⎪⎧x +y =20,x -y =2,解得⎩⎪⎨⎪⎧x =11,y =9,故这两个正方形的面积分别为121 cm 2,81 cm 2.22.[2012·泉州]先化简,再求值:(x +3)2+(2+x )(2-x ),其中x =-2. 解:原式=x 2+6x +9+4-x 2 = 6x +13.当x =-2时,原式=6×(-2)+13=1.23.[2011·衡阳]先化简,再求值:(x +1)2+x (x -2),其中x =-12.解:原式=x 2+2x +1+x 2-2x =2x 2+1,当x =-12时,原式=2×⎝ ⎛⎭⎪⎫-122+1=12+1=32.24.[2011·绍兴]先化简,再求值:a (a -2b )+2(a +b )(a -b )+(a +b )2,其中a =-12,b =1.解:a (a -2b )+2(a +b )(a -b )+(a +b )2=4a 2-b 2,当a =-12,b =1时,原式=0.25.如果a -b =5,ab =32,求a 2+b 2和(a +b )2的值.解:a 2+b 2=(a -b )2+2ab =52+2×32=25+3=28;(a +b )2=(a -b )2+4ab=52+4×32=25+6=31. 26.如果a (a -1)+(b -a 2)=-7,求a 2+b 22-ab 的值.解:∵a (a -1)+(b -a 2)=-7,∴a 2-a +b -a 2=-7,∴b -a =-7,∴a -b =7,∴a 2+b 22-ab =(a -b )22=722=492. 27.计算:(1)(x 2y )5÷(x 2y )2;(2)(a 10÷a 2)÷a 3;(3)a 2·a 5÷a 5.解:(1)原式=(x 2y )3=x 6y 3;(2)原式=a 8÷a 3=a 5;(3)原式=a 7÷a 5=a 2.28.求值:(1)已知5m =6,5n =3,求5m -n 的值;(2)若2x =3,4y =5,求2x -2y 的值;(3)若10m =20,10n =15,求9m ÷32n 的值.解:(1)5m -n =5m ÷5n =6÷3=2;(2)2x -2y =2x ÷22y =2x ÷4y=35;(3)∵10m ÷10n =10m -n =20÷15=100, ∴m -n =2.∴9m ÷32n =32(m -n )=34=81.29.[2012·威海]计算:(2-3)0-⎝ ⎛⎭⎪⎫12-1-⎝ ⎛⎭⎪⎫13-12=__-56__. 30.用科学记数法表示下列各数:0.00001;0.00002;0.000000567;0.000000301.解:0.00001=10-5;0.00002=2×10-5;0.000000567=5.67×10-7;0.000000301=3.01×10-7.31.计算:(1)⎪⎪⎪⎪⎪⎪-12+2-1-20130; (2)[2012·义乌]|-2|+(-1)2012-(π-4)0;(3)||-2+(-1)2012×(π-3)0-⎝ ⎛⎭⎪⎫12-1+(-2)-2. 解:(1)原式=12+12-1=0.(2)原式=2+1-1=2.(3)原式=2+1×1-2+14 =54.32.已知x 2-7x +1=0,求x 2+x -2的值.解:因为x 2-7x +1=0,所以x ≠0,则等式两边都除以x ,得x -7+x -1=0,即x +x -1=7,所以(x +x -1)2=x 2+2+x -2=49,所以x 2+x -2=47.33.计算:(1)(-24x 2y 3)÷(-8y 3);(2)⎝ ⎛⎭⎪⎫3x 2y -xy 2+12xy ÷⎝ ⎛⎭⎪⎫-12xy . 解:(1)原式=3x 2;(2)原式=-6x +2y -1.34.计算:(1)16x 3y 3÷12x 2y 3·⎝ ⎛⎭⎪⎫-12xy 3; (2)(-ab )·⎝ ⎛⎭⎪⎫0.25a 2b -12a 3b 2-16a 4b 3÷(-0.5a 2b ); (3)[(x 2+y 2)-(x -y )2+2y (x -y )]÷4y .解:(1)原式=32x ·⎝ ⎛⎭⎪⎫-12xy 3 =-16x 2y 3.(2)原式=⎝ ⎛⎭⎪⎫-0.25a 3b 2+12a 4b 3+16a 5b 4 ÷(-0.5a 2b )=12ab -a 2b 2-13a 3b 3.(3)原式=(x 2+y 2-x 2+2xy -y 2+2xy -2y 2)÷4y=(4xy -2y 2)÷4y=x -12y .35.先化简,再求值:[(x +3y )(x -3y )-(x +3y )2]÷4y ,其中x =6,y =2.解:[(x +3y )(x -3y )-(x +3y )2]÷4y=(x 2-9y 2-x 2-6xy -9y 2)÷4y=(-6xy -18y 2)÷4y=-32x -92y .当x =6,y =2时,原式=-32×6-92×2=-9-9=-18.36.先化简,再求值:(a 2b 2-2ab 3-b 4)÷b 2-(a +b )(a -b ),其中a =12,b =-1.解:原式=a 2-2ab -b 2-(a 2-b 2)=a 2-2ab -b 2-a 2+b 2=-2ab ,当a =12,b =-1时,原式=-2×12×(-1)=1.37.计算:⎝ ⎛⎭⎪⎫12-1-2-2-()π-20130+||-1.解:原式=2-14-1+1=74.38.[2012·南宁]芝麻作为食品和药物,均广泛使用.经测算,一粒芝麻约重0.00000201千克,用科学记数法表示为( A ) A .2.01×10-6千克B .0.201×10-5千克C .20.1×10-7千克D .2.01×10-7千克39.已知x +1x =4,求:(1)x 2+1x 2;(2)⎝ ⎛⎭⎪⎫x -1x 2.解:(1)⎝ ⎛⎭⎪⎫x +1x 2=16, 即x 2+1x 2+2·x ·1x =16, ∴x 2+1x 2=14. (2)⎝ ⎛⎭⎪⎫x -1x 2=x 2+1x 2-2=12.。

七年级数学下册第六章实数易错题集锦(带答案)

七年级数学下册第六章实数易错题集锦(带答案)

七年级数学下册第六章实数易错题集锦单选题1、下列说法正确的是()A.−81平方根是−9B.√81的平方根是±9C.平方根等于它本身的数是1和0D.√a2+1一定是正数答案:D分析:A、根据平方根的概念即可得到答案;B、√81的平方根其实是9的平方根;C、平方根等于它本身的数与算术平方根是它本身的数要分清楚;D、先判断出a2+1>0,再利用算术平方根的性质直接得到答案.A、−81是负数,负数没有平方根,不符合题意;B、√81=9,9的平方根是±3,不符合题意;C、平方根等于它本身的数是0,1的平方根是±1,不符合题意;D、a2+1>0,正数的算术平方根大于0,符合题意.故选:D.小提示:此题考查了平方根及算术平方根的定义及性质,熟练掌握相关知识是解题关键.2、已知a为整数,且满足√8<a<√12,则a等于()A.2B.3C.4D.5答案:B分析:估算无理数√8和√12的大小,进而确定a的值即可.解:∵2<√8<3,3<√12<4,a为整数,且满足√8<a<√12,∴a=3.故选:B.小提示:本题主要考查了估算无理数的大小,熟练掌握估算无理数大小的方法进行求解是解决本题的关键.3、实数x,y,z在数轴上的对应点的位置如图所示,若|z+y|<|x+y|,则A,B,C,D四个点中可能是原点的为()A.A点B.B点C.C点D.D点答案:D分析:分①若原点的位置为A点时,②若原点的位置为B点或C点时,③若原点的位置为D点时,结合有理数的加法法则和点在数轴上的位置分析即可得出正确选项.解:根据数轴可知x<y<z,①若原点的位置为A点时,x>0,则|z+y|=z+y,|x+y|=x+y,x+y<z+y,∴|z+y|>|x+y|,舍去;②若原点的位置为B点或C点时,x<0,y>0,z>0,|z|>|x|,|z|>|y|,则|x+y|<|y|或|x+y|<|x|,|z+y|=|z|+|y|,∴|z+y|>|x+y|,舍去;③若原点的位置为D点时,x<0,y<0,z>0,|y|>|z|则|x+y|<|y|+|x||z+y|<|y|,∴|z+y|<|x+y|,符合条件,∴最有可能是原点的是D点,故选:D.小提示:本题考查实数与数轴,有理数的加法法则,化简绝对值.熟记有理数的加法法则是解题关键.4、下列说法正确的是()A.4的平方根是2B.√16的平方根是±4C.25的平方根是±5D.﹣36的算术平方根是6答案:C分析:根据平方根和算术平方根的定义判断即可.解:A.4的平方根是±2,故错误,不符合题意;B.√16的平方根是±2,故错误,不符合题意;C .25的平方根是±5,故正确,符合题意;D .-36没有算术平方根,故错误,不符合题意;故选:C .小提示:本题考查了平方根和算术平方根的概念,解题关键是熟悉相关概念,准确进行判断.5、下列说法正确的是( )A .负数没有立方根B .8的立方根是±2C .√−83=−√83D .立方根等于本身的数只有±1答案:C分析:根据立方根的定义分别判断即可.立方根:如果一个数的立方等于a ,那么这个数叫做a 的立方根. 解:A 负数有一个立方根,故该选项错误,不符合题意;B 选项,8的立方根是2,故该选项错误,不符合题意;C 选项,√−83=−√83,故该选项正确,符合题意;D 选项,立方根等于本身的数只有±1和0,故该选项错误,不符合题意.故选:C .小提示:本题考查了立方根的应用,掌握立方根的定义是解题的关键.6、下列四种叙述中,正确的是( )A .带根号的数是无理数B .无理数都是带根号的数C .无理数是无限小数D .无限小数是无理数答案:C分析:根据无理数的概念逐个判断即可.无理数:无限不循环小数.解:A .√4=2,是有理数,故本选项不合题意;B .π是无理数,故本选项不合题意;C .无理数是无限不循环小数,原说法正确,故本选项符合题意;D .无限循环小数是有理数,故本选项不合题意.故选:C .小提示:此题考查了无理数的概念,解题的关键是熟练掌握无理数的概念.无理数:无限不循环小数.7、如图,在数轴上表示实数√15的点可能().A.点P B.点Q C.点M D.点N答案:C分析:确定√15是在哪两个相邻的整数之间,然后确定对应的点即可解决问题.解:∵9<15<16,∴3<√15<4,∴√15对应的点是M.故选:C.小提示:本题考查实数与数轴上的点的对应关系,解题关键是应先看这个无理数在哪两个有理数之间,进而求解.8、如图,数轴上点E对应的实数是()A.−2B.−1C.1D.2答案:A分析:根据数轴上点E所在位置,判断出点E所对应的值即可;解:根据数轴上点E所在位置可知,点E在-1到-3之间,符合题意的只有-2;故选:A.小提示:本题主要考查数轴上的点的位置问题,根据数轴上点所在位置对点的数值进行判断是解题的关键.9、计算下列各式,值最小的是()A.2×0+1−9B.2+0×1−9C.2+0−1×9D.2+0+1−9答案:A分析:根据实数的运算法则,遵循先乘除后加减的运算顺序即可得到答案.根据实数的运算法则可得:A.2×0+1−9=−8; B.2+0×1−9=-7;C.2+0−1×9=-7; D.2+0+1−9=-6;故选A.小提示:本题考查实数的混合运算,掌握实数的混合运算顺序和法则是解题的关键..10、把四张形状大小完全相同的小长方形卡片(如图①,卡片的长为a ,宽为b )不重叠地放在一个底面为长方形(长为√21,宽为4)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是( )A .4√21B .16C .2(√21+4)D .4(√21−4)答案:B分析:分别求出较大阴影的周长和较小阴影的周长,再相加整理,即得出答案.较大阴影的周长为:(4−2b)×2+a ×2,较小阴影的周长为:(4−a)×2+2b ×2,两块阴影部分的周长和为:[(4−2b)×2+a ×2]+[(4−a)×2+2b ×2]= 16,故两块阴影部分的周长和为16.故选B .小提示:本题考查了图形周长,整式加减的应用,利用数形结合的思想求出较大阴影的周长和较小阴影的周长是解题的关键.填空题11、计算:(1)√273=______; (2)√−27643=_______; (3)−√−183=_______;(4)√1+911253=______; (5)√24×45×253=______; (6)√0.25+√−273=______;(7)√0.09−√−83=______.答案: 3 −34 12 65 30 −2.5 2.3 分析:(1)直接利用立方根的定义即可求解;(2)直接利用立方根的定义即可求解;(3)直接利用立方根的定义即可求解;(4)直接利用立方根的定义即可求解;(5)直接利用立方根的定义即可求解;(6)利用算术平方根和立方根的定义即可求解;(7)利用算术平方根和立方根的定义即可求解.解:(1)∵33=27,∴√273=3; (2)∵(−34)3=−2764,∴√−27643=−34; (3)∵(−12)3=−18,∴√−183=−12,即−√−183=12;(4)√1+911253=√2161253∵(65)3=216125,∴√2161253=65,即√1+911253=65; (5)√24×45×253=27000,∵303=27000,∴√270003=30; (6)√0.25+√−273=0.5+(−3)=−2.5;(7)√0.09−√−83=0.3−(−2)=0.3+2=2.3.所以答案是:3,−34,12,65,30,−2.5,2.3.小提示:本题考查立方根和算术平方根.熟练掌握立方根和算术平方根的定义是解题关键.12、规定一种新运算“*”:a *b =13a -14b ,则方程x *2=1*x 的解为________.答案:107 分析:根据题中的新定义化简所求方程,求出方程的解即可.根据题意得:13x -14×2=13×1-14x , 712x =56, 解得:x =107,故答案为x =107. 小提示:此题的关键是掌握新运算规则,转化成一元一次方程,再解这个一元一次方程即可.13、已知√a −b +|b −1|=0,则a +1=__.答案:2.分析:利用非负数的性质结合绝对值与二次根式的性质即可求出a ,b 的值,进而即可得出答案.∵√a −b +|b ﹣1|=0,又∵√a −b ≥0,|b −1|≥0,∴a ﹣b =0且b ﹣1=0,解得:a =b =1,∴a +1=2.故答案为2.小提示:本题主要考查了非负数的性质以及绝对值与二次根式的性质,根据几个非负数的和为0,那么每个非负数都为0得到关于a 、b 的方程是解题的关键.14、如果√a 的平方根是±3,则a =_________答案:81分析:根据平方根的定义即可求解.∵9的平方根为±3,∴√a =9,所以a=81小提示:此题主要考查平方根的性质,解题的关键是熟知平方根的定义.15、下列各数3.1415926,√9,1.212212221…,17,2﹣π,﹣2020,√43中,无理数的个数有_____个. 答案:3分析:根据无理数的三种形式:①开不尽的方根,②无限不循环小数,③含有π的绝大部分数,找出无理数的个数即可.解:在所列实数中,无理数有1.212212221…,2﹣π,√43这3个,所以答案是:3.小提示:本题考查无理数的定义,熟练掌握无理数的概念是解题的关键.解答题16、已知4a +7的立方根是3,2a +2b +2的算术平方根是4(1)求a ,b 的值.(2)求6a +3b 的平方根.答案:(1)a =5,b =2;(2)6a +3b 的平方根为±6.分析:(1)运用立方根和算术平方根的定义求解;(2)根据平方根,即可解答.(1)解:∵4a +7的立方根是3,2a +2b +2的算术平方根是4,∴4a +7=27,2a +2b +2=16,∴a =5,b =2;(2)解:由(1)知a =5,b =2,∴6a +3b =6×5+3×2=36,∴6a +3b 的平方根为±6.小提示:本题考查了平方根、立方根、算术平方根.掌握一个正数的平方根有2个是解题的关键,不要漏解.17、我们知道,√2是一个无理数,将这个数减去整数部分,差就是小数部分,即√2的整数部分是1,小数部分是√2−1,请回答以下问题:(1)√10的小数部分是________,5−√13的小数部分是________.(2)若a是√90的整数部分,b是√3的小数部分,求a+b−√3+1的平方根.(3)若7+√5=x+y,其中x是整数,且0<y<1,求x−y+√5的值.答案:(1)√10−3,4−√13;(2)±3;(3)11.分析:(1)确定√10的整数部分,即可确定它的小数部分;确定√13的整数部分,即可确定5−√13的整数部分,从而确定5−√13的小数部分;(2)确定√90的整数部分,即知a的值,同理可确定√3的整数部分,从而求得它的小数部分,即b的值,则可以求得代数式a+b−√3+1的值,从而求得其平方根;(3)由2<√5<3得即9<7+√5<10,从而得x=9,y=√5−2,将x、y的值代入原式即可求解.(1)解:∵3<√10<4,∴√10的整数部分为3,∴√10的小数部分为√10−3,∵3<√13<4,∴−3>−√13>−4,∴5−3>5−√13>5−4即1<5−√13<2,∴5−√13的整数部分为1,∴5−√13的小数部分为4−√13,所以答案是:√10−3,4−√13;(2)解:∵9<√90<10,a是√90的整数部分,∴a=9,∵1<√3<2,∴√3的整数部分为1,∵b是√3的小数部分,∴b=√3−1,∴a+b−√3+1=9+√3−1−√3+1=9∵9的平方根等于±3,∴a+b−√3+1的平方根等于±3;(3)解:∵2<√5<3,∴7+2<7+√5<7+3即9<7+√5<10,∵7+√5=x+y,其中x是整数,且0<y<1,∴x=9,y=7+√5−9=√5−2,∴x−y+√5=9−(√5−2)+√5=11.小提示:本题考查了无理数的估算、求平方根以及求代数式的值,关键是掌握二次根式的大小估算方法.18、把三个半径分别是3,4,5的铅球熔化后做一个更大的铅球,这个大铅球的半径是多少?(球的体积公式是V=43πR3,其中R是球的半径.)答案:大铅球的半径是6.分析:求出半径分别是3,4,5的铅球的体积之和,再根据立方根的定义计算出结果即可.解:设这个大铅球的半径为r,由题意可得4 3πr3=43π(33+43+53),即r3=216,所以r=√2163=6.大铅球的半径是6.小提示:本题考查了立方根的应用,熟记立方根的定义是解答本题的关键.。

北师大版七年级数学下册期末易错题复习详解

北师大版七年级数学下册期末易错题复习详解

北师大版七年级数学下册期末易错题复习详解七(下)数学期末复易错题以下是第一、三、六章的易错题:1.下列事件是必然事件的是()A。

抛掷一枚均匀的骰子,出现6点向上B。

两直线被第三条直线所截,同位角相等C。

366人中至少有2人生日相同D。

实数的绝对值是非负数2.下列事件中,必然事件有:④通常情况下,将水加热到100℃时,水会沸腾。

3.从4名女生和6名男生中选5名学生参加竞赛,规定男生选n名,当n=0时,4名女生中的XXX当选是必然事件;当n=6时,女生XXX当选是不可能的事件;当n=2时,女生XXX当选是随机事件。

4.已知1纳米=0.000 000 001米,则2.04纳米用科学记数法表示为2.04×10^-9米。

5.下列计算正确的是()B。

-a^5C。

(-a-3)(-a+3)=9-a^2D。

(a-b)(a+b)=a^2-b^26.已知x-y=4,xy=-3,则x^2+y^2=25.7.已知A=2x,B是多项式,在计算B+A时,XXX同学把XXX看成了B÷A,结果得到x^2+2x,则XXX。

8.若9a^2+mab+4b^2是一个完全平方式,则m=±12ab。

9.式子4+(a-b)的最小值是4,4-(a-b)的最大值是4,当a=b时取到。

10.代数式5-a^2+2ab-b^2的最大值是4,当a=b=1时取到,此时以a,b为边的三角形是等边三角形。

11.梯形上底长为4,下底长为x,高为2,则梯形面积y与下底x之间的关系式是y=3x-6.12.如图(1)在长方形ABCD中,动点P从B出发,沿BC、CD、DA匀速运动到A停止。

设P运动的路程为x,△ABP的面积为y,y关于x的图像如图(2),则△ABC的面积为()C。

18.13.某仓库调拨一批物资,调进物资共用8小时,调进物资4小时后同时开始调出物资,(调进调出物资的速度均保持不变)。

该仓库库存物资W(吨)与时间t(小时)之间的关系如图所示,则这批物资从开始调进到全部调出所需的时间是()D。

初中数学七年级下册易错题汇总大全附答案带解析

初中数学七年级下册易错题汇总大全附答案带解析

初中数学七年级下册易错题相交线与平行线1.未正确理解垂线的定义1.下列判断错误的是().A.一条线段有无数条垂线;B.过线段AB中点有且只有一条直线与线段AB垂直;C.两直线相交所成的四个角中,若有一个角为90°,则这两条直线互相垂直;D.若两条直线相交,则它们互相垂直.错解:A或B或C.解析:本题应在正确理解垂直的有关概念下解题,知道垂直是两直线相交时有一角为90°的特殊情况,反之,若两直线相交则不一定垂直.正解:D.2.未正确理解垂线段、点到直线的距离2.下列判断正确的是().A.从直线外一点到已知直线的垂线段叫做这点到已知直线的距离;B.过直线外一点画已知直线的垂线,垂线的长度就是这点到已知直线的距离;C.画出已知直线外一点到已知直线的距离;D.连接直线外一点与直线上各点的所有线段中垂线段最短.错解:A或B或C.解析:本题错误原因是不能正确理解垂线段的概念及垂线段的意义.A.这种说法是错误的,从直线外一点到这条直线的垂线段的长度叫做点到直线的距离. 仅仅有垂线段,没有指明这条垂线段的长度是错误的.B.这种说法是错误的,因为垂线是直线,直线没有长短,它可以无限延伸,所以说“垂线的长度”就是错误的;C.这种说法是错误的,“画”是画图形,画图不能得到数量,只有“量”才能得到数量,这句话应该说成:画出已知直线外一点到已知直线的垂线段,量出垂线段的长度.正解:D.3.未准确辨认同位角、内错角、同旁内角3.如图所示,图中共有内错角().A.2组;B.3组;C.4组;D.5组.错解:A.解析:图中的内错角有∠AGF与∠GFD,∠BGF与∠GFC,∠HGF与∠GFC三组.其中∠HGF与∠GFC易漏掉。

正解:B.4.对平行线的概念、平行公理理解有误4.下列说法:①过两点有且只有一条直线;②两条直线不平行必相交;③过一点有且只有一条直线与已知直线垂直;④过一点有且只有一条直线与已知直线平行. 其中正确的有().A.1个;B.2个;C.3个;D.4个.错解:C或D.解析:平行线的定义必须强调“在同一平面内”的前提条件,所以②是错误的,平行公理中的“过一点”必须强调“过直线外一点”,所以④是错误的,①③是正确的.正解:B.5.不能准确识别截线与被截直线,从而误判直线平行5.如图所示,下列推理中正确的有().①因为∠1=∠4,所以BC∥AD;②因为∠2=∠3,所以AB∥CD;③因为∠BCD+∠ADC=180°,所以AD∥BC;④因为∠1+∠2+∠C=180°,所以BC ∥AD.A.1个;B.2个;C.3个;D.4个.错解:D.解析:解与平行线有关的问题时,对以下基本图形要熟悉:“”“”“”,只有③推理正确.正解:A.6.混淆平行线的判定和性质、忽略平行线的性质成立的前提条件6.如图所示,直线,∠1=70°,求∠2的度数.错解:由于,根据内错角相等,两直线平行,可得∠1=∠2,又因为∠1=70°,所以∠2=70°.解析:造成这种错误的原因主要是对平行线的判定和性质混淆. 在运用的时候要注意:(1)判定是不知道直线平行,是根据某些条件来判定两条直线是否平行;(2)性质是知道两直线平行,是根据两直线平行得到其他关系.正解:因为(已知),所以∠1=∠2(两直线平行,内错角相等),又因为∠1=70°(已知),所以∠2=70°.7.对命题这一概念的理解不透彻7.判断下列语句是否是命题. 如果是,请写出它的题设和结论.(1)内错角相等;(2)对顶角相等;(3)画一个60°的角.错解:(1)(2)不是命题,(3)是命题.解析:对于命题的概念理解不透彻,往往认为只有存在因果关系的关联词才是命题,正确认识命题这一概念,关键要注意两点,其一必须是一个语句,是一句话;其二必须存在判断关系,即“是”或“不是”.正解:(1)是命题. 这个命题的题设是:两条直线被第三条直线所截;结论是:内错角相等. 这个命题是一个错误的命题,即假命题.(2)是命题. 这个命题的题设是:两个角是对顶角;结论是:这两个角相等. 这个命题是一个正确的命题,即真命题.(3)不是命题,它不是判断一件事情的语句.8.忽视平移的距离的概念8.“如图所示,△A′B′C′是△ABC平移得到的,在这个平移中,平移的距离是线段AA′”这句话对吗?错解:正确.解析:平移的距离是指两个图形中对应点连线的长度,而不是线段,所以在这个平移过程中,平移的距离应该是线段AA′的长度.正解:错误.第六章平面直角坐标系1.不能确定点所在的象限1.点A的坐标满足,试确定点A所在的象限.错解:因为,所以,,所以点A在第一象限.解析:本题出错的原因在于漏掉了当,时,的情况,此时点A在第三象限.正解:因为,所以为同号,即,或,. 当,时,点A在第一象限;当,时,点A在第三象限.2.点到x轴、y轴的距离易混淆2.求点A(-3,-4)到坐标轴的距离.错解:点A(-3,-4)到轴的距离为3,到轴的距离为4.解析:错误的原因是误以为点A()到轴的距离等于,到轴的距离等于,而事实上,点A()到轴的距离等于,到轴的距离等于,不熟练时,可结合图形进行分析.正解:点A(-3,-4)到轴的距离为4,到轴的距离为3.第八章二元一次方程组1.不能正确理解二元一次方程组的定义1.已知方程组:①,②,③,④,正确的说法是().A.只有①③是二元一次方程组;B.只有③④是二元一次方程组;C.只有①④是二元一次方程组;D.只有②不是二元一次方程组.错解:A或C.解析:方程组①④是二元一次方程组,符合定义,方程组③是二元一次方程组,符合定义,而且是最简单、最特殊的二元一次方程组.正解:D.2.将方程相加减时弄错符号2.用加减法解方程组.错解:①-②得,所以,把代入①,得,解得.所以原方程组的解是.错解解析:在加减消元时弄错了符号而导致错误.正解:①-②得,所以,把代入①,得,解得.所以原方程组的解是.3.将方程变形时忽略常数项3.利用加减法解方程组.错解:①×2+②得,解得. 把代入①得,解得. 所以原方程组的解是.错解解析:在①×2+②这一过程中只把①左边各项都分别与2相乘了,而忽略了等号右边的常数项4.正解:①×2+②得,解得. 把代入①得,解得. 所以原方程组的解是.4.不能正确找出实际问题中的等量关系4.两个车间,按计划每月工生产微型电机680台,由于改进技术,上个月第一车间完成计划的120%,第二车间完成计划的115%,结果两个车间一共生产微型电机798台,则上个月两个车间各生产微型电机多少台?若设两车间上个月各生产微型电机台和台,则列方程组为().A.;B.;C..D..错解:B或D.解析:错误的原因是等量关系错误,本题中的等量关系为:(1)第一车间实际生产台数+第二车间实际生产台数=798台;(2)第一车间计划生产台数+第二车间计划生产台数=680台.正解:C.第九章不等式与不等式组1.在运用不等式性质3时,未改变符号方向1.利用不等式的性质解不等式:.错解:根据不等式性质1得,即. 根据不等式的性质3,在两边同除以-5,得.解析:在此解答过程中,由于对性质3的内容没记牢,没有将“<”变为“>”,从而得出错误结果.正解:根据不等式的性质1,在不等式的两边同时减去5,得,根据不等式的性质3,在不等式的两边同时除以-5,得.2.利用不等式解决实际问题时,忽视问题的实际意义,取值时出现错误2.某小店每天需水1m³,而自来水厂每天只供一次水,故需要做一个水箱来存水. 要求水箱是长方体,底面积为0.81㎡,那么高至少为多少米时才够用?(精确到0.1m)错解:设高为m时才够用,根据题意得. 由. 要精确到0.1,所以.答:高至少为1.2m时才够用.解析:最后取解时,没有考虑到问题的实际意义,水箱存水量不得小于1m³,如果水箱的高为时正好够,少一点就不够了. 故最后取近似值一定要大于,即取近似值时只能入而不能舍.正解:设高为m时才够用,根据题意得. 由于,而要精确到0.1,所以.答:水箱的高至少为1.3m时才够用.3.解不等式组时,弄不清“公共部分”的含义3.解不等式组.错解:由①得,由②得,所以不等式组的解集为.错解解析:此题错在对“公共部分”的理解上,误认为两个数之间的部分为“公共部分”(即解集). 实质上,和没有“公共部分”,也就是说此不等式组无解. 注意:“公共部分”就是在数轴上两线重叠的部分.正解:由①得,由②得,所以不等式组无解.第十章数据的收集、整理与描述1.全面调查与抽样调查选择不当1.调查一批药物的药效持续时间,用哪种调查方式?错解:全面调查.解析:此调查若用全面调查具有破坏性,不宜采用全面调查.正解:抽样调查.2.未正确理解定义2.2006年4月11日《文汇报》报道:据不完全统计,至今上海自愿报名去西部地区工作的专业技术人员和管理人员已达3600多人,其中硕士、博士占4%,本科生占79%,大专生占13%. 根据上述数据绘制扇形统计图表示这些人员的学历分布情况.错解:如下图所示:解析:漏掉其他人员4%,扇形表示的百分比之和不等于1,正确的扇形统计图表示的百分比之和为1.正解:如下图所示:3.对频数与频率的意义的理解错误3.某班组织25名团员为灾区捐款,其中捐款数额前三名的是10元5人,5元10人,2元5人,其余每人捐1元,那么捐10元的学生出现的频率是__________.错解:捐10元的5人,.解析:该题的错误是因为将5+10+5作为总次数,实际上应是25为总次数,这其实是对频率概念错误理解的结果. 正解:0.2二元一次方程组应用探索二元一次方程组是最简单的方程组,其应用广泛,尤其是生活、生产实践中的许多问题,大多需要通过设元、布列二元一次方程组来加以解决,现将常见的几种题型归纳如下:一、数字问题例1 一个两位数,比它十位上的数与个位上的数的和大9;如果交换十位上的数与个位上的数,所得两位数比原两位数大27,求这个两位数.分析:设这个两位数十位上的数为x ,个位上的数为y ,则这个两位数及新两位数及其之间的关系可用下表表示:解方程组109101027x y x y y x x y +=++⎧⎨+=++⎩,得14x y =⎧⎨=⎩,因此,所求的两位数是14.点评:由于受一元一次方程先入为主的影响,不少同学习惯于只设一元,然后列一元一次方程求解,虽然这种方法十有八九可以奏效,但对有些问题是无能为力的,象本题,如果直接设这个两位数为x ,或只设十位上的数为x ,那将很难或根本就想象不出关于x 的方程.一般地,与十位上的数个位上的数对应的两位数相等关系 原两位数 x y 10x+y 10x+y=x+y+9 新两位数yx10y+x10y+x=10x+y+27数位上的数字有关的求数问题,一般应设各个数位上的数为“元”,然后列多元方程组解之.二、利润问题例2一件商品如果按定价打九折出售可以盈利20%;如果打八折出售可以盈利10元,问此商品的定价是多少?分析:商品的利润涉及到进价、定价和卖出价,因此,设此商品的定价为x 元,进价为y 元,则打九折时的卖出价为0.9x 元,获利(0.9x-y)元,因此得方程0.9x-y=20%y ;打八折时的卖出价为0.8x 元,获利(0.8x-y)元,可得方程0.8x-y=10.解方程组0.920%0.810x y yx y -=⎧⎨-=⎩,解得200150x y =⎧⎨=⎩,因此,此商品定价为200元.点评:商品销售盈利百分数是相对于进价而言的,不要误为是相对于定价或卖出价.利润的计算一般有两种方法,一是:利润=卖出价-进价;二是:利润=进价×利润率(盈利百分数).特别注意“利润”和“利润率”是不同的两个概念.三、配套问题例3 某厂共有120名生产工人,每个工人每天可生产螺栓25个或螺母20个,如果一个螺栓与两个螺母配成一套,那么每天安排多名工人生产螺栓,多少名工人生产螺母,才能使每天生产出来的产品配成最多套?分析:要使生产出来的产品配成最多套,只须生产出来的螺栓和螺母全部配上套,根据题意,每天生产的螺栓与螺母应满足关系式:每天生产的螺栓数×2=每天生产的螺母数×1.因此,设安排x人生产螺栓,y人生产螺母,则每天可生产螺栓25x个,螺母20y个,依题意,得120502201x y x y +=⎧⎨⨯=⨯⎩,解之,得20100x y =⎧⎨=⎩. 故应安排20人生产螺栓,100人生产螺母.点评:产品配套是工厂生产中基本原则之一,如何分配生产力,使生产出来的产品恰好配套成为主管生产人员常见的问题,解决配套问题的关键是利用配套本身所存在的相等关系,其中两种最常见的配套问题的等量关系是:(1)“二合一”问题:如果a件甲产品和b件乙产品配成一套,那么甲产品数的b倍等于乙产品数的a倍,即a b=甲产品数乙产品数;(2)“三合一”问题:如果甲产品a件,乙产品b件,丙产品c件配成一套,那么各种产品数应满足的相等关系式是:a b c==甲产品数乙产品数丙产品数.四、行程问题例4 在某条高速公路上依次排列着A 、B 、C 三个加油站,A 到B 的距离为120千米,B 到C 的距离也是120千米.分别在A 、C 两个加油站实施抢劫的两个犯罪团伙作案后同时以相同的速度驾车沿高速公路逃离现场,正在B 站待命的两辆巡逻车接到指挥中心的命令后立即以相同的速度分别往A 、C 两个加油站驶去,结果往B 站驶来的团伙在1小时后就被其中一辆迎面而上的巡逻车堵截住,而另一团伙经过3小时后才被另一辆巡逻车追赶上.问巡逻车和犯罪团伙的车的速度各是多少?【研析】设巡逻车、犯罪团伙的车的速度分别为x 、y 千米/时,则()3120120x y x y -=⎧⎪⎨+=⎪⎩,整理,得40120x y x y -=⎧⎨+=⎩,解得8040x y =⎧⎨=⎩, 因此,巡逻车的速度是80千米/时,犯罪团伙的车的速度是40千米/时.点评:“相向而遇”和“同向追及”是行程问题中最常见的两种题型,在这两种题型中都存在着一个相等关系,这个关系涉及到两者的速度、原来的距离以及行走的时间,具体表现在:“相向而遇”时,两者所走的路程之和等于它们原来的距离;“同向追及”时,快者所走的路程减去慢者所走的路程等于它们原来的距离.五、货运问题典例5 某船的载重量为300吨,容积为1200立方米,现有甲、乙两种货物要运,其中甲种货物每吨体积为6立方米,乙种货物每吨的体积为2立方米,要充分利用这艘船的载重和容积,甲、乙两重货物应各装多少吨?分析:“充分利用这艘船的载重和容积”的意思是“货物的总重量等于船的载重量”且“货物的体积等于船的容积”.设甲种货物装x 吨,乙种货物装y 吨,则300621200x y x y +=⎧⎨+=⎩,整理,得3003600x y x y +=⎧⎨+=⎩,解得150150x y =⎧⎨=⎩, 因此,甲、乙两重货物应各装150吨.点评:由实际问题列出的方程组一般都可以再化简,因此,解实际问题的方程组时要注意先化简,再考虑消元和解法,这样可以减少计算量,增加准确度.化简时一般是去分母或两边同时除以各项系数的最大公约数或移项、合并同类项等.六、工程问题例 6 某服装厂接到生产一种工作服的订货任务,要求在规定期限内完成,按照这个服装厂原来的生产能力,每天可生产这种服装150套,按这样的生产进度在客户要求的期限内只能完成订货的45;现在工厂改进了人员组织结构和生产流程,每天可生产这种工作服200套,这样不仅比规定时间少用1天,而且比订货量多生产25套,求订做的工作服是几套?要求的期限是几天?分析:设订做的工作服是x 套,要求的期限是y 天,依题意,得()41505200125y x y x ⎧=⎪⎨⎪-=+⎩,解得337518x y =⎧⎨=⎩. 点评:工程问题与行程问题相类似,关键要抓好三个基本量的关系,即“工作量=工作时间×工作效率”以及它们的变式“工作时间=工作量÷工作效率,工作效率=工作量÷工作时间”.其次注意当题目与工作量大小、多少无关时,通常用“1”表示总工作量.。

《易错题》初中七年级数学下册第五章《相交线与平行线》经典练习(培优练)

《易错题》初中七年级数学下册第五章《相交线与平行线》经典练习(培优练)

一、选择题1.如图,把一长方形纸片ABCD 沿EG 折叠后,AEG A EG '∠=∠,点A 、B 分别落在A '、B ′的位置,EA '与BC 相交于点F ,已知1125∠=︒,则2∠的度数是( )A .55°B .60°C .70°D .75°C解析:C【分析】 先根据平行线的性质可得55AEG ∠=︒,再根据平角的定义可得70∠︒=DEF ,然后根据平行线的性质即可得.【详解】由题意得://AD BC ,1125∠=︒,180155AEG ∴∠=︒-∠=︒,AEG A EG '∠=∠,55A EG '∴∠=︒,18070DEF AEG A EG '∴∠=︒-∠-∠=︒,又//AD BC ,270DEF ∴∠=∠=︒,故选:C .【点睛】本题考查了平角的定义、平行线的性质,熟练掌握平行线的性质是解题关键. 2.下列语句中不是命题的有( )(1)两点之间,线段最短;(2)连接A 、B 两点;(3)鸟是动物;(4)不相交的两条直线叫做平行线;(5)无论a 为怎样的有理数,式子a 2+1的值都是正数吗?A .1个B .2个C .3个D .4个C解析:C【分析】根据命题的定义对各语句进行判断.【详解】两点之间,线段最短,所以(1)为命题;连接A 、B 两点,它为描述性语言,所以(2)不是命题;鸟是动物,所以(3)为命题;不相交的两条直线叫做平行线,所以(4)为命题;无论a 为怎样的有理数,式子a 2+1的值都是正数吗?它为疑问句,所以(5)不是命题. 故选:C .【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式. 有些命题的正确性是用推理证实的,这样的真命题叫做定理.3.有下列命题:①两点之间,线段最短;②相等的角是对顶角;③当a ≥0时,|a |=a ;④内错角互补,两直线平行.其中是真命题的有( )A .1个B .2个C .3个D .4个B解析:B【分析】根据线段公理、对顶角、绝对值运算、平行线的判定逐个判断即可得.【详解】①两点之间,线段最短,是真命题;②相等的角不一定是对顶角,是假命题;③当0a ≥时,a a =,即非负数的绝对值等于它本身,是真命题;④内错角相等,两直线平行,是假命题;综上,真命题的个数是2个,故选:B .【点睛】本题考查了线段公理、对顶角、绝对值运算、平行线的判定,熟练掌握各判定定理与性质是解题关键.4.下列哪个图形是由图1平移得到的( )A .B .C .D . B解析:B【分析】根据平移的性质,结合图形,对选项进行一一分析,排除错误答案.【详解】A.不是由图1平移得到的,故错误;B.是由图1平移得到的,故正确;C.不是由图1平移得到的,故错误;D.不是由图1平移得到的,故错误;故选:B .【点睛】考查平移的性质,平移前后,图形的大小和形状没有变化.5.下列各命题中,属于假命题的是( )A .若0a b ->,则a b >B .若0a b -=,则0ab ≥C .若0a b -<,则a b <D .若0a b -≠,则0ab ≠ D解析:D【分析】根据不等式的性质对各选项进行逐一判断即可.【详解】A、正确,符合不等式的性质;B、正确,符合不等式的性质.C、正确,符合不等式的性质;D、错误,例如a=2,b=0;故选D.【点睛】考查了命题与定理的知识,解题的关键是了解不等式的性质,难度不大.6.如图,△ABC经平移得到△EFB,则下列说法正确的有()①线段AC的对应线段是线段EB;②点C的对应点是点B;③AC∥EB;④平移的距离等于线段BF的长度.A.1 B.2 C.3 D.4D解析:D【分析】根据平移的特点分别判断各选项即可.【详解】∵△ABC经平移得到△EFB∴点A、B、C的对应点分别为E、F、B,②正确∴BE是AC的对应线段,①正确∴AC∥EB,③正确平移距离为对应点连线的长度,即BF的长度,④正确故选:D【点睛】本题考查平移的特点,注意,在平移过程中,一定要把握住对应点,仅对应点的连线之间才有平行、相等的一些关系.7.下列命题是真命题的有()个①对顶角相等,邻补角互补②两条直线被第三条直线所截,同位角的平分线平行③垂直于同一条直线的两条直线互相平行④过一点有且只有一条直线与已知直线平行A.0 B.1 C.2 D.3B解析:B【分析】根据平行线的性质定理、平行公理、对顶角和邻补角的概念判断即可.【详解】解:对顶角相等,邻补角互补,故①是真命题;两条平行线被第三条直线所截,同位角的平分线平行,故②是假命题;在同一平面内,垂直于同一条直线的两条直线互相平行,故③是假命题;过直线外一点有且只有一条直线与已知直线平行,故④是假命题;故正确的个数只有1个,故选:B.【点睛】本题考查的是平行的公理和应用,命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.8.如图,直线a∥b,则∠A的度数是()A.28°B.31°C.39°D.42°C解析:C【解析】试题分析:根据平行线的性质可得∠1=70°,再根据三角形的一个外角等于和它不相邻的两个内角的和可得∠A=70°-31°=39°.故选C.考点:平行线的性质9.(2017•十堰)如图,AB∥DE,FG⊥BC于F,∠CDE=40°,则∠FGB=()A.40°B.50°C.60°D.70°B解析:B【解析】试题分析:由AB ∥DE ,∠CDE=40°,∴∠B=∠CDE=40°,又∵FG ⊥BC ,∴∠FGB=90°﹣∠B=50°,故选B .考点:平行线的性质10.如图是一块长方形ABCD 的场地,长102AB m =,宽51AD m =,从A 、B 两处入口的中路宽都为1m ,两小路汇合处路宽为2m ,其余部分种植草坪,则草坪面积为( )A .5050m 2B .5000m 2C .4900m 2D .4998m 2B解析:B【详解】 解:由图可知:矩形ABCD 中去掉小路后,草坪正好可以拼成一个新的矩形,且它的长为:(102-2)米,宽为(51-1)米.所以草坪的面积应该是长×宽=(102-2)(51-1)=5000(米2).故选B .二、填空题11.如图,点A 在直线m 上,点B 在直线l 上,点A 到直线l 的距离为a ,点B 到直线m 的距离为b ,线段AB 的长度为c ,通过测量等方法可以判断在a ,b ,c 三个数据中,最大的是_____________.【分析】过点A 作AD 垂直于垂足为D 过点B 作BH 垂直于垂足为H 连接AB 根据点到直线垂线段最短可知AB >ADAB >BH 可得最大【详解】过点A 作AD 垂直于垂足为D 过点B 作BH 垂直于垂足为H 连接AB 由题意得解析:c【分析】过点A作AD垂直于l垂足为D,过点B作BH垂直于m垂足为H,连接AB,根据点到直线垂线段最短,可知AB>AD,AB>BH,可得c最大.【详解】过点A作AD垂直于l垂足为D,过点B作BH垂直于m垂足为H,连接AB,由题意得:AD=a, BH=b,AB=c;根据点到直线垂线段最短,可知AB>AD,AB>BH∴c>a,c>b;∴c最大故答案:c【点睛】本题主要考查了垂线段最短的性质,熟记性质是解题的关键.12.高兴同学在学习了全等三角形的相关知识后发现:只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图,一把直尺压住射线OB且与射线OA交于点M,另一把直尺压住射线OA且与第一把直尺交于点P,则OP平分∠AOB.若∠BOP=32°,则∠AMP=_____°.64【分析】由长方形直尺可得MP//OB再根据作图过程可知OP平分∠AOB进而可得∠AMP的度数【详解】解:∵OP平分∠AOB∴∠MOB=2∠BOP=64°由长方形直尺可知:MP//OB∴∠AMP=解析:64【分析】由长方形直尺可得MP //OB ,再根据作图过程可知OP 平分∠AOB ,进而可得∠AMP 的度数.【详解】解:∵OP 平分∠AOB ,∴∠MOB =2∠BOP =64°,由长方形直尺可知:MP //OB ,∴∠AMP =∠MOB =64°,故答案为:64.【点睛】此题主要考查了基本作图,关键是掌握角平分线的作法.13.如图,斜边长12cm ,∠A=30°的直角三角尺ABC 绕点C 顺时针方向旋转90°至''A B C 的位置,再沿CB 向左平移使点B'落在原三角尺ABC 的斜边AB 上,则三角尺向左平移的距离为_____.(结果保留根号)cm 【分析】作B′D//BC 与AB 交于点D 故三角板向左平移的距离为B′D 的长利用直角三角形的性质求出BC=B′C=6cmAC=cm 进而根据相似三角形对应线段成比例的性质即可求解【详解】如图作B′D/ 解析:(623-cm【分析】作B′D//BC 与AB 交于点D ,故三角板向左平移的距离为B′D 的长,利用直角三角形的性质求出BC=B′C=6cm ,AC=63,进而根据相似三角形对应线段成比例的性质即可求解.【详解】如图,作B′D//BC 与AB 交于点D ,故三角板向左平移的距离为B′D 的长.∵AB=12cm ,∠A=30°,∴BC=B′C=6cm ,AC=3cm ,∵B′D//BC , ∴AC D BC B AB ='',即(6636(623)63BC C B A AB D ⨯=='-'=cm , 故三角板向左平移的距离为(623-cm .【点睛】本题考查直角三角形的性质、相似三角形的性质,旋转和平移的性质,解题的关键是作辅助线构造相似三角形.14.如图,直线//m n ,点A B 、在直线n 上,点C F 、在直线m 上,连接,CA CB CD 、平分ACB ∠交AB 于点D ,平面内有点E ,连接,2180EC ECB BCF ︒∠+∠=,过点F 作//FG CE 交CD 于点,9,4G FGC ADC CAB ABC ︒∠-∠=∠=∠,则ACB =∠____________.【分析】根据条件找到等量关系计算即可;【详解】设∵∴∴∵∴∵ABD 在同一直线上∴∴在△ABC 中∴联立方程组:解得:度度度故答案是:【点睛】本题主要考查了平行线的综合应用结合三元一次方程组求解是解题的 解析:2707【分析】根据条件2180︒∠+∠=ECB BCF ,9︒∠-∠=FGC ADC ,4∠=∠CAB ABC 找到等量关系计算即可;【详解】设2ABC x ∠=∠,1ACE ∠=∠,∵//m n ,∴BCF ABC ∠=∠,12ECB ECA ACB x ∠=∠+∠=∠+∠,∴()212180x ABC ∠+∠+∠=︒,∵//FG CE ,∴1FGC ECD x ∠=∠=∠+∠,∵A ,B ,D 在同一直线上,∴ADC ABC DCB ABC x ∠=∠+∠=∠+∠,∴()1119x ABC x x ABC x ABC ∠+∠-∠+∠=∠+∠-∠-∠=∠-∠=︒, 在△ABC 中,1802CAB x ABC ∠=︒-∠-∠,∴18024x ABC ABC ︒-∠-∠=∠,联立方程组:()2121801918024x ABC ABC x ABC ABC ⎧∠+∠+∠=︒⎪∠-∠=︒⎨⎪︒-∠-∠=∠⎩, 解得:1987ABC ∠=度,26117∠=度,2707x ∠=度. 故答案是:2707. 【点睛】本题主要考查了平行线的综合应用,结合三元一次方程组求解是解题的关键. 15.“等腰三角形的两条边相等”的逆命题是________________.(填真命题或假命题)真命题【分析】交换命题的题设和结论即可得到该命题的逆命题根据等腰三角形的定义判断即可【详解】等腰三角形的两条边相等的逆命题是:两条边相等的三角形是等腰三角形;它是真命题故答案为:真命题【点睛】本题考 解析:真命题【分析】交换命题的题设和结论即可得到该命题的逆命题,根据等腰三角形的定义判断即可.【详解】“等腰三角形的两条边相等”的逆命题是:两条边相等的三角形是等腰三角形;它是真命题,故答案为:真命题.【点睛】本题考查了命题的真假判断、逆命题的概念,掌握等腰三角形的定义是解题的关键. 16.命题“若a 2>b 2则a >b ”是_____命题(填“真”或“假”),它的逆命题是_____.假若a >b 则a2>b2【分析】a2大于b2则a 不一定大于b 所以该命题是假命题它的逆命题是若a >b 则a2>b2【详解】①当a =-2b =1时满足a2>b2但不满足a >b 所以是假命题;②命题若a2>b2则解析:假 若a >b 则a 2>b 2【分析】a 2大于b 2则a 不一定大于b ,所以该命题是假命题,它的逆命题是“若a >b 则a 2>b 2”.【详解】①当a =-2,b =1时,满足a 2>b 2,但不满足a >b ,所以是假命题;②命题“若a 2>b 2则a >b ”的逆命题是若“a >b 则a 2>b 2”;故答案为:假;若a >b 则a 2>b 2.【点睛】本题主要考查判断命题真假、逆命题的概念以及平方的计算,熟记相关概念取特殊值代入是解题关键.17.如图,直线AB 、CD 相交于点O ,OE 平分∠AOC ,OF ⊥OE 于点O ,若∠AOD =70°,则∠AOF =______度.145【分析】由已知角平分线和垂直的定义可以得到∠AOE 和∠EOF 的大小从而得到∠AOF 的值【详解】解:∵∵OE 平分∠AOC ∴∵OF ⊥OE 于点O ∴∠EOF =90°∴∠AOF =∠AOE+∠EOF =55解析:145【分析】由已知、角平分线和垂直的定义可以得到∠AOE 和∠EOF 的大小,从而得到∠AOF 的值.【详解】解:∵70180110AOD AOC AOD ∠=︒∴∠=︒-∠=︒,,∵OE 平分∠AOC ,∴1552AOE AOC ∠=∠=︒, ∵OF ⊥OE 于点O ,∴∠EOF =90°,∴∠AOF =∠AOE+∠EOF =55°+90°=145°,故答案为145.【点睛】本题考查邻补角、角平分线和垂直以及角度的运算等知识,根据有关性质和定义灵活计算是解题关键.18.如图是某公园里一处矩形风景欣赏区ABCD ,长AB=50米,宽BC=30米,为方便游人观赏,公园特意修建了如图所示的小路(图中非阴影部分),小路的宽均为1米,那么小明沿着小路的中间出口A 到出口B 所走的路线(图中虚线)长为______米.98【解析】∵利用已知可以得出此图形可以分为横向与纵向分析水平距离等于AB 铅直距离等于(AD-1)×2又∵长AB=50米宽BC=25米∴小明沿着小路的中间出口A 到出口B 所走的路线(图中虚线)长为50解析:98【解析】∵利用已知可以得出此图形可以分为横向与纵向分析,水平距离等于AB ,铅直距离等于(AD -1)×2,又∵长AB =50米,宽BC =25米,∴小明沿着小路的中间出口A 到出口B 所走的路线(图中虚线)长为50+(25-1)×2=98米,故答案为98.19.如图,现给出下列条件:①1B ∠∠=,②25∠∠=,③34∠∠=,④1D ∠∠=,⑤B BCD 180∠∠+=︒.其中能够得到AB//CD 的条件是_______.(只填序号)①②⑤【分析】根据平行线的判定定理对各小题进行逐一判断即可【详解】解:①∵∠1=∠B ∴AB ∥CD 故本小题正确;②∵∠2=∠5∴AB ∥CD 故本小题正确;③∵∠3=∠4∴AD ∥BC 故本小题错误;④∵∠1解析:①②⑤【分析】根据平行线的判定定理对各小题进行逐一判断即可【详解】解:①∵∠1=∠B ,∴AB ∥CD ,故本小题正确;②∵∠2=∠5,∴AB ∥CD ,故本小题正确;③∵∠3=∠4,∴AD ∥BC ,故本小题错误;④∵∠1=∠D ,∴AD ∥BC ,故本小题错误;⑤∵∠B+∠BCD=180°,∴AB ∥CD ,故本小题正确.故答案为①②⑤.【点睛】本题考查的是平行线的判定,熟知同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行是解答此题的关键.20.观察下列图形:已知a b ,在第一个图中,可得∠1+∠2=180°,则按照以上规律:112n P P ∠+∠+∠++∠=…_________度.(n ﹣1)×180【分析】分别过P1P2P3作直线AB 的平行线P1EP2FP3G 由平行线的性质可得出:∠1+∠3=180°∠5+∠6=180°∠7+∠8=180°∠4+∠2=180°于是得到∠1+∠ 解析:(n ﹣1)×180【分析】分别过P 1、P 2、P 3作直线AB 的平行线P 1E ,P 2F ,P 3G ,由平行线的性质可得出:∠1+∠3=180°,∠5+∠6=180°,∠7+∠8=180°,∠4+∠2=180°于是得到∠1+∠2=10°,∠1+∠P 1+∠2=2×180,∠1+∠P 1+∠P 2+∠2=3×180°,∠1+∠P 1+∠P 2+∠P 3+∠2=4×180°,根据规律得到结果∠1+∠2+∠P 1+…+∠P n =(n+1)×180°.【详解】解:如图,分别过P 1、P 2、P 3作直线AB 的平行线P 1E ,P 2F ,P 3G ,∵AB ∥CD ,∴AB ∥P 1E ∥P 2F ∥P 3G .由平行线的性质可得出:∠1+∠3=180°,∠5+∠6=180°,∠7+∠8=180°,∠4+∠2=180° ∴(1)∠1+∠2=180°,(2)∠1+∠P 1+∠2=2×180,(3)∠1+∠P 1+∠P 2+∠2=3×180°,(4)∠1+∠P 1+∠P 2+∠P 3+∠2=4×180°,∴∠1+∠2+∠P 1+…+∠P n =(n+1)×180°.故答案为:(n+1)×180.【点睛】本题考查的是平行线的性质,根据题意作出辅助线,利用两直线平行,同旁内角互补是解答此题的关键.三、解答题21.如图,已知直线AB 与CD 相交于点40O OE CD AOC OF ︒⊥∠=,,,为AOD ∠的角平分线.(1)求EOB ∠的度数;(2)求EOF ∠的度数.解析:(1)50EOB ∠=︒;(2)160EOF ∠=︒【分析】(1)由对顶角相等的性质得40BOD AOC ∠=∠=︒,再由90EOD ∠=︒,即可求出EOB ∠的度数;(2)先求出AOD ∠的度数,再由角平分线的性质得到FOD ∠的度数,即可求出EOF ∠的度数.【详解】解:(1)OE CD ⊥,∴90EOD ∠=︒,∵40BOD AOC ∠=∠=︒,50EOB EOD BOD ∴∠=∠-∠=︒;(2)∵直线AB 与CD 相交于点O ,40AOC BOD ∴∠=∠=︒,∴180140AOD BOD =︒-=︒∠∠, OF 为AOD ∠的角平分线,70AOF FOD ∴∠=∠=︒,160EOF EOD FOD ∴∠=∠+∠=︒.【点睛】 本题考查角度求解,解题的关键是掌握对顶角的性质,垂直的性质,以及角平分线的性质.22.如图,直线AB ,CD 相交于点O ,OA 平分EOC ∠.(1)若70EOC ∠=︒,求BOD ∠的度数;(2)若:4:5∠∠=EOC EOD ,求BOC ∠的度数.解析:(1)35BOD ∠=︒;(2)140∠=︒BOC【分析】(1)首先根据角平分线的性质得出∠AOC ,然后利用对顶角相等即可得出∠BOD ; (2)首先设4EOC x ∠=,则5EOD x ∠=,然后根据平角的性质构建方程,得出∠EOC ,再利用角平分线的性质得出∠AOC ,最后由平角得旋转即可得出∠BOC 即可.【详解】()170,EOC OA ∠=︒平分EOC ∠, 1352AOC EOC ∴∠=∠=︒, 35BOD AOC ∴∠=∠=︒;()2设4EOC x ∠=,则5EOD x ∠=,,54180x x ∴+=︒,解得20x =︒,则80EOC ∠=︒,又OA 平分0E C ∠,40AOC ∴∠=︒,180********BOC AOC ∴∠=︒-∠=︒-︒=︒.【点睛】本题主要考查利用角平分线、对顶角以及平角的性质求解角的度数,熟练掌握,即可解题.23.ABC 在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为1个单位长度.(1)ABC 关于x 轴对称图形为111A B C △,画出111A B C △的图形;(2)将ABC 向右平移4个单位,再向下平移3个单位,得到图形为222A B C △,画出222A B C △的图形;(3)求ABC 的面积.解析:(1)详见解析;(2)详见解析;(3)2.【分析】(1)分别作出A 、B 、C 关于对称轴x 的对应点A 1、B 1、C 1,再顺次连接即可得所求图形;(2)分别将A 、B 、C 三点向右平移4个单位,再向下平移3个单位,得到对应点A 2、B 2、C 2,再顺次连接即可得所求图形为222A B C △;(3)利用构图法即可求解;【详解】(1) ;(2) ;(3)ABC S =2×3-1112⨯⨯-1222⨯⨯-1132⨯⨯ 136222=--- 64=-2=.【点睛】本题考查作图—轴对称及平移变换,还涉及到三角形面积公式,解题的关键是熟练掌握轴对称的性质及平移的性质.24.如图,直线AB ∥CD ,EB 平分∠AED ,170∠=︒,求∠2的度数.解析:55︒.【分析】先根据对顶角相等可得170BAE ∠=∠=︒,再根据平行线的性质可得110AED ∠=︒,然后根据角平分线的定义可得55BED ∠=︒,最后根据平行线的性质即可得.【详解】170∠=︒,170BAE ∴∠=∠=︒,//AB CD ,180110AED BAE ∴∠=︒-∠=︒, EB 平分AED ∠, 1552BED AED ∴∠=∠=︒, 又//AB CD ,255BED ∴∠=∠=︒.【点睛】 本题考查了对顶角相等、平行线的性质、角平分线的定义,熟练掌握平行线的性质是解题关键.25.如图,直线AB 、CD 相交于点O ,OE 平分BOD ∠,72AOC ∠=︒,OF CD ⊥.(1)与BOF ∠互余的角是______;(2)求EOF ∠的度数.解析:(1)∠BOD 、∠AOC ;(2)54°【分析】(1)根据垂直的定义得到∠FOD =90°,于是得到∠BOF +∠BOD =90°,根据对顶角的性质得到∠BOD=∠AOC,等量代换得到∠BOF+∠AOC=90°,即可得到结论.(2)根据已知条件得到∠BOF=90°﹣72°=18°,再由OE平分∠BOD,得出∠BOE=1∠BOD=36°,因此∠EOF=36°+18°=54°.2【详解】解:(1)∵OF⊥CD,∴∠FOD=90°,∴∠BOF+∠BOD=90°,∵∠BOD=∠AOC,∴∠BOF+∠AOC=90°,∴图中互余的角有∠BOF与∠BOD,∠BOF与∠AOC.故答案为:∠BOD、∠AOC;(2)∵直线AB和CD相交于点O,∴∠BOD=∠AOC=72°,∵OF⊥CD,∴∠BOF=90°﹣72°=18°,∵OE平分∠BOD,∠BOD=36°,∴∠BOE=12∴∠EOF=36°+18°=54°.【点睛】本题考查了对顶角、垂线以及角平分线的定义;弄清各个角之间的关系是解题的关键.26.如图所示,在平面直角坐标系中,已知A(0,1)、B(2,0)、C(4,3).(1)在平面直角坐标系中画出△ABC,作出△ABC向下平移3格后的△A1B1C1;(2)求△ABC的面积;(3)已知点Q为y轴上一点,若△ACQ的面积为8,求点Q的坐标.解析:(1)见解析;(2)4;(3)(0,5)或(0,-3).【分析】(1)先在平面直角坐标系中描点,再连接,然后分别作出平移后的对应点,再顺次连接即可得;(2)利用割补法求解可得;(3)根据三角形面积公式求出AQ的长,即可确定点Q的坐标.【详解】解:(1)如图所示,(2)△ABC 的面积=111342421234222⨯-⨯⨯-⨯⨯-⨯⨯= (3)∵Q 为y 轴上一点,△ACQ 的面积为8, ∴1||482AQ ⨯⨯=, ∴AQ=4 ∴点Q 的纵坐标为:4+1=5或1-4=-3,故Q 点坐标为:(0,5)或(0,-3).【点睛】本题主要考查的是作图-平移变换、点的坐标与图形的性质,明确△ABC 的面积=四边形的面积-3个直角三角形的面积是解题的关键.27.如图,已知BE 平分ABC ∠,点D 在射线BA 上,且ABE BED ∠=∠.判断BC 与DE 的位置关系,并说明理由.解析:BC ∥DE ;理由见解析【分析】根据角平分线的定义和已知条件可得∠CBE =∠BED ,再根据平行线的判定即得结论.【详解】解:BC ∥DE ;理由如下:因为BE 平分ABC ∠,所以∠ABE =∠CBE ,因为ABE BED ∠=∠,所以∠CBE =∠BED ,所以BC ∥DE .【点睛】本题考查了角平分线的定义和平行线的判定,属于基础题目,熟练掌握基本知识是解题的关键.28.如图:AD 是BAC ∠的角平分线,点E 是射线AC 上一点,延长ED 至点F ,180CAD ADF ︒∠+∠=.求证:(1)//AB EF ;(2)2ADE CEF ∠=∠解析:(1)证明见解析;(2)证明见解析.【分析】(1)根据角平分线和同旁内角互补两直线平行即可证得;(2)由(1)得2CEF EAB DAB ∠=∠=∠,又因为DAB ADE ∠=∠,即可证得.【详解】(1)AD 是BAC ∠的角平分线.CAD DAB ∴∠=∠ 又180CAD ADF ︒∠+∠=180DAB ADF ︒∠+∠=//AB EF ∴(2)//AB EF2CEF EAB DAB ∴∠=∠=∠又DAB ADE ∠=∠2ADE CEF ∴∠=∠【点睛】本题考查角平分线和平行线的证明与性质,掌握平行线证明方法是解题的关键.。

七年级下册数学期末试卷易错题(Word版 含答案)

七年级下册数学期末试卷易错题(Word版 含答案)

七年级下册数学期末试卷易错题(Word 版 含答案)一、选择题1.如图,直线1l 截2l 、3l 分别交于A 、B 两点,则1∠的同位角是( )A .2∠B .3∠C .4∠D .5∠ 2.如图所示的图案分别是四种汽车的车标,其中可以看作是由“基本图案”经过平移得到的是( ) A . B . C . D . 3.下列各点中,在第二象限的是( )A .()2,0B .()2,3-C .()3,5--D .()2,5- 4.下列四个说法:①连接两点之间的线段叫做这两点间的距离;②经过直线外一点,有且只有一条直线与这条直线平行;③a 2的算术平方根是a ;④64的立方根是4.其中假命题的个数有( )A .1个B .2个C .3个D .4个5.如图,//AB CD ,将一个含30角的直角三角尺按如图所示的方式放置,若1∠的度数为25︒,则2∠的度数为( )A .35︒B .65︒C .145︒D .155︒ 6.下列说法错误的是( )A .3的平方根是3B .﹣1的立方根是﹣1C .0.1是0.01的一个平方根D .算术平方根是本身的数只有0和17.如图,把一个长方形纸条ABCD 沿AF 折叠,已知32ADB ∠=︒,//AE BD ,则DAF ∠为( )A .30°B .28°C .29°D .26°8.如图,在平面直角坐标系xOy 中,点()1,0P .点P 第1次向上跳动1个单位至点()11,1P ,紧接着第2次向左跳动2个单位至点()21,1P -,第3次向上跳动1个单位至点3P ,第4次向右跳动3个单位至点4P ,第5次又向上跳动1个单位至点5P ,第6次向左跳动4个单位至点6P ,…….照此规律,点P 第200次跳动至点200P 的坐标是( )A .()51,100B .()26,50C .()26,50-D .()51,100-二、填空题9.若x =x ,则x 的值为______.10.若点P(a,b)关于y 轴的对称点是P 1 ,而点P 1关于x 轴的对称点是P 2 ,若点P 2的坐标为(-3,4),则a=_____,b=______11.如图,AD ∥BC ,∠ABC 的角平分线BP 与∠BAD 的角平分线AP 相交于点P ,作PE ⊥AB 于点E .若PE =2,则两平行线AD 与BC 间的距离为_____.12.如图,BD 平分∠ABC ,ED ∥BC ,∠1=25°,则∠2=_____°,∠3=______°.13.如图,将一张长方形纸条折成如图的形状,若170∠=︒,则2∠的度数为____.14.规定:[x]表示不大于x 的最大整数,(x )表示不小于x 的最小整数,[x )表示最接近x 的整数(x≠n+0.5,n 为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.当﹣1<x <1时,化简[x]+(x )+[x )的结果是_____.15.如果点P (m +3,m ﹣2)在x 轴上,那么m =_____.16.在平面直角坐标系中,一个智能机器人接到如下指令,从原点O 出发,按向右、向上、向右、向下…的方向依次不断移动,每次移动1个单位,其行走路线如图所示,第1次移动到A 1,第2次移动到A 2,…第n 次移动到A n ,则A 2021的坐标是___________.三、解答题17.计算:(1) 333|3|-- (2) 1333⎛⎫+ ⎪⎝⎭ 18.已知3a b +=,4ab =-,求下列各式的值()21()a b -;()2225a ab b -+19.已知,如图所示,BCE ,AFE 是直线,AB //CD ,∠1=∠2,∠3=∠4.求证:AD //BE证明:∵AB //CD (已知)∴∠4=∠ ( )∵∠3=∠4(已知)∴∠3=∠ ( )∵∠1=∠2(已知)∴∠1+∠CAF =∠2+∠CAF ( )即:∠ =∠ .∴∠3=∠ .∴AD //BE ( )20.ABC ∆与A B C '''∆在平面直角坐标系中的位置如图.(1)分别写出下列各点的坐标:A ' ; B ' ;C ' ;(2)说明A B C '''∆由ABC ∆经过怎样的平移得到?答:_______________.(3)若点(),P a b 是ABC ∆内部一点,则平移后A B C '''∆内的对应点P '的坐标为_________; (4)求ABC ∆的面积.21.阅读下面的文字,解答问题. 22的小数部分我们不可能全部写出来,但是由于1222121,差就是21).解答下列问题:(110的整数部分是 ,小数部分是 ;(26a 13b ,求a +b 6(3)已知3x +y ,其中x 是整数,且0<y <1,求x -y 的相反数.二十二、解答题22.小丽想用一块面积为400cm 2的正方形纸片,沿着边的方向裁处一块面积为300cm 2的长方形纸片.(1)请帮小丽设计一种可行的裁剪方案;(2)若使长方形的长宽之比为3:2,小丽能用这块纸片裁处符合要求的纸片吗?若能,请帮小丽设计一种裁剪方案,若不能,请简要说明理由.二十三、解答题23.如图1,已AB ∥CD ,∠C =∠A .(1)求证:AD ∥BC ;(2)如图2,若点E 是在平行线AB ,CD 内,AD 右侧的任意一点,探究∠BAE ,∠CDE ,∠E 之间的数量关系,并证明.(3)如图3,若∠C =90°,且点E 在线段BC 上,DF 平分∠EDC ,射线DF 在∠EDC 的内部,且交BC 于点M ,交AE 延长线于点F ,∠AED +∠AEC =180°,①直接写出∠AED 与∠FDC 的数量关系: .②点P 在射线DA 上,且满足∠DEP =2∠F ,∠DEA ﹣∠PEA =514∠DEB ,补全图形后,求∠EPD 的度数24.如图,AB ⊥AK ,点A 在直线MN 上,AB 、AK 分别与直线EF 交于点B 、C ,∠MAB+∠KCF =90°.(1)求证:EF ∥MN ;(2)如图2,∠NAB 与∠ECK 的角平分线交于点G ,求∠G 的度数;(3)如图3,在∠MAB 内作射线AQ ,使∠MAQ =2∠QAB ,以点C 为端点作射线CP ,交直.线.AQ 于点T ,当∠CTA =60°时,直接写出∠FCP 与∠ACP 的关系式.25.小明在学习过程中,对教材中的一个有趣问题做如下探究:(习题回顾)已知:如图1,在ABC 中,90ACB ∠=︒,AE 是角平分线,CD 是高,AE 、CD 相交于点F .求证:CFE CEF ∠=∠;(变式思考)如图2,在ABC 中,90ACB ∠=︒,CD 是AB 边上的高,若ABC 的外角BAG ∠的平分线交CD 的延长线于点F ,其反向延长线与BC 边的延长线交于点E ,则CFE ∠与CEF ∠还相等吗?说明理由;(探究延伸)如图3,在ABC 中,AB 上存在一点D ,使得ACD B ∠=∠,BAC ∠的平分线AE 交CD 于点F .ABC 的外角BAG ∠的平分线所在直线MN 与BC 的延长线交于点M .直接写出M ∠与CFE ∠的数量关系.26.如图1,已知AB ∥CD ,BE 平分∠ABD ,DE 平分∠BDC .(1)求证:∠BED =90°;(2)如图2,延长BE 交CD 于点H ,点F 为线段EH 上一动点,∠EDF =α,∠ABF 的角平分线与∠CDF 的角平分线DG 交于点G ,试用含α的式子表示∠BGD 的大小;(3)如图3,延长BE交CD于点H,点F为线段EH上一动点,∠EBM的角平分线与∠FDN的角平分线交于点G,探究∠BGD与∠BFD之间的数量关系,请直接写出结论:.【参考答案】一、选择题1.B解析:B【分析】根据同位角的定义:两条直线a,b被第三条直线c所截(或说a,b相交c),在截线c的同旁,被截两直线a,b的同一侧的角,我们把这样的两个角称为同位角,进行判断即可.【详解】解:如图所示,∠1的同位角为∠3,故选B.【点睛】本题主要考查了同位角的定义,解题的关键在于能够熟练掌握同位角的定义.2.C【分析】根据平移变换的定义可得结论.【详解】解:由平移变换的定义可知,选项C可以看作由“基本图案”经过平移得到的.故选:C.【点睛】本题考查利用平移设计图案,解题的关键是理解平移变换解析:C【分析】根据平移变换的定义可得结论.【详解】解:由平移变换的定义可知,选项C 可以看作由“基本图案”经过平移得到的.故选:C .【点睛】本题考查利用平移设计图案,解题的关键是理解平移变换的定义,属于中考基础题. 3.B【分析】根据各象限内点的坐标特征对各选项分析判断即可得解.【详解】解:A 、点()2,0在x 轴上,不符合题意;B 、点()2,3-在第二象限,符合题意;C 、点()3,5--在第三象限,不符合题意;D 、点()2,5-在第四象限,不符合题意;故选:B .【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4.C【分析】利用两点间的距离的定义、平行线的判定、算术平方根的定义及立方根的求法分别判断后即可确定正确的选项.【详解】解:①连接两点之间的线段的长度叫做这两点间的距离,故原命题错误,是假命题,符合题意;②经过直线外一点,有且只有一条直线与这条直线平行,正确,是真命题,不符合题意;③a 2的算术平方根是a (a ≥0),故原命题错误,是假命题,符合题意;2,故原命题错误,是假命题,符合题意;假命题有3个,故选:C .【点睛】本题主要考查真假命题,两点见的距离,平行线的判定,算术平方根,立方根的求法等知识点,熟知相关定义以及运算法则是解题的关键.5.A【分析】过三角板60°角的顶点作直线EF ∥AB ,则EF ∥CD ,利用平行线的性质,得到∠3+∠4=∠1+∠2=60°,代入计算即可.【详解】如图,过三角板60°角的顶点作直线EF∥AB,∵AB∥CD,∴EF∥CD,∴∠3=∠1,∠4=∠2,∵∠3+∠4=60°,∴∠1+∠2=60°,∵∠1=25°,∴∠2=35°,故选A.【点睛】本题考查了平行线的辅助线构造,平行线的判定与性质,三角板的意义,熟练掌握平行线的判定与性质是解题的关键.6.A【分析】根据平方根、立方根、算术平方根的概念进行判断即可.【详解】解:A、3的平方根是3B、﹣1的立方根是﹣1,原说法正确,故此选项不符合题意;C、0.1是0.01的一个平方根,原说法正确,故此选项不符合题意;D、算术平方根是本身的数只有0和1,原说法正确,故此选项不符合题意.故选:A.【点睛】本题考查了平方根、立方根、算术平方根的概念,掌握平方根、立方根、算术平方根的概念是解题的关键.7.C【分析】由 AE平行BD,可得∠AED=∠ADB=32°,可求∠BAE=122°,由折叠,可得∠BAF=∠EAF,可求∠EAF=61°即可【详解】∵AE//BD,∴∠AED=∠ADB=32°,∴∠BAE=∠BAD+∠DAE=90°+32°=122°,∵折叠,∴∠BAF=∠EAF,∴2∠EAF=∠BAE=122°∴∠EAF=61°∴∠DAF=∠EAF-∠EAD=61°-32°=29°故选择C【点睛】本题考查平行线性质,掌握折叠性质,平行线性质是解题关键.8.A【分析】设第n次跳动至点Pn,根据部分点An坐标的变化找出变化规律P4n(n + 1,2n),Pn+1(n + 1,2n + 1),P4n+2(-n-1,2n+ 1),P4n+3(-n-1,2解析:A【分析】设第n次跳动至点P n,根据部分点A n坐标的变化找出变化规律P4n(n + 1,2n),P n+1(n + 1,2n + 1),P4n+2(-n-1,2n+ 1),P4n+3(-n-1,2n +2),依此规律结合200 = 50 ×4,即可得出点P200的坐标.【详解】解:设第n次跳动至点P n,观察发现:P(1,0),P1(1,1),P2(-1,1),P3(-1,2),P4(2,2),P5(2,3),P6(-2,3),P7(-2,4),P8(3,4),P9(3,5),...,∴P4n+1(n + 1,2n +1),P4n+2(-n-1,2n+ 1),P4n+3(-n-1,2n+2),P4n(n + 1,2n),(n为自然数),∵200 = 50 × 4,∴P200(50+1 ,50×2),即(51,100).故选A.【点睛】本题考查了规律型中点的坐标,解题的关键是准确找到点的坐标变化规律.二、填空题9.0或1【分析】根据算术平方根的定义(一般地说,若一个非负数x的平方等于a,即x²=a,则这个数x叫做a的算术平方根)求解.【详解】∵02=0,12=1,∴0的算术平方根为0,1的算术平方根解析:0或1【分析】根据算术平方根的定义(一般地说,若一个非负数x的平方等于a,即x²=a,则这个数x叫做a的算术平方根)求解.【详解】∵02=0,12=1,∴0=0,1=1.故答案是:0或1.【点睛】考查了算术平方根的定义,解题关键是利用算术平方根的定义(一般地说,若一个非负数x 的平方等于a,即x²=a,则这个数x叫做a的算术平方根)求解.10.a=3 b=-4【分析】先求得P1的坐标,再根据点P1关于x轴的对称点是P,则即可求得a与b的值【详解】由于P1与P2关于x轴对称,P2的坐标为(-3,4),则P1的坐标为(-解析:a=3 b=-4【分析】先求得P1的坐标,再根据点P1关于x轴的对称点是P2,则即可求得a与b的值【详解】由于P1与P2关于x轴对称,P2的坐标为(-3,4),则P1的坐标为(-3,-4),点P(a,b)关于y轴对称的点是P1,则P点的坐标为(3,-4),则a=3,b=-4.【点睛】此题考查关于x轴、y轴对称的点的坐标,难度不大11.4【分析】根据角平分线的性质以及平行线的性质即可得出PM=PE=2,PE=PN=2,即可得出答案.【详解】解:过点P作MN⊥AD,∵AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线A解析:4【分析】根据角平分线的性质以及平行线的性质即可得出PM=PE=2,PE=PN=2,即可得出答案.【详解】解:过点P作MN⊥AD,∵AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,PE⊥AB于点E,∴AP⊥BP,PN⊥BC,∴PM=PE=2,PE=PN=2,∴MN=2+2=4.故答案为4.12.50【分析】由两直线平行,内错角、同位角分别相等可得出∠2=∠DBC,∠3=∠ABC=∠1+∠DBC,又由BD平分∠ABC得出∠DBC=∠1=25°,利用等价替换法分别求出∠2和∠3即可解析:50【分析】由两直线平行,内错角、同位角分别相等可得出∠2=∠DBC,∠3=∠ABC=∠1+∠DBC,又由BD平分∠ABC得出∠DBC=∠1=25°,利用等价替换法分别求出∠2和∠3即可.【详解】解:∵BD平分∠ABC,∴∠DBC=∠1=25°;又∵ED∥BC,∴∠2=∠DBC=25°,∠3=∠ABC=∠1+∠DBC=50°.故答案为:25、50.【点睛】本题考查了平行线的性质:两直线平行,内错角相等,同位角相等,解题过程中采用了等量代换的方法.13.55°【分析】依据平行线的性质以及折叠的性质,即可得到∠2的度数.【详解】解:如图所示,∵∠1=70°,∴∠3+∠4=180°-∠1=110°,又∵折叠,∴∠3=∠4=55°,解析:55°【分析】依据平行线的性质以及折叠的性质,即可得到∠2的度数.解:如图所示,∵∠1=70°,∴∠3+∠4=180°-∠1=110°,又∵折叠,∴∠3=∠4=55°,∵AB//DE,∴∠2=∠3=55°,故答案为:55°.【点睛】本题主要考查了平行线的性质,解题时注意:两条平行线被第三条直线所截,内错角相等.14.﹣2或﹣1或0或1或2.【分析】有三种情况:①当时,[x]=-1,(x)=0,[x)=-1或0,∴[x]+(x)+[x)=-2或-1;②当时,[x]=0,(x)=0,[x)=0,∴[x]解析:﹣2或﹣1或0或1或2.【分析】有三种情况:①当10x-<<时,[x]=-1,(x)=0,[x)=-1或0,∴[x]+(x)+[x)=-2或-1;x=时,[x]=0,(x)=0,[x)=0,②当0∴[x]+(x)+[x)=0;③当01<<时,[x]=0,(x)=1,[x)=0或1,x∴[x]+(x)+[x)=1或2;综上所述,化简[x]+(x)+[x)的结果是-2或﹣1或0或1或2.故答案为-2或﹣1或0或1或2.点睛:本题是一道阅读理解题.读懂题意并进行分类讨论是解题的关键.请在此输入详解!15.【分析】根据x轴上的点的纵坐标等于0列式计算即可得解.【详解】∵点P(m+3,m﹣2)在x轴上,∴m﹣2=0,解得m=2.故答案为:2.【点睛】此题考查点的坐标,熟记x轴上的点的纵解析:【分析】根据x轴上的点的纵坐标等于0列式计算即可得解.【详解】∵点P(m+3,m﹣2)在x轴上,∴m﹣2=0,解得m=2.故答案为:2.【点睛】此题考查点的坐标,熟记x轴上的点的纵坐标等于0是解题的关键.16.(1011,0)【分析】根据图象可得移动4次完成一个循环,从而可得出点A2021的坐标.【详解】解:A1(1,0),A2(1,1),A3(2,1),A4(2,0),A5(3,0),A6(3,解析:(1011,0)【分析】根据图象可得移动4次完成一个循环,从而可得出点A2021的坐标.【详解】解:A1(1,0),A2(1,1),A3(2,1),A4(2,0),A5(3,0),A6(3,1),…,2021÷4=505•••1,所以A2021的坐标为(505×2+1,0),则A2021的坐标是(1011,0).故答案为:(1011,0).【点睛】本题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,难度一般.三、解答题17.(1)0;(2)4【分析】(1)根据绝对值的性质去绝对值然后合并即可;(2)根据乘法分配律计算即可.【详解】(1)解原式==0;(2)解原式==3+1解析:(1)0;(2)4【分析】(1)根据绝对值的性质去绝对值然后合并即可;(2)根据乘法分配律计算即可.【详解】(1)解原式=0;(2)解原式=3+1=4.故答案为(1)0;(2)4.【点睛】本题考查实数的运算、绝对值,掌握绝对值的性质以及运算法则是解题的关键.18.(1)25;(2)37【分析】(1)利用完全平方差公式求解.(2)先配方,再求值.【详解】解:(1)(2)【点睛】本题考查完全平方公式及其变形式,根据公式特征进行变形是求解解析:(1)25;(2)37【分析】(1)利用完全平方差公式求解.(2)先配方,再求值.【详解】解:(1)22()()4a b a b ab -=+-()2344=-⨯-25.=(2)2222527a ab b a ab b ab -+=++-2()7a b ab =+-()928=--37.=【点睛】本题考查完全平方公式及其变形式,根据公式特征进行变形是求解本题的关键. 19.FAB ;两直线平行,同位角相等;FAB ;等量代换;等式的性质;FAB ;CAD ; CAD ;内错角相等,两直线平行【分析】根据平行线的性质求出∠4=∠BAF =∠3,求出∠DAC =∠BAF ,推出∠3= 解析:FAB ;两直线平行,同位角相等;FAB ;等量代换;等式的性质;FAB ;CAD ; CAD ;内错角相等,两直线平行【分析】根据平行线的性质求出∠4=∠BAF =∠3,求出∠DAC =∠BAF ,推出∠3=∠BAF ,根据平行线的判定推出即可.【详解】证明:∵AB //CD (已知)∴∠4=∠FAB (两直线平行,同位角相等)∵∠3=∠4(已知)∴∠3=∠FAB (等量代换)∵∠1=∠2(已知)∴∠1+∠CAF =∠2+∠CAF (等式的性质)即:∠FAB =∠CAD∴∠3=∠CAD∴AD //BE (内错角相等,两直线平行)故填:BAF ,两直线平行,同位角相等,BAF ,等量代换,DAC ,DAC ,内错角相等,两直线平行.【点睛】本题考查了平行线的性质和判定的应用,注意:平行线的性质是:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然. 20.(1)(-3,1),(-2,-2),(-1,-1);(2)向左平移4个单位,向下平移2个单位;(3)(a-4,b-2);(4)2【分析】(1)根据平面直角坐标系写出各点的坐标即可;(2)根据对解析:(1)(-3,1),(-2,-2),(-1,-1);(2)向左平移4个单位,向下平移2个单位;(3)(a-4,b-2);(4)2【分析】(1)根据平面直角坐标系写出各点的坐标即可;(2)根据对应点A、A′的变化写出平移方法即可;(3)根据平移规律逆向写出点P′的坐标;(4)利用△ABC所在的长方形的面积减去四周三个小直角三角形的面积,列式计算即可得解.【详解】解:(1)A′(-3,1);B′(-2,-2);C′(-1,-1);(2)向左平移4个单位,向下平移2个单位;(3)若点P(a,b)是△ABC内部一点,则平移后△A'B'C'内的对应点P'的坐标为:(a-4,b-2);(4)△ABC的面积=111 23131122222⨯-⨯⨯-⨯⨯-⨯⨯=2.【点睛】本题考查了利用平移变换作图,熟练掌握网格结构,根据对应点的坐标确定出平移的方法是解题的关键.21.(1)3,-3;(2)1;(3)−14【分析】(1)根据的大小,即可求解;(2)分别求得a、b,即可求得代数式的值;(3)求得12+的整数部分x,小数部分y,即可求解.【详解】解:(1)解析:(1)3-3;(2)1;(314【分析】(1(2)分别求得a、b,即可求得代数式的值;(3)求得x,小数部分y,即可求解.【详解】解:(1)∵34∴3-3;(2)∵2<3,34∴a2,b=3∴a+b=1;(3)∵12,∴13<14,∴x=13,y1∴x-y=13−1)∴x-y14.【点睛】此题主要考查了无理数大小的估算,正确确定无理数的整数部分和小数部分是解题的关键.二十二、解答题22.(1)可以以正方形一边为长方形的长,在其邻边上截取长为15cm的线段作为宽即可裁出符合要求的长方形;(2)不能,理由见解析.【解析】(1)解:设面积为400cm2的正方形纸片的边长为a cm∴解析:(1)可以以正方形一边为长方形的长,在其邻边上截取长为15cm的线段作为宽即可裁出符合要求的长方形;(2)不能,理由见解析.【解析】(1)解:设面积为400cm2的正方形纸片的边长为a cm∴a2=400又∵a>0∴a=20又∵要裁出的长方形面积为300cm2∴若以原正方形纸片的边长为长方形的长,则长方形的宽为:300÷20=15(cm)∴可以以正方形一边为长方形的长,在其邻边上截取长为15cm的线段作为宽即可裁出符合要求的长方形(2)∵长方形纸片的长宽之比为3:2∴设长方形纸片的长为3x cm,则宽为2x cm∴6x 2=300∴x 2=50又∵x>0∴x=∴长方形纸片的长为又∵(2=450>202即:>20∴小丽不能用这块纸片裁出符合要求的纸片二十三、解答题23.(1)见解析;(2)∠BAE+∠CDE=∠AED,证明见解析;(3)①∠AED-∠FDC=45°,理由见解析;②50°【分析】(1)根据平行线的性质及判定可得结论;(2)过点E作EF∥AB,根解析:(1)见解析;(2)∠BAE+∠CDE=∠AED,证明见解析;(3)①∠AED-∠FDC=45°,理由见解析;②50°【分析】(1)根据平行线的性质及判定可得结论;(2)过点E作EF∥AB,根据平行线的性质得AB∥CD∥EF,然后由两直线平行内错角相等可得结论;(3)①根据∠AED+∠AEC=180°,∠AED+∠DEC+∠AEB=180°,DF平分∠EDC,可得出2∠AED+(90°-2∠FDC)=180°,即可导出角的关系;②先根据∠AED=∠F+∠FDE,∠AED-∠FDC=45°得出∠DEP=2∠F=90°,再根据∠DEA-∠DEB,求出∠AED=50°,即可得出∠EPD的度数.∠PEA=514【详解】解:(1)证明:AB∥CD,∴∠A+∠D=180°,∵∠C=∠A,∴∠C+∠D=180°,∴AD∥BC;(2)∠BAE+∠CDE=∠AED,理由如下:如图2,过点E作EF∥AB,∵AB∥CD∴AB∥CD∥EF∴∠BAE=∠AEF,∠CDE=∠DEF即∠FEA+∠FED=∠CDE+∠BAE∴∠BAE+∠CDE=∠AED;(3)①∠AED-∠FDC=45°;∵∠AED+∠AEC=180°,∠AED+∠DEC+∠AEB=180°,∴∠AEC=∠DEC+∠AEB,∴∠AED=∠AEB,∵DF平分∠EDC∠DEC=2∠FDC∴∠DEC=90°-2∠FDC,∴2∠AED+(90°-2∠FDC)=180°,∴∠AED-∠FDC=45°,故答案为:∠AED-∠FDC=45°;②如图3,∵∠AED=∠F+∠FDE,∠AED-∠FDC=45°,∴∠F=45°,∴∠DEP=2∠F=90°,∵∠DEA-∠PEA=514∠DEB=57∠DEA,∴∠PEA=27∠AED,∴∠DEP=∠PEA+∠AED=97∠AED=90°,∴∠AED=70°,∵∠AED+∠AEC=180°,∴∠DEC+2∠AED=180°,∴∠DEC=40°,∵AD∥BC,∴∠ADE=∠DEC=40°,在△PDE中,∠EPD=180°-∠DEP-∠AED=50°,即∠EPD=50°.【点睛】本题主要考查平行线的判定和性质,熟练掌握平行线的判定和性质,角平分线的性质等知识点是解题的关键.24.(1)见解析;(2)∠CGA=45°;(3)∠FCP=2∠ACP或∠FCP+2∠ACP=180°.【分析】(1)有垂直定义可得∠MAB+∠KCN=90°,然后根据同角的余角相等可得∠KAN=∠K解析:(1)见解析;(2)∠CGA=45°;(3)∠FCP=2∠ACP或∠FCP+2∠ACP=180°.【分析】(1)有垂直定义可得∠MAB+∠KCN=90°,然后根据同角的余角相等可得∠KAN=∠KCF,从而判断两直线平行;(2)设∠KAN=∠KCF=α,过点G作GH∥EF,结合角平分线的定义和平行线的判定及性质求解;(3)分CP交射线AQ及射线AQ的反向延长线两种情况结合角的和差关系分类讨论求解.【详解】解:(1)∵AB⊥AK∴∠BAC=90°∴∠MAB+∠KAN=90°∵∠MAB+∠KCF=90°∴∠KAN=∠KCF∴EF∥MN(2)设∠KAN=∠KCF=α则∠BAN=∠BAC+∠KAN=90°+α∠KCB=180°-∠KCF=180°-α∵AG平分∠NAB,CG平分∠ECK∴∠GAN=12∠BAN=45°+12α,∠KCG=12∠KCB=90°-12α∴∠FCG=∠KCG+∠KCF=90°+12α过点G作GH∥EF∴∠HGC=∠FCG=90°+12α又∵MN∥EF∴MN∥GH∴∠HGA=∠GAN=45°+12α∴∠CGA=∠HGC-∠HGA=(90°+12α)-(45°+12α)=45°(3)①当CP 交射线AQ 于点T∵180CTA TAC ACP ∠+∠+∠=︒∴180CTA QAB BAC ACP ∠+∠+∠+∠=︒又∵=60,90CTA BAC ∠︒∠=︒∴30QAB ACP ∠+∠=︒由(1)可得:EF ∥MN∴FCA MAC ∠=∠∵FCP FCA ACP ∠=∠+∠∴FCP MAC ACP ∠=∠+∠∵MAC MAQ QAB BAC ∠=∠+∠+∠,2MAQ QAB ∠=∠∴()390=330901803MAC QAB ACP ACP ∠=∠+︒︒-∠+︒=︒-∠∴1803FCP ACP ACP ∠=︒-∠+∠即∠FCP +2∠ACP=180°②当CP 交射线AQ 的反向延长线于点T ,延长BA 交CP 于点GFCP FCA ACP ∠=∠-∠,由EF ∥MN 得MAC FCA ∠=∠∴FCP MAC ACP ∠=∠-∠又∵TAG QAB ∠=∠,180BAC CAG ∠+∠=︒,90BAC ∠=︒∴18090CAG BAC ∠=︒-∠=︒90CAT CAG TAG QAB ∠=∠-∠=︒-∠∵180CAT CTA ACP ∠+∠+∠=︒,60CTA ∠=︒∴120CAT ACP ∠+∠=︒∴90120QAB ACP ︒-∠+∠=︒∴30QAB ACP ∠=∠-︒由①可得390MAC QAB ∠=∠+︒∴()=330903MAC ACP ACP ∠∠-︒+︒=∠∴32FCP MAC ACP ACP ACP ACP ∠=∠-∠=∠-∠=∠综上,∠FCP =2∠ACP 或∠FCP +2∠ACP=180°.【点睛】本题考查平行线的判定和性质以及角的和差关系,准确理解题意,正确推理计算是解题关键.25.[习题回顾]证明见解析;[变式思考] 相等,证明见解析;[探究延伸] ∠M+∠CFE=90°,证明见解析.【分析】[习题回顾]根据同角的余角相等可证明∠B=∠ACD ,再根据三角形的外角的性质即可解析:[习题回顾]证明见解析;[变式思考] 相等,证明见解析;[探究延伸]∠M+∠CFE=90°,证明见解析.【分析】[习题回顾]根据同角的余角相等可证明∠B=∠ACD ,再根据三角形的外角的性质即可证明;[变式思考]根据角平分线的定义和对顶角相等可得∠CAE=∠DAF 、再根据直角三角形的性质和等角的余角相等即可得出CFE ∠=CEF ∠;[探究延伸]根据角平分线的定义可得∠EAN=90°,根据直角三角形两锐角互余可得∠M+∠CEF=90°,再根据三角形外角的性质可得∠CEF=∠CFE ,由此可证∠M+∠CFE=90°.【详解】[习题回顾]证明:∵∠ACB=90°,CD 是高,∴∠B+∠CAB=90°,∠ACD+∠CAB=90°,∴∠B=∠ACD ,∵AE 是角平分线,∴∠CAF=∠DAF ,∵∠CFE=∠CAF+∠ACD ,∠CEF=∠DAF+∠B ,∴∠CEF=∠CFE ;[变式思考]相等,理由如下:证明:∵AF 为∠BAG 的角平分线,∴∠GAF=∠DAF ,∵∠CAE=∠GAF ,∴∠CAE=∠DAF ,∵CD 为AB 边上的高,∠ACB=90°,∴∠ADC=90°,∴∠ADF=∠ACE=90°,∴∠DAF+∠F=90°,∠E+∠CAE=90°,∴∠CEF=∠CFE;[探究延伸]∠M+∠CFE=90°,证明:∵C、A、G三点共线 AE、AN为角平分线,∴∠EAN=90°,又∵∠GAN=∠CAM,∴∠M+∠CEF=90°,∵∠CEF=∠EAB+∠B,∠CFE=∠EAC+∠ACD,∠ACD=∠B,∴∠CEF=∠CFE,∴∠M+∠CFE=90°.【点睛】本题考查三角形的外角的性质,直角三角形两锐角互余,角平分线的有关证明,等角或同角的余角相等.在本题中用的比较多的是利用等角或同角的余角相等证明角相等和三角形一个外角等于与它不相邻的两个内角之和,理解并掌握是解决此题的关键.26.(1)见解析;(2)∠BGD=;(3)2∠BGD+∠BFD=360°.【分析】(1)根据角平分线的性质求出∠EBD+∠EDB=(∠ABD+∠BDC),根据平行线的性质∠ABD+∠BDC=180°解析:(1)见解析;(2)∠BGD=902a︒-;(3)2∠BGD+∠BFD=360°.【分析】(1)根据角平分线的性质求出∠EBD+∠EDB=12(∠ABD+∠BDC),根据平行线的性质∠ABD+∠BDC=180°,从而根据∠BED=180°﹣(∠EBD+∠EDB)即可得到答案;(2)过点G作GP∥AB,根据AB∥CD,得到GP∥AB∥CD,从而得到∠BGD=∠BGP+∠PGD=∠ABG+∠CDG,然后根据∠EBD+∠EDB=90°,∠ABD+∠BDC=180°,得到∠ABE+∠EDC=90°,即∠ABE+α+∠FDC=90°,再利用角平分线的定义求出2∠ABG+2∠CDG=90°﹣α即可得到答案;(3)过点F、G分别作FM∥AB、GM∥AB,从而得到AB∥GM∥FN∥CD,得到∠BGD=∠BGM+∠DGM=∠4+∠6,根据BG平分∠FBP,DG平分∠FDQ,∠4=12∠FBP=12(180°﹣∠3),∠6=12∠FDQ=12(180°﹣∠5),即可求解.【详解】解:(1)证明:∵BE平分∠ABD,∴∠EBD=12∠ABD,∵DE平分∠BDC,∴∠EDB=12∠BDC,∴∠EBD+∠EDB=12(∠ABD+∠BDC),∵AB∥CD,∴∠ABD+∠BDC=180°,∴∠EBD+∠EDB=90°,∴∠BED=180°﹣(∠EBD+∠EDB)=90°.(2)解:如图2,由(1)知:∠EBD+∠EDB=90°,又∵∠ABD+∠BDC=180°,∴∠ABE+∠EDC=90°,即∠ABE+α+∠FDC=90°,∵BG平分∠ABE,DG平分∠CDF,∴∠ABE=2∠ABG,∠CDF=2∠CDG,∴2∠ABG+2∠CDG=90°﹣α,过点G作GP∥AB,∵AB∥CD,∴GP∥AB∥CD∴∠ABG=∠BGP,∠PGD=∠CDG,∴∠BGD=∠BGP+∠PGD=∠ABG+∠CDG=902α-;(3)如图,过点F、G分别作FN∥AB、GM∥AB,∵AB∥CD,∴AB∥GM∥FN∥CD,∴∠3=∠BFN,∠5=∠DFN,∠4=∠BGM,∠6=∠DGM,∴∠BFD=∠BFN+∠DFN=∠3+∠5,∠BGD=∠BGM+∠DGM=∠4+∠6,∵BG平分∠FBP,DG平分∠FDQ,∴∠4=12∠FBP=12(180°﹣∠3),∠6=12∠FDQ=12(180°﹣∠5),∴∠BFD+∠BGD=∠3+∠5+∠4+∠6,=∠3+∠5+12(180°﹣∠3)+12(180°﹣∠5),=180°+12(∠3+∠5),∠BFD,=180°+12整理得:2∠BGD+∠BFD=360°.【点睛】本题主要考查了平行线的性质与判定,角平分线的性质和三角形内角和定理,解题的关键在于能够熟练掌握相关知识进行求解.。

人教版七年级初一数学下学期第六章 实数单元 易错题测试题试题

人教版七年级初一数学下学期第六章 实数单元 易错题测试题试题
人教版七年级初一数学下学期第六章 实数单元 易错题测试题试题
一、选择题
1.下列式子正确的是()
A. =±5B. =9
C. =﹣10D.± =3
2.如果一个自然数的算术平方根是n,则下一个自然数的算术平方根是( )
A.n+1B. C. D.
3.若一个正数 的平方根为 和 ,则 ()
A.7B.16C.25D.49
A.1+ B.2+ C.2 ﹣1D.2 +1
6.估算 的值是在哪两个整数之间()
A. 和 B. 和 C. 和 D. 和
7.已知 为实数且 ,则 的值为( )
A.0B.1C.-1D.2012
8.如图,数轴上的点A,B,O,C,D分别表示数-2,-1,0,1,2,则表示数 的点P应落在
A.线段AB上B.线段BO上C.线段OC上D.线段CD上
19.已知 , ,则 ________.
20.将 , , 这三个数按从小到大的顺序用“<”连接________.
三、解答题
21.读一读,式子“1+2+3+4+5+…+100”表示从1开始的100个连续自然数的和.由于上述式子比较长,书写也不方便,为了简便起见,我们可以将“1+2+3+4+5+…+100”表示为 ,这里“∑”是求和符号.例如:1+3+5+7+9+…+99,即从1开始的100以内的连续奇数的和,可表示为 ,又知13+23+33+43+53+63+73+83+93+103可表示为 .通过对以上材料的阅读,请解答下列问题.
【分析】
首先根据正数的两个平方根互为相反数,列的方程:( )+( )=0,解方程即可求得a的值,代入即可求得x的两个平方根,则可求得x的值.
【详解】
∵一个正数x的平方根为 和 ,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一年级下学期易错题精选(一)第五章相交线与平行线1.下列判断错误的是().A.一条线段有无数条垂线;B.过线段AB中点有且只有一条直线与线段AB垂直;C.两直线相交所成的四个角中,若有一个角为90°,则这两条直线互相垂直;D.若两条直线相交,则它们互相垂直.2.下列判断正确的是().A.从直线外一点到已知直线的垂线段叫做这点到已知直线的距离;B.过直线外一点画已知直线的垂线,垂线的长度就是这点到已知直线的距离;C.画出已知直线外一点到已知直线的距离;D.连接直线外一点与直线上各点的所有线段中垂线段最短.3.如图所示,图中共有内错角().A.2组;B.3组;C.4组;D.5组.4.下列说法:①过两点有且只有一条直线;②两条直线不平行必相交;③过一点有且只有一条直线与已知直线垂直;④过一点有且只有一条直线与已知直线平行. 其中正确的有().A.1个;B.2个;C.3个;D.4个.5.如图所示,下列推理中正确的有().①因为∠1=∠4,所以BC∥AD;②因为∠2=∠3,所以AB∥CD;③因为∠BCD+∠ADC=180°,所以AD∥BC;④因为∠1+∠2+∠C=180°,所以BC∥AD.A.1个;B.2个;C.3个;D.4个.6.如图所示,直线,∠1=70°,求∠2的度数.7.判断下列语句是否是命题. 如果是,请写出它的题设和结论.(1)内错角相等;(2)对顶角相等;(3)画一个60°的角.正解:(1)是命题. 这个命题的题设是:两条直线被第三条直线所截;结论是:内错角相等. 这个命题是一个错误的命题,即假命题.(2)是命题. 这个命题的题设是:两个角是对顶角;结论是:这两个角相等. 这个命题是一个正确的命题,即真命题.(3)不是命题,它不是判断一件事情的语句.8.“如图所示,△A′B′C′是△ABC平移得到的,在这个平移中,平移的距离是线段AA′”这句话对吗?第六章平面直角坐标系1.点A的坐标满足,试确定点A所在的象限.2.求点A(-3,-4)到坐标轴的距离.第七章三角形1.如图所示,钝角△ABC中,∠B是钝角,试作出BC边上的高AE.2.有四条线段,长度分别为4cm,8cm,10cm,12cm,选其中三条组成三角形,试问可以组成多少个三角形?3.一个三角形的三个外角中,最多有几个角是锐角?4.如图所示,在△ABC中,下列说法正确的是().A.∠ADB>∠ADE;B.∠ADB>∠1+∠2+∠3;C.∠ADB>∠1+∠2;D.以上都对.正解:C.正解解析:∵∠ADB是△ADC的一个外角,∴∠ADB=∠1+∠2+∠3,∴∠ADB>∠1+∠2.5.一个多边形的内角和为1440°,求其边数.第八章二元一次方程组1.已知方程组:①,②,③,④,正确的说法是().A.只有①③是二元一次方程组;B.只有③④是二元一次方程组;C.只有①④是二元一次方程组;D.只有②不是二元一次方程组.2.用加减法解方程组.3.利用加减法解方程组.4.两个车间,按计划每月工生产微型电机680台,由于改进技术,上个月第一车间完成计划的120%,第二车间完成计划的115%,结果两个车间一共生产微型电机798台,则上个月两个车间各生产微型电机多少台?若设两车间上个月各生产微型电机台和台,则列方程组为().A.;B.;C..D..第九章不等式与不等式组1.利用不等式的性质解不等式:.2.某小店每天需水1m³,而自来水厂每天只供一次水,故需要做一个水箱来存水. 要求水箱是长方体,底面积为0.81㎡,那么高至少为多少米时才够用?(精确到0.1m)3.解不等式组.第十章数据的收集、整理与描述1.调查一批药物的药效持续时间,用哪种调查方式?2.2011年4月11日《文汇报》报道:据不完全统计,至今上海自愿报名去西部地区工作的专业技术人员和管理人员已达3600多人,其中硕士、博士占4%,本科生占79%,大专生占13%. 根据上述数据绘制扇形统计图表示这些人员的学历分布情况.正解:如下图所示:3.某班组织25名团员为灾区捐款,其中捐款数额前三名的是10元5人,5元10人,2元5人,其余每人捐1元,那么捐10元的学生出现的频率是__________.4.26名学生的身高分别为(身高:cm ):160; 162; 160; 162; 160; 159; 159; 169; 172; 160;161; 150; 166; 165; 159; 154; 155; 158; 174; 161;170; 156; 167; 168; 163; 162.现要列出频率分布表,请你确定起点和分点数据.正解:起点为149.5,分五组:149.5~154.5,154.5~159.5,159.5~164.5,164.5~169.5,169.5~174.5.方程(组)、不等式(组)易错一、填空题1、关于x 的不等式2x-a ≥-2的解集如图所示,则a 的取值范围为_______2、已知3(2x-1)=2-3x 的解与关于x 的方程6-2k=2(x+3)的解相同,则k=_______3、某品牌商品,按标价8折出售,仍可以获得20%的利润,若该商品的标价为30元,则进价为 元。

4、已知关于x 的不等式0)6(|5|<--a xa 是一元一次不等式,则a=_______ 5、已知z y x z y x 342{=+=+,则代数式zy x z y x +-++52=_______ 6、商店为了对某种商品促销,将定价为3元的商品按以下方式优惠,若购买不超过5件按原价付款,若一次性购买5件以上,超过部分8折,如果用27.1元钱,最多可购买该商品______件。

7、甲对乙说:“我在你这么大时你才26岁,你到我这么大时我已经44岁。

”则甲_______岁,乙 岁。

8、0521083{>+≤-x x 的所有整数解的和是_______9、关于x 的方程5x-2m=3x-6m+1的解在-3和3之间,则m 的取值范围为_______0 2 41 310、若方程组102312{+=+-=+m y x m y x 中x>2,y ≤1,则m 的取值范围为_______11、若3{>>x a x 的解集为x>3,则a 的取值范围为 ;若它的解集为x>a,则a 的取值范围为 12、若不等式组1232{<->-a x b x 的解集为-1<x<1,则(a-5)(b+2)=13、若3{><x a x 无解,则a 的取值范围为 ;若它有解,则a 的取值范围为 14、若a x x ≥<4{无解,则a 的取值范围为 ;若它有解,则a 的取值范围为15、若a x x ≥≤6{无解,则a 的取值范围为 ;若它有解,则a 的取值范围为16、已知关于x 的不等式3x-a ≤1的正整数解恰好是1、2、3、4,则a 的取值范围为17、关于x 的不等式组001{>->-a x x 的整数解共4个,则a 的取值范围为二、解答题:1、.15)2(21527313-+≤--+x x x 2、 132634412--≤+--x x x3、⎪⎩⎪⎨⎧->-++<--)3(4)4(316125x x x x4、已知关于x 、y 的方程组7511{=+=+y x by ax 与3210{-=-=+y x ay bx 有相同的解,求a 、b 。

5、甲乙两同学解关于x 、y 的方程组222{=-=+y bx ay x ,甲看错系数b 的值,结果解得11{=-=x y ,乙看错系数a ,结果解得11{-==x y ,请你帮他们求出正确的解。

6、某次数学测验,共16道选择题,评分标准为:对一题给6分,错一题扣2分,不答不给分。

某学生有2道题未答,他想自己的分数不低于68分,他至少答对多少道题?7、关于x 、y 的方程组332{=--=+y x a y x 的解为非负数,求a 的取值范围。

8、某花农培育甲种花木2株,乙种花木3株,共需成本1700元;培育甲种花木3株,乙种花木1株,共需成本1500元。

(1)求甲乙两种花木成本分别是多少元?(2)若1株甲种花木售价为760元,一株乙种花木售价为540元。

该花农决定在成本不超过30000元的情况下培育甲乙两种花木,若培育乙种花木的株数是甲种花木的3倍还多10株,那么要是总利润不少于21840元,花农有哪几种具体的培育方案?初一年级下学期易错题精选(二)一、选择题:1、已知点P (3,1-a )到两坐标轴的距离相等,则a 的值为 ( )A .4B .3C .-2D .4或-22、下列说法中:①点),1(a -一定在第四象限;②坐标轴上的点不属于任一象限;③横坐标为零的点在y 轴上,纵坐标为零的点在x 轴上;④直角坐标系中,在y 轴上的点到原点的距离为5的点的坐标是(0,5)。

正确的有 ( )A .1个B .2个C .3个D .4个3、已知在ABC ∆中,A ∠的外角等于B ∠的两倍,则ABC ∆是 ( )A .直角三角形B .锐角三角形C .钝角三角形D .等腰三角形4、下列语句中,正确的是 ( )A .三角形的外角大于任何一个内角B .三角形的外角等于这个三角形的两个内角之和C .三角形的外角中,至少有两个钝角D .三角形的外角中,至少有一个钝角5、若从一个多边形的两个顶点出发,共有9条对角线,则这个多边形的边数是 ( )A .6B .7C .8D .96、如果一个多边形共有27条对角线,则这个多边形的边数是 ( )A .6B .7C .8D .97、若一个多边形的每一个外角都是锐角,则这个多边形的边数一定不小于 ( )A .3B .4C .5D .68、正五边形的对称轴共有 ( )A .2条B .4条C .5条D .10条9、已知15 5-2x m y m =+=,若3m >-,则x 与y 的关系为 ( )A .x y =B .x y <C .x y >D .不能确定10、一个多边形除了一个内角外,其余内角之和为257°,则这一内角等于 ( )A .90°B .105°C .130°D 。

148°11、如图2,已知:在△ABC 中,AB=AC ,D 是BC 边上任意一点,DF ⊥AC 于点F ,E 在AB 边上,ED ⊥BC 于D ,∠AED=155°,则∠EDF 等于( ) A .50° B .65° C .70° D .75°12、有一种足球是由32块黑白相间的牛皮缝制而成的(如图3),黑皮可看作正五边形,白皮可看作正六边形,设白皮有x 块,则黑皮有()32x -块,每块白皮有六条边,共6x 边,因每块白皮有三条边和黑皮连在一起,故黑皮有3x 条边.要求出白皮、黑皮的块数,列出的方程正确的是 ( )A .332x x =-B .()3532x x =-C .()5332x x =-D .632x x =- 13、如图4,将正方形ABCD 的一角折叠,折痕为AE ,∠B ′AD 比∠B ′AE 大48°,设∠B ′AE 和∠B ′AD 的度数分别为 B C D EB 图4 图12x 、y ,那么x 、y 所适合的一个方程组是 ( )A .4890y x y x -=⎧⎨+=⎩B .482y x y x -=⎧⎨=⎩C .48290y x y x -=⎧⎨+=⎩D .48290x y y x -=⎧⎨+=⎩ 14、一个两位数的十位数字与个位数字之和是7,如果把这个两位数加上45,那么恰好成为个位数字与十位数字对调后的两位数,则这个两位数是 ( )A .16B .25C .38D .4915、等腰三角形的腰长是4cm ,则它的底边长不可能是 ( )A .1cmB .3cmC .6cmD .9cm16、下列条件中,不一定使两个三角形全等的条件是 ( )A .两边一角对应相等B .两角一边对应相等C .三边对应相等D .两边和它们的夹角对应相等二、填空题1、点P ),(b a 在第二象限内,则Q ),(2b a b +--在第 象限2、若某点向右平移2个单位,再点向下平移3个单位,所得点是坐标原点,则这个点的坐标为3、在美术课上画人体素描时,陈成将鼻梁画在直角坐标系的y 轴上,若右眼坐标为(2,5),则左眼坐标是4、等腰三角形一边长是10㎝,一边长是6㎝,则它的周长是 .5、某公路急转弯处设立了一面大镜子,从镜子中看到汽车的车辆的号码如图 所示, 则该汽车的号码是 .6、五边形中,前四个角的比为1∶2∶3∶4,第五个角比最小角多100°,则五边形的五个内角分别为_____________________7、在ABC ∆中,D 、E 分别是AB 、AC 上的点,BE 、CD 交于F ,若,650=∠A ,300=∠ABE ,250=∠ACD 则=∠BEC ,=∠BFC8、已知等腰三角形的一个外角等于0100,则它的底角等于9、一个凸多边形的内角中,最多有 个锐角10、一个凸多边形的每个内角都等于140°,那么从这个多边形的一个顶点出发共有 条对角线 11、满足25≤x 的非负整数解是 满足32<≤-x 的整数解是 12、已知0<<a b ,则22,,b a ab 的大小为已知01<<-b ,则5432,,,,b b b b b 的大小为13、已知b a ab b a <<<+,0,0,请将b b a a --,,,用“<”由小到大排列14、已知方程23=-ax x 的解是不等式8)1(57)2(3--<-+x x 的最小整数解,则代数式=-aa 197 15、下列说法:①如果02>a ,那么0>a ;②如果a a >2,那么0>a ;③如果1<a ,那么a a <2;④如果0<a ,那么a a >2;⑤如果b a >,那么22bc ac >;⑥如果22bc ac >,那么b a >;⑦如果y y x x y x <+>-,,那么0>xy 。

相关文档
最新文档