高数曲线积分与曲面积分总结

合集下载

曲线积分与曲面积分常见题型攻略

曲线积分与曲面积分常见题型攻略

曲线积分与曲面积分常见题型攻略以心同学整理一、计算第一类曲线积分步骤:(一)平面曲线积分t t g y t x L ,)()(:1.化简(1)代入化简【常用在k t g t f )](),([ (常数)的情形】Lds y x f ),(Lds t g t f )](),([ kskds L其中s 为积分曲线L 的长度。

(2)利用奇偶对称性化简①若积分曲线L 关于坐标轴y 轴对称,则有Lds y x f ),(1),(,),(2),(0L x y x f ds y x f x y x f 的偶函数是的奇函数是,其中1L 为y 轴右边部分。

②若积分曲线段L 关于坐标轴x 轴对称,则有Lds y x f ),(1),(,),(2),(0L y y x f ds y x f y y x f 的偶函数是的奇函数是,其中1L 为x 轴上边部分。

(3)利用轮换对称性化简若积分曲线L 中把x 与y 互换,积分曲线不变,则有Lds y x f ),( Ldsx y f ),(2.确定积分曲线L 的参数式方程t t g y t x L ,)()(:注:积分曲线一般以)(x f y 或)(y g x 的形式出现,此时参数式为:b x a x f y x x L,)(:,dy c y y y g x L,)(:3.套公式(一代二换三定限)化为定积分Lds y x f ),(dtt g t t g t f )()()](),([22注意:上限 大于下限 4.计算定积分例1【2017-2018期末】设L 是直线)40(1243 x y x 的一段,则Lds y x )43(60;解:Lds y x )43( Lds12代入化简6012 s 。

例2【2018-2019期末】计算Lds x y)(2,其中L 为圆周422 y x .解:法一:L 的参数方程为sin 2cos 2y x ( 20 ),d d ds 2)cos 2()sin 2(22 ,于是Lds x y )(22022)cos 2sin 4(d 0sin 8202d822148 .法二:由对称性有Lds y 2 Lds x 2(轮换对称),0 Lxds (奇偶对称)所以Lds x y )(2 Lds y 2L ds y x )(2122 Lds 421(代入化简)8422 Lds .例3【2019-2020期末】计算曲线积分Lds y xy x )(22,其中L 为平面区域}0,1|),{(22 y y x y x D 的边界曲线。

高等数学曲线积分与曲面积分

高等数学曲线积分与曲面积分



双 侧
n


典型单侧曲面: 莫比乌斯带
播放
章曲线积分与曲面积分
一、主要内容 二、线、面积分的基本计算法
一、对弧长的曲线积分的概念
1.定义 设L为xoy面内一条光滑曲线,弧函数f (x, y)
在L上有界.用L上的点M1, M2,, Mn1把L分成n
个小段.设第i个小段的长度为si ,又(i ,i )为第
i个小段上任意取定的点一, y
i1ቤተ መጻሕፍቲ ባይዱ
的直径的最大值0时, 这和式的极限存在,
则称此极限为函数f(x, y,z)在曲面上对面积
的曲面积分或第一类曲面积分.
记 为 f(x,y,z)d.S

n
即 f(x,y,z)d S l i0im 1f(i, i, i) S i
其中 f(x, y,z)叫被积函数 叫积 ,分曲.面
B
作乘积f (i ,i ) si ,
n
并作和 f (i ,i ) si ,
i1
L Mn1
(i,i) M i
M2
A M1
Mi1
o
x
如果当各小弧段长的度的最大值 0时, 这和的极限存, 在则称此极限为函f数 (x, y) 在曲线弧L上对弧长的曲线积分第或一类曲
线积分, 记作 f (x, y)ds, 即 被积函数 L
n
f(x ,y,z)d sl i0im 1f(i,i,i) si.
注意:
1 . 若 L (或 )是分,段 (L L 光 1L 2)滑
f ( x ,y ) d sf ( x ,y ) d s f ( x ,y ) d . s
L 1 L 2

曲线积分与曲面积分

曲线积分与曲面积分

曲线积分与曲面积分一、 知识要点 1、定义、定理(1)定理1(格林公式):设分段光滑的有向闭曲线L 为有界闭区域D 的正向边界,函数P(x,y),Q(x,y)在D 上具有一阶连续偏导数,则有:⎰⎰⎰+=∂∂-∂∂L DQdy Pdx dxdy yPx Q )((2) 定理2(曲线积分与路径无关的充要条件) :设G 为平面单连通开区域,函数),(y x P ,),(y x Q 在G 内具有连续的一阶偏导数,那么曲线积分⎰+LQdy Pdx 与路径无关xQ yP ∂∂≡∂∂⇔在G 内成立。

(3) 定理3 :设函数),(),,(y x Q y x P 在开区域G 内具有一阶连续偏导,则曲线积分()()dy y x Q dx y x P ,,+ 在G内为某一函数()y x u ,的全微分的充要条件是等式()()x y x Q y y x P ∂∂=∂∂,,在G 内恒成立。

(4)定理4(高斯公式):设空间闭区域Ω是由分片光滑的闭曲面∑所围成,函数()z y x P ,,、()z y x Q ,,、()z y x R ,,在Ω上具有一阶连续偏导数,则有⎰⎰⎰⎰⎰Ω∑++=∂∂+∂∂+∂∂Rdxdy Qdxdz Pdydz dv z Ry P x Q )(或()⎰⎰⎰⎰⎰Ω∑++=∂∂+∂∂+∂∂dS R Q P dv z R y P x Q γβαcos cos cos )(,其中,γβαcos ,cos ,cos 为外法向量的方向余弦。

(5)定理4(斯托克斯公式):设L 为分段光滑的空间有向闭曲线,∑是以L 为边界的分片光滑的有向曲面,L 的正向与∑的侧符合右手规则,函数()()()z y x R z y x Q z y x P ,,,,,,、、在包含∑在内的一个空间区域内具有一阶连续偏导数,则有⎰⎰⎰++=∂∂∂∂∂∂∑L Rdz Qdy Pdx R Q P z y x dxdy dzdx dydz ,或⎰⎰⎰++=∂∂∂∂∂∂∑L Rdz Qdy Pdx dS RQ P z y x γβαcos cos cos 2、 公式(1)对弧长的曲线积分的计算公式:(ψϕ,在相应区间上具有一阶连续导数)①若)( )()(:βαψϕ≤≤⎩⎨⎧==t t y t x L ,则dt t t t t f ds y x f L ⎰⎰'+'=βαψϕψϕ)()()](),([),(22 )(βα<②若)( )(:b x a x y L ≤≤=ϕ,则⎰⎰'+=b aL dx x x x f ds y x f )(1)](,[),(2ϕϕ)(b a < ③若)( )(:d y c y x L ≤≤=ψ,则⎰⎰+'=d cL dy x y y f ds y x f 1)()]),([),(2ψψ )(d c <(2)对坐标的曲线积分的计算公式:(ψϕ,在相应区间上具有一阶连续导数)①若):( )()(:βαψϕ→⎩⎨⎧==∧t t y t x AB ,则dt t t t Q t t t P dy y x Q dx y x P AB⎰⎰'+'=+∧βαψψϕϕψϕ)}()](),([)()](),([{),(),( ②若):( )(:b a x x y AB →=∧ϕ,则⎰∧+ABdy y x Q dx y x P ),(),(⎰'+=ba dx x x x Q x x P )}()](,[)](,[{ϕϕϕ ③若):( )(:d c y y x AB →=∧ψ,则⎰∧+ABdy y x Q dx y x P ),(),(()()⎰+'=dcdy y y Q y y y P ]},[)(],[{ψψψ(3)两类曲线积分的转换公式:①()⎰⎰+=+LLds Q P dy y x Q dx y x P βαcos cos ),(),(,其中,()()y x y x ,,βα、为有向曲线弧L 上点()y x ,处的切线向量的方向角。

曲线积分与曲面积分总结

曲线积分与曲面积分总结

第十一章:曲线积分与曲面积分一、对弧长的曲线积分⎰⎰+=LLy d x d y x f ds y x f 22),(),(若 ⎩⎨⎧==)()(:t y y t x x L βα≤≤t则 原式=dt t y t x t y t xf ⎰'+'βα)()())(),((22对弧长的曲线积分(,,)((),(),(LLf x y z ds f x t y t z t =⎰⎰若 ():()()x x t L y y t z z t =⎧⎪=⎨⎪=⎩βα≤≤t则 原式=((),(),(f x t y t z t βα⎰常见的参数方程为:特别的:22222.2x y LLLeds e ds e ds e π+===⎰⎰⎰22=2(0)L x y y +≥为上半圆周二、对坐标的曲线积分⎰+Ldy y x q dx y x p ),(),(计算方法一: 若 ⎩⎨⎧==)()(:t y y t x x L 起点处α=t ,终点处β=t 则原式=dt t y t y t x q dt t x t y t x p )())(),(()())(),(('+'⎰βα对坐标的曲线积分(,,)(,,)(,,)LP x y z dx Q x y z dy R x y z dz ++⎰():()()x x t L y y t z z t =⎧⎪=⎨⎪=⎩起点处α=t ,终点处β=t 则原式=((),(),())()((),(),())()((),(),())()P x t y t z t x t dt Q x t y t z t y t dt R x t y t z t z t dt βα'''++⎰计算方法二:在计算曲线积分时,通过适当的添加线段或曲线,是之变成一个封闭曲线上的曲线积分与所添加线段或曲线上的曲线积分之差,从而对前者利用格林公式,后者利用参数方程。

11(,)(,)(,)(,)L L L p x y dx q x y dy p x y dx q x y dy ++-+⎰⎰1()(,)(,)L Dq pdxdy p x y dx q x y dy x y∂∂=±--+∂∂⎰⎰⎰如图:三、格林公式⎰⎰=∂∂-∂∂Ddxdy ypx q )(⎰+Ldy y x q dx y x p ),(),( 其中L 为D 的正向边界特别地:当yp x q ∂∂=∂∂时,积分与路径无关, 且⎰⎰⎰+=+21212211),(),(),(),(21),(),(y y x x y x y x dy y x q dx y x p dy y x q dx y x p(,)(,)(,)P x y dx Q x y dy dU x y +=是某个函数的全微分Q Px y∂∂⇔=∂∂ 注:在计算曲线积分时,通过适当的添加线段或曲线,是之变成一个封闭曲线上的曲线积分与所添加线段或曲线上的曲线积分之差,从而对前者利用格林公式。

高数下第十一章曲线积分与曲面积分

高数下第十一章曲线积分与曲面积分

(3) f ( x, y)ds f ( x, y)ds f ( x, y)ds.
L
L1
L2
(L L1 L2 ).
5、对弧长曲线积分的计算
定理
设 f ( x, y)在曲线弧L上有定义且连续,
L的参数方程为
x y
( t ), ( t ),
( t )其中
(t), (t)在[ , ]上具有一阶连续导数, 且
3、 ( x 2 y 2 )ds,其中 L为曲线 L
x a(cos t t sin t)
y
a(sin
t
t
cos
t
)
(0 t 2 );
练习题答案
1、ea (2 a) 2; 4
2、9;
3. 22a3 (1 22 );
二、对坐标的曲线积分的概念
1. 定义:
函数 P(x,y)在有向曲线弧L上对坐标 x 的曲线积分
线 AB是半径为r 的圆在
第一象限部分.
A
D
o
L
Bx
解 引入辅助曲线L, L OA AB BO
应用格林公式, P 0, Q x 有
dxdy L xdy
D
OA xdy AB xdy BO xdy,
由于 OA
xdy
0,
BO xdy 0,
xdy dxdy 1 r2.
f ( x, y)ds f [ (t), (t)] 2 (t) 2 (t)dt
L
( )
注意: 1. 定积分的下限 一定要小于上限 ;
2. f ( x, y)中x, y不彼此独立, 而是相互有关的.
例1
求I
L xyds,
L
:
椭圆

高等数学第十章曲线积分与曲面积分(考研辅导班内部资料)

高等数学第十章曲线积分与曲面积分(考研辅导班内部资料)

ds L ( L 表示曲线 L 的弧长 ) .
L
积函数可用积分曲线方程作变换.
( 6) 奇偶性与对称性 如果积分弧段 L (AB ) 关于 y 轴对称,
f (x, y)ds 存在,则
L( AB )
f ( x, y)ds
L ( AB )
0,
f ( x, y) 关于 x是奇函数 ,
2
f ( x, y)ds,f ( x, y) 关于 x是偶函数 .
切线的方向余弦是一个常量。 所以, 当积分曲线是直线时, 可能采用两类不同的曲线积分的
转换。
定理 4 (格林公式)
设 D 是由分段光滑的曲线 L 围成,函数 P( x, y), Q (x, y) 及其一阶偏导数在 D 上连续,
则有
P(x, y)dx Q (x, y)d y
Q P dxdy
L
Dx x
设 L (AB ) 的平面曲线: 其参数方程: x
分别是 和 ,则
(t), y
(t) ,起点和终点对应的参数取值
Pdx Qdy
L ( AB)
{ P( (t ), (t)] (t) Q[( (t), (t )] (t )}dt
设 L (AB ) 的空间曲线 :其参数方程: x (t), y (t ), z w(t ) ,起点和终点对应的
表示曲线的线密度。 定义 2 第二类曲线积分(对坐标的曲线积分)
( 1)平面曲线 L( AB) 的积分:
P(x, y)dx Q( x, y)dy
L ( AB )
( 2)空间曲线 L( AB) 的积分:
n
lim
(T ) 0
[ f ( k , k ) xk
k1
f ( k , k ) yk ]

曲线积分与曲面积分总结笔记

曲线积分与曲面积分总结笔记

曲线积分与曲面积分总结笔记曲线积分和曲面积分是微积分中重要的概念,它们在物理学、工程学和数学中都有广泛的应用。

下面对曲线积分和曲面积分进行总结和拓展。

一、曲线积分曲线积分是对曲线上的函数进行积分运算。

根据曲线的参数方程给出曲线积分的计算公式。

曲线积分分为第一类曲线积分和第二类曲线积分。

1. 第一类曲线积分:对标量函数进行积分,求曲线上的标量场沿曲线的积分值。

它主要应用于测量曲线长度、质量等问题。

2. 第二类曲线积分:对矢量函数进行积分,求曲线上的矢量场沿曲线的积分值。

它主要应用于计算曲线上的力的做功、电流的环路积分等问题。

二、曲面积分曲面积分是对曲面上的函数进行积分运算。

曲面积分也有两类:第一类曲面积分和第二类曲面积分。

1. 第一类曲面积分:对标量函数进行积分,求曲面上的标量场通过曲面的积分值。

它主要应用于计算场的通量、质量通量等问题。

2. 第二类曲面积分:对矢量函数进行积分,求曲面上的矢量场通过曲面的积分值。

它主要应用于计算磁通量、电通量等问题。

曲线积分和曲面积分的计算方法有很多,常用的方法包括参数化、格林公式、斯托克斯定理和高斯定理等。

对于一些简单的曲线和曲面,也可以通过直接计算来求解。

此外,曲线积分和曲面积分还与梯度、散度和旋度等概念密切相关。

这些概念可以帮助我们理解和计算曲线和曲面上的积分值。

总之,曲线积分和曲面积分是微积分中的重要概念,它们在物理学和工程学中有广泛应用。

通过对曲线和曲面上的函数进行积分,我们可以得到一些重要的物理量和场量。

掌握曲线积分和曲面积分的计算方法和应用可以帮助我们解决实际问题。

曲线积分与曲面积分

曲线积分与曲面积分

曲线积分与曲面积分曲线积分和曲面积分是微积分中两个重要的概念。

曲线积分是对曲线上的函数进行积分运算,而曲面积分是对曲面上的函数进行积分运算。

本文将详细介绍曲线积分和曲面积分的概念、计算方法以及应用。

一、曲线积分曲线积分是对曲线上的函数进行积分运算。

通常将曲线积分分为第一类曲线积分和第二类曲线积分。

1. 第一类曲线积分第一类曲线积分用于计算曲线上的标量场函数。

对于参数化曲线C:r(t)=(x(t), y(t), z(t)),其中a≤t≤b,函数f(x,y,z)在C上可微分,则第一类曲线积分的计算公式为:∫_[C]f(x,y,z)ds=∫_a^bf(x(t),y(t),z(t))∥r'(t)∥dt其中,ds表示曲线上的微元弧长,∥r'(t)∥表示曲线C的切向量的长度。

2. 第二类曲线积分第二类曲线积分用于计算曲线上的矢量场函数。

对于参数化曲线C:r(t)=(x(t), y(t), z(t)),其中a≤t≤b,函数F(x,y,z)在C上连续,则第二类曲线积分的计算公式为:∫_[C]F(x,y,z)·dr=∫_a^bF(x(t),y(t),z(t))·r'(t)dt其中,·表示矢量的点乘运算,dr表示曲线上的微元矢量。

二、曲面积分曲面积分是对曲面上的函数进行积分运算。

同样,曲面积分也分为第一类曲面积分和第二类曲面积分。

1. 第一类曲面积分第一类曲面积分用于计算曲面上的标量场函数。

对于参数化曲面S:r(u,v)=(x(u,v), y(u,v), z(u,v)),其中(u,v)属于区域D,函数f(x,y,z)在S上可微分,则第一类曲面积分的计算公式为:∬_[S]f(x,y,z)dS=∬_Df(x(u,v),y(u,v),z(u,v))∥r_u×r_v∥dudv其中,dS表示曲面上的微元面积,r_u和r_v表示曲面S的参数方程关于u和v的偏导数,r_u×r_v表示两个偏导数的叉乘,∥r_u×r_v∥表示其长度。

高数考研备战曲线积分与曲面积分的关系与转化

高数考研备战曲线积分与曲面积分的关系与转化

高数考研备战曲线积分与曲面积分的关系与转化曲线积分和曲面积分是数学中的重要概念,在高数考研备战中也是必不可少的知识点。

曲线积分主要用于计算曲线上某个物理量的总量,而曲面积分则用于计算曲面上某个物理量的总量。

两者之间存在一定的关系和转化方法,下面我们将详细介绍。

一、曲线积分的概念和计算方法曲线积分是用来计算曲线上某个物理量的总量。

在数学上通常将曲线积分分为第一类曲线积分和第二类曲线积分。

1. 第一类曲线积分第一类曲线积分是指对曲线上函数的积分运算。

根据曲线的参数方程表示,第一类曲线积分可以表示为:∫ [a, b] f(x(t), y(t)) ds其中,f(x, y)是定义在曲线上的函数,x(t)和y(t)是曲线的参数方程,ds是曲线上的弧长元素。

2. 第二类曲线积分第二类曲线积分是指对曲线上向量场的积分运算。

根据曲线的参数方程表示,第二类曲线积分可以表示为:∫ [a, b] F(x(t), y(t)) · dr其中,F(x, y)是定义在曲线上的向量场,x(t)和y(t)是曲线的参数方程,dr是曲线上的切向量元素。

二、曲面积分的概念和计算方法曲面积分是用来计算曲面上某个物理量的总量。

曲面积分同样分为第一类曲面积分和第二类曲面积分。

1. 第一类曲面积分第一类曲面积分是指对曲面上函数的积分运算。

根据曲面的参数方程表示,第一类曲面积分可以表示为:∫∫ Ω f(x, y, z) dS其中,f(x, y, z)是定义在曲面上的函数,Ω是曲面的投影区域,dS 是曲面上的面积元素。

2. 第二类曲面积分第二类曲面积分是指对曲面上向量场的积分运算。

根据曲面的参数方程表示,第二类曲面积分可以表示为:∫∫ Ω F(x, y, z) · dS其中,F(x, y, z)是定义在曲面上的向量场,Ω是曲面的投影区域,dS是曲面上的面积元素。

三、曲线积分与曲面积分的关系与转化在某些情况下,曲线积分和曲面积分之间存在一定的联系与转化方法。

大学高数第十章曲线积分与曲面积分课后参考答案及知识总结

大学高数第十章曲线积分与曲面积分课后参考答案及知识总结
解:设 围的区域为D

原式=
注:利用二重积分的被积函数的奇偶性及积分区域的对称性有 .
★★4.利用曲线积分,求星形线 所围成图形的面积。
解:由公式
★★5.求双纽线 所围区域的面积。
解:双纽线的极坐标方程为:
由图形的对称性知:
★★6.计算 ,其中 为圆周 的顺时针方向。
解: 参数方程为: 变化从 到
原式
原式
法二: 线积分与路径无关。
原式 =
★★15.利用曲线积分,求下列微分表达式的原函数:
(1) ;
(2) ;
(3) .
解:(1) ,
是某函数的全微分
.
(2)
是某函数的全微分
.
(3)
是某函数的全微分
★★16.设有一变力在坐标轴上的投影为 , ,改变力确了一个力场.
证明质点在此场内移动时,场力所作的功与路径无关.
(1)螺旋形弹簧关于 轴的转动惯量 ;
(2)螺旋形弹簧的重心.
解:
(1)
.
(2)
螺旋形弹簧关于 平面的静力矩分别为:
同法得:
.
,
.
提高题
★★★1.计算 ,其中 为正向圆周 ,直线 及 轴在第一项限内所围成的扇形的整个边界.
解: 与 在第一象限的交点为 .
如图:
;
; .
则原式
★★★★2.计算 ,其中 为圆柱面 与锥面 的交线.
解:摆线的参数方程为:
原式
★★5.计算曲线积分 ,其中 为螺旋线 上相应于 从 到 的一段弧。
解:
原式
★★6.计算曲线积分 ,其中 为折线 ,这里 , , , 依次为点 , , , .
解:如图,原式=

高数:曲线积分与曲面积分总结

高数:曲线积分与曲面积分总结
Q P y
则有
Pdx Q dy
L
( x
D

)d x d y
其中 L 是 D 的取正向的边界 曲线,公式称为格林公式.
格林
积分与路径无关:
定理2 设D是平面单连通区域, ( x , y ), Q( x , y )及其 P 一阶偏导数在 内连续,则下述四个命 D 题等价:
(2)若投影域面积是零,则积分值是零。
注:“一投,二代,三定号”
z

2
O
n
y
1
x
若 是母线平行于 z 轴的柱面 , 则 Pdxdy 0 .

例如积分 I 1 : x
2 2


( x y 1 ) dxdy ,
y
2
1 , ( 0 z 1 );
: x y 1 , ( x 0 , y 0 , 0 z 1 ).
3 .如果 由 y y ( z , x ) 给出 , 则有
D yz
把曲面Σ向yoz面投影,得区域D yz
把曲面Σ向xoz面投影,得区域Dxz
Q( x , y , z )dzdx Q[ x , y( z , x ), z ]dzdx
Dzx
注意:(1)对坐标的曲面积分,必须注意曲面所取的侧.
f [ x , y , z ( x , y )] 1 z x z y dxdy
2 2


R ( x , y , z ) dxdy


D xy
R [ x , y , z ( x , y )] dxdy
D xy
算 一投,二代,三换(与侧无关)一投,二代,三定号 (与侧有关)

曲线积分与曲面积分知识点

曲线积分与曲面积分知识点

第十章 曲线积分与曲面积分一、 一、 重点两类曲面积分及两类曲面积分的计算和格林公式、高斯公式的应用 二、 二、 难点对曲面侧的理解,把对坐标的曲面积分化成二重积分,利用格林公式求非闭曲线上的第二类曲线积分,及利用高斯公式计算非闭曲面上的第二类曲面积分。

三、 三、 内容提要1. 1. 曲线(面)积分的定义:(1) (1) 第一类曲线积分∑⎰=→∆∆ni i i i LS f ds y x f 0),(lim ),(ηξλ(存在时)i S ∆表示第i 个小弧段的长度,(i i ηξ,)是i S ∆上的任一点小弧段的最大长度。

实际意义:当f(x,y)表示L 的线密度时,⎰Lds y x f ),(表示L 的质量;当f(x,y) ≡1时,⎰Lds表示L 的弧长,当f(x,y)表示位于L 上的柱面在点(x,y )处的高时,⎰Lds y x f ),(表示此柱面的面积。

(2) (2) 第二类曲线积分]),(),([lim 1i i i ni iiiLy Q x P Qdy Pdx ∆+∆∆+∑⎰=→ηξηξλ(存在时)实际意义:设变力F =P(x,y) i +Q(x,y) j 将质点从点A 沿曲线L 移动到B 点,则F 作的功为:⎰⎰+=⋅=L L Qdy Pdx S d F W,其中S d =(dx,dy )事实上,⎰L Pdx ,⎰L Qdy 分别是F在沿X 轴方向及Y 轴方向所作的功。

(3) (3) 第一类曲面积分∑⎰⎰=→∑∆∆ni i iiiS f ds z y x f 1),,(lim ),,(ζηξλ(存在时)i S ∆表示第i 个小块曲面的面积,(i i i ζηξ,,)为i S ∆上的任一点,λ是n 块小曲面的最大直径。

实际意义:当f(x,y ,z)表示曲面∑上点(x,y,z )处的面密度时,⎰⎰∑ds z y x f ),,(表示曲面∑的质量,当f(x,y,z) ≡1时,⎰⎰∑ds 表示曲面∑的面积。

曲线积分与曲面积分

曲线积分与曲面积分

曲线积分与曲面积分曲线积分和曲面积分是微积分中的重要概念,它们在物理、工程等领域中有着广泛的应用。

本文将详细介绍曲线积分和曲面积分的定义、计算方法以及应用。

一、曲线积分曲线积分是沿曲线上的各点对一个矢量场进行积分的操作。

它可以帮助我们计算曲线周围矢量场的某种性质,如流量、环量等。

曲线积分可以分为第一类曲线积分和第二类曲线积分。

1. 第一类曲线积分第一类曲线积分又称为曲线上的标量场积分,它的计算只涉及到被积函数。

设曲线C的参数方程为x=f(t),y=g(t),z=h(t),其中a≤t≤b。

对于曲线上每一点P(x,y,z),记r(t)=x i + y j + z k为P的位置矢量,则第一类曲线积分的定义为:∫[f(x,y,z)]•ds=∫[f(x(t),y(t),z(t))•r'(t)]dt其中[f(x,y,z)]为被积函数,ds为曲线C上各点的弧长元素,r'(t)为曲线C在P点处的切向量。

2. 第二类曲线积分第二类曲线积分又称为曲线上的矢量场积分,计算是将矢量场与切向量进行点积。

设曲线C的参数方程为x=f(t),y=g(t),z=h(t),其中a≤t≤b。

对于曲线上每一点P(x,y,z),记r(t)=x i + y j + z k为P的位置矢量,则第二类曲线积分的定义为:∫[F(x,y,z)]•dr=∫[F(x(t),y(t),z(t))•r'(t)]dt其中[F(x,y,z)]为矢量场,dr为曲线C上各点的位置矢量元素,即dr=r'(t)dt。

二、曲面积分曲面积分是在曲面上对一个矢量场或标量场进行积分的操作。

它可以帮助我们计算曲面上矢量场的通量、曲面的面积等。

曲面积分同样可以分为第一类曲面积分和第二类曲面积分。

1. 第一类曲面积分第一类曲面积分又称为曲面上的标量场积分,它的计算只涉及到被积函数。

设曲面S的参数方程为x=g(u,v),y=h(u,v),z=k(u,v),其中D 为曲面S在(u,v)平面上的投影区域。

曲线积分与曲面积分重点总结+例题

曲线积分与曲面积分重点总结+例题

第十章曲线积分与曲面积分【教学目标与要求】1.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系。

2.掌握计算两类曲线积分的方法.3.熟练掌握格林公式并会运用平面曲线积分与路径无关的条件,会求全微分的原函数.4.了解第一类曲面积分的概念、性质,掌握计算第一类曲面积分的方法。

【教学重点】1。

两类曲线积分的计算方法;2。

格林公式及其应用;3。

第一类曲面积分的计算方法;【教学难点】1。

两类曲线积分的关系及第一类曲面积分的关系;2.对坐标的曲线积分与对坐标的曲面积分的计算;3。

应用格林公式计算对坐标的曲线积分;6.两类曲线积分的计算方法;7.格林公式及其应用格林公式计算对坐标的曲线积分;【参考书】[1]同济大学数学系.《高等数学(下)》,第五版.高等教育出版社。

[2]同济大学数学系.《高等数学学习辅导与习题选解》,第六版.高等教育出版社.[3]同济大学数学系。

《高等数学习题全解指南(下)》,第六版.高等教育出版社§11.1 对弧长的曲线积分一、对弧长的曲线积分的概念与性质曲线形构件的质量:设一曲线形构件所占的位置在xOy面内的一段曲线弧L上,已知曲线形构件在点(x,y)处的线密度为μ(x,y)。

求曲线形构件的质量.把曲线分成n小段,∆s1,∆s2,⋅⋅⋅,∆s n(∆s i也表示弧长);任取(ξi,ηi)∈∆s i,得第i小段质量的近似值μ(ξi,ηi)∆s i;整个物质曲线的质量近似为;令λ=max{∆s1,∆s2,⋅⋅⋅,∆s n}→0,则整个物质曲线的质量为.这种和的极限在研究其它问题时也会遇到。

定义设函数f(x,y)定义在可求长度的曲线L上,并且有界。

,将L任意分成n个弧段:∆s1,∆s2,⋅⋅⋅,∆s n,并用∆s i表示第i段的弧长;在每一弧段∆s i上任取一点(ξi,ηi),作和;令λ=max{∆s1,∆s2,⋅⋅⋅,∆s n},如果当λ→0时,这和的极限总存在,则称此极限为函数f(x,y)在曲线弧L上对弧长的曲线积分或第一类曲线积分,记作,即.其中f(x,y)叫做被积函数,L叫做积分弧段。

高等数学曲线积分和曲面积分总结

高等数学曲线积分和曲面积分总结

高等数学曲线积分和曲面积分总结
高等数学曲线积分和曲面积分是微积分领域中的重要概念,它们在实际应用中具有广泛的应用,例如在物理、工程、计算机科学等领域中都有重要的应用。

本文将对高等数学曲线积分和曲面积分的概念、计算方法和应用进行总结。

一、曲线积分的概念
曲线积分是指对一维曲线上的点的函数值求导的积分,也称为路径积分。

曲线积分的基本思想是通过对曲线上的点进行积分,得到曲线的面积或体积。

曲线积分的计算公式为:
∫Cf(x,y)dS = ∫∫∫Cf(x^TC(y), y^TC(z))dxdydz
其中,C是曲线,f(x,y)是曲线上的点值函数,T是曲线上的任意一点,S是曲线上的面积,z是曲线上的任意一点。

二、曲面积分的概念
曲面积分是指对三维曲面上的点的函数值求导的积分,也称为向量场积分。

曲面积分的基本思想是通过对曲面上的点进行积分,得到曲面的面积或体积。

曲面积分的计算公式为:
∫∫∫Sf(x,y,z)dsdV = ∫∫∫Sf(x^TS(y^TS(z)))dsdV
其中,S是曲面,f(x,y,z)是曲面上的点值函数,T是曲面上的任意一点,V是曲面上的任意体积,s是曲面上的任意法向量,dV是曲面上的任意体积法向量。

拓展:曲线积分和曲面积分在物理学中的应用
曲线积分和曲面积分在物理学中具有广泛的应用。

例如,在量子力学中,曲线积分被用来计算波函数的面积,而曲面积分被用来计算量子场论的场速可变的相对性原理。

在相对论中,曲线积分被用来计算相对论效应的积分,而曲面积分被用
来计算四维空间中的弯曲曲面。

高数第十章曲线积分与曲面积分

高数第十章曲线积分与曲面积分

第十章 曲线积分与曲面积分一、对弧长的曲线积分(又称第一类曲线积分) 1、定义ini iiLs f ds y x f ∆ηξλ∑⎰=→=1),(lim),(, i ni i i i s f ds z y x f ∆=∑⎰=→Γ1),,(lim ),,(ζηξλ2、物理意义 线密度为),(y x ρ的曲线L 质量为ds y x M L⎰=),(ρ线密度为),,(z y x f 的曲线Γ质量为ds z y x f M ⎰Γ= ),,(3、几何意义 曲线L 的弧长=s ds L⎰,曲线Γ的弧长ds s ⎰Γ=4、若L :k y x f =),((常数),则ks ds k ds k ds y x f LLL===⎰⎰⎰),(5、计算(上限大于下限)(1),(t) ,(t) :ψϕ==y x L ()βα≤≤t ,则[][][]dt t t t t f ds y x f L22)()()( ),( ),(ψϕψϕβα'+'=⎰⎰(2)L :0()()y x x x X ψ=≤≤,则0(,)[,(XLx f x y ds f x x ψ=⎰⎰(3)L :0()()x y y y Y ϕ=≤≤,则0(,)[(),.Y Ly f x y ds f y y ϕ=⎰⎰(4))().(),(),(:βαωψϕ≤≤===Γt t z t y t x ,则(,,)[(),(),(()f x y z ds f t t t βαϕψωαβΓ=<⎰⎰二、对坐标的曲线积分 1、定义dy y x Q dx y x P L),(),( +⎰[]∑=→+=ni i i i iiiy Q xP 1),(),(lim∆ηξ∆ηξλdz z y x R dy z y x Q dx z y x P ),,(),,(),,(++⎰Γ[]∑=→++=n i i i i i i i i i ii iiz R y Q x P 1),,(),,(),,(lim ∆ζηξ∆ζηξ∆ζηξλ2、计算(下限对应起点,上限对应终点)(1),(t) ,(t) :ψϕ==y x L ()βα→:t ,则(,)(,){[(),()]()[(),()]()}LP x y dx Q x y dy P t t t Q t t t dt βαϕψϕϕψψ''+=+⎰⎰(2)L :()y x ψ=()X x t →0:,则{[,()][,()]()}bLa Pdx Qdy P x x Q x x x dx ψψψ'+=+⎰⎰(3)L :()x y ϕ=()Y y t →0:,则{[(),]()[(),]}dLcPdx Qdy P y y y Q y y dy ϕϕϕ'+=+⎰⎰(4)):().(),(),(:βαωψϕ→===Γt t z t y t x ,则(,,)(,,)(,,)P x y z dx Q x y z dy R x y z dz Γ++⎰ {[(),(),()]()[(),(),()]()[(),(),()]()}P t t t t Q t t t t R t t t t dt βαϕψωϕϕψωψϕψωω'''=++⎰ 3、两类曲线积分之间的联系(cos cos )LLPdx Qdy P Q ds αβ+=+⎰⎰其中,(,),(,)x y x y αβ为有向曲线弧L 上点(,)x y 处的切线向量的方向角。

曲线积分曲面积分公式总结

曲线积分曲面积分公式总结

曲线积分曲面积分公式总结曲线积分是在曲线上计算函数的积分,通常用来计算沿曲线的弧长、质量、电流等物理量。

曲线积分的公式为:1.第一类曲线积分:设曲线为C,参数方程为r(t) = (x(t), y(t), z(t)),函数为f(x, y, z),则第一类曲线积分的公式为:∫[C] f(x, y, z) ds = ∫[a,b] f(r(t)) ||r'(t)|| dt其中,ds表示弧长元素,||r'(t)||表示曲线的切向量的模。

2.第二类曲线积分:设曲线为C,参数方程为r(t) = (x(t), y(t), z(t)),向量场为F(x, y, z) = (P(x, y, z), Q(x, y, z), R(x, y, z)),则第二类曲线积分的公式为:∫[C] F(x, y, z) · dr = ∫[a,b] F(r(t)) · r'(t) dt其中,·表示向量的点乘,dr表示位移向量,r'(t)表示曲线的切向量。

曲面积分是在曲面上计算函数的积分,通常用来计算流量、电通量等物理量。

曲面积分的公式为:1.第一类曲面积分:设曲面为S,参数方程为r(u, v) = (x(u,v), y(u,v), z(u,v)),函数为f(x, y, z),则第一类曲面积分的公式为:∬[S] f(x, y, z) dS = ∬[D] f(r(u, v)) ||ru × rv|| du dv其中,dS表示面积元素,||ru × rv||表示曲面的法向量的模。

2.第二类曲面积分:设曲面为S,参数方程为r(u, v) = (x(u,v), y(u,v), z(u,v)),向量场为F(x, y, z) = (P(x, y, z), Q(x, y, z), R(x, y, z)),则第二类曲面积分的公式为:∬[S] F(x, y, z) · dS = ∬[D] F(r(u, v)) · (ru × rv)du dv其中,·表示向量的点乘,dS表示面积元素,ru和rv分别表示曲面参数u和v方向的偏导数。

曲线积分与曲面积分总结

曲线积分与曲面积分总结

第十一章:曲线积分与曲而积分“・ (x = x(t) c若—)S则原式二£7(曲),w))X(/)+y"M对弧长的曲线积分 J/ /(x, y, z)ds = £ f(x(r), y(r), z(t))yjd2x + cl2y + d2z.X = x(t)L:< y = y(t) a <t < pz = z(/)则原式二J:/(4r),y(0,z(r))J(#a))U + ()())2+(z0))2/常见的参数方程为:特别的:j Q ds = J e2ds =,J ds =孑2TC厶为上半圆周x2 + y2=2 (y > 0)二对坐标的曲线积分 [p^y)dx + q{x9y)dy计算方法一:若L:f=%(Z)起点处t=a,终点处20则 =y(0原式二["(双。

,W))x'("〃 + g(x(f), y(/))y(r”〃对坐标的曲线积分 f P(x, y, z)dx + e(x, y,z)dy + R(x,y,讹J LX = x(t)L:< y = y⑴起点处t =a终点处/ = 0则z = z(/)原式二 J: P(x(/),W),Z(t))x\t\lt + Q(x(f), y(/), z(t))y\t)dt + R(x ⑴,y(/), z ⑴)z‘⑴〃/ 计算方法二:在计算曲线积分时,通过适当的添加线段或曲线,是之变成一个封闭曲线上的曲线积分与所添加线段或曲线上的曲线积分之差,从而对前者利用格林公式,后者利用参数方程。

如图:边界特别地:当竺=叟时,积分与路径无关,且 I:;:P(X' y)厶+q(x,y)dy = [ /心 y )dx + J:q(x2, y)dy注:在计算曲线积分时,通过适当的添加线段或曲线,是之变成一个封闭曲线上的曲线积分与所添加线段或曲线上的曲线积分之差,从而对前者利用格林公式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

与路径无关的四个等价命题
条 件
在单连通开区域D 上 P ( x , y ), Q( x , y ) 具有 连续的一阶偏导数,则以下四个命题成立.
等 (1) 在D内L Pdx Qdy与路径无关
价 ( 2)
C Pdx Qdy 0,闭曲线C D
命 ( 3) 在D内存在U ( x , y )使du Pdx Qdy
D
曲线积分
当 R2 上平面曲线L时,



f ( M )d

L
f ( x , y )ds.
三重积分

当 R3 上区域时,
f ( M )d
f ( x , y, z )dV

曲线积分
当 R3 上空间曲线时,


f ( M )d


f ( x , y , z )ds.
lim f ( i , i )si
0 i 1
n
L P ( x, y )dx Q( x, y )dy
n 0 i 1
lim [ P ( i , i )xi Q( i , i )yi ]
L Pdx Qdy L ( P cos Q cos )ds
n
0
i 1
i
i
i
)S i
联 系 计
Pdydz Qdzdx Rdxdy ( P cos Q cos R cos )dS

f ( x , y, z )dS

2 f [ x, y, z( x, y )] 1 z x z2 y dxdy Dxy
R( x , y , z )dxdy
R[ x , y, z( x , y )]dxdy
Dxy
算 一投,二代,三换(与侧无关) 一投,二代,三定号 (与侧有关)
(二)各种积分之间的联系
计算
曲线积分
定积分
Stokes公式 计算 曲面积分 Guass公式
计算 重积分
积分概念的联系
P Q R ( )dv Pdydz Qdzdx Rdxdy x y z 高斯公式
4.曲面积分与曲线积分的联系
R Q P R Q P ( )dydz ( )dzdx ( )dxdy y z z x x y
第十一章:小结
(一)曲线积分与曲面积分
(二)各种积分之间的联系 (三)各种积分的计算方法
(一)曲线积分与曲面积分
第一型曲线积分
(对弧长)
第一型曲面积分
(对面积)
曲 线 积 分
联 计 系 算
联 计 系 算
曲 面 积 分
第二型曲线积分
(对坐标)
第二型曲面积分
(对坐标)
曲线积分
对弧长的曲线积分
定 义 联 系
D yz

(dydz, dzdx, dxdy平面元素(曲面元素投影 ))
Dzx
Dxy
其中
L Pdx Qdy L ( P cos Q cos )ds
Pdydz Qdzdx Rdxdy

( P cos Q cos R cos )dS

理论上的联系
曲面积分 当 R3 上曲面时,


f ( M )d
f ( x, y, z )dS .

计算上的联系
f ( x, y )d a dx y ( x ) f ( x, y )dy, (d面元素)
D
1
b
y2 ( x )
f ( x, y, z )dV

b
1.定积分与不定积分的联系

b
a
f ( x )dx F (b) F (a )
( F ( x ) f ( x ))
牛顿--莱布尼茨公式
2.二重积分与曲线积分的联系
Q P ( )dxdy Pdx Qdy (沿L的正向) L x y D 格林公式
3.三重积分与曲面积分的联系
P Q 题 (4) 在D内, y x
曲面积分
对面积的曲面积分 对坐标的曲面积分
R( x , y, z )dxdy lim R( i ,i , i )( Si ) xy 0 i 1
n
定 f ( x, y, z)dS lim f ( , , 义
a
dx
y2 ( x )
y1 ( x )
dy
z2 ( x , y )
z1 ( x , y )
f ( x , y , z )dz , (dV体元素)
L
f ( x , y )ds f [ x , y( x )] 1 y 2 dx , (ds线元素(曲))
a
b
L f ( x, y )dx a
b
f [ x , y( x )]dx , (dx线元素(投影))
f ( x , y, z )dS

2 2 f [ x , y , z ( x , y )] 1 z x z y dxdy
Dxy
(dS曲面元素)
把曲面Σ向yoz , xoz , xoy面投影,得区域 D yz , Dzx , Dxy .
P ( x, y, z )dydz Q( x, y, z )dzdx R( x, y, z )dxdy.
P[ x( y , z ), y , z ]dydz Q[ x , y( z , x ), z ]dzdx R[ x , y , z( x , y )]dxdy


f ( M )d lim f ( M ) i , f ( M )点函数
0
i 1
n
定积分
当 R1上区间 [a , b]时, f ( M )d



b
a
f ( x )dx .
二重积分
当 R2 上区域D时,


f ( M )d
f ( x , y )d .
L f ( x, y )ds

2 2

LPdx Qdy

[ P[ x( t ), y( t )] x t Q[ x ( t ), y ( t )] y t dt f [ x( t ), y( t )] x y dt t t 算 二代一定 (与方向有关) ( ) 三个代换
相关文档
最新文档