光的衍射习题附答案

合集下载

18光的衍射习题解答

18光的衍射习题解答

第十八章 光的衍射一 选择题1.平行单色光垂直入射到单缝上,观察夫朗和费衍射。

若屏上P 点处为第2级暗纹,则单缝处波面相应地可划分为几个半波带 ( )A. 一个B. 两个C. 三个D. 四个 解:暗纹条件:....3,2,1),22(sin =±=k k a λθ,k =2,所以2k =4。

故本题答案为D 。

2.波长为λ的单色光垂直入射到狭缝上,若第1级暗纹的位置对应的衍射角为θ =±π/6,则缝宽的大小为( )A. λ/2B. λC. 2λD. 3λ解:....3,2,1),22(sin =±=k k a λθ6,1πθ±==k ,所以λλπ2,22)6sin(=∴⨯±=±a a 。

故本题答案为C 。

3.一宇航员在160km 高空,恰好能分辨地面上两个发射波长为550nm 的点光源,假定宇航员的瞳孔直径为5.0mm ,如此两点光源的间距为 ( )A. 21.5mB. 10.5mC. 31.0mD. 42.0m 解:m 5.2122.1,22.11==∆∴∆==h Dx h x D λλθ。

本题答案为A 。

4.波长λ=550nm 的单色光垂直入射于光栅常数d =2×10-4cm 的平面衍射光栅上,可能观察到的光谱线的最大级次为 ( )A. 2B. 3C. 4D. 5 解:k d k k d 。

,64.3sin sin ===λθλθ的可能最大值对应1sin =θ,所以[]3=k 。

故本题答案为B 。

5.一束单色光垂直入射在平面光栅上,衍射光谱中共出现了5条明纹。

若已知此光栅缝宽度与不透明宽度相等,那么在中央明纹一侧的第二条明纹是第几级?( )A. 1级B. 2级C. 3级D. 4级 解:,2,sin =+±=ab a k d λθ因此...6,4,2±±±等级缺级。

衍射光谱中共出现了5条明纹,所以0,1,3±±=k ,那么在中央明纹一侧的第二条明纹是第3级。

光的衍射习题及答案

光的衍射习题及答案

光的衍射习题及答案第二章光的衍射1.单色平面光照射到一小圆孔上,将其波面分成半波带。

求第K个带的半径。

若极点到观察点的距离r。

为1m,单色光波长为450nm,求此时第一半波带的半径。

k解:2r02而r r0匸k:2 2kr k r02\ k r°r02将上式两边平方,得2 22 2 2, kk r0 r0 kr04略去k2 2项,则k Jkr°将k 1, r°100cm, 450010-8 cm带入上式,得0.067 cm2.平行单色光从左向右垂直射到一个有圆形小孔的屏上,设此孔可以像照相机光圈那样改变大小。

问:(1)小孔半径满足什么条件时,才能使得此小孔右侧轴线上距小空孔中心4m的P 点的光强分别得到极大值和极小值;(2)P点最亮时,小孔直径应为多大?设此时的波长为500nm解:(1)根据上题结论 k *0k .400 5 10 5k 0.1414 .. kcm当k 为奇数时,P 点为极大值; k 为偶数时,P 点为极小值。

(2) P 点最亮时,小孔的直径为2 12 r 00.2828cm3•波长为500nm 的单色点光源离光阑1m 光 阑上有一个内外半径分别为 0.5mm 和1mm 勺透光圆环,接收点P 离光阑1m 求P 点的光强I 与 没有光阑时的光强度I 0之比 解:根据题按圆孔里面套一个小圆屏幕将r o400cm,10-5cm代入,得k 12 hk1r 。

k2R :k2 R 1 mr1m Rhk .0.5mm R hk2 1mm 有光阑时,由公式 得0.52 1 1 500 10 6 1000 100012 1 1500 10 6 1000 1000500nmRf(R r °)鱼丄丄r ° Rr 0 R11 1111a p a 1 a 3a 1 a 2 a 2 a 3 a 12 2 2 2 2没有光阑时a oa i所以4•波长为632.8nm 的平行光射向直径为2.76mm 的圆孔,与孔相距1m 处放一屏。

光的衍射习题(附答案)1

光的衍射习题(附答案)1

光的衍射(附答案)一.填空题1.波长λ=500nm(1nm=109m)的单色光垂直照射到宽度a=0.25mm的单缝上,单缝后面放置一凸透镜,在凸透镜的焦平面上放置一屏幕,用以观测衍射条纹.今测得屏幕上中央明条纹之间的距离为d=12mm,则凸透镜的焦距f为3m.2.在单缝夫琅禾费衍射实验中,设第一级暗纹的衍射角很小,若钠黄光(λ1≈589nm)中央明纹宽度为4.0mm,则λ2≈442nm(1nm=109m)的蓝紫色光的中央明纹宽度为3.0mm.3.8mm,则4.时,衍射光谱中第±4,±8,…5.6.f7.8.9.λ210.X11.λ1的第一级衍射极小与λ2的第二级衍射极小相重合,试问:(1)这两种波长之间有何关系?(2)在这两种波长的光所形成的衍射图样中,是否还有其它极小相重合?解:(1)由单缝衍射暗纹公式得a sinθ1=1λ1a sinθ2=2λ2=θ2,sinθ1=sinθ2由题意可知θ1代入上式可得λ1=2λ2(2)a sinθ1=k1λ1=2k1λ2(k1=1,2,…)sinθ1=2k1λ2/aa sinθ2=k2λ2(k2=1,2,…)sinθ2=2k2λ2/a=2k1,则θ1=θ2,即λ1的任一k1级极小都有λ2的2k1级极小与之重合.若k212.在单缝的夫琅禾费衍射中,缝宽a=0.100mm,平行光垂直如射在单缝上,波长λ=500nm,会聚透镜的焦距f=1.00m.求中央亮纹旁的第一个亮纹的宽度Δx.解:单缝衍射第1个暗纹条件和位置坐标x1为a sinθ1=λ13.9m).已(1)(2)所以x1=fλ1/ax2=fλ2/a则两个第一级明纹之间距为Δx=x2?x1=fΔλ/a=0.27cm1(2)由光栅衍射主极大的公式d sinφ1=kλ1=1λ1d sinφ2=kλ2=1λ2且有sinφ=tanφ=x/f=x2?x1=fΔλ/a=1.8cm所以Δx114.一双缝缝距d=0.40mm,两缝宽度都是a=0.080mm,用波长为λ=480nm(1nm=109m)的平行光垂直照射双缝,在双缝后放一焦距f=2.0m的透镜.求:(1)在透镜焦平面的屏上,双缝干涉条纹的间距l;(2)在单缝衍射中央亮纹范围内的双缝干涉数目N和相应的级数.解:双缝干涉条纹15.(1)(2)λ'=510.3nm(2)a+b=3λ/sinφ=2041.4nmφ'=arcsin(2×400/2041.4)nm(λ=400nm)2φ''=arcsin(2×760/2041.4)nm(λ=760nm)2''?φ2'=25°白光第二级光谱的张角Δφ=φ216.一束平行光垂直入射到某个光栅上,该光栅有两种波长的光,λ1=440nm,λ2=660nm.实验发现,两种波长的谱线(不计中央明纹)第二次重合于衍射角φ=60°的方向上,求此光栅的光栅常数d.解:由光栅衍射主极大公式得d sinφ=kλ11d sinφ2=kλ2===当两谱线重合时有φ1=φ2即====两谱线第二次重合即是=,k1=6,k2=4由光栅公式可知d sin60°=6λ1∴d==3.05×103mm17.将一束波长λ=589nm(1nm=109m)的平行钠光垂直入射在1厘米内有5000条刻痕的平面衍射(1)(2)18.30°,且第三级是缺级.(1)光栅常数(a+b)等于多少?(2)透光缝可能的最小宽度a等于多少?(3)在选定了上述(a+b)和a之后,求在衍射角–<φ<范围内可能观察到的全部主极大的级次.解:(1)由光栅衍射的主极大公式得a+b==2.4×104cm(2)若第三级不缺级,则由光栅公式得(a+b)sinφ'=3λ由于第三级缺级,则对应于最小可能的a,φ'方向应是单缝衍射第一级暗纹:两式比较,得a sinφ'=λa==8.0×103cm(3)(a+b)sinφ=kλ(主极大)a sinφ=k'λ(单缝衍射极小)(k'=1,2,3,…)因此k=3,6,9,…缺级;又∵k max==4,∴实际呈现出的是k=0,±1,±2级明纹(k=±4在π/2处不可见).19.在通常亮度下,人眼瞳孔直径约为,若视觉感受最灵敏的光波长为λ=480nm(1nm=109m),试问:(1)人眼最小分辨角是多大?(2)在教室的黑板上,画的等号两横线相距2mm,坐在距黑板10m处的同学能否看清?(要有计算过程)20.θ的两条谱λ2当k'=2时,a=d=×2.4μm=1.6μm21.某单色X射线以30°角掠射晶体表面时,在反射方向出现第一级极大;而另一单色X射线,波长为0.097nm,它在与晶体表面掠射角为60°时,出现第三级极大.试求第一束X射线的波长.解:设晶面间距为d,第一束X射线波长为λ1,掠射角θ1=30°,级次k1=1;另一束射线波长为λ2=0.097nm,掠射角θ2=60°,级次k2=3.根据布拉格公式:第一束2d sinθ1=k1λ1第二束2d sinθ2=k2λ2两式相除得λ==0.168nm.1。

光的衍射参考答案

光的衍射参考答案

光的衍射参考解答一 选择题1.在如图所示的夫琅和费衍射装置中,将单缝宽度a 稍稍变窄,同时使会聚透镜L 沿y 轴正方向作微小位移,则屏幕C 上的中央衍射条纹将 (A )变宽,同时向上移动 (B )变宽,不移动 (C )变窄,同时向上移动 (D )变窄,不移动[ A ][参考解]一级暗纹衍射条件:λϕ=1sin a ,所以中央明纹宽度aff f x λϕϕ2sin 2tan 211=≈=∆中。

衍射角0=ϕ的水平平行光线必汇聚于透镜主光轴上,故中央明纹向上移动。

2.在单缝的夫琅和费衍射实验中,若将单缝沿透镜主光轴方向向透镜平移,则屏幕上的衍射条纹 (A )间距变大 (B )间距变小(C )不发生变化 (D )间距不变,但明纹的位置交替变化[ C ][参考解]单缝沿透镜主光轴方向或沿垂直透镜主光轴的方向移动并不会改变入射到透镜的平行光线的衍射角,不会引起衍射条纹的变化。

3.波长λ=5500?的单色光垂直入射于光栅常数d=2×10-4cm 的平面衍射光栅上,可能观察到的光谱线的最大级次为(A )2 (B )3 (C )4 (D )5[ B ][参考解]由光栅方程λϕk d ±=sin 及衍射角2πϕ<可知,观察屏可能察到的光谱线的最大级次64.3105500102106=⨯⨯=<--λdk m ,所以3=m k 。

4.在双缝衍射实验中,若保持双缝S 1和S 2的中心之间距离不变,把两条缝的宽度a 略微加宽,则 (A )单缝衍射的中央主极大变宽,其中包含的干涉条纹的数目变少; (B )单缝衍射的中央主极大变窄,其中包含的干涉条纹的数目不变; (C )单缝衍射的中央主极大变窄,其中包含的干涉条纹的数目变多; (D )单缝衍射的中央主极大变窄,其中包含的干涉条纹的数目变少。

[ D ][参考解]参考第一题解答可知单缝衍射的中央主极大变窄,而光栅常数不变,则由光栅方程可知干涉条纹间距不变,故其中包含的干涉条纹的数目变少。

(完整版)光的衍射习题(附答案)

(完整版)光的衍射习题(附答案)

光的衍射(附答案)一. 填空题1. 波长入=500 nm (1 nm = 10 -9m)的单色光垂直照射到宽度a = 0.25 mm的单缝上,单缝后面放置一凸透镜,在凸透镜的焦平面上放置一屏幕,用以观测衍射条纹•今测得屏幕上中央明条纹之间的距离为 d = 12 mm,则凸透镜的焦距f为3_m .2. 在单缝夫琅禾费衍射实验中,设第一级暗纹的衍射角很小,若钠黄光( 入〜589 nm )中央明纹宽度为4.0 mm,贝U k ~442 nm (1 nm = 10-9m)的蓝紫色光的中央明纹宽度为3.0 mm .3. 平行单色光垂直入射在缝宽为a = 0.15 mm的单缝上,缝后有焦距为f = 400 mm的凸透镜,在其焦平面上放置观察屏幕.现测得屏幕上中央明纹两侧的两个第三级暗纹之间的距离为8 mm,则入射光的波长为500 nm (或5 X 410- mm).4. 当一衍射光栅的不透光部分的宽度b与透光缝宽度a满足关系b = 3 a时,衍射光谱中第±±…级谱线缺级.5. 一毫米内有500条刻痕的平面透射光栅,用平行钠光束与光栅平面法线成30角入射,在屏幕上最多能看到第5级光谱.6. 用波长为入的单色平行红光垂直照射在光栅常数d = 2 pm (1 m = 10-6m)的光栅上,用焦距f = 0.500 m的透镜将光聚在屏上,测得第一级谱线与透633nm.7. 一会聚透镜,直径为3 cm,焦距为20 cm .照射光波长550nm .为了可以分辨,两个远处的点状物体对透镜中心的张角必须不小于 2.24 x i0-5rad .这时在透镜焦平面上两个衍射图样中心间的距离不小于 4.47 m .8. 钠黄光双线的两个波长分别是589.00 nm和589.59 nm (1 nm = 10 -9m), 若平面衍射光栅能够在第二级光谱中分辨这两条谱线,光栅的缝数至少是500.9. 用平行的白光垂直入射在平面透射光栅上,波长为21= 440 nm的第3级光谱线将与波长为2=660 nm的第2级光谱线重叠(1 nm = 10 -9m).10. X射线入射到晶格常数为d的晶体中,可能发生布拉格衍射的最大波长为2d.二.计算题11. 在某个单缝衍射实验中,光源发出的光含有两种波长入和2,垂直入射于单缝上.假如入的第一级衍射极小与2的第二级衍射极小相重合,试问:(1) 这两种波长之间有何关系?(2)在这两种波长的光所形成的衍射图样中,是否还有其它极小相重合?解:(1)由单缝衍射暗纹公式得a sin a= 1 入 a sin Q = 2 2由题意可知Q= Q, sin Q= sin &代入上式可得2= 2 2(2) a sin Q = k12=2 k12 (k1=1,2,…)sin Q = 2 k12/ aa sin &= k2 A (k2=1,2,…)sin(2= 2 k2 A/ a若k2= 2 k i,贝U e i= 即A的任一k i级极小都有A的2 k i级极小与之重合. 12. 在单缝的夫琅禾费衍射中,缝宽a = 0.100 mm,平行光垂直如射在单缝上,波长A= 500 nm,会聚透镜的焦距f = 1.00 m .求中央亮纹旁的第一个亮纹的宽度A x.解:单缝衍射第1个暗纹条件和位置坐标X i为a sin d = AX1 = f tan d ~f sin d ~f A/ a (v d 很小)单缝衍射第2个暗纹条件和位置坐标X2为a sin d= 2 AX2 = f tan d ~f sin d~2 f A/ a (v d很小)单缝衍射中央亮纹旁第一个亮纹的宽度7 4A x1 = X2 - X1 ~f (2 A/ a - A a)= f A/ a= 1.00X5.00X10" /(1.00 X10" ) m=5.00mm .13. 在单缝夫琅禾费衍射中,垂直入射的光有两种波长,A= 400 nm,A= 760nm (1 nm = 10 "9m).已知单缝宽度a = 1.0 X10-2cm,透镜焦距f = 50 cm .(1) 求两种光第一级衍射明纹中心间的距离.(2) 若用光栅常数a = 1.0X10-3cm的光栅替换单缝,其它条件和上一问相同,求两种光第一级主极大之间的距离.解:(1)由单缝衍射明纹公式可知1 1a sin$= (2 k + 1) A= 2 A (取k = 1)1 3a sin礎=^ (2 k + 1) A= ? Atan $ = x1 / f,tan 心=x1 / fsin 帀 ~tan 召,sin 血 ~tan 心由于3所以治=㊁f入/ a3x2= 2 f 入/ a则两个第一级明纹之间距为3A x1 = x2 - x1 = 2 f AA/ a = 0.27 cm(2)由光栅衍射主极大的公式d sin召=k入=1入d sin &= k A= 1 A且有sin © = tan ©二 x / f所以A x1= x2 - x1 = f A A/ a = 1.8 cm14. 一双缝缝距d = 0.40 mm,两缝宽度都是a = 0.080 mm,用波长为A= 480 nm (1nm = 10 "m)的平行光垂直照射双缝,在双缝后放一焦距 f = 2.0 m 的透镜.求:(1)在透镜焦平面的屏上,双缝干涉条纹的间距I; (2)在单缝衍射中央亮纹范围内的双缝干涉数目N和相应的级数.解:双缝干涉条纹(1)第k级亮纹条件:d sin B= k A第k 级亮条纹位置:X1= f tan 6 ~f sin d ~k f A/ d相邻两亮纹的间距:3A x= X k+1 - X k = (k + 1) f A d - k A/ d = f A/ d = 2.4 X10" m = 2.4 mm ⑵单缝衍射第一暗纹:a sin 6= A单缝衍射中央亮纹半宽度:A = f tan 6 ~f sin 6 ~k f A d = 12 mmA x0/ A x = 5•••双缝干涉第i5级主极大缺级.•••在单缝衍射中央亮纹范围内,双缝干涉亮纹数目N = 9分别为k = 0, ±,吃,±3, ±4级亮纹或根据d / a = 5指出双缝干涉缺第i5级主极大,同样可得出结论。

光 的 衍 射

光 的 衍 射

第二章光的衍射试题与解答(3)一、选择题1.根据惠更斯—菲涅耳原理,若已知在某时刻的波阵面为S,则S的前方某点P的光强度决定于波阵面S上所有面积元发出的子波各自传到P点的[ ](A) 振动振幅之和(B) 光强之和(C) 振动振幅之和的平方(D) 振动的相干叠加2.在如图所示的单缝夫琅和费衍射装置中,设中央明纹的衍射角范围很小,若使单缝宽度a变为原来的3/2,同时使入射的单色光的波长λ变为原来的3/4,则屏幕上单缝衍射条纹中央明纹的宽度△X变为原来的[ ](A) 3/4 倍(B) 2/3 倍(C) 9/8 倍(D) 1/2倍3.当单色平行光垂直入射时,观察单缝的夫琅和费衍射图样。

设I0表示中央极大(主极大)的光强,θ1表示中央亮条纹的半角宽度。

若只是把单缝的宽度增大为原来的3倍,其他条件不变,则[ ](A) I0增大为原来的9倍,sinθ1 减小为原来的1/3(B) I0增大为原来的3倍,sinθ1 减小为原来的1/3(C) I0增大为原来的3倍,sinθ1 减小为原来的3(D) I0不变,sinθ1 减小为原来的1/34.波长为λ的单色光垂直入射到光栅常数为d、总缝数为N的衍射光栅上。

则第k级谱线的半角宽度△θ[ ](A) 与该谱线的衍射角θ无关(B) 与光栅总缝数N成反比(C) 与光栅常数d成正比(D) 与入射光波长λ成反比5.一平面衍射的光栅具有N条光缝,则中央零级干涉明条纹和一侧第一级干涉明纹之间将出现的暗条纹为[ ](A) N(B) N2(C) N –1(D) N - 2二、填空题1.一物体作余弦振动,振扶为15×10-2 m,圆频率为6 π s-1,初相位为0.5π,则振动方程为x =__________.2.在单缝夫琅和费衍射示意图中,所画出的各条正入射光线间距相等,那么光线1与3在幕上P点相遇时的位相差为________,P点应为_________点3.波长为λ=4800Å的平行光垂直照射到宽度为的a=0.40 mm单缝上,单缝后透镜的焦距为f = 60 cm,当单缝两边缘点A、B射向P点的两条光线在点的位相差为π时,点离透镜焦点O的距离等于_________。

光的衍射习题(附答案)

光的衍射习题(附答案)

光的衍射(附答案)一.填空题1.波长λ = 500 nm(1 nm = 109 m)的单色光垂直照射到宽度a = mm的单缝上,单缝后面放置一凸透镜,在凸透镜的焦平面上放置一屏幕,用以观测衍射条纹.今测得屏幕上中央明条纹之间的距离为d = 12 mm,则凸透镜的焦距f 为3 m.2.在单缝夫琅禾费衍射实验中,设第一级暗纹的衍射角很小,若钠黄光(λ1 ≈589 nm)中央明纹宽度为mm,则λ2 ≈ 442 nm(1 nm = 109 m)的蓝紫色光的中央明纹宽度为mm.3.平行单色光垂直入射在缝宽为a = mm的单缝上,缝后有焦距为f = 400 mm的凸透镜,在其焦平面上放置观察屏幕.现测得屏幕上中央明纹两侧的两个第三级暗纹之间的距离为8 mm,则入射光的波长为500 nm(或5×104mm).4.当一衍射光栅的不透光部分的宽度b与透光缝宽度a满足关系b = 3a 时,衍射光谱中第±4, ±8, …级谱线缺级.5.一毫米内有500条刻痕的平面透射光栅,用平行钠光束与光栅平面法线成30°角入射,在屏幕上最多能看到第5级光谱.6.用波长为λ的单色平行红光垂直照射在光栅常数d = 2 μm(1 μm = 106 m)的光栅上,用焦距f= m的透镜将光聚在屏上,测得第一级谱线与透镜主焦点的距离l = m,则可知该入射的红光波长λ=或633nm.7.一会聚透镜,直径为3 cm,焦距为20 cm.照射光波长550nm.为了可以分辨,两个远处的点状物体对透镜中心的张角必须不小于×105rad.这时在透镜焦平面上两个衍射图样中心间的距离不小于μm.8.钠黄光双线的两个波长分别是nm和nm(1 nm = 109 m),若平面衍射光栅能够在第二级光谱中分辨这两条谱线,光栅的缝数至少是500.9.用平行的白光垂直入射在平面透射光栅上,波长为λ1 = 440 nm的第3级光谱线将与波长为λ2 =660 nm的第2级光谱线重叠(1 nm = 109 m).10.X射线入射到晶格常数为d的晶体中,可能发生布拉格衍射的最大波长为2d.二.计算题11.在某个单缝衍射实验中,光源发出的光含有两种波长λ1和λ2,垂直入射于单缝上.假如λ1的第一级衍射极小与λ2的第二级衍射极小相重合,试问:(1) 这两种波长之间有何关系(2) 在这两种波长的光所形成的衍射图样中,是否还有其它极小相重合解:(1) 由单缝衍射暗纹公式得a sinθ1= 1 λ1 a sinθ2= 2 λ2由题意可知θ1= θ2, sinθ1= sinθ2代入上式可得λ1 = 2 λ2(2) a sinθ1= k1λ1=2 k1λ2(k1=1, 2, …)sinθ1= 2 k1λ2/ aa sinθ2= k2λ2(k2=1, 2, …)sinθ2= 2 k2λ2/ a若k2= 2 k1,则θ1= θ2,即λ1的任一k1级极小都有λ2的2 k1级极小与之重合.12.在单缝的夫琅禾费衍射中,缝宽a = mm,平行光垂直如射在单缝上,波长λ= 500 nm,会聚透镜的焦距f= m.求中央亮纹旁的第一个亮纹的宽度Δx.解:单缝衍射第1个暗纹条件和位置坐标x1为a sinθ1= λx1 = f tanθ1≈ f sinθ1≈ f λ / a (∵θ1很小)单缝衍射第2个暗纹条件和位置坐标x2为a sinθ2 = 2 λx2 = f tanθ2≈ f sinθ2≈ 2 f λ / a (∵θ2很小)单缝衍射中央亮纹旁第一个亮纹的宽度Δx1 = x2x1≈ f (2 λ / a λ / a)= f λ / a=××107/×104) m=.13.在单缝夫琅禾费衍射中,垂直入射的光有两种波长,λ1 = 400 nm,λ2 = 760nm(1 nm = 109 m).已知单缝宽度a = ×102 cm,透镜焦距f = 50 cm.(1)求两种光第一级衍射明纹中心间的距离.(2)若用光栅常数a= ×10-3cm的光栅替换单缝,其它条件和上一问相同,求两种光第一级主极大之间的距离.解:(1) 由单缝衍射明纹公式可知a sinφ1= 12(2 k + 1)λ1 =12λ1(取k = 1)a sinφ2= 12(2 k + 1)λ2=32λ2tanφ1= x1/ f,tanφ2= x1/ f由于sinφ1≈ tanφ1,sinφ2≈ tanφ2所以x1= 32f λ1 /ax2= 32f λ2 /a则两个第一级明纹之间距为Δx1= x2x1= 32f Δλ/a = cm(2) 由光栅衍射主极大的公式d sinφ1= k λ1 = 1λ1d sinφ2= k λ2 = 1λ2且有sinφ = tanφ = x / f所以Δx1= x2x1 = fΔλ/a = cm14.一双缝缝距d = mm,两缝宽度都是a = mm,用波长为λ = 480 nm(1 nm =109 m)的平行光垂直照射双缝,在双缝后放一焦距f= m的透镜.求:(1) 在透镜焦平面的屏上,双缝干涉条纹的间距l;(2) 在单缝衍射中央亮纹范围内的双缝干涉数目N和相应的级数.解:双缝干涉条纹(1) 第k级亮纹条件:d sinθ = kλ第k级亮条纹位置:x1= f tanθ1≈ f sinθ1≈ k f λ / d相邻两亮纹的间距:Δx= x k +1x k = (k + 1) fλ / d k λ / d= f λ / d = ×103 m = mm(2) 单缝衍射第一暗纹:a sinθ1= λ单缝衍射中央亮纹半宽度:Δx= f tanθ1≈ f sinθ1≈ k f λ / d = 12 mm Δx0/ Δx = 5∴双缝干涉第±5级主极大缺级.∴在单缝衍射中央亮纹范围内,双缝干涉亮纹数目N = 9分别为k = 0, ±1, ±2, ±3, ±4级亮纹或根据d /a= 5指出双缝干涉缺第±5 级主极大,同样可得出结论。

人教版高中物理选修3-4同步练习:《光的衍射》(含答案)

人教版高中物理选修3-4同步练习:《光的衍射》(含答案)

人教版高中物理选修3-4同步练习:《光的衍射》(含答案)光的衍射同步练习一.选择题(每小题5分,共60分)1.对衍射现象的下述定性分析中,不正确的是()A.光的衍射是光在传播过程中绕过障碍物发生弯曲传播的现象B.衍射花纹图样是光波互相叠加的结果C.光的衍射现象为光的波动说提供了有力的证据D.光的衍射现象完全否定了光的直线传播结论2.下列现象哪些是光的衍射产生的()A,著名的泊松亮斑B.阳光下茂密树阴中地面上的圆形亮斑C.光照到细金属丝后在其后面屏上的阴影中间出现亮线D.阳光经凸透镜后形成的亮斑3.在一次观察光衍射的实验中,观察到如图所示的清晰的明暗相间的图样,那么障碍物应是(黑线为暗纹)()A.很小的不透明的圆板B.很大的中间有大圆孔的不透明的圆板C.很大的不透明的圆板D.很大的中间有小圆孔的不透明的圆板4.点光源照射到一个障碍物,在屏上所成的阴影的边缘部分模糊不清.产生的原因是()A.光的反射B.光的折射C.光的干涉D.光的衍射5.关于衍射的下列说法中正确的是()A.衍射现象中衍射花样的明暗条纹的出现是光干涉的结果B.双缝干涉中也存在着光的衍射现象C.影的存在是一个与衍射现象相矛盾的客观事实D.一切波都可以产生衍射6.下列现象中能产生明显衍射现象的是()A.光的波长比孔或障碍物的尺寸大B.光的波长与孔或障碍物的尺寸可相比C.光的波长等于孔或障碍物的尺寸D.光的波长比孔或障碍物的尺寸小得多7.一束平行单色光,通过双缝后,在屏上得到明暗相间的条纹,则()A.相邻的明条纹或暗条纹的间距不等B.将双缝中某一缝挡住,则屏上一切条纹将消失,而出现一亮点C.将双缝中某一缝挡住,屏上出现间距不等的明、暗条纹D.将双缝中某一缝挡住,则屏上条纹与原来一样,只是亮度减半8.用单色光做双缝干涉实验和单缝衍射实验,比较屏上的条纹,正确的是()A.双缝干涉条纹是等间距的明暗相间的条纹B.单缝衍射条纹是中央宽、两边窄的明暗相间的条纹C.双缝干涉条纹是中央宽、两边窄的明暗相间的条纹D.单缝衍射条纹是等间距的明暗相间的条纹9.关于光的干涉和衍射现象,下面各种说法中正确的是()A.光的干涉和衍射是相同的物理过程,只是干涉图样和衍射图样不同B.光的干涉只能用双缝,而光的衍射只能用单缝C.在双缝干涉过程中,也有衍射现象存在D.单缝衍射过程中也存在着干涉现象10.在用单色平行光照射单缝观察衍射现象的实验中,下列哪些说法是正确的()A.缝越窄,衍射现象越显著B.缝越宽,衍射现象越显著C.照射光的波长越长,衍射现象越显著D.照射光的频率越高,衍射现象越显著11.下列关于光的干涉和衍射的叙述中正确的是()A.光的干涉和衍射都遵循光波的叠加原理B.光的干涉说明光的波动性,光的衍射说明光不是沿直线传播C.光的干涉呈黑白间隔条纹,光的衍射呈彩色条纹D.光的干涉遵循光波叠加原理,光的衍射不遵循这一原理12.下列哪些现象是光的衍射产生的()A.阳光下茂密的树荫下地面上的圆形亮斑B.泊松亮斑C.点光源照到不透明物体上,在物体背后的光屏上形成的阴影的边缘部分模糊不清D.透过树叶的缝隙观看太阳呈现产生的光环。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光的衍射(附答案)一.填空题1.波长λ = 500 nm(1 nm = 109 m)的单色光垂直照射到宽度a = 0.25 mm的单缝上,单缝后面放置一凸透镜,在凸透镜的焦平面上放置一屏幕,用以观测衍射条纹.今测得屏幕上中央明条纹之间的距离为d = 12 mm,则凸透镜的焦距f为3m.2.在单缝夫琅禾费衍射实验中,设第一级暗纹的衍射角很小,若钠黄光(λ1 ≈ 589nm)中央明纹宽度为4.0 mm,则λ2 ≈ 442 nm(1 nm = 109 m)的蓝紫色光的中央明纹宽度为3.0 mm.3.平行单色光垂直入射在缝宽为a = 0.15 mm的单缝上,缝后有焦距为f = 400mm的凸透镜,在其焦平面上放置观察屏幕.现测得屏幕上中央明纹两侧的两个第三级暗纹之间的距离为8 mm,则入射光的波长为500 nm(或5×104mm).4.当一衍射光栅的不透光部分的宽度b与透光缝宽度a满足关系b = 3a 时,衍射光谱中第±4, ±8, …级谱线缺级.5.一毫米内有500条刻痕的平面透射光栅,用平行钠光束与光栅平面法线成30°角入射,在屏幕上最多能看到第5级光谱.6.用波长为λ的单色平行红光垂直照射在光栅常数d = 2 μm(1 μm = 106 m)的光栅上,用焦距f = 0.500 m的透镜将光聚在屏上,测得第一级谱线与透镜主焦点的距离l = 0.1667 m,则可知该入射的红光波长λ=632.6或633nm.7.一会聚透镜,直径为3 cm,焦距为20 cm.照射光波长550nm.为了可以分辨,两个远处的点状物体对透镜中心的张角必须不小于 2.24×105rad.这时在透镜焦平面上两个衍射图样中心间的距离不小于4.47μm.8.钠黄光双线的两个波长分别是589.00 nm和589.59 nm(1 nm = 109 m),若平面衍射光栅能够在第二级光谱中分辨这两条谱线,光栅的缝数至少是500.9.用平行的白光垂直入射在平面透射光栅上,波长为λ1 = 440 nm的第3级光谱线将与波长为λ2 =660 nm的第2级光谱线重叠(1 nm = 109 m).10.X射线入射到晶格常数为d的晶体中,可能发生布拉格衍射的最大波长为2d.二.计算题11.在某个单缝衍射实验中,光源发出的光含有两种波长λ1和λ2,垂直入射于单缝上.假如λ1的第一级衍射极小与λ2的第二级衍射极小相重合,试问:(1) 这两种波长之间有何关系(2) 在这两种波长的光所形成的衍射图样中,是否还有其它极小相重合12.解:(1) 由单缝衍射暗纹公式得a sinθ1= 1 λ1 a sinθ2= 2 λ2由题意可知θ1= θ2, sinθ1= sinθ2代入上式可得λ1 = 2 λ2(2) a sinθ1=k1λ1=2k1λ2(k1=1, 2, …)sinθ1=2k1λ2/ aa sinθ2=k2λ2(k2=1, 2, …)sinθ2=2k2λ2/ a若k2= 2 k1,则θ1= θ2,即λ1的任一k1级极小都有λ2的2k1级极小与之重合.13.在单缝的夫琅禾费衍射中,缝宽a = 0.100 mm,平行光垂直如射在单缝上,波长λ= 500 nm,会聚透镜的焦距f = 1.00 m.求中央亮纹旁的第一个亮纹的宽度Δx.解:单缝衍射第1个暗纹条件和位置坐标x1为a sinθ1= λx1 = f tanθ1≈f sinθ1≈f λ/ a (∵θ1很小)单缝衍射第2个暗纹条件和位置坐标x2为a sinθ2 = 2 λx2 = f tanθ2≈f sinθ2≈ 2 f λ/ a (∵θ2很小)单缝衍射中央亮纹旁第一个亮纹的宽度Δx1 = x2x1≈f (2 λ/ a λ/ a)= f λ/ a=1.00×5.00×107/(1.00×104) m=5.00mm.14.在单缝夫琅禾费衍射中,垂直入射的光有两种波长,λ1 = 400 nm,λ2 = 760 nm(1 nm = 109 m).已知单缝宽度a = 1.0×102 cm,透镜焦距f = 50 cm.(1)求两种光第一级衍射明纹中心间的距离.(2)若用光栅常数a = 1.0×10-3 cm的光栅替换单缝,其它条件和上一问相同,求两种光第一级主极大之间的距离.解:(1) 由单缝衍射明纹公式可知a sinφ1= 12(2 k + 1)λ1 =12λ1(取k = 1)a sinφ2= 12(2 k + 1)λ2=32λ2tanφ1= x1/ f,tanφ2= x1/ f由于sinφ1≈ tanφ1,sinφ2≈ tanφ2所以x1= 32f λ1 /ax2= 32f λ2 /a则两个第一级明纹之间距为Δx1= x2x1= 32fΔλ/a = 0.27 cm(2) 由光栅衍射主极大的公式d sinφ1= k λ1 = 1λ1d sinφ2= k λ2 = 1λ2且有sinφ = tanφ = x / f所以Δx1= x2x1 = fΔλ/a = 1.8 cm15.一双缝缝距d = 0.40 mm,两缝宽度都是a = 0.080 mm,用波长为λ = 480 nm(1 nm = 109 m)的平行光垂直照射双缝,在双缝后放一焦距f = 2.0 m的透镜.求:(1) 在透镜焦平面的屏上,双缝干涉条纹的间距l;(2) 在单缝衍射中央亮纹范围内的双缝干涉数目N和相应的级数.解:双缝干涉条纹(1) 第k级亮纹条件:d sinθ=kλ第k级亮条纹位置:x1= f tanθ1≈f sinθ1≈k f λ/ d相邻两亮纹的间距:Δx= x k +1x k = (k + 1) fλ/ d k λ/ d= f λ/ d = 2.4×103 m = 2.4 mm(2) 单缝衍射第一暗纹:a sinθ1= λ单缝衍射中央亮纹半宽度:Δx= f tanθ1≈ f sinθ1≈ k f λ / d = 12 mmΔx/ Δx = 5∴双缝干涉第±5级主极大缺级.∴在单缝衍射中央亮纹范围内,双缝干涉亮纹数目N = 9分别为k = 0, ±1, ±2, ±3, ±4级亮纹或根据d / a = 5指出双缝干涉缺第±5 级主极大,同样可得出结论。

16.用钠光(λ = 589.3 nm)垂直照射到某光栅上,测得第三级光谱的衍射角为60°.(1)若换用另一光源测得其第二级光谱的衍射角为30°,求后一光源发光的波长.(2)若以白光(400 nm ~ 760n m)照射在该光栅上,求其第二级光谱的张角.解:(1) (a+b)sinφ=3λa+b = 3λ/ sinφ,φ= 60°a+b = 2λ' / sinφ',φ'= 30°3λ/ sinφ = 2λ' / sinφ'λ' = 510.3nm(2) a+b = 3λ/ sinφ=2041.4 nmφ2' = arcsin (2×400 / 2041.4) nm (λ= 400nm)φ2'' = arcsin (2×760 / 2041.4) nm (λ= 760nm)白光第二级光谱的张角Δφ = φ2'' φ2' = 25°17.一束平行光垂直入射到某个光栅上,该光栅有两种波长的光,λ1 = 440 nm,λ2= 660 nm.实验发现,两种波长的谱线(不计中央明纹)第二次重合于衍射角φ = 60°的方向上,求此光栅的光栅常数d.解:由光栅衍射主极大公式得d sinφ1= k λ1d sinφ2= k λ2sinφ1 sinφ2= k1λ1k2λ2=440 k1660 k2=2 k13 k2当两谱线重合时有φ1= φ2即k1k2=32=64=96=两谱线第二次重合即是k1k2=64,k1 = 6,k2 = 4由光栅公式可知d sin60°= 6λ1∴d =6λ1sin60° = 3.05×103 mm18.将一束波长λ = 589 nm(1 nm = 109 m)的平行钠光垂直入射在1厘米内有5000条刻痕的平面衍射光栅上,光栅的透光缝宽度a与其间距b相等,求:(1)光线垂直入射时,能看到几条谱线是哪几级(2)(3)若光线以与光栅平面法线的夹角θ = 60°的方向入射时,能看到几条谱线是哪几条(4)解:(1) (a+b)sin= k λ当= π/2时,k = (a+b) /λ= 3.39,k max = 3又∵a = b,(a+b)sin= 2a sin= k λ有谱线a sin= k λ/ 2但当k = ±2, ±4, ±6, …时缺级.∴能看到5条谱线,为0, ±1, ±3级.(2) (a+b)(sinθ + sin)= k λ,θ = 30°,= ±90°= π2,k = (a+b)(sin30°+ sin90°) / λ= 5.09.取k max = 5= π2,k = (a+b)(sin30°sin90°) / λ = 1.7.取k'm ax = 1∵a = b∴第2, 4, … 级缺级.∴能看到5条谱线,为+5, +3, +1, 0, 1级.19.波长λ = 600 nm(1 nm = 109 m)的单色光垂直入射到一光栅上,测得第二级主极大的衍射角为30°,且第三级是缺级.(1)光栅常数(a + b) 等于多少?(2)(3)透光缝可能的最小宽度a等于多少?(4)(5)在选定了上述(a + b) 和a之后,求在衍射角–π2< φ<π2范围内可能观察到的全部主极大的级次.解:(1) 由光栅衍射的主极大公式得a + b =k λsinφ= 2.4×104 cm(2) 若第三级不缺级,则由光栅公式得(a+b)sinφ'= 3λ由于第三级缺级,则对应于最小可能的a,φ'方向应是单缝衍射第一级暗纹:两式比较,得a sinφ'= λa =a + b3= 8.0×103 cm(3) (a+b)sinφ= k λ(主极大)a sinφ= k' λ(单缝衍射极小)(k' = 1, 2, 3, …)因此k = 3, 6, 9, …缺级;又∵ k max = a + b λ= 4, ∴ 实际呈现出的是k = 0, ±1, ±2级明纹(k = ±4在π/2处不可见).20. 在通常亮度下,人眼瞳孔直径约为,若视觉感受最灵敏的光波长为λ = 480 nm (1 nm = 109 m ),试问:(1) 人眼最小分辨角是多大?(2) 在教室的黑板上,画的等号两横线相距2 mm ,坐在距黑板10 m 处的同学能否看清((3) 要有计算过程)(4)解:(1) 已知得d = 3 mm ,λ= 550 nm ,人眼的最小分辨角为:θ = 1.22 λ / d = 2.24×104 rad(2) 设等号两横线相距Δx = 2 mm 时,人距黑板刚好看清,则l = Δx / θ = 8.9 m所以距黑板10m 处的同学看不清楚.21. 一平面透射多缝光栅,当用波长λ1 = 600 nm (1 nm = 109 m )的单色平行光垂直入射时,在衍射角θ = 30° 的方向上可以看到第2级主极大,并且在该处恰能分辨波长差Δλ = 5×103 nm 的两条谱线.当用波长λ2 = 400 nm 的单色平行光垂直入射时,在衍射角θ = 30°的方向上却看不到本应出现的第3级主极大.求光栅常数d 和总缝数N ,再求可能的缝宽a .解:根据光栅公式d sin θ = k λ1得d =1sin k λθ= 2×600sin30° = 2.4×103 nm = 2.4 μm 据光栅分辨本领公式R = λ1 /Δλ = kN得N = λ1k Δλ= 60000 在θ = 30° 的方向上,波长λ2 = 400 nm 的第3级主极大缺级,因而此处一定恰好是波长为λ2入射光单缝衍射的一个极小出现的位置。

相关文档
最新文档