数学史概论复习资料
数学史概论数学与统计学院
x 表示 的流数、导数,而莱布尼兹用 dx表示微分。
5、牛顿对微积分的研究建立了微积分基本定理:微分 和 积分 是 互逆的关系,并以此作为建立微积分普遍算法的基础。
5、历史上第一篇系统的微积分文献是( A)。
(A)《流数简论》 (B)《流数法和无穷级数》 (C)《曲线求积术》 (D)《运用无穷多项方程的分析学》
概率论是研究随机现象数量规律的数学分支。17世纪的 数学家不仅建立起以解析几何和微积分为代表的变量数学 ,进一步研究必然现象及规律,而且还开始了对偶然现象 的研究,形成了概率论这一重要的数学分支。有趣的是, 概率论的起源是对赌博问题的研究。
1.赌徒的难题
1653年夏天,法国著名的数学家、物理学家帕斯卡前往 一个小镇度假。在旅途中,他遇到了一个喜欢赌博的人,名 叫梅累。为了消除旅途的寂寞,梅累向帕斯卡提出了一个有 关赌博的问题,即
在《钟表的摆动》一书中,他提出了等时曲线:设想在曲 线上的每一点都放一粒珠子,如果珠子沿曲线滑落到曲线的 最低点所用时间都相等,则称该曲线为等时曲线。惠更斯还 证明了倒置的摆线是等时曲线。
在物理上的贡献: 发明了摆钟,建立了向心力定律,提出了动量守恒原 理,是光的波动理论的创始人。
帕斯卡、费马和惠更斯被称为概率论的创始人。
6、数学史上第一篇正式发表的微积分文献和作者是( D)。
(A)《流数简论》牛顿 (B)《流数简论》莱布尼兹 (C)《一种求极大与极小和求切线的新方法》牛顿 (D)《一种求极大与极小和求切线的新方法》莱布尼兹
7、下列术语不是牛顿所用的是( D )。
(A)流数 (B)最后比 (C)瞬 (D) dx
第八章 赌徒的难题——概率论的产生与发展
数学史概论复习题及参考答案[1]
二、什么使泰勒斯获得了第一位数学家和论证几 何学鼻祖的美名?P33
答:关于泰勒斯并没有确凿的传记资料留传下来。 但是以下命题记载却流传至今,使泰勒斯获得了 第一位数学家和论证几何学鼻祖的美名。泰勒斯 曾证明了下列四条定理:
1。圆的直径将圆分为两个相等的部分;
2。等腰三角形两底角相等;
3。两相交直线形成的对顶角相等;
5 、 19 世 纪 晚 期 , 集 合 论 的 创 始 人 康 托 尔 (1845—1918)曾经提出: “数学是绝对自由 发展的学科,它只服从明显的思维,就是说 它的概念必须摆脱自相矛盾,并且必须通过 定义而确定地、有秩序地与先前已经建立和 存在的概念相联系”。
6、20世纪50年代,前苏联一批有影响的数 学家试图修正前面提到的恩格斯的定义来概 括现代数学发展的特征:“现代数学就是各 种量之间的可能的,一般说是各种变化着的 量的关系和相互联系的数学”。
(5)《论劈锥曲面和旋转椭球》 (6)《引理集》 (7)《处理力学问题的方法》 (8)《论平面图形的平衡或其重心》 (9)《论浮体》 (10)《沙粒计数》 (11)《牛群问题》
十、 阿波罗尼奥斯最重要的数学成就是什 么?P58
答:阿波罗尼奥斯最重要的数学成就是创 立了相当完美的圆锥曲线理论。
Hale Waihona Puke 第三章 中世纪的中国 数学
7.玛雅数字(?):二十进制数系
二、 “河谷文明”指的是什么?P16
答:历史学家往往把兴起于埃及。美索不大 米亚、中国和印度等地域的古代文明称为 “河谷文明”。
三、 关于古埃及数学的知识主要依据哪两 部纸草书?P17,纸草书中问题绝大部分都是 实用性质,但有个别例外,请举例。P23
答:古埃及数学的知识主要依据莱茵德纸草 书和莫斯科纸草书两部纸草书。
数学史概论复习资料
数学史复习资料第一章数学的起源与早期发展一、世界上早期常见有几种古老文明记数系统,它们分别是什么数字,采用多少进制数系?(P13)1.古埃及的象形数字(公元前3400年左右)2.古巴比伦的楔形数字(公元前2400年左右)3.中国的甲骨文(公元前1600年左右)4.希腊阿提卡数字(公元前500年左右)5.中国的算筹码(公元前500年左右)6.印度婆罗门数字(公元前500年左右)7.玛雅数字(?)其中除巴比伦楔形数字采用六十进制、玛雅数字采用二十进制外,其他均属十进制数系二、“河谷文明”指的是什么?(P16)历史学家往往把兴起于埃及、美索不达米亚、中国、印度等地域的古代文明称为“河谷文明”。
三、古埃及数学的知识主要依据哪两部纸草书?纸草书中问题绝大部分是实用性质,但个别例外,请举例。
(见P23)古埃及数学的知识,主要就是依据两部纸草书—莱茵德纸草书和莫斯科纸草书。
四、美索不达米亚人的记数制远胜埃及象形数字之处主要表现在哪些方面?(P23—25)1.大多数文明普遍采用十进制,但美索不达米亚人却创造了一套以60进制为主的楔形文记数系统。
2.美索不达米亚人的记数制远胜埃及象形数字之处,还在于他们巧妙地将位置原理推广应用到整数以为的分数。
3.美索不达米亚人还经常利用各种数表来进行计算,使计算更加简捷。
第二章古代希腊数学一、希腊数学一般是指什么时期,活动于什么地方的数学家创造的数学?(P32)希腊数学一般指从公元前600年一公元600年间,活动于希腊半岛、爱琴海区域、马其顿与色雷斯地区、意大利半岛、小亚细亚以及非洲北部的数学家们创造的数学。
二、毕达哥拉斯学派认为宇宙万物皆依赖于整数的信条由于什么发现而受到动摇?这个“第一次数学危机”是由于什么人提出的新比例理论而暂时消除?(P38)毕达哥拉斯学派认为宇宙万物皆依赖于整数的信条吗,由于不可公度量的发现而受到了动摇。
大约一个世纪以后,这一“危机”才由于毕达哥拉斯学派成员阿契塔斯的学生欧多克斯提出新比例理论而暂时消除。
数学史复习资料.doc
数学史复习资料1.世界上第一个把n计算到3.1415926< n <3.1415927的数学家是(祖冲之)。
2.亚力山大晚期一位重要的数学家是(帕波斯),他唯一的传世之作《数学汇编》是一部荟萃总结前人成果的典型著作。
3.古希腊亚历山大时期的数学家阿波罗尼兹在前人工作的基础上创立了相当完美的圆锥曲线理论,其著作《圆锥曲线》代表了希腊演绎几何的最高成就。
4.我国的数学教育有悠久的历史,(隋唐)代开始在国子寺里设立“算学”,唐至五代代则在科举考试中开设了数学科目,叫“明算科”。
5.《几何基础》的作者是(希尔伯特),该书所提出的公理系统包括(五)组公理。
6.用“分割法”建立实数理论的数学家是(戴德金),该理论建立于(19)世纪。
7.费马大定理证明的最后一步是英国数学家(怀尔斯)于1994年完成的,他因此于1996年获得了(沃尔夫)奖。
8.“蓦势既同,则积不容异”是我国古代数学家(刘徽)首先明确提出的,这一原理在西方文献中被称作(〈瓦列利)原理。
9.创造并首先使用“阿拉伯数码”的国家或民族是(印度),而首先使用十进位值制记数的国家或民族则是(中国)。
10.古希腊的三大著名几何问题是化圆为方、倍立方和三等分角。
11.我国元代数学著作《四元玉鉴》的作者是(朱世杰),《海岛算经》的作者是—刘徽12.就微分学与积分学的起源而言(积分学早于微分学)13.在现存的中国古代数学著作中,《周髀算经》是最早的一部。
卷上叙述的关于荣方与陈子的对话,包含了勾股定理的一般形式。
14.希尔伯特在历史上第一次明确地提出了选择和组织公理系统的原则,即:相容性、完备性、独立性。
15.二项式展开式的系数图表,在中学课本中称其为_杨辉一三角,而数学史学者常常称它为贾宪三角。
16.阿拉伯数学家花拉子米的《代数学》第一次给出了一次和二次方程的一般解法,并用—几何—方法对这一解法给出了证明。
17.被称为“现代分析之父”的数学家是(柯西),被称为“数学之王”的数学家是(高斯)。
《数学史概论》期末复习资料
《数学史概论》复习题一、选择题与填空题1.世界上第一个把π计算到3.1415926<n <3.1415927 的数学家是( )2.我国元代数学著作《四元玉鉴》的作者是( )3. 以“万物皆数”为信条的古希腊数学学派是( )4.就微分学与积分学的起源而言( )比较早5.在现存的中国古代数学著作中,最早的一部是( )6.简单多面体的顶点数V、面数F及棱数E间有关系V+F-E=2这个公式叫( )7. 首先使用符号“0”来表示零的国家或民族是( )8.中国古典数学发展的顶峰时期是( )9. 历史上有记载的第一位数学家和论证几何学的鼻祖是()10.最早使用“函数”(function)这一术语的数学家是( )11. 《几何原本》的作者是( )12..在1900年巴黎国际数学家大会上提出了23个著名的数学问题的数学家是( )13. 复分析作为现代分析的研究领域是在19世纪建立起来的,而且是通过三个人的工作而发展的,即柯西、魏尔斯特拉斯。
第三个人是谁?()14.古埃及的数学知识常常记载在()15.大数学家欧拉出生于()16. 对微积分的诞生具有重要意义的“行星运行三大定律”,其发现者是( )17.首先获得四次方程一般解法的数学家是( )18.中国数学史上最先完成勾股定理证实的数学家是( )19.《九章算术》的“少广”章主要讨论()20. 《九章算术》中的“阳马”是指一种特殊的( )21.最早采用位值制记数的国家或民族是( )22. 射影几何产生于文艺复兴时期的( )23.《数学汇编》是一部荟萃总结前人成果的典型著作,它被认为是古希腊数学的安魂曲,其作者为( ) 24.美索不达米亚是最早采用位值制记数的民族,他们主要用的是( )25.“一尺之棰,日取其半,万世不竭”出自我国古代名著( )26.下列数学著作中不属于“算经十书”的是( )27.微积分诞生于( ) A.15 世纪 B.16 世纪 C.17 世纪 D.18 世纪28.在《几何原本》所建立的几何体系中,“整体大于部分”是( )A.定义B.定理C.公设D.公理29.刘徽首先建立了可靠的理论来推算圆周率,他所算得的“徽率”是( )A.3.1B.3.14C.3.142D.3.141592630.费马对微积分诞生的贡献主要在于其发明的( )A.求瞬时速度的方法B.求切线的方法C.求极值的方法D.求体积的方法31.祖冲之的代表作是()A.《考工记》B.《海岛算经》C.《缀术》D.《缉古算经》32. 第一台能做加减运算的机械式计算机是数学家()发明的。
数学史资料总结
数学史概论期末试题一一、单项选择题1.世界上第一个把π计算到<n <的数学家是( B )A.刘徽B.祖冲之C.阿基米德D.卡瓦列利2.我国元代数学着作《四元玉鉴》的作者是( C )A.秦九韶B.杨辉C.朱世杰D.贾宪3.就微分学与积分学的起源而言( A )A.积分学早于微分学B.微分学早于积分学C.积分学与微分学同期D.不确定4.在现存的中国古代数学着作中,最早的一部是( D )A.《孙子算经》B.《墨经》C.《算数书》D.《周髀算经》5.的顶点数V、面数F及棱数E间有关系V+F-E=2这个公式叫( D )。
A.笛卡尔公式B.牛顿公式C.莱布尼茨公式D.欧拉公式6.中国古典数学发展的顶峰时期是( D )。
A.两汉时期B.隋唐时期C.魏晋南北朝时期D.宋元时期7.最早使用“函数”(function)这一术语的数学家是( A )。
A.莱布尼茨B.约翰·伯努利C.雅各布·伯努利D.欧拉8.1834 年有位数学家发现了一个处处连续但处处不可微的函数例子,这位数学家是( B )。
A.高斯B.波尔查诺C.魏尔斯特拉斯D.柯西9.古埃及的数学知识常常记载在(A )。
A.纸草书上B.竹片上C.木板上D.泥板上10.大数学家欧拉出生于(A )A.瑞士B.奥地利C.德国D.法国11.首先获得四次方程一般解法的数学家是( D )。
A.塔塔利亚B.卡当C.费罗D.费拉利12.《九章算术》的“少广”章主要讨论(D )。
A.比例术B.面积术C.体积术D.开方术13.最早采用位值制记数的国家或民族是( A )。
A.美索不达米亚B.埃及C.阿拉伯D.印度二、填空题14.希尔伯特在历史上第一次明确地提出了选择和组织公理系统的原则,即:相容性、完备性、独立性。
15.在现存的中国古代数学着作中,《周髀算经》是最早的一部。
卷上叙述的关于荣方与陈子的对话,包含了勾股定理的一般形式。
16.二项式展开式的系数图表,在中学课本中称其为_杨辉_三角,而数学史学者常常称它为贾宪三角。
数学史复习资料
《数学史》复习资料名词解释:1、可公度量:对于任何两条给定的线段,总能找到某第三线段,以它为单位线段能将给定的两条线段划分为整数段。
这样的两条线段为“可公度量”,即有可公度量的度量单位。
这是古希腊毕达哥拉斯学派对世界任何量都能表示成两个整数比信念的反应。
2、出入相补原理:一个几何图形(平面或立方体的)被分割成若干部分后,面积或体积总保持不变。
3、费马大定理:关于X、Y、Z的不定方程X n+Y n =Z n ,对于任意大于2的自然数n无非零整数解。
4、大数定律:概率论历史上第一个极限定理属于伯努利,后人称之为“大数定律”。
概率论中讨论随机变量序列的算术平均值向常数收敛的定律。
P128 帕斯卡曾提出的n为正数时的二项式定理,得到所谓伯努利定理:若p是某一事件单独出现一次的概率,q是不出现该事件的概论,则在n次试验中,该事件至少出现m次的概率等于二项式(p+q)n 的展式中的从p n 项到p m q n-m 项的各项之和。
容易看出,这实际上就是概率论中最重要的定律之一——“大数定律”的最早表现形式。
5、倍立方体:就是已知一立方体,求作另一立方体,使它的体积等于已知立方体的两倍。
也即求作一立方体的边,使该立方体的体积为给定立方体的两倍。
6、祖氏原理:P65“幂势既同,则积不容异”,即夹在两个平行平面间的两个几何体,被平行于这两个平面的任意平面所截,若所得截面总相等,则此二几何体积相等。
它被称为“祖暅原理”。
1、简述古希腊数学的特点。
答案二:(1)追求理性和唯理的论证数学特点;(2)欧氏几何开创了公理化理论体系;(3)欧式几何形成了演绎思维的特征;总之,希腊数学是追求理性,主要以演绎几何为特征的数学。
2、简述欧几里得《原本》中所确立的公理化思想。
答:公理化思想是古希腊时期在欧氏几何中确立数学演绎范式。
这种范式要求一门学科中的每个命题必须是在它之前已建立的一些命题的逻辑结论,而所有这样的推理链的共同出发点,就是一些基本定义和被认为不证自明的基本原理——公理或公设。
数学史复习资料
1、数学发展史上的三次危机。
①第一次数学危机:无理数的发现毕达哥拉斯是公元前五世纪古希腊的著名数学家与哲学家,他曾创立毕达哥拉斯学派,“一切数均可表成整数或整数之比”则是这一学派的数学信仰。
毕达哥拉斯定理(勾股定理)提出后,其学派中的一个成员希帕索斯考虑了一个问题:边长为1的正方形其对角线长度是多少呢?他发现这一长度既不能用整数,也不能用分数表示用一个新数来表示。
希帕索斯的发现导致了数学史上第一个无理数2的诞生。
这在当时直接导致了人们认识上的危机,从而导致了西方数学史上一场大的风波,史称“第一次数学危机”。
由2000年后的数学家们建立的实数理论才消除它。
②第二次数学危机导源于微积分工具的使用。
x(n是正整数)求导时既把△x不当做0 1734年英国哲学家、大主教贝克莱一针见血地指出牛顿在对n看而又把△x当作0看是一个严重的自相矛盾,从而几乎使微积分停滞不前。
后来还是柯西和魏尔斯特拉斯等人提出无穷小是一个无限向0靠近,但是永远不等于0的变量,这才把微积分重新稳固地建立在严格的极限理论基础上,从而消灭的这次数学危机。
③第三次数学危机:集合论悖论(或罗素悖论)的产生十九世纪下半叶,康托尔创立了著名的集合论。
后来集合概念逐渐渗透到众多的数学分支中,并且实际上集合论成了数学的基础。
可是,1903年,英国数学家罗素提出:集合论是有漏洞的!这就是著名的罗素悖论。
罗素构造了一个集合S:S由一切不是自身元素的集合所组成。
然后问:S是否属于S呢?如果S属于S,根据S的定义,S就不属于S;反之,如果S不属于S,同样根据定义,S就属于S。
无论如何都是矛盾的。
它所引起的巨大反响则导致了第三次数学危机。
危机产生后,数学家纷纷提出自己的解决方案。
比如ZF公理系统。
这一问题的解决现在还在进行中。
罗素悖论的根源在于集合论里没有对集合的限制,以至于让罗素能构造一切集合的集合这样“过大”的集合,对集合的构造的限制至今仍然是数学界里一个巨大的难题。
数学史概论复习题及参考答案
〔5〕?论劈锥曲面和旋转椭球? 〔6〕?引理集? 〔7〕?处理力学问题的方法? 〔8〕?论平面图形的平衡或其重心? 〔9〕?论浮体? 〔10〕?沙粒计数? 〔11〕?牛群问题?
十、 阿波罗尼奥斯最重要的数学成就是什 么?P58
答:阿波罗尼奥斯最重要的数学成就是创 立了相当完美的圆锥曲线理论。
第三章 中世纪的中国 数学
九、阿基米德数学研究的最大功绩是什么?
十、阿波罗尼奥斯最重要的数学成就是什么?
一、希腊数学一般是指什么时期,活动于 什么地方的数学家创造的数学?P32
答:希腊数学一般指从公元前600年至公元 600年间,活动于希腊半岛、爱琴海区域、 马其顿与色雷斯地区、意大利半岛、小亚 细亚以及非州北部的数学家们创造的数学。
5、19世纪晚期,集合论的创始人康托尔 (1845—1918)曾经提出: “数学是绝对自由开 展的学科,它只服从明显的思维,就是说它 的概念必须摆脱自相矛盾,并且必须通过定 义而确定地、有秩序地与先前已经建立和存 在的概念相联系〞。
6、20世纪50年代,前苏联一批有影响的数 学家试图修正前面提到的恩格斯的定义来概 括现代数学开展的特征:“现代数学就是各 种量之间的可能的,一般说是各种变化着的 量的关系和相互联系的数学〞。
7、从20世纪80年代开始,又出现了对数学 的定义作符合时代的修正的新尝试。主要是 一批美国学者,将数学简单地定义为关于 “模式〞 的科学:“【数学】这个领域已被称 作模式的科学,其目的是要揭示人们从自然 界和数学本身的抽象世界中所观察到的结构 和对称性〞 。
三、数学史通常采用哪些线索进行分期?P9 答:一般可ห้องสมุดไป่ตู้按照如下线索:
4、现代数学时期(1820年一现在) (1)现代数学酝酿时期(1820’一1870) (2)现代数学形成时期(1870—1940’) (3)现代数学繁荣时期(当代数学时期,1950
(完整word版)数学史复习资料
《数学史》复习资料名词解释:1、可公度量:对于任何两条给定的线段,总能找到某第三线段,以它为单位线段能将给定的两条线段划分为整数段。
这样的两条线段为“可公度量”,即有可公度量的度量单位。
这是古希腊毕达哥拉斯学派对世界任何量都能表示成两个整数比信念的反应。
2、出入相补原理:一个几何图形(平面或立方体的)被分割成若干部分后,面积或体积总保持不变。
3、费马大定理:关于X、Y、Z的不定方程X n+Y n =Z n ,对于任意大于2的自然数n无非零整数解。
4、大数定律:概率论历史上第一个极限定理属于伯努利,后人称之为“大数定律”。
概率论中讨论随机变量序列的算术平均值向常数收敛的定律。
P128 帕斯卡曾提出的n为正数时的二项式定理,得到所谓伯努利定理:若p是某一事件单独出现一次的概率,q是不出现该事件的概论,则在n次试验中,该事件至少出现m次的概率等于二项式(p+q)n 的展式中的从p n 项到p m q n-m 项的各项之和。
容易看出,这实际上就是概率论中最重要的定律之一——“大数定律”的最早表现形式。
5、倍立方体:就是已知一立方体,求作另一立方体,使它的体积等于已知立方体的两倍。
也即求作一立方体的边,使该立方体的体积为给定立方体的两倍。
6、祖氏原理:P65“幂势既同,则积不容异”,即夹在两个平行平面间的两个几何体,被平行于这两个平面的任意平面所截,若所得截面总相等,则此二几何体积相等。
它被称为“祖暅原理”。
1、简述古希腊数学的特点。
答案二:(1)追求理性和唯理的论证数学特点;(2)欧氏几何开创了公理化理论体系;(3)欧式几何形成了演绎思维的特征;总之,希腊数学是追求理性,主要以演绎几何为特征的数学。
2、简述欧几里得《原本》中所确立的公理化思想。
答:公理化思想是古希腊时期在欧氏几何中确立数学演绎范式。
这种范式要求一门学科中的每个命题必须是在它之前已建立的一些命题的逻辑结论,而所有这样的推理链的共同出发点,就是一些基本定义和被认为不证自明的基本原理——公理或公设。
数学史复习资料
《数学史概论》复习资料一、单项选择题1.世界上讲述方程最早的著作是( A )A.中国的《九章算术》B.阿拉伯花拉子米的《代数学》C.卡尔丹的《大法》D.牛顿的《普遍算术》2.《数学汇编》是一部荟萃总结前人成果的典型著作,它被认为是古希腊数学的安魂曲,其作者为( B )。
A.托勒玫B.帕波斯C.阿波罗尼奥斯D.丢番图3.美索不达米亚是最早采用位值制记数的民族,他们主要用的是( A )。
A.六十进制B.十进制C.五进制D.二十进制4.“一尺之棰,日取其半,万世不竭”出自我国古代名著( B )。
A.《考工记》B.《墨经》C.《史记》D.《庄子》5.下列数学著作中不属于“算经十书”的是( A )。
A.《数书九章》B.《五经算术》C.《缀术》D.《缉古算经》6.微积分诞生于( C )。
A.15 世纪B.16 世纪C.17 世纪D.18 世纪7.以“万物皆数”为信条的古希腊数学学派是( D )。
A.爱奥尼亚学派B.伊利亚学派C.诡辩学派D.毕达哥拉斯学派8.最早记载勾股定理的我国古代名著是( A )。
A.《九章算术》B.《孙子算经》C.《周髀算经》D.《缀术》9.首先使用符号“0”来表示零的国家或民族是( A )。
A.中国 B.印度C.阿拉伯D.古希腊10.在《几何原本》所建立的几何体系中,“整体大于部分”是( D )。
A.定义B.定理C.公设D.公理11.刘徽首先建立了可靠的理论来推算圆周率,他所算得的“徽率”是( B )。
A.3.1B.3.14C.3.142D.3.141592612.费马对微积分诞生的贡献主要在于其发明的( C )。
A.求瞬时速度的方法B.求切线的方法C.求极值的方法D.求体积的方法13.祖冲之的代表作是( C )A.《考工记》B.《海岛算经》C.《缀术》D.《缉古算经》14.中国古典数学发展的顶峰时期是( D )。
A.两汉时期B.隋唐时期C.魏晋南北朝时期D.宋元时期15.最早使用“函数”(function)这一术语的数学家是( A )。
数学史概论复习题及参考答案 PPT
三、 关于古埃及数学的知识主要依据哪两 部纸草书?纸草书中问题绝大部分都是实用 性质,但有个别例外,请举例。
四、 美索不大米亚人的记数制远胜埃及象 形数字之处主要表现在哪些方面?
一、 世界上早期常见有几种古老文明记数 系统,它们分别是什么数字,采用多少进制 数系?P13
二、什么使泰勒斯获得了第一位数学家和论证几 何学鼻祖的美名?P33
答:关于泰勒斯并没有确凿的传记资料留传下来。 但是以下命题记载却流传至今,使泰勒斯获得了 第一位数学家和论证几何学鼻祖的美名。泰勒斯 曾证明了下列四条定理:
答:1.古埃及的象形数字(公元前3400年 左右):十进制数系
2.巴比伦楔(xie)形数字(公元前2400年 左右):六十进制数系
3.中国甲骨文数字(公元前1600年左右): 十进制数系
4.希腊阿提卡数字(公元前500年左右): 0年左右): 十进制数系
6.印度婆罗门数字(公元前300年左右): 十进制数系
5 、 19 世 纪 晚 期 , 集 合 论 的 创 始 人 康 托 尔 (1845—1918)曾经提出: “数学是绝对自由 发展的学科,它只服从明显的思维,就是说 它的概念必须摆脱自相矛盾,并且必须通过 定义而确定地、有秩序地与先前已经建立和 存在的概念相联系”。
6、20世纪50年代,前苏联一批有影响的数 学家试图修正前面提到的恩格斯的定义来概 括现代数学发展的特征:“现代数学就是各 种量之间的可能的,一般说是各种变化着的 量的关系和相互联系的数学”。
数学史概论总复习
主讲:
wkw-
TEL:
考试题型
一、填空题(每空1分,共30分)
二、简答题(每小题5分,共50分)
三、简述20世纪十例现代数学成果的内容 (10分)
06227_划重点了数学史概论的考点都在这里秘(二)
引言概述:数学史是数学学科中一门重要的学科,它包含了丰富而深远的数学思想和知识。
本文旨在探讨数学史概论的考点,为读者提供全面和详实的信息。
在上一篇文章中,我们介绍了数学史概论的基本概念和理论,本文将继续深入研究数学史概论的考点。
第一大点:古代数学的发展1.古代数学的起源:介绍古代数学发展的背景和基本内容。
主要包括古埃及的几何学、巴比伦的计算法和印度的代数学。
2.古希腊数学的贡献:详细介绍古希腊数学家毕达哥拉斯、欧几里得等对数学的重要贡献。
主要包括毕达哥拉斯定理、欧几里得几何等内容。
3.古印度数学的成就:介绍古印度数学家对代数学的研究成果,包括零的发现、二次方程的解法等内容。
4.古中国数学的发展:介绍古中国数学的起源和特点,包括十进制计数法、《九章算术》等内容。
5.古阿拉伯数学的传承:介绍古阿拉伯数学家对古希腊和古印度数学的传承和发展,包括阿拉伯数学家对代数学、几何学的研究成果。
第二大点:中世纪数学的发展1.中世纪欧洲数学的复兴:介绍中世纪欧洲数学的复兴,包括斐波那契数列的发现、大数学家费马的贡献等。
2.文艺复兴时期的数学:介绍文艺复兴时期数学的发展,包括数学思想的变革和代数学的发展。
3.中世纪阿拉伯数学的传播:介绍中世纪阿拉伯数学的传播和对欧洲数学的影响,包括十进制计数法的引入、代数学和几何学的研究成果等。
4.中世纪中国数学的繁荣:介绍中世纪中国数学的繁荣和成就,包括数学著作的创作、算盘的使用等。
5.中世纪印度数学的发展:介绍中世纪印度数学的发展和成果,包括三角学的研究、无穷级数的应用等。
第三大点:近代数学的革新1.文艺复兴后的数学发展:介绍文艺复兴后数学的革新和突破,包括微积分的发展、坐标几何的引入等。
2.牛顿和莱布尼茨的微积分:详细介绍牛顿和莱布尼茨对微积分的贡献,包括微积分基本定理、微分和积分的定义等。
3.高斯和欧拉的代数学:介绍高斯和欧拉对代数学的重要贡献,包括数论、群论等内容。
4.19世纪的几何学:介绍19世纪几何学的发展,包括非欧几何的引入、流形和拓扑学的研究等。
数学史概论 2
数学史概论复习题纲1、数学史研究数学概念、数学方法和数学思想的起源与发展。
2、数概念的形成大约是在30万年以前。
3、十进制的广泛采用是数最重要的里程碑。
4、当指头不敷运用时,就出现了石子记事等,以便表示同更多的集合元素的对应。
但记数的石子堆很难长久保存信息,于是又有结绳记数和刻痕记数。
5、古埃及人在一种用纸莎草压制成的草片上书写,我们关于古埃及数学的知识,主要就是依据了两部纸草书——赖茵德纸草书和莫斯科纸草书。
6、现在所知最早的希腊数学家是泰勒斯。
7、毕达哥拉斯学派一项几何成就是正多面体作图,他们称正多面体为“宇宙形”。
我们今天知道在三维空间中正多面体仅有五种——正四面体、正六面体、正八面体、正十二面体和正二十面体。
8、毕达哥拉斯学派的基本信条是“万物皆数”。
9、毕达哥拉斯学派还定义了“完全数”“过剩数”和“不足数”:一个数是完全数、过剩数还是不足数,分别视其因数之和等于、大于或小于该数本身而定(6是最小的完全数,下一个完全数是28等)。
“亲和数”的概念也归功于毕达哥拉斯学派,两个整数a和b被称为亲和数,若a是b的因数之和而b又是a的因数之和(最小的一对亲和数是220和284).10、毕达哥拉斯相信任何量都可以表示成两个整数之比(即某个有理量)。
在几何上相当于:对于任何两条给定的线段,总能找到某第三线段,以它为单位线段能将给定的两条线段划分为整数段。
希腊人称这样两条给定线段为“可公度量”,意即有公共的度量单位。
11、古希腊三大著名几何问题是:(1)化圆为方,即作一个与给定的圆面积相等的正方形。
(2)倍立方体,即求作一立方体,使其体积等于已知立方体的两倍。
(3)三等分角,即分任意角为三等分。
12、欧几里得的《几何原本》列出了5条公设和5条公理,它们是:公设:(1)假定从任意一点到任意一点可作一直线。
(2)一条有限直线可不断延长。
(3)以任意中心和直径可以画圆。
(4)凡直角都彼此相等。
(5)若一直线落在两直线上所构成的同旁内角和小于两直角,那么把两直线无限延长,它们将在同旁内角和小于两直角的一侧相交。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第0章数学史—人类文明的重要篇章一、数学史研究哪些内容?(P1)数学史研究数学概念、数学方法和数学思想的起源与发展,及其与社会、经济和一般文化的联系。
数学是研究现实世界的空间形式与数量关系的科学二、数学史通常采用哪些线索进行分期?(P9)1、按时代顺序2、按数学对象、方法等本身的质变过程3、按数学发展的社会背景三、本书对数学史如何分期?(P9)1、数学的起源与早期发展(公元前6世纪);2、初等数学时期(公元前6世纪-16世纪);A.古代希腊数学(公元前6世纪—6世纪)B.中世纪东方数学(3世纪—15世纪)C.欧洲文艺复兴时期(15世纪—16世纪)3、近代数学时期(17世纪-18世纪);4、现代数学时期(1820年至今)。
A.现代数学酝酿时期(1820'—1870)B.现代数学形成时期(1870—1940)C.现代数学繁荣时期(或称当代数学时期,1950—现在)四、近几年新编的中小学数学教材中,增加了不少数学史知识.请对这种变化的积极意义谈谈你的认识与体会.这些数学史有效的补充了教材内容,使教材内容更丰富、充实,让学生对数学的历史有了进一步的了解,激发了学生的学习兴趣,培养了学生的数学素养。
将数.学史融入数学实践活动,例如以七巧板系列活动为主题,以提高学生创新思维为抓手,由浅入深,循序渐进地开展了面向全体学生的智力七巧板实践活动。
七巧板实践活动的开展,充实了数学史应用的内容,丰富了学生的课余生活,培养了学生组合分解能力、动手实践能力和思维创新能力,特别是对学生创新素质的提高产生了积极的作用和深远的影响。
第一章数学的起源与早期发展一、世界上早期常见有几种古老文明记数系统,它们分别是什么数字,采用多少进制数系?(P13)1.古埃及的象形数字(公元前3400年左右)2.古巴比伦的楔形数字(公元前2400年左右)3.中国的甲骨文(公元前1600年左右)4.希腊阿提卡数字(公元前500年左右)5.中国的算筹码(公元前500年左右)6.印度婆罗门数字(公元前500年左右)7.玛雅数字(?)其中除巴比伦楔形数字采用六十进制、玛雅数字采用二十进制外,其他均属十进制数系二、“河谷文明”指的是什么?(P16)历史学家往往把兴起于埃及、美索不达米亚、中国、印度等地域的古代文明称为“河谷文明”。
三、古埃及数学的知识主要依据哪两部纸草书?纸草书中问题绝大部分是实用性质,但个别例外,请举例。
(见P23)古埃及数学的知识,主要就是依据两部纸草书—莱茵德纸草书和莫斯科纸草书。
P23(美索不达米亚人的记数制远胜埃及象形数字之处主要表现在哪些方面?四、.—25)1.大多数文明普遍采用十进制,但美索不达米亚人却创造了一套以60进制为主的楔形文记数系统。
2.美索不达米亚人的记数制远胜埃及象形数字之处,还在于他们巧妙地将位置原理推广应用到整数以为的分数。
3.美索不达米亚人还经常利用各种数表来进行计算,使计算更加简捷。
第二章古代希腊数学一、希腊数学一般是指什么时期,活动于什么地方的数学家创造的数学?(P32)希腊数学一般指从公元前600年一公元600年间,活动于希腊半岛、爱琴海区域、马其顿与色雷斯地区、意大利半岛、小亚细亚以及非洲北部的数学家们创造的数学。
二、毕达哥拉斯学派认为宇宙万物皆依赖于整数的信条由于什么发现而受到动摇?这个“第一次数学危机”是由于什么人提出的新比例理论而暂时消除?(P38)毕达哥拉斯学派认为宇宙万物皆依赖于整数的信条吗,由于不可公度量的发现而受到了动摇。
大约一个世纪以后,这一“危机”才由于毕达哥拉斯学派成员阿契塔斯的学生欧多克斯提出新比例理论而暂时消除。
三、古希腊数学学派主要有哪些学派?(整章)A.伊利亚学派B.诡辩学派C.雅典学院(柏拉图学派)D.亚里士多德学派D.黄金时代—亚历山大学派四、古希腊三大著名几何问题是什么?(P40)1.化圆为方,即作一个与给定的圆面积相等的正方形。
2.倍立方体,即求作一个立方体,使其体积等于已知立方体的两倍。
3.三等分角,即分任意角为三等分。
五、亚里士多德《物理学》中记载芝诺提出的四个著名的悖论是什么?(P43)A.二分法B.阿基里斯C.飞箭D.运动场六、希腊数学的“黄金时代”指的是什么时间?这时期希腊数学的中心从雅典移到何处,此处出现了哪三大数学家?从公元前338年希腊诸邦被马其顿控制,至公元前30年罗马消灭最后一个希腊化国家托勒密王国的三百余年,史称希腊数学的“黄金时代”(即公元前338—30年)。
先后出现了欧几里得、阿基米德和阿波罗尼奥斯三大数学家。
七、几何《原本》共分多少卷,包括有多少条公理,多少条公设,多少个定义和多少条命题?(P46)全书共分13卷,包括有5条公理,5条公设、119个定义和465条命题。
八、阿基米德生平及数学研究的功绩?(P52-54)A.阿基米德(公元前287—前212)出生于西西里岛的叙拉古,早年曾在亚历山大城跟过欧几里得的门生学习,后来虽然离开了亚历山大,但仍与那里的师友保持着密切的联系,他的许多成果都是通过与亚历山大学者的通信而保存下来。
B.阿基米德著述极为丰富,但多以类似论文手稿而非大部巨著的形式出现。
这些著述内容涉及数学、力学及天文学等,其中流传于世的有:《圆的度量》、《抛物线求积》、《论螺线》、《论球和圆柱》、《论劈锥曲面和旋转椭球》、《引理集》、《处理力学问题的方法》、《论平面图形的平衡或其重心》、《论浮体》、《沙粒计数》、《牛群问题》。
九、阿波罗尼奥斯最重要的数学成就是什么?(P58)阿波罗尼奥斯的贡献涉及几何学和天文学,但他最重要的数学成就是在前人工作的基础上创立了相当完美的圆锥曲线理论。
《圆锥曲线论》就是这方面的系统总结。
第三章中世纪的中国数学一、中国数学史上何时何人何种方法最先完成勾股定理证明?(P70)中国数学史上最早完成勾股定理证明的数学家,是公元3世纪三国时期的赵爽。
赵爽注《周髀算经》,作“勾股圆方图”,其中的“弦图”,相当于运用面积的出入相补证明了勾股定理。
二、《周髀算经》作者,成书年代、主要成就。
(P69)《周髀算经》作者不详,成书年代据考应不晚于公元前2世纪西汉时期,但书中涉及的数学、天文知识,有的可以追溯到西周(公元前11世纪—前8世纪)。
这部著作实际上是从数学上讨论“盖天说”宇宙模型,反映了中国古代数学与天文学的密切联系。
三、《九章算术》中各章名称是什么?这些章节中谈论算术、代数、几何方面的内容为哪些章节?(P71—78)《九章算术》采用问题集的形式,全书246个问题,分成九章,依次为:方田,粟米,衰分,少广,商功,均输,盈不足,方程,勾股。
其中所包含的数学成就是丰富和多方面的。
论算术为:方田,粟米,衰分,均输,盈不足。
代数为:方程,少广。
几何为:方田,商功,勾股。
四、刘徽代表著作及其数学成就中最突出是什么?(P78)刘徽代表著为《九章算术注》,刘徽数学成就中最突出的是“割圆术”和体积理论。
五、何谓“祖氏原理”,它在西方文献中称为什么原理?(P87)祖氏原理:幂势既同,则积不容异。
祖氏原理在西方文献中称“卡瓦列里原理”。
六、《算经十书》是指哪十书?(阅读P88)《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、《张邱建算经》、《夏候阳算经》、《五曹算经》《五经算经》、《缀术》、《缉古算经》。
七、九章算术方程术(P73)“方程术”即线性联立方程组的解法。
《九章算术》方程术的遍乘直除算法,实质上就是我们所使用的解线性联立方程组的消元法,西方文献中称之为“高斯消去法”。
《九章算术》方程术,是世界数学史上的一颗明珠。
八、勾股圆方图(见P70)另:“宋元四大家”有杨辉、秦九韶、李治、朱世杰。
“贾宪三角”,在西方文献中则称“帕斯卡三角”。
秦九韶的代表著作《数书九章》。
朱世杰代表著作《算学启蒙》、《四元玉鉴》。
系统阐述开元术的是李治的《测圆海镜》和《益古演段》两部著作。
(阅读P90—104,代表作,成就)第四章印度与阿拉伯的数学一、“巴克沙利手稿”中涉及到哪些的数学内容?(P107)所谓“巴克沙利手稿”,是数学内容十分丰富,涉及到分数、平方根、数列、收支与利润计算、比例算法、级数求和、代数方程等,其代数方程包括一次方程、联立方程组、二次方程。
二、“阿拉伯数学”是否单指阿拉伯国家的数学?(P113)“阿拉伯数学”并非单指阿拉伯国家的数学,而是指8-15世纪阿拉伯帝国统治下整个中亚和西亚地区的数学,包括希腊人、波斯人、犹太人和基督徒等所写的阿拉伯文及波斯文等数学著作。
三、第一次给出一元二次方程的一般代数解法是来至何人著的著作?,他用什么方法证明了这一方法?(P114)书中用代数方式处理了线性方。
《代数学》花拉子米的上述著作通常也称为程组与二次方程,第一次给出了一元二次方程的一般代数解法及几何证明,同时又引进了移项、同类项合并等代数运算等等,这一切为作为“解方程的科学”的代数学开拓了道路。
第五章近代数学的兴起一、数学符号系统化首先应归功于哪位数学家,对这位数学使用的代数符号的改进工作是由何人完成的?(P129)数学符号系统化首先归功于法国数学家韦达,由于他的符号体系的引入导致代数性质上产生重大变革。
数学符号的改进工作是由笛卡儿完成的。
二、球面三角与平面三角何者先出现?(P131)早期的三角学总是与天文学密不可分,这样在1450年以前,三角学主要是球面三角,后来由于间接测量、测绘工作的需要而出现了平面三角。
三、对数是何人首先发明?它的产生主要是由于什么的需要?(P136、P135)苏格兰贵族数学家纳皮尔正是在球面天文学的三角学研究中首先发明对数方法的。
它的产生主要是由于天文和航海计算的强烈需要。
四、笛卡儿创立解析几何的灵感有几个传说,请试述其中的任意其一。
(见P142)第六章微积分的创立一、微积分与积分学的起源何者在先,何者在后?(P144)与积分学相比而言,微分学的起源则要晚得多。
二、微积分酝酿阶段最有代表性的工作有哪几项?(P146—154)1.开普勒与旋转体体积2.卡瓦列里不可分量原理3.笛卡儿“圆法”4.费马求极大值与极小值的方法5.巴罗“微分三角形”6.沃利斯“无穷算术”三、牛顿走上创立微积分之路受哪两部著作的影响最深?(P155)笛卡儿的《几何学》和沃利斯的《无穷算术》对他影响最深,正是这两部著作引导牛顿走上了创立微积分之路。
四、为什么说在微积分的创立上牛顿需要与莱布尼茨分享荣誉?(见P174)牛顿和莱布尼茨都是他们时代的巨人,就微积分的创立而言,尽管在背景、方法和形式上存在差异、各有特色,但二者的功绩是相当的。
他们都是使微积分成为能普遍适用的算法,同时又都将面积、体积及相当的问题归结为反切线(微分)运算。
第十四章数学与社会一、两项影响最大的国际数学奖励是什么奖?(P376)两项影响最大的国际数学奖励──菲尔兹奖和沃尔夫奖。