新1第十一章 曲线积分与曲面积分习题答案

合集下载

11曲线积分与曲面积分6答案

11曲线积分与曲面积分6答案

14
33
09
4、计算 xyz d s , 其中 r 是空间曲线 x=t, y 2t 2t , z 1 t 2 在点 t=0 和 t=1 间的一段。
3
2
答案: 解 :
xyzds 1(t 2t
2t 1 t 2) 1 ( 2t )2 t 2dt
2
1
t
9
2(1
t)dt
16
2
r
03
2
30
三、问答(2 小题)
1、已知 P(x,y)=x2+y2,问 Q(x,y)满足什么条件时,才能使 Pdx Qdy 与积分路径无关。 L
解:由 P y
Q x
,
知 Q x
2 y,Q(x,
y)
2xy
c( y), 式中C( y) 为任意连续函数.
2、设∑是八面体|x|+|y|+|z|≤a 的表面,a 为正数。若 (2x z)2 dS 3 a2 则 a 为何值。
11 曲线积分与曲面积分练习题 6 答案
一、选择(10 小题)
1-5、答案:BACCC 6-10、答案:BBA DA 二、填空(5 小题)
1、答案: x2 f (x)dx 2、答案:0 3、答案: A f (x, y)ds.
x1
L
4、答案:
yd x xd y L x 2 y 2
ò 5、答案: L 2p yds.
1 e x3y d s 1
5L
由驻点方程 fx fy 得 x y
3x 2y x3 , 又 34
x=0 y=3

x 3
y
3 4
f (x, y) x3y在条件3x 4 y 12 0下的
3x+4y-12=0

第11章 曲线积分与曲面积分习题解答(开放课程)

第11章 曲线积分与曲面积分习题解答(开放课程)

d
L
02
2
1 a2

cos
d

2
cos
d

2 0 2

2

1 2
a
2

2
sin
2
0
2sin 2
2


2a 2
3.计算 x2 y 2 ds ,其中 L 为曲线 x acos t t sin t ,y asin t t cos t, L
解:
xydx
1
y2 y
y2
dy

2
1 y 4dy 21 y 5 1
4.
L
1
1
5 1 5
8. 计算 x3dx 3zy 2dy x 2 ydz ,其中 L 是从点 A3,2,1 到点 B0,0,0的直线 L
段 AB 。
解:直线段 AB 的方程为 x y z ,化成参数方程为 x 3t , y 2t , z t , 321

1x 0

1

x
2dx
2。
2.计算 x 2 y 2 ds ,其中 L 为圆周 x 2 y 2 ax 。 L
解:
L
的参数方程为
x


y

1 2 1 2
a cos a sin

1 2
a
, 0


2

则 x 2 y 2 1 a cos 1 a2 1 a sin 1 | a | 21 cos
0
ex
|0a
e

曲线曲面积分练习答案

曲线曲面积分练习答案

第十一章 曲线曲面积分一、填空1、L 为下半圆21y x =--,则22()L x y ds +=⎰___π_______。

2、L 为222x y R +=,则3(2)L x y ds +=⎰____0____。

3、L 为圆22(2)(2)2x y -+-=的逆时针一周,则L ydx xdy +⎰=_0_。

4、设L 是xoy 平面上沿顺时针方向绕行的简单闭曲线,L 所围的平面闭区域D 的面积为A ,(2)(43)8L x dx x y dy -++=-⎰,则A=___2_______。

5、分片光滑闭曲面Σ所围成的空间区域Ω的体积为V ,则沿曲面Σ外侧的积分()()()z y dxdy y x dxdz x z dzdy ∑-+-+-⎰⎰= 3V 。

二、选择题1、设是一光滑曲线,为了使曲线积分(,)(,)L yF x y dx xF x y dy +⎰与积分路径无关,则可微函数 应满足条件( A )。

A 、B 、C 、D 、2、OM 是从(0,0)(1,1)O M 到的直线段,则22x y OM e ds +⎰不等于(D )。

A 、1202x e dx ⎰B 、1202y e dy ⎰C 、20r e dr ⎰D 、102r e dr ⎰ 3、∑:2221x y z ++=外侧,1∑:上半面上侧,则正确的是(B )。

A 、12zds zds ∑∑=⎰⎰⎰⎰ B 、12zdxdy zdxdy ∑∑=⎰⎰⎰⎰ C 、1222z dxdy z dxdy ∑∑=⎰⎰⎰⎰ D 、zdxdy ∑⎰⎰=0 4、∑:222(),0z x y z =-+≥,则ds ∑⎰⎰等于( C )。

A 、220014r d r rdr πθ+⋅⎰⎰ B 、2220014d r rdr πθ+⋅⎰⎰ C 、2220014d r rdr πθ+⋅⎰⎰ D 、2 5、∑:222,12x y R z +=≤≤外侧,则下列不正确的是等于(B )。

最新曲线与曲面积分习题参考答案

最新曲线与曲面积分习题参考答案

十 曲线积分与曲面积分习题(一) 对弧长的曲线积分1. 计算ds y x L⎰+)(22,其中L 为圆周t a y t a x sin ,cos == )20(π≤≤t .解32032222202222222cos sin )sin cos ()(a dt a dt t a t a t a t a ds y x Lπππ==++=+⎰⎰⎰.2. 计算ds x L ⎰,其中L 为由直线x y =及抛物线2x y =所围成的区域的整个边界.解 )12655(121412121-+=++=⎰⎰⎰dx x x dx x ds x L . 3.计算⎰Lyds ,其中L 是抛物线x y 42=上从)0,0(O 到)2,1(A 的一段弧.解⎰L y d s =dy y y dy y y ⎰⎰+=+202202421)2(1 )122(34)4(4412202-=++=⎰y d y . 4.计算⎰+Lds y x )(,其中L 为从点)0,0(O 到)1,1(A 的直线段.解⎰+L ds y x )(=23211)(10=++⎰x x . 5.计算⎰L xyzds ,其中L 是曲线2321,232,t z t y t x ===)10(≤≤t 的一段.解 ⎰L x y z d s =⎰⎰+=++13102223)1(232)2(121232dt t t t dt t t t t t=143216. 6.计算22x y Leds +⎰,其中L 为圆周222x y a +=,直线y x =及x 轴在第一象限所围成的扇形的整个边界. 解22x y Leds +⎰=⎰1L +⎰2L +⎰3L=dx e dt t a t a edx eax aa x⎰⎰⎰+++++024022222201)sin ()cos (11π=(2)14ae a π+-7.设在xoy 面内有一分布着质量的曲线L ,在点(),x y 处它的线密度为(),x y μ,试用对弧长的曲线积分分别表达(1)这条曲线弧对x 轴,y 轴的转动惯量,x y I I ; (2) 这条曲线弧的质心坐标,x y . 解 (1)⎰=Lx dS y I 2μ ⎰=Ly dS x I 2μ(2)⎰⎰=L LdSy x dS y x x x ),(),(μμ ⎰⎰=LL dSy x dS y x y y ),(),(μμ (二) 对坐标的曲线积分1.计算⎰+Lxdy ydx ,其中L 为圆周t R y t R x sin ,cos ==上对应t 从0到2π的一段弧. 解⎰+Lx d yy d x =0]cos cos )sin (sin [20=+-⎰dt t tR R t R t R π2.计算⎰+Lydx xdy ,其中L 分别为(1)沿抛物线22x y =从)0,0(O 到)2,1(B 的一段; (2)沿从)0,0(O 到)2,1(B 的直线段.; (3)沿封闭曲线OABO ,其中)0,1(A ,)2,1(B .解 (1)⎰=+=1022)24(dx x x x I .(2)2)22(1=+=⎰dx x x I .(3)⎰+Lydx xdy =⎰⎰⎰++BOABOA=210(22)0dy x x dx +++=⎰⎰.3.计算⎰-+++Ldz y x zdy xdx )1(,其中Γ是从点)1,1,1(到点)4,3,2(的一段直线.解 直线方程为312111-=-=-z y x ,其参数方程为13,12,1+=+=+=t z t y t x ,t 从0变到1.13])13(3)12(2)1[(1=+++++=⎰dt t t t I .4.计算2()Lxydx x y dy x dz +-+⎰,其中L 是螺旋线bt z t a y t a x ===,sin ,cos 从0=t 到π=t 上的一段.解 dt t b a t a t a t a t a t a t a I ⎰+-+-∙=π22]cos cos )sin cos ()sin (sin cos [)(222b a a +=π.5.设Γ为曲线23,,x t y t z t ===上相应于t 从0变到1的曲线弧.把对坐标的曲线积分Pdx Qdy Rdz Γ++⎰化成对弧长的曲线积分.解 由于)3,2,1()3,2,1(),,(2y x t t dt dz dt dy dt dx ==,故229411c o s y x ++=α,229412cos yx x ++=β,229413cos yx y ++=γ.(cos cos cos )Pdx Qdy Rdz P Q R dS αβγΓΓ++=++⎰⎰=dS yx yR xQ P ⎰Γ++++2294132.(三) 格林公式及应用1.计算⎰-L ydy x dx xy 22,其中L 为圆周222a y x =+,取逆时针方向.解⎰-L ydy xdx xy 22=0)22(=--⎰⎰Ddxdy xy xy2.计算⎰+--Ldy y x dx y x )sin ()(22,其中L 是在圆周22x x y -=上由点)0,0(到点)1,1( 的一段弧.解 y x P -=2,)sin (2y x Q +-= ()122017sin sin 246I x x x x dx =---=-⎰ 3. 计算(1)()xxL ye dx x e dy +++⎰,其中L 为椭圆22221x y a b+=的上半周由点(,0)A a 到(,0)B a -的弧段.解 xye P +=1,xe x Q +=⎰⎰-=+11L L L I =2aDadxdy dx ab a π--=-⎰⎰⎰4. 计算3222(2cos )(12sin 3)Lxyy x dx y x x y dy -+-+⎰,其中L 为在抛物线22x y π=上由点(0,0)到,12π⎛⎫⎪⎝⎭的一段弧. 解 322cos P xy y x =-,2212sin 3Q y x x y =-+ ⎰⎰⎰--=+211L L L L I =0)4321(00122-+--⎰⎰⎰y y dxdy D π=42π5. 计算⎰+-L y x xdy ydx )(222,其中L 为圆周2)1(22=+-y x ,L 的方向为逆时针方向. 解 )(222y x y P +=,)(222y x x Q +-=,当022≠+y x 时, yPy x y x x Q ∂∂=+-=∂∂)(22222 L 所围区域为D ,由于D ∈)0,0(,故不能直接用格林公式.选适当小的0>r ,作位于D 内的小圆周222:r y x l =+.记L 与l 所围区域为1D ,在1D 上应用格林公式,得⎰+-L y x xdyydx )(222-⎰+-l y x xdy ydx )(222=0其中l 取逆时针方向.所以⎰+-L y x xdyydx )(222=⎰+-l y x xdy ydx )(222=πθθπ=--⎰20222222cos sin r r r . 6. 计算星形线t a y t a x 33sin ,cos ==,)20(π≤≤t 所围成区域的面积.解 ⎰-=L ydx xdy A 21=2024224283)cos sin 3sin cos 3(a dt t t a t t a ππ=+⎰7. 证明曲线积分(2,1)423(1,0)(2)(4)xy y dx x xy dy -+-⎰在整个xoy 面内与路径无关,并计算积分值.解 (1)42y xy P -=,324xy x Q -=xQ y x y P ∂∂=-=∂∂342在整个xoy 面上成立 故曲线积分(2,1)423(1,0)(2)(4)xy y dx x xy dy -+-⎰在整个xoy 面内与路径无关.(2)⎰⎰+=21L L I =8.验证dy x xydx 22+在整个xoy 平面内是某一函数),(y x u 的全微分,并求这样的一个),(y x u .解 (1)验证略;(2)y x dy x y x u yABOA2020),(=+=+=⎰⎰⎰9.试用曲线积分求dy y x dx y x )cos ()sin 2(++的原函数. 解 y x P sin 2+=,y x Q cos =,xQ y y P ∂∂==∂∂cos 在整个xoy 面上成立 所以 ⎰++=),()0,0()cos ()sin 2(),(y x dy y x dx y x y x u=y x x ydy x xdx yxsin cos 22+=+⎰⎰+C.(四) 对面积的曲面积分1.计算⎰⎰∑+dS y x)(22,其中∑是锥面22y x z +=及平面1=z 所围成的区域的整个边界曲面. 解⎰⎰∑+dS y x)(22=⎰⎰⎰⎰∑∑+21=⎰⎰⎰⎰+++++xyxyD D y x dxdy y x dxdy z z y x )(1)(222222 ⎰⎰++=xyD dxdy y x )()12(22=π212+. 2. 计算⎰⎰∑++dS z y x )223(,其中∑为平面1432=++zy x 在第一卦限的部分.解 d x d y y x y x I xyD ⎰⎰-+-+--++=22)34()2(1))321(223(, =⎰⎰⎰⎰-+=+x D dy y dx dxdy y xy 23302)265(361)265(361 =614)42741549(361202=+-⎰dx x x . (x y x D xy 2330,20:-<<<<) 3.计算⎰⎰∑dS z 2,其中∑为球面2222a z y x =++.解⎰⎰∑dS z 2=⎰⎰⎰⎰--=++--xyxyD D y x dxdy y x a a dxdy z z y x a2222222221)(2=42022342a d a d a aπρρρθπ=-⎰⎰4.计算⎰⎰∑++dS z y x )(,∑是球面0,222≥=++z a z y x .有问题 解 ⎰⎰----++=xyD dxdy y x a y x a y x I 222222)(=⎰⎰⎰⎰--+--+xyxyD D dxdy y x a dxdy y x a y x )()(222222 =πρρρθπ2)(002220=-+⎰⎰ad a d 5.求抛物面壳221()(01)2z x y z =+≤≤的质量,此壳的面密度为z μ=. 解 ⎰⎰∑=zdS M =dxdy y x y x xyD 22221)(21+++⎰⎰=2012d d πρ⎰=21)15π.(五) 对坐标的曲面积分1.计算⎰⎰∑zdxdy y x22,其中∑是球面2222R z y x =++的下半部分的下侧.解⎰⎰∑zdxdy y x 22=dxdy y x R y x xyD ⎰⎰--2222=24220cos sin Rd πθρθρ⎰⎰=72105R π2.计算⎰⎰∑++yzdzdx xydydz xzdxdy ,其中∑是平面1,0,0,0=++===z y x z y x 所围成的空间区域的整个边界曲面的外侧. 解 4321∑+∑+∑+∑=∑0321===⎰⎰⎰⎰⎰⎰∑∑∑⎰⎰⎰⎰--=++∑xyD dxdy y x x yzdzdx xydydz xzdxdy )1(34=dy xy x x dx x⎰⎰---10102)(3=85. 3.计算⎰⎰∑++=dxdy z h dxdz y g dydz x f I )()()(,其中h g f ,,为已知连续函数,∑为平行六面体c z b y a x ≤≤≤≤≤≤Ω0,0,0:表面的外侧. 解 654321∑+∑+∑+∑+∑+∑=∑⎰⎰⎰⎰⎰⎰+-==∑yzyzD D dydz a f dydz f dydz x f I )()0()(1=bc f a f )]0()([-⎰⎰⎰⎰⎰⎰+-==∑yzyzD D dxdz b g dxdz g dxdz y g I )()0()(2=ac g b g )]0()([-ab h c h I )]0()([3-=所以321I I I I ++==ab h c h ac g b g bc f a f )]0()([)]0()([)]0()([-+-+-. 4.计算⎰⎰∑++dxdy z dzdx y dydz x 222,其中∑为半球面222y x a z --=的上侧.解⎰⎰⎰⎰⎰⎰∑∑∑+=21222dydz x dydz x dydz x=0)()(222222=-----⎰⎰⎰⎰dydz z y a dydz z y a yzyzD D 同理:02=⎰⎰∑dzdx y 4202222222)()(a d a d dxdy y x a dxdy z aD xyπρρρθπ=-=--=⎰⎰⎰⎰⎰⎰∑故⎰⎰∑++dxdy z dzdx y dydz x 222=42a π.5.计算⎰⎰∑++zdxdy ydzdx xdydz ,其中∑是柱面122=+y x 被0=z 及3=z 所截得的在第一卦限内的部分的前侧. 解⎰⎰∑=0zdxdy⎰⎰⎰⎰⎰⎰-=-=∑1032211dz y dy dydz y xdydz yzDπθθθθππ43)2cos 1(23cos 32022=+==⎰⎰d d同理:π43=⎰⎰∑ydzdx 故⎰⎰∑++zdxdy ydzdx xdydz =π23. 6.设∑为平面x z a +=在柱面222x y a +=内那一部分的上侧,下面两个积分的解法是否正确?如果不对,给出正确解法. (1)3()()x z dS a dS a a ∑∑+==⨯∑=⎰⎰⎰⎰的面积; (2)3()()x z dxdy a dxdy a a ∑∑+==⨯∑=⎰⎰⎰⎰的面积. 解 (1)正确;(2)错误.正确解法是:()x z dxdy a dxdy ∑∑+=⎰⎰⎰⎰=3adxdy a xyD π=⎰⎰.(六) 高斯公式利用高斯公式计算: 1.计算⎰⎰∑++dxdy z dzdx y dydz x 333,其中∑为球面2222a z y x=++的内侧.解 2223()I x y z dv Ω=-++⎰⎰⎰2403sin Rd d r dr ππθϕϕ=-⎰⎰⎰5125R π=- 2.计算⎰⎰∑++zdxdy ydzdx xdydz ,其中∑是曲面22y x z +=在第一卦限中10≤≤z 部分的下侧.解 补充曲面:)0,0,1(,1:221≥≥≤+=∑y x y x z ,取上侧; )1,10(,0:22≤≤≤≤=∑z x x y ,取左侧;)1,10(,0:23≤≤≤≤=∑z y y x ,取后侧.∑,1∑,2∑和3∑构成闭曲面,所围的空间闭区域记为Ω,由高斯公式,得⎰⎰∑++zdxdy ydzdx xdydz =⎰⎰⎰⎰⎰⎰⎰⎰∑∑∑∑+∑+∑+∑---++321zdxdy ydzdx xdydz=003+++⎰⎰⎰⎰⎰⎰⎰ΩzxxyD D dzdx dxdy dv=ππρρθρπ=+⎰⎰⎰43110202dz d d .3.计算⎰⎰∑+++-dxdy xz y dzdx x dydz z x y )()(22,∑为正方体Ω的表面并取外侧,其中 {(,,)|0,0,0}x y z x a y a z a Ω=≤≤≤≤≤≤.解 ()I y x dv Ω=+⎰⎰⎰=400)(a dz y x dy dx aaa=+⎰⎰⎰ 4.计算⎰⎰∑++dS z y x )cos cos cos (222γβα,其中∑是由222z y x =+及)0(>=h h z 所围成的闭曲面的外侧,γβαcos ,cos ,cos 是此曲面的外法线的方向余弦. 解 2()2()2I x y z d x d y d z x y d x d y d z z d x d y d zΩΩΩ=++=++⎰⎰⎰⎰⎰⎰⎰⎰⎰=2220()xyxyh D D dxdy zdz h x y dxdy +=--⎰⎰⎰⎰=412h π.(七) 斯托克斯公式1.计算⎰-+-++Ldz z y dy z x dx z y )()()2(,其中L 为平面1=++z y x 与各坐标面的交线,取逆时针方向为正向. 解 由斯托克斯公式,得⎰-+-++Ldz z y dy z x dx z y )()()2(=()()()R Q P R Q P dydz dzdx dxdy y z z x x y∑∂∂∂∂∂∂-+-+-∂∂∂∂∂∂⎰⎰ =⎰⎰∑-+dxdy dzdx dydz 2=⎰⎰⎰⎰⎰⎰-+=xyzxyzD D D dxdy dzdx dydz 2=1. 2.计算⎰-+-+-Ldz x y dy z x dx y z )()()(,其中L 是从)0,0,(a 经)0,,0(a 和),0,0(a 回到)0,0,(a 的三角形.解 由斯托克斯公式,得⎰-+-+-Ldz x y dy z x dx y z )()()(=()()()R Q P R Q P dydz dzdx dxdy y z z x x y∑∂∂∂∂∂∂-+-+-∂∂∂∂∂∂⎰⎰ =2242222a dxdy dxdy dydz dxdy dydz xyxyyzD D D ==+=+⎰⎰⎰⎰⎰⎰⎰⎰∑. (八) 曲线积分与曲面积分自测题1.计算曲线积分 (1)ds y x L⎰+22,其中L 为圆周ax y x =+22;解 :cos (-)22L r a ππθθ=≤≤)d s d d a θθθ==cos r a θ==ds y x L⎰+22=222cos 2a ad a ππθθ-=⎰.(2)⎰Lzds ,其中Γ为曲线)0(,sin ,cos 0t t t z t t y t t x ≤≤===;解d s t d t=⎰L z d s=03220(2)3t t +-=⎰.(3)⎰+-Lxdy dx y a )2(,其中L 为摆线)cos 1(),sin (t a y t t a x -=-=上对应t 从0到π2的一段弧;解⎰+-Lx d yd x y a )2(=20{[(2(1cos ))](1cos )(sin )sin }a a t a t a t t a t dt π---+-⎰ =222sin 2at tdt a ππ=-⎰. (4)⎰Γ-+-dz x yzdy dx z y 2222)(,其中Γ是曲线32,,t z t y t x ===上由01=t 到12=t 的一段弧;解⎰Γ-+-d z x y z d y d x z y 2222)(=1462322[()1223]t t t t t t t dt -+-⎰=1641(3)35t t dt -=⎰(5)⎰-+-Lx x dyy e dx y y e )2cos ()2sin (,其中L为上半圆周0,)(222≥=+-y a y a x 沿逆时针方向;解 补充积分路径1:0L y =,x 从0到2a. sin 2,cos 2xxP e y y Q e yy =-=-11(s i n 2)(c o s 2)xx LL L L ey y dx e y dy +-+-=-⎰⎰⎰=220()(sin 020)0ax D Q Pdxdy e dx a x y π∂∂---+=∂∂⎰⎰⎰2.计算曲面积分 (1)⎰⎰∑++222z y x dS ,其中∑是介于平面0=z 及H z =之间的圆柱面222R y x =+; 解x =dS ==⎰⎰∑++222z y x dS=12∑∑+⎰⎰⎰⎰=22yzD R y-+222yzD dydz R y-=22221yzD R z R y=+-⎰⎰=2arctanH R π. (2) ⎰⎰∑-+-+-dxdy y x dzdx x z dydz z y )()()(222,其中∑为锥面)0(22h z y x z ≤≤+=的外侧;解 11I ∑+∑∑=-⎰⎰⎰⎰=()P Q R dxdydz x y z Ω∂∂∂++∂∂∂⎰⎰⎰2()xyD x y dxdy --⎰⎰ =44044h h ππ-=-.(3)⎰⎰∑++zdxdy ydzdx xdydz ,其中∑为半球面22y x R z --=的上侧; 解11I ∑+∑∑=-⎰⎰⎰⎰=()P Q Rdxdydz x y z Ω∂∂∂++∂∂∂⎰⎰⎰0xyD dxdy -⎰⎰ =3302dv R πΩ-=⎰⎰⎰.(4)⎰⎰∑++++3222)(z y x zdxdyydzdx xdydz ,其中∑为曲面)0(9)1(16)2(5122≥-+-=-z y x z 的上侧;解 0I = (利用高斯公式) (5) ⎰⎰∑xyzdxdy ,其中∑为球面)0,0(1222≥≥=++y x z y x 外侧.解⎰⎰∑xyzdxdy =12xyzdxdy xyzdxdy ∑∑+⎰⎰⎰⎰=122022cos sin 1xyD d r r r rdr πθθθ=-⎰⎰⎰⎰=215. 3.证明:22y x ydyxdx ++在整个xoy 平面除去y 的负半轴及原点的区域G 内是某个二元函数的全微分,并求出一个这样的二元函数.解 在整个xoy 平面除去y 的负半轴及原点的区域G 是单连通域.在G 内,222()Q xy Px x y y ∂-∂==∂+∂, 所以存在(,)u x y ,使22xdx ydydu x y+=+.取积分路径:(1,0)(,0)(,)x x y →→(,)22222(1,0)10(,)x y yx xdx ydy x y u x y dx dy x y x x y +==+++⎰⎰⎰=221ln()2x y +.4.计算⎰Γ-+-++dz x y dy z x dx z y )()()2(,其中Γ为平面1=++z y x 与各坐标面的交线,从z 轴正向看取逆时针方向.解 由斯托克斯公式,得⎰-+-++Ldz z y dy z x dx z y )()()2(=()()()R Q P R Q P dydz dzdx dxdy y z z x x y∑∂∂∂∂∂∂-+-+-∂∂∂∂∂∂⎰⎰ =⎰⎰∑-+dxdy dzdx dydz 2=⎰⎰⎰⎰⎰⎰-+=xyzxyzD D D dxdy dzdx dydz 2=1.5.求均匀曲面222y x a z --=的质心的坐标.解 设面密度为ρ,重心(,,)x y z 由对称性:0x y ==2200xyaD M dS πρρ∑===⎰⎰⎰⎰⎰=22a πρ 2222112xyD z zdS M a a x ρπ∑==--⎰⎰=2a 故重心的坐标为(0,0,)2a .。

新1第十一章曲线积分与曲面积分习题答案

新1第十一章曲线积分与曲面积分习题答案

25第十一章 曲线积分与曲面积分第一节 对弧长的曲线积分1. 选择题:(1) 对弧长的曲线积分的计算公式⎰Lds y x f ),(=⎰'+'βαφϕφϕdt t t t t f )()()](),([22中要求 (C ) .(A ) α>β (B ) α=β (C ) α<β(2) 设光滑曲线L 的弧长为π,则⎰Lds 6= (B ) . (A ) π ( B ) π6 (C ) π122.计算下列对弧长的曲线积分: (1)⎰+Lds y x )(,其中L 为I ) 以)1,1(),0,1()0,0(B A O ,为顶点的三角形的边界; II )上半圆周222R y x =+;解:I )111()()()()(1)13222LOAABBOx y ds x y ds x y ds x y dsxdx y dy +=+++++=+++=++=⎰⎰⎰⎰⎰⎰⎰II )22()(cos sin [sin cos ]2Lx y ds R t R t R t t R ππ+=+=-=⎰⎰(2)⎰Lyds ,其中L 为x y 22=上点)2,2(与点)2,1(-之间的一段弧;解:2223/211[(1)]33Lyds y ===+=⎰⎰⎰26*(3) ⎰Γ+ds y x )(22,其中Γ为螺旋线bt z t a y t a x ===,sin ,cos ;)20(π≤≤t解:1/222222222220()(sin cos )2x y ds a a t a t b dta a πππΓ+=++==⎰⎰⎰*(4)⎰+L ds y x 22,其中L 为y y x 222-=+;解:L 的极坐标方程为2sin r θ=-,2πθπ≤≤,则ds θ=。

222224sin 8Lrd d ππππππππθθθθθ====-=⎰⎰⎰⎰第二节 对坐标的曲线积分1.填空题(1) 对坐标的曲线积分的计算公式⎰+Ldy y x Q dx y x P ),(),(=⎰'+'βαφφϕϕφϕdt t t t Q t t t P )}()](),([)()](),([{中,下限α对应于L 的 始 点,上限β对应于L 的 终 点; (2) 第二类曲线积分⎰+Ldy y x Q dx y x P ),(),(化为第一类曲线积分是[(,)cos (,)cos ]LP x y dx Q x y ds αβ+⎰ ,其中βα,为有向光滑曲线L 在点),(y x 处的 切向量 的方向角.2.选择题:(1) 对坐标的曲线积分与曲线的方向 (B )(A )无关, (B )有关;(2) 若),(y x P ,),(y x Q 在有向光滑曲线L 上连续,则 (A ) (A ) ⎰-+L dy y x Q dx y x P ),(),(=⎰+-L dy y x Q dx y x P ),(),(,(B )⎰-+L dy y x Q dx y x P ),(),(=⎰+Ldy y x Q dx y x P ),(),(.273.计算下列对坐标的曲线积分:(1)⎰+Ldx y x )(22,其中L 为从点)0,0(A 经上半圆周1)1(22=+-y x(0)y ≥到点)1,1(B 的一段弧;解:L的方程为221(1)y x =--,:01x →,则112222()[1(1)]21Lx y dx x x xdx +=+--==⎰⎰⎰ (2) ⎰-Lydx xdy ,其中L 为2x y =上从点)1,1(B 到点)1,1(-A 的一段弧;解:112211223Lxdy ydx x xdx x dx x dx ---=-==-⎰⎰⎰。

第十一章 曲线积分与曲面积分(整理解答)

第十一章 曲线积分与曲面积分(整理解答)

第十一章 曲线积分与曲面积分一、 第一类、第二类曲线积分的计算,格林公式 11.6⎰Lxds =( ),其中L 是连接(1,0)及(0,1)的直线段A.21 B. 22 C. 22 D. 2 解:如图所示,L 所在直线方程参数为 1,,01y x x x x =-=≤≤,1102Lxds x x ===⎰⎰⎰所以,选B 。

11.9ds y xL)(22+⎰=( ),其中L 是圆周)20(sin ,cos π≤≤==t t y t xA.π4B.2πC.π2D.π解:2222220()(cos sin )2Lx y ds t t dt πππ+=+==⎰⎰⎰所以,选C 。

11.14 下列为第一类曲线积分的是( ); A .⎰Γs z y x f d ),,(,其中Γ为3R 中的光滑曲线 B .⎰Γx z y x f d ),,(,其中Γ为3R 中的光滑曲线 C .⎰Γy z y x f d ),,(,其中Γ为3R中的光滑曲线 D .⎰Γz z y x f d ),,(,其中Γ为3R中的光滑曲线解:由第一类曲线积分的表示,选A 。

11.18 L 为曲线t y t x sin ,cos ==上0=t 到π=t 的一段弧,则=+⎰Ls y x d )( ( );A. 1-B. 0C. 1D. 2解:()(cos sin )(cos sin )2Lx y ds t t t t dt ππ+=+=+=⎰⎰⎰所以,选D 。

11.21 L 为曲线212y x =上0x =到1x =的一段弧,则d Lx s =⎰ ( ); A.11)3 B .C.21)3 D .解:31121200011d (1)|1)33Lx s x x x ===+=⎰⎰⎰所以,选A 。

11.25 设L 是圆周222x y a +=在第一象限内的弧段,则Ls =⎰( ).(A)ae π; (B)2a π; (C)2a ae π; (D)2a e π.解:L 的参数方程为:cos ,sin ,02x a t y a t t π==≤≤,所以,202a Ls e ae ππ==⎰⎰所以,选C 。

南华大学第十一章 曲线积分与曲面积答案

南华大学第十一章 曲线积分与曲面积答案
L
的方向角. 二.选择题:
1.对坐标的曲线积分与曲线的方向(2) (1)无关, (2)有关; 2.若 P ( x, y ) , Q( x, y ) 在有向光滑曲线 L 上连续,则(1) (1) (2)
∫ ∫
L−
P ( x, y )dx + Q( x, y )dy = − ∫ P( x, y )dx + Q( x, y )dy ,
2. 设光滑曲线 L 的弧长为 π ,则 6ds = (2)
L

(1) π , (2) 6π , (3) 12π . 二.计算下列对弧长的曲线积分: 1. ( x + y ) ds ,其中 L 为
L

(1) 以 O(0,0),A(1,0), B(1,1) 为顶点的三角形的边界; (2) 上半圆周 x + y = R ;
L
L−
P ( x, y )dx + Q( x, y )dy =
2
∫ P( x, y)dx + Q( x, y)dy .
L
2 2
三.计算下列对坐标的曲线积分: 1. ( x + y )dx , 其中 L 为从点 A(0,0) 经上半圆周 ( x − 1) + y = 1 ( y > 0) 到点 B(1,1) 的
8 2 (1 − cos t ) 2 + 8 2 sin 2 t = 16 sin
设质心坐标为 ( x, y ) ,则
x=
1 M

π
0
ρ ⋅ 8(t − sin t ) ⋅ 16 sin dt =
t 2
32 1 ,y= 3 M

π
0
ρ ⋅ 8(1 − cos t ) ⋅ 16 sin dt =

曲线积分与曲面积分习题答案.pdf

曲线积分与曲面积分习题答案.pdf
(1) (2x y 2z) dS,其中 为平面 x y z 1在第一卦限的部分;
解: Dxy {( x, y) | x y 1, x 0, y 0} , z 1 x y , dS 3dxdy
原式 = (2 x y 2(1 x y)) 3dxdy
D xy
13 3(
x
1 x2)dx
53
02
2
6
1
1x
3 dx (2 y) dy
1.利用斯托克斯公式计算下列曲线积分:
(1) x 2 y3dx dy zdz , 为 xOy 面内圆周 x2 y 2 a 2 逆时针方向;
解:取 为平面 z 0的下侧被 围成的部分, D 为 在 xOy 面上的投影
区域。 由 Stokes 公式,得
dydz dzdx dxdy
原式 =
x
y
z
x2 y3 1
x 2 ydx xy2 dy ,其中 L 为 x2 y 2 6x 的上半圆周从点 A(6,0)
L
到点 O (0,0) 及 x 2 y 2 3x 的上半圆周从点 O(0,0) 到点 B(3,0) 连成的弧
AOB;
uuur 解:连直线段 AB,使 L 与 BA 围成的区域为 D,由 Green 公式,得
第十一章 曲线积分与曲面积分
第三节 Green 公式及其应用
1.利用 Green 公式,计算下列曲线积分:
(1) xy 2dy x2 ydx ,其中 L 为正向圆周 x2 y 2 9 ;
L
解:由 Green 公式,得
?xy2dy x2 ydx
L
(x2
y2 )dxdy
2
2d
0
D
3 r 3dr

高数答案第11章

高数答案第11章

第十一章 曲线积分与曲面积分 (09级下学期用) § 1 对弧长的曲线积分 1设 L 关于x 轴对称,1L 表示L 在x 轴上侧的部分,当()y x f ,关于y 是偶函数时,()=⎰Lds y x f ,( B )()⎰1,L ds y x f C 。

()⎰-1,2L ds y x f D.ABC 都不对2、设L 是以点()()()()1,0,0,1,1,0,0,1--D C B A 为顶点的正方形边界,则⎰+Lyx ds =( C )A 。

24 D 。

223、有物质沿曲线L :()103,2,32≤≤===t t z t y t x 分布,其线密度为,2y =μ,则它的质量=m ( A )++1421dt t t t B 。

⎰++104221dt t t tC 。

⎰++1421dt t t D.⎰++1421dt t t t4.求,⎰Lxds 其中L 为由2,x y x y ==所围区域的整个边界解:,⎰Lxds =()22155121241111+-=++⎰⎰xdx dy yy 5.,ds y L⎰其中L 为双纽线)0)(()(222222>-=+a y x a y x解:原积分=()()222sin 4sin 442022'2441-==+=⎰⎰⎰a d ad r r r ds y L χππθθθθθ6.⎰+Lds y x ,22 其中L 为()022>=+a axy x原积分222cos 2a adt t a ==⎰π7.,2⎰Lds x 其中L 为球面2222a z y x =++与平面0=-y x 的交线解:将y x =代入方程2222a z y x =++得2222a z x =+于是L 的参数方程:ta z t a y t a x sin ,sin 2,cos 2===,又adt ds =原积分=⎰=ππ203222cos 2a adt t a 8、求均匀弧()0,sin ,cos ≤<∞-===t e z t e y t e x t t t 的重心坐标33,30===⎰∞-dt e M dt e ds tt,523cos 100==⎰∞-dt e t e Mx t t ,21,5100=-=z y§2 对坐标的曲线积分 一、选择题1。

高数期末复习题 第十一章 曲线积分与曲面积分

高数期末复习题  第十一章  曲线积分与曲面积分

第十一章 曲线积分与曲面积分试题一.填空题(规范分值3分)11.1.1.2 设在xoy 平面内有一分布着质量的曲线L ,在点(x,y)处它的线密度为μ(x,y),用第一类曲线积分表示这曲线弧对x 轴的转动惯量I x =。

ds y x y L),(2μ⎰11.1.2.2 设在xoy 平面内有一分布着质量的曲线L ,在点(x,y)处它的线密度为μ(x,y),用第一类曲线积分表示这曲线弧的质心坐标x =;y =。

x =⎰⎰LLds y x ds y x x ),(),(μμ;y =⎰⎰LLdsy x ds y x y ),(),(μμ 11.1.3.1在力),,(z y x F F =的作用下,物体沿曲线L 运动。

用曲线积分表示力对物体所做的功=W 。

d z y x L⋅⎰),,(11.1.4.2 有向曲线L 的方程为⎩⎨⎧≤≤==βαt t y y t x x )()(,其中函数)(),(t y t x 在[]βα,上一阶导数连续,且[][]0)()(22≠'+'t y t x ,又),(),,(y x Q y x P 在曲线L 上连续,则有:[]ds y x Q y x P dy y x Q dx y x P LL⎰⎰+=+βαcos ),(cos ),(),(),(,那么αcos =;βcos =。

αcos =[][]22)()()(t y t x t x '+''βcos =[][]22)()()(t y t x t y '+''11.1.5.1 设L 为xoy 平面内直线a x =上的一段,则曲线积分⎰Ldx y x P ),(=。

011.1.6.2 设L 为xoy 平面内,从点(c,a )到点(c,b )的一线段,则曲线积分⎰+Ldy y x Q dx y x P ),(),(可以化简成定积分:。

dy y Q ba),0(⎰11.1.7.2 第一类曲线积分ds y x L⎰+)(22的积分值为。

曲线积分与曲面积分知识题目解析

曲线积分与曲面积分知识题目解析

第十一章 曲线积分与曲面积分第三节 Green 公式及其应用1.利用Green 公式,计算下列曲线积分: (1)⎰-Lydx x dy xy22,其中L 为正向圆周922=+y x ;解:由Green 公式,得2322223081()22LDxy dy x ydx x y dxdy d r dr ππθ-=+==⎰⎰⎰⎰⎰, 其中D 为229x y +≤。

(2)⎰-++Ly y dy y xe dx y e )2()(,其中L 为以)2,1(),0,0(A O 及)0,1(B 为顶点的三角形负向边界; 解:由Green 公式,得()(2)(1)1yy y y LDDey dx xe y dy e e dxdy dxdy ++-=---==⎰⎰⎰⎰⎰。

*(3)⎰+-Ldy xy ydx x 22,其中L 为x y x 622=+的上半圆周从点)0,6(A 到点)0,0(O 及x y x 322=+的上半圆周从点)0,0(O 到点)0,3(B 连成的弧AOB ;解:连直线段AB ,使L 与BA 围成的区域为D ,由Green 公式,得6cos 222222323cos 444620()01515353cos 334442264LDBAxydx xy dy y x dxdy xydx xy dy d r dr d πθθπθπθθπ-+=+--+=-==⨯⨯⨯=⨯⨯⎰⎰⎰⎰⎰⎰⎰*(4)⎰+-Lyx xdy ydx 22,其中L 为正向圆周4)1(22=++y x . 解:因为22222()x y P Q y x x y -∂∂==∂∂+,(,)(0,0)x y ≠。

作足够小的圆周l :222x y r +=,取逆时针方向,记L 与l 围成的闭区域为D ,由Green 公式,得220L lydx xdyx y+-=+⎰,故 22222222222sin cos 2Lllydx xdy ydx xdyydx xdyx y x y r r r d r πθθθπ---+=-=++--==-⎰⎰⎰⎰2.计算下列对坐标的曲线积分:⎰+-Lx xydy e dx y esin 2)cos 21(,其中L 为曲线x y sin =上由点)0,(πA 到点)0,0(O 的一段弧;解:(12cos ),2sin xxP e y Q e y =-=,2sin x P Q e y y x∂∂==∂∂, 故积分与路径无关,取)0,(πA 经x 轴到点)0,0(O 的一条路径, 从而 原式=(12cos )2sin 1x x x AOe y dx e ydy e dx e ππ-+=-=-⎰⎰。

曲线曲面积分练习答案

曲线曲面积分练习答案

面 Σ 外侧的积分 ∫∫ (z − y)dxdy + ( y − x)dxdz + (x − z)dzdy = 3V 。 二、选择题 1、 设 是一光滑曲线, 为了使曲线积分 ∫ yF ( x, y )dx + xF ( x, y )dy
L
A、 ∫ C、 ∫

0 2π
dθ ∫ dθ ∫
ρ
0 2
1 + 4 ρ 2 ⋅ ρ d ρ B、 ∫
Σ1
=4
∫∫ dxdy − 3 ∫∫ (x
D xy D xy
2
5 + y 2 )dxdy = 4π − 3 ∫ dθ∫ ρ2ρdρ = π 2 0 0
2 3 2 2

1
= =
∫∫∫ ( ∂x + ∂y + ∂z )dxdydz + ∫∫ (x

∂P
∂Q
∂R
2
+ y 2 )dxdy
D xy
11、 (x + y + z)dydz + (x + y + z)dzdx − z(x + y )dxdy ,
2
2 π 8π = 3 3
记 P= x + y + z ,
3 2
Q= x + y + z ,
2 3
R= − z(x + y )
2 2

∂P ∂Q ∂R + + = 2(x 2 + y 2 ) ∂x ∂y ∂z
10、
∫∫ (1 + 3z
Σ
)dxdy ,Σ为上半球面 z = 1 − x 2 − y 2 的上侧。

中北大学高数习题 第十一章-2答案

中北大学高数习题 第十一章-2答案

a
o
a
a
y

2 3 2 ( cos ) |0
1 5
r |0
5 a
x

6 5
a
5
机动
目录
上页
下页
返回
结束
2. 计算曲面积分 其中为曲线
ze
x0
y
(0 y a )绕
z 轴旋转而成的曲面的下侧.
a
解: 依题意画图.补一平面 1 : z e
原式=

( x y a ) 取其上侧.
0 0 0 a b c
z
c
o
a
b
y
2 dx [( x y ) z
0 0
a
b
1
x
a b
0 0 2 2 a a 1 2 1 2 1 2 1 2 b 2 [cxy c y c y ] |0 dx 2 [cbx cb c b]dx 0 0 2 2 2 2
z ] |0 dy 2 dx [( x y )c
1 2
Dyz 2 2 2 R y z dydz D R y z dydz
2 2 2
yz

3 2 1 2 3 2 2 2 R 2 2 2 ( ) ( R r ) |0 R 2 d R r rdr 0 0 3 2 3 2 3 ydzdx R .为计算 zdxdy, 类似可得: 3
z

解: 依题意画图.其中: : z x y 取上侧.
2 2 1
2 : z 1
1
取下侧.

2
3
1
2
3 : x y 4

最新11第十一章曲线积分与曲面积分习题答案

最新11第十一章曲线积分与曲面积分习题答案

11第十一章曲线积分与曲面积分习题答案第十一章曲线积分与曲面积分第三节 Green公式及其应用1.利用Green公式,计算下列曲线积分:(1) «Skip Record If...»,其中«Skip Record If...»为正向圆周«Skip Record If...»;解:由Green公式,得«Skip Record If...»,其中«Skip Record If...»为«Skip Record If...»。

(2) «Skip Record If...»,其中«Skip Record If...»为以«Skip Record If...»及«Skip Record If...»为顶点的三角形负向边界;解:由Green公式,得«Skip Record If...»。

*(3) «Skip Record If...»,其中«Skip Record If...»为«Skip Record If...»的上半圆周从点«Skip Record If...»到点«Skip Record If...»及«Skip Record If...»的上半圆周从点«Skip Record If...»到点«Skip Record If...»连成的弧«Skip Record If...»;解:连直线段AB,使L与«Skip Record If...»围成的区域为D,由Green公式,得«Skip Record If...»*(4) «Skip Record If...»,其中«Skip Record If...»为正向圆周«Skip Record If...».解:因为«Skip Record If...»,«Skip Record If...»。

第十一章 曲线积分与曲面积分经典例题

第十一章 曲线积分与曲面积分经典例题

第十一章 曲线积分与曲面积分内容要点一、引例 设有一曲线形构件所占的位置是xOy 面内的一段曲线L (图10-1-1),它的质量分布不均匀,其线密度为),(y x ρ,试求该构件的质量. 二、第一类曲线积分的定义与性质性质1 设α,β为常数,则⎰⎰⎰+=+L L L ds y x g ds y x f ds y x g y x f ),(),()],(),([βαβα;性质2设L 由1L 和2L 两段光滑曲线组成(记为=L 21L L +),则.),(),(),(2121⎰⎰⎰+=+L L LL ds y x f ds y x f ds y x f注: 若曲线L 可分成有限段,而且每一段都是光滑的,我们就称L 是分段光滑的,在以后的讨论中总假定L 是光滑的或分段光滑的.性质3 设在L 有),(),(y x g y x f ≤,则ds y x g ds y x f LL⎰⎰≤),(),(性质4(中值定理)设函数),(y x f 在光滑曲线L 上连续,则在L 上必存在一点),(ηξ,使s f ds y x f L⋅=⎰),(),(ηξ其中s 是曲线L 的长度.三、第一类曲线积分的计算:)(),(),(βα≤≤⎩⎨⎧==t t y y t x xdt t y t x t y t x f ds y x f L)()(])(),([),(22'+'=⎰⎰βα(1.10)如果曲线L 的方程为 b x a x y y ≤≤=),(,则dx x y x y x f ds y x f ba L )(1])(,[),(2'+=⎰⎰ (1.11)如果曲线L 的方程为 d y c y x x ≤≤=),(,则dy y x y y x f ds y x f dcL )(1]),([),(2'+=⎰⎰ (1.12)如果曲线L 的方程为 βθαθ≤≤=),(r r ,则θθθθθβαd r r r r f ds y x f L)()()sin ,cos (),(22'+=⎰⎰例5(E03)计算,||⎰Lds y 其中L 为双纽线(图10-1-4))()(222222y x a y x -=+的弧.解 双纽线的极坐标方程为 .2cos 22θa r =用隐函数求导得 ,2sin ,2sin 22ra r a r r θθ-='-='.2sin 2224222θθθθd r a d ra r d r r ds =+='+= 所以 .)22(2sin 4sin 4||2402402a d a d ra r ds y L -==⋅=⎰⎰⎰ππθθθθ 内容要点一、引例:设有一质点在xOy 面内从点A 沿光滑曲线弧L 移动到点B ,在移动过程中,这质点受到力j y x Q i y x P y x F ρρρ),(),(),(+= (2.1)的作用,其中),(y x P ,),(y x Q 在L 上连续. 试计算在上述移动过程中变力),(y x F ρ所作的功. 二、 第二类曲线积分的定义与性质:j y x Q i y x P y x A ρρϖ),(),(),(+=⎰⎰+=⋅LLds Q P ds t A )cos cos (βαϖϖ平面上的第二类曲线积分在实际应用中常出现的形式是⎰+L dy y x Q dx y x P ),(),(⎰⎰+=L L dy y x Q dx y x P ),(),(性质1 设L 是有向曲线弧, L -是与L 方向相反的有向曲线弧,则⎰⎰+-=+-L L dy y x Q dx y x P dy y x Q dx y x P ),(),(),(),(;即第二类曲线积分与积分弧段的方向有关.性质2 如设L 由1L 和2L 两段光滑曲线组成,则⎰⎰⎰+++=+21L L L Qdy Pdx Qdy Pdx Qdy Pdx .三、第二类曲线积分的计算:),(t x x = ),(t y y =⎰+L dy y x Q dx y x P ),(),(⎰'+'=βαdt t y t y t x Q t x t y t x P )}()](),([)()](),([{. (2.9)如果曲线L 的方程为 ),(x y y =起点为a , 终点为b ,则.)}()](,[)](,[{⎰⎰'+=+ba L dx x y x y x Q x y x P Qdy Pdx如果曲线L 的方程为),(y x x = 起点为c , 终点为d ,则.]}),([)(]),([{⎰⎰+'=+dcLdy y y x Q y x y y x P Qdy Pdx内容要点一、格林公式定理1 设闭区域D 由分段光滑的曲线L 围成,函数),(y x P 及),(y x Q 在D 上具有一阶连续偏导数,则有⎰⎰⎰+=⎪⎪⎭⎫ ⎝⎛∂∂-∂∂L D Qdy Pdx dxdy y P x Q (3.1)其中L 是D 的取正向的边界曲线.若在格林公式(3.1)中,令,,x Q y P =-= 得⎰⎰⎰-=LDydx xdy dxdy 2,上式左端是闭区域D 的面积A 的两倍,因此有 .21⎰-=Lydx xdy A 二、平面曲线积分与路径无关的定义与条件定理2 设开区域D 是一个单连通域,函数),(y x P 及),(y x Q 在D 内具有一阶连续偏导数,则下列命题等价:(1) 曲线积分⎰+LQdy Pdx 在D 内与路径无关;(2)表达式Qdy Pdx +为某二元函数),(y x u 的全微分; (3)xQy P ∂∂=∂∂在D 内恒成立; (4)对D 内任一闭曲线L ,0=+⎰LQdy Pdx .由定理的证明过程可见,若函数),(y x P ,),(y x Q 满足定理的条件,则二元函数⎰+=),(),(00),(),(),(y x y x dy y x Q dx y x P y x u (3.3)满足 dy y x Q dx y x P y x du ),(),(),(+=, 我们称),(y x u 为表达式dy y x Q dx y x P ),(),(+的原函数.C dy y x P dx y x P y x u yy xx ++=⎰⎰00),(),(),(0或 C dy y x P dx y x P y x u yy xx ++=⎰⎰0),(),(),(0例4 计算,2dxdy e Dy ⎰⎰- 其中D 是以)1,0(),1,1(),0,0(B A O 为顶点的三角形闭区域.解 令,0=P ,2y xe Q -=则 yPx Q ∂∂-∂∂.2y e -= 应用格林公式,得dxdy e Dy ⎰⎰-2⎰++-=BOAB OA y dy xe 2⎰-=OAdy xe y 2⎰-=102dx xe x ).1(211--=e 例5(E03)计算,22⎰+-L y x ydx xdy 其中L 为一条无重点)1(, 分段光滑且不经过原点的连续闭曲线, L 的方向为逆时针方向.解 记L 所围成的闭区域为,D 令,22y x y P +-=,22yx xQ += 则当022≠+y x 时,有 x Q∂∂22222)(y x x y +-=.y P ∂∂=(1) 当D ∉)0,0(时,由格林公式知;022=+-⎰L y x ydxxdy(2) 当D ∈)0,0(时,作位于D 内圆周,:222r y x l =+记1D 由L 和l 所围成,应用格林公式,得⎰⎰=+--+-L l y x ydxxdy y x ydx xdy .02222故⎰+-L y x ydx xdy 22⎰+-=l y x ydxxdy 22⎰+=πθθθ2022222sin cos d rr r ⎰=πθ20d .2π=例6(E04)求椭圆θcos a x =,θsin b y =所围成图形的面积A . 解 所求面积A ⎰-=L ydx xdy 21⎰+=πθθθ2022)sin cos (21d ab ab ⎰=πθ2021d ab.ab π=例7 计算抛物线)0()(2>=+a ax y x 与x 轴所围成的面积. 解 ONA 为直线.0=y 曲线AMO 为 ,x ax y -=].,0[a x ∈ ∴A ⎰-=AMOydx xdy 21⎰⎰-+-=AMOONAydx xdy ydx xdy 2121⎰-=AMOydx xdy 21⎰--⎪⎪⎭⎫⎝⎛-=)(1221a dx x ax dx ax a x ⎰=adx x a4.612a =例10(E06)计算,)8,6()0,1(22⎰++yx ydy xdx 积分沿不通过坐标原点的路径.解 显然,当)0,0(),(≠y x 时, 22y x ydy xdx ++,22y x d +=于是⎰++)8,6()0,1(22yx ydy xdx ⎰+=)8,6()0,1(22y x d )8,6()0,1(22y x +=.9=例 12 验证: 在整个xOy 面内, ydy x dx xy 22+是某个函数的全微分, 并求出一个这样 的函数.证2 利用原函数法求全微分函数).,(y x u 由2xy y u =∂∂ ),(2222y y x dx xy u ϕ+==⎰其中)(y ϕ是y 的待定函数.由此得).(2y y x yuϕ'+=∂∂ 又u 必须满足 y x yu2=∂∂ y x y y x 22)('=+ϕ 0)('=y ϕ ,)(C y =ϕ 所求函数为.2/22C y x u +=例13(E07)设函数),(y x Q 在xoy 平面上具有一阶连续偏导数, 曲线积分与路径无关, 并且对任意t , 总有,),(2),(2),1()0,0()1,()0,0(⎰⎰+=+t t dy y x Q xydx dy y x Q xydx求).,(y x Q解 由曲线积分与路径无关的条件知,2x xQ=∂∂ 于是),(),(2y C x y x Q +=其中)(y C 为待定函数.dy y x Q xydx t ),(2)1,()0,0(+⎰⎰+=102))((dy y C t ,)(102⎰+=dy y C tdy y x Q xydx t ),(2),1()0,0(+⎰⎰+=tdy y C 0))(1(,)(0⎰+=t dy y C t由题意可知⎰+12)(dy y C t .)(0⎰+=tdy y C t两边对t 求导,得)(12t C t +=或.12)(-=t t C 所以.12),(2-+=y x y x Q例14(E08)设曲线积分⎰+Ldy x y dx xy )(2ϕ与路径无关, 其中ϕ具有连续的导数, 且,0)0(=ϕ计算.)()1,1()0,0(2⎰+dy x y dx xy ϕ解 ),(y x P ,2xy =),(y x Q ),(x y ϕ= y P ∂∂)(2xy y ∂∂=,2xy =x Q ∂∂)]([x y xϕ∂∂=).('x y ϕ= 因积分与路径无关散,xQy P ∂∂=∂∂ 由xy x y 2)('=ϕ .)(2C x x +=ϕ 由,0)0(=ϕ知0=C .)(2x x =ϕ 故⎰+)1,1()0,0(2)(dy x y dx xy ϕ⎰⎰+=1010ydy dx .21= 例15 选取b a ,使表达式dy e y x be dx ae e y x yxyy])1([])1[(++-++++为某一函数的全微分, 并求出这个函数.解 y P ∂∂])1[(y y ae e y x y +++∂∂=,y y ae e +=x Q ∂∂])1([y x e y x be x ++-∂∂=,y x e be -=若表达式全微分式,则,xQy P ∂∂=∂∂即 .y x y x e be ae e -=+得,1-=a .1=b ),(y x u +-+++=⎰xx dx e e x 00])1()10[(⎰+++-yy x C dy e y x e 0])1([C dy e y x e dx e x yy y xx +++-+-+=⎰⎰])1([]1)1[(C ye xe y e x xe yy y x x x +--+-=00][][.))((C e e y x y x +-+=例16(E09)求方程0)3()3(2323=-+-dy y x y dx xy x 的通解. 解 ,6xQxy y P ∂∂=-=∂∂原方程是全微分方程, ⎰⎰+-=yxdy y dx xy x y x u 0323)3(),(,42344224y y x x +-=原方程的通解为.42344224C y y x x =+- 例19求微分方程0)1(222=---+dy y x dx y x x 的通解.解 将题设方程改写为,02222=---+dy y x dx y x x xdx 即,0)()(2222=---+dy y x x d y x x d 将方程左端重新组合,有,0)()(222=--+y x d y x x d故题设方程的通解为 .)(322/322C y x x =-+内容要点一、 第一类曲面积分的概念与性质定义1 设曲面∑是光滑的, 函数),,(z y x f 在∑上有界, 把∑任意分成n 小块i S ∆(i S ∆同时也表示第i 小块曲面的面积),在i S ∆上任取一点),,,(i i i ζηξ作乘积),,2,1(),,(n i S f i i i i Λ=∆⋅ζηξ并作和,),,(1∑=∆⋅ni i i i i S f ζηξ 如果当各小块曲面的直径的最大值0→λ时, 这和式的极限存在,则称此极限值为),,(z y x f 在∑上第一类曲面积分或对面积的曲面积分,记为∑⎰⎰=→∑∆=ni i i i i S f dS z y x f 1),,(lim ),,(ζηξλ 其中),,(z y x f 称为被积函数,∑称为积分曲面. 二、对面积的曲面积分的计算法.),(),(1)],(,,[),,(22⎰⎰⎰⎰++=∑xyD y x dxdy y x z y x z y x z y x f dS z y x f例4计算,dS xyz ⎰⎰∑其中∑为抛物面).10(22≤≤+=z y x z解 根据抛物面22y x z +=对称性,及函数||xyz 关于yOz xOz 、坐标面对称,有dxdy y x y x xy xyzdS dS xyz xy D ⎰⎰⎰⎰⎰⎰'+++=∑=∑2222)2()2(1)(441⎰⎰⎰⎰+=+⋅=20125122220412sin 241sin cos 4ππdr r r tdt rdr r rt t r dt.420151254141512-=⎪⎭⎫ ⎝⎛-=⎰du u u 例 5 计算,⎰⎰∑xdS 其中∑是圆柱面,122=+y x 平面2+=x z 及0=z 所围成的空间立体的表面.解,=⎰⎰⎰⎰⎰⎰⎰⎰∑+∑+∑∑321∑∑12,在xOy 面上得投影域.1:22≤+y x D xy于是⎰⎰⎰⎰∑==1,0xyD xdxdy xdS ⎰⎰⎰⎰∑=+=2,011xyD dxdy xxdS将)1:,(313223∑∑∑-±=x y 投影到zOx 面上,得投影域 .10,11:+≤≤≤≤-x y x D xydxdz y y x xdS xdS xdS zx D z x ⎰⎰⎰⎰⎰⎰⎰⎰++=∑+∑=∑221232313,12112211222π=-=-+=⎰⎰⎰⎰+-x D dz x xdxdz x x x xz所以.00ππ=++=∑⎰⎰xdS例8 设有一颗地球同步轨道卫星, 距地面的高度为36000=h km ,运行的角速度与地球自转的角速度相同. 试计算该通讯卫星的覆盖面积与地球表面积的比值(地球半径6400=R km).解 取地心为坐标原点,地心到通讯卫星重心的连线为z 轴,建立如图坐标系.卫星覆盖的曲面∑是上半球面倍半顶角为α的圆锥面所截得的部分.∑的方程为,222y x R z --=它在xOy 面上的投影区域.sin :2222αR y x D xy ≤+于是通讯卫星的覆盖面积为).cos 1(22απ-=R A将h R R +=αcos 代入上式得 .21222h R h R h R R R A +⋅=⎪⎭⎫ ⎝⎛+-=ππ 由此得这颗通讯卫星的覆盖面积与地球表面积之比为%.5.4242≈RAπ 由以上结果可知,卫星覆盖了全球三分之一以上的面积,故使用三颗相隔32π角度的通讯卫星就可以覆盖几乎地球全部表面.内容要点二、第二类曲面积分的概念与性质定义1 设∑为光滑的有向曲面, 其上任一点),,(z y x 处的单位法向量,cos cos cos k j i n ρρρργβα++= 又设k z y x R j z y x Q i z y x P z y x A ρρρϖ),,(),,(),,(),,(++=其中函数R Q P ,,在∑上有界, 则函数γβαcos cos cos R Q P n v ++=⋅ϖϖ 则∑上的第一类曲面积分⎰⎰∑⋅dS n v ϖϖ.)cos cos cos (⎰⎰∑++=dS R Q P γβα (5.5)称为函数),,(z y x A ϖ在有向曲面∑上的第二类曲面积分.三、第二类曲面积分的计算法设光滑曲面∑:),(y x z z =,与平行于z 轴的直线至多交于一点,它在xOy 面上的投影区域为xy D , 则.⎰⎰⎰⎰±=∑yzD dxdy y x z y x R dxdy z y x R )],(,,[),,(. (5.9)上式右端取“+”号或“-”号要根据γ是锐角还是钝角而定.内容要点一、高斯公式定理1设空间闭区域Ω由分片光滑的闭曲面∑围成,函数),,(z y x P 、),,(z y x Q 、),,(z y x R 在Ω上具有一阶连续偏导数,则有公式⎰⎰⎰⎰⎰∑Ω++=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂Rdxdy Qdzdx Pdydz dv z R y Q x P (6.1)这里∑是Ω的整个边界曲面的外侧, γβαcos ,cos ,cos 是∑上点),,(z y x 处的法向量的方向余弦. (6.1)式称为高斯公式.若曲面∑与平行于坐标轴的直线的交点多余两个,可用光滑曲面将有界闭区域Ω分割成若干个小区域,使得围成每个小区域的闭曲面满足定理的条件,从而高斯公式仍是成立的.此外,根据两类曲面积分之间的关系,高斯公式也可表为.)cos cos cos (⎰⎰⎰⎰⎰∑Ω++=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂dS R Q P dv z R y Q x P γβα二、通量与散度一般地,设有向量场k z y x R j z y x Q i z y x P z y x A ρρρρ),,(),,(),,(),,(++=,其中函数P 、Q 、R 有一阶连续偏导数,∑是场内的一片有向曲面,ορn 是曲面∑的单位法向量. 则沿曲面∑的第二类曲面积分⎰⎰⎰⎰⎰⎰∑∑∑++=⋅=⋅=ΦRdxdy Qdzdx Pdydz S d n A S d A ρρρρρο称为向量场A ρ通过曲面∑流向指定侧的通量. 而zRy Q x P ∂∂+∂∂+∂∂ 称为向量场A ρ的散度,记为A div ϖ,即zRy Q x P A div ∂∂+∂∂+∂∂=ϖ. (6.5)例4(E04)证明: 若∑为包围有界域Ω的光滑曲面, 则⎰⎰⎰⎰⎰⎰⎰⎰Ω∑Ω⎪⎪⎭⎫ ⎝⎛∂∂∂∂+∂∂∂∂+∂∂∂∂-∂∂=∆dV z v z u y v y u x v x u dS n uvudV v其中nu∂∂为函数u 沿曲面∑的外法线方向的方向导数,u ,v 在Ω上具有一阶和二阶连续偏导数,符号222222zy x ∂∂+∂∂+∂∂=∆称为拉普拉斯算子. 这个公式称为格林第一公式.证 因为=∂∂n u γβαcos cos cos z u y u xu∂∂+∂∂+∂∂n u ρ⋅∇=,其中}cos ,cos ,{cos γβα=n ρ是∑在点),,(z y x 处 的外法线的方向余弦,于是⎰⎰⎰⎰⎰⎰∑∑∑⋅∇=⋅∇=∂∂dS n u v dS n u v dS nu v)[()(ρρdS z u v y u v x u v ⎰⎰∑⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=γβαcos cos cos dv z u v z y u v y x u v x ⎰⎰⎰Ω⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎭⎫ ⎝⎛∂∂∂∂=.dv z v z u y v y u x v x u udv v ⎰⎰⎰⎰⎰⎰ΩΩ⎝⎛⎪⎭⎫∂∂∂∂+∂∂∂∂+∂∂∂∂+∆=将上式右端移至左端即得所要证明的等式.例5(E05)求向量场k z j y i x r ρρρρ++=的流量(1) 穿过圆锥)0(222h z z y x ≤≤≤+的底(向上); (2) 穿过此圆锥的侧表面(向外).解 设21,S S 及S 分别为此圆锥的面,侧面及全表面,则穿过全表面向外的流量 Q ⎰⎰+⋅=S S d r ρρ⎰⎰⎰=Vdv r div ρ⎰⎰⎰=Vdv 3.3h π=(1)穿过底面向上的流量 1Q ⎰⎰+⋅=S S d r ρρ⎰⎰=≤+=hz z y x zdxdy 222⎰⎰≤+=222z y x hdxdy .3h π=(2)穿过侧表面向外的流量2Q 1Q Q -=.0=内容要点一、斯托克斯公式定理1 设Γ为分段光滑的空间有向闭曲线,∑是以Γ为边界的分片光滑的有向曲面,Γ的正向与∑的侧符合右手规则,函数),,(),,,(),,,(z y x R z y x Q z y x P 在包含曲面∑在内的一个空间区域内具有一阶连续偏导数, 则有公式dxdy y P x Q dzdx x R z P dydz z Q y R ⎪⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂⎰⎰∑.⎰++=LRdz Qdy Pdx (7.1)公式(7.1)称为斯托克斯公式.为了便于记忆,斯托克斯公式常写成如下形式:⎰⎰⎰Γ∑++=∂∂∂∂∂∂Rdz Qdy Pdx RQ P zy x dxdy dzdx dydz 利用两类曲面积分之间的关系,斯托克斯公式也可写成.cos cos cos ⎰⎰⎰Γ∑++=∂∂∂∂∂∂Rdz Qdy Pdx dS RQPzy x γβα二、空间曲线积分与路径无关的条件三、环流量与旋度 设向量场,),,(),,(),,(),,(k z y x R j z y x Q i z y x P z y x A ρρρρ++= 则沿场A ρ中某一封闭的有向曲线C 上的曲线积分⎰++=ΓCRdz Qdy Pdx称为向量场A ρ沿曲线C 按所取方向的环流量. 而向量函数⎭⎬⎫⎩⎨⎧∂∂-∂∂∂∂-∂∂∂∂-∂∂y P x Q x R z P z Q y R ,,称为向量场A ρ的旋度,记为A rot ρ,即.k y P x Q j x R z P i z Q y R A rot ρρρρ⎪⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=旋度也可以写成如下便于记忆的形式:RQ Pz y x k j i A rot ∂∂∂∂∂∂=ρρρρ.四、向量微分算子:,k zj y i x ρρρ∂∂+∂∂+∂∂=∇ 例 2 计算曲线积分,)()()(222222dz y x dy x z dx z y -+-+-⎰Γ其中Γ是平面2/3=++z y x 截立方体:,10≤≤x ,10≤≤y 10≤≤z 的表面所得的接痕,从x 轴的正向看法,取逆时针方向.解 取∑为题设平面的上侧被Γ所围成部分,则该平面的法向量,3}3,1,1{=n ρ即,31cos cos cos ===λβα原式dS y x x y z y z y x z⎰⎰∑---∂∂∂∂∂∂=222222313131⎰⎰∑++-=dS z y x )(34.293322334-=-=∑⋅-=⎰⎰⎰⎰xyD dxdy dS 例3(E02)计算,)()()(222222⎰Γ+++++dz y x dy z x dx z y 式中Γ是).0,0(2,222222><<=+=++z R r rx y x Rx z y x此曲线是顺着如下方向前进的: 由它所包围在球面Rx z y x 2222=++上的最小区域保持在左方.解 由斯托克斯公式,有 原式⎰⎰∑-+-+-=dS y x x z z y ]cos )(cos )(cos )[(2γβαdS R z y x R y x z R x z y ⎰⎰∑⎥⎦⎤⎢⎣⎡-+-+⎪⎭⎫ ⎝⎛--=)()(1)( ⎰⎰∑-=dS y z )(2(利用对称性)⎰⎰⎰⎰∑=∑=dS R zdS γcos ..2222R r d R Rdxdy rx y x πσ==∑=⎰⎰⎰⎰≤+ 例5(E03)设,32222yz xy y x u -+= 求grad u ; div(grad u );rot(grad u ). 解 gradu ⎭⎬⎫⎩⎨⎧∂∂∂∂∂∂=z u y u x u ,,}.6,4,2{yz xy xy -=div(gradu)⎭⎬⎫⎩⎨⎧∂-∂+∂∂+∂∂=z yz y xy x xy )6()4()2(y x y 642-+=).(4y x -=rot(gradu).,,222222⎭⎬⎫⎩⎨⎧∂∂∂-∂∂∂∂∂∂-∂∂∂∂∂∂-∂∂∂=x y u y x u z x u x z u y z u z y u 因为22232yz xy y x u -+=有二阶连续导数,故二阶混合偏导数与求导次序无关,故rot(gradu).0=注:一般地,如果u 是一单值函数,我们称向量场A ϖ=grad u 为势量场或保守场,而u 称为场A ϖ的势函数.例6(E04)设一刚体以等角速度k j i z y x ϖϖϖϖωωωω++=绕定轴L 旋转,求刚体内任意一点M 的线速度v ϖ的旋度.解 取定轴l 为z 轴,点M 的内径r ρOM =,k z j y i x ρρρ++=则点M 的线速度v ρr ρρ⨯=ωzyx kji z yx ωωωρρρ=,)()()(k x y j z x i y z y x x z z y ρρρωωωωωω-+-+-=于是v ρrot x y z x y z z y x kj i y x x z z y ωωωωωω---∂∂∂∂∂∂=ρρρ)(2k j i z y x ρρρωωω++=.2ωρ=即速度场v ρ的旋等于角速度ωρ的 2 倍.内容要点点函数积分的概念 点函数积分的性质点函数积分的分类及其关系一、点函数积分的概念定义1 设Ω为有界闭区域, 函数))((Ω∈=P P f u 为Ω上的有界点函数. 将形体Ω任意分成n 个子闭区域,,,,21n ∆Ω∆Ω∆ΩΛ其中i ∆Ω表示第i 个子闭区域, 也表示它的度量, 在i ∆Ω上任取一点i P , 作乘积),,2,1()(n i P f i i Λ=∆Ω并作和∑=∆Ωni iiP f 1)(如果当各子闭区域i ∆Ω的直径中的最大值λ趋近于零时, 这和式的极限存在, 则称此极限为点函数)(P f 在Ω上的积分, 记为⎰ΩΩd P f )(, 即.)(lim )(1∑⎰=→Ω∆Ω=Ωni iiP f d P f λ其中Ω称为积分区域, )(P f 称为被积函数, P 称为积分变量, Ωd P f )(称为被积表达式,Ωd 称为Ω的度量微元.点函数积分具有如下物理意义: 设一物体占有有界闭区域Ω, 其密度为),)((Ω∈=P P f ρ则该物体的质量)0)((,)(≥Ω=⎰ΩP f d P f M特别地, 当1)(≡P f 时, 有).(lim 1度量Ω=∆Ω=Ω∑⎰=→Ωni id λ如果点函数)(P f 在有界闭区域Ω上连续, 则)(P f 在Ω上可积.二、点函数积分的性质设)(),(P g P f 在有界闭区域Ω上都可积, 则有 性质1 .)()()]()([⎰⎰⎰ΩΩΩΩ±Ω=Ω±d P g d P f d P g P f性质2 )()()(为常数k d P f k d P kf ⎰⎰ΩΩΩ=Ω性质3,)()()(21⎰⎰⎰ΩΩΩΩ+Ω=Ωd P f d P f d P f其中,21Ω=ΩΩY 且1Ω与2Ω无公共内点. 性质4 若,,0)(Ω∈≥P P f 则.0)(≥Ω⎰Ωd P f性质5 若,),()(Ω∈≤P P g P f 则.)()(⎰⎰ΩΩΩ≤Ωd P g d P f特别地, 有.|)(|)(⎰⎰ΩΩΩ≤Ωd P f d P f性质6 若)(P f 在积分区域Ω上的最大值为M , 最小值为m , 则.)(Ω≤Ω≤Ω⎰ΩM d P f m性质7 (中值定理)若)(P f 在有界闭区域Ω上连续, 则至少有一点,*Ω∈P 使得.)()(*Ω=Ω⎰ΩP f d P f其中ΩΩ=⎰Ωd P f P f )()(*称为函数)(P f 在Ω上的平均值.三、点函数积分的分类及其关系1.若,],[R b a ⊂=Ω这时],,[),()(b a x x f P f ∈=则.)()(⎰⎰=ΩΩbadx x f d P f (1)这是一元函数)(x f 在区间],[b a 上的定积分. 当1)(=x f 时,a b dx ba-=⎰是区间长.2.右,2R L ⊂=Ω且L 是一平面曲线, 这时,),(),,()(L y x y x f P f ∈=于是⎰⎰=ΩΩLds y x f d P f ),()( (2)当1)(≡P f 时,s ds L =⎰是曲线的弧长. (2)式称为第一类平面曲线积分.3.若,3R ⊂Γ=Ω且Γ是空间曲线, 这时,),,(),,,()(Γ∈=z y x z y x f P f 则.),,()(⎰⎰ΓΩ=Ωds z y x f d P f (3)当1)(≡P f 时,s ds =⎰Γ是曲线的弧长. (3)式称为第一类空间曲线积分.2、3的特殊情形是曲线为直线段, 而直线段上的点函数积分本质上是一元函数的定积分,这说明⎰⎰Γds z y x f ds y x f L),,(,),(可用一次定积分计算, 因此用了一次积分号.4.若,2R D ⊂=Ω且D 是平面区域, 这时,),(),,()(D y x y x f P f ∈= 则⎰⎰⎰=ΩΩDd y x f d P f σ),()( (4)(4)式称为二重积分. 当1),(=y x f 时,σσ=⎰⎰Dd 是平面区域D 的面积.5.若,3R ⊂∑=Ω且∑是空间曲面, 这时,),,(),,,()(∑∈=z y x z y x f P f 则⎰⎰⎰∑Ω=ΩdS z y x f d P f ),,()( (5)(5)式称为第一类曲面积分. 当1)(≡P f 时,S dS =⎰⎰∑是空间曲面∑的面积.由于(5)的特殊情形是平面区域上的二得积分, 说明该积分可化为两次定积分的计算, 因此用二重积分号.6.若3R ⊂Ω为空间立体, 这时,),,(),,,()(Ω∈=z y x z y x f P f 则.),,()(⎰⎰⎰⎰ΩΩ=Ωdv z y x f d P f (5)(6)式称为三重积分. 当1)(≡P f , 则V dv =⎰⎰⎰Ω是空间立体Ω的体积.更进一步, 我们还可以利用点函数积分的概念统一来表述占有界闭区域Ω的物体的重心、转动惯量、引力等物理概念, 此处不再表述.。

第十一章 曲线积分与曲面积分(题库)答案

第十一章 曲线积分与曲面积分(题库)答案
x y
解: P x, y y e x , Q x, y 3 x e y ,
P Q 1, 3 y x
dxdy 2dxdy 2 ab y e dx 3x e dy = x y
x y C
Q
P
D
D
29.(11-3)计算曲线积分
2 xy 2 y dx x
L
2
4 x dy ,其中 L 取正向的圆周 x 2 y 2 9 .
解:设 P 2 xy 2 y, Q
x2 4x ,
Q P 2x 4 2 x 2, x y
2
B. 6S
C. 12S
D.
24S
L
x 上自点 A 1,1 到点 B 1, 1 之间的一段弧,则 I yds (
C. 1
2 2
D. 1
设 C 为沿 x y R 逆时针方向一周的闭合曲线,则曲线积分
2 2 I x ydx xy dy 应用格林公式计算得( A ) C
2
0 x 2 ,计算
2
L
x 1 x ds .
解:直接代公式化第一类平面曲线积分为定积分得

L
xds
2
0
x 1 y2 dx
0
x 1 4 x 2 dx
1 1 2 2 2 1 4 x d 1 4 x 2 8 0 3 1 2 2 2 1 4 x 8 3 2 0

L
x 2 ds
2 . 3
2.
7. (11-1)设 L 为连接 (1,0) 及 (0,1) 两点的直线段,则 8. (11-1)计算曲线积分

曲线积分与曲面积 答案

曲线积分与曲面积 答案

曲线积分与曲面积分 例1计算曲线积分⎰ABxydl ,弧AB 为圆周222R y x =+在第二象限的部分。

解:法1取x 为积分变量,积分路径弧AB 是圆周22x R y -=,)0(≤≤-x R ,于是得dx xR R dx y dl 2221-='+=,故232222R xdx R dx xR Rx R x xydl R R AB -==-⋅-=⎰⎰⎰--。

法2 取y 为积分变量,积分路径弧AB 是圆周22y R x --=, )0(R y ≤≤,于是dy yR R dy x dl 2221-='+=,故2)(32222R ydy R dy yR R y R y xydl RRAB-=-=-⋅--=⎰⎰⎰。

法3 将弧AB 化为参数方程 )2(sin cos πθπθθ≤≤ ⎩⎨⎧==R y R x ,θRd dy dx dl =+=22)()(,⎰⎰⎰⎰-===ππππππθθθθθθθθ23232cos cos sin cos sin cos d R d R Rd R R xydl AB2]2cos [3223R R -=-=ππθ。

例2计算⎰Ldl xy ||,L 是圆周222R y x=+的闭路。

解:由对称性,设1L 是第一象限的部分,则32032sin cos 44||1R tdt t R xydl dl xy L L===⎰⎰⎰π例3设L :cos ,=sin ,02=≤≤x a t y a t t π,则第一型曲线积分2L=2⎰ds aπ例4计算⎰++ABCDA y x dydx ||||,ABCDA 是以A(1,0),B(0,1),C(-1,0),D(0,-1)为顶点的正方形。

(1|||:|=+y x ABCDA )解:在弧AB 上,y=1—x,x 从1变到0;在弧BC 上,y=1+x,x 从0变到 —1;在弧CD 上,y=—1—x,x 从—1变到0;在弧DA 上,y=—1+x,x 从0变到1; 于是22)]1([2)]1([)1(2)1(11010011001=+=+--++---+--+++-+-+-=+++=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰---dx dx x x dx x x dx dx x x dxx x dx dx DA CD BC AB ABCDA例5计算⎰+--+Lyx dyy x dx y x 22)()(,其中L 是原点为中心的单位圆,沿逆时针方向。

第11章习题 曲线积分与曲面积分

第11章习题 曲线积分与曲面积分

第十一章 曲线积分与曲面积分一、填空题:1.设L 是连接点)0,0(O 与点)2,1(B 的直线段,则⎰+L ds y x )(= 。

2.设L 是上半圆周21x y -=,则曲线积分=+⎰L ds y x 22 。

3.设L 是任意简单封闭曲线(取正向),b a ,为常数,则=+⎰L bdy adx 。

4.设k z j xy i y x a 222++=在点)1,2,1(-M 的散度a div = 。

5.设∑为球面:2222R z y x =++,则曲面积分=++⎰⎰∑dS z y x )(222 。

二、选择题: 1.设L 是以)1,0(),0,1(),1,0(),0,1(--D C B A 为顶点的正方形的周界,则曲线积分⎰+L ds y x 1=( )。

—(A )0 (B) 2 (C) 22 (D) 242.设L 是以)1,0(),0,1(),1,0(),0,1(--D C B A 为顶点的正方形依逆时针方向的周界,则曲线积分⎰++L y x dy dx =( )。

(A ) 1 (B) 2 (C) 0 (D) 1-3.已知曲线积分⎰+L xdy ydx y x f ))(,(与积分路径无关,则),(y x f 必须满足下列条件( )。

(A )0='+'x y f y f x (B )0='-'x y f y f x(C )0='+'y x f y f x (D 0='-'y x f y f x4.设∑是平面 1963=++z y x 在第一卦限部分,则⎰⎰∑++dS z y x )236(=( )。

(A )567 (B ) 54 (C ) 1134 (D )1085.由分片光滑的封闭曲面S 所围成的立体的体积=V ( )。

(A )⎰⎰++S xdxdy zdzdx ydydz 31 (B )⎰⎰++S zdxdy ydzdx xdydz 31 >(C )⎰⎰++S ydxdy xdzdx zdydz 31 (D ) ⎰⎰-+-Szdxdy ydzdx xdydz 31 三、计算题:1.求圆心在原点、半径为a 的均匀上半圆弧段(密度为μ)对于x 轴的转动惯量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十一章 曲线积分与曲面积分第一节 对弧长的曲线积分1. 选择题:(1) 对弧长的曲线积分的计算公式⎰Lds y x f ),(=⎰'+'βαφϕφϕdt t t t t f )()()](),([22中要求 (C ) .(A ) α>β (B ) α=β (C ) α<β(2) 设光滑曲线L 的弧长为π,则⎰Lds 6= (B ) . (A ) π ( B ) π6 (C ) π122.计算下列对弧长的曲线积分: (1)⎰+Lds y x )(,其中L 为I ) 以)1,1(),0,1()0,0(B A O ,为顶点的三角形的边界; II )上半圆周222R y x =+;解:I )111()()()()(1)13222LOAABBOx y ds x y ds x y ds x y dsxdx y dy +=+++++=+++=++=⎰⎰⎰⎰⎰⎰⎰II )22()(cos sin [sin cos ]2Lx y ds R t R t R t t R ππ+=+=-=⎰⎰(2)⎰Lyds ,其中L 为x y 22=上点)2,2(与点)2,1(-之间的一段弧;解:2223/211[(1)]33Lyds y ===+=⎰⎰⎰*(3) ⎰Γ+ds y x )(22,其中Γ为螺旋线bt z t a y t a x ===,sin ,cos ;)20(π≤≤t解:1/222222222220()(sin cos )2x y ds a a t a t b dta a πππΓ+=++==⎰⎰⎰*(4)⎰+L ds y x 22,其中L 为y y x 222-=+;解:L 的极坐标方程为2sin r θ=-,2πθπ≤≤,则ds θ=。

222224sin 8Lrd d ππππππππθθθθθ====-=⎰⎰⎰⎰第二节 对坐标的曲线积分1.填空题(1) 对坐标的曲线积分的计算公式⎰+Ldy y x Q dx y x P ),(),(=⎰'+'βαφφϕϕφϕdt t t t Q t t t P )}()](),([)()](),([{中,下限α对应于L 的 始 点,上限β对应于L 的 终 点; (2) 第二类曲线积分⎰+Ldy y x Q dx y x P ),(),(化为第一类曲线积分是[(,)cos (,)cos ]LP x y dx Q x y ds αβ+⎰ ,其中βα,为有向光滑曲线L 在点),(y x 处的 切向量 的方向角.2.选择题:(1) 对坐标的曲线积分与曲线的方向 (B )(A )无关, (B )有关;(2) 若),(y x P ,),(y x Q 在有向光滑曲线L 上连续,则 (A ) (A ) ⎰-+L dy y x Q dx y x P ),(),(=⎰+-L dy y x Q dx y x P ),(),(,(B )⎰-+L dy y x Q dx y x P ),(),(=⎰+Ldy y x Q dx y x P ),(),(.3.计算下列对坐标的曲线积分:(1)⎰+Ldx y x )(22,其中L 为从点)0,0(A 经上半圆周1)1(22=+-y x(0)y ≥到点)1,1(B 的一段弧;解:L的方程为221(1)y x =--,:01x →,则112222()[1(1)]21Lx y dx x x xdx +=+--==⎰⎰⎰ (2) ⎰-Lydx xdy ,其中L 为2x y =上从点)1,1(B 到点)1,1(-A 的一段弧;解:112211223Lxdy ydx x xdx x dx x dx ---=-==-⎰⎰⎰g 。

(3)⎰+Lxdy y ydx x32,其中L 为x y =2与1=x 所围成区域的整个边界(按逆时针方向绕行);解:21:,:11L x y y =→-, 2:1,:11L x y =-→, 则1223232311155361114(2)27LL L x ydx y xdy x ydx y xdy x ydx y xdy y y y dy y dy y dy ---+=+++=++==-⎰⎰⎰⎰⎰⎰g Ñ*(4)zxdz xydy dx y ++⎰Γ2,其中Γ为从点)0,0,0(O 到点)111(,,C ,沿着I )直线段; II )有向折线OABC ,这里的O 、A 、B 、C 依次为点)0,0,0(、)0,0,1(、)011(,,、)111(,,;解:I )Γ的参数方程为x ty t z t =⎧⎪=⎨⎪=⎩,01t ≤≤,则原式=12220()1t t t dt ++=⎰II )OA: 0x t y z =⎧⎨==⎩, 01t ≤≤; AB: 1x y t z =⎧⎪=⎨⎪=⎩,01t ≤≤;BC: 11x y z t =⎧⎪=⎨⎪=⎩.01t ≤≤.原式=112001OAABBCy dx xydy zxdz tdt tdt ++++=++=⎰⎰⎰⎰⎰第五节 对坐标的曲面积分1. 选择题(1) 对坐标的曲面积分与曲面的方向 (B )(A )无关 (B )有关 (2) 已知⎰⎰∑dxdy z y x R ),,(存在,则⎰⎰∑dxdy z y x R ),,(+⎰⎰-∑dxdy z y x R ),,(= (A )(A )0 (B )⎰⎰∑dxdy z y x R ),,(22. 计算下列对坐标的曲面积分: (1)⎰⎰∑+zdxdy y x)(22,其中∑为曲面221y x z --=在第一卦限部分的上侧.解:由2210z x y z ⎧=--⎨=⎩知,∑在xoy 面的投影区域为:{(,)|01}{(,)|01,0}2xy D x y y x r r πθθ=≤≤≤≤=≤≤≤≤,222212220()(1)11(1)()24624xyD x y x y dxdyd r r rdr πππθ+--=-=-=⎰⎰⎰⎰原式=(2)⎰⎰∑++dxdy ydzdx dydz x )1(+,其中∑为1=++z y x 在第一卦限的部分且取法线的方向与z 轴的夹角为锐角.解:由已知得,平面与x,y 轴的夹角也为锐角,∑在三坐标面上的投影为等腰直角三角形,故 原式=11111104(2)(1)3yxxdy y z dz dx x z dz dx dy -----+--+=⎰⎰⎰⎰⎰⎰。

*3.把dxdy z x ydzdx xdydz )(+++⎰⎰∑化为对面积的曲面积分,其中∑为平面222=++z y x 第一卦限部分的上侧.解:因∑取上侧,故法向量n r与z 轴正向夹角为锐角,方向余弦为221cos ,cos ,cos ,333αβγ=== 从而21111()(32)33333x y x z dS x y z dS +++=++∑∑⎰⎰⎰⎰原式=第六节 Gauss 公式 *通量与散度1. 利用高斯公式计算下列曲面积分: (1)zdxdy ydzdx x dydz yz x +--⎰⎰∑232)(,其中∑为平面 1,1,1,0,0,0======z y x z y x 围成的立方体Ω的表面外侧;解:由Gauss 公式,得原式=1112224(321)(1)3x x dxdydz dz dy x dx Ω-+=+=⎰⎰⎰⎰⎰⎰。

(2)dydz z y x dxdy y x )()(-+-⎰⎰∑,其中∑由1,0,922===+z z y x所围空间闭区域Ω的整个边界曲面的外侧; 解:由Gauss 公式,得231232000()(sin )119(sin )9(sin )242y z dxdydz d rdr r z dzd r r dr d πππθθθθθθπΩ-=-=-=-=-⎰⎰⎰⎰⎰⎰⎰⎰⎰原式=*(3)zdxdy ydzdx xdydz ++⎰⎰∑,其中∑为上半球面222y x a z --=的上侧;解:设1∑为2220z =≤(x +y a )的下侧,∑与1∑围成的闭区域为Ω,由Gauss 公式,得1332xdydz ydzdx zdxdy dxdydz a πΩ+++==∑∑⎰⎰⎰⎰⎰Ò,而10xdydz ydzdx zdxdy ++=∑⎰⎰Ò,故原式=32a π。

相关文档
最新文档