2020年高考数学核按钮专题复习 不等式6.5课件 理 精品

合集下载

2020版高考数学二轮复习专题一集合、常用逻辑用语、不等式、函数与导数第5讲导数及其应用课件文苏教版

2020版高考数学二轮复习专题一集合、常用逻辑用语、不等式、函数与导数第5讲导数及其应用课件文苏教版

(2)函数 f(x)=ax2-(a+2)x+ln x 的定义域为(0,+∞), 当 a>0 时, f′(x)=2ax-(a+2)+1x=2ax2-(ax+2)x+1 =(2x-1)x(ax-1), 令 f′(x)=0,解得 x=12或 x=1a.
①当 0<1a≤1,即 a≥1 时,f(x)在[1,e]上单调递增. 所以 f(x)在[1,e]上的最小值为 f(1)=-2,符合题意; ②当 1<1a<e,即1e<a<1 时,f(x)在1,1a上单调递减,在1a,e上单调递增, 所以 f(x)在[1,e]上的最小值为 f1a<f(1)=-2,不合题意; ③当1a≥e,即 0<a≤1e时,f(x)在[1,e]上单调递减, 所以 f(x)在[1,e]上的最小值为 f(e)<f(1)=-2,不合题意. 综上,实数 a 的取值范围是[1,+∞).
导数的几何意义是切点处切线的斜率,应用时主要体现在以下几个方面: (1)已知切点 A(x0,f(x0))求斜率 k,即求该点处的导数值:k=f′(x0); (2)已知斜率 k,求切点 A(x1,f(x1)),即解方程 f′(x1)=k; (3)已知过某点 M(x1,f(x1))(不是切点)的切线斜率为 k 时,常需设出切点 A(x0,f(x0)), 利用 k=f(x1)x1--fx(0 x0)求解.
2.记住几个常用的公式与结论 四个易误导数公式及两个常用的运算法则 (1)(sin x)′=cos x. (2)(cos x)′=-sin x. (3)(ax)′=axln a(a>0,且 a≠1). (4)(logax)′=xln1 a(a>0,且 a≠1). (5)[f(x)·g(x)]′=f′(x)g(x)+f(x)g′(x). (6)gf((xx))′=f′(x)g(x[g)(-x)f(]2x)g′(x)(g(x)≠0).

高考数学第一轮复习精品系列课件:第六部分 不等式

高考数学第一轮复习精品系列课件:第六部分 不等式

│ 知识要点 知识要点
│ 知识要点
│ 知识要点
│ 知识要点
│ 双基固化 双基固化
│ 双基固化
│ 双基固化
│ 双基固化
│ 双基固化
│ 双基固化
│ 双基固化
│ 双基固化
│ 双基固化
│ 双基固化
│ 双基固化
│ 双基固化
│ 双基固化
│ 双基固化
│ 双基固化
│ 能力提升 能力提升
│ 双基固化
│ 双基固化
│ 双基固化
│ 双基固化
│ 双基固化
│ 能力提升 能力提升
│ 能力提升
│ 能力提升
│ 能力提升
│ 能力提升
│ 规律总结 规律总结
│ 规律总结
│ 均值不等式
│ 编读互动 编读互动
│ 课前热身 课前热身
│ 课前热身
│ 课前热身
│ 课前热身
│ 课前热身
│ 双基固化
│ 双基固化
│ 双基固化
│ 双基固化
│ 能力提升 能力提升
│ 能力提升
│ 能力提升
│ 能力提升
│ 能力提升
│ 规律总结 规律总结
│ 规律总结
│不等式的解法
│ 编读互动 编读互动
│ 编读互动
│ 课前热身 课前热身
│ 课前热身
│ 课前热身
│ 课前热身
│ 课前热身
│ 能力提升
│ 能力提升
│ 能力提升
│ 能力提升
│ 能力提升
│ 能力提升
│ 能力提升
│ 规律总结 规律总结
│ 含绝对值的不等式
│ 编读互动 编读互动
│ 课前热身 课前热身
│ 课前热身
│ 课前热身

2020版高考数学复习第十三单元第66讲不等式的性质及绝对值不等式课件理新人教A版

2020版高考数学复习第十三单元第66讲不等式的性质及绝对值不等式课件理新人教A版

课堂考点探究
例 1 [2018·重庆一模] 已知函数 f(x)=|2x+1|. (1)解不等式 f(x)>x+5; (2)若对于 x,y∈R,有|x-3y-1|<14,|2y+1|<16,求 证:f(x)<1.
解:(1)∵f(x)>x+5,∴|2x+1|>x+5, ∴2x+1>x+5 或 2x+1<-x-5,解得 x>4 或 x<-2, ∴不等式的解集为{x|x>4 或 x<-2}.
,当且仅当 a1=a2=…=an 时,等号成立.
课前双基巩固
3.绝对值不等式
(1)如果 a,b 是实数,那么|a+b|≤|a|+|b|,当且仅当 ab≥0 时,等号成立. (2)如果 a,b,c 是实数,那么|a-c|≤|a-b|+|b-c|,当且仅当 (a-b)(b-c)≥0 时,等号成立.
课堂考点探究
课堂考点探究
例 3 [2018·丹东模拟] 设函数 f(x)=|x-1|-|x+2|,已知-2<f(a)<0,-2<f(b)<0. (1)证明:|a+b|<1; (2)比较 2|a-b|与|1-4ab|的大小.
3,������ < -2, 解:(1)证明:由题意得,f(x)= -2������-1,-2 ≤ ������ < 1,
[总结反思] (1)对绝对值三角不等式定理 |a|-|b|≤|a±b|≤|a|+|b|中取等号的条件要深刻理 解,特别是用此定理求函数的最值时,要检验等 号是否能取到;(2)||a|-|b||≤|a±b|≤|a|+|b|经常用 于证明含绝对值的不等式;(3)对于求 y=|x-a|+|x-b|或 y=|x-a|-|x-b|型函数的最值问题, 利用绝对值三角不等式更简捷、方便.

2020年高考数学一轮复习第六章不等式第5讲不等式的应用课件理

2020年高考数学一轮复习第六章不等式第5讲不等式的应用课件理

0.55 万元
韭菜
6吨
0.9 万元
0.3 万元
为使一年的种植总利润(总利润=总销售收入-总种植成
本)最大,那么黄瓜和韭菜的种植面积(单位:亩)分别为( )
A.50,0
B.30,20
C.20,30
D.0,50
解析:设黄瓜和韭菜的种植面积分别为 x,
y 亩,种植总利润为 z 万元,
则目标函数 z=(0.55×4x-1.2x)+(0.3×
1800 平方米的矩形地块,中间挖出三个矩形池塘养鱼,挖出的
泥土堆在池塘四周形成基围(阴影部分所示)种植桑树,池塘周
围的基围宽均为 2 米,如图 6-5-1,设池塘所占
的总面积为 S 平方米.
(1)试用 x 表示 S;
(2)当 x 取何值时,才能使得 S 最大?并求
出 S 的最大值.
图 6-5-1
即当 x 为 45 米时,S 最大,且 S 的最大值为 1352 平方米. 【规律方法】利用不等式解决实际问题时,首先要认真审 题,分析题意,建立合理的不等式模型,最后通过基本不等式 解题.注意最常用的两种题型:积一定,和最小;和一定,积最 大.
【互动探究】
1.某村计划建造一个室内面积为 800 m2 的矩形蔬菜温室.在
温室内,沿左、右两侧与后侧内墙各保留 1 m 宽的通道,沿前
侧内墙保留 3 m 宽的空地,则最大的种植面积是( D )
A.218 m2
B.388 m2
C.468 m2
D.648 m2
解析:设矩形温室的左侧边长为 a m,后侧边长为 b m,则
解析:设生产产品 A、产品 B 分别为 x,y 件,利润之和为 z 元,那么
目标函数 z=2100x+900y. 二元一次不等式组①等价于

核按钮(新课标)高考数学一轮复习 第七章 不等式训练 文

核按钮(新课标)高考数学一轮复习 第七章 不等式训练 文

第七章不等式考纲链接1.不等关系了解现实世界和日常生活中存在着大量的不等关系,了解不等式(组)的实际背景.2.一元二次不等式(1)会从实际问题的情境中抽象出一元二次不等式模型.(2)通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系.(3)会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.3.二元一次不等式组与简单线性规划问题(1)会从实际情境中抽象出二元一次不等式组.(2)了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.(3)会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.4.基本不等式:ab≤a+b2(a≥0,b≥0)(1)了解基本不等式的证明过程.(2)会用基本不等式解决简单的最大(小)值问题.§7.1 不等关系与不等式1.两个实数大小的比较(1)a>b⇔a-b________;(2)a=b⇔a-b________;(3)a<b⇔a-b________.2.不等式的性质(1)对称性:a>b⇔__________;(2)传递性:a>b,b>c⇒__________;(3)不等式加等量:a>b⇔a+c______b+c;(4)不等式乘正量:a>b,c>0⇒__________,不等式乘负量:a>b,c<0⇒__________;(5)同向不等式相加:a>b,c>d⇒__________;※(6)异向不等式相减:a>b,c<d⇒a-c>b-d;(7)同向不等式相乘:a>b>0,c>d>0⇒__________;※(8)异向不等式相除:a>b>0,0<c<d⇒ac>bd;※(9)不等式取倒数:a>b,ab>0⇒1a<1b;(10)不等式的乘方:a>b>0⇒______________;(11)不等式的开方:a>b>0⇒______________.※注:1.(5)(6)说明,同向不等式可相加,但不可相减,而异向不等式可相减;2.(7)(8)说明,都是正数的同向不等式可相乘,但不可相除,而都是正数的异向不等式可相除.自查自纠:1.>0 =0 <02.(1)b<a(2)a>c(3)> (4)ac>bc ac<bc(5)a+c>b+d(7)ac>bd(10)a n>b n(n∈N且n≥2)(11)na>nb(n∈N且n≥2)(2014·山东)已知实数x,y满足a x<a y(0<a<1),则下列关系式恒成立的是( ) A.1x2+1>1y2+1B.ln(x2+1)>ln(y2+1) C.sin x>sin y D.x3>y3解:根据指数函数的性质得x>y,此时x2,y2的大小不确定,故选项A,B中的不等式不恒成立;根据三角函数的性质,选项C中的不等式也不恒成立;根据不等式的性质知,选项D中的不等式恒成立.故选D.(2015·烟台模拟)设a,b∈(-∞,0),则“a>b”是“a-1a>b-1b”成立的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解:∵⎝⎛⎭⎪⎫a-1a-⎝⎛⎭⎪⎫b-1b=(a-b)⎝⎛⎭⎪⎫1+1ab,又1+1ab>0,若a>b,则(a-b)⎝⎛⎭⎪⎫1+1ab>0,∴a-1a>b-1b成立;反之,若(a -b )⎝ ⎛⎭⎪⎫1+1ab >0,则a >b 成立.故选C.已知a >0,b >0,则a a b b与a b b a的大小关系为( )A .a a b b ≥a b b aB .a a b b <a b b aC .a a b b ≤a b b aD .与a ,b 的大小有关解:不妨设a ≥b >0,则a b ≥1,a -b ≥0.a a b ba b ba =⎝ ⎛⎭⎪⎫a b a -b ≥1,即a a b b ≥a b b a.同理当b >a >0时,亦有a a b b ≥a b b a.故选A.已知a =27,b =6+22,则a ,b 的大小关系是a b.解:由于a =27,b =6+22,平方作差得a 2-b 2=28-14-83=14-83=8⎝ ⎛⎭⎪⎫74-3>0,从而a >b.故填>.(2015·济南模拟)若a >0>b >-a ,c <d<0,则下列结论:①ad >bc ;②a d +b c<0;③a -c >b -d ;④a (d -c )>b (d -c )中成立的是________(填序号).解:∵a >0>b ,c <d <0,∴ad <0,bc >0, ∴ad <bc ,故①错误.∵a >0>b >-a ,∴a >-b >0,∵c <d <0,∴-c >-d >0,∴a (-c )>(-b )(-d ),∴ac +bd <0,∴a d +b c =ac +bdcd<0,故②正确.∵c <d ,∴-c >-d ,∵a >b ,∴a +(-c )>b +(-d ),a -c >b -d ,故③正确.∵a >b ,d -c >0,∴a (d -c )>b (d -c ),故④正确.故填②③④.类型一 建立不等关系(2015·湖北)设x ∈R ,[x ]表示不超过x 的最大整数.若存在实数t ,使得[t ]=1,[t 2]=2,…,[t n]=n 同时成立....,则正整数n 的最大值是( )A .3B .4C .5D .6解:因为[x ]表示不超过x 的最大整数.由[t ]=1得1≤t <2,由[t 2]=2得2≤t 2<3,由[t 4]=4得4≤t 4<5,所以2≤t 2<5,由[t 3]=3得3≤t 3<4,所以6≤t 5<45,由[t 5]=5得5≤t 5<6,与6≤t 5<45矛盾,故正整数n 的最大值是4.故选B.点拨:解决有关不等关系的实际问题,应抓住关键字词,例如“要”“必须”“不少于”“大于”等,从而建立相应的方程或不等式模型.本例[x ]表示不超过x 的最大整数,故由[x ]=k ,可得k ≤x <k +1,再由多个不等式结合不等式的性质找到正整数n 的最大值.用锤子以均匀的力敲击铁钉进入木板.随着铁钉的深入,铁钉所受的阻力会越来越大,使得每次钉入木板的钉子长度为前一次的1k(k ∈N *),已知一个铁钉受击3次后全部进入木板,且第一次受击后进入木板部分的铁钉长度是钉长的47,试从中提炼出一个不等式组.(钉帽厚度不计) 解:假设钉长为1,第一次受击后,进入木板部分的铁钉长度是47;第二次受击后,该次铁钉进入木板部分的长度为47k,此时进入木板部分的铁钉的总长度为47+47k ,有47+47k<1;第三次受击后,该次钉入木板部分的长度为47k 2,此时应有47+47k +47k2,有47+47k +47k2≥1. 所以可从中提炼出一个不等式组:⎩⎪⎨⎪⎧47+47k<1,47+47k +47k2≥1.类型二 不等式的性质已知下列三个不等式①ab >0;②ca>d b;③bc >ad.以其中两个作为条件,余下一个作结论,则可组成几个正确命题?解:(1)对②变形c a >d b ⇔bc -adab>0,由ab >0,bc >ad 得②成立,∴①③⇒②.(2)若ab >0,bc -adab>0,则bc >ad ,∴①②⇒③.(3)若bc >ad ,bc -adab>0,则ab >0,∴②③⇒①.综上所述可组成3个正确命题.点拨:运用比较法及不等式性质进行比较时要注意不等式需满足的条件,如比较ac 与bc 的大小关系应注意从c >0,c =0,c <0三个方面讨论.(2014·四川)若a >b >0,c <d <0,则一定有( )A.a c >b dB.a c <b dC.a d >b cD.a d <b c解:由c <d <0⇒-1d >-1c>0,又a >b >0,故由不等式性质,得-a d >-b c >0,所以a d <b c.故选D.类型三 不等式性质的应用(1)若1<α<3,-4<β<2,则α2-β的取值范围是________.解:由1<α<3得12<α2<32,由-4<β<2得-2<-β<4,所以α2-β的取值范围是⎝ ⎛⎭⎪⎫-32,112.故填⎝ ⎛⎭⎪⎫-32,112.点拨:①需要注意的是,两同向不等式可以相加但不可以相减,所以不能直接由12<α2<32和-4<β<2两式相减来得到α2-β的范围.②此类题目用线性规划也可解.(2)已知-1<a +b <3且2<a -b <4,则2a +3b 的取值范围是________.解:设2a +3b =x (a +b )+y (a -b ),∴⎩⎪⎨⎪⎧x +y =2,x -y =3.解得⎩⎪⎨⎪⎧x =52,y =-12.∴-52<52(a +b )<152,-2<-12(a -b )<-1.∴-92<52(a +b )-12(a -b )<132,即-92<2a +3b <132.故填⎝ ⎛⎭⎪⎫-92,132.点拨:由于a +b ,a -b 的范围已知,所以要求2a +3b 的取值范围,只需将2a +3b 用已知量a +b ,a -b 表示出来,可设2a +3b =x (a +b )+y (a -b ),用待定系数法求出x ,y ,再利用同向不等式的可加性求解.(1)若角α,β满足-π2<α<β<π2,则2α-β的取值范围是________.解:∵-π2<α<β<π2,∴-π2<α<π2,-π2<β<π2,-π2<-β<π2,而α<β,∴-π<α-β<0,∴2α-β=(α-β)+α∈⎝ ⎛⎭⎪⎫-3π2,π2.故填⎝ ⎛⎭⎪⎫-3π2,π2.(2)设f (x )=ax 2+bx ,且1≤f (-1)≤2,2≤f (1)≤4,则f (-2)的取值范围为________.解法一:由已知⎩⎪⎨⎪⎧1≤a -b ≤2,2≤a +b ≤4.①②f (-2)=4a -2b.设4a -2b =m (a -b )+n (a +b )(m ,n 为待定系数),即4a -2b =(m +n )a -(m -n )b ,于是得⎩⎪⎨⎪⎧m +n =4,m -n =2.解得⎩⎪⎨⎪⎧m =3,n =1.由①×3+②×1得5≤4a -2b ≤10,即5≤f (-2)≤10.解法二:由⎩⎪⎨⎪⎧a -b =f (-1),a +b =f (1)得⎩⎪⎨⎪⎧a =12[f (1)+f (-1)],b =12[f (1)-f (-1)].∴f (-2)=4a -2b =3f (-1)+f (1),后面同解法一.故填[5,10].类型四 比较大小实数b >a >0,实数m >0,比较a +mb +m与a b 的大小,则a +m b +m ________a b. 解法一:(作差比较):a +mb +m -a b =b (a +m )-a (b +m )b (b +m )=m (b -a )b (b +m ),∵b >a >0,m >0,∴m (b -a )b (b +m )>0,∴a +mb +m>a b. 解法二(作商比较):∵b >a >0,m >0, ∴bm >am ⇒ab +bm >ab +am >0, ∴ab +bm ab +am >1,即a +m b +m ·b a >1⇒a +m b +m >a b.故填>.点拨:本题思路是作差整理,定符号,所得结论也称作真分数性质.作差(商)比较法的步骤是:①作差(商);②变形:配方、因式分解、通分、分母(分子)有理化等;③判断符号(判断商和“1”的大小关系);④作出结论.(2015·福建月考)已知a ,b ,c ∈R +,且a 2+b 2=c 2,当n ∈N ,n >2时,比较c n 与a n +bn的大小,则a n +b n ________c n.解:∵a ,b ,c ∈R +,∴a n ,b n ,c n>0,而a n +b n cn=⎝ ⎛⎭⎪⎫a c n +⎝ ⎛⎭⎪⎫b c n .∵a 2+b 2=c 2,∴⎝ ⎛⎭⎪⎫a c 2+⎝ ⎛⎭⎪⎫b c 2=1,∴0<a c <1,0<b c <1.当n ∈N ,n >2时,⎝ ⎛⎭⎪⎫a c n <⎝ ⎛⎭⎪⎫a c 2,⎝ ⎛⎭⎪⎫b c n <⎝ ⎛⎭⎪⎫b c 2,∴a n +b n c n =⎝ ⎛⎭⎪⎫a c n +⎝ ⎛⎭⎪⎫b c n <a 2+b 2c 2=1,∴a n +b n <c n .故填<.1.理解不等关系的意义、实数运算的符号法则、不等式的性质,是解不等式和证明不等式的依据和基础.2.一般数学结论都有前提,不等式性质也是如此.在运用不等式性质之前,一定要准确把握前提条件,一定要注意不可随意放宽其成立的前提条件.3.不等式性质包括“充分条件(或者是必要条件)”和“充要条件”两种,前者一般是证明不等式的理论基础,后者一般是解不等式的理论基础.4.利用几个不等式来确定某个代数式的范围时要注意:“同向(异向)不等式的两边可相加(相减)”这种变形不是等价变形,若多次使用,则有可能使取值范围扩大,解决这一问题的方法是:先建立待求范围的整体与已知范围的整体的等量关系,再一次性的运用这种变形,即可求得正确的待求整体的范围.5.比较两个实数的大小,有作差法和作商法两种方法.一般多用作差法,注意当这两个数都是正数时,才可以用作商法.作差法是比较作差后的式子与“0”的大小关系;作商法是比较作商后的式子与“1”的大小关系.6.对于实际问题中的不等量关系,还要注意实际问题对各个参变数的限制.1.(2015·厦门模拟) “a +c >b +d ”是“a >b 且c >d ”的( )A .充分不必要条件B .既不充分也不必要条件C .充分必要条件D .必要不充分条件 解:由“a +c >b +d ”不能得知“a >b 且c >d ”,反过来,由“a >b 且c >d ”可得知“a +c >b +d ”,因此“a +c >b +d ”是“a >b 且c >d ”的必要不充分条件.故选D.2.已知a ,b 为正数,a ≠b ,n 为正整数,则a nb +ab n -a n +1-b n +1的正负情况为 ( )A .恒为正B .恒为负C .与n 的奇偶性有关D .与a ,b 的大小有关解:a n b +ab n -a n +1-b n +1=a n (b -a )+b n(a -b )=-(a -b )(a n -b n),因为(a -b )与(a n -b n )同号,所以a n b +ab n -a n +1-b n +1<0恒成立.故选B.3.(2015·云南模拟)若a ,b ,c ∈R ,且a >b ,则下列不等式一定成立的是( )A .a +c ≥b -cB .(a -b )c 2≥0 C .ac >bcD.c 2a -b>0解:A 项:当c <0时,不等式a +c <b -c 可能成立;B 项:a >b ⇒a -b >0,c 2≥0,故(a -b )c 2≥0;C 项:当c =0时,ac =bc ;D 项:当c =0时,c 2a -b=0.故选B.4.(2014·湖南)已知命题p :若x >y ,则-x<-y ;命题q :若x >y ,则x 2>y 2.在命题①p ∧q ;②p ∨q ;③p ∧(綈q );④(綈p )∨q 中,真命题是( )A .①③B .①④C .②③D .②④解:当x >y 时,两边乘以-1可得-x <-y ,∴命题p 为真命题;当x =1,y =-2时,显然x 2<y 2,∴命题q 为假命题,∴②③为真命题.故选C.5.(2014·浙江)已知函数f (x )=x 3+ax 2+bx +c ,且0<f (-1)=f (-2)=f (-3)≤3,则( )A .c ≤3B .3<c≤6C .6<c≤9D .c >9解:由f (-1)=f (-2)=f (-3)得,-1+a -b +c =-8+4a -2b +c =-27+9a -3b +c ,消去c 得⎩⎪⎨⎪⎧3a -b =7,5a -b =19, 解得⎩⎪⎨⎪⎧a =6,b =11,于是0<c -6≤3,即6<c ≤9.故选C.6.如果0<m <b <a ,则( )A .cos b +m a +m <cos b a <cos b -m a -mB .cos b a <cos b -m a -m <cos b +m a +mC .cos b -m a -m <cos b a <cos b +m a +mD .cos b +m a +m <cos b -m a -m <cos b a解:作商比较:b +m a +m ÷b a =ab +amab +bm>1,所以1>b +m a +m >b a >0,同理,0<b -m a -m <b a <1,∴1>b +m a +m >b a >b -m a -m >0.而y =cos x 在⎝⎛⎭⎪⎫0,π2上单调递减,所以cos b +m a +m <cos b a <cos b -ma -m(也可取特殊值判断).故选A.7.(2015·江西模拟)设a =lg e ,b =(lg e )2,c =lg e ,则a ,b ,c 的大小关系为________.解:∵e <10,∴lg e <lg 10=12,∴(lg e )2<12·lg e =lg e ,即b <c.又∵e <e ,∴lg e <lg e ,即c <a.故填b <c <a.8.(2015·安徽模拟)定义a *b =⎩⎪⎨⎪⎧a ,a <b ,b ,a ≥b.已知a =30.3,b =0.33,c =log 30.3,则(a *b )*c =________.(结果用a ,b ,c 表示)解:∵log 30.3<0<0.33<1<30.3,∴c <b <a ,∴(a *b )*c =b *c =c.故填c.9.设实数a ,b ,c 满足①b +c =6-4a +3a 2,②c -b =4-4a +a 2.试确定a ,b ,c 的大小关系.解:∵c -b =(a -2)2≥0,∴c ≥b ,又2b =2+2a 2,∴b =1+a 2,∴b -a =a 2-a +1=⎝ ⎛⎭⎪⎫a -122+34>0,∴b >a ,从而c ≥b >a.10.某企业去年年底给全部的800名员工共发放1 000万元年终奖,该企业计划从今年起,10年内每年发放的年终奖都比上一年增加30万元,企业员工每年净增a 人.(1)若a =10,在计划时间内,该企业的人均年终奖是否会超过1.5万元?(2)为使人均年终奖年年有增长,该企业每年员工的净增量不能超过多少人?解:(1)设从今年起的第x 年(今年为第1年)该企业人均发放年终奖为y 万元.则y =1 000+30x 800+ax(a ∈N *,1≤x ≤10).假设会超过1.5万元,则当a =10时有1 000+30x 800+10x >1.5,解得x >403>10.所以,10年内该企业的人均年终奖不会超过1.5万元.(2)设1≤x 1<x 2≤10,y =f (x )=1 000+30x800+ax,则f (x 2)-f (x 1)=1 000+30x 2800+ax 2-1 000+30x 1800+ax 1=(30×800-1 000a )(x 2-x 1)(800+ax 2)(800+ax 1)>0,所以30×800-1 000a >0,得a <24.所以,为使人均年终奖年年有增长,该企业每年员工的净增量不能超过23人.11.(2015·云南模拟改编)已知a +b +c =0,且a >b >c ,求ca的取值范围.解:∵a +b +c =0,∴b =-(a +c ).又a >b >c , ∴a >-(a +c )>c ,且3a >a +b +c =0>3c ,则a >0,c <0,∴1>-a +c a >ca,即1>-1-c a >c a ,∴⎩⎪⎨⎪⎧2c a <-1,ca >-2, 解得-2<ca <-12.故c a 的取值范围是⎝⎛⎭⎪⎫-2,-12. 设a >b >1,c <0,给出下列三个结论:①c a >cb;②a c<b c;③log b ()a -c >log a ()b -c .其中所有正确结论的序号是( ) A .① B .①② C .②③ D .①②③解:①∵a >b >1,∴0<1a <1b<1,又c <0,∴c a >cb ,①正确;②由于a >b >1,可设f (x )=a x,g (x )=b x,当x =c <0时,根据指数函数的性质,得a c <b c,②正确;③∵a >b >1,c <0,即a -c >b -c >1,∴log a (a -c )>log a (b -c ),又由对数函数的性质知log b (a -c )>log a (a -c ),∴log b (a -c )>log a (b -c ),③正确.故选D.§7.2 一元二次不等式及其解法1.解不等式的有关理论(1)若两个不等式的解集相同,则称它们是;(2)一个不等式变形为另一个不等式时,若两个不等式是同解不等式,这种变形称为不等式的;(3)解不等式变形时应进行同解变形;解不等式的结果,一般用集合表示.2.一元一次不等式解法任何一个一元一次不等式经过不等式的同解变形后,都可以化为ax>b(a≠0)的形式.当a>0时,解集为;当a<0时,解集为.若关于x的不等式ax>b的解集是R,则实数a,b满足的条件是.3.一元二次不等式及其解法(1)我们把只含有一个未知数,并且未知数的最高次数是2的不等式,称为__________不等式.(2)使某个一元二次不等式成立的x的值叫做这个一元二次不等式的解,一元二次不等式所有的解组成的集合叫做一元二次不等式的________.(3)若一元二次不等式经过同解变形后,化为一元二次不等式ax2+bx+c>0(或ax2+bx+c<0)(其中a>0)的形式,其对应的方程ax2+bx+c=0有两个不相等的实根x1,x2,且x1<x2(此时Δ=b2-4ac>0),则可根据“大于号取,小于号取”求解集.(4)一元二次不等式的解:函数与不等式Δ>0 Δ=0 Δ<0二次函数y=ax2+bx+c(a>0)的图象一元二次方程ax2+bx+c=0 (a>0)的根有两相异实根x1,x2(x1<x2)有两相等实根x1=x2=-b2a无实根ax2+bx+c>0(a>0)的解集①②Rax2+bx+c<0 (a>0)的解{x|x1<x<x2}∅③集4.分式不等式解法(1)化分式不等式为标准型.方法:移项,通分,右边化为0,左边化为f(x)g(x)的形式.(2)将分式不等式转化为整式不等式求解,如:f(x)g(x)>0⇔f(x)g(x)>0;f(x)g(x)<0 ⇔f(x)g(x)<0;f(x)g(x)≥0 ⇔⎩⎪⎨⎪⎧f(x)g(x)≥0,g(x)≠0;f(x)g(x)≤0 ⇔⎩⎪⎨⎪⎧f(x)g(x)≤0,g(x)≠0.自查自纠:1.(1)同解不等式(2)同解变形2.⎩⎨⎧⎭⎬⎫x|x>ba⎩⎨⎧⎭⎬⎫x|x<baa=0,b<03.(1)一元二次(2)解集(3)两边中间(4)①{}x|x<x1或x>x2②⎩⎨⎧⎭⎬⎫x⎪⎪⎪x≠-b2a③∅(2014·课标Ⅰ)已知集合A={x|x2-2x-3≥0},B={x|-2≤x<2},则A∩B=( )A.[-2,-1] B.[-1,2)C.[-1,1] D.[1,2)解:∵A={x|x≥3或x≤-1},B={x|-2≤x<2},∴A∩B={x|-2≤x≤-1}=[-2,-1].故选A.设f(x)=x2+bx+1且f(-1)=f(3),则f(x)>0的解集为( )A.{x|x∈R} B.{x|x≠1,x∈R}C.{x|x≥1} D.{x|x≤1}解:f(-1)=1-b+1=2-b,f(3)=9+3b+1=10+3b,由f(-1)=f(3),得2-b=10+3b,解出b=-2,代入原函数,f(x)>0即x2-2x+1>0,x的取值范围是x≠1.故选B.已知-12<1x<2,则x 的取值范围是( )A .(-2,0)∪⎝ ⎛⎭⎪⎫0,12 B.⎝ ⎛⎭⎪⎫-12,2 C.⎝⎛⎭⎪⎫-∞,-12∪(2,+∞) D .(-∞,-2)∪⎝ ⎛⎭⎪⎫12,+∞ 解:当x >0时,x >12;当x <0时,x <-2.所以x 的取值范围是x <-2或x >12,故选D.不等式2x 2-x <4的解集为____________.解:由2x 2-x <4得x 2-x <2,解得-1<x <2,即不等式2x 2-x <4的解集为{x |-1<x <2}.故填{x |-1<x <2}.(2014·武汉调研)若一元二次不等式2kx 2+kx -38<0对一切实数x 都成立,则k 的取值范围为________.解:显然k ≠0.则⎩⎪⎨⎪⎧2k <0,Δ<0, 解得k ∈(-3,0).故填(-3,0).类型一 一元一次不等式的解法已知关于x 的不等式(a +b )x +2a -3b <0的解集为⎝⎛⎭⎪⎫-∞,-13,则关于x 的不等式(a -3b )x +b -2a >0的解集为________.解:由(a +b )x <3b -2a 的解集为⎝⎛⎭⎪⎫-∞,-13, 得a +b >0,且3b -2a a +b =-13,从而a =2b ,则a +b =3b >0,即b >0, 将a =2b 代入(a -3b )x +b -2a >0,得-bx -3b >0,x <-3,故填{x |x <-3}.点拨:一般地,一元一次不等式都可以化为ax >b (a ≠0)的形式.挖掘隐含条件a +b >0且3b -2aa +b=-13是解本题的关键.解关于x 的不等式:(m 2-4)x <m +2.解:(1)当m 2-4=0即m =-2或m =2时,①当m =-2时,原不等式的解集为∅, ②当m =2时,原不等式的解集为R .(2)当m 2-4>0,即m <-2或m >2时,x <1m -2.(3)当m 2-4<0,即-2<m <2时,x >1m -2.类型二 一元二次不等式的解法解下列不等式:(1)x 2-7x +12>0; (2)-x 2-2x +3≥0;(3)x 2-2x +1<0; (4)x 2-2x +2>0.解:(1)方程x 2-7x +12=0的解为x 1=3,x 2=4.而y =x 2-7x +12的图象开口向上,可得原不等式x 2-7x +12>0的解集是{x |x <3或x >4}.(2)不等式两边同乘以-1,原不等式可化为x 2+2x -3≤0.方程x 2+2x -3=0的解为x 1=-3,x 2=1.而y =x 2+2x -3的图象开口向上,可得原不等式-x 2-2x +3≥0的解集是{x |-3≤x ≤1}.(3)方程x 2-2x +1=0有两个相同的解x 1=x 2=1.而y =x 2-2x +1的图象开口向上,可得原不等式x 2-2x +1<0的解集为∅.(4)因为Δ<0,所以方程x 2-2x +2=0无实数解,而y =x 2-2x +2的图象开口向上,可得原不等式x 2-2x +2>0的解集为R .点拨:解一元二次不等式的步骤:(1)将二次项系数化为正数;(2)解相应的一元二次方程;(3)根据一元二次方程的根,结合不等号的方向画图;(4)写出不等式的解集.容易出现的错误有:①未将二次项系数化正,对应错标准形式;②解方程出错;③结果未按要求写成集合.(2015·贵州模拟)关于x 的不等式x2-(a +1)x +a <0的解集中,恰有3个整数,则实数a 的取值范围是________.解:原不等式可化为(x -1)(x -a )<0,当a >1时,得1<x <a ,此时解集中的整数为2,3,4,则4<a ≤5;当a <1时,得a <x <1,此时解集中的整数为-2,-1,0.则-3≤a <-2,故a ∈[-3,-2)∪(4,5].故填[-3,-2)∪(4,5].类型三 二次不等式、二次函数及二次方程的关系(2015·贵州模拟)已知不等式ax 2+bx +2>0的解集为{x |-1<x <2},则不等式2x 2+bx +a <0的解集为( )A.⎩⎨⎧⎭⎬⎫xx <-1或x >12B.⎩⎨⎧⎭⎬⎫x |-1<x <12C .{x |-2<x <1}D .{x |x <-2或x >1}解:由题意知x =-1,x =2是方程ax 2+bx +2=0的两根,且a <0.由韦达定理得⎩⎪⎨⎪⎧-1+2=-b a ,(-1)×2=2a⇒⎩⎪⎨⎪⎧a =-1,b =1.∴不等式2x 2+bx +a <0,即2x 2+x -1<0.解得-1<x <12.故选B.点拨:已知一元二次不等式的解集,就能够得到相应的一元二次方程的两根,由根与系数的关系,可以求出相应的系数.注意结合不等式解集的形式判断二次项系数的正负.已知不等式ax 2+bx +c >0的解集为{x |2<x <3},则不等式cx 2-bx +a >0的解集为________.解:∵不等式ax 2+bx +c >0的解集为{x |2<x <3},∴a <0,且2和3是方程ax 2+bx +c =0的两根,由根与系数的关系得⎩⎪⎨⎪⎧-ba=2+3,ca =2×3,a <0.即⎩⎪⎨⎪⎧b =-5a ,c =6a ,a <0.代入不等式cx 2-bx +a >0,得6ax 2+5ax +a >0(a <0).即6x 2+5x +1<0,解得-12<x <-13.故填⎩⎨⎧⎭⎬⎫x |-12<x <-13. 类型四 含有参数的一元二次不等式解关于x 的不等式:mx 2-(m +1)x +1<0.解:(1)当m =0时,不等式为-(x -1)<0,得x -1>0,不等式的解集为{x |x >1};(2)当m ≠0时,不等式为m ⎝ ⎛⎭⎪⎫x -1m (x -1)<0.①当m <0,不等式为⎝ ⎛⎭⎪⎫x -1m (x -1)>0, ∵1m<1,∴不等式的解集为⎩⎨⎧⎭⎬⎫x |x <1m或x >1.②当m >0,不等式为⎝⎛⎭⎪⎫x -1m (x -1)<0.(Ⅰ)若1m<1,即m >1时,不等式的解集为⎩⎨⎧⎭⎬⎫x |1m<x <1;(Ⅱ)若1m>1,即0<m <1时,不等式的解集为⎩⎨⎧⎭⎬⎫x |1<x <1m ;(Ⅲ)若1m=1,即m =1时,不等式的解集为∅.点拨:当x 2的系数是参数时,首先对它是否为零进行讨论,确定其是一次不等式还是二次不等式,即对m ≠0与m =0进行讨论,这是第一层次;第二层次:x 2的系数正负(不等号方向)的不确定性,对m <0与m >0进行讨论;第三层次:1m与1大小的不确定性,对m <1、m >1与m =1进行讨论.解关于x 的不等式ax 2-2≥2x -ax (a ∈R ).解:不等式整理为ax 2+(a -2)x -2≥0, 当a =0时,解集为(-∞,-1]. 当a ≠0时,ax 2+(a -2)x -2=0的两根为-1,2a,所以当a >0时,解集为(-∞,-1]∪⎣⎢⎡⎭⎪⎫2a ,+∞;当-2<a <0时,解集为⎣⎢⎡⎦⎥⎤2a,-1;当a =-2时,解集为{x |x =-1};当a <-2时,解集为⎣⎢⎡⎦⎥⎤-1,2a .类型五 分式不等式的解法(1)不等式x -12x +1≤1的解集为________.解:x -12x +1≤1 ⇔ x -12x +1-1≤0 ⇔ -x -22x +1≤0⇔ x +22x +1≥0. 解法一:x +22x +1≥0 ⇔⎩⎪⎨⎪⎧(x +2)(2x +1)≥0,2x +1≠0.得{xx >-12或x ≤-2}.解法二:x +22x +1≥0 ⇔⎩⎪⎨⎪⎧x +2≥0,2x +1>0 或⎩⎪⎨⎪⎧x +2≤0,2x +1<0. 得{x |x >-12或x ≤-2}.故填{x |x >-12或x ≤-2}.(2)不等式x -2x 2+3x +2>0的解集为.解:x -2x 2+3x +2>0⇔x -2(x +2)(x +1)>0⇔(x -2)(x +2)(x +1)>0,数轴标根得{x |-2<x <-1或x >2}, 故填{x|-2<x <-1或x >2}.点拨:分式不等式可以先转化为简单的高次不等式,再利用数轴标根法写出不等式的解集,如果该不等式有等号,则要注意分式的分母不能为零.※用“数轴标根法”解不等式的步骤:(1)移项:根据不等式的性质对不等式进行移项,使得右端为0,化为不等式的标准形式(注意:一定要保证x 的最高次幂的项的系数为正数).(2)求根:就是求出不等式所对应的方程的所有根.①若是整式不等式,将其分解因式,求出所有根;②若是分式不等式,用积和商的符号法则,将其转化为整式不等式,再求出所有根.(3)标根:在数轴上按从左到右(由小到大)依次标出各根(不需标出准确位置,只需标出相对位置即可).(4)画穿根线:从数轴“最右根”的右上方向左下方画线,穿过此根,再往左上方穿过“次右根”,一上一下依次穿过各根.但画线时遇偶重根不穿过(即线画至此根时,不穿过此根,而向左依次穿过其余的根),遇奇重根要穿过,可用口诀:“奇穿偶不穿”来记忆.(5)写出不等式的解集:若不等号为“>”,则取数轴上方穿根线以内的范围;若不等号为“<”,则取数轴下方穿根线以内的范围;若不等式中含有“=”号,就连根一同取,但若是分式不等式,写解集时要考虑分母不能为零.(1)若集合A ={x |-1≤2x +1≤3},B =⎩⎨⎧⎭⎬⎫x |x -2x ≤0,则A ∩B =( ) A .{x |-1≤x <0} B .{x |0<x ≤1} C .{x |0≤x ≤2} D .{x |0≤x ≤1} 解:易知A ={x |-1≤x ≤1},B 集合就是不等式组⎩⎪⎨⎪⎧x (x -2)≤0,x ≠0 的解集,求出B ={}x |0<x ≤2,所以A ∩B ={x |0<x ≤1}.故选B.(2)不等式x -12x +1≤0的解集为( )A.⎝ ⎛⎦⎥⎤-12,1B.⎣⎢⎡⎦⎥⎤-12,1 C.⎝⎛⎭⎪⎫-∞,-12∪[1,+∞) D.⎝⎛⎦⎥⎤-∞,-12∪[1,+∞) 解:x -12x +1≤0⇔⎩⎪⎨⎪⎧(x -1)(2x +1)≤0,2x +1≠0得-12<x ≤1.故选A.类型六 和一元二次不等式有关的恒成立问题(1)若不等式x 2+ax +1≥0对于一切x ∈⎝⎛⎦⎥⎤0,12成立,则实数a 的最小值为( )A .0B .-2C .-52D .-3解法一:不等式可化为ax ≥-x 2-1,由于x ∈⎝ ⎛⎦⎥⎤0,12, ∴a ≥-⎝⎛⎭⎪⎫x +1x .∵f (x )=x +1x 在⎝ ⎛⎦⎥⎤0,12上是减函数,∴⎝⎛⎭⎪⎫-x -1x max =-52.∴a ≥-52. 解法二:令f (x )=x 2+ax +1,对称轴为x =-a 2.①⎩⎪⎨⎪⎧-a 2≤0,f (0)≥0 ⇒a ≥0.(如图1) ②⎩⎪⎨⎪⎧0<-a 2<12,f ⎝ ⎛⎭⎪⎫-a 2≥0⇒-1<a <0.(如图2)③⎩⎪⎨⎪⎧-a 2≥12,f ⎝ ⎛⎭⎪⎫12≥0 ⇒-52≤a ≤-1.(如图3)图1 图2 图3综上 ①②③,a ≥-52.故选C.(2)已知对于任意的a ∈[-1,1],函数f (x )=x 2+(a -4)x +4-2a 的值总大于0,则x 的取值范围是( )A .1<x <3B .x <1或x >3C .1<x <2D .x <1或x >2解:记g (a )=(x -2)a +x 2-4x +4,a ∈[-1,1],依题意,只须⎩⎪⎨⎪⎧g (1)>0,g (-1)>0⇒⎩⎪⎨⎪⎧x 2-3x +2>0,x 2-5x +6>0⇒x <1或x >3,故选B.点拨:(1)一元二次不等式恒成立问题,对于x 变化的情形,解法一利用参变量分离法,化成a >f (x )(a <f (x ))型恒成立问题,再利用a >f (x )max (a <f (x )min ),求出参数范围.解法二化归为二次函数,由于是轴动区间定,结合二次函数对称轴与定义域的位置关系、单调性等相关知识,求出参数范围.(2)对于参数变化的情形,大多利用参变量转换法,即参数转换为变量;变量转换为参数,把关于x 的二次不等式转换为关于a 的一次不等式,化繁为简,然后再利用一次函数的单调性,求出x 的取值范围.(1)(2015·甘肃模拟)若不等式a ·4x-2x+1>0对一切x ∈R 恒成立,则实数a 的取值范围是________.解:不等式可变形为a >2x-14x =⎝ ⎛⎭⎪⎫12x -⎝ ⎛⎭⎪⎫14x,令⎝ ⎛⎭⎪⎫12x =t ,则t >0.∴y =⎝ ⎛⎭⎪⎫12x -⎝ ⎛⎭⎪⎫14x=t -t 2=-⎝ ⎛⎭⎪⎫t -122+14,因此当t =12时,y 取最大值14,故实数a 的取值范围是a >14.故填⎝ ⎛⎭⎪⎫14,+∞.(2)对于满足|a |≤2的所有实数a ,使不等式x 2+ax +1>2x +a 成立的x 的取值范围为________.解:原不等式转化为(x -1)a +x 2-2x +1>0,设f (a )=(x -1)a +x 2-2x +1,则f (a )在[-2,2]上恒大于0,故有:⎩⎪⎨⎪⎧f (-2)>0,f (2)>0, 即⎩⎪⎨⎪⎧x 2-4x +3>0,x 2-1>0, 解得⎩⎪⎨⎪⎧x >3或x <1,x >1或x <-1. ∴x <-1或x >3.故填(-∞,-1)∪(3,+∞).类型七 二次方程根的讨论若方程2ax 2-x -1=0在(0,1)内有且仅有一解,则a 的取值范围是( )A .(-∞,-1)B .(1,+∞)C .(-1,1)D .[0,1)解法一:令f (x )=2ax 2-x -1,则f (0)·f (1)<0,即-1×(2a -2)<0,解得a >1.解法二:当a =0时,x =-1,不合题意,故排除C ,D ;当a =-2时,方程可化为4x 2+x +1=0,而Δ=1-16<0,无实根,故a =-2不适合,排除A.故选B.点拨:本题考查一元二次方程的根的分布与系数的关系,画出相应函数的图象后“看图说话”,主要从以下四个方面分析:①开口方向;②判别式;③区间端点函数值的正负;④对称轴x =-b2a与区间端点的关系.本书2.4节有较详细的讨论,可参看.(2015·贵州模拟)已知二次函数f (x )=ax 2-(a +2)x +1(a ∈Z ),且函数f (x )在(-2,-1)上恰有一个零点,则不等式f (x )>1的解集为________.解:根据题意有f (-2)f (-1)<0,∴(6a +5)(2a +3)<0.∴-32<a <-56.又a ∈Z ,∴a =-1.检验知合要求.不等式f (x )>1即为-x 2-x +1>1,解得-1<x <0.∴故填{x |-1<x <0}.类型八 一元二次不等式的应用(2013·上海)甲厂以x 千克/小时的速度匀速生产某种产品(生产条件要求1≤x ≤10),每小时可获得利润是100⎝ ⎛⎭⎪⎫5x +1-3x 元.(1)要使生产该产品2小时获得的利润不低于3000元,求x 的取值范围;(2)要使生产900千克该产品获得的利润最大,问:甲厂应该选取何种生产速度?并求最大利润.解:(1)根据题意,200⎝ ⎛⎭⎪⎫5x +1-3x ≥3 000⇒5x-14-3x≥0⇒5x 2-14x -3≥0⇒(5x +1)(x -3)≥0,又1≤x ≤10,可解得3≤x ≤10.(2)设利润为y 元,则y =900x·100⎝⎛⎭⎪⎫5x +1-3x =9×104⎝ ⎛⎭⎪⎫-3x 2+1x +5=9×104⎣⎢⎡⎦⎥⎤-3⎝ ⎛⎭⎪⎫1x -162+6112. 故x =6时,y max =457 500元.点拨:和一元二次不等式有关的实际应用题是高考考查的重点,这类题目往往与实际生活结合紧密,应予以重视.(2015·河南模拟)某商品每件成本价为80元,售价为100元,每天售出100件.若售价降低x 成(1成=10%),售出商品数量就增加85x成.要求售价不能低于成本价.(1)设该商店一天的营业额为y ,试求y 与x 之间的函数关系式y =f (x ),并写出定义域;(2)若要求该商品一天营业额至少为10 260元,求x 的取值范围.解: (1)由题意得y =100⎝ ⎛⎭⎪⎫1-x 10·100⎝ ⎛⎭⎪⎫1+850x . ∵售价不能低于成本价,∴100⎝ ⎛⎭⎪⎫1-x 10-80≥0.∴y =f (x )=20(10-x )(50+8x ),定义域为[0,2].(2)由题意得20(10-x )(50+8x )≥10 260,化简得8x 2-30x +13≤0.解得12≤x ≤134.∴x 的取值范围是⎣⎢⎡⎦⎥⎤12,2.1.一元二次不等式ax 2+bx +c >0(或ax 2+bx +c <0)(a ≠0)的解集的确定,受二次项系数a 的符号及判别式Δ=b 2-4ac 的符号制约,且与相应的二次函数、一元二次方程有密切联系,可结合相应的函数y =ax 2+bx +c (a ≠0)的图象,数形结合求得不等式的解集;二次函数y =ax 2+bx +c 的值恒大于0的条件是a >0且Δ<0;若恒大于或等于0,则a >0且Δ≤0.若二次项系数中含参数且未指明该函数是二次函数时,必须考虑二次项系数为0这一特殊情形.2.解分式不等式要使一边为零;求解非严格分式不等式时,要注意分母不等于0,转化为不等式组.(注:形如f (x )g (x )≥0或f (x )g (x )≤0的不等式称为非严格分式不等式)3.解含参数的不等式的基本途径是分类讨论,能避免讨论的应设法避免讨论.对字母参数的逻辑划分要具体问题具体分析,必须注意分类不重、不漏、完全、准确.4.解不等式的过程,实质上是不等式等价转化的过程.因此保持同解变形是解不等式应遵循的基本原则.5.各类不等式最后一般都要化为一元一次不等式(组)或一元二次不等式(组)来解,这体现了转化与化归的数学思想.6.对给定的一元二次不等式,求解的程序框图是:1.不等式x -2x +1≤0的解集是( ) A .(-∞,-1)∪(-1,2] B .[-1,2] C .(-∞,-1)∪[2,+∞) D .(-1,2]解:x -2x +1≤0⇔()x +1()x -2≤0,且x ≠-1,即x ∈(-1,2],故选D.2.(2015·湖北模拟)不等式f (x )=ax 2-x -c >0的解集为{x |-2<x <1},则函数y =f (-x )的图象为( )解:由题意得⎩⎪⎨⎪⎧-2+1=1a ,-2×1=-c a, 解得⎩⎪⎨⎪⎧a =-1,c =-2.则f (x )=-x 2-x +2,∴f (-x )=-x 2+x +2.故选C.3.(2013·安徽)已知一元二次不等式f (x )<0的解集为⎩⎨⎧⎭⎬⎫x |x <-1或x >12,则f (10x)>0的解集为( )A .{x |x <-1或x >lg2}B .{x |-1<x <lg2}C .{x |x >-lg2}D .{x |x <-lg2}解:可设f (x )=a (x +1)⎝ ⎛⎭⎪⎫x -12(a <0),由f (10x )>0可得(10x +1)⎝⎛⎭⎪⎫10x -12<0,从而10x <12,解得x <-lg2,故选D.4.(2013·陕西)在如图所示的锐角三角形空地中,欲建一个面积不小于300 m 2的内接矩形花园(阴影部分),则其边长x (单位:m )的取值范围是( )A .[15,20]B .[12,25]C .[10,30]D .[20,30] 解:设矩形的另一边为y m ,依题意得x40=40-y40,即y =40-x ,所以x (40-x )≥300,解得10≤x ≤30.故选C.5.若关于x 的不等式2x 2-8x -4-a >0在(1,4)内有解,则实数a 的取值范围是( )A .(-∞,-12)B .(-4,+∞)C .(-12,+∞)D .(-∞,-4)解:关于x 的不等式2x 2-8x -4-a >0在(1,4)内有解,即a <2x 2-8x -4在(1,4)内有解,令f (x )=2x 2-8x -4=2(x -2)2-12,当x =2时,f (x )取最小值f (2)=-12;当x =4时,f (4)=2(4-2)2-12=-4,所以在(1,4)上,-12≤f (x )<-4.要使a <f (x )有解,则a <-4.故选D.6.若关于x 的方程3x 2-5x +a =0的一个根大于-2且小于0,另一个根大于1且小于3,则实数a 的取值范围是( )A .(-∞,2)B .(-12,+∞)C .(-22,0)D .(-12,0)解:设f (x )=3x 2-5x +a ,则由题意有 ⎩⎪⎨⎪⎧f (-2)>0,f (0)<0,f (1)<0,f (3)>0.即⎩⎪⎨⎪⎧22+a >0,a <0,-2+a <0,12+a >0.解得-12<a <0.故选D.7.(2015·浙江模拟)不等式log 2⎝⎛⎭⎪⎫x +1x+6≤3的解集为________.解:log 2⎝⎛⎭⎪⎫x +1x+6≤3⇔log 2⎝⎛⎭⎪⎫x +1x+6≤log 28⇔0<x +1x +6≤8⇔-6<x +1x ≤2.当x >0时,x +1x≥2,此时x =1;当x <0时,x +1x≤-2,此时x+1x>-6,解得-3-22<x <-3+22.故填(-3-22,-3+22)∪{1}. 8.(2015·昆明模拟)已知a 为正的常数,若不等式1+x ≥1+x 2-x 2a对一切非负实数x 恒成立,则a 的最大值是______________.解:原不等式可化为x 2a ≥1+x2-1+x (*),令1+x =t ,t ≥1,则x =t 2-1,所以(*)即(t 2-1)2a≥1+t 2-12-t =t 2-2t +12=(t -1)22,对t ≥1恒成立,所以(t +1)2a ≥12对t ≥1恒成立,又a 为正的常数,所以a ≤[2(t +1)2]min =8,故a 的最大值是8.故填8.9.若关于x 的不等式x 2-ax -a ≤-3的解集不是空集,求实数a 的取值范围.解法一:设f (x )=x 2-ax -a.则关于x 的不等式x 2-ax -a ≤-3的解集不是空集⇔f (x )min ≤-3,即f ⎝ ⎛⎭⎪⎫a 2=-4a +a 24≤-3,解得a ≤-6或a ≥2.解法二:x 2-ax -a ≤-3的解集不是空集⇔x 2-ax -a +3=0的判别式Δ≥0,解得a ≤-6或a ≥2.10.汽车在行驶中,由于惯性的作用,刹车后还要继续向前滑行一段距离才能停住,我们称这段距离为“刹车距离”.刹车距离是分析事故的一个重要因素.在一个限速为40 km /h 的弯道上,甲、乙两辆车相向而行,发现情况不对,同时刹车,但还是相碰了.事后现场勘查测得甲车的刹车距离略超过12 m ,乙车的刹车距离略超过10 m ,又知甲、乙两种车型的刹车距离s (m )与车速x (km /h )之间分别有如下关系:s 甲=0.1x +0.01x 2, s 乙=0.05x +0.005x 2. 问甲、乙两车有无超速现象?解:由题意知,对于甲车,有0.1x +0.01x 2>12,即x 2+10x -1200>0,解得x >30或x <-40(舍去).这表明甲车的车速超过30 km /h ,又由甲车刹车距离略超12 m ,可判断甲车车速不会超过限速40 km /h.对于乙车有0.05x +0.005x 2>10,即x 2+10x -2000>0,解得x >40或x <-50(舍去).这表明乙车超过40 km /h ,超过规定限速. 11.已知二次函数f (x )的二次项系数为a ,且不等式f (x )>-2x 的解集为(1,3).(1)若方程f (x )+6a =0有两个相等的实根,求f (x )的解析式;(2)若f (x )的最大值为正数,求a 的取值范围. 解:(1)∵f (x )+2x >0的解集为(1,3), ∴f (x )+2x =a (x -1)(x -3),且a <0. 因而f (x )=a (x -1)(x -3)-2x=ax 2-(2+4a )x +3a.①由方程f (x )+6a =0得ax 2-(2+4a )x +9a =0.②因为方程②有两个相等的实根,所以Δ=[-(2+4a )]2-4a ·9a =0,即5a 2-4a -1=0,解得a =1或a =-15.由于a <0,舍去a =1,将a =-15代入①得f (x )的解析式f (x )=-15x 2-65x -35.(2)由f (x )=ax 2-2(1+2a )x +3a=a ⎝ ⎛⎭⎪⎫x -1+2a a 2-a 2+4a +1a, 及a <0,可得f (x )的最大值为-a 2+4a +1a.由⎩⎪⎨⎪⎧-a 2+4a +1a >0,a <0,解得a <-2-3或-2+3<a <0.故当f (x )的最大值为正数时,实数a 的取值范围是(-∞,-2-3)∪(-2+3,0).解关于x 的不等式:a (x -1)x -2>1(a<1).解:(x -2)[(a -1)x +2-a ]>0,当a <1时有(x -2)⎝ ⎛⎭⎪⎫x -a -2a -1<0,若a -2a -1>2,即0<a <1时,解集为{x |2<x <a -2a -1}; 若a -2a -1=2,即a =0时,解集为∅; 若a -2a -1<2,即a <0时,解集为{x |a -2a -1<x <2}.§7.3 二元一次不等式(组)与简单的线性规划问题1.二元一次不等式表示的平面区域(1)一般地,二元一次不等式Ax+By+C>0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的________.我们把直线画成虚线以表示区域________边界直线.当我们在坐标系中画不等式Ax+By+C≥0所表示的平面区域时,此区域应________边界直线,则把边界直线画成________.(2)由于对直线Ax+By+C=0同一侧的所有点(x,y),把它的坐标(x,y)代入Ax+By+C,所得的符号都________,所以只需在此直线的同一侧取一个特殊点(x0,y0)(如原点)作为测试点,由Ax0+By0+C的________即可判断Ax+By+C>0表示的是直线Ax+By+C=0哪一侧的平面区域.2.线性规划(1)不等式组是一组对变量x,y的约束条件,由于这组约束条件都是关于x,y的一次不等式,所以又可称其为线性约束条件.Z=Ax+By是要求最大值或最小值的函数,我们把它称为________.由于Z=Ax+By是关于x,y的一次解析式,所以又可叫做________.另外注意:线性约束条件除了用一次不等式表示外,也可用一次方程表示.(2)一般地,求线性目标函数在线性约束条件下的________的问题,统称为线性规划问题.(3)满足线性约束条件的解(x,y)叫做________,由所有可行解组成的集合叫做________.其中,使目标函数取得最大值或最小值的可行解都叫做这个问题的________.线性目标函数的最值常在可行域的边界上,且通常在可行域的顶点处取得;而求最优整数解首先要看它是否在可行域内.(4)用图解法解决简单的线性规划问题的基本步骤:①首先,要根据________ (即画出不等式组所表示的公共区域).②设________,画出直线l0.③观察、分析、平移直线l0,从而找到最优解.④最后求得目标函数的________.(5)利用线性规划研究实际问题的解题思路:首先,应准确建立数学模型,即根据题意找出条件,确定________函数.然后,用图解法求得数学模型的解,即________,在可行域内求得使目标函数________.自查自纠:1.(1)平面区域不包括包括实线(2)相同符号2.(1)目标函数线性目标函数(2)最大值或最小值(3)可行解可行域最优解(4)①线性约束条件画出可行域②z=0④最大值或最小值(5)约束线性目标画出可行域取得最值的解不等式x-2y+6>0表示的区域在直线x -2y+6=0的( )A.左下方 B.左上方C.右下方 D.右上方解:画出直线并取原点代入知C正确.故选C.(2015·北京)若x,y满足⎩⎪⎨⎪⎧x-y≤0,x+y≤1,x≥0,则z =x+2y的最大值为( )A.0 B.1 C.32D.2解:由题意作出可行域如图中阴影部分所示,当z=x+2y经过点A(0,1)时取最大值,即z max =2.故选D.(2015·湖南)若变量x,y满足约束条件⎩⎪⎨⎪⎧x+y≥-1,2x-y≤1,y≤1,则z=3x-y的最小值为( ) A.-7 B.-1 C.1 D.2解:作出不等式组⎩⎪⎨⎪⎧x+y≥-1,2x-y≤1,y≤1表示的可行域。

2020年高考数学一轮复习第六章不等式第1讲不等式的概念与性质课件理

2020年高考数学一轮复习第六章不等式第1讲不等式的概念与性质课件理

A.ab>ac
B.c(b-a)>0
C.cb2<ab2
D.ac(a-c)<0
4.(2018 年北京)能说明“若 a>b,则1a<1b”为假命题的一组
a,b 的值依次为__2_,__-__1_(_答__案__不__唯__一__) _.
考点 1 不等式的基本性质 例 1:(1)(2016 年福建泉州月考)若 x>y,a>b,则在下列五 个式子中: ①a-x>b-y;②a+x>b+y;③ax>by;④x-b>y-a;⑤ay>bx. 恒成立的不等式的序号是__________.
答案:B
【规律方法】作差比较法证明不等式的步骤是:作差、变 形、判断差的符号.作差是依据,变形是手段,判断差的符号才 是目的.常用的变形方法有配方法、通分法、因式分解法等.有时 把差变形为常数,有时变形为常数与几个数平方和的形式,有 时变形为几个因式积的形式等.总之,变形到能判断出差的符号 为止.
A.ax+by+cz
B.az+by+cx
C.ay+bz+cx
D.ay+bx+cz
解析:由 x<y<z,a<b<c,所以 ax+by+cz-(az+by+cx) =a(x-z)+c(z-x)=(x-z)(a-c)>0,故 ax+by+cz>az+by+ cx;同理,ay+bz+cx-(ay+bx+cz)=b(z-x)+c(x-z)=(x- z)(c-b)<0,故 ay+bz+cx<ay+bx+cz.因为 az+by+cx-(ay+ bz+cx)=a(z-y)+b(y-z)=(a-b)(z-y)<0,故 az+by+cx<ay +bz+cx.故最低费用为 az+by+cx.故选 B.

2020年高考数学(理科)一轮复习课件:第6章 不等式 第1讲

2020年高考数学(理科)一轮复习课件:第6章 不等式 第1讲

基础知识过关
1.两个实数比较大小的依据 01 > b. (1)a-b>0⇔a □ (2)a-b=0⇔a (3)a-b<0⇔a
02 = □ 03 < □
b. b.
2.不等式的基本性质 01 b<a (1)对称性:a>b⇔ □ (2)传递性:a>b,b>c⇒
. 02 a>c □
.
(3)可加性:a>b⇒a+c>b+c. 03 ac>bc ;a>b,c<0⇒ (4)可乘性:a>b,c>0⇒ □ (5)加法法则:a>b,c>d⇒
答案
解析 M> N .
)
B.M≥N D.M≤N
A
M- N= 2a(a-2)- (a+ 1)(a- 3)=a2-2a+3 = (a -1)2+2>0,故
答案
解析
(4)已知函数 f(x)=ax2+ax-1,若对任意实数 x,恒有 f(x)≤0,则实数 a 的取值范围是________.
答案 [-4,0]
02 □
. .
2 4 ac - b b 2 y=a x + (a≠0) + 2 a 4 a
03 y=a(x-x1)(x-x2)(a≠0) (3)两根式: □

5.三个二次之间的关系
1.概念辨析 (1)a>b⇔ac >bc .( × ) (2)若不等式 ax2+bx+c>0 的解集是(-∞,x1)∪(x2,+∞),则方程 ax2 +bx+c=0 的两个根是 x1 和 x2.( √ ) (3)若方程 ax2+bx+c=0(a≠0)没有实数根,则不等式 ax2+bx+c>0 的 解集为 R .( × ) (4) 不等式 ax2 + bx + c≤0 在 R 上恒成立的条件是 a<0 且 Δ = b2 - 4ac≤0.( × )

核按钮(新课标)高考数学一轮复习 第七章 不等式训练

核按钮(新课标)高考数学一轮复习 第七章 不等式训练

第七章不等式考纲链接1.不等关系了解现实世界和日常生活中存在着大量的不等关系,了解不等式(组)的实际背景.2.一元二次不等式(1)会从实际问题的情境中抽象出一元二次不等式模型.(2)通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系.(3)会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.3.二元一次不等式组与简单线性规划问题(1)会从实际情境中抽象出二元一次不等式组.(2)了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.(3)会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.4.基本不等式:ab≤a+b2(a≥0,b≥0)(1)了解基本不等式的证明过程.(2)会用基本不等式解决简单的最大(小)值问题.§7.1 不等关系与不等式1.两个实数大小的比较(1)a>b⇔a-b________;(2)a=b⇔a-b________;(3)a<b⇔a-b________.2.不等式的性质(1)对称性:a>b⇔__________;(2)传递性:a>b,b>c⇒__________;(3)不等式加等量:a>b⇔a+c______b+c;(4)不等式乘正量:a>b,c>0⇒__________,不等式乘负量:a>b,c<0⇒__________;(5)同向不等式相加:a>b,c>d⇒__________;※(6)异向不等式相减:a>b,c<d⇒a-c>b-d;(7)同向不等式相乘:a>b>0,c>d>0⇒__________;※(8)异向不等式相除:a>b>0,0<c<d⇒ac>bd;※(9)不等式取倒数:a>b,ab>0⇒1a<1b;(10)不等式的乘方:a>b>0⇒______________;(11)不等式的开方:a>b>0⇒______________.※注:1.(5)(6)说明,同向不等式可相加,但不可相减,而异向不等式可相减;2.(7)(8)说明,都是正数的同向不等式可相乘,但不可相除,而都是正数的异向不等式可相除.自查自纠:1.>0 =0 <02.(1)b<a(2)a>c(3)> (4)ac>bc ac<bc(5)a+c>b+d(7)ac>bd(10)a n>b n(n∈N且n≥2)(11)na>nb(n∈N且n≥2)(2014·山东)已知实数x,y满足a x<a y(0<a<1),则下列关系式恒成立的是( )A.1x2+1>1y2+1B.ln(x2+1)>ln(y2+1)C.sin x>sin y D.x3>y3解:根据指数函数的性质得x>y,此时x2,y2的大小不确定,故选项A,B中的不等式不恒成立;根据三角函数的性质,选项C中的不等式也不恒成立;根据不等式的性质知,选项D中的不等式恒成立.故选D. (2015·烟台模拟)设a,b∈(-∞,0),则“a>b”是“a-1a>b-1b”成立的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解:∵⎝⎛⎭⎪⎫a-1a-⎝⎛⎭⎪⎫b-1b=(a-b)⎝⎛⎭⎪⎫1+1ab,又1+1ab>0,若a>b,则(a-b)⎝⎛⎭⎪⎫1+1ab>0,∴a-1a>b-1b成立;反之,若(a-b)⎝⎛⎭⎪⎫1+1ab>0,则a>b成立.故选C.已知a>0,b>0,则a a b b与a b b a的大小关系为( )A.a a b b≥a b b a B.a a b b<a b b aC.a a b b≤a b b a D.与a,b的大小有关解:不妨设a≥b>0,则ab≥1,a-b≥0.a ab ba b b a=⎝ ⎛⎭⎪⎫a b a -b≥1,即a a b b ≥a b b a.同理当b >a >0时,亦有a a b b≥a b b a.故选A.已知a =27,b =6+22,则a ,b 的大小关系是a b.解:由于a =27,b =6+22,平方作差得a 2-b 2=28-14-83=14-83=8⎝ ⎛⎭⎪⎫74-3>0,从而a >b.故填>.(2015·济南模拟)若a >0>b >-a ,c <d <0,则下列结论:①ad >bc ;②a d +b c<0;③a -c >b -d ;④a (d -c )>b (d -c )中成立的是________(填序号).解:∵a >0>b ,c <d <0,∴ad <0,bc >0, ∴ad <bc ,故①错误.∵a >0>b >-a ,∴a >-b >0,∵c <d <0,∴-c >-d >0,∴a (-c )>(-b )(-d ),∴ac +bd <0,∴a d +b c =ac +bdcd<0,故②正确.∵c <d ,∴-c >-d ,∵a >b ,∴a +(-c )>b +(-d ),a -c >b -d ,故③正确.∵a >b ,d -c >0,∴a (d -c )>b (d -c ),故④正确.故填②③④.类型一 建立不等关系(2015·湖北)设x ∈R ,[x ]表示不超过x 的最大整数.若存在实数t ,使得[t ]=1,[t 2]=2,…,[t n]=n 同时成立....,则正整数n 的最大值是( ) A .3 B .4 C .5 D .6解:因为[x ]表示不超过x 的最大整数.由[t ]=1得1≤t <2,由[t 2]=2得2≤t 2<3,由[t 4]=4得4≤t 4<5,所以2≤t 2<5,由[t 3]=3得3≤t 3<4,所以6≤t 5<45,由[t 5]=5得5≤t 5<6,与6≤t 5<45矛盾,故正整数n 的最大值是4.故选B.点拨:解决有关不等关系的实际问题,应抓住关键字词,例如“要”“必须”“不少于”“大于”等,从而建立相应的方程或不等式模型.本例[x ]表示不超过x 的最大整数,故由[x ]=k ,可得k ≤x <k +1,再由多个不等式结合不等式的性质找到正整数n 的最大值.用锤子以均匀的力敲击铁钉进入木板.随着铁钉的深入,铁钉所受的阻力会越来越大,使得每次钉入木板的钉子长度为前一次的1k(k ∈N *),已知一个铁钉受击3次后全部进入木板,且第一次受击后进入木板部分的铁钉长度是钉长的47,试从中提炼出一个不等式组.(钉帽厚度不计)解:假设钉长为1,第一次受击后,进入木板部分的铁钉长度是47;第二次受击后,该次铁钉进入木板部分的长度为47k,此时进入木板部分的铁钉的总长度为47+47k ,有47+47k<1;第三次受击后,该次钉入木板部分的长度为47k 2,此时应有47+47k +47k2,有47+47k +47k2≥1. 所以可从中提炼出一个不等式组:⎩⎪⎨⎪⎧47+47k<1,47+47k +47k2≥1.类型二 不等式的性质已知下列三个不等式①ab >0;②c a >db;③bc >ad.以其中两个作为条件,余下一个作结论,则可组成几个正确命题?解:(1)对②变形c a >d b⇔bc -adab>0,由ab >0,bc >ad 得②成立,∴①③⇒②.(2)若ab >0,bc -adab>0,则bc >ad ,∴①②⇒③.(3)若bc >ad ,bc -adab>0,则ab >0,∴②③⇒①.综上所述可组成3个正确命题.点拨:运用比较法及不等式性质进行比较时要注意不等式需满足的条件,如比较ac 与bc 的大小关系应注意从c >0,c =0,c <0三个方面讨论.(2014·四川)若a >b >0,c <d <0,则一定有( )A.a c >b dB.a c <b dC.a d >b cD.a d <b c解:由c <d <0⇒-1d >-1c>0,又a >b >0,故由不等式性质,得-a d >-b c >0,所以a d <b c.故选D.类型三 不等式性质的应用(1)若1<α<3,-4<β<2,则α2-β的取值范围是________.解:由1<α<3得12<α2<32,由-4<β<2得-2<-β<4,所以α2-β的取值范围是⎝ ⎛⎭⎪⎫-32,112.故填⎝ ⎛⎭⎪⎫-32,112.点拨:①需要注意的是,两同向不等式可以相加但不可以相减,所以不能直接由12<α2<32和-4<β<2两式相减来得到α2-β的范围.②此类题目用线性规划也可解.(2)已知-1<a +b <3且2<a -b <4,则2a +3b 的取值范围是________.解:设2a +3b =x (a +b )+y (a -b ),∴⎩⎪⎨⎪⎧x +y =2,x -y =3.解得⎩⎪⎨⎪⎧x =52,y =-12.∴-52<52(a +b )<152,-2<-12(a -b )<-1.∴-92<52(a +b )-12(a -b )<132,即-92<2a +3b <132.故填⎝ ⎛⎭⎪⎫-92,132.点拨:由于a +b ,a -b 的范围已知,所以要求2a +3b 的取值范围,只需将2a +3b 用已知量a +b ,a -b 表示出来,可设2a +3b =x (a +b )+y (a -b ),用待定系数法求出x ,y ,再利用同向不等式的可加性求解.(1)若角α,β满足-π2<α<β<π2,则2α-β的取值范围是________.解:∵-π2<α<β<π2,∴-π2<α<π2,-π2<β<π2,-π2<-β<π2,而α<β,∴-π<α-β<0,∴2α-β=(α-β)+α∈⎝ ⎛⎭⎪⎫-3π2,π2.故填⎝ ⎛⎭⎪⎫-3π2,π2.(2)设f (x )=ax 2+bx ,且1≤f (-1)≤2,2≤f (1)≤4,则f (-2)的取值范围为________.解法一:由已知⎩⎪⎨⎪⎧1≤a -b ≤2,2≤a +b ≤4.①②f (-2)=4a -2b.设4a -2b =m (a -b )+n (a +b )(m ,n 为待定系数),即4a -2b =(m +n )a -(m -n )b ,于是得⎩⎪⎨⎪⎧m +n =4,m -n =2.解得⎩⎪⎨⎪⎧m =3,n =1. 由①×3+②×1得5≤4a -2b ≤10,即5≤f (-2)≤10.解法二:由⎩⎪⎨⎪⎧a -b =f (-1),a +b =f (1)得⎩⎪⎨⎪⎧a =12[f (1)+f (-1)],b =12[f (1)-f (-1)].∴f (-2)=4a -2b =3f (-1)+f (1),后面同解法一.故填[5,10].类型四 比较大小实数b >a >0,实数m >0,比较a +m b +m 与ab的大小,则a +mb +m ________ab. 解法一:(作差比较): a +m b +m -a b =b (a +m )-a (b +m )b (b +m )=m (b -a )b (b +m ),∵b >a >0,m >0,∴m (b -a )b (b +m )>0,∴a +mb +m>ab. 解法二(作商比较):∵b >a >0,m >0, ∴bm >am ⇒ab +bm >ab +am >0, ∴ab +bm ab +am >1,即a +m b +m ·b a >1⇒a +m b +m >a b .故填>.点拨:本题思路是作差整理,定符号,所得结论也称作真分数性质.作差(商)比较法的步骤是:①作差(商);②变形:配方、因式分解、通分、分母(分子)有理化等;③判断符号(判断商和“1”的大小关系);④作出结论.(2015·福建月考)已知a ,b ,c ∈R +,且a 2+b2=c 2,当n ∈N ,n >2时,比较c n 与a n +b n的大小,则a n +b n ________c n.解:∵a ,b ,c ∈R +,∴a n ,b n ,c n>0,而a n +b n cn=⎝ ⎛⎭⎪⎫a c n +⎝ ⎛⎭⎪⎫b c n .∵a 2+b 2=c 2,∴⎝ ⎛⎭⎪⎫a c 2+⎝ ⎛⎭⎪⎫b c 2=1,∴0<a c <1,0<b c <1.当n ∈N ,n >2时,⎝ ⎛⎭⎪⎫a c n <⎝ ⎛⎭⎪⎫a c 2,⎝ ⎛⎭⎪⎫b c n <⎝ ⎛⎭⎪⎫b c2,∴a n+b nc n=⎝⎛⎭⎪⎫acn+⎝⎛⎭⎪⎫bcn<a2+b2c2=1,∴a n+b n<c n.故填<.1.理解不等关系的意义、实数运算的符号法则、不等式的性质,是解不等式和证明不等式的依据和基础.2.一般数学结论都有前提,不等式性质也是如此.在运用不等式性质之前,一定要准确把握前提条件,一定要注意不可随意放宽其成立的前提条件.3.不等式性质包括“充分条件(或者是必要条件)”和“充要条件”两种,前者一般是证明不等式的理论基础,后者一般是解不等式的理论基础.4.利用几个不等式来确定某个代数式的范围时要注意:“同向(异向)不等式的两边可相加(相减)”这种变形不是等价变形,若多次使用,则有可能使取值范围扩大,解决这一问题的方法是:先建立待求范围的整体与已知范围的整体的等量关系,再一次性的运用这种变形,即可求得正确的待求整体的范围.5.比较两个实数的大小,有作差法和作商法两种方法.一般多用作差法,注意当这两个数都是正数时,才可以用作商法.作差法是比较作差后的式子与“0”的大小关系;作商法是比较作商后的式子与“1”的大小关系.6.对于实际问题中的不等量关系,还要注意实际问题对各个参变数的限制.1.(2015·厦门模拟) “a+c>b+d”是“a>b 且c>d”的( )A.充分不必要条件B.既不充分也不必要条件C.充分必要条件D.必要不充分条件解:由“a+c>b+d”不能得知“a>b且c>d”,反过来,由“a>b且c>d”可得知“a+c>b+d”,因此“a+c>b+d”是“a>b且c>d”的必要不充分条件.故选D.2.已知a,b为正数,a≠b,n为正整数,则a n b+ab n-a n+1-b n+1的正负情况为 ( )A.恒为正B.恒为负C.与n的奇偶性有关D.与a,b的大小有关解:a n b+ab n-a n+1-b n+1=a n(b-a)+b n(a-b) =-(a-b)(a n-b n),因为(a-b)与(a n-b n)同号,所以a n b+ab n-a n+1-b n+1<0恒成立.故选B.3.(2015·云南模拟)若a,b,c∈R,且a>b,则下列不等式一定成立的是( )A.a+c≥b-cB.(a-b)c2≥0C.ac>bcD.c2a-b>0解:A项:当c<0时,不等式a+c<b-c可能成立;B项:a>b⇒a-b>0,c2≥0,故(a-b)c2≥0;C项:当c=0时,ac=bc;D项:当c=0时,c2a-b =0.故选B.4.(2014·湖南)已知命题p:若x>y,则-x <-y;命题q:若x>y,则x2>y2.在命题①p∧q;②p∨q;③p∧(綈q);④(綈p)∨q中,真命题是( )A .①③B .①④C .②③D .②④解:当x >y 时,两边乘以-1可得-x <-y ,∴命题p 为真命题;当x =1,y =-2时,显然x 2<y 2,∴命题q 为假命题,∴②③为真命题.故选C.5.(2014·浙江)已知函数f (x )=x 3+ax 2+bx +c ,且0<f (-1)=f (-2)=f (-3)≤3,则( )A .c ≤3B .3<c≤6C .6<c≤9D .c >9解:由f (-1)=f (-2)=f (-3)得,-1+a -b +c =-8+4a -2b +c =-27+9a -3b +c ,消去c 得⎩⎪⎨⎪⎧3a -b =7,5a -b =19, 解得⎩⎪⎨⎪⎧a =6,b =11,于是0<c -6≤3,即6<c ≤9.故选C.6.如果0<m <b <a ,则( )A .cos b +m a +m <cos b a <cos b -m a -mB .cos b a <cos b -m a -m <cos b +m a +mC .cos b -m a -m <cos b a <cos b +m a +mD .cos b +m a +m <cos b -m a -m <cos b a解:作商比较:b +m a +m ÷b a =ab +amab +bm>1,所以1>b +m a +m >b a >0,同理,0<b -m a -m <b a <1,∴1>b +m a +m >b a >b -m a -m >0.而y =cos x 在⎝⎛⎭⎪⎫0,π2上单调递减,所以cos b +m a +m <cos b a <cos b -ma -m(也可取特殊值判断).故选A.7.(2015·江西模拟)设a =lg e ,b =(lg e )2,c =lg e ,则a ,b ,c 的大小关系为________.解:∵e <10,∴lg e <lg 10=12,∴(lg e )2<12·lg e =lg e ,即b <c.又∵e <e ,∴lg e <lg e ,即c <a.故填b <c <a.8.(2015·安徽模拟)定义a *b =⎩⎪⎨⎪⎧a ,a <b ,b ,a ≥b.已知a =30.3,b =0.33,c =log 30.3,则(a *b )*c =________.(结果用a ,b ,c 表示)解:∵log 30.3<0<0.33<1<30.3,∴c <b <a ,∴(a *b )*c =b *c =c.故填c.9.设实数a ,b ,c 满足①b +c =6-4a +3a 2,②c -b =4-4a +a 2.试确定a ,b ,c 的大小关系.解:∵c -b =(a -2)2≥0,∴c ≥b ,又2b =2+2a 2,∴b =1+a 2,∴b -a =a 2-a +1=⎝ ⎛⎭⎪⎫a -122+34>0,∴b >a ,从而c ≥b >a.10.某企业去年年底给全部的800名员工共发放1 000万元年终奖,该企业计划从今年起,10年内每年发放的年终奖都比上一年增加30万元,企业员工每年净增a 人.(1)若a =10,在计划时间内,该企业的人均年终奖是否会超过1.5万元?(2)为使人均年终奖年年有增长,该企业每年员工的净增量不能超过多少人?解:(1)设从今年起的第x 年(今年为第1年)该企业人均发放年终奖为y 万元.则y =1 000+30x 800+ax(a ∈N *,1≤x ≤10).假设会超过1.5万元,则当a =10时有1 000+30x 800+10x >1.5,解得x >403>10.所以,10年内该企业的人均年终奖不会超过1.5万元.(2)设1≤x 1<x 2≤10,y =f (x )=1 000+30x800+ax,则f (x 2)-f (x 1)=1 000+30x 2800+ax 2-1 000+30x 1800+ax 1=(30×800-1 000a )(x 2-x 1)(800+ax 2)(800+ax 1)>0,所以30×800-1 000a >0,得a <24.所以,为使人均年终奖年年有增长,该企业每年员工的净增量不能超过23人.11.(2015·云南模拟改编)已知a +b +c =0,且a >b >c ,求ca的取值范围.解:∵a +b +c =0,∴b =-(a +c ).又a >b >c , ∴a >-(a +c )>c ,且3a >a +b +c =0>3c ,则a >0,c <0,∴1>-a +c a >ca,即1>-1-c a >c a ,∴⎩⎪⎨⎪⎧2ca <-1,ca >-2, 解得-2<ca <-12.故c a 的取值范围是⎝⎛⎭⎪⎫-2,-12.设a >b >1,c <0,给出下列三个结论:①c a >c b;②a c<b c;③log b ()a -c >log a ()b -c .其中所有正确结论的序号是( ) A .① B .①② C .②③ D .①②③解:①∵a >b >1,∴0<1a <1b<1,又c <0,∴c a >cb ,①正确;②由于a >b >1,可设f (x )=a x,g (x )=b x,当x =c <0时,根据指数函数的性质,得a c <b c,②正确;③∵a >b >1,c <0,即a -c >b -c >1,∴log a (a -c )>log a (b -c ),又由对数函数的性质知log b (a -c )>log a (a -c ),∴log b (a -c )>log a (b -c ),③正确.故选D.§7.2 一元二次不等式及其解法(2014·课标Ⅰ)已知集合A={x|x2-2x-3≥0},B={x|-2≤x<2},则A∩B=( )A.[-2,-1] B.[-1,2)C.[-1,1] D.[1,2)解:∵A={x|x≥3或x≤-1},B={x|-2≤x <2},∴A∩B={x|-2≤x≤-1}=[-2,-1].故选A.设f(x)=x2+bx+1且f(-1)=f(3),则f(x)>0的解集为( )A.{x|x∈R} B.{x|x≠1,x∈R}C.{x|x≥1} D.{x|x≤1}解:f(-1)=1-b+1=2-b,f(3)=9+3b+1=10+3b,由f(-1)=f(3),得2-b=10+3b,解出b=-2,代入原函数,f(x)>0即x2-2x +1>0,x的取值范围是x≠1.故选B.已知-12<1x<2,则x的取值范围是( )A.(-2,0)∪⎝⎛⎭⎪⎫0,12B.⎝⎛⎭⎪⎫-12,2C.⎝⎛⎭⎪⎫-∞,-12∪(2,+∞)D.(-∞,-2)∪⎝⎛⎭⎪⎫12,+∞解:当x >0时,x >12;当x <0时,x <-2.所以x 的取值范围是x <-2或x >12,故选D.不等式2x 2-x <4的解集为____________.解:由2x 2-x <4得x 2-x <2,解得-1<x <2,即不等式2x 2-x <4的解集为{x |-1<x <2}.故填{x |-1<x <2}.(2014·武汉调研)若一元二次不等式2kx 2+kx -38<0对一切实数x 都成立,则k 的取值范围为________.解:显然k ≠0.则⎩⎪⎨⎪⎧2k <0,Δ<0, 解得k ∈(-3,0).故填(-3,0).类型一 一元一次不等式的解法已知关于x 的不等式(a +b )x +2a -3b <0的解集为⎝⎛⎭⎪⎫-∞,-13,则关于x 的不等式(a -3b )x +b -2a >0的解集为________.解:由(a +b )x <3b -2a 的解集为⎝⎛⎭⎪⎫-∞,-13, 得a +b >0,且3b -2a a +b =-13,从而a =2b ,则a +b =3b >0,即b >0, 将a =2b 代入(a -3b )x +b -2a >0,得-bx -3b >0,x <-3,故填{x |x <-3}.点拨:一般地,一元一次不等式都可以化为ax >b (a ≠0)的形式.挖掘隐含条件a +b >0且3b -2aa +b=-13是解本题的关键.解关于x的不等式:(m2-4)x<m+2.解:(1)当m2-4=0即m=-2或m=2时,①当m=-2时,原不等式的解集为∅,②当m=2时,原不等式的解集为R.(2)当m2-4>0,即m<-2或m>2时,x<1m-2.(3)当m2-4<0,即-2<m<2时,x>1m-2.类型二一元二次不等式的解法解下列不等式:(1)x2-7x+12>0; (2)-x2-2x+3≥0;(3)x2-2x+1<0; (4)x2-2x+2>0.解:(1)方程x2-7x+12=0的解为x1=3,x2=4.而y=x2-7x+12的图象开口向上,可得原不等式x2-7x+12>0的解集是{x|x<3或x>4}.(2)不等式两边同乘以-1,原不等式可化为x2+2x-3≤0.方程x2+2x-3=0的解为x1=-3,x2=1.而y=x2+2x-3的图象开口向上,可得原不等式-x2-2x+3≥0的解集是{x|-3≤x≤1}.(3)方程x2-2x+1=0有两个相同的解x1=x2=1.而y=x2-2x+1的图象开口向上,可得原不等式x2-2x+1<0的解集为∅.(4)因为Δ<0,所以方程x2-2x+2=0无实数解,而y=x2-2x+2的图象开口向上,可得原不等式x2-2x+2>0的解集为R.点拨:解一元二次不等式的步骤:(1)将二次项系数化为正数;(2)解相应的一元二次方程;(3)根据一元二次方程的根,结合不等号的方向画图;(4)写出不等式的解集.容易出现的错误有:①未将二次项系数化正,对应错标准形式;②解方程出错;③结果未按要求写成集合.(2015·贵州模拟)关于x的不等式x2-(a+1)x +a<0的解集中,恰有3个整数,则实数a的取值范围是________.解:原不等式可化为(x-1)(x-a)<0,当a>1时,得1<x<a,此时解集中的整数为2,3,4,则4<a≤5;当a<1时,得a<x<1,此时解集中的整数为-2,-1,0.则-3≤a<-2,故a∈[-3,-2)∪(4,5].故填[-3,-2)∪(4,5].类型三 二次不等式、二次函数及二次方程的关系(2015·贵州模拟)已知不等式ax 2+bx +2>0的解集为{x |-1<x <2},则不等式2x 2+bx +a <0的解集为( )A.⎩⎨⎧⎭⎬⎫xx <-1或x >12B.⎩⎨⎧⎭⎬⎫x |-1<x <12C .{x |-2<x <1}D .{x |x <-2或x >1}解:由题意知x =-1,x =2是方程ax 2+bx +2=0的两根,且a <0.由韦达定理得⎩⎪⎨⎪⎧-1+2=-ba ,(-1)×2=2a⇒⎩⎪⎨⎪⎧a =-1,b =1.∴不等式2x 2+bx +a <0,即2x 2+x -1<0. 解得-1<x <12.故选B.点拨:已知一元二次不等式的解集,就能够得到相应的一元二次方程的两根,由根与系数的关系,可以求出相应的系数.注意结合不等式解集的形式判断二次项系数的正负.已知不等式ax 2+bx +c >0的解集为{x |2<x <3},则不等式cx 2-bx +a >0的解集为________.解:∵不等式ax 2+bx +c >0的解集为{x |2<x <3},∴a <0,且2和3是方程ax 2+bx +c =0的两根,由根与系数的关系得⎩⎪⎨⎪⎧-ba=2+3,ca =2×3,a <0.即⎩⎪⎨⎪⎧b =-5a ,c =6a ,a <0.代入不等式cx 2-bx +a >0,得6ax 2+5ax +a >0(a <0).即6x 2+5x +1<0,解得-12<x <-13.故填⎩⎨⎧⎭⎬⎫x |-12<x <-13.类型四 含有参数的一元二次不等式解关于x 的不等式:mx 2-(m +1)x +1<0.解:(1)当m =0时,不等式为-(x -1)<0,得x -1>0,不等式的解集为{x |x >1};(2)当m ≠0时,不等式为m ⎝ ⎛⎭⎪⎫x -1m (x -1)<0.①当m <0,不等式为⎝ ⎛⎭⎪⎫x -1m (x -1)>0, ∵1m<1,∴不等式的解集为⎩⎨⎧⎭⎬⎫x |x <1m或x >1.②当m >0,不等式为⎝⎛⎭⎪⎫x -1m (x -1)<0.(Ⅰ)若1m<1,即m >1时,不等式的解集为⎩⎨⎧⎭⎬⎫x |1m <x <1;(Ⅱ)若1m>1,即0<m <1时,不等式的解集为⎩⎨⎧⎭⎬⎫x |1<x <1m ;(Ⅲ)若1m=1,即m =1时,不等式的解集为∅.点拨:当x 2的系数是参数时,首先对它是否为零进行讨论,确定其是一次不等式还是二次不等式,即对m ≠0与m =0进行讨论,这是第一层次;第二层次:x 2的系数正负(不等号方向)的不确定性,对m <0与m >0进行讨论;第三层次:1m与1大小的不确定性,对m <1、m >1与m =1进行讨论.解关于x 的不等式ax 2-2≥2x -ax (a ∈R ).解:不等式整理为ax 2+(a -2)x -2≥0, 当a =0时,解集为(-∞,-1]. 当a ≠0时,ax 2+(a -2)x -2=0的两根为-1,2a,所以当a >0时,解集为(-∞,-1]∪⎣⎢⎡⎭⎪⎫2a ,+∞;当-2<a <0时,解集为⎣⎢⎡⎦⎥⎤2a,-1; 当a =-2时,解集为{x |x =-1};当a <-2时,解集为⎣⎢⎡⎦⎥⎤-1,2a .类型五 分式不等式的解法(1)不等式x -12x +1≤1的解集为________.解:x -12x +1≤1 ⇔ x -12x +1-1≤0 ⇔ -x -22x +1≤0⇔ x +22x +1≥0. 解法一:x +22x +1≥0 ⇔⎩⎪⎨⎪⎧(x +2)(2x +1)≥0,2x +1≠0.得{xx >-12或x ≤-2}.解法二:x +22x +1≥0 ⇔⎩⎪⎨⎪⎧x +2≥0,2x +1>0 或⎩⎪⎨⎪⎧x +2≤0,2x +1<0.得{x |x >-12或x ≤-2}.故填{x |x >-12或x ≤-2}.(2)不等式x -2x 2+3x +2>0的解集为.解:x -2x 2+3x +2>0⇔x -2(x +2)(x +1)>0⇔(x -2)(x +2)(x +1)>0,数轴标根得{x |-2<x <-1或x >2}, 故填{x|-2<x <-1或x >2}.点拨:分式不等式可以先转化为简单的高次不等式,再利用数轴标根法写出不等式的解集,如果该不等式有等号,则要注意分式的分母不能为零.※用“数轴标根法”解不等式的步骤:(1)移项:根据不等式的性质对不等式进行移项,使得右端为0,化为不等式的标准形式(注意:一定要保证x 的最高次幂的项的系数为正数).(2)求根:就是求出不等式所对应的方程的所有根.①若是整式不等式,将其分解因式,求出所有根;②若是分式不等式,用积和商的符号法则,将其转化为整式不等式,再求出所有根.(3)标根:在数轴上按从左到右(由小到大)依次标出各根(不需标出准确位置,只需标出相对位置即可).(4)画穿根线:从数轴“最右根”的右上方向左下方画线,穿过此根,再往左上方穿过“次右根”,一上一下依次穿过各根.但画线时遇偶重根不穿过(即线画至此根时,不穿过此根,而向左依次穿过其余的根),遇奇重根要穿过,可用口诀:“奇穿偶不穿”来记忆.(5)写出不等式的解集:若不等号为“>”,则取数轴上方穿根线以内的范围;若不等号为“<”,则取数轴下方穿根线以内的范围;若不等式中含有“=”号,就连根一同取,但若是分式不等式,写解集时要考虑分母不能为零.(1)若集合A ={x |-1≤2x +1≤3}, B =⎩⎨⎧⎭⎬⎫x |x -2x≤0,则A ∩B =( )A .{x |-1≤x <0}B .{x |0<x ≤1}C .{x |0≤x ≤2}D .{x |0≤x ≤1} 解:易知A ={x |-1≤x ≤1},B 集合就是不等式组⎩⎪⎨⎪⎧x (x -2)≤0,x ≠0 的解集,求出B ={}x |0<x ≤2,所以A ∩B ={x |0<x ≤1}.故选B.(2)不等式x -12x +1≤0的解集为( )A.⎝ ⎛⎦⎥⎤-12,1B.⎣⎢⎡⎦⎥⎤-12,1 C.⎝⎛⎭⎪⎫-∞,-12∪[1,+∞) D.⎝⎛⎦⎥⎤-∞,-12∪[1,+∞) 解:x -12x +1≤0⇔⎩⎪⎨⎪⎧(x -1)(2x +1)≤0,2x +1≠0得-12<x ≤1.故选A.类型六 和一元二次不等式有关的恒成立问题(1)若不等式x 2+ax +1≥0对于一切x ∈⎝ ⎛⎦⎥⎤0,12成立,则实数a 的最小值为( )A .0B .-2C .-52D .-3解法一:不等式可化为ax ≥-x 2-1,由于x ∈⎝ ⎛⎦⎥⎤0,12, ∴a ≥-⎝⎛⎭⎪⎫x +1x .∵f (x )=x +1x 在⎝ ⎛⎦⎥⎤0,12上是减函数,∴⎝⎛⎭⎪⎫-x -1x max =-52.∴a ≥-52. 解法二:令f (x )=x 2+ax +1,对称轴为x =-a2.①⎩⎪⎨⎪⎧-a 2≤0,f (0)≥0 ⇒a ≥0.(如图1) ②⎩⎪⎨⎪⎧0<-a 2<12,f ⎝ ⎛⎭⎪⎫-a 2≥0⇒-1<a <0.(如图2)③⎩⎪⎨⎪⎧-a 2≥12,f ⎝ ⎛⎭⎪⎫12≥0⇒-52≤a ≤-1.(如图3)图1 图2 图3综上 ①②③,a ≥-52.故选C.(2)已知对于任意的a ∈[-1,1],函数f (x )=x 2+(a -4)x +4-2a 的值总大于0,则x 的取值范围是( )A .1<x <3B .x <1或x >3C .1<x <2D .x <1或x >2解:记g (a )=(x -2)a +x 2-4x +4,a ∈[-1,1],依题意,只须⎩⎪⎨⎪⎧g (1)>0,g (-1)>0⇒⎩⎪⎨⎪⎧x 2-3x +2>0,x 2-5x +6>0⇒x <1或x >3,故选B.点拨:(1)一元二次不等式恒成立问题,对于x 变化的情形,解法一利用参变量分离法,化成a >f (x )(a <f (x ))型恒成立问题,再利用a >f (x )max (a <f (x )min ),求出参数范围.解法二化归为二次函数,由于是轴动区间定,结合二次函数对称轴与定义域的位置关系、单调性等相关知识,求出参数范围.(2)对于参数变化的情形,大多利用参变量转换法,即参数转换为变量;变量转换为参数,把关于x 的二次不等式转换为关于a 的一次不等式,化繁为简,然后再利用一次函数的单调性,求出x 的取值范围.(1)(2015·甘肃模拟)若不等式a ·4x -2x+1>0对一切x ∈R 恒成立,则实数a 的取值范围是________.解:不等式可变形为a >2x-14x =⎝ ⎛⎭⎪⎫12x -⎝ ⎛⎭⎪⎫14x,令⎝ ⎛⎭⎪⎫12x =t ,则t >0.∴y =⎝ ⎛⎭⎪⎫12x -⎝ ⎛⎭⎪⎫14x=t -t 2=-⎝ ⎛⎭⎪⎫t -122+14,因此当t =12时,y 取最大值14,故实数a 的取值范围是a >14.故填⎝ ⎛⎭⎪⎫14,+∞.(2)对于满足|a |≤2的所有实数a ,使不等式x 2+ax +1>2x +a 成立的x 的取值范围为________.解:原不等式转化为(x -1)a +x 2-2x +1>0,设f (a )=(x -1)a +x 2-2x +1,则f (a )在[-2,2]上恒大于0,故有:⎩⎪⎨⎪⎧f (-2)>0,f (2)>0, 即⎩⎪⎨⎪⎧x 2-4x +3>0,x 2-1>0, 解得⎩⎪⎨⎪⎧x >3或x <1,x >1或x <-1. ∴x <-1或x >3.故填(-∞,-1)∪(3,+∞).类型七 二次方程根的讨论若方程2ax 2-x -1=0在(0,1)内有且仅有一解,则a 的取值范围是( )A .(-∞,-1)B .(1,+∞)C .(-1,1)D .[0,1)解法一:令f (x )=2ax 2-x -1,则f (0)·f (1)<0,即-1×(2a -2)<0,解得a >1.解法二:当a =0时,x =-1,不合题意,故排除C ,D ;当a =-2时,方程可化为4x 2+x +1=0,而Δ=1-16<0,无实根,故a =-2不适合,排除A.故选B.点拨:本题考查一元二次方程的根的分布与系数的关系,画出相应函数的图象后“看图说话”,主要从以下四个方面分析:①开口方向;②判别式;③区间端点函数值的正负;④对称轴x =-b2a与区间端点的关系.本书2.4节有较详细的讨论,可参看.(2015·贵州模拟)已知二次函数f (x )=ax 2-(a +2)x +1(a ∈Z ),且函数f (x )在(-2,-1)上恰有一个零点,则不等式f (x )>1的解集为________.解:根据题意有f (-2)f (-1)<0,∴(6a +5)(2a +3)<0.∴-32<a <-56.又a ∈Z ,∴a =-1.检验知合要求.不等式f (x )>1即为-x 2-x +1>1,解得-1<x <0.∴故填{x |-1<x <0}.类型八 一元二次不等式的应用(2013·上海)甲厂以x 千克/小时的速度匀速生产某种产品(生产条件要求1≤x ≤10),每小时可获得利润是100⎝ ⎛⎭⎪⎫5x +1-3x 元.(1)要使生产该产品2小时获得的利润不低于3000元,求x 的取值范围;(2)要使生产900千克该产品获得的利润最大,问:甲厂应该选取何种生产速度?并求最大利润.解:(1)根据题意,200⎝ ⎛⎭⎪⎫5x +1-3x ≥3 000⇒5x-14-3x≥0⇒5x 2-14x -3≥0⇒(5x +1)(x -3)≥0,又1≤x ≤10,可解得3≤x ≤10.(2)设利润为y 元,则y =900x·100⎝⎛⎭⎪⎫5x +1-3x =9×104⎝ ⎛⎭⎪⎫-3x 2+1x +5=9×104⎣⎢⎡⎦⎥⎤-3⎝ ⎛⎭⎪⎫1x -162+6112. 故x =6时,y max =457 500元.点拨:和一元二次不等式有关的实际应用题是高考考查的重点,这类题目往往与实际生活结合紧密,应予以重视.(2015·河南模拟)某商品每件成本价为80元,售价为100元,每天售出100件.若售价降低x 成(1成=10%),售出商品数量就增加85x 成.要求售价不能低于成本价.(1)设该商店一天的营业额为y ,试求y 与x 之间的函数关系式y =f (x ),并写出定义域;(2)若要求该商品一天营业额至少为10 260元,求x 的取值范围.解: (1)由题意得y =100⎝ ⎛⎭⎪⎫1-x 10·100⎝ ⎛⎭⎪⎫1+850x . ∵售价不能低于成本价,∴100⎝ ⎛⎭⎪⎫1-x 10-80≥0.∴y =f (x )=20(10-x )(50+8x ),定义域为[0,2].(2)由题意得20(10-x )(50+8x )≥10 260,化简得8x 2-30x +13≤0.解得12≤x ≤134.∴x 的取值范围是⎣⎢⎡⎦⎥⎤12,2.1.一元二次不等式ax 2+bx +c >0(或ax 2+bx +c <0)(a ≠0)的解集的确定,受二次项系数a 的符号及判别式Δ=b 2-4ac 的符号制约,且与相应的二次函数、一元二次方程有密切联系,可结合相应的函数y =ax 2+bx +c (a ≠0)的图象,数形结合求得不等式的解集;二次函数y =ax 2+bx +c 的值恒大于0的条件是a >0且Δ<0;若恒大于或等于0,则a >0且Δ≤0.若二次项系数中含参数且未指明该函数是二次函数时,必须考虑二次项系数为0这一特殊情形.2.解分式不等式要使一边为零;求解非严格分式不等式时,要注意分母不等于0,转化为不等式组.(注:形如f (x )g (x )≥0或f (x )g (x )≤0的不等式称为非严格分式不等式)3.解含参数的不等式的基本途径是分类讨论,能避免讨论的应设法避免讨论.对字母参数的逻辑划分要具体问题具体分析,必须注意分类不重、不漏、完全、准确.4.解不等式的过程,实质上是不等式等价转化的过程.因此保持同解变形是解不等式应遵循的基本原则.5.各类不等式最后一般都要化为一元一次不等式(组)或一元二次不等式(组)来解,这体现了转化与化归的数学思想.6.对给定的一元二次不等式,求解的程序框图是:1.不等式x -2x +1≤0的解集是( ) A .(-∞,-1)∪(-1,2] B .[-1,2] C .(-∞,-1)∪[2,+∞) D .(-1,2]解:x -2x +1≤0⇔()x +1()x -2≤0,且x ≠-1,即x ∈(-1,2],故选D.2.(2015·湖北模拟)不等式f (x )=ax 2-x -c >0的解集为{x |-2<x <1},则函数y =f (-x )的图象为( )解:由题意得⎩⎪⎨⎪⎧-2+1=1a ,-2×1=-c a , 解得⎩⎪⎨⎪⎧a =-1,c =-2.则f (x )=-x 2-x +2,∴f (-x )=-x 2+x +2.故选C.3.(2013·安徽)已知一元二次不等式f (x )<0的解集为⎩⎨⎧⎭⎬⎫x |x <-1或x >12,则f (10x)>0的解集为( )A .{x |x <-1或x >lg2}B .{x |-1<x <lg2}C .{x |x >-lg2}D .{x |x <-lg2}解:可设f (x )=a (x +1)⎝ ⎛⎭⎪⎫x -12(a <0),由f (10x )>0可得(10x +1)⎝⎛⎭⎪⎫10x -12<0,从而10x <12,解得x <-lg2,故选D.4.(2013·陕西)在如图所示的锐角三角形空地中,欲建一个面积不小于300 m 2的内接矩形花园(阴影部分),则其边长x (单位:m )的取值范围是( )A .[15,20]B .[12,25]C .[10,30]D .[20,30] 解:设矩形的另一边为y m ,依题意得x40=40-y40,即y =40-x ,所以x (40-x )≥300,解得10≤x ≤30.故选C.5.若关于x 的不等式2x 2-8x -4-a >0在(1,4)内有解,则实数a 的取值范围是( )A .(-∞,-12)B .(-4,+∞)C .(-12,+∞)D .(-∞,-4)解:关于x 的不等式2x 2-8x -4-a >0在(1,4)内有解,即a <2x 2-8x -4在(1,4)内有解,令f (x )=2x 2-8x -4=2(x -2)2-12,当x =2时,f (x )取最小值f (2)=-12;当x =4时,f (4)=2(4-2)2-12=-4,所以在(1,4)上,-12≤f (x )<-4.要使a <f (x )有解,则a <-4.故选D.6.若关于x 的方程3x 2-5x +a =0的一个根大于-2且小于0,另一个根大于1且小于3,则实数a 的取值范围是( )A .(-∞,2)B .(-12,+∞)C .(-22,0)D .(-12,0)解:设f (x )=3x 2-5x +a ,则由题意有 ⎩⎪⎨⎪⎧f (-2)>0,f (0)<0,f (1)<0,f (3)>0.即⎩⎪⎨⎪⎧22+a >0,a <0,-2+a <0,12+a >0.解得-12<a <0.故选D.7.(2015·浙江模拟)不等式log 2⎝⎛⎭⎪⎫x +1x+6≤3的解集为________.解:log 2⎝⎛⎭⎪⎫x +1x+6≤3⇔log 2⎝⎛⎭⎪⎫x +1x+6≤log 28⇔0<x +1x +6≤8⇔-6<x +1x ≤2.当x >0时,x +1x≥2,此时x =1;当x <0时,x +1x≤-2,此时x+1x>-6,解得-3-22<x <-3+22.故填(-3-22,-3+22)∪{1}. 8.(2015·昆明模拟)已知a 为正的常数,若不等式1+x ≥1+x 2-x 2a对一切非负实数x 恒成立,则a 的最大值是______________.解:原不等式可化为x 2a ≥1+x2-1+x (*),令1+x =t ,t ≥1,则x =t 2-1,所以(*)即(t 2-1)2a≥1+t 2-12-t =t 2-2t +12=(t -1)22,对t ≥1恒成立,所以(t +1)2a ≥12对t ≥1恒成立,又a 为正的常数,所以a ≤[2(t +1)2]min =8,故a 的最大值是8.故填8.9.若关于x 的不等式x 2-ax -a ≤-3的解集不是空集,求实数a 的取值范围.解法一:设f (x )=x 2-ax -a.则关于x 的不等式x 2-ax -a ≤-3的解集不是空集⇔f (x )min ≤-3,即f ⎝ ⎛⎭⎪⎫a 2=-4a +a 24≤-3,解得a ≤-6或a ≥2.解法二:x 2-ax -a ≤-3的解集不是空集⇔x 2-ax -a +3=0的判别式Δ≥0,解得a ≤-6或a ≥2.10.汽车在行驶中,由于惯性的作用,刹车后还要继续向前滑行一段距离才能停住,我们称这段距离为“刹车距离”.刹车距离是分析事故的一个重要因素.在一个限速为40 km /h 的弯道上,甲、乙两辆车相向而行,发现情况不对,同时刹车,但还是相碰了.事后现场勘查测得甲车的刹车距离略超过12 m ,乙车的刹车距离略超过10 m ,又知甲、乙两种车型的刹车距离s (m )与车速x (km /h )之间分别有如下关系:s 甲=0.1x +0.01x 2, s 乙=0.05x +0.005x 2. 问甲、乙两车有无超速现象?解:由题意知,对于甲车,有0.1x +0.01x 2>12,即x 2+10x -1200>0,解得x >30或x <-40(舍去).这表明甲车的车速超过30 km /h ,又由甲车刹车距离略超12 m ,可判断甲车车速不会超过限速40 km /h.对于乙车有0.05x +0.005x 2>10,即x 2+10x -2000>0,解得x >40或x <-50(舍去).这表明乙车超过40 km /h ,超过规定限速. 11.已知二次函数f (x )的二次项系数为a ,且不等式f (x )>-2x 的解集为(1,3).(1)若方程f (x )+6a =0有两个相等的实根,求f (x )的解析式;(2)若f (x )的最大值为正数,求a 的取值范围. 解:(1)∵f (x )+2x >0的解集为(1,3), ∴f (x )+2x =a (x -1)(x -3),且a <0. 因而f (x )=a (x -1)(x -3)-2x=ax 2-(2+4a )x +3a.①由方程f (x )+6a =0得ax 2-(2+4a )x +9a =0.②因为方程②有两个相等的实根,所以Δ=[-(2+4a )]2-4a ·9a =0,即5a 2-4a -1=0,解得a =1或a =-15.由于a <0,舍去a =1,将a =-15代入①得f (x )的解析式f (x )=-15x 2-65x -35.(2)由f (x )=ax 2-2(1+2a )x +3a=a ⎝ ⎛⎭⎪⎫x -1+2a a 2-a 2+4a +1a, 及a <0,可得f (x )的最大值为-a 2+4a +1a.由⎩⎪⎨⎪⎧-a 2+4a +1a >0,a <0,解得a <-2-3或-2+3<a <0.故当f (x )的最大值为正数时,实数a 的取值范围是(-∞,-2-3)∪(-2+3,0).解关于x 的不等式:a (x -1)x -2>1(a <1).解:(x -2)[(a -1)x +2-a ]>0,当a <1时有(x -2)⎝ ⎛⎭⎪⎫x -a -2a -1<0,若a-2a-1>2,即0<a<1时,解集为{x|2<x<a-2a-1};若a-2a-1=2,即a=0时,解集为∅;若a-2a-1<2,即a<0时,解集为{x|a-2a-1<x<2}.§7.3 二元一次不等式(组)与简单的线性规划问题1.二元一次不等式表示的平面区域(1)一般地,二元一次不等式Ax+By+C>0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的________.我们把直线画成虚线以表示区域________边界直线.当我们在坐标系中画不等式Ax+By+C≥0所表示的平面区域时,此区域应________边界直线,则把边界直线画成________.(2)由于对直线Ax+By+C=0同一侧的所有点(x,y),把它的坐标(x,y)代入Ax+By+C,所得的符号都________,所以只需在此直线的同一侧取一个特殊点(x0,y0)(如原点)作为测试点,由Ax0+By0+C的________即可判断Ax+By+C>0表示的是直线Ax+By+C=0哪一侧的平面区域.2.线性规划(1)不等式组是一组对变量x,y的约束条件,由于这组约束条件都是关于x,y的一次不等式,所以又可称其为线性约束条件.Z=Ax+By是要求最大值或最小值的函数,我们把它称为________.由于Z=Ax+By是关于x,y的一次解析式,所以又可叫做________.另外注意:线性约束条件除了用一次不等式表示外,也可用一次方程表示.(2)一般地,求线性目标函数在线性约束条件下的________的问题,统称为线性规划问题.(3)满足线性约束条件的解(x,y)叫做________,由所有可行解组成的集合叫做________.其中,使目标函数取得最大值或最小值的可行解都叫做这个问题的________.线性目标函数的最值常在可行域的边界上,且通常在可行域的顶点处取得;而求最优整数解首先要看它是否在可行域内.(4)用图解法解决简单的线性规划问题的基本步骤:①首先,要根据________ (即画出不等式组所表示的公共区域).②设________,画出直线l0.③观察、分析、平移直线l0,从而找到最优解.④最后求得目标函数的________.(5)利用线性规划研究实际问题的解题思路:首先,应准确建立数学模型,即根据题意找出条件,确定________函数.然后,用图解法求得数学模型的解,即________,在可行域内求得使目标函数________.自查自纠:1.(1)平面区域不包括包括实线(2)相同符号2.(1)目标函数线性目标函数(2)最大值或最小值(3)可行解可行域最优解(4)①线性约束条件画出可行域②z=0④最大值或最小值(5)约束线性目标画出可行域取得最值的解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档