考研曲线积分和曲面积分

合集下载

曲线积分与曲面积分常见题型攻略

曲线积分与曲面积分常见题型攻略

曲线积分与曲面积分常见题型攻略以心同学整理一、计算第一类曲线积分步骤:(一)平面曲线积分t t g y t x L ,)()(:1.化简(1)代入化简【常用在k t g t f )](),([ (常数)的情形】Lds y x f ),(Lds t g t f )](),([ kskds L其中s 为积分曲线L 的长度。

(2)利用奇偶对称性化简①若积分曲线L 关于坐标轴y 轴对称,则有Lds y x f ),(1),(,),(2),(0L x y x f ds y x f x y x f 的偶函数是的奇函数是,其中1L 为y 轴右边部分。

②若积分曲线段L 关于坐标轴x 轴对称,则有Lds y x f ),(1),(,),(2),(0L y y x f ds y x f y y x f 的偶函数是的奇函数是,其中1L 为x 轴上边部分。

(3)利用轮换对称性化简若积分曲线L 中把x 与y 互换,积分曲线不变,则有Lds y x f ),( Ldsx y f ),(2.确定积分曲线L 的参数式方程t t g y t x L ,)()(:注:积分曲线一般以)(x f y 或)(y g x 的形式出现,此时参数式为:b x a x f y x x L,)(:,dy c y y y g x L,)(:3.套公式(一代二换三定限)化为定积分Lds y x f ),(dtt g t t g t f )()()](),([22注意:上限 大于下限 4.计算定积分例1【2017-2018期末】设L 是直线)40(1243 x y x 的一段,则Lds y x )43(60;解:Lds y x )43( Lds12代入化简6012 s 。

例2【2018-2019期末】计算Lds x y)(2,其中L 为圆周422 y x .解:法一:L 的参数方程为sin 2cos 2y x ( 20 ),d d ds 2)cos 2()sin 2(22 ,于是Lds x y )(22022)cos 2sin 4(d 0sin 8202d822148 .法二:由对称性有Lds y 2 Lds x 2(轮换对称),0 Lxds (奇偶对称)所以Lds x y )(2 Lds y 2L ds y x )(2122 Lds 421(代入化简)8422 Lds .例3【2019-2020期末】计算曲线积分Lds y xy x )(22,其中L 为平面区域}0,1|),{(22 y y x y x D 的边界曲线。

(完整版)曲线积分与曲面积分(解题方法归纳)

(完整版)曲线积分与曲面积分(解题方法归纳)

第十一章解题方法归纳一、曲线积分与曲面积分的计算方法1.曲线积分与曲面积分的计算方法归纳如下:(1) 利用性质计算曲线积分和曲面积分.(2) 直接化为定积分或二重积分计算曲线或曲面积分 (3) 利用积分与路径无关计算对坐标的曲线积分. (4) 利用格林公式计算平面闭曲线上的曲线积分. (5) 利用斯托克斯公式计算空间闭曲线上的曲线积分. (6) 利用高斯公式计算闭曲面上的曲面积分. 2. 在具体计算时,常用到如下一些结论: (1)若积分曲线L 关于y 轴对称,则1(,)2(,)LL f x f x y ds f x y ds f x ⎧⎪=⎨⎪⎩⎰⎰对为奇函数对为偶函数 10 (,)2(,)L L P x P x y dx P x y dy P x ⎧⎪=⎨⎪⎩⎰⎰对为奇函数对为偶函数10 (,)2(,)L L Q x Q x y dy Q x y dy Q x ⎧⎪=⎨⎪⎩⎰⎰对为偶函数对为奇函数其中1L 是L 在右半平面部分.若积分曲线L 关于x 轴对称,则1(,)2(,)LL f y f x y ds f x y ds f y ⎧⎪=⎨⎪⎩⎰⎰对为奇函数对为偶函数 10 (,)2(,)L L P y P x y dx P x y dy P y ⎧⎪=⎨⎪⎩⎰⎰对为偶函数对为奇函数10 (,)2(,)L L Q y Q x y dy Q x y dy Q y ⎧⎪=⎨⎪⎩⎰⎰对为奇函数对为偶函数其中1L 是L 在上半平面部分.(2)若空间积分曲线L 关于平面=y x 对称,则()()=⎰⎰LLf x ds f y ds .(3)若积分曲面∑关于xOy 面对称,则10 (,,)2(,,)f z f x y z dS R x y z dS f z ∑∑⎧⎪=⎨⎪⎩⎰⎰⎰⎰对为奇函数对为偶函数10 (,,)2(,,)R z R x y z dxdy R x y z dxdy R z ∑∑⎧⎪=⎨⎪⎩⎰⎰⎰⎰对为偶函数对为奇函数 其中1∑是∑在xOy 面上方部分.若积分曲面∑关于yOz 面对称,则10 (,,)2(,,)f x f x y z dS R x y z dS f x ∑∑⎧⎪=⎨⎪⎩⎰⎰⎰⎰对为奇函数对为偶函数10 (,,)2(,,)P x P x y z dydz P x y z dydz P x ∑∑⎧⎪=⎨⎪⎩⎰⎰⎰⎰对为偶函数对为奇函数 其中1∑是∑在yOz 面前方部分.若积分曲面∑关于zOx 面对称,则10 (,,)2(,,)f y f x y z dS R x y z dS f y ∑∑⎧⎪=⎨⎪⎩⎰⎰⎰⎰对为奇函数对为偶函数10 (,,)2(,,)Q y Q x y z dzdx Q x y z dzdx Q y ∑∑⎧⎪=⎨⎪⎩⎰⎰⎰⎰对为偶函数对为奇函数 其中1∑是∑在zOx 面右方部分.(4)若曲线弧():()()αβ=⎧≤≤⎨=⎩x x t L t y y t ,则[(,)(),()()βααβ=<⎰⎰Lf x y ds f x t y t若曲线弧:()()θαθβ=≤≤L r r (极坐标),则[(,)()cos ,()sin βαθθθθθ=⎰⎰Lf x y ds f r r若空间曲线弧():()()()αβ=⎧⎪Γ=≤≤⎨⎪=⎩x x t y y t t z z t ,则[(,,)(),(),()()βααβΓ=<⎰⎰f x y z ds f x t y t z t(5)若有向曲线弧():(:)()αβ=⎧→⎨=⎩x x t L t y y t ,则[][]{}(,)(,)(),()()(),()()βα''+=+⎰⎰LP x y dx Q x y dy P x t y t x t Q x t y t y t dt若空间有向曲线弧():()(:)()αβ=⎧⎪Γ=→⎨⎪=⎩x x t y y t t z z t ,则(,,)(,,)(,,)Γ++⎰P x y z dx Q x y z dy R x y z dz[][][]{}(),(),()()(),(),()()(),(),()()βα'''=++⎰P x t y t z t x t Q x t y t z t y t R x t y t z t z t dt(6)若曲面:(,)((,))xy z z x y x y D ∑=∈,则[(,,),,(,)xyD f x y z dS f x y z x y ∑=⎰⎰⎰⎰其中xy D 为曲面∑在xOy 面上的投影域.若曲面:(,)((,))yz x x y z y z D ∑=∈,则[(,,)(,),,yzD f x y z dS f x y z y z ∑=⎰⎰⎰⎰其中yz D 为曲面∑在yOz 面上的投影域.若曲面:(,)((,))zx y y x z x z D ∑=∈,则[(,,),(,),zxD f x y z dS f x y x z z ∑=⎰⎰⎰⎰其中zx D 为曲面∑在zOx 面上的投影域.(7)若有向曲面:(,)z z x y ∑=,则(,,)[,,(,)]xyD R x y z dxdy R x y z x y dxdy ∑=±⎰⎰⎰⎰(上“+”下“-”) 其中xy D 为∑在xOy 面上的投影区域.若有向曲面:(,)x x y z ∑=,则(,,)[(,),,]yzD P x y z dydz P x y z y z dydz ∑=±⎰⎰⎰⎰(前“+”后“-”) 其中yz D 为∑在yOz 面上的投影区域.若有向曲面:(,)y y x z ∑=,则(,,)[,(,),]zxD Q x y z dzdx Q x y x z z dzdx ∑=±⎰⎰⎰⎰(右“+”左“-”) 其中zx D 为∑在zOx 面上的投影区域. (8)d d +⎰LP x Q y 与路径无关d d 0⇔+=⎰cP x Q y (c 为D 内任一闭曲线)(,)⇔=+du x y Pdx Qdy (存在(,)u x y ) ∂∂⇔=∂∂P Qy x其中D 是单连通区域,(,),(,)P x y Q x y 在D 内有一阶连续偏导数.(9)格林公式(,)(,)⎛⎫∂∂+=- ⎪∂∂⎝⎭⎰⎰⎰L D Q P P x y dx Q x y dy dxdy x y 其中L 为有界闭区域D 的边界曲线的正向,(,),(,)P x y Q x y 在D 上具有一阶连续偏导数.(10)高斯公式(,,)(,,)(,,)P Q R P x y z dydz Q x y z dzdx R x y z dxdy dv x y z ∑Ω⎛⎫∂∂∂++=++ ⎪∂∂∂⎝⎭⎰⎰⎰⎰⎰ 或(cos cos cos )P Q R P Q R dS dv x y z αβγ∑Ω⎛⎫∂∂∂++=++ ⎪∂∂∂⎝⎭⎰⎰⎰⎰⎰ 其中∑为空间有界闭区域Ω的边界曲面的外侧,(,,),(,,),(,,)P x y z Q x y z R x y z 在Ω上具有一阶连续偏导数,cos ,cos ,cos αβγ为曲面∑在点(,,)x y z 处的法向量的方向余弦.(11)斯托克斯公式dydz dzdx dxdy Pdx Qdy Rdz x y z PQRΓ∑∂∂∂++=∂∂∂⎰⎰⎰其中Γ为曲面∑的边界曲线,且Γ的方向与∑的侧(法向量的指向)符合右手螺旋法则,,,P Q R 在包含∑在内的空间区域内有一阶连续偏导数.1. 计算曲线积分或曲面积分的步骤:(1)计算曲线积分的步骤:1)判定所求曲线积分的类型(对弧长的曲线积分或对坐标的曲线积分); 2)对弧长的曲线积分,一般将其化为定积分直接计算;对坐标的曲线积分:① 判断积分是否与路径无关,若积分与路径无关,重新选取特殊路径积分; ② 判断是否满足或添加辅助线后满足格林公式的条件,若满足条件,利用格林公式计算(添加的辅助线要减掉);③ 将其化为定积分直接计算.④ 对空间曲线上的曲线积分,判断是否满足斯托克斯公式的条件,若满足条件,利用斯托克斯公式计算;若不满足,将其化为定积分直接计算.(2)计算曲面积分的步骤:1)判定所求曲线积分的类型(对面积的曲面积分或对坐标的曲面积分); 2)对面积的曲面积分,一般将其化为二重积分直接计算;对坐标的曲面积分:① 判断是否满足或添加辅助面后满足高斯公式的条件,若满足条件,利用高斯公式计算(添加的辅助面要减掉);② 将其投影到相应的坐标面上,化为二重积分直接计算. 例1 计算曲线积分2+=++⎰Ldx dyI x y x,其中L 为1+=x y 取逆时针方向. 解 2222111++===++++++⎰⎰⎰⎰LL L L dx dy dx dy dx dyI x y x x x x 由于积分曲线L 关于x 轴、y 轴均对称,被积函数211==+P Q x对x 、y 均为偶函数,因此220,011==++⎰⎰L L dxdyx x故 20+==++⎰Ldx dyI x y x『方法技巧』 对坐标的曲线积分的对称性与对弧长的曲线积分对称性不同,记清楚后再使用.事实上,本题还可应用格林公式计算.例 2 计算曲面积分2()∑=+++⎰⎰I ax by cz n dS ,其中∑为球面2222++=x y z R .解 2()∑=+++⎰⎰I ax by cz n dS2222222(222222)∑=+++++++++⎰⎰a x b y c z n abxy acxz bcyz anx bny cnz dS由积分曲面的对称性及被积函数的奇偶性知0∑∑∑∑∑∑======⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰xydS xzdS yzdS xdS ydS zdS又由轮换对称性知222∑∑∑==⎰⎰⎰⎰⎰⎰x dS y dS z dS 故 2222222∑∑∑∑=+++⎰⎰⎰⎰⎰⎰⎰⎰I a x dS b y dS c z dS n dS22222()∑∑=+++⎰⎰⎰⎰a b c x dS n dS22222222()43π∑++=+++⎰⎰a b c xy z dS R n22222222222244[()]33ππ∑++=+=+++⎰⎰a b c R R dS R n R a b c n『方法技巧』 对面积的曲面积分的对称性与对坐标的曲面积分的对称性不同,理解起来更容易些.若碰到积分曲面是对称曲面,做题时可先考虑一下对称性.例3 计算曲面积分222()∑++⎰⎰x y z dS ,其中∑为球面2222++=x y z ax .解 2222()22()2∑∑∑∑++==-+⎰⎰⎰⎰⎰⎰⎰⎰x y z dS axdS a x a dS a dS 222402248ππ∑=+==⎰⎰a dS a a a『方法技巧』 积分曲面∑是关于0-=x a 对称的,被积函数-x a 是-x a 的奇函数,因此()0∑-=⎰⎰x a dS例4 计算曲线积分2222-+⎰Lxy dy x ydxx y L 为圆周222(0)+=>x y a a 的逆时针方向.解法1 直接计算. 将积分曲线L 表示为参数方程形式cos :(:02)sin θθπθ=⎧→⎨=⎩x a L y a代入被积函数中得22232222[cos sin cos cos sin (sin )]πθθθθθθθ-=--+⎰⎰Lxy dy x ydxad x y2232232202sin cos 2sin (1sin )ππθθθθθθ==-⎰⎰a d a d324332013118(sin sin )8224222πππθθθπ⎛⎫=-=-= ⎪⎝⎭⎰ad a a解法2 利用格林公式2222222211()-=-=++⎰⎰⎰⎰LLDxy dy x ydxxy dy x ydx x y dxdy aa x y 其中222:+≤D x y a ,故222232200112πθρρρπ-==+⎰⎰⎰a Lxy dy x ydxd d a a x y『方法技巧』 本题解法1用到了定积分的积分公式:213223sin 13312422πθθπ--⎧⎪⎪-=⎨--⎪⎪-⎩⎰n n n n n n d n n n nn 为奇数为偶数解法2中,一定要先将积分曲线222+=x y a 代入被积函数的分母中,才能应用格林公式,否则不满足,P Q 在D 内有一阶连续偏导数的条件.例5 计算曲线积分22()()+--+⎰L x y dx x y dyx y,其中L 为沿cos π=y x 由点 (,)ππ-A 到点(,)ππ--B 的曲线弧.解 直接计算比较困难.由于 2222,+-+==++x y x yP Q x y x y,222222()∂--∂==∂+∂P x y xy Q y x y x 因此在不包含原点(0,0)O 的单连通区域内,积分与路径无关.取圆周2222π+=x y 上从(,)ππ-A 到点(,)ππ--B 的弧段'L 代替原弧段L ,其参数方程为:cos 5:(:)44sin θππθθ⎧=⎪'-→⎨=⎪⎩x L y ,代入被积函数中得 222()()1()()2π'+--=+--+⎰⎰LL x y dx x y dy x y dx x y dy x y544[(cos sin )(sin )(cos sin )cos ]ππθθθθθθθ-=+---⎰d54432ππθπ-=-=-⎰d『方法技巧』 本题的关键是选取积分弧段'L ,既要保证'L 简单,又要保证不经过坐标原点.例6 计算曲面积分∑++⎰⎰xdydz ydzdx zdxdy ,其中∑1=的法向量与各坐标轴正向夹锐角的侧面.解 由于曲面∑具有轮换对称性,∑∑∑==⎰⎰⎰⎰⎰⎰xdydz ydzdx zdxdy ,∑投影到xOy面的区域{}(,)1=≤xy D x y ,故233(1∑∑∑++==⎰⎰⎰⎰⎰⎰xdydz ydzdx zdxdy zdxdy dxdy21(1223(13(1==⎰⎰⎰⎰xyD dxdy dxdy 1401(12=⎰dx411(1)30--=⎰t t dt 『方法技巧』 由于积分曲面∑具有轮换对称性,因此可以将,dydz dzdx 直接转换为dxdy ,∑只要投影到xOy 面即可.例7 计算曲面积分222()()()∑-+-+-⎰⎰x y dydz y z dzdx z x dxdy ,其中∑为锥面222=+z x y 在0≤≤z h 部分的上侧.解 利用高斯公式. 添加辅助面2221:()∑=+≤z h x y h ,取下侧,则222()()()∑-+-+-⎰⎰x y dydz y z dzdx z x dxdy 1222()()()∑+∑=-+-+-⎰⎰x y dydz y z dzdx z x dxdy1222()()()∑--+-+-⎰⎰x y dydz y z dzdx z x dxdy123()Ω∑=---⎰⎰⎰⎰⎰dxdydz h x dxdy 23()Ω=-+-⎰⎰⎰⎰⎰xyD dxdydz h x dxdy其中Ω为∑和1∑围成的空间圆锥区域,xy D 为∑投影到xOy 面的区域,即{}222(,)=+≤xy D x y x y h ,由xy D 的轮换对称性,有2221()2=+⎰⎰⎰⎰xyxyD D x dxdy x y dxdy 故222()()()∑-+-+-⎰⎰x y dydz y zdzdx z x dxdy222113()32π=-+-+⎰⎰⎰⎰xyxyD D h h h dxdy x y dxdy23234001124πππθρρπ=-+-=-⎰⎰h h h h d d h『方法技巧』 添加辅助面时,既要满足封闭性,又要满足对侧的要求.本题由于积分锥面取上侧(内侧),因此添加的平面要取下侧,这样才能保证封闭曲面取内侧,使用高斯公式转化为三重积分时,前面要添加负号.例8 计算曲线积分()()()-+-+-⎰Lz y dx x z dy x y dz ,其中221:2⎧+=⎨-+=⎩x y L x y z 从z 轴的正向往负向看,L 的方向是顺时针方向.解 应用斯托克斯公式计算. 令22:2(1)∑-+=+≤x y z x y 取下侧,∑在xOy 面的投影区域为{}22(,)1=+≤xy D x y x y ,则()()()∑∂∂∂-+-+-=∂∂∂---⎰⎰⎰Ldydzdzdx dxdy z y dx x z dy x y dz x y z z yx zx y222π∑==-=-⎰⎰⎰⎰xyD dxdy dxdy『方法技巧』 本题用斯托克斯公式计算比直接写出曲线L 的参数方程代入要简单,所有应用斯托克斯公式的题目,曲面∑的选取都是关键,∑既要简单,又要满足斯托克斯的条件,需要大家多加练习.二、曲线积分与曲面积分的物理应用1.曲线积分与曲面积分的物理应用归纳如下: (1) 曲线或曲面形物体的质量. (2) 曲线或曲面的质心(形心). (3) 曲线或曲面的转动惯量. (4) 变力沿曲线所作的功. (5) 矢量场沿有向曲面的通量. (6) 散度和旋度.2. 在具体计算时,常用到如下一些结论: (1)平面曲线形物体 (,)ρ=⎰LM x y ds空间曲线形物体 (,,)ρ=⎰LM x y z ds曲面形构件 (,,)ρ∑=⎰⎰M x y z dS(2) 质心坐标平面曲线形物体的质心坐标: (,)(,),(,)(,)ρρρρ==⎰⎰⎰⎰L L LLx x y ds y x y ds x y x y dsx y ds空间曲线形物体的质心坐标:(,,)(,,)(,,),,(,)(,)(,)ρρρρρρ===⎰⎰⎰⎰⎰⎰LLLLLLx x y z dsy x y z dsz x y z dsx y z x y dsx y dsx y ds曲面形物体的质心坐标:(,,)(,,)(,,),,(,,)(,,)(,,)ρρρρρρ∑∑∑∑∑∑===⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰x x y z dSy x y z dSz x y z dSx y z x y z dSx y z dSx y z dS当密度均匀时,质心也称为形心.(3) 转动惯量平面曲线形物体的转动惯量:22(,),(,)ρρ==⎰⎰x y LLI y x y ds I x x y ds空间曲线形物体的转动惯量:2222()(,,),()(,,)ρρ=+=+⎰⎰x y LLI y z x y z ds I z x x y z ds22()(,,)ρ=+⎰z LI x y x y z ds曲面形物体的转动惯量:2222()(,,),()(,,)ρρ∑∑=+=+⎰⎰⎰⎰x y I y z x y z dS I z x x y z dS22()(,,)ρ∑=+⎰⎰z I x y x y z dS其中(,)ρx y 和(,,)ρx y z 分别为平面物体的密度和空间物体的密度.(4) 变力沿曲线所作的功平面上质点在力F (,)=P x y i +(,)Q x y j 作用下,沿有向曲线弧L 从A 点运动到B 点,F 所做的功(,)(,)=+⎰ABW P x y dx Q x y dy 空间质点在力F (,,)=P x y z i +(,,)Q x y z j +(,,)R x y z k 作用下,沿有向曲线弧L 从A 点运动到B 点,F 所做的功(,,)(,,)(,,)=++⎰ABW P x y z dx Q x y z dy R x y z dz (2) 矢量场沿有向曲面的通量矢量场A (,,)=P x y z i +(,,)Q x y z j +(,,)R x y z k 通过有向曲面∑指定侧的通量(,,)(,,)(,,)∑Φ=++⎰⎰P x y z dydz Q x y z dzdx R x y z dxdy(3) 散度和旋度矢量场A (,,)=P x y z i +(,,)Q x y z j +(,,)R x y z k 的散度div A ∂∂∂=++∂∂∂P Q R x y z矢量场A (,,)=P x y z i +(,,)Q x y z j +(,,)R x y z k 的旋度rot A ()∂∂=-∂∂R Q y z i ()∂∂+-∂∂P R z xj +()∂∂-∂∂Q P x y k xy z P Q R∂∂∂=∂∂∂ 1. 曲线积分或曲面积分应用题的计算步骤:ij k(1)根据所求物理量,代入相应的公式中;(2)计算曲线积分或曲面积分.例9 设质点在场力F {}2,=-k y x r 的作用下,沿曲线π:cos 2=L y x 由(0,)2πA 移动到(,0)2πB ,求场力所做的功.(其中=r k解 积分曲线L 如图11.7所示. 场力所做的功为(,)(,)=+⎰AB W P x y dx Q x y dy 22=-⎰AB y x k dx dy r r 令22,==-y x P Q r r ,则22224()(∂-∂==+≠∂∂P k x y Q x y y r x 即在不含原点的单连通区域内,积分与路径无关. 另取由A 到B 的路径:1πππ:cos ,sin (:0)222θθθ==→L x y 1022222π(sin cos )d 2πθθθ=-=-+=⎰⎰L y x W k dx dy k k r r 『方法技巧』 本题的关键是另取路径1L ,一般而言,最简单的路径为折线路径,比如AO OB ,但不可以选取此路径,因为,P Q 在原点处不连续. 换句话说,所取路径不能经过坐标原点,当然路径1L 的取法不是唯一的.例10 设密度为1的流体的流速v 2=xz i sin +x k ,曲面∑是由曲线(12)0⎧⎪=≤≤⎨=⎪⎩y z x 饶z 轴旋转而成的旋转曲面,其法向量与z 轴正向的夹角为锐角,求单位时间内流体流向曲面∑正侧的流量Q .解 旋转曲面为222:1(12)∑+-=≤≤x y z z ,令1∑为平面1=z 在∑内的部分取上侧,2∑为平面2=z 在∑内的部分取下侧,则12∑+∑+∑为封闭曲面的内侧,故(,,)(,,)(,,)∑=++⎰⎰Q P x y z dydz Q x y z dzdx R x y z dxdy2sin ∑=+⎰⎰xz dydz xdxdy1212222sin sin sin ∑+∑+∑∑∑=+-+-+⎰⎰⎰⎰⎰⎰xz dydz xdxdy xz dydz xdxdy xz dydz xdxdy 122sin sin Ω∑∑=---⎰⎰⎰⎰⎰⎰⎰z dxdydz xdxdy xdxdy2222222221125sin sin +≤++≤+≤=--+⎰⎰⎰⎰⎰⎰⎰x y z x y x y z dz dxdy xdxdy xdxdy2221128(1)0015ππ=-+-+=-⎰z z dz 『方法技巧』 本题的关键是写出旋转曲面∑的方程,其次考虑封闭曲面的侧,以便应用高斯公式,最后用截痕法计算三重积分,用对称性计算二重积分.。

第八章-曲线积分与曲面积分部分考研真题及解答

第八章-曲线积分与曲面积分部分考研真题及解答

第八章 曲线积分与曲面积分 8.1对弧长的曲线积分8.2对坐标的曲线积分07.1) 设曲线:(,)1((,)L f x y f x y =具有一阶连续偏导数),过第II 象限内的点M 和第IV 象限内的点N ,T 为L 上从点M 到点N 的一段弧,则下列小于零的是 ( B ) (A )(,)Tf x y dx ⎰. (B)(,)Tf x y dy ⎰.(C)(,)Tf x y ds ⎰. (D)(,)(,)x y Tf x y dx f x y dy ''+⎰.04.1) 设L 为正向圆周222=+y x 在第一象限中的部分,则曲线积分⎰-Lydx xdy 2的值为π23.(利用极坐标将曲线用参数方程表示) 09.1)已知曲线2:(0L y x x =≤≤,则Lxds ⎰=13610.1)已知曲线L 的方程为1||,y x =-([1,1]),x ∈-起点为(1,0),-终点为(1,0),则曲线积分2Lxydx x dy +=⎰0 (直接算或格林)01.1)计算222222()(2)(3)LI y z dx z x dy x y dz =-+-+-⎰,其中L 是平面2x y z ++=与柱面|x |+|y |=1的交线,从z 轴正向看去,L 为逆时针方向。

解:记S 为平面2x y z ++=上L 所围部分的上侧,D 为S 在xOy 坐标面上的投影。

由斯托克斯公式得(24)(26)(26)SI y z dydz z x dzdx x y dxdy=--+--+--⎰⎰(423)Sx y z dS =++⎰⎰2(6)Dx y dxdy =--+⎰⎰12Ddxdy =-⎰⎰=-2408.1)计算曲线积分2sin 22(1)Lxdx x ydy +-⎰,其中L 是曲线sin y x =上从点(0,0)到点(,0)π的一段.(路径表达式直接代入)8.3格林公式02.1)设函数()f x 在(,)-∞+∞内具有一阶连续导数,L 是上半平面(0)y >内的有向分段光滑曲线,其起点为(,)a b ,终点为(,)c d ,记22211()()1Lx I y f xy dx y f xy dy y y ⎡⎤⎡⎤=++-⎣⎦⎣⎦⎰(1)证明曲线积分I 与路径L 无关;(2)当ab cd =时,求I 的值.03.1) 已知平面区域}0,0),{(ππ≤≤≤≤=y x y x D ,L 为D 的正向边界. 试证: (1)dx ye dy xe dx ye dy xex Ly x Lysin sin sin sin -=-⎰⎰--; (2) .22sin sin π≥--⎰dx ye dy xe x Ly【详解】 方法一: (1) 左边=dx e dy e x y ⎰⎰--0sin 0sin ππππ=⎰-+ππ0sin sin )(dx e e x x ,右边=⎰⎰--ππππ0sin sin dx edy exy=⎰-+ππ0sin sin )(dx e e x x ,所以dx ye dy xe dx ye dy xex Ly x L ysin sin sin sin -=-⎰⎰--.(2) 由于2sin sin ≥+-x xe e,故由(1)得.2)(20sin sin sin sin πππ≥+=-⎰⎰--dx e e dx yedy xex x xLy方法二:(1) 根据格林公式,得⎰⎰⎰--+=-Dx y x Ly dxdy e e dx ye dy xe )(sin sin sin sin , ⎰⎰⎰+=---Dx y x Ly dxdy e e dx ye dy xe )(sin sin sin sin . 因为D 具有轮换对称性,所以⎰⎰-+Dx y dxdy e e )(sin sin =⎰⎰+-Dxy dxdy e e )(sin sin , 故dx ye dy xe dx ye dy xex Ly x Lysin sin sin sin -=-⎰⎰--.(2) 由(1)知⎰⎰⎰--+=-Dx y x Ly dxdy e e dx ye dy xe )(sin sin sin sin =dxdy e dxdy e DDx y ⎰⎰⎰⎰-+sin sin =dxdy e dxdy e DDxx ⎰⎰⎰⎰-+sin sin (利用轮换对称性) =.22)(2sin sin π=≥+⎰⎰⎰⎰-dxdy dxdy e eDDx x05.1)设函数)(y ϕ具有连续导数,在围绕原点的任意分段光滑简单闭曲线L 上,曲线积分⎰++Ly x xydydx y 4222)(ϕ的值恒为同一常数.(I )证明:对右半平面x >0内的任意分段光滑简单闭曲线C ,有022)(42=++⎰Cyx xydydx y ϕ;(II )求函数)(y ϕ的表达式.【详解】 (I )Yl 3如图,将C 分解为:21l l C +=,另作一条曲线3l 围绕原点且与C 相接,则=++⎰Cy x xydydx y 4222)(ϕ-++⎰+314222)(l l y x xydydx y ϕ022)(3242=++⎰+l l y x xydydx y ϕ.(II ) 设2424()2,22y xyP Q x yx y ϕ==++,,P Q 在单连通区域0x >内具有一阶连续偏导数,由(Ⅰ)知,曲线积分24()22Ly dx xydyx yϕ++⎰在该区域内与路径无关,故当0x >时,总有Q Px y∂∂=∂∂. 24252422422(2)4242,(2)(2)Q y x y x xy x y y x x y x y ∂+--+==∂++ ① 243243242242()(2)4()2()()4().(2)(2)P y x y y y x y y y y y y x y x y ϕϕϕϕϕ'''∂+-+-==∂++ ② 比较①、②两式的右端,得435()2,()4()2.y y y y y y y ϕϕϕ'=-⎧⎨'-=⎩ 由③得2()y y c ϕ=-+,将()y ϕ代入④得 535242,y cy y -= 所以0c =,从而2().y y ϕ=- 06.1)设在上半平面D=(){},0x y y >内,数(),f x y 是有连续偏导数,且对任意的t >0都有()()2,,f tx ty t f x y =.证明: 对L 内的任意分段光滑的有向简单闭曲线L ,都有()()2,,0yf x y dx xf x y dy -=⎰证:把2(,)(,)f tx ty tf x y t -=两边对求导得:(,)(,)2(,)x y xf tx ty yf tx ty tf x y ''+=-令 1t =,则(,)(,)2(,)x y xf x y yf x y f x y ''+=- 再令 (,),(,)P yf x y Q xf x y ==-③ ④所给曲线积分等于0的充分必要条件为Q Px y ∂∂=∂∂今 (,)(,)x Q f x y xf x y x∂'=--∂(,)(,)y Pf x y yf x y y∂'=+∂ 要求Q Px y∂∂=∂∂成立,只要(,)(,)2(,)x y xf x y yf x y f x y ''+=- 我们已经证明,Q Px y∂∂∴=∂∂,于是结论成立。

高等数学第十章曲线积分与曲面积分(考研辅导班内部资料)

高等数学第十章曲线积分与曲面积分(考研辅导班内部资料)

ds L ( L 表示曲线 L 的弧长 ) .
L
积函数可用积分曲线方程作变换.
( 6) 奇偶性与对称性 如果积分弧段 L (AB ) 关于 y 轴对称,
f (x, y)ds 存在,则
L( AB )
f ( x, y)ds
L ( AB )
0,
f ( x, y) 关于 x是奇函数 ,
2
f ( x, y)ds,f ( x, y) 关于 x是偶函数 .
切线的方向余弦是一个常量。 所以, 当积分曲线是直线时, 可能采用两类不同的曲线积分的
转换。
定理 4 (格林公式)
设 D 是由分段光滑的曲线 L 围成,函数 P( x, y), Q (x, y) 及其一阶偏导数在 D 上连续,
则有
P(x, y)dx Q (x, y)d y
Q P dxdy
L
Dx x
设 L (AB ) 的平面曲线: 其参数方程: x
分别是 和 ,则
(t), y
(t) ,起点和终点对应的参数取值
Pdx Qdy
L ( AB)
{ P( (t ), (t)] (t) Q[( (t), (t )] (t )}dt
设 L (AB ) 的空间曲线 :其参数方程: x (t), y (t ), z w(t ) ,起点和终点对应的
表示曲线的线密度。 定义 2 第二类曲线积分(对坐标的曲线积分)
( 1)平面曲线 L( AB) 的积分:
P(x, y)dx Q( x, y)dy
L ( AB )
( 2)空间曲线 L( AB) 的积分:
n
lim
(T ) 0
[ f ( k , k ) xk
k1
f ( k , k ) yk ]

曲线积分与曲面积分的概念与计算

曲线积分与曲面积分的概念与计算

曲线积分与曲面积分的概念与计算在数学中,曲线积分和曲面积分是两个重要的概念,用于描述曲线和曲面上的各种物理量的计算。

本文将详细介绍这两个概念的定义以及计算方法。

1. 曲线积分的概念与计算曲线积分用于计算曲线上的矢量场或标量场沿曲线的积分值,常用于求解沿路径的功、电磁感应等问题。

曲线积分可以分为第一类和第二类,下面将分别介绍。

1.1 第一类曲线积分第一类曲线积分可以用于计算矢量场沿曲线的积分值,其计算公式如下:∮C F·ds其中,C表示曲线,F表示矢量场,ds表示曲线C上的一小段投影长度,F·ds表示矢量场F与ds的点积。

要计算第一类曲线积分,首先需要确定曲线C的参数方程,并对其进行参数化。

然后,将参数方程代入上述公式,并对参数范围进行积分即可得到结果。

1.2 第二类曲线积分第二类曲线积分用于计算标量场沿曲线的积分值,其计算公式如下:∮C f ds其中,C表示曲线,f表示标量场,ds表示曲线C上的一小段投影长度。

要计算第二类曲线积分,同样需要确定曲线C的参数方程,并对其进行参数化。

然后,将参数方程代入上述公式,并对参数范围进行积分即可得到结果。

2. 曲面积分的概念与计算曲面积分用于计算曲面上的矢量场或标量场通过曲面的通量或质量的计算。

曲面积分同样可以分为第一类和第二类,下面将一一介绍。

2.1 第一类曲面积分第一类曲面积分用于计算矢量场通过曲面的通量,其计算公式如下:∬S F·dS其中,S表示曲面,F表示矢量场,dS表示曲面S上的一小块面积,F·dS表示矢量场F与dS的点积。

要计算第一类曲面积分,首先需要确定曲面S的参数方程,并对其进行参数化。

然后,将参数方程代入上述公式,并对参数范围进行积分即可得到结果。

2.2 第二类曲面积分第二类曲面积分用于计算标量场通过曲面的质量,其计算公式如下:∬S f dS其中,S表示曲面,f表示标量场,dS表示曲面S上的一小块面积。

曲线积分与曲面积分

曲线积分与曲面积分

曲线积分与曲面积分曲线积分与曲面积分是微积分中重要的概念和计算方法,它们在物理、工程和其他科学领域中的应用广泛。

本文将重点介绍曲线积分和曲面积分的概念、计算方法和应用。

一、曲线积分曲线积分是对曲线上的函数进行积分运算的方法。

它可以用来计算曲线上的物理量或者曲线周围的环量。

曲线积分可以分为第一类曲线积分和第二类曲线积分。

1. 第一类曲线积分第一类曲线积分也叫标量场的曲线积分,是对曲线上函数的积分。

设曲线C为参数方程r(t) = {x(t), y(t), z(t)},函数f(x, y, z)在曲线C上有定义,则第一类曲线积分的计算公式为:∫[C]f(x, y, z)ds = ∫[a,b]f(x(t), y(t), z(t))|r'(t)|dt其中ds表示曲线上的长度元素,|r'(t)|表示参数方程的导数的模。

2. 第二类曲线积分第二类曲线积分也叫矢量场的曲线积分,是对曲线上的矢量场进行积分。

设曲线C为参数方程r(t) = {x(t), y(t), z(t)},矢量场F(x, y, z)在曲线C上有定义,则第二类曲线积分的计算公式为:∫[C]F(x, y, z)•dr = ∫[a,b]F(x(t), y(t), z(t))•r'(t)dt其中•表示矢量的点积运算。

二、曲面积分曲面积分是对曲面上的函数进行积分运算的方法。

曲面积分可以分为第一类曲面积分和第二类曲面积分。

1. 第一类曲面积分第一类曲面积分也叫标量场的曲面积分,是对曲面上函数的积分。

设曲面S为参数方程r(u, v) = {x(u, v), y(u, v), z(u, v)},函数f(x, y, z)在曲面S上有定义,则第一类曲面积分的计算公式为:∬[S]f(x, y, z)dS = ∬[D]f(x(u, v), y(u, v), z(u, v))|ru × rv|dudv其中dS表示曲面上的面积元素,D为参数化区域,ru和rv分别为参数方程r(u, v)对u和v的偏导数,ru × rv表示它们的叉积。

陈纪修《数学分析》(第2版)(下册)名校考研真题-曲线积分、曲面积分与场论(圣才出品)

陈纪修《数学分析》(第2版)(下册)名校考研真题-曲线积分、曲面积分与场论(圣才出品)

陈纪修《数学分析》(第2版)(下册)名校考研真题-曲线积分、曲面积分与场论(圣才出品)第14章曲线积分、曲面积分与场论1.计算为取逆时针方向.[南开大学2011研]解:记因为P与Q在点(0,0)处都无定义,则不能直接应用格林公式.在L围成的区域内取一闭曲线L1:(取逆时针方向),则在L与L1围成是区域内可以应用格林公式.由于则由Green公式知,则2.求第一型曲面积分其中h≠R.[浙江大学研]解:令其中且3.计算其中[湖南大学研]解:令所以4.求常数λ,使得曲线积分对上半平面内任何光滑闭曲线L成立.[北京大学研]解:记由题设知,所考虑积分在上半平面内与路径无关,所以,即即即所以λ=.5.设为xy平面上具有光滑边界的有界闭区域且u为非常值函数及证明[武汉大学研]证明:因在上,u=0.故所以又u为非常值函数,故再注意到的连续性,所以6.计算其中∑为圆柱面被z=0,z=3截的部分外侧.[北京航空航天大学研]解:分别补充圆柱体的交面记P=x,Q=y,R=z,由奥高公式而平面,yz平面;平面,yz平面,所以从而7.计算为[南开大学2011研]解:(对称性)8.计算曲线积分其中L是从(2a,0)沿曲线到点(0,0)的一段.[兰州大学2009研]解:曲线即记则所以所以由Green公式得9.计算,其中为圆柱面的部分,它的法线与ox轴正向成锐角;为xoy平面上半圆域:的部分,它的法线与oz轴正向相反.[上海交通大学研]解:如图14-1所示,补充则构成封闭曲面的外侧,由奥高公式其中则又,从而平面,平面,从而图14-110.计算曲线积分其中C是从A(-a,0)经上半椭圆到B(a,0)的弧段.[湖北大学研]解:记则所以此积分在上半平面内与路径无关,如图14-2所示取以(0,0)为心,a为半径的上半圆周,则。

高数考研备战曲线积分与曲面积分的关系与转化

高数考研备战曲线积分与曲面积分的关系与转化

高数考研备战曲线积分与曲面积分的关系与转化曲线积分和曲面积分是数学中的重要概念,在高数考研备战中也是必不可少的知识点。

曲线积分主要用于计算曲线上某个物理量的总量,而曲面积分则用于计算曲面上某个物理量的总量。

两者之间存在一定的关系和转化方法,下面我们将详细介绍。

一、曲线积分的概念和计算方法曲线积分是用来计算曲线上某个物理量的总量。

在数学上通常将曲线积分分为第一类曲线积分和第二类曲线积分。

1. 第一类曲线积分第一类曲线积分是指对曲线上函数的积分运算。

根据曲线的参数方程表示,第一类曲线积分可以表示为:∫ [a, b] f(x(t), y(t)) ds其中,f(x, y)是定义在曲线上的函数,x(t)和y(t)是曲线的参数方程,ds是曲线上的弧长元素。

2. 第二类曲线积分第二类曲线积分是指对曲线上向量场的积分运算。

根据曲线的参数方程表示,第二类曲线积分可以表示为:∫ [a, b] F(x(t), y(t)) · dr其中,F(x, y)是定义在曲线上的向量场,x(t)和y(t)是曲线的参数方程,dr是曲线上的切向量元素。

二、曲面积分的概念和计算方法曲面积分是用来计算曲面上某个物理量的总量。

曲面积分同样分为第一类曲面积分和第二类曲面积分。

1. 第一类曲面积分第一类曲面积分是指对曲面上函数的积分运算。

根据曲面的参数方程表示,第一类曲面积分可以表示为:∫∫ Ω f(x, y, z) dS其中,f(x, y, z)是定义在曲面上的函数,Ω是曲面的投影区域,dS 是曲面上的面积元素。

2. 第二类曲面积分第二类曲面积分是指对曲面上向量场的积分运算。

根据曲面的参数方程表示,第二类曲面积分可以表示为:∫∫ Ω F(x, y, z) · dS其中,F(x, y, z)是定义在曲面上的向量场,Ω是曲面的投影区域,dS是曲面上的面积元素。

三、曲线积分与曲面积分的关系与转化在某些情况下,曲线积分和曲面积分之间存在一定的联系与转化方法。

曲线积分与曲面积分知识点

曲线积分与曲面积分知识点

第十章 曲线积分与曲面积分一、 一、 重点两类曲面积分及两类曲面积分的计算和格林公式、高斯公式的应用 二、 二、 难点对曲面侧的理解,把对坐标的曲面积分化成二重积分,利用格林公式求非闭曲线上的第二类曲线积分,及利用高斯公式计算非闭曲面上的第二类曲面积分。

三、 三、 内容提要1. 1. 曲线(面)积分的定义:(1) (1) 第一类曲线积分∑⎰=→∆∆ni i i i LS f ds y x f 0),(lim ),(ηξλ(存在时)i S ∆表示第i 个小弧段的长度,(i i ηξ,)是i S ∆上的任一点小弧段的最大长度。

实际意义:当f(x,y)表示L 的线密度时,⎰Lds y x f ),(表示L 的质量;当f(x,y) ≡1时,⎰Lds表示L 的弧长,当f(x,y)表示位于L 上的柱面在点(x,y )处的高时,⎰Lds y x f ),(表示此柱面的面积。

(2) (2) 第二类曲线积分]),(),([lim 1i i i ni iiiLy Q x P Qdy Pdx ∆+∆∆+∑⎰=→ηξηξλ(存在时)实际意义:设变力F =P(x,y) i +Q(x,y) j 将质点从点A 沿曲线L 移动到B 点,则F 作的功为:⎰⎰+=⋅=L L Qdy Pdx S d F W,其中S d =(dx,dy )事实上,⎰L Pdx ,⎰L Qdy 分别是F在沿X 轴方向及Y 轴方向所作的功。

(3) (3) 第一类曲面积分∑⎰⎰=→∑∆∆ni i iiiS f ds z y x f 1),,(lim ),,(ζηξλ(存在时)i S ∆表示第i 个小块曲面的面积,(i i i ζηξ,,)为i S ∆上的任一点,λ是n 块小曲面的最大直径。

实际意义:当f(x,y ,z)表示曲面∑上点(x,y,z )处的面密度时,⎰⎰∑ds z y x f ),,(表示曲面∑的质量,当f(x,y,z) ≡1时,⎰⎰∑ds 表示曲面∑的面积。

曲线积分与曲面积分

曲线积分与曲面积分

曲线积分与曲面积分曲线积分和曲面积分是微积分中的重要概念,它们在物理、工程等领域中有着广泛的应用。

本文将详细介绍曲线积分和曲面积分的定义、计算方法以及应用。

一、曲线积分曲线积分是沿曲线上的各点对一个矢量场进行积分的操作。

它可以帮助我们计算曲线周围矢量场的某种性质,如流量、环量等。

曲线积分可以分为第一类曲线积分和第二类曲线积分。

1. 第一类曲线积分第一类曲线积分又称为曲线上的标量场积分,它的计算只涉及到被积函数。

设曲线C的参数方程为x=f(t),y=g(t),z=h(t),其中a≤t≤b。

对于曲线上每一点P(x,y,z),记r(t)=x i + y j + z k为P的位置矢量,则第一类曲线积分的定义为:∫[f(x,y,z)]•ds=∫[f(x(t),y(t),z(t))•r'(t)]dt其中[f(x,y,z)]为被积函数,ds为曲线C上各点的弧长元素,r'(t)为曲线C在P点处的切向量。

2. 第二类曲线积分第二类曲线积分又称为曲线上的矢量场积分,计算是将矢量场与切向量进行点积。

设曲线C的参数方程为x=f(t),y=g(t),z=h(t),其中a≤t≤b。

对于曲线上每一点P(x,y,z),记r(t)=x i + y j + z k为P的位置矢量,则第二类曲线积分的定义为:∫[F(x,y,z)]•dr=∫[F(x(t),y(t),z(t))•r'(t)]dt其中[F(x,y,z)]为矢量场,dr为曲线C上各点的位置矢量元素,即dr=r'(t)dt。

二、曲面积分曲面积分是在曲面上对一个矢量场或标量场进行积分的操作。

它可以帮助我们计算曲面上矢量场的通量、曲面的面积等。

曲面积分同样可以分为第一类曲面积分和第二类曲面积分。

1. 第一类曲面积分第一类曲面积分又称为曲面上的标量场积分,它的计算只涉及到被积函数。

设曲面S的参数方程为x=g(u,v),y=h(u,v),z=k(u,v),其中D 为曲面S在(u,v)平面上的投影区域。

曲线积分与曲面积分重点总结+例题

曲线积分与曲面积分重点总结+例题

第十章曲线积分与曲面积分【教学目标与要求】1.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系。

2.掌握计算两类曲线积分的方法.3.熟练掌握格林公式并会运用平面曲线积分与路径无关的条件,会求全微分的原函数.4.了解第一类曲面积分的概念、性质,掌握计算第一类曲面积分的方法。

【教学重点】1。

两类曲线积分的计算方法;2。

格林公式及其应用;3。

第一类曲面积分的计算方法;【教学难点】1。

两类曲线积分的关系及第一类曲面积分的关系;2.对坐标的曲线积分与对坐标的曲面积分的计算;3。

应用格林公式计算对坐标的曲线积分;6.两类曲线积分的计算方法;7.格林公式及其应用格林公式计算对坐标的曲线积分;【参考书】[1]同济大学数学系.《高等数学(下)》,第五版.高等教育出版社。

[2]同济大学数学系.《高等数学学习辅导与习题选解》,第六版.高等教育出版社.[3]同济大学数学系。

《高等数学习题全解指南(下)》,第六版.高等教育出版社§11.1 对弧长的曲线积分一、对弧长的曲线积分的概念与性质曲线形构件的质量:设一曲线形构件所占的位置在xOy面内的一段曲线弧L上,已知曲线形构件在点(x,y)处的线密度为μ(x,y)。

求曲线形构件的质量.把曲线分成n小段,∆s1,∆s2,⋅⋅⋅,∆s n(∆s i也表示弧长);任取(ξi,ηi)∈∆s i,得第i小段质量的近似值μ(ξi,ηi)∆s i;整个物质曲线的质量近似为;令λ=max{∆s1,∆s2,⋅⋅⋅,∆s n}→0,则整个物质曲线的质量为.这种和的极限在研究其它问题时也会遇到。

定义设函数f(x,y)定义在可求长度的曲线L上,并且有界。

,将L任意分成n个弧段:∆s1,∆s2,⋅⋅⋅,∆s n,并用∆s i表示第i段的弧长;在每一弧段∆s i上任取一点(ξi,ηi),作和;令λ=max{∆s1,∆s2,⋅⋅⋅,∆s n},如果当λ→0时,这和的极限总存在,则称此极限为函数f(x,y)在曲线弧L上对弧长的曲线积分或第一类曲线积分,记作,即.其中f(x,y)叫做被积函数,L叫做积分弧段。

曲线与曲面积分计算曲线积分与曲面积分的基本技巧

曲线与曲面积分计算曲线积分与曲面积分的基本技巧

曲线与曲面积分计算曲线积分与曲面积分的基本技巧曲线与曲面积分:计算曲线积分与曲面积分的基本技巧曲线积分和曲面积分是微积分中重要的概念,应用广泛。

在本文中,我们将探讨曲线积分和曲面积分的基本技巧和计算方法。

在开始之前,我们先对曲线积分和曲面积分进行简要介绍。

1. 曲线积分曲线积分是对曲线上的某个向量场的积分,其计算方法有两种:第一类曲线积分和第二类曲线积分。

第一类曲线积分是对标量函数的积分,而第二类曲线积分是对向量函数的积分。

1.1 第一类曲线积分第一类曲线积分也称为沿曲线的线积分,其计算公式为:∫f(x, y, z) • dr = ∫f(x(t), y(t), z(t)) • r'(t) dt,其中f(x, y, z)为曲线上的函数,r(t)为曲线上的向量函数,r'(t)为r(t)的导数。

1.2 第二类曲线积分第二类曲线积分也称为曲线上的向量场的线积分,其计算公式为:∫F • dr = ∫F(x(t), y(t), z(t)) • r'(t) dt,其中F为曲线上的向量函数,r(t)为曲线上的向量函数,r'(t)为r(t)的导数。

2. 曲面积分曲面积分是对曲面上的某个标量函数或向量函数的积分,其计算方法也有两种:第一类曲面积分和第二类曲面积分。

第一类曲面积分是对标量函数的积分,而第二类曲面积分是对向量函数的积分。

2.1 第一类曲面积分第一类曲面积分也称为曲面上的标量场的曲面积分,其计算公式为:∬f(x, y, z) dS,其中f(x, y, z)为曲面上的函数,dS为曲面元素面积。

2.2 第二类曲面积分第二类曲面积分也称为曲面上的向量场的曲面积分,其计算公式为:∬F • dS = ∬F(x, y, z) • n dS,其中F为曲面上的向量函数,dS为曲面元素面积,n为曲面上某一点的法向量。

3. 计算曲线积分的基本技巧在计算曲线积分时,我们需要掌握以下基本技巧:3.1 参数化对于曲线上的向量函数,我们需要找到一个参数来表示该曲线,通常使用参数t来表示曲线上的点。

曲线积分与曲面积分的应用及相关定理研究

曲线积分与曲面积分的应用及相关定理研究

曲线积分与曲面积分的应用及相关定理研究概述:曲线积分和曲面积分是微积分中重要的概念,它们在数学和物理学中有着广泛的应用。

曲线积分是对曲线上的向量场进行积分的方法,而曲面积分是对曲面上的向量场进行积分的方法。

这两种积分形式各自有自己的定义和计算方法,且都有一系列相关的定理可以应用,以解决各种实际问题。

一、曲线积分的应用:1. 质量和质心的计算:曲线积分可以用来计算物体的质量和质心。

通过将质量分布模型建立在曲线上,并用质量因子乘以向量场的投影来对质量进行积分,可以得到物体的总质量和质心的位置。

2. 功和路径无关性:曲线积分的一个重要应用是计算力学中的功。

根据路径无关性定理,如果向量场的旋度为零,则曲线积分与路径无关,从而可以简化计算过程。

3. 电场强度和电势:在电磁学中,曲线积分可以用来计算电场对电荷的做功量以及电势差。

通过求解电场强度向量场在电荷路径上的曲线积分,我们可以得到电荷在电场中受到的力,从而进一步计算出电场强度和电势差。

二、曲面积分的应用:1. 流量:曲面积分可以用来计算流体通过一个给定曲面的速率。

通过对速度向量场在曲面上的投影进行积分,我们可以得到流体通过曲面的总流量表达式。

2. 直接计算体积:通过曲面积分,我们可以直接计算物体的体积,而不需要分解为小的体积元素进行求和。

通过对速度向量场投影的曲面积分,我们可以得到物体的体积。

3. Stokes定理和高斯定理:这两个定理是曲面积分的重要应用之一。

Stokes定理将曲面积分与曲线积分联系起来,可以将沿曲线的环量计算转化为曲面上的积分计算。

而高斯定理将曲面积分与体积积分联系起来,可以将体积积分转化为曲面上的积分计算。

相关定理:1. 曲线积分的格林公式:曲线积分的格林公式是曲线积分理论的基础,它指出了曲线积分与向量场的旋度之间的关系。

2. Stokes定理:Stokes定理是曲线积分与曲面积分之间的桥梁,它将曲线积分和曲面积分联系起来,使得我们可以在曲线上进行计算,而得到曲面上的结果。

曲线积分与曲面积分计算

曲线积分与曲面积分计算

曲线积分与曲面积分计算曲线积分和曲面积分是微积分中的重要概念,用于计算沿曲线的路径或曲面上的某个向量场的总体效应。

本文将介绍曲线积分和曲面积分的概念、计算方法以及应用领域。

一、曲线积分曲线积分是计算沿曲线的路径的某个向量场的总体效应的方法。

当我们想要计算曲线上的某个物理量时,曲线积分可以提供有效的工具。

下面以一个简单的例子来说明曲线积分的计算方法。

设有一条光滑曲线C,其参数方程为r(t)=(x(t), y(t), z(t)),其中a≤t≤b。

在曲线C上有一个向量场F=(P(x, y, z), Q(x, y, z), R(x, y, z)),我们想要计算该向量场沿曲线C的积分。

曲线积分的计算方法为∫CF·dr,其中CF=(P(x, y, z), Q(x, y, z), R(x, y, z))·(dx, dy, dz)。

由此可知,曲线积分等于向量场F与路径元素的内积,再对路径元素求累积。

在具体计算中,我们可以先求得路径元素dx, dy, dz,再分别与向量场F的各个分量进行乘法运算,最后求和即可得到曲线积分的结果。

二、曲面积分曲面积分是计算曲面上的某个向量场的总体效应的方法。

与曲线积分类似,曲面积分也可以用于计算物理量在曲面上的分布情况。

下面以一个简单的例子来说明曲面积分的计算方法。

设有一个光滑曲面S,其参数方程为r(u, v)=(x(u, v), y(u, v), z(u, v)),其中(a≤u≤b, c≤v≤d)。

在曲面S上有一个向量场F=(P(x, y, z), Q(x, y, z),R(x, y, z)),我们想要计算该向量场在曲面S上的积分。

曲面积分的计算方法为∬SF·dS,其中SF=(P(x, y, z), Q(x, y, z), R(x, y, z))·(dSx, dSy, dSz)。

由此可知,曲面积分等于向量场F与曲面元素的内积,再对曲面元素求累积。

考研曲线积分和曲面积分

考研曲线积分和曲面积分

上页
下页
返回
结束
1. 定义
lim P( k , k ) xk Q( k , k ) yk
0 k 1
n
性质
(1) L可分成 k 条有向光滑曲线弧

(2) L- 表示 L 的反向弧
k
i 1
L i P( x, y)d x Q( x, y)d y
L
P( x, y )d x Q( x, y )d y
上页
下页
返回
结束
内容小结 1. 定义
L f ( x, y) ds
f ( x, y , z ) d s
2. 性质
(1)
f ( x, y , z ) g ( x, y , z ) d s g ( x, y, z )ds ( , 为常数 ) L (2) f ( x, y, z ) ds f ( x, y, z ) ds f ( x, y, z ) ds
R为半径的圆周(R>1)取逆时针方向.
5.(04)设L为正向圆周x2 +y 2 =2在第一象限中的部分,则

L
xdy 2 ydx
6.(08)设L为从点A(0, 0)沿曲线y= sin x到点( ,0)的弧, 则 sin 2 xdx 2(x2 -1)dy .
例1. 计算
其中L为双纽线
(x2 y2 ) 2 a2 (x2 y2 ) ( a 0 )
解: 在极坐标系下
它在第一象限部分为
y
(0

4 r cos Байду номын сангаас
L1 : r a cos 2
利用对称性 , 得

针对新大纲曲线积分、曲面积分依然是数一的必考点

针对新大纲曲线积分、曲面积分依然是数一的必考点

针对新大纲:曲线积分、曲面积分依然是数一的必考点万学海文2010年新的考试大纲正式公布了,新的大纲和去年相比没有任何的变化,同学们可以放心的安装原来的计划进行复习了。

对于研究生入学数学一的考试中,曲线积分、曲面积分,是每年必考内容,这部分一般情况下是占16分,但是也有特殊情况,像07年一共是占了18分,一个大题10分,一个单选题,一个填空题各4分,去年和今年这部分是占了14分,大题10分,一个单选题或者是一个填空题4分,曲线、曲面积分无外乎出这两个题型,一个是曲线积分的计算,再一个就是曲面积分的计算。

关于曲线积分的计算,大家要记住,我们做的是考研题而不是一般的练习题,所以大家应该想到做这样的题,格林公式用上了没有,怎么用呢?一般来讲,考的题是曲线不封闭,那么做一条和两条曲线就把它封闭起来了,然后就变成了可以用格林公式来计算的形式。

当然不同的题也是因题而异,具体的方法还要在灵活运用中得到总结和提升。

还有一种曲线可能是封闭的,但是在这个曲线内部有奇点,这个时候就要以奇点为中心做一个小圆,曲线积分是可以把路径的表达式直接带到被积函数中去,只要带上去,我们的奇点就没了,就可以用格林公式了,对于曲面积分是类似的,大家要想到用高斯公式来做,以往的考题,曲面通常不封闭,那要我们加上一个或两个曲面让它封闭,满足高斯公式的条件,然后用高斯公式来做。

而今年考了一个曲面就是封闭的,在这个曲面内部有一个奇点,这个题目我们可以用挖洞法来做,仿照我们曲线积分一样,我们应该以奇点为中心做一个球面,沿着这个曲面的积分就等于沿着这个小球面的积分,我们可以把曲面的面积表达式直接带到被积函数中去,这样一来,就把奇点切掉了,马上我们就可以用高斯公式来计算。

这样问题就变的简单了,关于这方面的题目,同学们要多练习,掌握各种题型的解题方法,这样在考试中才能游刃有余的应对任何题型。

下面是最近三年的线面积分的考题,同学们不妨作为练习,看一看自己是否弄明白了,不清楚的地方还需要继续思考和练习。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
L
y
3
o
2x
提示: 利用对称性
L 2 xy ds 0
x2 y2 原式 = 12 ( )ds 12 ds 12a L 4 L 3
机动
目录
上页
下页
返回
结束
第二节
第十章
对坐标的曲线积分
1、对坐标的曲线积分的概念
与性质
2、 对坐标的曲线积分的计算法 3、两类曲线积分之间的联系
机动
目录
对坐标的曲线积分必须注意积分弧段的方向!
机动 目录 上页 下页 返回 结束
2. 计算
x (t ) , t : • 对有向光滑弧 L : y (t )



P [ (t ), (t )] (t ) Q [ (t ), (t )] (t )d t
二、平面上曲线积分与路径无关的等价条件 定理2. 设D 是单连通域 , 函数 在D 内
具有一阶连续偏导数, 则以下四个条件等价: (1) 沿D 中任意光滑闭曲线 L , 有
L Pd x Qd y 0 .
L
(2) 对D 中任一分段光滑曲线 L, 曲线积分 Pd x Qd y
与路径无关, 只与起止点有关.
如果方程为极坐标形式: L : r r ( ) ( ), 则
f (r ( ) cos , r ( ) sin ) r 2 ( ) r 2 ( ) d
推广: 设空间曲线弧的参数方程为



: x (t ), y (t ) , z (t ) ( t ) f ( x, y , z ) d s

f ( (t ) , (t ), (t ) ) 2 (t ) 2 (t ) 2 (t ) d t
机动 目录 上页 下页 返回 结束

对称性的应用:
1.如果曲线关于x轴对称,函数f(x,y)关于y为奇偶函 数,则
0, 当f ( x, y)关于y为奇函数; L f ( x, y)ds 2 f ( x, y)ds,当f ( x, y)关于y为偶函数 L1
4 xd S 4 x d S

xd S x d S
机动 目录 上页 下页 返回 结束
第五节
第十章
对坐标的曲面积分
一、有向曲面及曲面元素的投影 二、 对坐标的曲面积分的概念与性质
L
7.(11)设L是柱面x2 +y 2 =1与平面z=x+y的交线,从z轴 y2 正向看去为逆时针方向,则 xzdx xdy dz L 2
8.(12)已知L是第一象限中从点(0,0)沿x2 +y2 =2 x到点(2,0), 再沿x +y =4到点(0,2)的曲线段,计算J= 3x ydx ( x x 2 y)dy
b

• 对光滑曲线弧
• 对光滑曲线弧
L f ( x, y)ds
f (r ( ) cos , r ( ) sin ) r 2 ( ) r 2 ( ) d
机动 目录 上页 下页 返回 结束

如果曲线 L 的方程为
b
则有
f ( x, ( x) ) 1 2 ( x) d x a
L D
域) 域 D 边界L 的正向: 域的内部靠左 在 D 上具有连续一阶偏导数, 则有
定理1. 设区域 D 是由分段光滑正向曲线 L 围成, 函数
Q P x y d xd y Pd x Qd y ( 格林公式 ) D L
机动
目录
上页
下页
返回
结束
3) 可用积分法求d u = P dx + Q dy在域 D 内的原函数:
取定点 ( x0 , y0 ) D 及动点 ( x , y ) D , 则原函数为
u ( x, y )
( x, y ) ( x0 , y0 ) x x0 y
P( x, y )d x Q( x, y )d y
2 2 2 3 L
9. 97)求 ( z y)dx ( (x-z)dy ( x y )dz
L
x2 +y 2 =1 其中L : ,从z轴正向看L的方向顺时针. x y z 2
第四节
第十章
对面积的曲面积分
一、对面积的曲面积分的概念与性质 二、对面积的曲面积分的计算法
2 L
2.(03)已知D:0 x ,0 y ,L为D的正向边界, 试证:(1) xe dy ye
sin x L sin x
dx xe
L 2
sin x
dy ye dx
sin x
(2) xe dy ye
sin x L
sin x
dx 2
若 关于另外两个坐标面有对称性,也有类似结论
例3. 计算
其中 是球面 x 2 y 2
z 2 2( x y z ).
解: 显然球心为 (1,1,1) , 半径为 3 利用对称性可知
2 4 2 2 2 I ( x y z ) d S ( x y z ) d S 3 3 xd S yd S zd S 利用重心公式
第十章
曲线积分与曲面积分
积分学 定积分二重积分三重积分 曲线积分 曲面积分
积分域 区间域 平面域 空间域 曲线域
曲线积分 曲面积分 对弧长的曲线积分
曲面域
对坐标的曲线积分
对面积的曲面积分
对坐标的曲面积分
第一节
第十章
对弧长的曲线积分
一、对弧长的曲线积分的概念与性质 二、对弧长的曲线积分的计算法
机动
目录
上页
下页
返回
结束
1. 定义
lim P( k , k ) xk Q( k , k ) yk
0 k 1
n
性质
(1) L可分成 k 条有向光滑曲线弧

(2) L- 表示 L 的反向弧
k
i 1
L i P( x, y)d x Q( x, y)d y
L
P( x, y )d x Q( x, y )d y
1
(3)
ds l
( l 曲线弧 的长度)
( 由1, 2 组成)
机动 目录 上页 下页 返回 结束
2
3. 计算
• 对光滑曲线弧
L L
f ( x, y ) ds f [ (t ), (t )] 2 (t ) 2 (t ) d t f ( x, y ) ds f ( x, ( x) ) 1 2 ( x) d x a
其中L1是曲线L在x轴右侧的那一部分;关于y轴对 称也有类似结论。
2.设f(x,y)在曲线连续,曲线L关于原点对称,函数 f(x,y)关于(x,y)为奇偶函数,则
0,当f ( x, y)关于( x, y)为奇函数; L f ( x, y)ds 2 f ( x, y)ds,当f ( x, y)关于( x, y)为偶函数 L1 其中L1是曲线L在右半平面或上半平面的那一部分。
d
机动 目录 上页 下页 返回 结束
例2. 计算
x2 y2 其中为球面
z 2 9 与平面 x z 1的交线 . 2 1 ( x 1 ) 2 1 y 2 1 解: : 2 2 4 , 化为参数方程 x z 1 x 2 cos 1 2 0 2 : y 2 sin z 1 2 cos 2


ds

( 2 sin )
2
( 2 sin ) d 2d
2
9 2 I 2 d 18 2 0
机动 目录 上页 下页 返回 结束
思考与练习
x2 y2 1周长为a , 求 已知椭圆 L : 4 3 (2 xy 3x 2 4 y 2 ) ds 2
1
2 zx

2 zy
d xd y
(曲面的其他两种情况类似)
• 注意利用球面坐标、柱面坐标、对称性、重心公式 简化计算的技巧.
机动 目录 上页 下页 返回 结束
对称性的应用
设 关于yoz对称,则


0, 当f ( x, y, z )关于x是奇函数 f ( x, y, z )dS f ( x, y, z )dS,当f ( x, y, z )关于x是偶函数 1
例1. 计算
其中L为双纽线
(x2 y2 ) 2 a2 (x2 y2 ) ( a 0 )
解: 在极坐标系下
它在第一象限部分为
y
(0

4 r cos
L1 : r a cos 2
利用对称性 , 得
4
)
o
x
4 4

0 4 a 2 cos
0
r 2 ( ) r 2 ( ) d
L P( x, y) d x Q( x, y) d y
P( x, y ) cos Q( x, y ) cos ds
L
机动Biblioteka 目录上页下页
返回
结束
第三节
第十章
格林公式及其应用
一、格林公式 二、平面上曲线积分与路径无关的 等价条件
机动
目录
上页
下页
返回
结束
一、 格林公式
单连通区域 ( 无“洞”区 区域 D 分类 域 ) 多连通区域 ( 有“洞”区
(3)

在 D 内是某一函数
的全微分,
d u( x, y) P d x Q d y P Q . (4) 在 D 内每一点都有 y x
相关文档
最新文档