不等式与方程应用题讲义
中考数学复习第二章方程组与不等式组讲义
第二章 方程(组)与不等式(组)第一节 一次方程与一次方程组【考点1】一元一次方程定义:只含有 未知数,并且未知数的次数都是 。
(系数不为0)的整式方程。
形式:一般形式ax+b=0 ; 最简形式 ax=b (a ≠0) 解 :abx(a ≠0) 【提示】判断一个方程是否为一元一次方程,一定要先把方程化简以后再用定义进行判别。
解一元一次方程的一般步骤:去分母;去括号;移项(移项要变号);合并同类项;化系数为1【考点2】二元一次方程组 1.二元一次方程定义:含有 个未知数,并且含有未知数的项的次数都是 的整式方程。
一般形式: ax+by=c ,有无数组解。
2. 二元一次方程组的解法⑴代入消元法:多适用于方程组中有一个未知数的系数是 或 的情形。
⑵ :多适用于方程组的两个方程中相同未知数的系数 或互为 的情形。
【考点3】一次方程(组)的应用 1.列方程组解应用题的一般步骤:⑴审:即审清题意,分清题中的已知量、未知量; ⑵设:即设关键未知数;⑶列:即找出适当等量关系,列出方程(组); ⑷解:即解方程(组);⑸验:即检验所解答案是否正确或是否符合题意; ⑹答:即规范作答,注意单位名称。
2.列一元一次方程常见的应用题类型及关系式 ⑴ 利润率问题:利润=售价-进价 ;利润率=进价利润×100﹪ (先确定售价、进价、再计算利润率,其中打折、降价的词义应清楚)⑵ 利息问题:利息=本金×利率×期数 ;本息和=本金+利息 ;利息税=利息×税率 ; 贷款利息=贷款数额×利率×期数⑶ 工程问题:工作量=工作效率× (把全部工作量看作单位1,各部分工作量之和=1)⑷ 浓度问题:浓度=溶液质量溶质质量×100﹪⑸ 行程问题:路程=速度×时间 ① 追击问题(追击过程时间相等)② 相遇问题 (甲走的路程 乙走的路程=A 、B 两地间的路程)③ 航行问题:顺水(风)速度= +静水(风);逆水(风)速度=船速-【中考试题精编】1.练习本比水性笔的单价少2元,小刚买了5本练习本和3支水性笔正好花去14元,如果设水性笔的单价为x 元,那么下列方程正确的是( )A. 5(x-2)+3x=14B. 5(x+2)+3x=14C. 5x+3(x+2)=14D. 5x+3(x-2)=142.某班在学校组织的某场篮球比赛中,小杨和小方一共投进篮球21个,小杨比小方多投进5个。
方程与不等式的解法例题和知识点总结
方程与不等式的解法例题和知识点总结在数学的学习中,方程与不等式是非常重要的内容,它们在解决实际问题中有着广泛的应用。
下面我们将通过一些具体的例题来深入理解方程与不等式的解法,并对相关知识点进行总结。
一、方程的解法方程是含有未知数的等式,求解方程的目的就是找出未知数的值,使得等式成立。
1、一元一次方程形如 ax + b = 0(a ≠ 0)的方程叫做一元一次方程。
例:解方程 3x + 5 = 14解:首先,将常数项移到等号右边:3x = 14 5,即 3x = 9然后,将系数化为 1:x = 9 ÷ 3,解得 x = 3知识点总结:解一元一次方程的一般步骤为:去分母(若有)、去括号、移项、合并同类项、系数化为 1。
2、二元一次方程组由两个一次方程组成,并且含有两个未知数的方程组叫做二元一次方程组。
例:解方程组x + y = 5 ①2x y = 1 ②解:①+②得:3x = 6,解得 x = 2将 x = 2 代入①得:2 + y = 5,解得 y = 3所以方程组的解为 x = 2,y = 3知识点总结:解二元一次方程组的基本思想是消元,常用方法有代入消元法和加减消元法。
3、一元二次方程形如 ax²+ bx + c = 0(a ≠ 0)的方程叫做一元二次方程。
例:解方程 x² 4x + 3 = 0解:因式分解得:(x 1)(x 3) = 0所以 x 1 = 0 或 x 3 = 0解得 x₁= 1,x₂= 3知识点总结:一元二次方程的解法有直接开平方法、配方法、公式法和因式分解法。
求根公式为 x =b ± √(b² 4ac) /(2a)。
二、不等式的解法不等式是用不等号表示两个数或表达式之间关系的式子。
1、一元一次不等式形如 ax + b > 0 或 ax + b < 0(a ≠ 0)的不等式叫做一元一次不等式。
例:解不等式 2x 1 < 5解:移项得:2x < 5 + 1,即 2x < 6系数化为 1 得:x < 3知识点总结:解一元一次不等式的步骤与解一元一次方程类似,但要注意不等式两边乘或除以同一个负数时,不等号的方向要改变。
一次函数与方程和不等式讲义(经典)
一次函数与方程和不等式讲义(经典)-CAL-FENGHAI.-(YICAI)-Company One1一次函数与方程和不等式讲义函数解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做解析式。
1、描点法画函数图形的一般步骤第一步:列表(表中给出一些自变量的值及其对应的函数值);第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。
2、函数的表示方法列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。
解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。
图象法:形象直观,但只能近似地表达两个变量之间的函数关系。
3、正比例函数及性质一般地,形如y =kx (k 是常数,k ≠0)的函数叫做正比例函数,其中k 叫做比例系数.注:正比例函数一般形式 y =kx (k 不为零) ① k 不为零 ② x 指数为1 ③ b 取零当k >0时,直线y =kx 经过三、一象限,从左向右上升,即随x 的增大y 也增大;当k <0时,•直线y =kx 经过二、四象限,从左向右下降,即随x 增大y 反而减小.(1) 解析式:y =kx (k 是常数,k ≠0) (2) 必过点:(0,0)、(1,k )(3) 走向:k >0时,图像经过一、三象限;k <0时,•图像经过二、四象限 (4) 增减性:k >0,y 随x 的增大而增大;k <0,y 随x 增大而减小 (5) 倾斜度:|k |越大,越接近y 轴;|k |越小,越接近x 轴 4、一次函数及性质一般地,形如y =kx +b (k ,b 是常数,k ≠0),那么y 叫做x 的一次函数.当b =0时,y =kx +b 即y =kx ,所以说正比例函数是一种特殊的一次函数.注:一次函数一般形式 y =kx +b (k 不为零) ① k 不为零 ②x 指数为1 ③ b 取任意实数一次函数y =kx +b 的图象是经过(0,b )和(-kb,0)两点的一条直线,我们称它为直线y =kx +b ,它可以看作由直线y =kx 平移|b |个单位长度得到.(当b >0时,向上平移;当b <0时,向下平移)(1)解析式:y =kx +b (k 、b 是常数,k ≠0 (2)必过点:(0,b )和(-kb,0)(3)走向: k >0,图象经过第一、三象限;k <0,图象经过第二、四象限 b >0,图象经过第一、二象限;b <0,图象经过第三、四象限 ⇔⎩⎨⎧>>00b k 直线经过第一、二、三象限 ⇔⎩⎨⎧<>00b k 直线经过第一、三、四象限 ⇔⎩⎨⎧><00b k 直线经过第一、二、四象限 ⇔⎩⎨⎧<<0b k 直线经过第二、三、四象限(4)增减性: k >0,y 随x 的增大而增大;k <0,y 随x 增大而减小.(5)倾斜度:|k | 越大,图象越接近于y 轴;|k | 越小,图象越接近于x 轴. (6)图像的平移: 当b >0时,将直线y =kx 的图象向上平移b 个单位; (上加下减,左加右减) 当b <0时,将直线y =kx 的图象向下平移b 个单位.当b <0时,向下平移).5、直线y =k 1x +b 1与y =k 2x +b 2的位置关系(1)两直线平行:k 1=k 2且b 1 ≠b 2 (2)两直线相交:k 1≠k 2 (3)两直线重合:k 1=k 2且b 1=b 2 (4)两直线垂直:k 1·k 2= –1 6、用待定系数法确定函数解析式的一般步骤:(1)根据已知条件写出含有待定系数的函数关系式;(2)将x 、y 的几对值或图象上的几个点的坐标代入上述函数关系式中得到以待定系数为未知数的方程;(3)解方程得出未知系数的值;(4)将求出的待定系数代回所求的函数关系式中得出所求函数的解析式. 7、一元一次方程与一次函数的关系任何一元一次方程到可以转化为ax +b =0(a ,b 为常数,a ≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值. 从图象上看,相当于已知直线y =ax +b 确定它与x 轴的交点的横坐标的值.8、一次函数与一元一次方程的关系:任何一元一次方程都可以转化为kx+b=0(k ,b 为常数,k≠0)的形式,可见一元一次方程是一次函数的一个特例,这就是说,在y=kx+b 中,当y=0时,即为一元一次方程. 9、一次函数与二元一次方程(组)的关系:(1)任何二元一次方程ax+by=c (a ,b ,c 为常数,且a≠0,b≠0)都可以化为y=-a b x+ cb的形式,所以每个二元一次方程都对应着一个一次函数;(2)从“数”的角度看,解方程组相当考虑求自变量为何值时相应的两个函数值相等,以及这个函数值是多少;从“形”的角度看,解方程组相当于确定两条相应直线的交点坐标.10、一次函数的图像与两坐标轴所围成三角形的面积一次函数y =kx +b 的图象与两条坐标轴的交点:与y 轴的交点(0,b ),与x轴的交点(kb-,0).直线(b ≠0)与两坐标轴围成的三角形面积为s =k b b k b 2212=⨯⨯ 例题讲解:探究类型之一 一次函数与一元一次方程综合【例1】 已知直线(32)2y m x =++和36y x =-+交于x 轴上同一点,m 的值为( )A .2-B .2C .1-D .0【例2】 已知一次函数y x a =-+与y x b =+的图象相交于点()8m ,,则a b +=______.【例3】 已知一次函数y kx b =+的图象经过点()20,,()13,,则不求k b ,的值,可直接得到方程3kx b +=的解是x =______.类似性问题1、把直线y=-x+3向上平移m 个单位后,与直线y=2x+4的交点在第一象限,则m 的取值范围是( ) <m<7 <m<4 >1 <4探究类型之二 一次函数与一元一次不等式【例4】 已知一次函数25y x =-+.(1)画出它的图象;(2)求出当32x =时,y 的值;(3)求出当3y =-时,x 的值;(4)观察图象,求出当x 为何值时,0y >,0y =,0y <【例5】 当自变量x 满足什么条件时,函数41y x =-+的图象在:(1)x 轴上方;(2)y 轴左侧; (3)第一象限.(2)已知15y x =-,221y x =+.当12y y >时,x 的取值范围是( ) A .5x >B .12x <C .6x <-D .6x >-【例6】 已知一次函数23y x =-+(1)当x 取何值时,函数y 的值在1-与2之间变化(2)当x 从2-到3变化时,函数y 的最小值和最大值各是多少类似性问题1、 如图,函数1y =|x |,2y =13x+43,当1y >2y 时,x 的取值范围是( )A. x <-1B. -1<x <2C. x <-1或x >2D. x >22、 如图,直线y=kx+b 交坐标轴于A (-3,0),B (0,5)两点,则不等式-kx -b <0的解集为( ) A. x >-3 B. x <-3 C. x >3 D. x <33、如图,直线y 1=kx+b 过点A (0,2),且与直线y 2=mx 交于点 P (1,m ),则不等式组mx >kx+b >mx -2的解集是________.探究类型之三 一次函数、方程(组)、不等式(组)与几何等知识的综合例3、已知一次函数y=kx+b 的图象经过点(-1,-5),且与函数y=12x+1的图象相交于点A (83,a ).(1)求a 的值;(2)求不等式组0<kx+b <12x+1的正整数解;(3)若函数y=kx+b图象与x轴的交点是B,函数y=12x+1的图象与y轴的交点是C,求四边形ABOC的面积.例4、如图,A(0,1),M(3,2),N(4,4).动点P从点A出发,沿y 轴以每秒1个单位的速度向上移动,且过点P的直线l:y=-x+b也随之移动,设移动时间为t秒.(1)当t=3时,求直线l的解析式;(2)若点M,N位于l的异侧,确定t的取值范围;(3)直接写出t为何值时,点M关于l的对称点落在坐标轴上.类似性问题1.某单位急需用车,但又不准备买车,他们准备和一个个体车主或一国营出租车公司签订月租车合同.设汽车每月行驶x(cm),应付给个体车主的月费用为y1元,•应付给汽车出租公司的月费用为y2元,y1,y2分别与x之间的函数关系的图像(两条射线)如图所示,观察图像回答下列问题:(1)每月行驶的路程在什么范围内,租出租公司的车合算(2)每月行驶的路程等于多少时,租两家车的费用相同(3)如果这个单位估计每月行驶的路程为2300km,那么这个单位租哪家车合算2.某学校计划购买若干台电脑,•现从两家商场了解到同一型号电脑每台报价均为6000元,并且多买都有一定的优惠.甲商场的优惠条件是:第一台按原报价收费,其余每台优惠25%,那么甲商场的收费y1(元)与所买电脑台数x之间的关系式是________.乙商场的优惠条件是:每台优惠20%,那么乙商场的收费y2(元)与所买电脑台数x之间的关系式是_________.(1)什么情况下到甲商场购买更优惠(2)什么情况下到乙商场购买更优惠(3)什么情况下两家商场的收费相同探究应用拓展性训练1.(与现实生活联系的应用题)某单位要制作一批宣传材料.甲公司提出:每份材料收费20元,另收3000元设计费;乙公司提出:每份材料收费30元,不收设计费.问:让哪家公司制作这批宣传比较合算2.(学科内综合题)下图表示学校浴室淋浴器水箱中的水量y(L)•与进水时间x(min)的函数关系.(1)求y与x之间的函数关系式.(2)进水多少分钟后,水箱中的水量超过100L3.小明准备将平时的零用钱节约一些储存起来,他已存有50元,从现在起每个月存12元.(1)试写出小明的存款数与从现在开始的月份数之间的函数关系式.(2)小明的同学小丽以前没有存过零用钱,听到小明在存零用钱,•表示从现在起每个月存18元,争取超过小明.请你在同一平面直角坐标系中分别画出小明和小丽存款数和月份数的函数关系的图像.半年以后小丽的存款数是多少能否超过小明•至少几个月后小丽的存款数超过小明4.(探究题)某企业急需一辆汽车,但无资金购买,公司经理决定租一辆汽车,•使用期限为一个月.甲汽车出租公司的出租条件为每千米的租车费为1.2元,•乙汽车出租公司的条件是每月须支付司机800元的工资,另外每千米的租车费为1元,设在这一个月中汽车行驶x(km),租用甲公司的费用为y1(元),租用乙公司的费用为y2(元).(1)试分别写出y 1,y 2与x 之间的函数关系式.(2)当汽车行驶路程为多少千米时,租用乙公司的汽车合算一次函数与方程和不等式 课后练习1:一次函数y =kx +b 的图象如图所示,则方程kx +b =0的解为( )A .x =2B .y =2C .x =1-D .y =1-2:一次函数y =ax +b 的图象如图所示,则不等式ax +b >0的解集是( ) A .x <2 B .x >2 C .x <1 D .x >13:已知一次函数y =ax +b 的图象过第一、二、四象限,且与x 轴交于点(2,0),则关于x 的不等式a (x 1)b >0的解集为( ) A .x <1 B .x >1 C .x >1 D .x <14:如图,已知函数y =ax +b 和y =kx 的图象交于点P ,则根据图象可得,关于x 、y 的二元一次方程组y ax by kx=+=⎧⎨⎩的解是 .5:如图,以两条直线l 1,l 2的交点坐标为解的方程组是( )A .121x y x y -=-=⎧⎨⎩B .121x y x y -=--=-⎧⎨⎩C .121x y x y -=--=⎧⎨⎩D .121x y x y -=-=-⎧⎨⎩6:(1)已知关于x 的方程mx +n =0的解是x =-2,那么,直线y =mx +n 与x 轴的交点坐标是 .(2)如图,在平面直角坐标系中,直线AB :y =kx +b 与直线OA :y =mx 相交于点A (1,2),则关于x 的不等式kx +b <mx 的解是 .(3)如图,直线l 1和l 2的交点坐标为( ) A .(4,2) B .(2,-4) C .(-4,2) D .(3,1)7:(1)已知方程2x +1=-x +4的解是x =1,那么,直线y =2x +1与直线y =-x +4的交点坐标是 __ __ .(2)在平面直角坐标系中,直线y =kx +1关于直线x =1对称的直线l 刚好经过点(3,2),则不等式3x >kx +1的解集是__ __ . (3)如图,直线l 1、l 2交于点A ,试求点A 的坐标.8:已知一次函数y1=kx+b和正比例函数y2=1x的图象交于点A(2,m),又一2次函数y1=kx+b的图象过点B(1,4).(1)求一次函数的解析式;(2)根据图象写出y1>y2的取值范围.9:如图,已知一次函数的图象经过点A(1,0)、B(0,2).(1)求一次函数的关系式;(2)设线段AB的垂直平分线交x轴于点C,求点C的坐标.10:如图,已知直线y=kx+b经过点A(1,4),B(0,2),与x轴交于点C,经过点D(1,0)的直线DE平行于OA,并与直线AB交于点E.(1)求直线AB的解析式;(2)求直线DE的解析式;(3)求△EDC的面积.11:随着人们节能环保意识的增强,绿色交通工具越来越受到人们的青睐,电动摩托成为人们首选的交通工具,某商场计划用不超过140000元购进A、B两种不同品牌的电动摩托40辆,预计这批电动摩托全部销售后可获得不少于品牌价格A品牌电动摩托B品牌电动摩托进价(元/辆)40003000售价(元/辆)50003500设该商场计划进A品牌电动摩托x辆,两种品牌电动摩托全部销售后可获利润y元.(1)写出y与x之间的函数关系式;(2)该商场购进A品牌电动摩托多少辆时获利最大,最大利润是多少。
初一数学寒假专题——列方程、列不等式解应用题
初一数学寒假专题——列方程、列不等式解应用题【本讲教育信息】一. 教学内容:寒假专题——列方程、列不等式解应用题二. 教学目标:1. 通过此专题复习掌握列方程、列不等式解应用题的方法步骤。
2. 通过此专题复习,熟练地列方程、列不等式解决实际问题。
三. 本周重点难点:重点:列方程解应用题、列不等式解应用题。
难点:有关解应用题中的综合性、决策性问题。
四. 本周知识要点:1. 列方程或列不等式解应用题的关键是从问题中找出一个等量关系或不等关系,恰当地设未知数,把相等的各个量或不等的各个量用已知数和未知数的代数式表示,这样可列出方程和不等式。
2. 列方程、列不等式解应用题的一般步骤(1)审:审题。
分析题中已知什么、未知什么、求什么、明确量之间关系。
(2)找:找出能够表示应用题全部含义的相等关系或不等关系。
这一步要抓住题中关键性语句。
(3)设:设未知数,一般求什么就设什么为x,有时可间接设未知数,一般设的时候要带单位。
(4)列:列方程或不等式,把相等关系或不等关系左右两边的量用含有未知数的代数式表示出来。
(5)解:解所列出的方程不等式,求出未知数的值。
(6)答:检验所求解是否符合题意,是否符合实际,写出答案。
3. 列方程或不等式解应用题时要注意的几点(1)设未知数和写答案时,一定要写清楚单位。
(2)列方程或不等式时,两边所表示的量应该相同,并且单位要统一。
(3)对于求得的方程或不等式的解,还要看是否符合题意与实际情况。
(4)有时应用题解答需要分情况讨论,才能做决策。
【典型例题】例1. 现有甲、乙两项工程甲工程的工作量是乙工程的工作量的2倍,第一组有19人,第2组14人(设每人工作效率相同),怎样调配两组的人数,才能使两项工程同时开工又同时完工呢?(一种答案即可)分析:甲工程的工作量为乙工程的工作量的2倍,且人均工作效率相同,所以甲工程需要的人数是乙工程需要的人数的2倍,第一组人数多于第二组人数,但第一组人数不是第二组人数的2倍,甲、乙工程的人数必须互相抽调,可从第二组抽人数到第一组中去完成甲工程,也可从第一组抽调人数到第二组中去做甲工程,但必有等量关系为:做甲工程的人数=做乙工程的人数×2。
第二讲方程与不等式-PPT
解得:m≤2
所以 3-m≠0
3m-1 (m+3)
又 ∵方程 △= (1)2 4 (3 m)=m1-2 4
当m=2 时 △=0, ∴方程有两个相等得就是实数根;
当m<2时 △<0, ∴方程无实数根。
例5、 已知关于x得方程mx2 14x 7 0 有两个
x x 实数根 1与 2,关于y 得方程 y2 2(n 1) y n2 2n 0
3
2
这时原方程转换成关于k得一元一次方程, 解得:k=1。故选 (B)
例2、方程 x2 4x 2 得正根为
()
A、2 6 B、 2 6 C、2 6 D、 2 6
解析:利用配方法或公式法求解得正根 x= -2+ 6、
故选(D)
例3、 (2008江苏省苏州市)解不等式组:
x 3 0, 2(x 1) 3≥3x.
2
所以m= 4 2 (6) (4)2 =-8, 42
∵当n=0时,m=-6; 当n=4时,m=10、 ∴m得取值范围就是-8≤m<10、
例6、 (2007江苏扬州课改)为了加强公民得节水意识,合理利 用水资源,某市采用价格调控手段达到节水得目得、该市自 来水收费价格见价目表、
若某户居民月份用水 8m3,
第二讲方程与不等式
在求解方程时应灵活选用,值得注意得就是分式方程求解,验 根。
对于一元一次不等式(组)得求解,要熟练地掌握不等 式得基本性质,它就是不等式求解得基础,在解不等式(组) 时,若不等式两边同时乘以或除以同一个负数时不等号方向 要改变。而不等式组得解就是每个不等式解得公共部分,它常 通过数轴这一步骤来得到不等式解得。
价目表
则应收水费:
2 6 4 (8 6) 2元0、
方程应用(复习讲义)(一元一次方程、二元一次方程、一元一次不等式、分式方程、一元二次方程应用)原卷版
题型三--方程应用(复习讲义)【考点总结|典例分析】考点01一次方(组)程应用1.列方程(组)解应用题的一般步骤(1)审题;(2)设出未知数;(3)列出含未知数的等式——方程;(4)解方程(组);(5)检验结果;(6)作答(不要忽略未知数的单位名称).2.一次方程(组)常见的应用题型×100%;售价=标价×折扣;销售(1)销售打折问题:利润 售价-成本价;利润率=利润成本额=售价×数量.(2)储蓄利息问题:利息=本金×利率×期数;本息和=本金+利息=本金×(1+利率×期数);贷款利息=贷款额×利率×期数.(3)工程问题:工作量=工作效率×工作时间.(4)行程问题:路程=速度×时间.(5)相遇问题:全路程=甲走的路程+乙走的路程.(6)追及问题(同地不同时出发):前者走的路程=追者走的路程.(7)追及问题(同时不同地出发):前者走的路程+两地间距离=追者走的路程.(8)水中航行问题:顺水速度=静水速度+水流速度;逆水速度=静水速度-水流速度.1.(2022·山东泰安)泰安某茶叶店经销泰山女儿茶,第一次购进了A种茶30盒,B种茶20盒,共花费6000元;第二次购进时,两种茶每盒的价格都提高了20%,该店又购进了A 种茶20盒,B种茶15盒,共花费5100元.求第一次购进的A、B两种茶每盒的价格.2.(2022·湖南常德)小强的爸爸平常开车从家中到小强奶奶家,匀速行驶需要4小时,某天,他们以平常的速度行驶了12的路程时遇到了暴雨,立即将车速减少了20千米/小时,到达奶奶家时共用了5小时,问小强家到他奶奶家的距离是多少千米?3.(2021·重庆中考真题)重庆小面是重庆美食的名片之一,深受外地游客和本地民众欢迎.某面馆向食客推出经典特色重庆小面,顾客可到店食用(简称“堂食”小面),也可购买搭配佐料的袋装生面(简称“生食”小面).已知3份“堂食”小面和2份“生食”小面的总售价为31元,4份“堂食”小面和1份“生食”小面的总售价为33元.(1)求每份“堂食”小面和“生食”小面的价格分别是多少元?(2)该面馆在4月共卖出“堂食”小面4500份,“生食”小面2500份,为回馈广大食客,该面馆从5月1日起每份“堂食”小面的价格保持不变,每份“生食”小面的价格降低3a% 4.统计5月的销量和销售额发现:“堂食”小面的销量与4月相同,“生食”小面的销量在4月的基础上增加5%2a,这两种小面的总销售额在4月的基础上增加5%11a.求a的值.4.(2020•安徽)某超市有线上和线下两种销售方式.与2019年4月份相比,该超市2020年4月份销售总额增长10%,其中线上销售额增长43%,线下销售额增长4%.(1)设2019年4a元,线上销售额为x元,请用含a,x的代数式表示2020年4月份的线下销售额(直接在表格中填写结果);时间销售总额(元)线上销售额(元)线下销售额(元)2019年4月份a x a﹣x2020年4月份 1.1a 1.43x 1.04(a﹣x)(2)求2020年4月份线上销售额与当月销售总额的比值.5.(2020•江西)放学后,小贤和小艺来到学校附近的地摊上购买一种特殊型号的笔芯和卡通笔记本,这种笔芯每盒10支,如果整盒买比单支买每支可优惠0.5元.小贤要买3支笔芯,2本笔记本需花费19元;小艺要买7支笔芯,1本笔记本需花费26元.(1)求笔记本的单价和单独购买一支笔芯的价格;(2)小贤和小艺都还想再买一件单价为3元的小工艺品,但如果他们各自为要买的文具付款后,只有小贤还剩2元钱.他们要怎样做才能既买到各自的文具,又都买到小工艺品,请通过运算说明.6.(2020•重庆)“中国人的饭碗必须牢牢掌握在咱们自己手中”.为优选品种,提高产量,某农业科技小组对A,B两个小麦品种进行种植对比实验研究.去年A,B两个品种各种植了10亩.收获后A,B两个品种的售价均为2.4元/kg,且B的平均亩产量比A的平均亩产量高100kg,A,B两个品种全部售出后总收入为21600元.(1)请求出A,B两个品种去年平均亩产量分别是多少?(2)今年,科技小组加大了小麦种植的科研力度,在A,B种植亩数不变的情况下,预计A,B两个品种平均亩产量将在去年的基础上分别增加a%和2a%.由于B品种深受市场的欢迎,预计每千克价格将在去年的基础上上涨a%,而A品种的售价不变.A,B两个品种全部售出后总收入将在去年的基础上增加209a%.求a的值.考点02不等式的应用3、列不等式(组)解决实际问题列不等式(组)解应用题的基本步骤如下:①审题;②设未知数;③列不等式(组);④解不等式(组);⑤检验并写出答案.考情总结:列不等式(组)解决实际问题常与一元一次方程、一次函数等综合考查,涉及的题型常与方案设计型问题相联系,如最大利润、最优方案等.列不等式时,要抓住关键词,如不大于、不超过、至多用“≤”连接,不少于、不低于、至少用“≥”连接.1.(2022·四川泸州)某经销商计划购进A,B两种农产品.已知购进A种农产品2件,B 种农产品3件,共需690元;购进A种农产品1件,B种农产品4件,共需720元.(1)A,B两种农产品每件的价格分别是多少元?(2)该经销商计划用不超过5400元购进A,B两种农产品共40件,且A种农产品的件数不超过B种农产品件数的3倍.如果该经销商将购进的农产品按照A种每件160元,B种每件200元的价格全部售出,那么购进A,B两种农产品各多少件时获利最多?2.(2021·四川成都市·中考真题)为改善城市人居环境,《成都市生活垃圾管理条例》(以下简称《条例》)于2021年3月1日起正式施行.某区域原来每天需要处理生活垃圾920吨,刚好被12个A型和10个B型预处置点位进行初筛、压缩等处理.已知一个A型点位比一个B型点位每天多处理7吨生活垃圾.(1)求每个B型点位每天处理生活垃圾的吨数;(2)由于《条例》的施行,垃圾分类要求提高,现在每个点位每天将少处理8吨生活垃圾,同时由于市民环保意识增强,该区域每天需要处理的生活垃圾比原来少10吨.若该区域计划增设A型、B型点位共5个,试问至少需要增设几个A型点位才能当日处理完所有生活垃圾?3.(2021·四川眉山市·中考真题)为进一步落实“德、智、体、美、劳”五育并举工作,某中学以体育为突破口,准备从体育用品商场一次性购买若千个足球和篮球,用于学校球类比赛活动.每个足球的价格都相同,每个篮球的价格也相同.已知篮球的单价比足球单价的2倍少30元,用1200元购买足球的数量是用900元购买篮球数量的2倍.(1)足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共200个,但要求足球和篮球的总费用不超过15500元,学校最多可以购买多少个篮球?4.(2021·浙江温州市·中考真题)某公司生产的一种营养品信息如下表.已知甲食材每千克的进价是乙食材的2倍,用80元购买的甲食材比用20元购买的乙食材多1千克.(1)问甲、乙两种食材每千克进价分别是多少元?(2)该公司每日用18000元购进甲、乙两种食材并恰好全部用完.①问每日购进甲、乙两种食材各多少千克?②已知每日其他费用为2000元,且生产的营养品当日全部售出.若A的数量不低于B的数量,则A为多少包时,每日所获总利润最大?最大总利润为多少元?5.(2021·四川资阳市·中考真题)我市某中学计划举行以“奋斗百年路,启航新征程”为主题的知识竞赛,并对获奖的同学给予奖励.现要购买甲、乙两种奖品,已知1件甲种奖品和2件乙种奖品共需40元,2件甲种奖品和3件乙种奖品共需70元.(1)求甲、乙两种奖品的单价;(2)根据颁奖计划,该中学需甲、乙两种奖品共60件,且甲种奖品的数量不少于乙种奖品数量的12,应如何购买才能使总费用最少?并求出最少费用.6.(2021·江苏连云港市·中考真题)为了做好防疫工作,学校准备购进一批消毒液.已知2瓶A型消毒液和3瓶B型消毒液共需41元,5瓶A型消毒液和2瓶B型消毒液共需53元.(1)这两种消毒液的单价各是多少元?(2)学校准备购进这两种消毒液共90瓶,且B型消毒液的数量不少于A型消毒液数量的1 3,请设计出最省钱的购买方案,并求出最少费用.考点03分式方程的应用4.分式方程的应用(1)分式方程的应用主要涉及工程问题,有工作量问题、行程问题等.每个问题中涉及到三个量的关系,如:工作时间=工作量工作效率,时间=路程速度等.(2)列分式方程解应用题的一般步骤:①设未知数;②找等量关系;③列分式方程;④解分式方程;⑤检验(一验分式方程,二验实际问题);⑥答.1.(2022·重庆)在全民健身运动中,骑行运动颇受市民青睐,甲、乙两骑行爱好者约定从A地沿相同路线骑行去距A地30千米的B地,已知甲骑行的速度是乙的1.2倍.(1)若乙先骑行2千米,甲才开始从A地出发,则甲出发半小时恰好追上乙,求甲骑行的速度;(2)若乙先骑行20分钟,甲才开始从A地出发,则甲、乙恰好同时到达B地,求甲骑行的速度.2.(2020•泰州)近年来,我市大力发展城市快速交通,小王开车从家到单位有两条路线可选择,路线A为全程25km的普通道路,路线B包含快速通道,全程30km,走路线B比走路线A平均速度提高50%,时间节省6min,求走路线B的平均速度.3.(2020•常德)第5代移动通信技术简称5G,某地已开通5G业务,经测试5G下载速度是4G下载速度的15倍,小明和小强分别用5G与4G下载一部600兆的公益片,小明比小强所用的时间快140秒,求该地4G与5G的下载速度分别是每秒多少兆?4.(2020•广东)某社区拟建A,B两类摊位以搞活“地摊经济”,每个A类摊位的占地面积比每个B类摊位的占地面积多2平方米.建A类摊位每平方米的费用为40元,建B类摊位每平方米的费用为30元.用60平方米建A类摊位的个数恰好是用同样面积建B类摊位个数的35.(1)求每个A,B类摊位占地面积各为多少平方米?(2)该社区拟建A,B两类摊位共90个,且B类摊位的数量不少于A类摊位数量的3倍.求建造这90个摊位的最大费用.5.(2021·山东聊城市·中考真题)为迎接建党一百周年,我市计划用两种花卉对某广场进行美化.已知用600元购买A种花卉与用900元购买B种花卉的数量相等,且B种花卉每盆比A种花卉多0.5元.(1)A,B两种花卉每盆各多少元?(2)计划购买A,B两种花卉共6000盆,其中A种花卉的数量不超过B种花卉数量的1 3,求购买A种花卉多少盆时,购买这批花卉总费用最低,最低费用是多少元?6.(2021·湖南中考真题)“七一”建党节前夕,某校决定购买A,B两种奖品,用于表彰在“童心向党”活动中表现突出的学生.已知A奖品比B奖品每件多25元预算资金为1700元,其中800元购买A奖品,其余资金购买B奖品,且购买B奖品的数量是A奖品的3倍.(1)求A,B奖品的单价;(2)购买当日,正逢该店搞促销活动,所有商品均按原价八折..销售,学校调整了购买方案:不超过...720元,A,B两种奖品共100件.求购买A,...预算资金且购买A奖品的资金不少于B两种奖品的数量,有哪几种方案?7.(2020•牡丹江)某商场准备购进A,B两种书包,每个A种书包比B种书包的进价少20元,用700元购进A种书包的个数是用450元购进B种书包个数的2倍,A种书包每个标价是90元,B种书包每个标价是130元.请解答下列问题:(1)A,B两种书包每个进价各是多少元?(2)若该商场购进B种书包的个数比A种书包的2倍还多5个,且A种书包不少于18个,购进A,B两种书包的总费用不超过5450元,则该商场有哪几种进货方案?(3)该商场按(2)中获利最大的方案购进书包,在销售前,拿出5个书包赠送给某希望小学,剩余的书包全部售出,其中两种书包共有4个样品,每种样品都打五折,商场仍获利1370元.请直接写出赠送的书包和样品中,B种书包各有几个?8.(2020•黔西南州)随着人们“节能环保,绿色出行”意识的增强,越来越多的人喜欢骑自行车出行,也给自行车商家带来商机.某自行车行经营的A型自行车去年销售总额为8万元.今年该型自行车每辆售价预计比去年降低200元.若该型车的销售数量与去年相同,那么今年的销售总额将比去年减少10%,求:(1)A型自行车去年每辆售价多少元?(2)该车行今年计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A 型车数量的两倍.已知A型车和B型车的进货价格分别为1500元和1800元,计划B型车销售价格为2400元,应如何组织进货才能使这批自行车销售获利最多?考点04二次方程的应用5、利用一元二次方程解决实际问题列一元二次方程解应用题步骤和列一元一次方程(组)解应用题步骤一样,即审、设、列、解、验、答六步.列一元二次方程解应用题,经济类和面积类问题是常考内容.6.增长率等量关系(1)增长率=增长量÷基础量.(2)设a 为原来量,m 为平均增长率,n 为增长次数,b 为增长后的量,则()1n a m b +=;当m 为平均下降率时,则有()1n a m b -=.7.利润等量关系(1)利润=售价-成本.(2)利润率=利润成本×100%.8.面积问题(1)类型1:如图1所示的矩形ABCD 长为a ,宽为b ,空白“回形”道路的宽为x ,则阴影部分的面积为()(22)a x b x --.(2)类型2:如图2所示的矩形ABCD 长为a ,宽为b ,阴影道路的宽为x ,则空白部分的面积为()()a x b x --.(3)类型3:如图3所示的矩形ABCD 长为a ,宽为b ,阴影道路的宽为x ,则4块空白部分的面积之和可转化为()()a x b x --.1.(2022·四川眉山)建设美丽城市,改造老旧小区.某市2019年投入资金1000万元,2021年投入资金1440万元,现假定每年投入资金的增长率相同.(1)求该市改造老旧小区投入资金的年平均增长率;(2)2021年老旧小区改造的平均费用为每个80万元.2022年为提高老旧小区品质,每个小区改造费用增加15%.如果投入资金年增长率保持不变,求该市在2022年最多可以改造多少个老旧小区?2.(2022·湖北宜昌)某造纸厂为节约木材,实现企业绿色低碳发展,通过技术改造升级,使再生纸项目的生产规模不断扩大.该厂3,4月份共生产再生纸800吨,其中4月份再生纸产量是3月份的2倍少100吨.(1)求4月份再生纸的产量;(2)若4月份每吨再生纸的利润为1000元,5月份再生纸产量比上月增加%m .5月份每吨再生纸的利润比上月增加%2m ,则5月份再生纸项目月利润达到66万元.求m 的值;(3)若4月份每吨再生纸的利润为1200元,4至6月每吨再生纸利润的月平均增长率与6月份再生纸产量比上月增长的百分数相同,6月份再生纸项目月利润比上月增加了25%.求6月份每吨再生纸的利润是多少元?3.(2021·四川遂宁市·中考真题)某服装店以每件30元的价格购进一批T 恤,如果以每件40元出售,那么一个月内能售出300件,根据以往销售经验,销售单价每提高1元,销售量就会减少10件,设T 恤的销售单价提高x 元.(1)服装店希望一个月内销售该种T 恤能获得利润3360元,并且尽可能减少库存,问T 恤的销售单价应提高多少元?(2)当销售单价定为多少元时,该服装店一个月内销售这种T 恤获得的利润最大?最大利润是多少元?4.(2021·重庆中考真题)重庆小面是重庆美食的名片之一,深受外地游客和本地民众欢迎.某面馆向食客推出经典特色重庆小面,顾客可到店食用(简称“堂食”小面),也可购买搭配佐料的袋装生面(简称“生食”小面).已知3份“堂食”小面和2份“生食”小面的总售价为31元,4份“堂食”小面和1份“生食”小面的总售价为33元.(1)求每份“堂食”小面和“生食”小面的价格分别是多少元?(2)该面馆在4月共卖出“堂食”小面4500份,“生食”小面2500份,为回馈广大食客,该面馆从5月1日起每份“堂食”小面的价格保持不变,每份“生食”小面的价格降低3a% 4.统计5月的销量和销售额发现:“堂食”小面的销量与4月相同,“生食”小面的销量在4月的基础上增加5%2a,这两种小面的总销售额在4月的基础上增加5%11a.求a的值.5.(2021·重庆中考真题)某工厂有甲、乙两个车间,甲车间生产A产品,乙车间生产B 产品,去年两个车间生产产品的数量相同且全部售出.已知A产品的销售单价比B产品的销售单价高100元,1件A产品与1件B产品售价和为500元.(1)A、B两种产品的销售单价分别是多少元?(2)随着5G时代的到来,工业互联网进入了快速发展时期.今年,该工厂计划依托工业互联网将乙车间改造为专供用户定制B产品的生产车间.预计A产品在售价不变的情况下产量将在去年的基础上增加a%;B产品产量将在去年的基础上减少a%,但B产品的销售单价将提高3a%.则今年A、B两种产品全部售出后总销售额将在去年的基础上增加2925 a%.求a的值.。
行测数学运算:方程与不等式
行测数学运算:方程与不等式、基本方程思想方程与方程组,是解答文字应用题的重要工具。
尽管数学运算的绝大部分问题不需要也不应该使用方程的方法来解答,因为那样可能会耗去大家大量的精力,但仍然有相当一部分的问题(例如盈亏问题、鸡兔同笼问题、牛吃草问题等)采用方程法才是最简单的,并且还有很多问题(例如比例问题、年龄问题、行程问题、等差数列问题、经济利润相关问题等)中的相当一部分也是需要利用方程来求解的。
因此,作为重要的数学基础,“列方程”与“解方程”都是我们备考的时候不能忽视与懈怠的!基本方程原则一、设未知数原则1.以便于理解为准,所设的未知数要便于列方程。
2.在上一条的基础上,尽量设题目所求的量为未知量。
3.有时候为了方便理解,可以设有意义的汉字为未知数。
二、消未知数原则1.方程组消未知数时,应注意保留题目所求未知量,消去其他未知量。
2.未知数系数倍数关系较明显时,优先考虑通过“加减消元法”解题。
3.未知数系数代入关系较明显时,优先考虑通过“代入消元法”解题。
【例1】(北京应届2008-17)某鞋业公司的旅游鞋加工车间要完成一出口订单,如果每天加工50双,要比原计划晚3天完成;如果每天加工60双,要比原计划提前2天完成。
这一订单共需加工()双旅游鞋。
A. 1200B. 1300C. 1400D. 1500[答案]D[解析]设这一订单共需加工旅游鞋x双,则:x50-x60=5 x=1500。
【例2】(浙江2009-42)已知a-b=46,a÷b÷c=2,a÷b-c=12,问a+b 的值是()。
A. 50B. 60C. 70D. 80[答案]A[解析]题目欲求a+b,因此先把c消掉:a-b=46a÷b÷c=2a÷b-c=12 a÷b=24 a=48b=2 a+b=50【例3】(国家2009-114)某公司,甲、乙两个营业部共有50人,其中,32人为男性,甲营业部男女比例为5∶3,乙为2∶1,问甲营业部有多少名女职员?()A. 18B. 16C. 12D. 9[答案]C[解析]甲营业部男女比例为5∶3,设甲营业部男职员5x人,女职员3x人;乙营业部男女比例为2∶1,设乙营业部男职员2y人,女职员y人;8x+3y=505x+2y=32 x=4,y=6,代入即得:甲营业部女职员12人。
中考数学复习《方程(组)与不等式(组)的实际应用》经典题型解析PPT
解:(1)设采摘黄瓜 x 千克,茄子 y 千克.根据题意得xx++y1=.2y4=0,42, 解得xy==3100,, 则采摘的黄瓜和茄子分别为 30 千克、10 千克 (2)30×(1.5-1)+10×(2-1.2)=23(元),则这些采摘的黄瓜和茄子可 赚 23 元.
满分技法: 步骤一:设 A 的单价,用 A 的单价表示 B 的单价; 步骤二:根据“AA花单费价+BB花单费价=总数量”列分式方程. 购买分配类问题常涉及不等式(组)、一次函数,审题时留意“至少(≥)”“最 多(≤)”“不低于(≥)”“不超过(≤)”等字眼.常涉及以下设题方式: 模型一:已知 A,B 的单价,购买 A,B 的总数,求购买费用不超过 m 时,至少 (最多)购买 A 或 B 的数量; 解法突破:根据“A 单价×A 数量+B 单价×(总数-A 数量)≤m”列不等 式;
4.(2017·常州)某校计划购买一批篮球和足球,已知购买2个篮球 和1个足球共需320元,购买3个篮球和2个足球共需540元. (1)求每个篮球和每个足球的售价; (2)如果学校计划购买这两种球共50个,总费用不超过5500元,那么 最多可购买多少个足球?
解:(1)设每个篮球和每个足球的售价分别为 x 元,y 元,根据题意 得:23xx++2y=y=352400,, 解得:xy==110200,,则每个篮球和每个足球的售价分别为 100 元,120 元. (2)设足球购买 a 个,则篮球购买(50-a)个,根据题意得:120a+ 100(50-a)≤5500,解得:ቤተ መጻሕፍቲ ባይዱ≤25,则最多可购买 25 个足球.
度关系,A,B 到达时的时间差,求 A,B 的速度.
模型六:A,B 以不同的速度不同时出发同时到达,已知甲乙两地路 程,A,B 的速度关系,A,B 出发的时间差,求 A,B 的速度.
第五讲 不等式(组)讲义
第五讲 不等式(组)及应用一、课标下复习指南 1.不等式用不等号表示不等关系的式子,叫做不等式. 2.不等式的解和不等式的解集(1)不等式的解:与方程类似,使不等式成立的未知数的值叫做不等式的解.(2)不等式的解集:一个含有未知数的不等式的所有的解,组成这个不等式的解集.它可以用最简单的不等式表示,也可以用数轴表示. 3.解不等式求不等式的解集的过程,叫做解不等式. 4.不等式的基本性质性质1 不等式的两边加上(或减去)同一个数(或式子),不等号的方向不变. 性质2 不等式两边都乘以(或除以)同一个正数,不等号的方向不变. 性质3 不等式两边都乘以(或除以)同一个负数,不等号的方向改变. 不等式的其他性质: (1)若a >b ,则b <a ;(2)若a >b ,b >c ,则a >c ; (3)若a ≥b ,b ≥a ,则a =b ; (4)若a 2≤0,则a =0. 5.一元一次不等式类似于一元一次方程,含有一个未知数,未知数的次数是1的不等式叫做一元一次不等式.它的一般形式为ax +b >0(a ≠0)或ax +b <0(a ≠0). 6.一元一次不等式的解法类似于一元一次方程的解法,但要特别注意不等式两边都乘以(或除以)同一个负数时,不等号的方向改变.7.一元一次不等式组及其解集类似于方程组,把含有相同未知数的几个一元一次不等式合在一起组成一个一元一次不等式组,所有这些一元一次不等式的解集的公共部分,叫做这个不等式组的解集. 8.一元一次不等式组的解法解 一元一次不等式组的基本步骤:(1)分别求出不等式组中各个不等式的解集; (2)利用数轴确定它们的公共部分; (3)表示出这个不等式组的解集. 9.一元一次不等式(组)的应用列一元一次不等式(组)解应用题与列方程(组)解应用题的步骤类似,即(1)审题,设出未知数;(2)列不等式(组);(3)解不等式(组);(4)结合不等式(组)的解集与未知数的限制条件确定符合题意的解或解集,并写出答案.10.一元一次不等式、一元一次方程和一次函数的关系一次函数y =kx +b (k ≠0)当函数值y =0时,一次函数转化为一元一次方程;当函数值y >0或y <0时,一次函数转化为一元一次不等式,利用函数图象可以确定x 的取值范围. 二、例题分析例1 解不等式21687xx x +≤+-,并在数轴上表示它的解集.解 去分母,得6x -(7x +8)≤6+3x . 去括号,得6x -7x -8≤6+3x . 移项,得6x -7x -3x ≤6+8. 合并同类项,得-4x ≤14系数化1,得27-≥x .不等式的解集在数轴上表示为:图5-1说明 解一元一次不等式的步骤与解一元一次方程类似,只要特别注意在系数化1这一步时,两边同乘(除)以的数是正数还是负数,若是正数,不等号的方向不改变;若是负数,不等号的方向要改变.在数轴上表示不等式的解集的时候,一要定边界点,二是定方向,注意分清空心图和实心点的区别.例2 x 取何值时,代数式645+x 的值不小于代数式3.187x--的值?并求出x 的最小值. 解 由题意,得⋅--≥+3187645x x 解 得⋅-≥41x∴当41-≥x 时,代数式645+x 的值不小于代数式3187x --的值,x 的最小值为⋅-41说明 要明确“大于”、“小于”、“不大于”、“不小于”、“至少”、“至多”等描述不等关系的语言所对应的不等号分别是什么.例3 解不等式组⎪⎩⎪⎨⎧>+-≤+-x x x x 432,33)1(2在数轴上表示它的解集,并求它的整数解.解 ⎪⎩⎪⎨⎧>+-≤+-②①.432,33)1(2x x x x由①得x ≥1.由②得x <5.不等式组的解集在数轴上表示如下:图5-2原不等式组的解集为1≤x <5.所以原不等式组的整数解为1,2,3,4.说明 不等式(组)的特殊解,在某个范围内是有限的,要求这些特殊解,首先要确定不等式(组)的解集,再根据要求写出相应的答案.例4 关于x 的方程,如果3(x +4)-4=2a +1的解大于3)43(414-=+x a x a 的解,求a的取值范围.解 3(x +4)-4=2a +1的解为⋅-=372a x 3)43(414-=+x a x a 的解为.316a x -= 由题意得.316372a a ->-解得187>a .即a 的取值范围是187>a . 说明 本题是方程与不等式的结合.例5 若关于x 的不等式组⎪⎩⎪⎨⎧<++>+0,1234a x xx 的解集为x <2,求a 的取值范围. 解 两个不等式的解集分别为x <2,x <-a .∵不等式的解集为x <2,∴-a ≥2, ∴a 的取值范围是a ≤-2.说明 先分别求出两个不等式的解集,再根据解集求出a 的取值范围,此处易遗漏-a =2,导致结果不完整,应特别注意.例6 某物流公司,要将300吨物资运往某地,现有A 、B 两种型号的车可供调用,已知A 型车每辆可装20吨,B 型车每辆可装15吨,在每辆车不超载的条件下,把300吨物资装运完.问:在已确定调用5辆A 型车的前提下,至少还需调用B 型车多少辆?解 设还需要B 型车x 辆.依题意得20×5+15x ≥300.解得3113≥x .由于x 是车的数量,应为整数,所以至少需要14台B 型车.例7 为改善办学条件,东海中学计划购买部分A 品牌电脑和B 品牌课桌.第一次,用9万元购买了A 品牌电脑10台和B 品牌课桌200张;第二次,用9万元购买了A 品牌电脑12台和B 品牌课桌120张.(1)每台A 品牌电脑与每张B 品牌课桌的价格各是多少元?(2)第三次购买时,销售商对一次购买量大的客户打折销售.规定:一次购买A 品牌电脑35台以上(含35台),按九折销售,一次购买B 品牌课桌600张以上(含600张),按八折销售.学校准备用27万元购买电脑和课桌,其中电脑不少于35台,课桌不少于600张,问有几种购买方案?解 (1)设每台A 品牌电脑m 元,每张B 品牌课桌n 元,则有⎩⎨⎧=+=+.9000012012,9000020010n m n m 解得⎩⎨⎧==.150,6000n m(2)有两种方案.设购电脑x 台,课桌y 张.则有 ⎪⎩⎪⎨⎧≥≥=+.600,35,2700001205400y x y x解得⎪⎩⎪⎨⎧≤≤≤≤.675600,323635y xx =35时,y =675;x =36时,y =630. 方案①:购电脑35台,课桌675张; 方案②:购电脑36台,课桌630张. 三、课标下新题展示例8 如图5-3,要使输出值y 大于100,则输入的最小正整数x 是______.图5-3解 设n 为正整数,由题意得⎩⎨⎧>+⨯>-.1001342,100)12(5n n解得⋅>887n 则n 可取的最小正整数为11.若x 为奇数,即x =21时,y =105;若x 为偶数,即x =22时,y =101.∴满足条件的最小正整数x 是21.例9 某工厂用如图5-4(a)所示的长方形和正方形纸板,做成如图5-4(b)所示的竖式与横式两种长方体形状的无盖纸盒.图5-4(a) 图5-4(b)(1)现有正方形纸板162张,长方形纸板340张.若要做两种纸盒共100个,设做竖式纸盒x 个.①根据题意完成以下表格:竖式纸盒(个)横式纸盒(个)x 所用正方形纸板张数(张) 2(100-x )所用长方形纸板张数(张)4x②按两种纸盒的生产个数来分,有哪几种生产方案?(2)若有正方形纸板162张,长方形纸板n 张,做成上述两种纸盒,纸板恰好用完.已知290<n <306.则n 的值是______.(写出一个即可)解 (1)①根据题意完成表格如下:竖式纸盒(个)横式纸盒(个) x 100-x 所用正方形纸板张数(张) x 2(100-x ) 所用长方形纸板张数(张)4x3(100-x )⎩⎨⎧≤-+≤-+.340)100(34,162)100(2x x x x ② 解得38≤x ≤40. 又∵x 是整数,∴x =38,39,40.答:有三种方案:生产竖式纸盒38个,横式纸盒62个;或生产竖式纸盒39个,横式纸盒61个;或生产竖式纸盒40个,横式纸盒60个.(2)293或298或303.例10 用长度相等的100根火柴摆放一个三角形,使最大边的长度是最小边长度的3倍,求满足此条件的每个三角形的各边所用火柴杆的根数.解 设三角形三边分别为x ,y ,3x .依题意得⎪⎩⎪⎨⎧>+≤≤=++③②①.3,3,1003x y x x y x x y x 由①、②得207100≤≤x 由①、③得⋅<350x因为x 为正整数,故x=15或16.所以满足条件的三角形各边所用火柴杆的根数为15,40,45或16,36,48. 四、课标考试达标题 (一)选择题1.若a >b ,且c 为有理数,则( ). A .ac >bc B .ac <bc C .ac 2>bc 2 D .ac 2≥bc 22.如图5-5,a ,b ,c 分别表示苹果、梨、桃子的质量.若同类水果质量相等,则下列关系正确的是( ).图5-5A .a >c >bB .b >a >cC .a >b >cD .c >a >b 3.不等式x <3的解集在数轴上表示为( ).4.函数11-=x y 中,自变量x 的取值范围在数轴上可表示为( ).5.不等式组⎪⎩⎪⎨⎧-≤-<+x x x x 23821,148的解集在数轴上表示正确的是( ).6.若关于x 的不等式组⎩⎨⎧>≤<k x x ,21有解,则k 的取值范围是( ).A .k <2B .k ≥2C .k <1D .1≤k <27.若(x -2)2+|2x -3y -a |=0,y 是正数,则a 的取值范围是( ). A .a <2 B .a <3 C .a <4 D .a <5 (二)填空题8.若不等式组⎩⎨⎧>-<-32,12b x a x 的解集是-1<x <1,则(a +1)(b +1)的值是______.9.直线l 1:y =k 1x +b 与直线l 2:y =k 2x 在同一平面直角坐标系中的图象如图5-6所示,则关于x 的不等式k 2x >k 1x +b 的解集为______.图5-610.k 满足______时,方程组⎩⎨⎧=-=+4,2y x k y x 中的x 大于1,y 小于1.11.6月1日起,某超市开始有偿..提供可重复使用的三种环保购物袋,每只售价分别为1元、2元和3元,这三种环保购物袋每只最多分别能装大米3千克、5千克和8千克.6月7日,小星和爸爸在该超市选购了3只环保购物袋用来装刚买的20千克散装大米,他们选购的3只环保购物袋至少应付给超市______元. (三)解答题 12.求不等式8)1(3411-≥--x x 的非负整数解.13.解不等式组⎩⎨⎧≥+->+,33)1(2,03x x x 并判断23=x 是否是该不等式组的解.14.若关于x 的不等式组⎪⎪⎩⎪⎪⎨⎧+<+->+a x x x x 322,3215只有4个整数解,求a 的取值范围.15.某商店需要购进一批电视机和洗衣机,根据市场调查,决定电视机进货量不少于洗衣机的进货量的一半.电视机与洗衣机的进价和售价如下表:类别 电视机 洗衣机 进价(元/台) 1800 1500 售价(元/台)20001600计划购进电视机和洗衣机共100台,商店最多可筹集资金161800元. (1)请你帮助商店算一算有多少种进货方案? (不考虑除进价之外的其他费用)(2)哪种进货方案待商店销售购进的电视机与洗衣机完毕后获得利润最多?并求出最多利润.(利润=售价-进价)16.2008年北京奥运会的比赛已经圆满闭幕.当时某球迷打算用8000元预订10张下表中比赛项目的门票.(下表为当时北京奥运会官方票务网站公布的几种球类决赛的门票价格)(1)若全部资金用来预订男篮门票和乒乓球门票,问他可以订男篮门票和乒乓球门票各多少张?(2)若在现有资金8000元允许的范围内和总票数不变的前提下,他想预订下表中三种球类门票,其中男篮门票数与足球门票数相同,且乒乓球门票的费用不超过男篮门票的费用,求他能预订三种球类门票各多少张?比赛项目票价(元/场)男篮1000足球800乒乓球500参考答案第五讲 不等式(组)及应用1.D . 2.C . 3.B . 4.B . 5.C . 6.A . 7.C . 8.-2. 9.x <-1. 10.-1<k <3. 11.8元.12.513≤x ,x =0,1,2. 13.-3<x ≤1,23=x 是该不等式组的解.14.解不等式得x <21,x >2-3a ,又∵只有4个整数解,∴16≤2-3a <17,解得3145-≤<-a . 15.解:(1)设商店购进电视机x 台,则购进洗衣机(100-x )台,根据题意得⎪⎩⎪⎨⎧≤-+-≥.161800)100(15001800),100(21x x x x 解不等式组,得⋅≤≤31393133x 即购进电视机最少34台,最多39台,商店有6种进货方案.(2)设商店销售完毕后获利为y 元,根据题意,得y =(2000-1800)x +(1600-1500)(100-x )=100x +10000.∵100>0,∴ 当x 最大时,y 的值最大.即 当x =39时,商店获利最多,为13900元.16.解:(1)设预订男篮门票x 张,则乒乓球门票(10-x )张.由题意得 1000x +500(10-x )=8000 解得x =6. ∴10-x =4.答:可订男篮门票6张,乒乓球门票4张.(2)设男篮门票与足球门票都订a 张,则乒乓球门票(10-2a )张.由题意得⎩⎨⎧≤-≤-++.1000)210(500,8000)210(5008001000a a a a a 解得⋅≤≤433212a 由a 为正整数,可得a =3.答:他能预订男篮门票3张,足球门票3张,乒乓球门票4张.。
第09讲-列方程与不等式解应用题
第九讲列方程、不等式解应用题列方程解应用题列方程(组)解应用题:是用字母来代替未知数,根据等量关系列出含有未知数的等式,然后解出未知数的值.这个含有未知数的等式就是方程.列方程解应用题的优点在于可以使未知数直接参加运算.解这类应用题的关键在于能够正确地设立未知数,找出等量关系从而建立方程.列方程解应用题的主要步骤是:⑴审题;⑵设元;⑶列方程(组);⑷解方程(组);⑸检验;⑹作答.注意事项:1.审题找出题目中涉及到的各个量中的关键量,这个量最好能和题目中的其他量有着紧密的数量关系;2.设这个量为x,用含x的代数式来表示题目中的其他量;3.找到题目中的等量关系,列方程;4.运用加减法、乘除法的互逆关系解方程;5.通过求到的关键量求得题目答案.6.检验包含两个方面的含义:检验未知数的值(其一是不是原方程的解;其二是检验未知数的值是否符合实际意义)【例题1】甲乙丙三校上学期共有学生1150人.甲乙两校人数之比是6:5.本学期甲学校减少了50人,乙校增加了40人,丙校减少原有学生数的五分之二。
这样本学期甲乙两校人数之和与丙校人数之比是3:2。
问本学期三校学生人数各有多少人?【例题2】一个有弹性的球从点A落到地面,弹起到点B后又落到离地面高20厘米的平台上,再弹起到点C,最后落到地面,每次弹起的高度都是落下高度的80%。
已知点A离地面比点C离地面高出68厘米。
求点C离地面高度.【例题3】一套电器配件包括6个零件A,4个零件B,2个零件C.一车间共有43名工人,每个工人每小时可加工15个零件A,或12个零件B,或9个零件C. 要使生产零件配套,应分配加工零件A、B、C的人数各多少?【例题4】(“中环杯”中学生思维能力训练活动初赛)甲、乙、丙、丁、戊5人合作完成一项工作,甲、乙、丙合作7.5小时可以完成,甲、丙、戊合作5小时可以完成,甲、丙、丁合作6小时可以完成,乙、丁、戊合作4小时可以完成。
那么5人合作小时可以完成。
小学教育ppt课件教案方程与不等式的实际应用
目录
• 方程与不等式基本概念 • 实际问题中方程建立与求解 • 实际问题中不等式建立与求解 • 方程与不等式在图形中表示及应用 • 复杂问题中方程和不等式综合应用 • 总结回顾与拓展延伸
01
方程与不等式基本概念
方程定义及性质
方程定义
方程是含有未知数的等式,表示 两个数学表达式之间的相等关系 。
3
不等式区域的表示方法
不等式可以表示为平面直角坐标系中的一个区域 ,通常通过作垂线或平行线的方式来确定不等式 所表示的区域。
线性规划问题解决方法
01
线性规划问题的定义
线性规划问题是一类在一定条件下求线性目标函数最大或最小的问题。
02 03
线性规划问题的图形解法
通过平面直角坐标系,可以将线性规划问题转化为求一个由直线围成的 多边形区域的最值问题。通常可以通过平移目标函数直线的方式找到最 优解。
选择性价比最高的产品。
工程问题
在工程设计和施工中,利用不 等式优化资源分配和施工方案
,降低成本和提高效率。
04
方程与不等式在图形中表 示及应用
平面直角坐标系中表示方法
1 2
方程与不等式的图形表示
通过平面直角坐标系,可以将方程或不等式表示 为一条直线或一个区域。
直线方程的表示方法
在平面直角坐标系中,直线方程可以用y=kx+b (k≠0)的形式表示,其中k为斜率,b为截距。
针对含有绝对值、分式等特殊形 式的不等式,采用特殊方法进行
求解。
实际应用举例
01
02
03
04
商场促销
根据商场的促销条件,建立不 等式模型,计算满足条件的最
《基本不等式》一元二次函数、方程和不等式PPT教学课件(第二课时基本不等式的应用)
2 2 [x+2x≥2 x·2x=2 2,当
________.
且仅当 x= 2时,等号成立.]
栏目导航
9
3.设 x,y∈N*满足 x+y=20, 100 [∵x,y∈N*,∴20=x+
则 xy 的最大值为________.
y≥2 xy,
∴xy≤100.]
栏目导航
10
合作探究 提素养
栏目导航
11
(3)当 x>1 时,函数 y=x+x-1 1≥2 x-x 1,所以函数 y 的最小值是
2 x-x 1.(
)
栏目导航
[提示] (1)由 a+b≥2 ab可知正确. (2)由 ab≤a+2 b2=4 可知正确. (3) x-x 1不是常数,故错误.
[答案] (1)√ (2)√ (3)×
37
栏目导航
38
13
栏目导航
14
利用基本不等式求最值的关键是获得满足基本不等式成立条件,即 “一正、二定、三相等”.解题时应对照已知和欲求的式子运用适当的“拆 项、添项、配凑、变形”等方法创设应用基本不等式的条件.具体可归纳 为三句话:若不正,用其相反数,改变不等号方向;若不定应凑出定和或 定积;若不等,一般用后面第三章§3.2 函数的基本性质中学习.
栏目导航
33
∵x>0,∴x+22x5≥2 x·22x5=30. 当且仅当 x=22x5,即 x=15 时,上式等号成立. ∴当 x=15 时,y 有最小值 2 000 元. 因此该楼房建为 15 层时,每平方米的平均综合费用最少.
专题05 不等式与不等式组专题详解(解析版)
专题05 不等式与不等式组专题详解专题05 不等式与不等式组专题详解 (1)9.1 不等式 (3)知识框架 (3)一、基础知识点 (3)知识点1 不等式及其解集 (3)知识点2 不等式的基本性质 (4)二、典型题型 (5)题型1 不等式的概念 (5)题型2 根据数量关系列不等式 (5)题型3不等式的解(集) (6)题型4 不等式性质的运用 (6)题型5 实际问题与不等式 (7)三、难点题型 (8)题型1 不等式性质的综合应用 (8)题型2 用作差法比较大小 (9)9.2 一元一次不等式 (10)知识框架 (10)一、基础知识点 (10)知识点1 一元一次不等式的解法 (10)知识点2 列不等式解应用题 (11)二、典型题型 (13)题型1 一元一次不等式的判定 (13)题型2 解一元一次不等式 (13)题型3 列不等式,求取值范围 (14)题型4 一元一次不等式的应用 (14)三、难点题型 (16)题型1 含参数的不等式 (16)题型2 不等式的整数解 (16)题型3 方程与不等式 (17)题型4 含绝对值的不等式 (18)9.3 一元一次不等式组 (19)知识框架 (19)一、基础知识点 (19)知识点1 一元一次不等式组及解集的定义 (19)知识点2 一元一次不等式组解集的确定及解法 (19)知识点3 双向不等式及解法 (21)二、典型题型 (23)题型1 一元一次不等式组的判定 (23)题型2 一元一次不等式组的解集 (23)题型3 解一元一次不等式组 (24)题型4 一元一次不等式组的应用 (25)一、用不等式组解决实际问题 (25)二、方案设计 (26)三、最值问题 (27)三、难点题型 (29)题型1 由不等式组确定字母的取值 (29)题型2 不等式组中的数学思想 (30)一、整体思想 (30)二、数形结合 (31)三、分类讨论 (31)题型3 不等式的应用 (32)题型4 不等式的综合 (33)9.1 不等式知识框架{基础知识点{不等式及其解集不等式的基本性质典型题型{ 不等式的概念根据数量关系列不等式不等式的解(集)不等式性质的运用实际问题与不等式难点题型{不等式性质的综合应用作差法比较大小 一、基础知识点知识点1 不等式及其解集1)不等式:用不等符号表示不等关系的式子。
中考数学专题复习课件专题四方程(组)不等式(组)及其实际应用(共34张PPT(完整版)7
5.(导学号65244237)(2017·衢州)根据衢州市统计局发布的统计数据显示, 衢州市近5年国民生产总值数据如图①所示,2016年国民生产总值中第一产 业、第二产业、第三产业所占比例如图②所示. 请根据图中信息,解答下列问题: (1)求2016年第一产业生产总值(精确到1亿元); (2)2016年比2015年的国民生产总值增加了百分之几(精确到1%)? (3)若要使2018年的国民生产总值达到1 573亿元,求2016年至2018年我市国 民生产总值的年平均增长率(精确到1%).
方法归纳
1.判别式与根的关系: (1)当b2-4ac>0⇔方程有两个不相等的实数根; (2)当b2-4ac=0⇔方程有两个相等的实数根; (3)当b2-4ac<0⇔方程没有实数根.
2.利用根与系数的关系解决求值问题,常见变形有: (1)x12+x22=(x1+x2)2-2x1x2; (2)x11+x12=xx1+1x2x2; (3)|x1-x2|= (x1+x2)2-4x1x2.K
方法归纳
1.构建方程(组)或不等式解决实际问题,一般需要注意以下步骤:审题、设 未知数、列方程(组)或不等式(组)、解、检验、答.按照这样的程序,可以 避免出现失误. 2.解决这类问题的关键是从问题情境中找等量关系和不等关系,其中不等 关系有非常明显的标志语,如“大于”、“小于”、“不少于”、“不超 过”等等.
【思路引导】(1)根据“购买3辆男式单车与4辆女式单车费用相同,购买5辆 男式单车与4辆女式单车共需16 000元”列方程组求解可得;(2)设购置女式 单车m辆,则购置男式单车(m+4)辆,根据“两种单车至少需要22辆、购置 两种单车的费用不超过50 000元”列不等式组求解,即可确定购置方案;再 列出购置总费用关于m的函数解析式,利用一次函数的性质结合m的范围可 得其最值情况.
中考数学专题方程与不等式问题(详解详析)
第1课时方程(组)与不等式(组)问题类型之一根据图表信息列方程(组)或不等式解决问题在具体的生活中根据图示得到方程或不等式,由此解决实际问题,根本在于得到数量之间的关系。
1.(•河北省)如图所示的两架天平保持平衡,且每块巧克力的质量相等,每个果冻的质量也相等,则一块巧克力的质量是 g .【解析】由天平的平衡得到巧克力和果冻重量之间的数量关系设每块巧克力的重量为x 克,每块果冻的重量为y 克,由题意列方程组得:⎩⎨⎧=+=5023y x y x ,解方程组即可。
2.(•济南市)教师节来临之际,群群所在的班级准备向每位辛勤工作的教师献一束鲜花,每束由4支鲜花包装而成,其中有象征母爱的康乃馨和象征尊敬的水仙花两种鲜花,同一种鲜花每支的价格相同.请你根据第一、二束鲜花提供的信息,求出第三束鲜花的价格.【答案】解:设康乃馨每支x 元,水仙花每支y 元由题意得:3192218x y x y +=⎧⎨+=⎩ 解得:54x y =⎧⎨=⎩ 第三束花的价格为353417x y +=+⨯=答:第三束花的价格是17元.3.(•济南市)某厂工人小王某月工作的部分信息如下: 信息一:工作时间:每天上午8∶20~12∶00,下午14∶00~16∶00,每月25元;信息二:生产甲、乙两种产品,并且按规定每月生产甲产品的件数不少于60件.生产产品件数与所用时间之间的关系见下表:生产甲产品件数(件)生产乙产品件数(件) 所用总时间(分) 1010 350 30 20 850信息三:按件计酬,每生产一件甲产品可得1.50元,每生产一件乙产品可得2.80元.根据以上信息,回答下列问题:(1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分?(2)小王该月最多能得多少元?此时生产甲、乙两种产品分别多少件?【解析】通过表格当中的信息,我们可以利用列方程组来求出生产甲、乙两种产品的时间,然后利用列函数关系式表示出小王得到的总钱数,然后利用一次函数的增减性求出钱数的最大值.【答案】(1)解:设生产一件甲种产品需x 分,生产一件乙种产品需y 分,由题意得:10103503020850x y x y +=⎧⎨+=⎩即353285x y x y +=⎧⎨+=⎩ 解这个方程组得:1520x y =⎧⎨=⎩ ∴生产一件甲产品需要15分,生产一件乙产品需要20分.(2)解:设生产甲种产品用x 分,则生产乙种产品用(25860)x ⨯⨯-分,则生产甲种产品15x 件,生产乙种产品2586020x ⨯⨯-件. 258601.5 2.81520x x w ⨯⨯-∴=⨯+⨯总额 120000.1 2.820x x -=+⨯0.116800.14x x =+- 0.041680x =-+ 又6015x ≥,得900x ≥由一次函数的增减性,当900x =时w 取得最大值,此时0.0490016801644w =-⨯+=(元) 此时 甲有9006015=(件), 乙有:25860900120009005552020⨯⨯--==(件)类型之二 借助方程组合或不等式(组)解决方案问题借助二元一次方程组和一元一次不等式(组)求解方案问题是中考一种新题型,考察了同学们综合运用方程组和不等式深入的分析、比较、归纳和说理的能力.4.(·济南市)某校准备组织290名学生进行野外考察活动,行李共有100件.学校计划租用甲、乙两种型号的汽车共8辆,经了解,甲种汽车每辆最多能载40人和10件行李,乙种汽车每辆最多能载30人和20件行李.(1)设租用甲种汽车x 辆,请你帮助学校设计所有可能的租车方案;(2)如果甲、乙两种汽车每辆的租车费用分别为2000元、1800元,请你选择最省钱的一种租车方案.4.【答案】解:(1)由租用甲种汽车x 辆,则租用乙种汽车(8-x)辆由题意得:4030(8)2901020(8)100x x x x +-⎧⎨+-⎩≥≥ 解得:56x ≤≤即共有2种租车方案:第一种是租用甲种汽车5辆,乙种汽车3辆;第二种是租用甲种汽车6辆,乙种汽车2辆.(2)第一种租车方案的费用为520003180015400⨯+⨯=元;第二种租车方案的费用为620002180015600⨯+⨯=元∴第一种租车方案更省费用.5.(·宜宾市)暑假期间,小明到父亲经营的小超市参加社会实践活动.一天小明随父亲从银行换回来58张,共计200元的零钞用于顾客付款时找零.细心的小时清理了一下,发现其中面值为1元的有20张,面值为10元的有7张,剩下的均为2元和5元的钞票.你能否用所学的数学方法算出2元和5元的钞票的各有多少张吗?请写出演算过程.【答案】解:设面值为2元的有x 张,设面值为5元的有y 张,依题意得2520012071058207x y x y +=-⨯-⨯⎧⎨+=--⎩ 解得1615x y =⎧⎨=⎩经检验,符合题意答:面值为2元的有16张,面值为5元的有15张.6.(•重庆市)为支持四川抗震救灾,重庆市A、B、C三地现在分别有赈灾物资100吨,、100吨、80吨,需要全部运往四川重灾地区的D、E两县。
方程与不等式综合复习—知识讲解及经典例题解析
中考总复习:方程与不等式综合复习—知识讲解及经典例题解析【考纲要求】1.会从定义上判断方程(组)的类型,并能根据定义的双重性解方程(组)和研究分式方程的增根情况;2.掌握解方程(组)的方法,明确解方程组的实质是“消元降次”、“化分式方程为整式方程”、“化无理式为有理式”;3.理解不等式的性质,一元一次不等式(组)的解法,在数轴上表示解集,以及求特殊解集;4.列方程(组)、列不等式(组)解决社会关注的热点问题;5. 解方程或不等式是中考的必考点,运用方程思想与不等式(组)解决实际问题是中考的难点和热点.【知识网络】【考点梳理】考点一、一元一次方程1.方程含有未知数的等式叫做方程.2.方程的解能使方程两边相等的未知数的值叫做方程的解.3.等式的性质(1)等式的两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式.(2)等式的两边都乘以(或除以)同一个数(除数不能是零),所得结果仍是等式.4.一元一次方程只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程,其中方程)为未知数,(0a x 0≠=+b ax 叫做一元一次方程的标准形式,a 是未知数x 的系数,b 是常数项. 5.一元一次方程解法的一般步骤整理方程 —— 去分母—— 去括号—— 移项—— 合并同类项——系数化为1——(检验方程的解).6.列一元一次方程解应用题(1)读题分析法:多用于“和,差,倍,分问题”仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套”,利用这些关键字列出文字等式,并且根据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.(2)画图分析法:多用于“行程问题”利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看作已知量),填入有关的代数式是获得方程的基础. 要点诠释:列方程解应用题的常用公式:(1)行程问题: 距离=速度×时间 时间距离速度= 速度距离时间=; (2)工程问题: 工作量=工效×工时 工时工作量工效=工效工作量工时=; (3)比率问题: 部分=全体×比率 全体部分比率= 比率部分全体=;(4)顺逆流问题: 顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度; (5)商品价格问题: 售价=定价·折·101,利润=售价-成本, %100⨯-=成本成本售价利润率;(6)周长、面积、体积问题:C 圆=2πR ,S 圆=πR 2,C 长方形=2(a+b),S 长方形=ab , C 正方形=4a ,S 正方形=a 2,S 环形=π(R 2-r 2),V 长方体=abh ,V 正方体=a 3,V 圆柱=πR 2h ,V 圆锥=31πR 2h.考点二、一元二次方程 1.一元二次方程含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程. 2.一元二次方程的一般形式)0(02≠=++a c bx ax ,它的特征是:等式左边是一个关于未知数x 的二次多项式,等式右边是零,其中2ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项. 3.一元二次方程的解法(1)直接开平方法利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法.直接开平方法适用于解形如b a x =+2)(的一元二次方程.根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根.(2)配方法配方法是一种重要的数学方法,它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广泛的应用.配方法的理论根据是完全平方公式2222()a ab b a b ±+=±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±.(3)公式法公式法是用求根公式求一元二次方程的解的方法,它是解一元二次方程的一般方法.一元二次方程)0(02≠=++a c bx ax 的求根公式:21,240)2b x b ac a-±=-≥ (4)因式分解法因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法.4.一元二次方程根的判别式一元二次方程)0(02≠=++a c bx ax 中,ac b 42-叫做一元二次方程)0(02≠=++a c bx ax 的根的判别式,通常用“∆”来表示,即ac b 42-=∆. 5.一元二次方程根与系数的关系如果方程)0(02≠=++a c bx ax 的两个实数根是21x x ,,那么ab x x -=+21,a cx x =21.也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商. 要点诠释:一元二次方程的解法中直接开平方法和因式分解法是特殊方法,比较简单,但不是所有的一元二次方程都能用这两种方法去解,配方法和公式法是普通方法,一元二次方程都可以用这两种方法去解.(1)判断一个方程是不是一元二次方程,应把它进行整理,化成一般形式后再进行判断,注意一元二次方程一般形式中0≠a .(2)用公式法和因式分解的方法解方程时要先化成一般形式. (3)用配方法时二次项系数要化1.(4)用直接开平方的方法时要记得取正、负.考点三、分式方程 1.分式方程分母里含有未知数的方程叫做分式方程. 2.解分式方程的一般方法解分式方程的思想是将“分式方程”转化为“整式方程”.它的一般解法是:①去分母,方程两边都乘以最简公分母;②解所得的整式方程;③验根:将所得的根代入最简公分母,若等于零,就是增根,应该舍去;若不等于零,就是原方程的根.口诀:“一化二解三检验”.3.分式方程的特殊解法换元法:换元法是中学数学中的一个重要的数学思想,其应用非常广泛,当分式方程具有某种特殊形式,一般的去分母不易解决时,可考虑用换元法.要点诠释:解分式方程时,有可能产生增根,增根一定适合分式方程转化后的整式方程,但增根不适合原方程,可使原方程的分母为零,因此必须验根.增根的产生的原因:对于分式方程,当分式中,分母的值为零时,无意义,所以分式方程,不允许未知数取那些使分母的值为零的值,即分式方程本身就隐含着分母不为零的条件.当把分式方程转化为整式方程以后,这种限制取消了,换言之,方程中未知数的值范围扩大了,如果转化后的整式方程的根恰好是原方程未知数的允许值之外的值,那么就会出现增根.考点四、二元一次方程(组)1.二元一次方程含有两个未知数,并且未知项的最高次数是1的整式方程叫做二元一次方程,它的一般形式是ax+by=c(a≠0,b≠0).2.二元一次方程的解使二元一次方程左右两边的值相等的一对未知数的值,叫做二元一次方程的一个解.3.二元一次方程组两个(或两个以上)二元一次方程合在一起,就组成了一个二元一次方程组.4.二元一次方程组的解使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解.5.二元一次方程组的解法①代入消元法;②加减消元法.6.三元一次方程(组)(1)三元一次方程把含有三个未知数,并且含有未知数的项的次数都是1的整式方程叫三元一次方程.(2)三元一次方程组由三个(或三个以上)一次方程组成,并且含有三个未知数的方程组,叫做三元一次方程组.要点诠释:二元一次方程组的解法:消元:将未知数的个数由多化少,逐一解决的想法,叫做消元思想.(1)代入消元法:将一个未知数用含有另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法.(2)加减消元法:当两个方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,这种方法叫做加减消元法,简称加减法.(3)二元一次方程组的解有三种情况,即有唯一解、无解、无限多解.教材中主要是研究有唯一解的情况,对于其他情况,可根据学生的接受能力给予渗透.考点五、不等式(组)1.不等式的概念(1)不等式用不等号表示不等关系的式子,叫做不等式.(2)不等式的解集对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解.对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集.求不等式的解集的过程,叫做解不等式.2.不等式基本性质(1)不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;(2)不等式两边都乘以(或除以)同一个正数,不等号的方向不变;(3)不等式两边都乘以(或除以)同一个负数,不等号的方向改变.3.一元一次不等式(1)一元一次不等式的概念一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式.(2)一元一次不等式的解法解一元一次不等式的一般步骤:①去分母;②去括号;③移项;④合并同类项;⑤将x项的系数化为1.4.一元一次不等式组(1)一元一次不等式组的概念几个一元一次不等式合在一起,就组成了一个一元一次不等式组.几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集.求不等式组的解集的过程,叫做解不等式组.当任何数x都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集.(2)一元一次不等式组的解法①分别求出不等式组中各个不等式的解集;②利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集.由两个一元一次不等式组成的一元一次不等式组的解集的四种情况如下表.注:不等式有等号的在数轴上用实心圆点表示.要点诠释:用符号“<”“>”“≤ ”“≥”“≠”表示不等关系的式子,叫做不等式.(1)不等式的其他性质:①若a >b ,则b <a ;②若a >b ,b >c ,则a >c ;③若a ≥b ,且b ≥a ,•则a=b ;④若a 2≤0,则a=0;⑤若ab >0或0a b >,则a 、b 同号;⑥若ab <0或0ab<,则a 、b 异号. (2)任意两个实数a 、b 的大小关系:①a -b >O ⇔a >b ;②a -b=O ⇔a=b ;③a-b <O ⇔a <b .不等号具有方向性,其左右两边不能随意交换:但a <b 可转换为b >a ,c ≥d 可转换为d ≤c .【典型例题】类型一、方程的综合运用1.如图所示,是在同一坐标系内作出的一次函数y 1、y 2的图象1l 、2l ,设111y k x b =+,222y k x b =+,则方程组111222,y k x b y k x b =+⎧⎨=+⎩的解是( )不等式组 (其中a >b )图示 解集 口诀x ax b >⎧⎨>⎩ bax a > (同大取大)x ax b <⎧⎨<⎩ b ax b <(同小取小) x ax b <⎧⎨>⎩ bab x a << (大小取中间)x ax b >⎧⎨<⎩ba无解 (空集) (大大、小小找不到)A .2,2x y =-⎧⎨=⎩ B .2,3x y =-⎧⎨=⎩ C .3,3x y =-⎧⎨=⎩ D .3,4x y =-⎧⎨=⎩【思路点拨】图象1l 、2l 的交点的坐标就是方程组的解. 【答案】B ;【解析】由图可知图象1l 、2l 的交点的坐标为(-2,3),所以方程组111222,y k x b y k x b =+⎧⎨=+⎩的解为2,3.x y =-⎧⎨=⎩【总结升华】方程组与函数图象结合体现了数形结合的数学思想,这也是中考所考知识点的综合与相互渗透.2.近年来,由于受国际石油市场的影响,汽油价格不断上涨.请你根据下面的信息,帮小明计算今年5月份汽油的价格.如图所示.【思路点拨】根据“用150元给汽车加油今年比去年少18.75升”列方程. 【答案与解析】解:设今年5月份汽油价格为x 元/升,则去年5月份的汽油价格为(x-1.8)元/升.根据题意,得15015018.751.8x x-=-,整理,得21.814.40x x --=.解这个方程,得x 1=4.8,x 2=-3.经检验两根都为原方程的根,但x 2=-3不符合实际意义,故舍去. 【总结升华】解题的关键是从对话中挖掘出有效的数学信息,构造数学模型,从而解决问题,让同学们更进一步地体会到数学就在我们身边.类型二、解不等式(组)3.已知A =a+2,B =a 2-a+5,C =a 2+5a-19,其中a >2. (1)求证:B-A >0,并指出A 与B 的大小关系; (2)指出A 与C 哪个大?说明理由. 【思路点拨】计算B-A 结果和0比大小,从而判断A 与B 的大小;同理计算C-A ,根据结果来比较A 与C 的大小. 【答案与解析】(1)证明:B-A =a 2-2a+3=(a-1)2+2.∵ a >2,∴ (a-1)2>0,∴ (a-1)2+2>0.∴ a 2-2a+3>0,即B-A >0. 由此可得B >A .(2)解:C-A =a 2+4a-21=(a+7)(a-3). ∵ a >2,∴ a+7>0.当2<a <3时,a-3<0, ∴ (a+7)(a-3)<0.∴ 当2<a <3时,A 比C 大;当a =3时,a-3=0, ∴ (a+7)(a-3)=0.∴ 当a =3时,A 与C 一样大;当a >3时,a-3>0, ∴ (a+7)(a-3)>0.∴ 当a >3时,C 比A 大. 【总结升华】比较大小通常用作差法,结果和0比大小,此时常常用到因式分解或配方法. 本题考查了整式的减法、十字相乘法分解因式,渗透了求差比较大小的思路及分类讨论的思想. 举一反三:【变式1】已知:A=222+-a a ,B=2, C=422+-a a ,其中1>a .(1)求证:A-B>0; (2)试比较A 、B 、C 的大小关系,并说明理由. 【答案】(1)A-B=222222(21)a a a a a a -+-=-=- ∵1>a ,∴0,210a a >-> ∴A-B>0(2) ∵C-B=22224222(1)10a a a a a -+-=-+=-+> ∴C>B∵A-C=22222242(2)(1)a a a a a a a a -+-+-=+-=+- ∵1>a ,∴20,10a a +>-> ∴A>C>B【变式2】如图,要使输出值y 大于100,则输入的最小正整数x 是______.【答案】解:设n 为正整数,由题意得 ⎩⎨⎧>+⨯>-.1001342,100)12(5n n 解得⋅>887n 则n 可取的最小正整数为11.若x 为奇数,即x =21时,y =105; 若x 为偶数,即x =22时,y =101. ∴满足条件的最小正整数x 是21.类型三、方程(组)与不等式(组)的综合应用4.宏志高中高一年级近几年来招生人数逐年增加,去年达到550名,其中有面向全省招收的“宏志班”学生,也有一般普通班的学生.由于场地、师资等限制,今年招生最多比去年增加100人,其中普通班学生可多招20%,“宏志班”学生可多招10%,问今年最少可招收“宏志班”学生多少名? 【思路点拨】根据招生人数列等式,根据今年招生最多比去年增加100人列不等式. 【答案与解析】设去年招收“宏志班”学生x 名,普通班学生y 名,由条件得550,10%20%100.x y x y +=⎧⎨+≤⎩将y =550-x 代入不等式,可解得x ≥100,于是(1+10%)x ≥110. 故今年最少可招收“宏志班”学生110名. 【总结升华】本题属于列方程与不等式组综合题. 举一反三:【变式】为了加强学生的交通安全意识,某中学和交警大队联合举行了“我当一日小交警”活动,星期天选派部分学生到交通路口值勤,协助交通警察维持交通秩序,若每一个路口安排4人,那么还剩下78人;若每个路口安排8人,那么最后一个路口不足8人,但不少于4人.求这个中学共选派值勤学生多少人?共有多少个交通路口安排值勤?【答案】设这个学校选派值勤学生x 人,共到y 个交通路口值勤.根据题意得478,48(1)8.x y x y -=⎧⎨≤--<⎩①②由①可得x =4y+78,代入②,得4≤78+4y-8(y-1)<8,解得19.5<y ≤20.5.根据题意y 取20,这时x 为158,即学校派出的是158名学生,分到了20个交通路口安排值勤.5.已知关于x 的一元二次方程 2(2)(1)0m x m x m ---+=.(其中m 为实数) (1)若此方程的一个非零实数根为k , ① 当k = m 时,求m 的值;② 若记1()25m k k k+-+为y ,求y 与m 的关系式;(2)当14<m <2时,判断此方程的实数根的个数并说明理由. 【思路点拨】(1)由于k 为此方程的一个实数根,故把k 代入原方程,即可得到关于k 的一元二次方程,①把k=m 代入关于k 的方程,即可求出m 的值;②由于k 为原方程的非零实数根,故把方程两边同时除以k ,便可得到关于y 与m 的关系式; (2)先求出根的判别式,再根据m 的取值范围讨论△的取值即可. 【答案与解析】(1)∵ k 为2(2)(1)0m x m x m ---+=的实数根,∴ 2(2)(1)0m k m k m ---+=.※① 当k = m 时,∵ k 为非零实数根,∴ m ≠ 0,方程※两边都除以m ,得(2)(1)10m m m ---+=.整理,得 2320m m -+=.解得 11m =,22m =.∵ 2(2)(1)0m x m x m ---+=是关于x 的一元二次方程, ∴ m ≠ 2. ∴ m= 1.② ∵ k 为原方程的非零实数根,∴ 将方程※两边都除以k ,得(2)(1)0mm k m k---+=. 整理,得 1()21m k k m k +-=-.∴ 1()254y m k k m k=+-+=+.(2)解法一:22[(1)]4(2)3613(2)1m m m m m m m ∆=----=-++=--+ .当14<m <2时,m >0,2m -<0.∴ 3(2)m m -->0,3(2)1m m --+>1>0,Δ>0.∴ 当14<m <2时,此方程有两个不相等的实数根.解法二:直接分析14<m <2时,函数2(2)(1)y m x m x m =---+的图象,∵ 该函数的图象为抛物线,开口向下,与y 轴正半轴相交,∴ 该抛物线必与x 轴有两个不同交点.∴ 当14<m <2时,此方程有两个不相等的实数根.解法三:222[(1)]4(2)3613(1)4m m m m m m ∆=----=-++=--+.结合23(1)4m ∆=--+关于m 的图象可知,(如图)当14<m ≤1时,3716<∆≤4; 当1<m <2时,1<∆<4.∴ 当14<m <2时,∆>0.∴ 当14<m <2时,此方程有两个不相等的实数根. 【总结升华】和一元二次方程的根有关的问题往往可以借助于二次函数图象解决,数形结合使问题简化. 举一反三:【变式1】已知关于x 的一元二次方程2x 2+4x+k ﹣1=0有实数根,k 为正整数.(1)求k 的值(2)当此方程有两个非零的整数根时,将关于x 的二次函数y=2x 2+4x+k ﹣1的图象向右平移1个单位,向下平移2个单位,求平移后的图象的解析式.【答案】解:(1)∵方程2x 2+4x+k ﹣1=0有实数根,∴△=42﹣4×2×(k ﹣1)≥0,∴k≤3.又∵k 为正整数,∴k=1或2或3.(2)当此方程有两个非零的整数根时,当k=1时,方程为2x 2+4x=0,解得x 1=0,x 2=﹣2;不合题意,舍去.当k=2时,方程为2x 2+4x+1=0,解得x 1=﹣1+,x 2=﹣1﹣;不合题意,舍去. 当k=3时,方程为2x 2+4x+2=0,解得x 1=x 2=﹣1;符合题意.因此y=2x 2+4x+2的图象向右平移1个单位,向下平移2个单位,得出y=2x 2﹣2.【变式2】已知:关于x 的方程()0322=-+-+k x k x (1)求证:方程()0322=-+-+k x k x 总有实数根;(2)若方程()0322=-+-+k x k x 有一根大于5且小于7,求k 的整数值; (3)在⑵的条件下,对于一次函数b x y +=1和二次函数2y =()322-+-+k x k x ,当71<<-x 时,有21y y >,求b 的取值范围.【答案】⑴证明:∵△=(k -2)2-4(k -3)=k 2-4k +4-4k +12= k 2-8k +16=(k -4)2≥0∴此方程总有实根。
中考数学复习之方程与不等式的应用
中考复习之方程与不等式的应用【一元一次方程的应用】1、互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,人科获利20元,则这件商品的进价为元。
2、商店销售意见商品,按照成本价提高40%后作为标价出售,节日期间促销,按标价打8折后售价为1232元,则这件商品的成本为元。
3、某商场购进一批服装,每件进价为200元,由于换季滞销,商场决定将这批服装按标价的六折销售,若打折后每件服装仍能获利20%,则该服装标价是元。
4、小明国庆期间在某服装点买了一件服装,次服装点挂牌标明全场八折优惠出售,小明购买的衣服标价是a元,店主又给小明让利20元,则小明购买这件衣服实际售价是元。
5、一件商品进价为a元,在进价的基础上提高40%后再打八折出售,现在售价是元。
6、某种书包原价每个x元,第一次降价打九折,第二次每个降价10元,经两次降价后售价为80元,则可以列出方程为。
7、已知A、B两地相距160km,一辆汽车从A地到B地的速度比原来提高了25%,结果比原来提前0.4h到达,这辆汽车原来的速度是km/h。
8、某校七年级社会实践小组去商场调查商品销售情况,了解到该商场以每件80元的价格购进了某品牌衬衫500件,并以每件120元的价格销售了400件.商场准备采取促销措施,将剩下的衬衫降价销售.请你帮商场计算一下,每件衬衫降价多少元时,销售完这批衬衫正好达到盈利45%的预期目标?(1)某用户1月份共交水费65元,问1月份用水多少吨?(2)若该用户水表有故障,每次用水只有60%记入用水量,这样在2月份交水费43.2元,该用户2月份实际应交水费多少元?10、居民用电实行阶梯式递增电价,可以提高能源效率,某市居民阶梯电价:第一档为年用电量再2700及以下部分,每度0.53元;第二档为年用电量在2700至4800度,超出2700度的部分,每度0.58元;第三档为年用电量4800度,超过4800度的部分,每度0.83元。
初中数学 方程与不等式模块2-4 分式方程讲义(含答案解析)
分式方程题型练题型一:分式方程的概念分式方程的概念:分母中含有未知数的有理方程叫做分式方程,分式方程是方程的一种例1下列关于x 的方程中,是分式方程的是()A.35435x x -+-=B .x a x ba b b a-=+C .2(1)11x x -=-D .x n x n m n-=【详解】解:A .35435x x -+-=中分母不含未知数,不是分式方程,故选项A 错误;B .x a x ba b b a-=+中分母不含未知数,不是分式方程,故选项B 错误;C .2(1)11x x -=-是分式方程,故选项C 正确;D .x n xn m n-=中分母不含未知数,不是分式方程,故选项D 错误.故选:C .变式1.在方程:①715832x x --=+,②1626x x -=,③28811x x x +=--,④1102x x --=,是分式方程的有()A.①和② B.②和③C.③和④D.①和④【答案】C 【解析】【分析】分母中含有未知数的方程称为分式方程,据此解题即可.【详解】解:①分母不含未知数,故①不是分式方程;②分母不含未知数,故②不是分式方程;③分母含有未知数,故③是分式方程;④分母含有未知数,故④是分式方程.故选C .【点睛】本题考查分式方程的概念,难度容易,是基础考点,掌握相关知识是解题关键.题型二解分式方程的一般步骤求解分式方程的一般步骤:①方程两边都乘以最简公分母,去掉分母,化成整式方程(注意:当分母是多项式时,先分解因式,再找出最简公分母);②解整式方程,求出整式方程的解;③检验:将求得的解代入最简公分母,若最简公分母不等于0,则这个解是原分式方程的解,若最简公分母等于0,则这个解不是原分式方程的解,原分式方程无解.注意:解分式方程一定要检验根,这种检验与整式方程不同,不是检查解方程过程中是否有错误,而是检验是否出现增根,它是在解方程的过程中没有错误的前提下进行的.例2解分式方程:1133x xx x =+++.解:1133x x x x =+++去分母,得33(1)x x x =++,解此方程,得3x =-,经检验,3x =-是原分式方程的根.变式2.解方程:2713113x x x-+=--【答案】1x =-【解析】【分析】方程两边同时乘以(3x -1),把分式方程化为整式方程,求出整式方程的解后再检验即得结果.【详解】解:方程两边同时乘以(3x -1),约去分母得:2731x x --=-,解这个方程,得1x =-,经检验:1x =-是原方程的解,∴原方程的解为1x =-.【点睛】本题考查了分式方程的解法,属于基础题型,熟练掌握解分式方程的方法是关键.题型三分式无解(增根)的条件例3已知关于x 的方程361(1)x mx x x x ++=--有增根,求m 的值.【详解】解:方程两边都乘x (x -1),得3(x -1)+6x =x +m ,∵原方程有增根,∴最简公分母x (x -1)=0,解得x =0或1,当x =0时,m =-3;当x =1时,m =5故当m =-3或5时,原方程有增根.变式3.若关于x 的方程2221511k k x x x x x --+=-+-有增根1x =,求k 的值.【答案】3【解析】【分析】先将分式方程化为整式方程,再将增根代入整式方程求出k 的值即可.【详解】方程两边同乘以(1)(1)x x x +-得()()()1511x k x k x ++--=-,把1x =代入上式得21k =-,解得3k =,故k 的值为3.【点睛】本题考查了分式方程的增根问题,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.题型四无解的分式方程例4当a 为何值时,关于x 的方程311x a x x--=-无解?【详解】把分式方程化成整式方程得出(2)3a x +=,根据等式性质得出2a =-,原方程无解.再根据当1x =或0x =时,分式方程的分母等于0,即整式方程的解是分式方程的增根,代入求得1a =.变式4.己知关于x 的分式方程()()211122mx x x x x +=--++无解,求m 的值.【答案】m 的值为6-或32或1-【解析】【分析】分式方程去分母转化为整式方程,整理后根据一元一次方程无解条件求出m 的值,由分式方程无解求出x 的值,代入整式方程求出m 的值即可.【详解】()()211122mx x x x x +=--++去分母得:()221x mx x ++=-2+41x mx x +=-()15m x +=-由分式方程无解,得到()()120x x -+=即11x =,22x =-当1x =时,15m +=-,解得6m =-当2x =-时,225m --=-,解得32m =当10m +=,整式方程无解,解得1m =-故m 的值为6-或32或1-.【点睛】本题考查了分式方程的问题,掌握解分式方程的方法是解题的关键.题型五:分式的实际应用分式在实际应用过程中要重点把握等量关系的建立,列分式方程解应用题一般步骤如下:(1)审题了解已知数与所求各量所表示的意义,弄清它们之间的数量关系;(2)设未知数;(3)找出能够表示题中全部含义的相等关系,列出分式方程;(4)解这个分式方程;(5)验根,检验是否是增根;(6)写出答案.例5.甲、乙两个工程队合作完成一项工程,两队合做2天后由乙队单独做1天就完成了全部工程,已知乙队单独做所需的天数是甲队单独做所需天数的1.5倍,求甲、乙两队单独做各需多少天完成该项工程?【详解】解:设甲队单独做需x 天完成该项工程,则乙队单独做需1.5x 天完成该项工程,由题意得22111.5x x++=解得:4x =经检验4x =是原分式方程的解答:甲队单独欧需4天完成该项工程,乙队单独做需6天完成该项工程变式5.小明骑助动车,从家到学校去参加计算机能力考试,两地之间相距50千米,当他行驶了10千米后将车速加速为原先的2倍,结果比原计划提前1小时到达学校,请问他原计划的车速是多少千米/小时?【答案】20【解析】【分析】设原计划车速为x 千米/小时,根据两地之间相距50千米,当他行驶了10千米后将车速加速为原先的2倍,结果比原计划提前1小时到达学校,列出方程即可解答.【详解】设原计划车速为x 千米/小时1055010120x x x -=++102050x x x--=120x =1x=20.经检验x=20是原方程的解.答:他原计划的车速是20千米/小时.【点睛】此题考查分式方程的应用,解题关键在于列出方程.实战练6.解分式方程3511y y y =---时,去分母正确的是()A.35y =-- B.3(1)(1)5y y y -=-- C.35(1)y y =--D.35(1)y y =---【答案】D 【解析】【分析】方程两边同时乘以()1y -,利用等式的性质即可求解.【详解】解:方程两边同时乘以()1y -可得:35(1)y y =---,故选:D .【点睛】本题考查去分母,掌握等式的性质是解题的关键.7.分式方程12211xx x -+=--的解是()A.1 B.0C.1- D.无解【答案】D 【解析】【分析】首先去掉分母,方程两边乘最简公分母,可以把分式方程转化为整式方程求解,然后解一元一次方程,最后检验即可求解.【详解】解:去分母得:()1212x x +-=-,去括号得:1222x x +-=-,移项合并得:33x =,系数化为1得:1x =,∵1x =时,10x =﹣,∴x =1是分式方程的增根,∴分式方程无解.故选:D .【点睛】本题主要考查了解分式方程,解题的关键是掌握解分式方程的步骤.利用了转化的思想,解分式方程注意要检验.8.若关于x 的分式方程322x mx x -=--有增根,则m 的值是()A.1B.﹣1C.2D.﹣2【答案】C 【解析】【分析】先把分式方程化为整式方程,再把增根x =2代入整式方程,即可求解.【详解】解:322x m x x -=--,去分母得:()32x x m --=,∵关于x 的分式方程322x mx x -=--有增根,增根为:x =2,∴()2322m --=,即:m =2,故选C .【点睛】本题主要考查解分式方程以及分式方程的增根,把分式方程化为整式方程是解题的关键.9.根据市场需求,某药厂要加速生产一批药品,现在平均每天生产药品比原计划平均每天多生产500箱,现在生产6000箱药品所需时间与原计划生产4500箱药品所需时间相同,那么原计划平均每天生产多少箱药品?设原计划平均每天可生产x 箱药品,则下面所列方程正确的是()A.60004500500x x =+ B.60004500500x x =- C.60004500500x x =- D.60004500500x x =+【答案】D 【解析】【分析】设原计划平均每天可生产x 箱药品,则实际每天生产(500)x +箱药品,再根据“生产6000箱药品所需时间与原计划生产4500箱药品所需时间相同”建立方程求解即可.【详解】解:设原计划平均每天可生产x 箱药品,则实际每天生产(500)x +箱药品,原计划生产4500箱所需要的时间为:4500x ,现在生产6000箱所需要的时间为:6000500x +,由题意得:60004500500x x=+;故选:D .【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.10.对于实数a ,b ,定义一种新运算“⊗”为:22a b a b =-⊗,这里等式右边是通常的实数运算.例如:22113134==--⊗,则方程()6111x x ⊗-=--的解是()A.4x =B.5x = C.6x = D.7x =【答案】B 【解析】【分析】已知方程利用题中的新定义化简,计算即可求出解.【详解】根据题中的新定义化简得:26111x x =---,去分母得:261x =-+,解得:5x =,经检验5x =是分式方程的解.故选:B .【点睛】此题考查了解分式方程,以及实数的运算,弄清题中的新定义是解本题的关键.11.定义运算ab =a 2﹣2ab +1,下面给出了关于这种运算的几个结论:①25=﹣15;②不等式组()310250x x ⎧-⊗-<⎨⊗-<⎩的解集为x <﹣32;③方程2x 1=0是一元一次方程;④方程1xx =21x +x 的解是x =﹣1.其中正确的是_____.(填上你认为所在正确结论的序号)【答案】①④【解析】【分析】利用题中的新定义计算即可得到结果.【详解】根据题意得:①2⊗5=4﹣20+1=﹣15,正确;②不等式组()310250x x ⎧-⊗-<⎨⊗-<⎩变形得9604440x x +<⎧⎨--<⎩,此不等式无解,错误;③方程2x ⊗1=0,变形得:4x 2﹣4x+1=0,不是一元一次方程,错误;④方程1x ⊗x =21x+x ,变形得:221121x x x -+=+,解得:x =﹣1,正确,则正确的是①④.故答案为①④【点睛】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.12.代数式13x +与代数式3x的值相等,则x =__.【答案】92-【解析】【分析】根据题意列出分式方程,求出解即可.【详解】解:根据题意得:133x x=+,去分母得:x =3(x +3),解得:x =92-,经检验x =92-是分式方程的根.故答案为:92-.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.13.定义一种新运算:1an n n bn x dx a b -⋅=-⎰,例如:222khxdx k h ⋅=-⎰,若2585mmx dx --=⎰,则m =______.【答案】25-【解析】【分析】根据新运算列等式为m −1−(5m )−1=−2,解出即可.【详解】解:由题意得:m −1−(5m )−1=−2,即:1125m m-=-,解得:m =25-,经检验:m =25-是方程1125m m-=-的解,故答案是:25-【点睛】本题考查了负整数指数幂和解分式方程,理解新定义,并根据新定义进行计算是本题的关键.14.若关于x 的方程221933m x x x +=-+-有增根,则增根是多少?并求方程产生增根时m 的值.【答案】x =3或-3是原方程的增根;m =6或12.【解析】【详解】试题分析:先根据方程有增根,可让最简公分母为0,且把分式方程化为整式方程,分别代入求解即可.试题解析:因为原方程有增根,且增根必定使最简公分母(x+3)(x-3)=0,所以x=3或x=-3是原方程的增根.原方程两边同乘(x+3)(x-3),得m+2(x-3)=x+3.当x=3时,m+2×(3-3)=3+3,解得m=6;当x=-3时,m+2×(-3-3)=-3+3,解得m=12.综上所述,原方程的增根是x=3或x=-3.当x=3时,m=6;当x=-3时,m=12.点睛:只要令最简公分母等于零,就可以求出分式方程的增根,再将增根代入分式方程化成的整式方程,就能求出相应的m 的值.15.解答下列各题:解方程:2111x x x+=-+.【答案】3x =-【解析】【分析】解方程首先去分母,把分式方程化为整式方程,再解整式方程,最后还要把整式方程的根带入最简公分母检验,即可得出答案.【详解】2111xx x+=-+方程两边同时乘以(1)(1)x x -+,约去分母得()()()()21111x x x x x ++-+=-解得3x =-检验:当3x =-时,(1)(1)1(3)1(3)80x x ⎡⎤⎡⎤-+=--+-=-≠⎣⎦⎣⎦,∴3x =-是原方程的解.【点睛】本题考查了分式方程的解法,解题的关键熟练掌握分式方程的解答步骤.16.解分式方程:(1)22311x x x +=--;(2)222273711x x x x x x --=++--.【答案】(1)无解;(2)无解【解析】【分析】(1)方程两边乘(1)(1)x x +-去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.(2)方程两边乘(1)(1)x x x +-去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】(1)方程两边乘(1)(1)x x +-,得223x x +=+,解得1x =,检验:当1x =时,(1)(1)0x x +-=,因此1x =不是原分式方程的解,所以,原分式方程无解;(2)方程两边乘(1)(1)x x x +-,得3377337x x x x x x -++=-+-,解得1x =,检验:当1x =时,(1)(1)0x x x +-=,因此1x =不是原分式方程的解,所以,原分式方程无解.【点睛】本题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.17.已知关于x 的分式方程()()211122mx x x x x +=--++,(1)若方程的增根为x=1,求m 的值(2)若方程有增根,求m 的值(3)若方程无解,求m 的值.【答案】(1)m=-6;(2)当x =﹣2时,m =1.5;当x =1时,m =﹣6;(3)m 的值为﹣1或﹣6或1.5【解析】【详解】试题分析:方程两边同时乘以最简公分母(x-1)(x+2),化为整式方程;(1)把方程的增根x=1代入整式方程,解方程即可得;(2)若方程有增根,则最简公分母为0,从而求得x 的值,然后代入整式方程即可得;(3)方程无解,有两种情况,一种是原方程有增根,一种是所得整式方程无解,分别求解即可得.试题解析:方程两边同时乘以(x +2)(x ﹣1),得2(x+2)+mx=x-1,整理得(m +1)x =﹣5,(1)∵x =1是分式方程的增根,∴1+m =﹣5,解得:m =﹣6;(2)∵原分式方程有增根,∴(x +2)(x ﹣1)=0,解得:x =﹣2或x =1,当x =﹣2时,m =1.5;当x =1时,m =﹣6;(3)当m +1=0时,该方程无解,此时m =﹣1;当m +1≠0时,要使原方程无解,由(2)得:m =﹣6或m =1.5,综上,m 的值为﹣1或﹣6或1.5.【点睛】本题考查了分式方程无解的问题,正确的将分式方程转化为整式方程,明确方程产生无解的原因,能正确地根据产生的原因进行解答是关键.18.在开任公路改建工程中,某工程段将由甲,乙两个工程队共同施工完成,据调查得知,甲,乙两队单独完成这项工程所需天数之比为2:3,若先由甲,乙两队合作30天,剩下的工程再由乙队做15天完成.(1)求甲、乙两队单独完成这项工程各需多少天?(2)此项工程由两队合作施工,甲队共做了m 天,乙队共做了n 天完成.已知甲队每天的施工费为15万元,乙队每天的施工费用为8万元,若工程预算的总费用不超过840万元,甲队工作的天数与乙队工作的天数之和不超过80天,请问甲、乙两队各工作多少天,完成此项工程总费用最少?最少费用是多少?【答案】(1)甲、乙两队单独完成这取工程各需60,90天;(2)甲、乙两队各工作20,60天,完成此项工程总费用最少,最少费用是780万元.【解析】【分析】(1)根据题意列方程求解;(2)用总工作量减去甲队的工作量,然后除以乙队的工作效率得到乙队的施工天数,令施工总费用为w 万元,求出w 与m 的函数解析式,根据m 的取值范围以及一次函数的性质求解即可.【详解】(1)设甲、乙两队单独完成这取工程各需2x ,3x 天,由题意得:11130151233x x x ⎛⎫+⨯+⨯= ⎪⎝⎭,解得:30x =,经检验:30x =是原方程的根,∴260x =,390x =,答:甲、乙两队单独完成这取工程各需60,90天;(2)由题意得:1319060902m n m ⎛⎫=-÷=- ⎪⎝⎭,令施工总费用为w 万元,则31589037202w m m m ⎛⎫=+⨯-=+ ⎪⎝⎭.∵两队施工的天数之和不超过80天,工程预算的总费用不超过840万元,∴3720840m +…,390802m m ⎛⎫+- ⎪⎝⎭…,∴2040m 剟,∴当20m =时,完成此项工程总费用最少,此时390602n m =-=,780w =元,答:甲、乙两队各工作20,60天,完成此项工程总费用最少,最少费用是780万元.【点睛】本题考查了分式方程和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程和不等式求解.19.某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.(1)该商场两次共购进这种运动服多少套?(2)如果这两批运动服每套的售价相同,且全部售完后总利润不低于20%,那么每套售价至少是多少元?【答案】(1)商场两次共购进这种运动服600套;(2)每套运动服的售价至少是200元【解析】【分析】(1)设该商场第一次购进这种运动服x 套,第二次购进2x 套,然后根据题意列分式解答即可;(2)设每套售价是y 元,然后根据“售价-两次总进价≥成本×利润率”列不等式并求解即可.【详解】解:(1)设商场第一次购进x 套运动服,由题意得6800032000102x x-=解这个方程,得200x =经检验,200x =是所列方程的根22200200600x x +=⨯+=;答:商场两次共购进这种运动服600套;(2)设每套运动服的售价为y 元,由题意得600320006800020%3200068000y --+…,解这个不等式,得200y ≥.答:每套运动服的售价至少是200元.【点睛】本题主要考查了分式方程和一元一次不等式的应用,弄清题意、确定量之间的关系、列出分式方程和不等式是解答本题的关键.20.观察下列各式:111121212==-⨯,111162323==-⨯,1111123434==-⨯,1111204545==-⨯,1111305656==-⨯,…()1请你根据上面各式的规律,写出符合该规律的一道等式:________()2请利用上述规律计算:()1111...1223341n n ++++=⨯⨯⨯+________(用含有n 的式子表示)()3请利用上述规律解方程:()()()()111121111x x x x x x x ++=---++.【答案】(1)1111426767==-⨯;(2)1n n +;(3)5x =【解析】【分析】根据阅读材料,总结出规律,然后利用规律变形计算即可求解.【详解】解:()11111(426767==-⨯答案不唯一);故答案为1111426767==-⨯;()2原式11111111112233411n n n n -+-+-++-+--+ 111=1111n n n n +-=-+++1n n =+;故答案为1n n +()3分式方程整理得:111111121111x x x x x x x -+-+-=---++,即1221x x =-+,方程两边同时乘()()21x x --,得()122x x +=-,解得:5x =,经检验,5x =是原分式方程的解.所以原方程的解为: 5.x =【点睛】此题主要考查了阅读理解型的规律探索题,利用分数和分式的性质,把分式进行变形是解题关键.21.某中学开学初在商场购进A 、B 两种品牌的足球,购买A 品牌足球花费了2500元,购买B 品牌足球花费了2000元,且购买A 品牌的足球数量是购买B 品牌足球数量的2倍,已知购买一个B 品牌足球比购买一个A 品牌足球多花30元(1)求购买一个A 品牌、一个B 品牌的足球各需多少元?(2)该中学响应习总书记足球进校园号召,决定两次购进A 、B 两种品牌足球共50个,恰逢商场对两种品牌足球的售价进行调整,A 品牌足球售价比第一次购买时提高了8%,B 品牌足球按第一次购买时售价的9折出售,如果这所中学此次购买A 、B 两种品牌足球的总费用不超过3240元,那么该中学此次最多可购买多少个B 品牌足球?【答案】(1)一个A 品牌的足球需50元,一个B 品牌的足球需80元;(2)该中学此次最多可购买30个B 品牌足球【解析】【分析】(1)设一个A 品牌的足球需x 元,则一个B 品牌的足球需(x +30)元,根据购买A 品牌足球数量是购买B 品牌足球数量的2倍列出方程解答即可;(2)设此次可购买a 个B 品牌足球,则购买A 品牌足球(50﹣a )个,根据购买A 、B 两种品牌足球的总费用不超过3240元,可列出关于a 的不等式,解不等式即可解决问题.【详解】解:(1)设一个A 品牌的足球需x 元,则一个B 品牌的足球需(x +30)元,由题意得:25002000230x x =⨯+,解得:x =50,经检验:x =50是原方程的解,x +30=80.答:一个A 品牌的足球需50元,一个B 品牌的足球需80元.(2)设此次可购买a 个B 品牌足球,则购买A 品牌足球(50﹣a )个,由题意得:50×(1+8%)(50﹣a )+80×0.9a ≤3240,解得a ≤30.∵a 是整数,∴a 最大等于30,答:该中学此次最多可购买30个B 品牌足球.【点睛】本题考查的是分式方程的应用和一元一次不等式的应用,属于常考题型,正确理解题意、列出相应的方程和不等式是解答的关键.培优练22.阅读下列材料:在学习“分式方程及其解法”过程中,老师提出一个问题:若关于x 的分式方程3111a x x+=--的解为正数,求a 的取值范围?经过小组交流讨论后,同学们逐渐形成了两种意见:小明说:解这个关于x 的分式方程,得到方程的解为x=a ﹣2.由题意可得a ﹣2>0,所以a >2,问题解决.小强说:你考虑的不全面.还必须保证a ≠3才行.老师说:小强所说完全正确.请回答:小明考虑问题不全面,主要体现在哪里?请你简要说明:.完成下列问题:(1)已知关于x 的方程212mx x -+=1的解为负数,求m 的取值范围;(2)若关于x 的分式方程32233x nx x x--+--=﹣1无解.直接写出n 的取值范围.【答案】(1):m <12且m ≠﹣14;(2)n=1或n=53.【解析】【分析】考虑分式的分母不为0,即分式必须有意义;(1)表示出分式方程的解,由解为负数确定出m 的范围即可;(2)分式方程去分母转化为整式方程,根据分式方程无解,得到有增根或整式方程无解,确定出n 的范围即可.【详解】请回答:小明没有考虑分式的分母不为0(或分式必须有意义)这个条件;(1)解关于x 的分式方程得,x=321m -,∵方程有解,且解为负数,∴2103221m m -⎧⎪⎨≠-⎪-⎩<,解得:m <12且m ≠-14;(2)分式方程去分母得:3-2x+nx-2=-x+3,即(n-1)x=2,由分式方程无解,得到x-3=0,即x=3,代入整式方程得:n=53;当n-1=0时,整式方程无解,此时n=1,综上,n=1或n=53.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.23.【建构模型】对于两个不等的非零实数a ,b ,若分式()()x a x b x--的值为零,则x a =或x b =.因为()()()()2x a x b x a b x ab ab x a b x x x ---++==+-+,所以,关于x 的方程ab x a b x+=+的两个解分别为:1x a =,2x b =.【应用模型】利用上面建构的模型,解决下列问题:(1)若方程p x q x+=的两个解分别为11x =-,24x =.则p =___,q =___;(直接写结论)(2)已知关于x 的方程222221n n x n x +-+=+的两个解分别为1x ,()212x x x <.求12223x x -的值.【答案】(1)4-,3;(2)1【解析】【分析】(1)根据材料可得:p=-1×4=-4,q=-1+4=3,计算出结果;(2)将原方程变形后变为:22212121n n x n x +-++=++,未知数变为整体2x+1,根据材料中的结论可得:122n x -=,212n x +=,代入所求式子可得结论;【详解】解:(1)∵方程p x q x+=的两个解分别为:121=4x x =-,,∴p=-1×4=-4,q=-1+4=3,故答案为:-4,3.(2)由222221n n x n x +-+=+,可得22212121n n x n x +-++=++.∴()()()()21212121n n x n n x +-++=++-+.故212x n +=+,解得12n x +=.或211x n +=-,解得22n x -=.∵12x x <,∴122n x -=,212n x +=.∴122222221123132232n x n n n x n n -⋅--====+-+--⋅-.【点睛】本题考查了分式方程的解,弄清题中的规律是解题的关键;。
中考数学必备复习第二章方程与不等式第5讲方程与不等式的应用课件
•(2)常见的等量关系
•相遇问题:甲走的路程+乙走的路程=全路程.
•追及问题(设甲的速度>乙的速度):
•①同时不同地:甲的时间=乙的时间;
•
甲走的路程-乙走的路程=原来甲、乙相距的路程
•②同地不同时:甲的时间=乙的时间-时间差;甲走的路程=乙走的路程
车每趟的运费需300元,乙车每趟的运费需100元.
•课前小练
•知识梳理
•课堂精讲
•过关测试
•考点2:一元一次不等式(组)的应用
•例2.(2013·潍坊)为了增强市民的节能意识,我市试行阶梯电价. 从2013年开始,按照每户每年的用电量分三个档次计费,具体规 定如表.小明统计了自己2013年前5个月的实际用电量为1300 度,请帮助小明分析下面问题: •(1)若小明家计划2013年全年的用电量不超过2520度,则6至12 月份小明家平均每月用电量最多为多少度?(保留整数) •(2)若小明家2013年6月至12月份平均每月用电量等于前5个月 的平均每月用电量,则小明家2013年应交总电费多少元?
中考数学必备复习第二章方 程与不等式第5讲方程与不
等式的应用课件
•基础巩固·课前小练
•课前小练
•知识梳理
•课堂精讲
•过关测试
•1.要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛
一场),计划安排21场比赛,则参赛球队的个数是(•C )
• A.5个
B.6个
C.7个
D.8个
•2.服装店销售某款服装,一件服装的标价为300元,若按标价 的八折销售,仍可获利60元,则这款服装每件的标价比进价多•C(
第一档:基本 第二档:正常合
用电需求
不等式与方程--讲义
不等式与方程重难点易错点辨析不等式与方程综合题一:求使方程组24563x y mx y m+=++=+⎧⎨⎩的解x、y都是正数的m的取值范围?金题精讲题一:如果关于x的方程6151632x m mx---=-的解不大于1,且m是一个正整数,试确定x的值.题二:已知2x+3=2a,y-2a= 4,并且311242a x y a-<+≤+.(1)求a的取值范围;(2)比较a2+2a-3与a2+a-1的大小.题三:已知x、y同时满足三个条件:①3x-2y=4-p;②4x-3y=2+p;③x>y.则p的取值范围是什么?思维拓展题一:根据有理数的除法符号法则“两数相除,同号得正,异号得负”,求不等式2123xx+<-的解集.重难点易错点辨析 题一:752m <<.金题精讲 题一:25或1.题二:(1)1338a -<≤;(2)当1328a -<≤时,a 2+2a -3≤a 2+a -1;当23a <≤时,a 2+2a -3<a 2+a -1. 题三:p >1.思维拓展 题一:23x>或2132x -<<-.不等式与方程课后练习题一:若关于x,y的二元一次方程组32142x y mx y m-=-+=⎧⎨⎩的解都是正数,求m的取值范围.题二:如果关于x、y的方程组232x y ax y a+=-⎧⎨-=-⎩的解是负数,求a的取值范围.题三:如果关于x的方程x+2m-3=3x+7的解为不大于2的非负数,求m的取值范围.题四:符号[x]表示不大于x的最大整数,例如[5]=5,[6.31]=6.如果37[]47x+=,这样的正整数x有______个.题五:已知x+3=a,y-2a=-6,并且125a x y a-<-≤+.(1)求a的取值范围;(2)比较a2+2a-5与a2+a的大小.题六:如图:在△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C的对边,点E是BC上一个动点(点E与B、C不重合),连接A、E.若a、b满足60210ba b-=-=⎧⎨⎩,且c是不等式组12643233xxxx+≤++>-⎧⎪⎨⎪⎩的最大整数解.(1)求a、b、c的长;(2)比较x2+2x+1与x2+x-5的大小.题七:已知x、y同时满足三个条件:①x-y=2+p;②x+y=8-3p;③x≤y.则p的取值范围是什么?题八:已知x、y同时满足三个条件:①x−2y=m;②2x+3y=2m+4;③35x yx y+⎧⎨+⎩≤>.则m的取值范围是什么?题九:根据有理数的除法符号法则“两数相除,同号得正,异号得负”,求不等式2142xx-≥-的解集.题十:根据有理数的除法符号法则“两数相乘,同号得正,异号得负”,求不等式0(21)(36)x x ≤-+的解集.不等式与方程题一: 2455m <<. 详解:32142x y m x y m -=-+=⎧⎨⎩①②, ①×2+②得:10x =5m -2,即x =5210m -,将x =5210m -代入①得到y =4510m -, 根据题意列得520450m m ->⎧⎨->⎩,解得2455m <<. 题二: 335a -<<.详解:232x y a x y a +=--=-⎧⎨⎩①②, ①+②得:33x a =--,解得33a x+=-, 将33a x +=-代入②得533233a a y a -+=-+=, ∵x <0,y <0,∴3035303a a ⎧⎪⎪⎨⎪⎪⎩+-<-<,解得335a -<<. 故a 的取值范围是335a -<<. 题三: 5≤m ≤7.详解:∵x +2m -3=3x +7,∴x =m -5,∵x 的值为不大于2的非负数,∴0≤m -5≤2,解得5≤m ≤7.题四: 3. 详解:因为374417x +≤<+,28≤3x +7<35,21≤3x <28,解得7≤x <283, 所以关于x 的方程37[]47x +=,的整数解x 为7,8,9.故这样的正整数x 有3个. 题五: (1)232a -≤<;(2)a 2+2a -5<a 2+a . 详解:(1)由x +3=a ,得到x =a -3,由y -2a =-6,得到y =2a -6, 代入125a x y a -<-≤+得:13(26)25a a a a -<---≤+, 可化为:13325a a a a -<-+-+≤+⎧⎨⎩①②,解得232a -≤<; (2)∵(a 2+2a -5)-(a 2+a )=a 2+2a -5-a 2-a =a -5<0,∴a 2+2a -5<a 2+a .题六: (1)8,6,10;(2)x 2+2x +1>x 2+x -5.详解:(1)方程组60210b a b -=-=⎧⎨⎩的解为86a b ==⎧⎨⎩, 不等式组12643233x x x x +≤++>-⎧⎪⎨⎪⎩的解为:-4≤x <11,所以c =10; (2)∵(x 2+2x +1)-(x 2+x -5)=x 2+2x +1-x 2-x +5=x +6>0,又∵-4≤x <11,∴x 2+2x +1>x 2+x -5.题七: p ≤-2.详解:①+②得:x =5-p ,把x =5-p 代入①得:y =3-2p ,∵x ≤y ,∴5-p ≤3-2p ,∴p ≤-2.题八: 443m -<≤-. 详解:①×2得:2x −4y =2m ④,②−④得:y =47,把y =47代入①得:x =m +87, 把x =m +87,y =47代入不等式组3500x y x y +⎧⎨+⎩≤>中得34400m m +⎧⎨+⎩≤>,解得443m -<≤-. 题九:122x ≤<或2x <-. 详解:依题意得210420x x -≥⎧⎪⎨->⎪⎩或210420x x -≤⎧⎪⎨-<⎪⎩, 则122x x ⎧≥⎪⎨⎪<⎩或122x x ⎧≤⎪⎨⎪>⎩,即1222x x ⎧≥⎪⎨⎪-<<⎩①或1222x x x ⎧≤⎪⎨⎪><-⎩或②, 由①得:122x ≤<,由②得:2x <-, 所以原不等式的解集为:122x ≤<或2x <-. 题十: 2x ≤-或1122x -≤≤. 详解:依题意得210360x x ⎧-≥⎪⎨+≤⎪⎩或210360x x ⎧-≤⎪⎨+≥⎪⎩, 则212x x ⎧≥⎪⎨≤-⎪⎩或212x x ⎧≤⎪⎨≥-⎪⎩,即11222x x x ⎧≥≤-⎪⎨⎪≤-⎩或①或11222x x ⎧-≤≤⎪⎨⎪≥-⎩②, 由①得:2x ≤-,由②得:1122x -≤≤, 所以原不等式的解集为:2x ≤-或1122x -≤≤.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不等式与方程应用题--讲义
不等式与方程应用题
主讲教师:傲德
重难点易错点辨析
列不等式解应用题
题一:
某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分,小明得分要超过90分,他至少要答对多少道题?
不等式与方程综合解应用题
题二:有红、白两种颜色的小球若干个,已知白球的个数比红球少,但白球的个数的2倍比红球多;若给每个白球都写上数字“2",给每个红球都写上数字“3”(每个小球只能写上一个数字),结果所有小球写的数字总和为60,那么白球和红球各是多少个?
金题精讲
题一:若干名学生合影留念,需交照像费20元(有两张照片),如果另外加洗一张照片,又需收费1.5元,要使每人平均出钱不超过4元钱,并都分到一张照片,至少应有几名同学参加照像?
题二:某单位要购买一批电脑,甲公司的标价是每台5800元,优惠条件是购10台以上,第11台起可按标价的七折付款;乙公司的标价是每台5800元,优惠条件是每台均按标价的八五折付款。
若两个公司所售电脑的品牌、质量、售后服务等完全相同,该单位购买哪个公司的电脑合算?请说明理由.
题三:为响应市政府“创建国家森林城市”的号召,某小区计划购进A、B两种树苗共17棵,已知A 种树苗每棵80元,B种树苗每棵60元。
(1)若购进A、B两种树苗刚好用去1220元,问购进A、B两种树苗各多少棵?
(2)若购买B种树苗的数量少于A种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用。
思维拓展
题一:某企业人事招聘工作中,共安排了五个测试项目,规定每通过一项测试得1分,未通过不得分,此次前来应聘的26人平均得分不低于4.8分,其中最低分3分,而且至少有3人得4分,则得5分的共有多少人?
不等式与方程应用题
讲义参考答案
重难点易错点辨析
题一:13。
题二:9个白球,14个红球.
金题精讲
题一:7.题二:当购买电脑小于20台时,乙合算;当购买电脑等于20台时,甲、乙一样;当购买电脑大于20台时,甲合算。
题三:(1)A:10棵,B:7棵;(2) A:9棵,B:8棵,所需费用:1200元。
思维拓展
题一:22。