74ls138管脚图及功能
74ls138功能介绍
74ls138功能介绍74ls138引脚图74HC138管脚图:74LS138为3 线-8 线译码器,共有54/74S138和54/74LS138两种线路结构型式,其工作原理如下:当一个选通端(G1)为高电平,另两个选通端(/(G2A)和/(G2B))为低电平时,可将地址端(A、B、C)的二进制编码在一个对应的输出端以低电平译出。
利用G1、/(G2A)和/(G2B)可级联扩展成24 线译码器;若外接一个反相器还可级联扩展成32 线译码器。
若将选通端中的一个作为数据输入端时,74LS138还可作数据分配器用与非门组成的3线-8线译码器74LS1383线-8线译码器74LS138的功能表无论从逻辑图还是功能表我们都可以看到74LS138的八个输出引脚,任何时刻要么全为高电平1—芯片处于不工作状态,要么只有一个为低电平0,其余7个输出引脚全为高电平1。
如果出现两个输出引脚同时为0的情况,说明该芯片已经损坏。
当附加控制门的输出为高电平(S=1)时,可由逻辑图写出由上式可以看出,同时又是这三个变量的全部最小项的译码输出,所以也把这种译码器叫做最小项译码器。
71LS138有三个附加的控制端、和。
当、时,输出为高电平(S=1),译码器处于工作状态。
否则,译码器被禁止,所有的输出端被封锁在高电平,如表3.3.5所示。
这三个控制端也叫做“片选”输入端,利用片选的作用可以将多篇连接起来以扩展译码器的功能。
带控制输入端的译码器又是一个完整的数据分配器。
在图3.3.8电路中如果把作为“数据”输入端(同时),而将作为“地址”输入端,那么从送来的数据只能通过所指定的一根输出线送出去。
这就不难理解为什么把叫做地址输入了。
例如当=101时,门的输入端除了接至输出端的一个以外全是高电平,因此的数据以反码的形式从输出,而不会被送到其他任何一个输出端上。
【例3.3.2】试用两片3线-8线译码器74LS138组成4线-16线译码器,将输入的4位二进制代码译成16个独立的低电平信号。
三位二进制译码器-74LS138
H H H H L H H H H H H
H H H H H L H H H H H
H H H H H H L H H H H
H H H H H H H L H H H
H H H H H H H H L H H
H H H H H H H H H L H
H H H H H H H H H H L
3. 逻辑符号
D1
输
D2 D3 D4 D5
出
D6 D7
使能端 的作用
G1 G 2 A G2 B
× × L H H H H H H H H H × × L L L L L L L L × H × L L L L L L L L
译码 功能
× × × × × × L L L L L H L H H L H L H H H H
&
G=G 1⋅G 2A⋅ G 2B
3线/8线译码器
G 2B
输入 缓冲门
1 1
1 1
1 1
B2 B1 B0
1
G1 G 2A
3功能表
74LS138 的功能表
输 入 B2 B1 B0 D0 × × × L H L H L H L H H H H L H H H H H H H
三位二进制译码器—74LS138
——常用中规模集成译码电路 1. 内部结构 2. 功能表 3. 逻辑符号 4. 扩展 5. 应用—实现逻辑函数 6.管脚排列
1. 74LS138最小项译码器的电路结构
D7 D6 D5 D4 D3 D2 D1 D0
Di = G ⋅ mi
&
&
&
&
&
&
译码器引脚图
74LS138译码器引脚图,逻辑图及功能表74LS138与74HC的引脚图用与非门组成的3线-8线译码器74LS1383线-8线译码器74LS138的功能表无论从逻辑图还是功能表我们都可以看到74LS138的八个输出引脚,任何时刻要么全为高电平1—芯片处于不工作状态,要么只有一个为低电平0,其余7个输出引脚全为高电平1。
如果出现两个输出引脚同时为0的情况,说明该芯片已经损坏。
当附加控制门的输出为高电平(S=1)时,可由逻辑图写出功能介绍:就是38译码器,是TTL系列的,也就是74系列。
有三个输入端A0,A1,A2,其中A2是高位,输出是八个低电平输出Y0 ~ Y7,工作电压一般的5V就可以了,举个例子,你A0,A1,A2依次输入000,输出就是Y0,输入依次是001,输出就是Y1。
74ls381引脚图集成算术/逻辑运算单元(ALU)能够完成一系列算术运算和逻辑运算。
在这里我们介绍一种常用的集成算术/逻辑运算单元74LS381,它是四位算术/逻辑运算单元,管脚图如图3.3所示,A和B是预定的输入状态,根据输入信号S2~S0选择八种不同的功能。
图3.3 74LS381集成算术/逻辑运算单元(a)符号图(b)引脚图下面我们可以通过74LS381的功能表了解其功能。
表3.3 74LS381功能表由表3.3可知,74LS381能够进行六种算术和逻辑运算,并有清零和预置功能。
所谓清零是将各数据输出端的状态全为0;预置是使数据输出端输出预定的状态,进行预置操作时,预定的状态从A和B端输入.74ls00,74ls08引脚图[日期:2009-01-01 ] [来源:net 作者:佚名] [字体:大中小] (投递新闻)74ls00 是常用的2输入四与非门集成电路,他的作用很简单顾名思义就是实现一个与非门。
Vcc 4B 4A 4Y 3B 3A 3Y┌┴—┴—┴—┴—┴—┴—┴┐__ │14 13 12 11 10 9 8│Y = AB )│2输入四正与非门74LS00 │1 2 3 4 5 6 7│└┬—┬—┬—┬—┬—┬—┬┘1A 1B 1Y 2A 2B 2Y GND<74LS00引脚图>74LS00真值表:A=1 B=1 Y=0A=0 B=1 Y=1A=1 B=0 Y=1A=0 B=0 Y=1Vcc 4B 4A 4Y 3B 3A 3Y┌┴—┴—┴—┴—┴—┴—┴┐__ │14 13 12 11 10 9 8│Y = AB )│2输入四正与非门74LS00 │1 2 3 4 5 6 7│└┬—┬—┬—┬—┬—┬—┬┘1A 1B 1Y 2A 2B 2Y GND<74LS08引脚图>是常用的2输入四正与门电路74LS08真值表:a b y0 0 00 1 01 0 01 1 1基本RS触发器原理基本RS触发器原理1 基本RS触发器的工作原理基本RS触发器的电路如图1(a)所示。
74ls138管脚图及功能真值表
74ls138引脚图74HC138管脚图:74LS138为3 线-8 线译码器,共有54/74S138和54/74LS138两种线路结构型式,其工作原理如下:当一个选通端(G1)为高电平,另两个选通端(/(G2A)和/(G2B))为低电平时,可将地址端(A、B、C)的二进制编码在一个对应的输出端以低电平译出。
利用G1、/(G2A)和/(G2B)可级联扩展成24 线译码器;若外接一个反相器还可级联扩展成32 线译码器。
若将选通端中的一个作为数据输入端时,74LS138还可作数据分配器用与非门组成的3线-8线译码器74LS1383线-8线译码器74LS138的功能表无论从逻辑图还是功能表我们都可以看到74LS138的八个输出引脚,任何时刻要么全为高电平1—芯片处于不工作状态,要么只有一个为低电平0,其余7个输出引脚全为高电平1。
如果出现两个输出引脚同时为0的情况,说明该芯片已经损坏。
当附加控制门的输出为高电平(S=1)时,可由逻辑图写出由上式可以看出,同时又是这三个变量的全部最小项的译码输出,所以也把这种译码器叫做最小项译码器。
71LS138有三个附加的控制端、和。
当、时,输出为高电平(S=1),译码器处于工作状态。
否则,译码器被禁止,所有的输出端被封锁在高电平,如表3.3.5所示。
这三个控制端也叫做“片选”输入端,利用片选的作用可以将多篇连接起来以扩展译码器的功能。
带控制输入端的译码器又是一个完整的数据分配器。
在图3.3.8电路中如果把作为“数据”输入端(同时),而将作为“地址”输入端,那么从送来的数据只能通过所指定的一根输出线送出去。
这就不难理解为什么把叫做地址输入了。
例如当=101时,门的输入端除了接至输出端的一个以外全是高电平,因此的数据以反码的形式从输出,而不会被送到其他任何一个输出端上。
【例3.3.2】试用两片3线-8线译码器74LS138组成4线-16线译码器,将输入的4位二进制代码译成16个独立的低电平信号。
74LS138中文资料P
74LS138中文资料
54LS138和74LS138 为3 线-8 线译码器共有54LS138 和74LS138 两种型式,其主要电特性的典型值如下:
54LS138 /74LS138 传播延迟时间22ns 功耗32mW
原理:当一个选通端(G1)为高电平,另两个选通端(/(G2A)和/(G2B))为
低电平时,可将地址端(A、B、C)的二进制编码在一个对应的输出端以低
电平译出。
利用G1、/(G2A)和/(G2B)可级联扩展成24 线译码器;若外接一个反
相器还可级联扩展成32 线译码器。
若将选通端中的一个作为数据输入端时,138 还可作数据分配器。
图1 引脚图
图2 内部逻辑管脚图
引脚功能:
A、B、C 译码地址输入端
G1 选通端/(G2A)、/(G2B) 选通端(低电平有效)Y0~Y7 译码输出端(低电平有效)
真值表:
建议操作条件:
电气参数:
动态特性表:。
74LS138中文资料P.pdf
74LS138中文资料54LS138和74LS138 为3 线-8 线译码器共有54LS138 和74LS138 两种型式,其主要电特性的典型值如下:54LS138 /74LS138 传播延迟时间22ns 功耗32mW原理:当一个选通端(G1)为高电平,另两个选通端(/(G2A)和/(G2B))为低电平时,可将地址端(A、B、C)的二进制编码在一个对应的输出端以低电平译出。
利用G1、/(G2A)和/(G2B)可级联扩展成24 线译码器;若外接一个反相器还可级联扩展成32 线译码器。
若将选通端中的一个作为数据输入端时,138 还可作数据分配器。
图1 引脚图图2 内部逻辑管脚图引脚功能:A、B、C 译码地址输入端G1 选通端/(G2A)、/(G2B) 选通端(低电平有效)Y0~Y7 译码输出端(低电平有效)真值表:建议操作条件:电气参数:符号参数测试条件最大值典型值最大值单位VI 输入钳位电压VCC = Min, II = -18 mA- - -1.5 VVOH 输出高电平电压VCC = Min, IOH = Max,VIL = Max, VIH = Min2.73.4 - VVOL 输出低电平电压VCC = Min, IOL = Max,VIL = Max, VIH = Min- 0.35 0.5V IOL = 4 mA, VCC = Min - 0.25 0.4II 最大输入电压时输入电流VCC = Max, VI = 7V - - 0.1 mAIIH 输入高电平电流VCC = Max, VI = 2.7V - - 20 mA IIL 输入低电平电流VCC = Max, VI = 0.4V - - -0.36 mA IOS 输出短路电流VCC = Max (Note 4) -20 - -100 mA ICC 电源电流VCC = Max (Note 5) - 6.3 10 mA 动态特性表:符号参数To (Output) 时滞RL = 2 kW单位CL = 15pF CL = 50 pF最大值最大值最大值最大值tPLH 低到高电平输出传递延迟时间Select to Output 2 - 18 - 27 nstPHL 高到低电平输出传递延迟时间Select to Output 2 - 27 - 40 nstPLH 低到高电平输出传递延迟时间Select to Output 3 - 18 - 27 nstPHL 高到低电平输出传递延迟时间Select to Output 3 - 27 - 40 nstPLH 低到高电平输出传递延迟时间Enable to Output 2 - 18 - 27 nstPHL 高到低电平输出传递延迟时间Enable to Output 2 - 24 - 40 nstPLH 低到高电平输出传递延迟时间Enable to Output 3 - 18 - 27 nstPHL 传递延迟时间Enable to Output 3 - 28 - 40 ns。
74ls138引脚图-74ls138管脚图及功能真值表
74ls138引脚图-74ls138管脚图及功能真值表2007年12月17日 22:33 本站原创作者:本站用户评论(0)关键字:74ls138引脚图74HC138管脚图:74LS138为3 线-8 线译码器,共有54/74S138和54/74LS138两种线路结构型式,其工作原理如下:当一个选通端(G1)为高电平,另两个选通端(/(G2A)和/(G2B))为低电平时,可将地址端(A、B、C)的二进制编码在一个对应的输出端以低电平译出。
利用G1、/(G2A)和/(G2B)可级联扩展成24 线译码器;若外接一个反相器还可级联扩展成32 线译码器。
若将选通端中的一个作为数据输入端时,74LS138还可作数据分配器用与非门组成的3线-8线译码器74LS1383线-8线译码器74LS138的功能表无论从逻辑图还是功能表我们都可以看到74LS138的八个输出引脚,任何时刻要么全为高电平1—芯片处于不工作状态,要么只有一个为低电平0,其余7个输出引脚全为高电平1。
如果出现两个输出引脚同时为0的情况,说明该芯片已经损坏。
当附加控制门的输出为高电平(S=1)时,可由逻辑图写出由上式可以看出,同时又是这三个变量的全部最小项的译码输出,所以也把这种译码器叫做最小项译码器。
71LS138有三个附加的控制端、和。
当、时,输出为高电平(S=1),译码器处于工作状态。
否则,译码器被禁止,所有的输出端被封锁在高电平,如表3.3.5所示。
这三个控制端也叫做“片选”输入端,利用片选的作用可以将多篇连接起来以扩展译码器的功能。
带控制输入端的译码器又是一个完整的数据分配器。
在图3.3.8电路中如果把作为“数据”输入端(同时),而将作为“地址”输入端,那么从送来的数据只能通过所指定的一根输出线送出去。
这就不难理解为什么把叫做地址输入了。
例如当=101时,门的输入端除了接至输出端的一个以外全是高电平,因此的数据以反码的形式从输出,而不会被送到其他任何一个输出端上。
74LS138管脚功能的主要 介绍
74ls138引脚图74HC138管脚图:74LS138为3 线-8 线译码器,共有54/74S138和54/74LS138两种线路结构型式,其工作原理如下:当一个选通端(G1)为高电平,另两个选通端(/(G2A)和/(G2B))为低电平时,可将地址端(A、B、C)的二进制编码在一个对应的输出端以低电平译出。
利用G1、/(G2A)和/(G2B)可级联扩展成24 线译码器;若外接一个反相器还可级联扩展成32 线译码器。
若将选通端中的一个作为数据输入端时,74LS138还可作数据分配器用与非门组成的3线-8线译码器74LS1383线-8线译码器74LS138的功能表无论从逻辑图还是功能表我们都可以看到74LS138的八个输出引脚,任何时刻要么全为高电平1—芯片处于不工作状态,要么只有一个为低电平0,其余7个输出引脚全为高电平1。
如果出现两个输出引脚同时为0的情况,说明该芯片已经损坏。
当附加控制门的输出为高电平(S=1)时,可由逻辑图写出由上式可以看出,同时又是这三个变量的全部最小项的译码输出,所以也把这种译码器叫做最小项译码器。
71LS138有三个附加的控制端、和。
当、时,输出为高电平(S=1),译码器处于工作状态。
否则,译码器被禁止,所有的输出端被封锁在高电平,如表3.3.5所示。
这三个控制端也叫做“片选”输入端,利用片选的作用可以将多篇连接起来以扩展译码器的功能。
带控制输入端的译码器又是一个完整的数据分配器。
在图3.3.8电路中如果把作为“数据”输入端(同时),而将作为“地址”输入端,那么从送来的数据只能通过所指定的一根输出线送出去。
这就不难理解为什么把叫做地址输入了。
例如当=101时,门的输入端除了接至输出端的一个以外全是高电平,因此的数据以反码的形式从输出,而不会被送到其他任何一个输出端上。
【例3.3.2】试用两片3线-8线译码器74LS138组成4线-16线译码器,将输入的4位二进制代码译成16个独立的低电平信号。
3-8译码器74LS138
3-8译码器74LS138引脚图及真值表
74LS138除了3线到8线的基本译码输入输出端外,为便于扩展成更多位的译码电路和实现数据分配功能,74LS138还有三个输入使能端EN1,EN2A和EN2B。
74LS138真值表和内部逻辑图
74LS138真值表和内部逻辑图分别见表1和图1(a)。
图1(c)所示符号图中,输入输出有效用极性指示符表示,同时极性指示符又标明了信号方向。
74138的三个输入使能(又称选通ST)信号之间是与逻辑关系,EN1高电平有效,EN2A 和EN2B低电平有效。
只有在所有使能端都为有效电平(EN1EN2A EN2B=100)时,74138才对输入进行译码,相应输出端为低电平,即输出信号为低电平有效。
在EN1EN2A EN2B≠100时,译码器停止译码,输出无效电平(高电平)。
图1 3线-8线译码器74LS138
(a)逻辑图(b)方框图(c)符号图
表1 74LS138真值表
集成译码器通过给使能端施加恰当的控制信号,就可以扩展其输入位数。
以下用74138为例,
说明集成译码器扩展应用的方法。
图3中,用两片74138实现4线/16线的译码器。
图3 74138扩展成4/16线译码器
74LS138引脚图
图4 74138引脚图。
74ls138功能表
74ls138功能表74LS138是一款集成电路,是一种3-8译码器。
它能够将三位二进制输入转换成八个输出信号,具有广泛的应用领域。
首先,我们来了解一下74LS138的引脚功能。
它有15个引脚,其中包括三个输入引脚A0、A1和A2,八个输出引脚Y0、Y1、Y2、Y3、Y4、Y5、Y6和Y7,以及两个使能引脚E1和E2和一个输出使能引脚G。
引脚功能非常清晰明了,使我们可以简单地通过连接引脚来实现所需的功能。
那么,74LS138的功能是什么呢?它主要用于解码器的设计。
当我们输入三位二进制代码时,它会选择一个输出,并激活相应的输出引脚。
根据输入信号和使能引脚的状态,74LS138可以实现以下功能:1. 3-8译码器: 当使能引脚G为低电平时,无论使能引脚E1和E2的状态如何,74LS138都可以正常工作。
三位二进制代码将决定输出信号的激活状态。
比如,当输入是“000”时,输出引脚Y0将会被激活;当输入是“001”时,输出引脚Y1将会被激活;以此类推。
2. 2-4译码器: 当使能引脚G为低电平,使能引脚E1为高电平,使能引脚E2为低电平时,74LS138将工作为2-4译码器。
此时,只有四个输出引脚Y0、Y1、Y2和Y3会被激活。
根据两位二进制代码的输入信号,激活相应的输出引脚。
3. 输出选择器: 当使能引脚G为高电平,使能引脚E1和E2的状态无关紧要时,74LS138可以应用作为一个简单的八选一选择器。
在这种模式下,只有一个输出引脚被激活,输出引脚的选择由三位二进制代码确定。
值得一提的是,74LS138还具有连接能力,允许多个芯片级联,从而实现更大规模的译码和选择功能。
通过正确地连接多个74LS138芯片,我们可以构建出更为复杂的逻辑功能。
总结起来,74LS138是一款功能强大的集成电路,可以实现3-8译码器、2-4译码器和输出选择器等不同的工作模式。
它被广泛应用在数字电路设计、计算机接口、显示控制等领域。
译码器引应用图脚图
74LS138译码器引脚图,逻辑图及功能表74LS138与74HC的引脚图用与非门组成的3线-8线译码器74LS1383线-8线译码器74LS138的功能表无论从逻辑图还是功能表我们都可以看到74LS138的八个输出引脚,任何时刻要么全为高电平1—芯片处于不工作状态,要么只有一个为低电平0,其余7个输出引脚全为高电平1。
如果出现两个输出引脚同时为0的情况,说明该芯片已经损坏。
当附加控制门的输出为高电平(S=1)时,可由逻辑图写出功能介绍:74ls381引脚图集成算术/逻辑运算单元(ALU)能够完成一系列算术运算和逻辑运算。
在这里我们介绍一种常用的集成算术/逻辑运算单元74LS381,它是四位算术/逻辑运算单元,管脚图如图3.3所示,A和B是预定的输入状态,根据输入信号S2~S0选择八种不同的功能。
图3.3 74LS381集成算术/逻辑运算单元(a)符号图(b)引脚图下面我们可以通过74LS381的功能表了解其功能。
表3.3 74LS381功能表由表3.3可知,74LS381能够进行六种算术和逻辑运算,并有清零和预置功能。
所谓清零是将各数据输出端的状态全为0;预置是使数据输出端输出预定的状态,进行预置操作时,预定的状态从A和B端输入.74ls00,74ls08引脚图Vcc 4B 4A 4Y 3B 3A 3Y┌┴—┴—┴—┴—┴—┴—┴┐__ │14 13 12 11 10 9 8│Y = AB )│2输入四正与非门74LS00 │1 2 3 4 5 6 7│└┬—┬—┬—┬—┬—┬—┬┘1A 1B 1Y 2A 2B 2Y GND<74LS00引脚图>74LS00真值表:A=1 B=1 Y=0A=0 B=1 Y=1A=1 B=0 Y=1A=0 B=0 Y=1Vcc 4B 4A 4Y 3B 3A 3Y┌┴—┴—┴—┴—┴—┴—┴┐__ │14 13 12 11 10 9 8│Y = AB )│2输入四正与非门74LS00 │1 2 3 4 5 6 7│└┬—┬—┬—┬—┬—┬—┬┘1A 1B 1Y 2A 2B 2Y GND<74LS08引脚图>是常用的2输入四正与门电路74LS08真值表:a b y0 0 00 1 01 0 01 1 1基本RS触发器原理基本RS触发器原理1 基本RS触发器的工作原理基本RS触发器的电路如图1(a)所示。
74LS138管脚功能
74ls138引脚图74HC138管脚图:74LS138为3 线-8 线译码器,共有54/74S138和54/74LS138两种线路结构型式,其工作原理如下:当一个选通端(G1)为高电平,另两个选通端(/(G2A)和/(G2B))为低电平时,可将地址端(A、B、C)的二进制编码在一个对应的输出端以低电平译出。
利用G1、/(G2A)和/(G2B)可级联扩展成24 线译码器;若外接一个反相器还可级联扩展成32 线译码器。
若将选通端中的一个作为数据输入端时,74LS138还可作数据分配器用与非门组成的3线-8线译码器74LS1383线-8线译码器74LS138的功能表无论从逻辑图还是功能表我们都可以看到74LS138的八个输出引脚,任何时刻要么全为高电平1—芯片处于不工作状态,要么只有一个为低电平0,其余7个输出引脚全为高电平1。
如果出现两个输出引脚同时为0的情况,说明该芯片已经损坏。
当附加控制门的输出为高电平(S=1)时,可由逻辑图写出由上式可以看出,同时又是这三个变量的全部最小项的译码输出,所以也把这种译码器叫做最小项译码器。
71LS138有三个附加的控制端、和。
当、时,输出为高电平(S=1),译码器处于工作状态。
否则,译码器被禁止,所有的输出端被封锁在高电平,如表3.3.5所示。
这三个控制端也叫做“片选”输入端,利用片选的作用可以将多篇连接起来以扩展译码器的功能。
带控制输入端的译码器又是一个完整的数据分配器。
在图3.3.8电路中如果把作为“数据”输入端(同时),而将作为“地址”输入端,那么从送来的数据只能通过所指定的一根输出线送出去。
这就不难理解为什么把叫做地址输入了。
例如当=101时,门的输入端除了接至输出端的一个以外全是高电平,因此的数据以反码的形式从输出,而不会被送到其他任何一个输出端上。
【例3.3.2】试用两片3线-8线译码器74LS138组成4线-16线译码器,将输入的4位二进制代码译成16个独立的低电平信号。
74ls138管脚图及功能真值表
74ls138引脚图74HC138管脚图:74LS138为3 线-8 线译码器,共有54/74S138和54/74LS138两种线路结构型式,其工作原理如下:当一个选通端(G1)为高电平,另两个选通端(/(G2A)和/(G2B))为低电平时,可将地址端(A、B、C)的二进制编码在一个对应的输出端以低电平译出。
利用G1、/(G2A)和/(G2B)可级联扩展成24 线译码器;若外接一个反相器还可级联扩展成32 线译码器。
若将选通端中的一个作为数据输入端时,74LS138还可作数据分配器用与非门组成的3线-8线译码器74LS1383线-8线译码器74LS138的功能表无论从逻辑图还是功能表我们都可以看到74LS138的八个输出引脚,任何时刻要么全为高电平1—芯片处于不工作状态,要么只有一个为低电平0,其余7个输出引脚全为高电平1。
如果出现两个输出引脚同时为0的情况,说明该芯片已经损坏。
当附加控制门的输出为高电平(S=1)时,可由逻辑图写出由上式可以看出,同时又是这三个变量的全部最小项的译码输出,所以也把这种译码器叫做最小项译码器。
71LS138有三个附加的控制端、和。
当、时,输出为高电平(S=1),译码器处于工作状态。
否则,译码器被禁止,所有的输出端被封锁在高电平,如表3.3.5所示。
这三个控制端也叫做“片选”输入端,利用片选的作用可以将多篇连接起来以扩展译码器的功能。
带控制输入端的译码器又是一个完整的数据分配器。
在图3.3.8电路中如果把作为“数据”输入端(同时),而将作为“地址”输入端,那么从送来的数据只能通过所指定的一根输出线送出去。
这就不难理解为什么把叫做地址输入了。
例如当=101时,门的输入端除了接至输出端的一个以外全是高电平,因此的数据以反码的形式从输出,而不会被送到其他任何一个输出端上。
【例3.3.2】试用两片3线-8线译码器74LS138组成4线-16线译码器,将输入的4位二进制代码译成16个独立的低电平信号。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
74ls138引脚图-74ls138管脚图及功能真值表
74ls138引脚图
74HC138管脚图:74LS138为3 线-8 线译码器,共有54/74S138和54/74LS138两种线路结构型式,其工作原理如下:
当一个选通端(G1)为高电平,另两个选通端(/(G2A)和/(G2B))为
低电平时,可将地址端(A、B、C)的二进制编码在一个对应的输出端以低
电平译出。
利用G1、/(G2A)和/(G2B)可级联扩展成24 线译码器;若外接一个反
相器还可级联扩展成32 线译码器。
若将选通端中的一个作为数据输入端时,74LS138还可作数据分配器
用与非门组成的3线-8线译码器74LS138
3线-8线译码器74LS138的功能表
无论从逻辑图还是功能表我们都可以看到74LS138的八个输出引脚,任何时刻要么全为高电平1—芯片处于不工作状态,要么只有一个为低电平0,其余7个输出引脚全为高电平1。
如果出现两个输出引脚同时为0的情况,说明该芯片已经损坏。
当附加控制门的输出为高电平(S=1)时,可由逻辑图写出
由上式可以看出,同时又是这三个变量的全部最小项的译码输出,所以也把这种译码器叫做最小项译码器。
71LS138有三个附加的控制端、和。
当、时,输出为高电平(S=1),译码器处于工作状态。
否则,译码器被禁止,所有的输出端被封锁在高电平,如表3.3.5所示。
这三个控制端也叫做“片选”输入端,利用片选的作用可以将多篇连接起来以扩展译码器的功能。
带控制输入端的译码器又是一个完整的数据分配器。
在图3.3.8电路中如果把作为“数据”输入端(同时),而将作为“地址”输入端,那么从送来的数据只能通过所指定的一根输出线送出去。
这就不难理解为什么把叫做地址输入了。
例如当=101时,门的输入端除了接至输出端的一个以外全是高电平,因此的数据以反码的形式从输出,而不会被送到其他任何一个输出端上。
【例3.3.2】试用两片3线-8线译码器74LS138组成4线-16线译码器,将输入的4位二进制代码译成16个独立的低电平信号。
解:由图3.3.8可见,74LS138仅有3个地址输入端。
如果想对4位二进制代码,只能利用一个附加控制端(当中的一个)作为第四个地址输入端。
取第(1)片74LS138的和作为它的第四个地址输入端(同时令),取第(2)片的作为它的第四个地址输入端(同时令),取两片的、、,并将第(1)片的和接至,将第(2)片的接至,如图3.3.9所示,于是得到两片74LS138的输出分别为
图3.3.9 用两片74LS138接成的4线-16线译码器
式(3.3.8)表明时第(1)片74LS138工作而第(2)片74LS138禁止,将的0000~0111这8个代码译成8个低电平信号。
而式(3.3.9)表明时,第(2)片74LS138工作,第(1)片74LS138禁止,将的1000~1111这8个代码译成8个低电平信号。
这样就用两个3线-8线译码器扩展成一个4线-16线的译码器了。
同理,也可一用两个带控制端的4线-16线译码器接成一个5线-32线译码器。
例2.74LS138 3-8译码器的各输入端的连接情况及第六脚()输入信号A的波形如下图所示。
试画出八个输出引脚的波形。
解:由74LS138的功能表知,当(A为低电平段)译码器不工作,8个输出引脚全为高电平,当(A为高电平段)译码器处于工作状态。
因所以其余7个引脚输出全为高电平,因此可知,在输入信号A的作用下,8个输出引脚的波形如下:
即与A反相;
其余各引脚的输出恒等于1(高电平)与A的波形无关。