数学必修2 作业本

合集下载

高一数学必修二作业本答案

高一数学必修二作业本答案
[答案](0,2]
[解析]a0.
由2-ax≥0得,x≤2a,
∴f(x)在(-∞,2a]上是减函数,
由条件2a≥1,∴0<a≤2.< p>
16.国家规定个人稿费的纳税办法是:不超过800元的不纳税;超过800元而不超过4000元的按超过800元的14%纳税;超过4000元的按全部稿酬的11%纳税.某人出版了一本书,共纳税420元,则这个人的稿费为________.
[解析]奇函数的图象关于原点对称,可画出其图象如图.显见f(3)>f(1).
20.(本题满分12分)一块形状为直角三角形的铁皮,直角边长分别为40cm与60cm现将它剪成一个矩形,并以此三角形的直角为矩形的一个角,问怎样剪法,才能使剩下的残料最少?
[解析]如图,剪出的矩形为CDEF,设CD=x,CF=y,则AF=40-y.
21.(本题满分12分)
(1)若a<0,讨论函数f(x)=x+ax,在其定义域上的单调性;
(2)若a>0,判断并证明f(x)=x+ax在(0,a]上的单调性.
[解析](1)∵a<0,∴y=ax在(-∞,0)和(0,+∞)上都是增函数,
又y=x为增函数,∴f(x)=x+ax在(-∞,0)和(0,+∞)上都是增函数.
∴f(x)的定义域为{x|-2≤x<0或0<x≤2},< p>
又f(-x)=-f(x),∴f(x)为奇函数.
9.(08•天津文)已知函数f(x)=x+2,x≤0,-x+2,x>0,则不等式f(x)≥x2的解集为()
A.[-1,1]B.[-2,2]
C.[-2,1]D.[-1,2]
[答案]A
[解析]解法1:当x=2时,f(x)=0,f(x)≥x2不成立,排除B、D;当x=-2时,f(x)=0,也不满足f(x)≥x2,排除C,故选A.

新教材人教A版高中数学必修第二册全册课时练习(一课一练,含解析)

新教材人教A版高中数学必修第二册全册课时练习(一课一练,含解析)

人教A版高中数学必修第二册全册课时练习6.1 平面向量的概念 .............................................................................................................. - 2 - 6.2.1 向量的加法运算........................................................................................................ - 5 - 6.2.2 向量的减法运算........................................................................................................ - 8 - 6.2.3 向量的数乘运算...................................................................................................... - 11 - 6.2.4 向量的数量积............................................................................................................ - 14 - 6.3.1 平面向量基本定理.................................................................................................... - 18 - 6.3.2 平面向量的正交分解及坐标表示............................................................................ - 21 - 6.3.3 平面向量加、减运算的坐标表示............................................................................ - 21 - 6.3.4 平面向量数乘运算的坐标表示.............................................................................. - 24 - 6.3.5 平面向量数量积的坐标表示.................................................................................. - 27 - 6.4 平面向量的应用........................................................................................................ - 30 -7.1.1 数系的扩充和复数的概念...................................................................................... - 34 - 7.1.2 复数的几何意义...................................................................................................... - 37 - 7.2.1 复数的加、减运算及其几何意义.......................................................................... - 39 -7.2.2 复数的乘、除运算.................................................................................................. - 43 -8.1.1 棱柱、棱锥、棱台的结构特征................................................................................ - 46 - 8.1.2 圆柱、圆锥、圆台、球、简单组合体的结构特征................................................ - 49 - 8.2 立体图形的直观图........................................................................................................ - 51 - 8.3.1 棱柱、棱锥、棱台的表面积和体积...................................................................... - 55 - 8.3.2 圆柱、圆锥、圆台、球的表面积和体积.............................................................. - 59 - 8.4.1 平面 ......................................................................................................................... - 62 - 8.4.2 空间点、直线、平面之间的位置关系.................................................................. - 66 - 8.5.1 直线与直线平行...................................................................................................... - 69 - 8.5.2 直线与平面平行...................................................................................................... - 73 - 8.5.3 平面与平面平行...................................................................................................... - 76 - 8.6.1 直线与直线垂直...................................................................................................... - 80 - 8.6.2 直线与平面垂直...................................................................................................... - 85 -8.6.3平面与平面垂直 ....................................................................................................... - 89 -9.1.1简单随机抽样 ........................................................................................................... - 94 - 9.1.2 分层随机抽样 ............................................................................................................. - 96 - 9.1.3 获取数据的途径 ......................................................................................................... - 96 - 9.2.1总体取值规律的估计 ............................................................................................. - 100 - 9.2.2 总体百分位数的估计 ............................................................................................... - 105 - 9.2.3 总体集中趋势的估计 ............................................................................................... - 105 -9.2.4 总体离散程度的估计 ............................................................................................... - 105 -10.1.1有限样本空间与随机事件.................................................................................... - 110 - 10.1.2事件的关系和运算 ............................................................................................... - 112 - 10.1.3古典概型 ............................................................................................................... - 115 - 10.1.4概率的基本性质 ................................................................................................... - 118 - 10.2事件的相互独立性 .................................................................................................. - 121 - 10.3频率与概率 .............................................................................................................. - 126 -6.1 平面向量的概念一、选择题1.下列物理量:①质量;②速度;③位移;④力;⑤加速度;⑥路程;⑦密度;⑧功.其中不是向量的有( )A .1个B .2个C .3个D .4个【解析】一个量是不是向量,就是看它是否同时具备向量的两个要素:大小和方向.由于速度、位移、力、加速度都是由大小和方向确定的,所以是向量;而质量、路程、密度、功只有大小而没有方向,所以不是向量. 【答案】D2.下列命题中,正确命题的个数是( ) ①单位向量都共线; ②长度相等的向量都相等; ③共线的单位向量必相等;④与非零向量a 共线的单位向量是a|a |.A .3B .2C .1D .0【解析】根据单位向量的定义,可知①②③明显是错误的,对于④,与非零向量a 共线的单位向量是a |a |或-a|a |,故④也是错误的.【答案】D3.如图,等腰梯形ABCD 中,对角线AC 与BD 交于点P ,点E ,F 分别在两腰AD ,BC 上,EF 过点P ,且EF ∥AB ,则( )A.AD →=BC →B.AC →=BD →C.PE →=PF →D.EP →=PF →【解析】由平面几何知识知,AD →与BC →方向不同, 故AD →≠BC →;AC →与BD →方向不同,故AC →≠BD →; PE →与PF →的模相等而方向相反,故PE →≠PF →. EP →与PF →的模相等且方向相同,∴EP →=PF →.【答案】D4.若|AB →|=|AD →|且BA →=CD →,则四边形ABCD 的形状为( ) A .正方形 B .矩形 C .菱形 D .等腰梯形【解析】由BA →=CD →,知AB =CD 且AB ∥CD ,即四边形ABCD 为平行四边形.又因为|AB →|=|AD →|,所以四边形ABCD 为菱形. 【答案】C 二、填空题5.如图,已知正方形ABCD 的边长为2,O 为其中心,则|OA →|=________.【解析】因为正方形的对角线长为22,所以|OA →|= 2. 【答案】 2 6.如图,四边形ABCD 是平行四边形,E ,F 分别是AD 与BC 的中点,则在以A 、B 、C 、D 四点中的任意两点为始点和终点的所有向量中,与向量EF →方向相反的向量为________.【解析】因为AB ∥EF ,CD ∥EF ,所以与EF →平行的向量为DC →,CD →,AB →,BA →,其中方向相反的向量为BA →,CD →. 【答案】BA →,CD →7.给出下列命题:①若AB →=DC →,则A 、B 、C 、D 四点是平行四边形的四个顶点; ②在▱ABCD 中,一定有AB →=DC →; ③若a =b ,b =c ,则a =c ; ④若a ∥b ,b ∥c ,则a ∥c .其中所有正确命题的序号为________.【解析】AB →=DC →,A 、B 、C 、D 四点可能在同一条直线上,故①不正确;在▱ABCD 中,|AB →|=|DC →|,AB →与DC →平行且方向相同,故AB →=DC →,故②正确;a =b ,则|a |=|b |,且a 与b 方向相同;b =c ,则|b |=|c |,且b 与c 方向相同,则a 与c 长度相等且方向相同,故a =c ,故③正确;对于④,当b =0时,a 与c 不一定平行,故④不正确. 【答案】②③ 三、解答题8.在如图的方格纸(每个小方格的边长为1)上,已知向量a . (1)试以B 为起点画一个向量b ,使b =a ;(2)画一个以C 为起点的向量c ,使|c |=2,并说出c 的终点的轨迹是什么.【解析】(1)根据相等向量的定义,所作向量b 应与a 同向,且长度相等,如下图所示. (2)由平面几何知识可作满足条件的向量c ,所有这样的向量c 的终点的轨迹是以点C 为圆心,2为半径的圆,如下图所示.9.一辆汽车从A 点出发向西行驶了100千米到达B 点,然后又改变了方向向北偏西40°走了200千米到达C 点,最后又改变方向,向东行驶了100千米到达D 点. (1)作出向量AB →,BC →,CD →; (2)求|AD →|.【解析】(1)如图所示.(2)由题意,易知AB →与CD →方向相反,故AB →与CD →共线,即AB ∥CD . 又|AB →|=|CD →|,所以四边形ABCD 为平行四边形. 所以|AD →|=|BC →|=200(千米).10.如图,在△ABC 中,已知向量AD →=DB →,DF →=EC →,求证:AE →=DF →.证明:由DF →=EC →,可得DF =EC 且DF ∥EC , 故四边形CEDF 是平行四边形,从而DE ∥FC . ∵AD →=DB →,∴D 为AB 的中点. ∴AE →=EC →,∴AE →=DF →.6.2.1 向量的加法运算一、选择题1.点O 是平行四边形ABCD 的两条对角线的交点,则AO →+OC →+CB →等于( )A.AB →B.BC →C.CD →D.DA →【解析】因为点O 是平行四边形ABCD 的两条对角线的交点,则AO →+OC →+CB →=AC →+CB →=AB →.故选A. 【答案】A2.设a 表示“向东走5 km”,b 表示“向南走5 km”,则a +b 表示( ) A .向东走10 km B .向南走10 km C .向东南走10 km D .向东南走5 2 km 【解析】如图所示,AC →=a +b ,|AB →|=5,|BC →|=5,且AB ⊥BC ,则|AC →|=52,∠BAC =45°. 【答案】D3.已知向量a ∥b ,且|a |>|b |>0,则向量a +b 的方向( ) A .与向量a 方向相同 B .与向量a 方向相反 C .与向量b 方向相同 D .不确定【解析】如果a 和b 方向相同,则它们的和的方向应该与a (或b )的方向相同;如果它们的方向相反,而a 的模大于b 的模,则它们的和的方向与a 的方向相同. 【答案】A4.如图所示的方格纸中有定点O ,P ,Q ,E ,F ,G ,H ,则OP →+OQ →=( )A.OH →B.OG →C.FO →D.EO →【解析】设a =OP →+OQ →,以OP ,OQ 为邻边作平行四边形,则OP 与OQ 之间的对角线对应的向量即向量a =OP →+OQ →,由a 和FO →长度相等,方向相同,得a =FO →,即OP →+OQ →=FO →. 【答案】C 二、填空题5.在△ABC 中,AB →=a ,BC →=b ,CA →=c ,则a +b +c =________.【解析】由向量加法的三角形法则,得AB →+BC →=AC →,即a +b +c =AB →+BC →+CA →=0. 【答案】06.化简(AB →+MB →)+(BO →+BC →)+OM →=________.【解析】原式=(AB →+BO →)+(OM →+MB →)+BC →=AO →+OB →+BC →=AB →+BC →=AC →. 【答案】AC →7.在菱形ABCD 中,∠DAB =60°,|AB →|=1,则|BC →+CD →|=________. 【解析】在菱形ABCD 中,连接BD , ∵∠DAB =60°,∴△BAD 为等边三角形, 又∵|AB →|=1,∴|BD →|=1,|BC →+CD →|=|BD →|=1. 【答案】1 三、解答题8.如图,已知向量a 、b ,求作向量a +b .【解析】(1)作OA →=a ,AB →=b ,则OB →=a +b ,如图(1); (2)作OA →=a ,AB →=b ,则OB →=a +b ,如图(2); (3)作OA →=a ,AB →=b ,则OB →=a +b ,如图(3).9.如图所示,设O 为正六边形ABCDEF 的中心,作出下列向量: (1)OA →+OC →; (2)BC →+FE →.【解析】(1)由图可知,四边形OABC 为平行四边形,所以由向量加法的平行四边形法则,得OA →+OC →=OB →.(2)由图可知,BC →=FE →=OD →=AO →,所以BC →+FE →=AO →+OD →=AD →.10.如图,在重300 N 的物体上拴两根绳子,这两根绳子在铅垂线的两侧,与铅垂线的夹角分别为30°,60°,当整个系统处于平衡状态时,求两根绳子的拉力.【解析】如图,作▱OACB ,使∠AOC =30°,∠BOC =60°, 则∠ACO =∠BOC =60°,∠OAC =90°.设向量OA →,OB →分别表示两根绳子的拉力,则CO →表示物体所受的重力,且|OC →|=300 N. 所以|OA →|=|OC →|cos 30°=1503(N), |OB →|=|OC →|cos 60°=150 (N).所以与铅垂线成30°角的绳子的拉力是150 3 N ,与铅垂线成60°角的绳子的拉力是150 N.6.2.2 向量的减法运算一、选择题1.下列运算中正确的是( ) A.OA →-OB →=AB → B.AB →-CD →=DB → C.OA →-OB →=BA → D.AB →-AB →=0【解析】根据向量减法的几何意义,知OA →-OB →=BA →,所以C 正确,A 错误;B 显然错误;对于D ,AB →-AB →应该等于0,而不是0.【答案】C2.下列四式中不能化简为PQ →的是( ) A.AB →+(PA →+BQ →) B .(AB →+PC →)+(BA →-QC →) C.QC →-QP →+CQ → D.PA →+AB →-BQ →【解析】D 中,PA →+AB →-BQ →=PB →-BQ →=PB →+QB →不能化简为PQ →,其余选项皆可. 【答案】D3.在△ABC 中,D 是BC 边上的一点,则AD →-AC →等于( ) A.CB → B.BC → C.CD → D.DC →【解析】在△ABC 中,D 是BC 边上一点,则由两个向量的减法的几何意义可得AD →-AC →=CD →. 【答案】C4.如图,在四边形ABCD 中,设AB →=a ,AD →=b ,BC →=c ,则DC →=( ) A .a -b +c B .b -(a +c ) C .a +b +c D .b -a +c【解析】DC →=DA →+AB →+BC →=a -b +c . 【答案】A 二、填空题5.EF →+DE →-DB →=________.【解析】EF →+DE →-DB →=EF →+BE →=BF →. 【答案】BF →6.若a ,b 为相反向量,且|a |=1,|b |=1,则|a +b |=________,|a -b |=________.【解析】若a ,b 为相反向量,则a +b =0,所以|a +b |=0,又a =-b ,所以|a |=|-b |=1,因为a 与-b 共线同向,所以|a -b |=2. 【答案】0 27.设点M 是线段BC 的中点,点A 在直线BC 外,且|BC →|=4,|AB →+AC →|=|AB →-AC →|,则|AM →|=________.【解析】以AB ,AC 为邻边作平行四边形ACDB ,由向量加减法几何意义可知,AD →=AB →+AC →,CB →=AB →-AC →,∵|AB →+AC →|=|AB →-AC →|,平行四边形ABCD 为矩形,∴|AD →|=|CB →|,又|BC →|=4,M 是线段BC 的中点, ∴|AM →|=12|AD →|=12|BC →|=2.【答案】2 三、解答题8.如图,已知向量a ,b ,c 不共线,求作向量a +b -c .【解析】方法一:如图①,在平面内任取一点O ,作OA →=a ,AB →=b ,则OB →=a +b ,再作OC →=c ,则CB →=a +b -c .方法二:如图②,在平面内任取一点O ,作OA →=a ,AB →=b ,则OB →=a +b ,再作CB →=c ,连接OC ,则OC →=a +b -c .9.化简下列各式:(1)(AB →+MB →)+(-OB →-MO →); (2)AB →-AD →-DC →.【解析】(1)方法一 原式=AB →+MB →+BO →+OM →=(AB →+BO →)+(OM →+MB →)=AO →+OB →=AB →. 方法二 原式=AB →+MB →+BO →+OM →=AB →+(MB →+BO →)+OM →=AB →+MO →+OM →=AB →+0=AB →. (2)方法一 原式=DB →-DC →=CB →.方法二 原式=AB →-(AD →+DC →)=AB →-AC →=CB →. 10.如图,解答下列各题:(1)用a ,d ,e 表示DB →; (2)用b ,c 表示DB →; (3)用a ,b ,e 表示EC →; (4)用d ,c 表示EC →.【解析】由题意知,AB →=a ,BC →=b ,CD →=c ,DE →=d ,EA →=e ,则 (1)DB →=DE →+EA →+AB →=a +d +e . (2)DB →=CB →-CD →=-BC →-CD →=-b -c . (3)EC →=EA →+AB →+BC →=a +b +e . (4)EC →=-CE →=-(CD →+DE →)=-c -d .6.2.3 向量的数乘运算一、选择题1.4(a -b )-3(a +b )-b 等于( ) A .a -2b B .a C .a -6b D .a -8b【解析】原式=4a -4b -3a -3b -b =a -8b .2.点C 在直线AB 上,且AC →=3AB →,则BC →等于( ) A .-2AB → B.13AB →C .-13AB →D .2AB →【解析】如图,AC →=3AB →,所以BC →=2AB →. 【答案】D3.已知向量a ,b 是两个不共线的向量,且向量m a -3b 与a +(2-m )b 共线,则实数m 的值为( )A .-1或3 B. 3 C .-1或4 D .3或4【解析】因为向量m a -3b 与a +(2-m )b 共线,且向量a ,b 是两个不共线的向量,所以m =-32-m ,解得m =-1或m =3. 【答案】A 4.如图,已知AB →=a ,AC →=b ,BD →=3DC →,用a ,b 表示AD →,则AD →=( ) A .a +34bB.34a +14bC.14a +14bD.14a +34b 【解析】AD →=AB →+BD →=AB →+34BC →=AB →+34(AC →-AB →)=14AB →+34AC →=14a +34b .【答案】D5.已知|a |=4,|b |=8,若两向量方向同向,则向量a 与向量b 的关系为b =________a . 【解析】由于|a |=4,b =8,则|b |=2|a |,又两向量同向,故b =2a . 【答案】26.点C 在线段AB 上,且AC CB =32,则AC →=________AB →,BC →=________AB →.【解析】因为C 在线段AB 上,且AC CB =32,所以AC →与AB →方向相同,BC →与AB →方向相反,且AC AB =35,BC AB =25,所以AC →=35AB →,BC →=-25AB →. 【答案】35 -257.已知向量a ,b 满足|a |=3,|b |=5,且a =λb ,则实数λ的值是________. 【解析】由a =λb ,得|a |=|λb |=|λ||b |.∵|a |=3,|b |=5, ∴|λ|=35,即λ=±35.【答案】±35三、解答题 8.计算(1)13(a +2b )+14(3a -2b )-12(a -b ); (2)12⎣⎢⎡⎦⎥⎤3a +2b-23a -b -76⎣⎢⎡⎦⎥⎤12a +37⎝ ⎛⎭⎪⎫b +76a . 【解析】(1)原式=⎝ ⎛⎭⎪⎫13+34-12a +⎝ ⎛⎭⎪⎫23-12+12b =712a +23b . (2)原式=12⎝ ⎛⎭⎪⎫73a +b -76⎝ ⎛⎭⎪⎫a +37b =76a +12b -76a -12b =0. 9.已知E ,F 分别为四边形ABCD 的对角线AC ,BD 的中点,设BC →=a ,DA →=b ,试用a ,b 表示EF →.【解析】如图所示,取AB 的中点P ,连接EP ,FP .在△ABC 中,EP 是中位线, 所以PE →=12BC →=12a .在△ABD 中,FP 是中位线,所以PF →=12AD →=-12DA →=-12b .在△EFP 中,EF →=EP →+PF →=-PE →+PF →=-12a -12b =-12(a +b ).10.已知e ,f 为两个不共线的向量,若四边形ABCD 满足AB →=e +2f ,BC →=-4e -f ,CD →=-5e -3f .(1)用e 、f 表示AD →;(2)证明:四边形ABCD 为梯形.【解析】(1)AD →=AB →+BC →+CD →=(e +2f )+(-4e -f )+(-5e -3f )=(1-4-5)e +(2-1-3)f =-8e -2f .(2)证明:因为AD →=-8e -2f =2(-4e -f )=2BC →, 所以AD →与BC →方向相同,且AD →的长度为BC →的长度的2倍, 即在四边形ABCD 中,AD ∥BC ,且AD ≠BC , 所以四边形ABCD 是梯形.6.2.4 向量的数量积一、选择题1.若|m |=4,|n |=6,m 与n 的夹角为45°,则m ·n =( ) A .12 B .12 2 C .-12 2 D .-12【解析】m ·n =|m ||n |cos θ=4×6×cos 45°=24×22=12 2. 【答案】B2.已知a ·b =-122,|a |=4,a 和b 的夹角为135°,则|b |=( ) A .12 B .3 C .6 D .3 3【解析】a ·b =|a ||b |cos 135°=-122,又|a |=4,解得|b |=6. 【答案】C3.已知向量a ,b 满足|a |=2,|b |=3,a ·(b -a )=-1,则a 与b 的夹角为( ) A.π6 B.π4 C.π3 D.π2【解析】因为|a |=2,a ·(b -a )=-1, 所以a ·(b -a )=a ·b -a 2=a ·b -22=-1, 所以a ·b =3.又因为|b |=3,设a 与b 的夹角为θ,则cos θ=a ·b |a ||b |=32×3=12.又θ∈[0,π],所以θ=π3. 【答案】C4.若a ·b >0,则a 与b 的夹角θ的取值范围是( )A.⎣⎢⎡⎭⎪⎫0,π2B.⎣⎢⎡⎭⎪⎫π2,πC.⎝⎛⎦⎥⎤π2,π D.⎝ ⎛⎭⎪⎫π2,π 【解析】因为a ·b >0,所以cos θ>0,所以θ∈⎣⎢⎡⎭⎪⎫0,π2.【答案】A 二、填空题5.如图所示,在Rt△ABC 中,∠A =90°,AB =1,则AB →·BC →的值是________.【解析】方法一 AB →·BC →=|AB →||BC →|cos(180°-∠B )=-|AB →||BC →|cos∠B =-|AB →||BC→|·|AB →||BC →|=-|AB →|2=-1.方法二 |BA →|=1,即BA →为单位向量,AB →·BC →=-BA →·BC →=-|BA →||BC →|cos∠B ,而|BC →|·cos∠B =|BA →|,所以AB →·BC →=-|BA →|2=-1. 【答案】-16.已知向量a ,b 满足|a |=1,|b |=4,且a ·b =2,则a 与b 的夹角为________.【解析】设a 与b 的夹角为θ,cos θ=a ·b |a |·|b |=21×4=12,又因为θ∈[0,π],所以θ=π3. 【答案】π37.已知|a |=3,向量a 与b 的夹角为π3,则a 在b 方向上的投影为________.【解析】向量a 在b 方向上的投影为|a |cos θ=3×cos π3=32.【答案】32三、解答题8.已知|a |=3,|b |=4,a 与b 的夹角为120°,求: (1)a 2-b 2;(2)(2a -b )·(a +3b ).【解析】(1)a 2-b 2=|a |2-|b |2=32-42=-7.(2)(2a -b )·(a +3b )=2a 2+5a ·b -3b 2=2|a |2+5|a ||b |·cos 120°-3|b |2=2×32+5×3×4×⎝ ⎛⎭⎪⎫-12-3×42=-60. 9.(1)已知|a |=|b |=5,向量a 与b 的夹角为π3,求|a +b |,|a -b |,|3a +b |;(2)已知|a |=|b |=5,且|3a -2b |=5,求|3a +b |的值;(3)如图,已知在▱ABCD 中,AB =3,AD =1,∠DAB =π3,求对角线AC 和BD 的长.【解析】(1)a ·b =|a ||b |cos π3=5×5×12=252,∴|a +b |=a +b 2=|a |2+2a ·b +|b |2=25+2×252+25=53,|a -b |=a -b2=|a |2+|b |2-2a ·b =25=5, |3a +b |=3a +b2=9a 2+b 2+6a ·b =325=513.(2)∵|3a -2b |2=9|a |2-12a ·b +4|b |2=9×25-12a ·b +4×25=325-12a ·b ,又|3a -2b |=5,∴325-12a ·b =25,则a ·b =25.∴|3a +b |2=(3a +b )2=9a 2+6a ·b +b 2=9×25+6×25+25=400.故|3a +b |=20. (3)设AB →=a ,AD →=b ,则|a |=3,|b |=1,a 与b 的夹角θ=π3.∴a ·b =|a ||b |cos θ=32.又∵AC →=a +b ,DB →=a -b , ∴|AC →|=AC →2=a +b 2=a 2+2a ·b +b 2=13,|DB →|=DB →2=a -b2=a 2-2a ·b +b 2=7.∴AC =13,BD =7.10.已知|a |=2|b |=2,且向量a 在向量b 方向上的投影为-1. (1)求a 与b 的夹角θ; (2)求(a -2b )·b ;(3)当λ为何值时,向量λa +b 与向量a -3b 互相垂直? 【解析】(1)由题意知|a |=2,|b |=1. 又a 在b 方向上的投影为|a |cos θ=-1, ∴cos θ=-12,∴θ=2π3.(2)易知a ·b =-1,则(a -2b )·b =a ·b -2b 2=-1-2=-3. (3)∵λa +b 与a -3b 互相垂直,∴(λa +b )·(a -3b )=λa 2-3λa ·b +b ·a -3b 2 =4λ+3λ-1-3=7λ-4=0, ∴λ=47.6.3.1 平面向量基本定理一、选择题1.已知向量a =e 1-2e 2,b =2e 1+e 2,其中e 1,e 2不共线,则a +b 与c =6e 1-2e 2的关系是( ) A .不共线 B .共线 C .相等 D .不确定 【解析】∵a +b =3e 1-e 2, ∴c =2(a +b ).∴a +b 与c 共线. 【答案】B2.已知AD 是△ABC 的中线,AB →=a ,AD →=b ,以a ,b 为基底表示AC →,则AC →=( ) A.12(a -b ) B .2b -a C.12(b -a ) D .2b +a【解析】如图,AD 是△ABC 的中线,则D 为线段BC 的中点,从而AD →=12(AB →+AC →),则AC →=2AD→-AB →=2b -a . 【答案】B3.在正方形ABCD 中,AC →与CD →的夹角等于( ) A .45° B.90° C .120° D.135° 【解析】如图所示,将AC →平移到CE →,则CE →与CD →的夹角即为AC →与CD →的夹角,夹角为135°. 【答案】D4.若D 点在三角形ABC 的边BC 上,且CD →=4DB →=rAB →+sAC →,则3r +s 的值为( ) A.165 B.125 C.85 D.45【解析】∵CD →=4DB →=rAB →+sAC →, ∴CD →=45CB →=45(AB →-AC →)=rAB →+sAC →,∴r =45,s =-45.∴3r +s =125-45=85.【答案】C 二、填空题5.已知向量a ,b 是一组基底,实数x ,y 满足(3x -4y )a +(2x -3y )b =6a +3b ,则x -y 的值为________.【解析】因为a ,b 是一组基底,所以a 与b 不共线, 因为(3x -4y )a +(2x -3y )b =6a +3b ,所以⎩⎪⎨⎪⎧3x -4y =6,2x -3y =3,解得⎩⎪⎨⎪⎧x =6,y =3,所以x -y =3.【答案】36.已知O ,A ,B 是平面上的三个点,直线AB 上有一点C ,满足2AC →+CB →=0,若OA →=a ,OB →=b ,用a ,b 表示向量OC →,则OC →=________.【解析】AC →=OC →-OA →,CB →=OB →-OC →,∵2AC →+CB →=0,∴2(OC →-OA →)+(OB →-OC →)=0,∴OC →=2OA →-OB →=2a -b . 【答案】2a -b7.在正方形ABCD 中,E 是DC 边上的中点,且AB →=a ,AD →=b ,则BE →=________.【解析】BE →=BC →+CE →=AD →-12AB →=b -12a .【答案】b -12a三、解答题8.已知e 1,e 2是平面内两个不共线的向量,a =3e 1-2e 2,b =-2e 1+e 2,c =7e 1-4e 2,试用向量a 和b 表示c .【解析】因为a ,b 不共线,所以可设c =x a +y b , 则x a +y b =x (3e 1-2e 2)+y (-2e 1+e 2) =(3x -2y )e 1+(-2x +y )e 2=7e 1-4e 2. 又因为e 1,e 2不共线,所以⎩⎪⎨⎪⎧3x -2y =7,-2x +y =-4,解得⎩⎪⎨⎪⎧x =1,y =-2,所以c =a -2b .9.如图所示,设M ,N ,P 是△ABC 三边上的点,且BM →=13BC →,CN →=13CA →,AP →=13AB →,若AB →=a ,AC→=b ,试用a ,b 将MN →、NP →、PM →表示出来. 【解析】NP →=AP →-AN →=13AB →-23AC →=13a -23b ,MN →=CN →-CM →=-13AC →-23CB →=-13b -23(a -b )=-23a +13b ,PM →=-MP →=-(MN →+NP →)=13(a +b ).10.若点M 是△ABC 所在平面内一点,且满足:AM →=34AB →+14AC →.(1)求△ABM 与△ABC 的面积之比;(2)若N 为AB 中点,AM 与CN 交于点O ,设BO →=xBM →+yBN →,求x ,y 的值. 【解析】(1)由AM →=34AB →+14AC →可知M ,B ,C 三点共线,如图,令BM →=λBC →⇒AM →=AB →+BM →=AB →+λBC →=AB →+λ(AC →-AB →)=(1-λ)AB →+λAC →⇒λ=14,所以S △ABM S △ABC =14,即面积之比为1 4. (2)由BO →=xBM →+yBN →⇒BO →=xBM →+y 2BA →,BO →=x 4BC →+yBN ,由O ,M ,A 三点共线及O ,N ,C 三点共线⇒⎩⎪⎨⎪⎧ x +y2=1,x4+y =1⇒⎩⎪⎨⎪⎧x =47,y =67.6.3.2 平面向量的正交分解及坐标表示 6.3.3 平面向量加、减运算的坐标表示一、选择题1.设i ,j 是平面直角坐标系内分别与x 轴,y 轴正方向相同的两个单位向量,O 为坐标原点,若OA →=4i +2j ,OB →=3i +4j ,则2OA →+OB →的坐标是( ) A .(1,-2) B .(7,6) C .(5,0) D .(11,8)【解析】因为OA →=(4,2),OB →=(3,4), 所以2OA →+OB →=(8,4)+(3,4)=(11,8). 【答案】D2.已知向量a =(-1,2),b =(1,0),那么向量3b -a 的坐标是( ) A .(-4,2) B .(-4,-2) C .(4,2) D .(4,-2)【解析】3b -a =3(1,0)-(-1,2)=(4,-2).【答案】D3.已知向量a =(1,2),2a +b =(3,2),则b =( ) A .(1,-2) B .(1,2) C .(5,6) D .(2,0)【解析】b =(3,2)-2a =(3,2)-(2,4)=(1,-2). 【答案】A4.已知向量i =(1,0),j =(0,1),对坐标平面内的任一向量a ,给出下列四个结论: ①存在唯一的一对实数x ,y ,使得a =(x ,y );②若x 1,x 2,y 1,y 2∈R ,a =(x 1,y 1)≠(x 2,y 2),则x 1≠x 2,且y 1≠y 2; ③若x ,y ∈R ,a =(x ,y ),且a ≠0,则a 的起点是原点O ; ④若x ,y ∈R ,a ≠0,且a 的终点坐标是(x ,y ),则a =(x ,y ). 其中正确结论的个数是( ) A .1 B .2 C .3 D .4【解析】由平面向量基本定理知①正确;若a =(1,0)≠(1,3),但1=1,故②错误;因为向量可以平移,所以a =(x ,y )与a 的起点是不是原点无关,故③错误;当a 的终点坐标是(x ,y )时,a =(x ,y )是以a 的起点是原点为前提的,故④错误.【答案】A 二、填空题5.在平面直角坐标系内,已知i 、j 是两个互相垂直的单位向量,若a =i -2j ,则向量用坐标表示a =________.【解析】由于i ,j 是两个互相垂直的单位向量,所以a =(1,-2). 【答案】(1,-2)6.如右图所示,已知O 是坐标原点,点A 在第一象限,|OA →|=43,∠xOA =60°,则向量OA →的坐标为________.【解析】设点A (x ,y ),则x =|OA →|·cos 60°=43cos 60°=23,y =|OA →|·sin 60°=43sin 60°=6,即A (23,6),所以OA →=(23,6). 【答案】(23,6)7.已知向量a =(x +3,x 2-3x -4)与AB →相等,其中A (1,2),B (3,2),则x =________.【解析】易得AB →=(2,0),由a =(x +3,x 2-3x -4)与AB →相等得⎩⎪⎨⎪⎧x +3=2,x 2-3x -4=0,解得x =-1.【答案】-1 三、解答题8.如图,取与x 轴、y 轴同向的两个单位向量i ,j 作为基底,分别用i ,j 表示OA →,OB →,AB →,并求出它们的坐标.【解析】由图形可知,OA →=6i +2j ,OB →=2i +4j ,AB →=-4i +2j ,它们的坐标表示为OA →=(6,2),OB →=(2,4),AB →=(-4,2).9.已知a =(2,-4),b =(-1,3),c =(6,5),p =a +2b -c . (1)求p 的坐标 ;(2)若以a ,b 为基底,求p 的表达式.【解析】(1)p =(2,-4)+2(-1,3)-(6,5)=(-6,-3). (2)设p =λa +μb (λ,μ∈R ),则(-6,-3)=λ(2,-4)+μ(-1,3)=(2λ-μ,-4λ+3μ),所以⎩⎪⎨⎪⎧2λ-μ=-6,-4λ+3μ=-3,所以⎩⎪⎨⎪⎧λ=-212,μ=-15,所以p =-212a -15b .10.已知O 是△ABC 内一点,∠AOB =150°,∠BOC =90°,设OA →a ,OB →=b ,OC →=c ,且|a |=2,|b|=1,|c |=3,试用a ,b 表示c .【解析】如图,以O 为原点,OA →为x 轴的非负半轴建立平面直角坐标系,由三角函数的定义,得B (cos 150°,sin 150°),C (3cos 240°,3sin 240°). 即B ⎝ ⎛⎭⎪⎫-32,12,C ⎝ ⎛⎭⎪⎫-32,-332,又∵A (2,0), 故a =(2,0),b =⎝ ⎛⎭⎪⎫-32,12,c =⎝ ⎛⎭⎪⎫-32,-332. 设c =λ1a +λ2b (λ1,λ2∈R ),∴⎝ ⎛⎭⎪⎫-32,-332=λ1(2,0)+λ2⎝ ⎛⎭⎪⎫-32,12=⎝⎛⎭⎪⎫2λ1-32λ2,12λ2,∴⎩⎪⎨⎪⎧2λ1-32λ2=-32,12λ2=-332,∴⎩⎨⎧λ1=-3,λ2=-33,∴c =-3a -33b .6.3.4 平面向量数乘运算的坐标表示一、选择题1.已知平面向量a =(1,2),b =(-2,m ),且a ∥b ,则2a +3b =( ) A .(-2,-4) B .(-3,-6) C .(-4,-8) D .(-5,-10)【解析】由a =(1,2),b =(-2,m ),且a ∥b ,得1×m =2×(-2),解得m =-4,所以b =(-2,-4),所以2a +3b =2(1,2)+3(-2,-4)=(-4,-8). 【答案】C2.已知向量a =(1,2),b =(λ,1),若(a +2b )∥(2a -2b ),则λ的值等于( ) A.12 B.13 C .1 D .2【解析】a +2b =(1,2)+2(λ,1)=(1+2λ,4),2a -2b =2(1,2)-2(λ,1)=(2-2λ,2),由(a +2b )∥(2a -2b ),可得2(1+2λ)-4(2-2λ)=0,解得λ=12,故选A.【答案】A3.已知A (1,-3),B ⎝ ⎛⎭⎪⎫8,12,且A ,B ,C 三点共线,则点C 的坐标可以是( ) A .(-9,1) B .(9,-1) C .(9,1) D .(-9,-1) 【解析】设点C 的坐标是(x ,y ), 因为A ,B ,C 三点共线, 所以AB →∥AC →.因为AB →=⎝ ⎛⎭⎪⎫8,12-(1,-3)=⎝ ⎛⎭⎪⎫7,72,AC →=(x ,y )-(1,-3)=(x -1,y +3),所以7(y +3)-72(x -1)=0,整理得x -2y =7,经检验可知点(9,1)符合要求,故选C. 【答案】C4.已知向量OA →=(3,-4),OB →=(6,-3),OC →=(2m ,m +1),若AB →∥OC →,则实数m 的值为( ) A.35 B .-35 C .3 D .-3【解析】向量OA →=(3,-4),OB →=(6,-3), ∴AB →=(3,1),∵OC →=(2m ,m +1),AB →∥OC →, ∴3m +3=2m ,解得m =-3,故选D.【答案】D 二、填空题5.已知向量a =(3x -1,4)与b =(1,2)共线,则实数x 的值为________.【解析】因为向量a =(3x -1,4)与b =(1,2)共线,所以2(3x -1)-4×1=0,解得x =1. 【答案】16.已知A (2,1),B (0,2),C (-2,1),O (0,0),给出下列结论: ①直线OC 与直线BA 平行; ②AB →+BC →=CA →; ③OA →+OC →=OB →; ④AC →=OB →-2OA →.其中,正确结论的序号为________.【解析】①因为OC →=(-2,1),BA →=(2,-1),所以OC →=-BA →,又直线OC ,BA 不重合,所以直线OC ∥BA ,所以①正确;②因为AB →+BC →=AC →≠CA →,所以②错误;③因为OA →+OC →=(0,2)=OB →,所以③正确;④因为AC →=(-4,0),OB →-2OA →=(0,2)-2(2,1)=(-4,0),所以④正确. 【答案】①③④7.已知向量a =(1,2),b =(1,λ),c =(3,4).若a +b 与c 共线,则实数λ=________. 【解析】因为a +b =(1,2)+(1,λ)=(2,2+λ),所以根据a +b 与c 共线得2×4-3×(2+λ)=0,解得λ=23.【答案】23三、解答题8.已知a =(x,1),b =(4,x ),a 与b 共线且方向相同,求x . 【解析】∵a =(x,1),b =(4,x ),a ∥b . ∴x 2-4=0,解得x 1=2,x 2=-2.当x =2时,a =(2,1),b =(4,2),a 与b 共线且方向相同; 当x =-2时,a =(-2,1),b =(4,-2),a 与b 共线且方向相反. ∴x =2.9.已知A ,B ,C 三点的坐标分别为(-1,0),(3,-1),(1,2),并且AE →=13AC →,BF →=13BC →,求证:EF →∥AB →.证明:设E (x 1,y 1),F (x 2,y 2),依题意有AC →=(2,2),BC →=(-2,3),AB →=(4,-1). ∵AE →=13AC →,∴AE →=⎝ ⎛⎭⎪⎫23,23,∵BF →=13BC →,∴BF →=⎝ ⎛⎭⎪⎫-23,1.∵AE →=(x 1+1,y 1)=⎝ ⎛⎭⎪⎫23,23,∴E ⎝ ⎛⎭⎪⎫-13,23,∵BF →=(x 2-3,y 2+1)=⎝ ⎛⎭⎪⎫-23,1,∴F ⎝ ⎛⎭⎪⎫73,0, ∴EF →=⎝ ⎛⎭⎪⎫83,-23.又∵4×⎝ ⎛⎭⎪⎫-23-83×(-1)=0,∴EF →∥AB →. 10.已知a =(1,0),b =(2,1). (1)当k 为何值时,k a -b 与a +2b 共线?(2)若AB →=2a +3b ,BC →=a +m b 且A ,B ,C 三点共线,求m 的值. 【解析】(1)k a -b =k (1,0)-(2,1)=(k -2,-1),a +2b =(1,0)+2(2,1)=(5,2).因为k a -b 与a +2b 共线,所以2(k -2)-(-1)×5=0,得k =-12.(2)因为A ,B ,C 三点共线, 所以AB →=λBC →,λ∈R , 即2a +3b =λ(a +m b ),所以⎩⎪⎨⎪⎧2=λ,3=mλ,解得m =32.6.3.5 平面向量数量积的坐标表示一、选择题1.若向量a =(3,m ),b =(2,-1),a ·b =0,则实数m 的值为( )A .-32 B.32C .2D .6【解析】依题意得6-m =0,m =6,选D. 【答案】D2.向量a =(1,-1),b =(-1,2),则(2a +b )·a =( ) A .-1 B .0 C .1 D .2【解析】a =(1,-1),b =(-1,2), ∴(2a +b )·a =(1,0)·(1,-1)=1. 【答案】C3.已知a ,b 为平面向量,且a =(4,3),2a +b =(3,18),则a ,b 夹角的余弦值等于( ) A.865 B .-865 C.1665 D .-1665【解析】∵a =(4,3),∴2a =(8,6).又2a +b =(3,18), ∴b =(-5,12),∴a ·b =-20+36=16. 又|a |=5,|b |=13, ∴cos〈a ,b 〉=165×13=1665.【答案】C4.已知向量a =(-1,2),b =(3,1),c =(k,4),且(a -b )⊥c ,则k =( ) A .-6 B .-1 C .1 D .6【解析】∵a =(-1,2),b =(3,1),∴a -b =(-4,1),∵(a -b )⊥c ,∴-4k +4=0,解得k =1. 【答案】C 二、填空题5.a =(-4,3),b =(1,2),则2|a |2-3a ·b =________. 【解析】因为a =(-4,3),所以2|a |2=2×(-42+32)2=50.a ·b =-4×1+3×2=2.所以2|a |2-3a ·b =50-3×2=44. 【答案】446.设向量a =(1,0),b =(-1,m ).若a ⊥(m a -b ),则m =________.【解析】由题意得,m a -b =(m +1,-m ),根据向量垂直的充要条件可得1×(m +1)+0×(-m )=0,所以m =-1.【答案】-17.已知平面向量a =(1,2),b =(4,2),c =m a +b (m ∈R ),且c 与a 的夹角等于c 与b 的夹角,则m =________.【解析】c =(m +4,2m +2),|a |=5,|b |=25, 设c ,a 的夹角为α,c ,b 的夹角为θ,又因为cos α=c ·a |c ||a |,cos θ=c ·b |c ||b |,由题意知c ·a |a |=c ·b |b |,即5m +85=8m +2025. 解得m =2. 【答案】2 三、解答题8.已知平面向量a =(1,x ),b =(2x +3,-x ),x ∈R . (1)若a ⊥b ,求x 的值; (2)若a ∥b ,求|a -b |.【解析】(1)若a ⊥b ,则a ·b =(1,x )·(2x +3,-x )=1×(2x +3)+x (-x )=0,即x 2-2x -3=0,解得x =-1或x =3.(2)若a ∥b ,则1×(-x )-x (2x +3)=0, 即x (2x +4)=0,解得x =0或x =-2. 当x =0时,a =(1,0),b =(3,0), |a -b |=|(1,0)-(3,0)|=|(-2,0)|=2. 当x =-2时,a =(1,-2),b =(-1,2), |a -b |=|(1,-2)-(-1,2)|=|(2,-4)|=2 5.9.已知向量a ,b ,c 是同一平面内的三个向量,其中a =(1,-1). (1)若|c |=32,且c ∥a ,求向量c 的坐标;(2)若b 是单位向量,且a ⊥(a -2b ),求a 与b 的夹角θ.【解析】(1)设c =(x ,y ),由|c |=32,c ∥a 可得⎩⎪⎨⎪⎧y +x =0,x 2+y 2=18,所以⎩⎪⎨⎪⎧x =-3,y =3,或⎩⎪⎨⎪⎧x =3,y =-3,故c =(-3,3)或c =(3,-3).(2)因为|a |=2,且a ⊥(a -2b ),所以a ·(a -2b )=0,即a 2-2a ·b =0,∴a ·b =1,故cos θ=a ·b |a |·|b |=22,∵θ∈[0,π], ∴θ=π4.10.在△PQR 中,PQ →=(2,3),PR →=(1,k ),且△PQR 的一个内角为直角,求k 的值. 【解析】(1)当∠P 为直角时,PQ ⊥PR , ∴PQ →·PR →=0,即2+3k =0,∴k =-23.(2)当∠Q 为直角时,QP ⊥QR ,易知QP →=(-2,-3),QR →=PR →-PQ →=(-1,k -3). 由QP →·QR →=0,得2-3(k -3)=0,∴k =113.(3)当∠R 为直角时,RP ⊥RQ ,易知RP →=(-1,-k ),RQ →=PQ →-PR →=(1,3-k ). 由RP →·RQ →=0,得-1-k (3-k )=0,∴k =3±132.综上所述,k 的值为-23或113或3+132或3-132.6.4 平面向量的应用一、选择题1.已知三个力F 1=(-2,-1),F 2=(-3,2),F 3=(4,-3)同时作用于某物体上的一点,为使物体保持平衡,现加上一个力F 4,则F 4等于( ) A .(-1,-2) B .(1,-2) C .(-1,2) D .(1,2)【解析】F 4=-(F 1+F 2+F 3)=-[(-2,-1)+(-3,2)+(4,-3)]=(1,2). 【答案】D2.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若b 2=ac ,c =2a ,则cos C =( ) A.24 B .-24C.34 D .-34【解析】由题意得,b 2=ac =2a 2,即b =2a ,∴cos C =a 2+b 2-c 22ab =a 2+2a 2-4a 22a ×2a=-24.【答案】B3.河水的流速为2 m/s ,一艘小船以垂直于河岸方向10 m/s 的速度驶向对岸,则小船在静水中的速度大小为( ) A .10 m/s B .226 m/s C .4 6 m/s D .12 m/s【解析】由题意知|v 水|=2 m/s ,|v 船|=10 m/s ,作出示意图如右图. ∴小船在静水中的速度大小|v |=102+22=104=226 (m/s). 【答案】B4.在△ABC 中,AB =3,AC 边上的中线BD =5,AC →·AB →=5,则AC 的长为( ) A .1 B .2 C .3 D .4【解析】因为BD →=AD →-AB →=12AC →-AB →,所以BD →2=⎝ ⎛⎭⎪⎫12AC →-AB →2=14AC →2-AC →·AB →+AB →2,即14AC →2=1,所以|AC →|=2,即AC =2. 【答案】B 二、填空题5.如图所示,一力作用在小车上,其中力F 的大小为10牛,方向与水平面成60°角,当小车向前运动10米时,力F 做的功为________焦耳. 【解析】设小车位移为s ,则|s |=10米,W F =F ·s =|F ||s |·cos 60°=10×10×12=50(焦耳).【答案】506.若AB →=3e ,DC →=5e ,且|AD →|=|BC →|,则四边形ABCD 的形状为________. 【解析】由AB →=3e ,DC →=5e ,得AB →∥DC →,AB →≠DC →,又因为ABCD 为四边形,所以AB ∥DC ,AB ≠DC . 又|AD →|=|BC →|,得AD =BC , 所以四边形ABCD 为等腰梯形. 【答案】等腰梯形7.某同学骑电动车以24 km/h 的速度沿正北方向的公路行驶,在点A 处测得电视塔S 在电动车的北偏东30°方向上,15 min 后到点B 处,测得电视塔S 在电动车的北偏东75°方向上,则点B 与电视塔的距离是________ km.【解析】如题图,由题意知AB =24×1560=6,在△ABS 中,∠BAS =30°,AB =6,∠ABS =180°-75°=105°,∴∠ASB =45°,由正弦定理知BS sin 30°=AB sin 45°,∴BS =AB ·sin 30°sin 45°=32(km). 【答案】3 2 三、解答题 8.如图所示,在正方形ABCD 中,P 为对角线AC 上任一点,PE ⊥AB ,PF ⊥BC ,垂足分别为E ,F ,连接DP ,EF ,求证:DP ⊥EF .证明:方法一 设正方形ABCD 的边长为1,。

人教版高中数学必修第二册 课时作业(一) 【含解析】

人教版高中数学必修第二册 课时作业(一) 【含解析】

数学必修第二册课时作业(一)【原卷版】1.给出下列物理量:①质量;②速度;③位移;④力;⑤路程;⑥功;⑦加速度.其中是向量的有()A.4个B.5个C.6个D.7个2.【多选题】下列结论正确的是()A.若|a|=|b|,则a=b或a=-bB.非零向量a与b平行,则a与b的方向相同或相反C.起点不同,但方向相同且模相等的向量是相等向量D.与非零向量a平行的单位向量有1个3.设O是△ABC的外心,则AO→,BO→,CO→是()A.相等向量B.模相等的向量C.平行向量D.起点相同的向量4.【多选题】如图,O是正方形ABCD的中心,则下列结论正确的是()A.AO→=OC→B.AO→∥AC→C.AB→与CD→共线D.AO→=BO→5.在△ABC中,AB=AC,D,E分别是AB,AC的中点,则()A.AB→与AC→共线B.DE→与CB→共线C.AD→与AE→相等D.AD→与BD→相等6.四边形ABCD中,AB→=2DC→,则四边形ABCD为()A.平行四边形B.矩形C.梯形D.菱形7.在坐标平面上,把所有单位向量的起点平移到坐标系的原点,则它们的终点所构成的图形是________.8.已知在边长为2的菱形ABCD中,∠ABC=60°,则|BD→|=________.9.某人向正东方向行进100m后,再向正南方向行进1003m,则此人位移的方向是________.10.如图,若四边形ABCD 为正方形,△BCE 为等腰直角三角形,则:(1)图中与AB →共线的向量有________________________________________________________________;(2)图中与AB →相等的向量有________;(3)图中与AB →的模相等的向量有_______________________________________;(4)图中与EC →相等的向量有________.11.如图,在平行四边形ABCD 中,E ,F 分别是AD ,BC 的中点,则以A ,B ,C ,D ,E ,F 这六个点中任意两点分别作为起点和终点的所有向量中,与向量EF →方向相反的向量是________.12.若A 地位于B 地正西方向5km 处,C 地位于A 地正北方向5km 处,则C 地相对于B 地的位移是________.13.一辆消防车从A 地去B 地执行任务,先从A 地向北偏东30°方向行驶2km 到达D 地,然后从D 地沿北偏东60°方向行驶6km 到达C 地,从C 地又向南偏西30°方向行驶2km 才到达B 地.(1)在图中画出向量AD →,DC →,CB →,AB →;(2)描述B 地相对于A 地的位置.14.如图,在四边形ABCD 中,已知M ,N 分别是BC ,AD 的中点,且AB →=DC →,求证:CN 綉MA .15.中国象棋中规定:马走“日”字.下图是中国象棋的半个棋盘,若马在A 处,可跳到A 1处,也可跳到A 2处,用向量AA 1→或AA 2→表示马走了“一步”.试在图中画出马在B ,C 处走了“一步”的所有情况.1.O 是△ABC 内一点,若|OA →|=|OB →|=|OC →|,则O 是△ABC 的()A .重心B .内心C .外心D .垂心2.【多选题】下列命题中是真命题的是()A .向量AB →∥CD →(AB →,CD →为非零向量)就是AB →所在的直线平行于CD →所在的直线B .零向量与任一向量平行C .相等向量一定是平行向量D .平行向量一定是相等向量3.如图,已知四边形ABCD 是平行四边形,O 是两条对角线的交点,设点集M ={A ,B ,C ,D ,O },向量集合T ={PQ →|P ∈M ,Q ∈M ,且P ,Q 不重合},求集合T 中元素的个数.4.对于下列各种情况,各向量的终点的集合分别是什么图形?(1)把所有单位向量的起点平行移动到同一点P ;(2)把平行于直线l 的所有向量的起点平移到直线l 上的点P ;(3)把平行于直线l 的所有单位向量的起点平移到直线l 上的点P .5.民间流传的一种智力玩具七巧板是将一块正方形切割为五个等腰直角三角形和一个正方形、一个平行四边形,如图所示.试写出图中与FE →模相等的向量.6.指出下图中的平行向量和相等向量.7.如图所示,在四边形ABCD中,AB→=DC→,N,M是AD,BC上的点,且CN→=MA→.(1)求证:DN→=MB→;(2)试写出图中与向量DN→共线的向量.数学必修第二册课时作业(一)【解析版】1.给出下列物理量:①质量;②速度;③位移;④力;⑤路程;⑥功;⑦加速度.其中是向量的有()A .4个B .5个C .6个D .7个答案A解析速度、位移、力、加速度这4个物理量是向量,它们都有大小和方向.2.【多选题】下列结论正确的是()A .若|a |=|b |,则a =b 或a =-bB .非零向量a 与b 平行,则a 与b 的方向相同或相反C .起点不同,但方向相同且模相等的向量是相等向量D .与非零向量a 平行的单位向量有1个答案BC解析A 中两个向量未必共线;D 中与非零向量a 平行的单位向量有2个.3.设O 是△ABC 的外心,则AO →,BO →,CO →是()A .相等向量B .模相等的向量C .平行向量D .起点相同的向量答案B4.【多选题】如图,O 是正方形ABCD 的中心,则下列结论正确的是()A.AO →=OC →B.AO →∥AC →C.AB →与CD →共线 D.AO →=BO→答案ABC解析根据正方形的特征,结合相等向量,平行向量作出判断,只有D 是错误的,AO →与BO →只是模相等,由于方向不相同,所以不是相等向量.5.在△ABC 中,AB =AC ,D ,E 分别是AB ,AC 的中点,则()A.AB →与AC →共线 B.DE →与CB →共线C.AD →与AE →相等D.AD →与BD →相等答案B解析如图,因为D ,E 分别是AB ,AC 的中点,所以由三角形的中位线定理可得DE ∥BC .所以DE →与CB →共线.6.四边形ABCD 中,AB →=2DC →,则四边形ABCD 为()A .平行四边形B .矩形C .梯形D .菱形答案C解析∵AB →=2DC →,∴AB ∥DC 且AB ≠DC .∴四边形ABCD 为梯形.7.在坐标平面上,把所有单位向量的起点平移到坐标系的原点,则它们的终点所构成的图形是________.答案单位圆8.已知在边长为2的菱形ABCD 中,∠ABC =60°,则|BD →|=________.答案23解析由题意知AC ⊥BD ,且∠ABD =30°,设AC ,BD 交点为O ,在Rt △ABO 中,|BO →|=|AB →|·cos 30°=2×32=3,∴|BD →|=2|BO →|=23.9.某人向正东方向行进100m 后,再向正南方向行进1003m ,则此人位移的方向是________.答案南偏东30°解析如图所示,此人从点A 出发,经点B ,到达点C ,则tan ∠BAC =BC BA =1003100=3,∵∠BAC 是三角形的内角,∴∠BAC =60°,即位移的方向是南偏东30°.10.如图,若四边形ABCD 为正方形,△BCE 为等腰直角三角形,则:(1)图中与AB →共线的向量有________________________________________________________________;(2)图中与AB →相等的向量有________;(3)图中与AB →的模相等的向量有_______________________________________;(4)图中与EC →相等的向量有________.答案(1)DC →,BE →,BA →,CD →,EB →,AE →,EA →(2)DC →,BE→(3)BA →,BE →,EB →,DC →,CD →,AD →,DA →,BC →,CB →(4)BD→11.如图,在平行四边形ABCD 中,E ,F 分别是AD ,BC 的中点,则以A ,B ,C ,D ,E ,F 这六个点中任意两点分别作为起点和终点的所有向量中,与向量EF →方向相反的向量是________.答案BA →,FE →,CD→解析由平行四边形的性质,可知AB 綉EF 綉DC .则与向量EF →方向相反的向量有BA →,FE →,CD →.12.若A 地位于B 地正西方向5km 处,C 地位于A 地正北方向5km 处,则C 地相对于B 地的位移是________.答案西北方向52km解析根据题意画出图形如图所示,由图可知|BC →|=52km ,且∠ABC =45°,故C 地相对于B 地的位移是西北方向52km.13.一辆消防车从A 地去B 地执行任务,先从A 地向北偏东30°方向行驶2km 到达D 地,然后从D 地沿北偏东60°方向行驶6km 到达C 地,从C 地又向南偏西30°方向行驶2km才到达B 地.(1)在图中画出向量AD →,DC →,CB →,AB →;(2)描述B 地相对于A 地的位置.解析(1)作向量AD →,DC →,CB →,AB →如图所示.(2)由题意知AD →=BC →,所以四边形ABCD 为平行四边形,所以AB →=DC →,所以B 地相对于A 地的位置为“北偏东60°,相距6km ”.14.如图,在四边形ABCD 中,已知M ,N 分别是BC ,AD 的中点,且AB →=DC →,求证:CN 綉MA .证明因为AB →=DC →,所以AB =DC ,且AB ∥DC .所以四边形ABCD 是平行四边形.所以AD →=BC →.又因为M ,N 分别是BC ,AD 的中点,所以AN =MC ,且AN ∥MC .所以四边形AMCN 是平行四边形.所以CN 綉MA .15.中国象棋中规定:马走“日”字.下图是中国象棋的半个棋盘,若马在A 处,可跳到A 1处,也可跳到A 2处,用向量AA 1→或AA 2→表示马走了“一步”.试在图中画出马在B ,C 处走了“一步”的所有情况.解析根据规则,作出符合要求的所有向量,如图.1.O 是△ABC 内一点,若|OA →|=|OB →|=|OC →|,则O 是△ABC 的()A .重心B .内心C .外心D .垂心答案C解析由条件知点O 到△ABC 三个顶点的距离相等,所以O 是△ABC 的外心.2.【多选题】下列命题中是真命题的是()A .向量AB →∥CD →(AB →,CD →为非零向量)就是AB →所在的直线平行于CD →所在的直线B .零向量与任一向量平行C .相等向量一定是平行向量D .平行向量一定是相等向量答案BC解析向量AB →∥CD →包含AB →所在的直线与CD →所在的直线平行和重合两种情况,故A 是假命题;零向量的方向是任意的,因此与任一向量平行,故B 是真命题;相等向量的方向相同,因此相等向量一定是平行向量,故C 是真命题;平行向量的长度不一定相同,即使长度相同,方向也有可能相反,因此平行向量不一定是相等向量,故D 是假命题.3.如图,已知四边形ABCD 是平行四边形,O 是两条对角线的交点,设点集M ={A ,B ,C ,D ,O },向量集合T ={PQ →|P ∈M ,Q ∈M ,且P ,Q 不重合},求集合T 中元素的个数.解析从模和方向两个角度考虑,以下向量是互不相等的向量:AB →,BA →,AD →,DA →,AO →,OA →,AC →,CA →,BO →,OB →,BD →,DB →,其他向量都与它们中的某一个相等,故集合T 中有12个元素.4.对于下列各种情况,各向量的终点的集合分别是什么图形?(1)把所有单位向量的起点平行移动到同一点P ;(2)把平行于直线l 的所有向量的起点平移到直线l 上的点P ;(3)把平行于直线l 的所有单位向量的起点平移到直线l 上的点P .解析(1)是以P 点为圆心,以1个单位长度为半径的圆.(2)是直线l .(3)是直线l 上与点P 的距离为1个单位长度的两个点.5.民间流传的一种智力玩具七巧板是将一块正方形切割为五个等腰直角三角形和一个正方形、一个平行四边形,如图所示.试写出图中与FE →模相等的向量.解析与FE →模相等的向量有EF →,DO →,OD →,GH →,HG →,OB →,BO →,AO →,OA →,共9个.6.指出下图中的平行向量和相等向量.解析平行向量有CD →∥AB →∥IJ →∥MN →,EF →∥GH →∥KL →.相等向量有CD →=MN →,AB →=IJ →.7.如图所示,在四边形ABCD 中,AB →=DC →,N ,M 是AD ,BC 上的点,且CN →=MA →.(1)求证:DN →=MB →;(2)试写出图中与向量DN →共线的向量.解析(1)证明:因为AB →=DC →,所以|AB →|=|DC →|,且AB ∥CD .因此四边形ABCD 是平行四边形,所以|DA →|=|CB →|,且DA ∥CB .同理,由CN →=MA →,可证四边形CNAM 是平行四边形,所以CM →=NA →.所以|MB →|=|DN →|,即DN →与MB →的模相等,又DN →与MB →的方向相同,故DN →=MB →.(2)图中与向量DN →共线的向量有NA →,AN →,ND →,CM →,MC →,MB →,BM →,CB →,BC →,DA →,AD →.。

高中数学必修2练习册(已排版好可直接打印)

高中数学必修2练习册(已排版好可直接打印)

高中数学必修二练习册1-1-1一、选择题1.如图所示的几何体是()A.五棱锥B.五棱台C.五棱柱D.五面体2.下列命题中,正确的是()A.有两个面互相平行,其余各面都是四边形的几何体叫棱柱B.棱柱中互相平行的两个面叫做棱柱的底面C.棱柱的侧面是平行四边形,而底面不是平行四边形D.棱柱的侧棱都相等,侧面是平行四边形3.棱锥侧面是有公共顶点的三角形,若围成一个棱锥侧面的三角形都是正三角形,则这样侧面的个数最多有几个.()A.3B.4C.5D.64.下面描述中,不是棱锥的几何结构特征的为()A.三棱锥有四个面是三角形B.棱锥都是有两个面是互相平行的多边形C.棱锥的侧面都是三角形D.棱锥的侧棱交于一点5.三棱锥又称四面体,则在四面体A-BCD中,可以当作棱锥底面的三角形有() A.1个B.2个C.3个D.4个6.用一个平面去截四棱锥,不可能得到()A.棱锥B.棱柱C.棱台D.四面体7.以三棱台的顶点为三棱锥的顶点,这样可以把一个三棱台分成三棱锥的个数为() A.1B.2C.3D.48.如图,能推断这个几何体可能是三棱台的是()A.A1B1=2,AB=3,B1C1=3,BC=4B.A1B1=1,AB=2,B1C1=1.5,BC=3,A1C1=2,AC=3C.A1B1=1,AB=2,B1C1=1.5,BC=3,A1C1=2,AC=4D.AB=A1B1,BC=B1C1,CA=C1A19.下列左图形经过折叠不能围成一个棱柱的是()10.如上右图都是正方体的表面展开图,还原成正方体后,其中两个完全一样的是() A.(1)(2)B.(2)(3)C.(3)(4)D.(1)(4)二、填空题11.(1)图(1)中的几何体叫做________,AA1、BB1等叫它的________,A、B、C1等叫它的________.(2)图(2)中的几何体叫做________,P A、PB叫它的________,平面PBC、PCD叫做它的________,平面ABCD叫它的________.(3)图(3)中的几何体叫做________,它是由棱锥________被平行于底面ABCD的平面________截得的.AA′,BB′叫它的__________,平面BCC′B′、平面DAA′D′叫它的________.12.一个正方体的六个面上分别标有字母A、B、C、D、E、F,下图是此正方体的两种不同放置,则与D面相对的面上的字母是________.13.如图,在透明塑料制成的长方体ABCD-A1B1C1D1容器中灌进一些水,将容器底面一边BC 置于地面上,再将容器倾斜,随着倾斜程度的不同,以下命题:①水的形状成棱柱形;②水面EFGH的面积不变;③水的EFGH始终为矩形.其中正确的命题序号是________.14.五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个五棱柱的对角线共有________条.三、解答题15.判断下列语句的对错.(1)一个棱锥至少有四个面;(2)如果四棱锥的底面是正方形,那么这个四棱锥的四条侧棱都相等;(3)五棱锥只有五条棱;(4)用与底面平行的平面去截三棱锥,得到的截面三角形和底面三角形相似.16.如下图所示的几何体中,所有棱长都相等,分析此几何体的构成?有几个面、几个顶点、几条棱?17.已知正方体ABCD-A1B1C1D1,图(1)中截去的是什么几何体?图(2)中截去一部分,其中HG ∥AD∥EF,剩下的几何体是什么?若再用一个完全相同的正方体放在第一个正方体的左边,它们变成了一个什么几何体?18.一个几何体的表面展开平面图如图.(1)该几何体是哪种几何体;(2)该几何体中与“祝”字面相对的是哪个面?与“你”字面相对的是哪个面?1-1-2一、选择题1.给出下列几种说法:①经过圆柱任意两条母线的截面是一个矩形;②连接圆柱上、下底面圆周上两点的线段是圆柱的母线;③圆柱的任意两条母线互相平行.其中正确的个数为() A.0 B.1 C.2 D.32.正方形绕其一条对角线所在直线旋转一周,所得几何体是()A.圆柱B.圆锥C.圆台D.两个圆锥3.下列说法正确的是()A.圆锥的母线长等于底面圆直径B.圆柱的母线与轴垂直C.圆台的母线与轴平行D.球的直径必过球心4.如下图所示的平面中阴影部分绕中间轴旋转一周,形成的几何体形状为() A.一个球体B.一个球体中间挖出一个圆柱C.一个圆柱D.一个球体中间挖去一个长方体5.用一个平面去截一个几何体,得到的截面是圆面,这个几何体不可能是() A.圆锥B.圆柱C.球D.棱柱6.在空间,到定点的距离等于定长的所有点的集合是()A.球B.正方体C.圆D.球面7.经过旋转可以得到图1中几何体的是图2中的()8.图中最左边的几何体由一个圆柱挖去一个以圆柱的上底面为底面,下底面圆心为顶点的圆锥而得.现用一个竖直的平面去截这个几何体,则截面图形可能是()A.(1)(2)B.(1)(3)C.(1)(4)D.(1)(5)二、填空题9.(1)图①中的几何体叫做________,O叫它的________,OA叫它的________,AB叫它的________.(2)图②中的几何体叫________,AB、CD都是它的________,⊙O和⊙O′及其内部是它的________.(3)图③中的几何体叫做________,SB为叫它的________.(4)图④中的几何体叫做________,AA′叫它的________,⊙O′及其内部叫它的________,⊙O及其内部叫它的________,它还可以看作直角梯形OAA′O′绕它的________________旋转一周后,其他各边所形成的面所围成的旋转体.10.等腰三角形绕底边上的高旋转180°,所得几何体是________.11.圆锥的高与底面半径相等,母线等于52,则底面半径等于________.12.如图所示的四个几何体中,是圆柱的为________;是圆锥的为________.三、解答题13.说出下列7种几何体的名称.14.说出如图所示几何体的主要结构特征.15.如图所示,几何体可看作由什么图形旋转360°得到?画出平面图形和旋转轴.16.如图(1)所示的图形绕虚线旋转一周后形成的几何体是由哪些简单几何体组成的.17.一个圆台的母线长为12 cm,两底面面积分别为4πcm2和25π cm2.求:(1)圆台的高;(2)截得此圆台的圆锥的母线长.18.圆锥底面半径为1,高为22,轴截面为P AB,如图,从A点拉一绳子绕圆锥侧面一周回到A点,求最短绳长.1-2-1、2一、选择题1.对几何体的三视图,下列说法正确的是()A.正视图反映物体的长和宽B.俯视图反映物体的长和高C.侧视图反映物体的高和宽D.正视图反映物体的高和宽2.一个空间几何体的正视图与侧视图均为全等的等腰三角形,俯视图为一个圆及其圆心,那么这个几何体为()A.棱锥B.棱柱C.圆锥D.圆柱3.下列几何体各自的三视图中,有且仅有两个视图相同的是()A.①②B.①③C.①④D.②④4.一个几何体的三视图如图,则组成该几何体的简单几何体为()A.圆柱和圆锥B.正方体和圆锥C.四棱柱和圆锥D.正方体和球5.一个几何体的三视图如图,则组成该组合体的简单几何体为()A.圆柱与圆台B.四棱柱与四棱台C.圆柱与四棱台D.四棱柱与圆台6.一个长方体去掉一个小长方体,所得几何体的正(主)视图与侧(左)视图分别如上右图所示,则该几何体的俯视图为()7.如右图所示几何体的正视图和侧视图都正确的是()8.在一个几何体的三视图中,主视图和俯视图如下左图所示,则相应的侧视图可以为()9.如图所示,在正方体ABCD-A1B1C1D1中,M、N分别是BB1、BC的中点,则图中阴影部分在平面ADD1A1上的正投影是()10.某几何体的三视图如图所示,那么这个几何体是()A.三棱锥B.四棱锥C.四棱台D.三棱台二、填空题11.下列图形:①三角形;②直线;③平行四边形;④四面体;⑤球.其中投影不可能是线段的是________.12.已知某一几何体的正视图与侧视图如图所示,则下列图形中,可以是该几何体的俯视图的图形有________.13.一个几何体的三视图如图所示,其中正视图和侧视图是腰长为4的两个全等的等腰直角三角形,则用________个这样的几何体可以拼成一个棱长为4的正方体.三、解答题14.如图所示是一个四棱柱铁块,画出它的三视图.15.依所给实物图的形状,画出所给组合体的三视图.16.说出下列三视图表示的几何体:17.根据下列图中所给出的一个物体的三视图,试画出它的形状.1-2-3一、选择题1.给出以下关于斜二测直观图的结论,其中正确的个数是()①角的水平放置的直观图一定是角.②相等的角在直观图中仍相等.③相等的线段在直观图中仍然相等.④若两条线段平行,则在直观图中对应的两条线段仍然平行.A.0B.1C.2D.32.利用斜二测画法得到:①三角形的直观图是三角形;②平行四边形的直观图是平行四边形;③正方形的直观图是正方形;④菱形的直观图是菱形.以上说法正确的是()A.①B.①②C.③④D.①②③④3.如图所示的直观图是将正方体模型放置在你的水平视线的左上角而绘制的,其中正确的是() 4.如图为一平面图形的直观图,则此平面图形可能是选项中的()5.已知一个正方形的直观图是一个平行四边形,其中有一边长为4,则此正方形的面积是()A.16 B.64 C.16或64 D.无法确定6.如图所示,△A′B′C′是水平放置的△ABC的直观图,则在△ABC的三边及中线AD中,最长的线段是()A.AB B.ADC.BC D.AC7.如图,矩形O′A′B′C′是水平放置的一个平面图形的直观图,其中O′A′=4,O′C′=2,则原图形是()A.正方形B.矩形C.菱形D.梯形8.一个建筑物上部为四棱锥,下部为长方体,且四棱锥的底面与长方体的上底面尺寸一样,已知长方体的长、宽、高分别为20m,5m,10m,四棱锥的高为8m,若按1500的比例画出它的直观图,那么直观图中,长方体的长、宽、高和棱锥的高应分别为()A.4cm,1cm, 2cm,1.6cm B.4cm,0.5cm,2cm,0.8cmC.4cm,0.5cm,2cm,1.6cm D.2cm,0.5cm,1cm,0.8cm9.已知△ABC是边长为2a的正三角形,那么它的平面直观图△A′B′C′的面积为()A.32a2 B.34a2 C.64a2 D.6a210.已知两个圆锥,底面重合在一起,其中一个圆锥顶点到底面的距离为2cm,另一个圆锥顶点到底面的距离为3cm,则其直观图中这两个顶点之间的距离为()A.2cm B.3cm C.2.5cm D.5cm11.用斜二测画法画出下列图形的直观图(不写画法).12.在下列选项中,利用斜二测画法,边长为1的正三角形ABC的直观图不是全等三角形的一组是()二、填空题13.斜二测画法中,位于平面直角坐标系中的点M(4,4)在直观图中的对应点是M′,则点M′的坐标为________,点M′的找法是________.14.如下图,水平放置的△ABC的斜二测直观图是图中的△A′B′C′,已知A′C′=6,B′C′=4,则AB边的实际长度是________.15.如图,是△AOB用斜二测画法画出的直观图,则△AOB的面积是________.三、解答题16.如图所示,四边形ABCD是一个梯形,CD∥AB,CD=AO=1,三角形AOD为等腰直角三角形,O为AB的中点,试求梯形ABCD水平放置的直观图的面积.17.已知几何体的三视图如下,用斜二测画法,画出它的直观图(直接画出图形,尺寸不作要求).18.如图所示,直角梯形ABCD中,AD∥BC,且AD>BC,该梯形绕边AD所在直线EF旋转一周得一几何体,画出该几何体的直观图和三视图.1-3-1-1一、选择题1.轴截面是正三角形的圆锥称作等边圆锥,则等边圆锥的侧面积是底面积的( ) A .4倍 B .3倍 C.2倍 D .2倍2.长方体的高为1,底面积为2,垂直于底的对角面的面积是5,则长方体的侧面积等于( ) A .27 B .4 3 C .6 D .3 3.如图,一个空间几何体的正视图和侧视图都是边长为1的正方形,俯视图是一个圆,那么这个几何体的全面积为( ) A.3π2B .2πC .πD .4π4.已知一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是( ) A.1+2π2π B.1+4π4πC.1+2ππD.1+4π2π5.将一个棱长为a 的正方体,切成27个全等的小正方体,则表面积增加了( )A .6a 2B .12a 2C .18a 2D .24a 2 6.如图所示,圆台的上、下底半径和高的比为1:4:4,母线长为10,则圆台的侧面积为( )A .81πB .100πC .14πD .169π7.一个圆柱的底面面积是S ,侧面展开图是正方形,那么该圆柱的侧面积为( ) A .4πS B .2πS C .πS D.233πS8.如图是一个几何体的三视图,其中正视图和侧视图都是一个两底长分别为2和4,腰长为4的等腰梯形,则该几何体的侧面积是( )A .6πB .12πC .18πD .24π 9.一个圆台的上、下底面面积分别是πcm 2和49πcm 2,一个平行于底面的截面面积为25πcm 2,则这个截面与上、下底面的距离之比是( )A .2:1B .3:1 C. 2 :1 D. 3 :110.一个棱锥的三视图如图所示,则该棱锥的全面积(单位:cm 2)为( )A .48+12 2B .48+24 2C .36+12 2D .36+24 2 二、填空题 11.已知圆柱OO ′的母线l =4cm ,全面积为42πcm 2,则圆柱OO ′的底面半径r = ________cm.12.一个几何体的三视图如图所示,其中俯视图为正三角形,则该几何体的表面积为________.13.如图所示,一个空间几何体的正视图和侧视图都是边长为1的正方形,俯视图是一个直径为1的圆,那么这个几何体的表面积为________.14.如图所示,一圆柱内挖去一个圆锥,圆锥的顶点是圆柱底面的圆心,圆锥的底面是圆柱的另一个底面.圆柱的母线长为6,底面半径为2,则该组合体的表面积等于________.三、解答题15.已知各棱长为5,底面为正方形,各侧面均为正三角形的四棱锥S-ABCD,如图所示,求它的表面积.16.如图所示的几何体是一棱长为4cm的正方体,若在其中一个面的中心位置上,挖一个直径为2cm、深为1cm的圆柱形的洞,求挖洞后几何体的表面积是多少?(π取3.14)17.如图在底面半径为2,母线长为4的圆锥中内接一个高为3的圆柱,求圆柱的表面积.18.已知某几何体的三视图如图,求该几何体的表面积.(单位:cm)1-3-1-2一、选择题1.长方体三个面的面积分别为2、6和9,则长方体的体积是( ) A .63 B .36 C .11 D .12 2.已知正六棱台的上、下底面边长分别为2和4,高为2,则体积为( )A .32 3B .28 3C .24 3D .20 33.一个空间几何体的正视图、侧视图、俯视图为全等的等腰直角三角形,直角边长为1,则这个几何体的体积为( )A .1 B.12 C.13 D.164.体积为52cm 3的圆台,一个底面面积是另一个底面面积的9倍,那么截得这个圆台的圆锥的体积为( )A .54cm 3B .54πcm 3C .58cm 3D .58πcm 3 5.圆锥的过高的中点且与底面平行的截面把圆锥分成两部分的体积之比是( )A .1:1B .1:6C .1:7D .1:86.若一个几何体的三视图如图所示,则此几何体的体积为( )A.112 B .5 C .4 D.92 7.若正方体的棱长为2,则以该正方体各个面的中心为顶点的凸多面体的体积为( )A.26B.23C.33D.23 8.如图,某几何体的正视图与侧视图都是边长为1的正方形,且体积为12,则该几何体的俯视图可以是( )9.在△ABC中,AB=2,BC=3,∠ABC=120°,若使△ABC绕直线BC旋转一周,则所形成的几何体的体积是()A.6π B.5πC.4π D.3π10.如图(1)所示,一只装了水的密封瓶子,其内部可以看成是由半径为1cm和半径为3cm的两个圆柱组成的简单几何体.当这个几何体如图(2)水平放置时,液面高度为20cm,当这个几何体如图(3)水平放置时,液面高度为28cm,则这个简单几何体的总高度为()A.29cm B.30cmC.32cm D.48cm二、填空题11.已知圆锥SO的高为4,体积为4π,则底面半径r=________.12.一个几何体的三视图如下图所示,则这个几何体的体积为____.13.如图所示,三棱柱ABC-A′B′C′中,若E、F分别为AC、AB的中点,平面EC′B′F将三棱柱分成体积为V1(棱台AEF-A′C′B′的体积),V2的两部分,那么V1:V2=________.14.如图,已知底面半径为r的圆柱被一个平面所截,剩下部分母线长的最大值为a,最小值为b,那么圆柱被截后剩下部分的体积是________.三、解答题15.把长和宽分别为6和3的矩形卷成一个圆柱的侧面,求这个圆柱的体积.16.已知某几何体的俯视图是如图所示的矩形,正视图是一个底边长为8、高为4的等腰三角形,侧视图是一个底边长为6、高为4的等腰三角形.(1)求该几何体的体积V;(2)求该几何体的侧面积S.17.如下的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出(单位:cm).(1)在正视图下面,按照画三视图的要求画出多面体的俯视图.(2)按照给出的尺寸,求该多面体的体积.18.若某几何体的三视图(单位:cm)如图所示,求此几何体的体积.1-3-2一、选择题1.两球表面积之比为1:4,则它们的半径之比为( )A .1:2B .1:4C .1: 2D .1:2 22.把半径分别为6cm,8cm,10cm 的三个铁球熔成一个大铁球,这个大铁球的半径为( ) A .3cm B .6cm C .8cm D .12cm 3.球的体积与其表面积的数值相等,则球的半径等于 ( )A.12B .1C .2D .3 4.半径为R 的球内接一个正方体,则该正方体的体积是( )A .22R 3 B.43πR 3 C.893R 3 D.39R 35.把3个半径为R 的铁球熔成一个底面半径为R 的圆柱,则圆柱的高为( ) A .R B .2R C .3R D .4R 6.下图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( )A .9πB .10πC .11πD .12π 7.一个正方体与一个球表面积相等,那么它们的体积比是( ) A.6π6 B.π2 C.2π2 D.3π2π8.已知轴截面是正方形的圆柱的高与球的直径相等,则圆柱的全面积与 球的表面积的比是( )A .6:5B .5:4C .4:3D .3:29.已知长方体一个顶点上三条棱的长分别是3、4、5,且它的顶点都在同一球面上,则这个球的表面积是( )A .20 2B .25 2C .50πD .200π10.64个直径都为a4的球,记它们的体积之和为V 甲,表面积之和为S 甲;一个直径为a 的球,记其体积为V 乙,表面积为S 乙,则( ) A .V 甲>V 乙且S 甲>S 乙 B .V 甲<V 乙且S 甲<S 乙 C .V 甲=V 乙且S 甲>S 乙 D .V 甲=V 乙且S 甲=S 乙 二、填空题11.长方体的8个顶点在同一个球面上,且长方体的对角线长为4,则该球的体积是________. 12.已知棱长为2的正方体的体积与球O 的体积相等,则球O 的半径为________.13.圆柱OO ′的底面半径为4,高为163,球M 的体积等于圆柱OO ′的体积,则球M 的半径等于________. 14.圆柱形容器内盛有高度为8cm 的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是________cm. 三、解答题15.如图是一个几何体的三视图,根据图中数据,求该几何体的表面积和体积.16.一试管的上部为圆柱形,底部为与圆柱底面半径相同的半球形.圆柱形部分的高为h cm ,半径为r cm.试管的容量为108πcm 3,半球部分容量为全试管容量的16.(1)求r 和h ;(2)若将试管垂直放置,并注水至水面离管口4cm 处,求水的体积.17.体积相等的正方体、球、(轴截面为正方形)的全面积分别是S 1、S 2、S 3,试比较它们的大小.18.如图,一个圆锥形的空杯子上面放着一个半球形的冰淇淋,如果冰淇淋融化了,冰淇淋会从杯子溢出吗?请计算说明理由.第一章综合检测题一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.如下图所示,观察四个几何体,其中判断正确的是( ) A .①是棱台 B .②是圆台 C .③是棱锥 D .④不是棱柱 2.若一个三角形,采用斜二测画法作出其直观图,则其直观图的面积是原三角形面积的( ) A.12倍 B .2倍 C.24倍 D.22倍 3.某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能是( )4.已知某几何体的三视图如图所示,那么这个几何体是( ) A .长方体 B .圆柱 C .四棱锥 D .四棱台5.正方体的体积是64,则其表面积是( )A .64B .16C .96D .无法确定6.圆锥的高扩大到原来的2倍,底面半径缩短到原来的12,则圆锥的体积( )A .缩小到原来的一半B .扩大到原来的2倍C .不变D .缩小到原来的167.三个球的半径之比为1:2:3,那么最大球的表面积是其余两个球的表面积之和的( )A .1倍B .2倍 C.95倍 D.74倍8.有一个几何体的三视图及其尺寸如下图(单位:cm),则该几何体的表面积为( )A .12πcm 2B .15πcm 2C .24πcm 2D .36πcm 29.圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为84π,则圆台较小底面的半径为( )A .7B .6C .5D .310.如图所示是古希腊数学家阿基米德的墓碑文,墓碑上刻着一个圆柱,圆柱内有一个内切球,这个球的直径恰好与圆柱的高相等,相传这个图形表达了阿基米德最引以为自豪的发现.我们来重温这个伟大发现.圆柱的体积与球的体积之比和圆柱的表面积与球的表面积之比分别为( )A.32,1B.23,1C.32,32D.23,32 11.某几何体的俯视图是如图所示的矩形,正视图(或称主视图)是一个底边长为8、高为5的等腰三角形,侧视图(或称左视图)是一个底边长为6、高为5的等腰三角形.则该几何体的体积为( ) A .24 B .80 C .64 D .24012.如果用表示1个立方体,用表示两个立方体叠加,用表示3个立方体叠加,那么图中由7个立方体摆成的几何体,从正前方观察,可画出平面图形是( )二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.圆台的底半径为1和2,母线长为3,则此圆台的体积为________.14.一个几何体的三视图如图所示,则这个几何体的体积为___________________. 15.圆柱的侧面展开图是边长为6π和4π的矩形,则圆柱的表面积为________. 16.一个几何体的三视图及其尺寸如下图所示,其中主视图是直角三角形,侧视图是半圆,俯视图是等腰三角形,则这个几何体的表面积是________.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)画出如图所示几何体的三视图.18.(本题满分12分)圆柱的高是8cm,表面积是130πcm2,求它的底面圆半径和体积.19.(本题满分12分)如下图所示是一个空间几何体的三视图,试用斜二测画法画出它的直观图(尺寸不限).20.(本题满分12分)如图所示,设计一个四棱锥形冷水塔塔顶,四棱锥的底面是正方形,侧面是全等的等腰三角形,已知底面边长为2m,高为7m,制造这个塔顶需要多少铁板?21.(本题满分12分)如下图,在底面半径为2、母线长为4的圆锥中内接一个高为3的圆柱,求圆柱的表面积.22.(本题满分12分)如图所示(单位:cm),四边形ABCD是直角梯形,求图中阴影部分绕AB旋转一周所成几何体的表面积和体积.2-1-1一、选择题1.下列说法中正确的是()A.镜面是一个平面B.一个平面长10m,宽5mC.一个平面的面积是另一个平面面积的2倍D.所有的平面都是无限延展的2.如图所示,下列符号表示错误的是()A.l∈αB.P∉lC.l⊂αD.P∈α3.如果a⊂α,b⊂β,l∩α=Q,l∩b=B,那么下列关系中成立的是()A.l⊂αB.l∈αC.l∩α=A D.l∩α=B4.空间中四点可确定的平面有()A.1个B.3个C.4个D.1个或4个或无数个5.下列命题中正确的是()A.空间三点可以确定一个平面B.梯形一定是平面图形C.若A,B,C,D既在平面α内,又在平面β内,则平面α和平面β重合D.两组对边都相等的四边形是平面图形6.空间三个平面如果每两个都相交,那么它们的交线的条数是()A.一条B.两条C.三条D.一条或三条7.三条直线两两相交,可以确定平面的个数为()A.1 B.1或2 C.1或3 D.38.设P表示一个点,a、b表示两条直线,α、β表示两个平面,给出下列四个命题,其中正确的命题是()①P∈a,P∈α⇒a⊂α②a∩b=P,b⊂β⇒a⊂β③a∥b,a⊂α,P∈b,P∈α⇒b⊂α④α∩β=b,P∈α,P∈β⇒P∈bA.①②B.②③C.①④D.③④9.若一直线a在平面α内,则正确的图形是()10.下图中正确表示两个相交平面的是()二、填空题11.已知α∩β=l,m⊂α,n⊂β,m∩n=P,则点P与直线l的位置关系用符号表示为________.12.(1)经过一点可以作__________个平面;经过两点可作________个平面;经过不在同一直线上的三点可作________个平面.(2)“若A、B在平面α内,C在直线AB上,则C在平面α内.”用符号语言叙述这一命题为________________________ ________________________.(3)若平面α与平面β相交于直线l,点A∈α,A∈β,则点A________l;其理由是________________.13.已知A∈α,B∉α,若A∈l,B∈l,那么直线l与平面α有________个公共点?14.如图,已知正方体ABCD-A1B1C1D1.(1)AC∩BD=________;(2)平面AB1∩平面A1C1=________;(3)A1B1∩B1B∩B1C1=________.三、解答题15.用符号语言表示下列语句,并画出图形.(1)三个平面α,β,γ交于一点P,且平面α与平面β交于P A,平面α与平面γ交于PB,平面β与平面γ交于PC;(2)平面ABD与平面BCD相交于BD,平面ABC与平面ADC交于AC.16.用符号语言表示下列图形中几何元素之间的位置关系.17.根据本节所学知识,怎样用两根细绳检查一张课桌的四条腿的下端是否在同一个平面内?2-1-2一、选择题1.异面直线是指( )A .空间中两条不相交的直线B .分别位于两个不同平面内的两条直线C .平面内的一条直线与平面外的一条直线D .不同在任何一个平面内的两条直线 2.若直线a ,b ,c 满足a ∥b ,a ,c 异面,则b 与c ( ) A .一定是异面直线 B .一定是相交直线 C .不可能是平行直线 D .不可能是相交直线3.直线a 与直线b 相交,直线c 也与直线b 相交,则直线a 与直线c 的位置关系是( ) A .相交 B .平行 C .异面 D .以上都有可能 4.正方体ABCD -A 1B 1C 1D 1中,与对角线AC 1异面的棱有( )A .3条B .4条C .6条D .8条5.下列命题中,正确的结论有( )①如果一个角的两边与另一个角的两边分别平行,那么这两个角相等;②如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等;③如果一个角的两边和另一个角的两边分别垂直,那么这两个角相等或互补;④如果两条直线同时平行于第三条直线,那么这两条直线互相平行.A .1个B .2个C .3个D .4个 6.空间四边形ABCD 中,E 、F 分别为AC 、BD 中点,若CD =2AB ,EF ⊥AB ,则EF 与CD 所成的角为( ) A .30° B .45° C .60° D .90° 7.正方体A 1B 1C 1D 1-ABCD 中,BD 与B 1C 所成的角是( ) A .30° B .45° C .60° D .90°8.空间四边形ABCD 中,AB 、BC 、CD 的中点分别为P 、Q 、R ,且AC =4, BD =25,PR =3,则AC 和BD 所成的角为( ) A .90° B .60° C .45° D .30°9.如图所示,已知三棱锥A -BCD 中M 、N 分别为AB 、CD 的中点,则下列结论正确的是( )A .MN ≥12(AC +BD )B .MN ≤12(AC +BD )C .MN =12(AC +BD ) D .MN <12(AC +BD )10.如图,将无盖正方体纸盒展开,直线AB 、CD 在原正方体中的位置关系是( )A .平行B .相交且垂直C .异面D .相交成60° 二、填空题11.分别在两个平面内的两条直线的位置关系是________,不平行的两条直线的位置关系是________,两条直线没有公共点,则它们的位置关系是________,垂直于同一直线的两条直线的位置关系为________.12.正方体ABCD -A 1B 1C 1D 1的棱长为a 、M 、N 、P 、Q 分别为棱AB 、BC 、C 1D 1和CC 1的中点,则①MN 与PQ 的位置关系为________,它们所成的角为________.②DB 1与MN 的位置关系为________,它们所成的角是________. 13.正方体ABCD -A 1B 1C 1D 1中①AC 和DD 1所成角是________度.②AC 和D 1C 1所成的角是________度.。

高中数学必修二A版作业2

高中数学必修二A版作业2

课时作业(二)1.如图所示,在平行四边形ABCD 中,BC →+DC →+BA →等于( )A.BC →B.DB →C.BD →D.CB →答案 A解析 BC →+DC →+BA →=BC →+(DC →+BA →)=BC →+0=BC →.故选A. 2.【多选题】下列结论中正确的是( ) A.AB →+BA →=0B .若a +b =0,b +c =0,则a =cC.AB →=CD →的等价条件是点A 与点C 重合,点B 与点D 重合 D .若a +b =0且b =0,则a =0 答案 BD解析 AB →+BA →=0,故A 错误;∵a +b =0,∴a ,b 的长度相等且方向相反.又b +c =0,∴b ,c 的长度相等且方向相反,∴a ,c 的长度相等且方向相同,故a =c ,故B 正确;当AB →=CD →时,应有|AB →|=|CD →|,且由点A 到点B 与由点C 到点D 的方向相同,但不一定有点A 与点C 重合,点B 与点D 重合,故C 错误;若a +b =0,且b =0,则a =0,故D 正确. 3.【多选题】下列各式中,结果为0的是( ) A.AB →+BC →+CA → B .(AB →+MB →)+BO →+OM → C.OA →+OC →+BO →+CO → D.AB →+CA →+BD →+DC → 答案 AD解析 由向量加法的运算法则知A 、D 的结果为0. 4.a ,b 为非零向量,且|a +b |=|a |+|b |,则( ) A .a ∥b ,且a 与b 方向相同B .a ,b 是共线向量且方向相反C .a =bD .a ,b 无论什么关系均可 答案 A5.在矩形ABCD 中,|AB →|=4,|BC →|=2,则向量AB →+AD →+AC →的长度为( ) A .2 5 B .4 5 C .12 D .6答案 B解析 因为AB →+AD →=AC →,所以AB →+AD →+AC →的长度为AC →的模的2倍.又|AC →|=42+22=25,所以向量AB →+AD →+AC →的长度为4 5.6.如图,已知梯形ABCD ,AD ∥BC ,则OA →+AB →+CD →+BC →=________.答案 OD →解析 OA →+AB →+CD →+BC →=OB →+BC →+CD → =OC →+CD → =OD →.7.若a 等于“向东走8 km ”,b 等于“向北走8 km ”,则|a +b |=________km ,a +b 的方向是________.答案 82 北偏东45°解析 如图,设AB →=a ,BC →=b ,则AC →=a +b ,且△ABC 为等腰直角三角形,则|AC →|=82,∠BAC =45°.8.小船以10 3 km/h 的静水速度沿垂直于对岸的方向行驶,同时河水的流速为10 km/h ,则小船实际航行速度的大小为________km/h.答案 20解析 如图,设船在静水中的速度为|v 1|=10 3 km/h ,河水的流速为|v 2|=10 km/h ,小船实际航行速度为v 0,则由|v 1|2+|v 2|2=|v 0|2,得(103)2+102=|v 0|2,所以|v 0|=20 km/h ,即小船航行速度的大小为20 km/h.9.是否存在a ,b ,使|a +b |=|a |=|b |?请画出图形说明.解析 存在,如图,作OA →=a ,OB →=b ,以OA ,OB 为邻边作平行四边形OACB ,连接OC .由题意知OA =OB =OC =AC ,则∠AOC =∠COB =60°.10.如图,四边形ABDC 为等腰梯形,AB ∥CD ,AC =BD ,CD =2AB ,E 为CD 的中点.试求:(1)AB →+AE →; (2)AB →+AC →+EC →; (3)CD →+AC →+DB →+EC →.解析 由已知得四边形ACEB ,四边形ABDE 均为平行四边形. (1)AB →+AE →=AD →.(2)AB →+AC →+EC →=AE →+EC →=AC →.(3)CD →+AC →+DB →+EC →=CE →+ED →+AC →+DB →+EC →=(CE →+EC →)+(ED →+DB →)+AC →=EB →+AC →=CA →+AC →=0.11.若在△ABC 中,AB =AC =1,|AB →+AC →|=2,则△ABC 的形状是( )A .正三角形B .锐角三角形C .斜三角形D .等腰直角三角形答案 D解析 以AB ,AC 为邻边作平行四边形ABDC ,∵AB =AC =1,AD =2,∴∠ABD 为直角,该四边形为正方形,∴∠BAC =90°,△ABC 为等腰直角三角形,故选D. 12.如图,在正六边形ABCDEF 中,BA →+CD →+EF →等于( )A .0 B.BE → C.AD → D.CF →答案 D解析 BA →+CD →+EF →=DE →+CD →+EF →=CE →+EF →=CF →.13.设a =(AB →+CD →)+(BC →+DA →),b 是任一非零向量,则在下列结论中: ①a ∥b ;②a +b =a ;③a +b =b ;④|a +b |<|a |+|b |;⑤|a +b |=|a |+|b |. 所有正确结论的序号是( ) A .①⑤ B .②④⑤ C .③⑤ D .①③⑤ 答案 D解析 ∵a =(AB →+BC →)+(CD →+DA →)=AC →+CA →=0, 又b 为任一非零向量,∴①③⑤均正确.14.如图,P ,Q 是△ABC 的边BC 上两点,且BP =QC .求证:AB →+AC →=AP →+AQ →.证明 因为AB →=AP →+PB →, AC →=AQ →+QC →, 而由题知BP →=QC →,所以PB →+QC →=0, 所以AB →+AC →=AP →+AQ →+(PB →+QC →)=AP →+AQ →.15.对于不等式|a|-|b|≤|a+b|≤|a|+|b|,给出下列四个结论:①不等式左端的不等号“≤”只能在a=b=0时取“=”;②不等式左端的不等号“≤”只能在a与b均为非零向量且不共线时取“<”;③不等式右端的不等号“≤”只能在a与b均为非零向量且同向共线时取“=”;④不等式右端的不等号“≤”只能在a与b均为非零向量且不共线时取“<”.其中正确的结论有()A.0个B.1个C.2个D.4个答案 A解析当a=-b≠0时,|a|-|b|=|a+b|也成立,故①不正确;当b≠0,a=0时,|a|-|b|<|a+b|也成立,故②不正确;当a,b有一个为0时,|a+b|=|a|+|b|也成立,故③不正确;当a与b反向共线时,|a+b|<|a|+|b|也成立,故④不正确.所以正确的结论有0个.16.在某地抗震救灾中,一架飞机从A地按北偏东35°的方向飞行800 km到达B地接到受伤人员,然后又从B地按南偏东55°的方向飞行800 km送往C地医院,求这架飞机飞行的路程及两次位移的和.→,BC→分别表示飞机从A地按北偏东35°的方向飞行800 km,从B地解析如图所示,设AB按南偏东55°的方向飞行800 km,则飞机飞行的路程指的是|AB→|+|BC→|,两次飞行的位移的和指的是AB→+BC→=AC→.依题意,有|AB→|+|BC→|=800+800=1 600(km).又α=35°,β=55°,则∠ABC=35°+55°=90°.所以|AC→|=|AB→|2+|BC→|2=8002+8002=8002(km),且∠BAC=45°,所以方向为北偏东35°+45°=80°.从而飞机飞行的路程是1 600 km,两次飞行的位移和的大小为800 2 km,方向为北偏东80°.1.如图所示的方格纸中有定点O ,P ,Q ,E ,F ,G ,H ,则OP →+OQ →=( )A.OH →B.OG →C.FO →D.EO →答案 C解析 设a =OP →+OQ →,利用平行四边形法则作出向量OP →+OQ →,再平移即发现a =FO →. 2.若P 为△ABC 的外心,且P A →+PB →=PC →,则∠ACB =________. 答案 120°解析 如图,因为P A →+PB →=PC →,则四边形APBC 是平行四边形.又P 为△ABC 的外心, 所以|P A →|=|PB →|=|PC →|. 因此,∠ACB =120°.3.如图所示,已知等腰梯形ABCD ,试分别用三角形法则和平行四边形法则作出向量BA →+DC →.解析 三角形法则:过A 作AE ∥DC ,交BC 于点E ,则四边形ADCE 是平行四边形,于是BA →+DC →=BA →+AE →=BE →(如图所示).平行四边形法则:作DF →=BA →,以DC ,DF 为邻边作▱DCGF ,连接DG ,于是BA →+DC →=DF →+DC →=DG →(如图所示).。

北师大版数学高一-(北师大)必修2作业 1.1简单几何体

北师大版数学高一-(北师大)必修2作业 1.1简单几何体

温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。

课时提能演练(一)(30分钟 50分)一、选择题(每小题4分,共16分)1.下列说法中正确的是( )(A)棱柱的底面一定是平行四边形(B)棱锥的底面一定是三角形(C)棱台的底面是两个相似的正方形(D)棱台的侧棱延长后必交于一点2.在如图所示的图形中,是圆柱的是( )3.(2012·铜川高一检测)用一个平面去截一个三棱锥,截面形状是( )(A)四边形(B)三角形(C)三角形或四边形(D)不可能为四边形4.(2012·深圳高一检测)如图是一个正方体,它的展开图可能是下面四个展开图中的( )二、填空题(每小题4分,共8分)5.(2011·广东高考)正五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个正五棱柱对角线的条数为____________.6.已知长方体过同一个顶点的三个面的面积分别为2,3,6,则它的体对角线长为____________.三、解答题(每小题8分,共16分)7.(易错题)如图所示,已知AB是直角梯形ABCD与底边垂直的一腰,分别以AB,CD,DA为轴旋转,试说明所得几何体的结构特征.8.画一个三棱台,再把它分成(1)一个三棱柱和另一个多面体;(2)三个三棱锥,并用字母表示.【挑战能力】(10分)在正四棱柱上任意选择4个顶点,试画图分析以下两个问题:(1)这4个顶点可能是哪几种平面图形的顶点?(2)这4个顶点可能是哪几种空间图形的顶点?答案解析1.【解析】选D.由棱台、棱锥、棱柱的定义可得.2.【解析】选C.A为圆台,D为棱锥,B中上、下两底面不平行,不是圆柱,故C正确.3.【解析】选C.如图,若截面截三棱锥的三条棱,则截面的形状为三角形(如图①),若截面截三棱锥的四条棱,则截面的形状为四边形(如图②).4.【解析】选A.直接观察或动手折叠,可得选A.5.【解题指南】本题主要考查体对角线的概念,由体对角线的概念可得答案.【解析】上底面内的每个顶点,与下底面内不在同一侧面的两个顶点的连线可构成正五棱柱的对角线.上底面每个顶点有两条对角线,故一个正五棱柱的对角线共有5×2=10条.答案:106.【解析】设长方体的过同一顶点的三条棱长分别为a,b,c,解之得所以长方体的体对=【方法技巧】巧化未知为已知长方体棱长和体对角线长的关系公式为l此公式的推导利用了长方体中体对角线与棱构成的直角三角形,体现了化立体几何问题为平面几何问题的思想方法,这种思想方法对于解决立体几何问题是十分重要的.7.【解析】(1)以AB边为轴旋转所得的旋转体是圆台,如图(1)所示.(2)以CD边为轴旋转所得几何体为:上部为圆锥,下部为圆台,再挖去一个小圆锥,如图(2)所示.(3)以AD边为轴旋转得到几何体,它是一个圆柱上部挖去一个圆锥,如图(3)所示.【误区警示】本题以CD为轴旋转所得的几何体易忽略挖去底面的小圆锥而出错.8.【解析】画三棱台一定要利用三棱锥.(1)如图①所示,三棱柱是棱柱A′B′C′-AB″C″.(2)如图②所示,三个三棱锥分别是A′-ABC,B′-A′BC,C′-A′B′C.【挑战能力】【解析】(1)这4个顶点可能是以下平面图形的顶点:矩形,正方形.(2)这4个顶点可能是以下空间图形的顶点:有三个面为直角三角形,一个面为等腰三角形的四面体(如图1,2);每个面都是等腰三角形的四面体(如图3);每个面都是直角三角形的四面体(如图4).。

2020年高中数学练习册答案(必修2)(收藏版)

2020年高中数学练习册答案(必修2)(收藏版)

高中数学练习册答案(必修2)第一章 空间几何体 [基础训练A 组] 一、选择题1. A 从俯视图来看,上、下底面都是正方形,但是大小不一样,可以判断是棱台2.A 因为四个面是全等的正三角形,则34434S S ==⨯=表面积底面积 3.B 长方体的对角线是球的直径,22225234552,252,,4502l R R S R ππ=++===== 4.D 正方体的棱长是内切球的直径,正方体的对角线是外接球的直径,设棱长是a32,32,1322aaa r r a r r r r =====内切球内切球外接球外接球内切球外接球,,:: 5.D 213(1 1.51)32V V V r ππ=-=+-=大圆锥小圆锥6.D 设底面边长是a ,底面的两条对角线分别为12,l l ,而22222212155,95,l l =-=-而222124,l l a +=即22222155954,8,485160a a S ch -+-====⨯⨯=侧面积 二、填空题1.5,4,3 符合条件的几何体分别是:三棱柱,三棱锥,三棱台2.1:22:33 333333123123::1:2:3,::1:(2):(3)1:22:33r r r r r r ===3. 316a 画出正方体,平面11AB D 与对角线1A C 的交点是对角线的三等分点,三棱锥11O AB D -的高23311331,2333436h a V Sh a a ===⨯⨯⨯= 或:三棱锥11O AB D -也可以看成三棱锥11A OB D -,显然它的高为AO ,等腰三角形11OB D 为底面。

4. 平行四边形或线段5.6 设2,3,6,ab bc ac ===则6,3,2,1abc c a c ====3216l =++=15 设3,5,15ab bc ac ===则2()225,15abc V abc ===三、解答题1.解:(1)如果按方案一,仓库的底面直径变成16M ,则仓库的体积23111162564()3323V Sh M ππ⎛⎫==⨯⨯⨯= ⎪⎝⎭如果按方案二,仓库的高变成8M ,则仓库的体积23211122888()3323V Sh M ππ⎛⎫==⨯⨯⨯= ⎪⎝⎭(2)如果按方案一,仓库的底面直径变成16M ,半径为8M .棱锥的母线长为228445l =+= 则仓库的表面积21845325()S M ππ=⨯⨯= 如果按方案二,仓库的高变成8M .棱锥的母线长为228610l =+= 则仓库的表面积2261060()S M ππ=⨯⨯=(3)21V V > ,21S S < ∴方案二比方案一更加经济2. 解:设扇形的半径和圆锥的母线都为l ,圆锥的半径为r ,则21203,3360l l ππ==;232,13r r ππ⨯==; 24,S S S rl r πππ=+=+=侧面表面积底面 21122122333V Sh ππ==⨯⨯⨯=第一章 空间几何体 [综合训练B 组] 一、选择题1.A 恢复后的原图形为一直角梯形1(121)2222S =++⨯=+ 2.A 233132,,,22324R R r R r h V r h R ππππ===== 3.B 正方体的顶点都在球面上,则球为正方体的外接球,则232R =, 23,412R S R ππ=== 4.A (3)84,7S r r l r ππ=+==侧面积 5.C 中截面的面积为4个单位,12124746919V V ++==++ 6.D 过点,E F 作底面的垂面,得两个体积相等的四棱锥和一个三棱柱,1313152323234222V =⨯⨯⨯⨯+⨯⨯⨯=二、填空题1.6π 画出圆台,则12121,2,2,()6r r l S r r l ππ====+=圆台侧面2.16π 旋转一周所成的几何体是以BC 为半径,以AB 为高的圆锥, 2211431633V r h πππ==⨯⨯= 3.< 设333343,,34VV R a a V R ππ====, 333322222266216,436216S a V V S R V V ππ=====<正球4.74 从长方体的一条对角线的一个端点出发,沿表面运动到另一个端点,有两种方案22224(35)80,5(34)74++=++=或 5.(1)4 (2)圆锥 6.233aππ设圆锥的底面的半径为r ,圆锥的母线为l ,则由2l r ππ=得2l r =,而22S r r r a ππ=+⋅=圆锥表,即233,33a a r a r ππππ===,即直径为233a ππ三、解答题1. 解:''''13(),3V V S SS S h h S SS S=++=++319000075360024001600h ⨯==++2. 解:2229(25)(25),7l l ππ+=+=空间几何体 [提高训练C 组] 一、选择题1.A 几何体是圆台上加了个圆锥,分别由直角梯形和直角三角形旋转而得2.B 从此圆锥可以看出三个圆锥,123123::1:2:3,::1:2:3,r r r l l l == 12312132::1:4:9,:():()1:3:5S S S S S S S S =--=3.D 111115818322226V V -=-⨯⨯⨯⨯⨯=正方体三棱锥 4.D 121:():()3:13V V Sh Sh ==5.C 121212:8:27,:2:3,:4:9V V r r S S ===6.A 此几何体是个圆锥,23,5,4,33524r l h S πππ====⨯+⨯⨯=表面2134123V ππ=⨯⨯=二、填空题 1.2537π 设圆锥的底面半径为r ,母线为l ,则123r l ππ=,得6l r =,226715S r r r r ππππ=+⋅==,得157r =,圆锥的高15357h =⋅21115152533533777V r h πππ==⨯⨯⨯=2.109Q 22223,3Q S R R R Q R ππππ=+===全32222221010,,2233339V R R h h R S R R R R Q πππππ==⋅==+⋅== 3.8 21212,8r r V V ==4.12 2334,6427123V Sh r h R R ππ====⨯=5.28 ''11()(441616)32833V S SS S h =++=⨯+⨯+⨯= 三、解答题1.解:圆锥的高224223h =-=,圆柱的底面半径1r =,223(23)S S S πππ=+=+⨯=+侧面表面底面 2. 解:S S S S =++表面圆台底面圆台侧面圆锥侧面25(25)32222πππ=⨯+⨯+⨯+⨯⨯ 25(21)π=+V V V =-圆台圆锥222112211()331483r r r r h r hπππ=++-=第二章点、直线、平面之间的位置关系 [基础训练A组]一、选择题1. A ⑴两条直线都和同一个平面平行,这两条直线三种位置关系都有可能⑵两条直线没有公共点,则这两条直线平行或异面⑶两条直线都和第三条直线垂直,则这两条直线三种位置关系都有可能⑷一条直线和一个平面内无数条直线没有公共点,则这条直线也可在这个平面内2. D 对于前三个,可以想象出仅有一个直角的平面四边形沿着非直角所在的对角线翻折;对角为直角的平面四边形沿着非直角所在的对角线翻折;在翻折的过程中,某个瞬间出现了有三个直角的空间四边形3.D 垂直于同一条直线的两条直线有三种位置关系4.B 连接,VF BF,则AC垂直于平面VBF,即AC PFDE AC,⊥,而//∴⊥DE PF5.D 八卦图可以想象为两个平面垂直相交,第三个平面与它们的交线再垂直相交6.C 当三棱锥D ABC⊥,取AC的中点-体积最大时,平面DAC ABCO,则△DBO是等要直角三角形,即0∠=DBO45二、填空题1.异面或相交就是不可能平行2.0030,90⎡⎤⎣⎦ 直线l 与平面α所成的030的角为m 与l 所成角的最小值,当m 在α内适当旋转就可以得到l m ⊥,即m 与l 所成角的的最大值为0903.63 作等积变换:12341313(),3434d d d d h ⨯⨯+++=⨯⨯而63h = 4.060或0120 不妨固定AB ,则AC 有两种可能5.2 对于(1)、平行于同一直线的两个平面平行,反例为:把一支笔放在打开的课本之间;(2)是对的;(3)是错的;(4)是对的 三、解答题1.证明://,////EH BCD FG BCD EH BCD BD BCD EH BD EH FG ⊄⎫⎪⊂⇒⊂⇒⎬⎪⎭2.略第二章 点、直线、平面之间的位置关系 [综合训练B 组] 一、选择题1.C 正四棱柱的底面积为4,正四棱柱的底面的边长为2,正四棱柱的底面的对角线为22,正四棱柱的对角线为26,而球的直径等于正四棱柱的对角线, 即226R =,26,424R S R ππ===球2.D 取BC 的中点G ,则1,2,,EG FG EF FG ==⊥则EF 与CD 所成的角030EFG ∠=3.C 此时三个平面两两相交,且有三条平行的交线4.C 利用三棱锥111A AB D -的体积变换:111111A AB D A A B D V V --=,则1124633h ⨯⨯=⨯⨯ 5.B 11221133332212A A BD D A BAa a a V V Sh --===⨯⨯= 6. D 一组对边平行就决定了共面;同一平面的两条垂线互相平行,因而共面;这些直线都在同一个平面内即直线的垂面;把书本的书脊垂直放在桌上就明确了 二、填空题1.27 分上、中、下三个部分,每个部分分空间为9个部分,共27部分2.异面直线;平行四边形;BD AC =;BD AC ⊥;BD AC =且BD AC ⊥ 3.0604.060 注意P 在底面的射影是斜边的中点 5.32a三、解答题1.证明://b c ,∴不妨设,b c 共面于平面α,设,a b A a c B == ,,,A a B a A B αα∴∈∈∈∈,即a α⊂,所以三线共面 2.提示:反证法 3.略第二章 点、直线、平面之间的位置关系 [提高训练C 组] 一、选择题1. A ③若m //α,n //α,则m n //,而同平行同一个平面的两条直线有三种位置关系④若αγ⊥,βγ⊥,则//αβ,而同垂直于同一个平面的两个平面也可以相交2. C 设同一顶点的三条棱分别为,,x y z ,则2222222,,x y a y z b x z c +=+=+=得2222221()2x y z a b c ++=++,则对角线长为22222212()22a b c a b c ++=++ 3.B 作等积变换A BCD C ABD V V --=4.B BD 垂直于CE 在平面ABCD 上的射影 5.C BC PA BC AH ⊥⇒⊥6.C 取AC 的中点E ,取CD 的中点F ,123,,222EF BE BF === 3cos 3EF BF θ== 7.C 取SB 的中点G ,则2aGE GF ==,在△SFC 中,22EF a =,045EFG ∠=二、填空题1.5cm 或1cm 分,A B 在平面的同侧和异侧两种情况2.48 每个表面有4个,共64⨯个;每个对角面有4个,共64⨯个3.090 垂直时最大4.030 底面边长为23,高为1,1tan 3θ=5.11 沿着PA 将正三棱锥P ABC -侧面展开,则',,,A D E A 共线,且'//AA BC三、解答题:略第三章 直线和方程 [基础训练A 组] 一、选择题1.D tan 1,1,1,,0ak a b a b bα=-=--=-=-=2.A 设20,x y c ++=又过点(1,3)P -,则230,1c c -++==-,即210x y +-=3.B 42,82m k m m -==-=-+ 4.C ,0,0a c a cy x k b b b b=-+=->< 5.C 1x =垂直于x 轴,倾斜角为090,而斜率不存在 6.C 2223,m m m m +--不能同时为0 二、填空题 1.322 1(1)13222d --+== 2. 234:23,:23,:23,l y x l y x l x y =-+=--=+ 3.250x y --= '101,2,(1)2(2)202k k y x --==-=--=-- 4.8 22x y +可看成原点到直线上的点的距离的平方,垂直时最短:4222d -==5. 23y x = 平分平行四边形ABCD 的面积,则直线过BD 的中点(3,2) 三、解答题1. 解:(1)把原点(0,0)代入A x B yC ++=0,得0C =;(2)此时斜率存在且不为零即0A ≠且0B ≠;(3)此时斜率不存在,且不与y 轴重合,即0B =且0C ≠;(4)0,A C ==且0B ≠(5)证明:()00P x y ,在直线A x B yC ++=0上 00000,Ax By C C Ax By ∴++==-- ()()000A x x B y y ∴-+-=。

全品作业本素颜测评卷必修二数学电子版

全品作业本素颜测评卷必修二数学电子版

全品作业本素颜测评卷必修二数学电子版1、多项式x2+ax+b=(x+1)(x-3),则a、b的值分别是()[单选题] *A. a=2,b=3B. a=-2,b=-3(正确答案)C. a=-2,b=3D. a=2,b=-32、6.若x是- 3的相反数,|y| = 5,则x + y的值为()[单选题] *A.2B.8C. - 8或2D.8或- 2(正确答案)3、下列函数中奇函数是()[单选题] *A、y=2sin x(正确答案)B、y=3sin xC、y=2D、y=4、46.若a+b=7,ab=10,则a2+b2的值为()[单选题] * A.17B.29(正确答案)C.25D.495、已知x-y=3,x2-y2=12,那么x+y的值是( ??) [单选题] *A. 3B. 4(正确答案)C. 6D. 126、下列各式中能用平方差公式的是()[单选题] *A. (x+y)(y+x)B. (x+y)(y-x)(正确答案)C. (x+y)(-y-x)D. (-x+y)(y-x)7、两个有理数相加,如果和小于每一个加数,那么[单选题] *A.这两个加数同为负数(正确答案)B.这两个加数同为正数C.这两个加数中有一个负数,一个正数D.这两个加数中有一个为零8、计算(-a)?·a的结果是( ) [单选题] *A. -a?B. a?(正确答案)C. -a?D. a?9、下列说法正确的是()[单选题] *A、任何直线都有倾斜角(正确答案)B、任何直线都有倾斜角C、直线倾斜角越大斜率就越大D、直线与X轴平行则斜率不存在10、?方程x2?+2X-3=0的根是(? ? ? ??)[单选题] *A、X1=-3, X2=1(正确答案)B、X1=3 ,X2=-1C、X1=3, X2=1D. X1=-3, X2=-111、下列运算正确的是()[单选题] *A. a2+a2=a?B. a?﹣a3=a2C. a2?a2=2a2D. (a?)2=a1?(正确答案)12、39.若(x﹣3)(2x+1)=2x2+ax﹣3,则a的值为()[单选题] *A.﹣7B.﹣5(正确答案)C.5D.713、花粉的质量很小,一粒某种植物花粉的质量约为000037毫克,已知1克=1000毫克,那么000037毫克可用科学记数法表示为[单选题] *A. 7×10??克B. 7×10??克C. 37×10??克D. 7×10??克(正确答案)14、9. 如图,在平面直角坐标系中,正方形ABCD的边长为2,点A坐标为(-2,1),沿某一方向平移后点A1的坐标为(4,2),则点C1的坐标为()[单选题]*A、(2,3)B、(2,4)(正确答案)C、(3,4)D、(3,3)15、下列说法正确的是[单选题] *A.绝对值最小的数是0(正确答案)B.绝对值相等的两个数相等C.-a一定是负数D.有理数的绝对值一定是正数16、一人要从5 本不同的科技书,7本不同的文艺书中任意选取一本,有多少种不同的选法? ()[单选题] *A、10B、11(正确答案)C、35D、1417、9.(2020·课标Ⅱ)已知集合A={x||x|<3,x∈Z},B={x||x|>1,x∈Z},则A∩B=( ) [单选题] *A.?B.{-3,-2,2,3}C.{-2,0,2}D.{-2,2}(正确答案)18、3.下列命题中,为真命题的是( ) [单选题] *A.6的平方根为±3B.若x2>0,则x>0C.无理数是无限小数(正确答案)D.两点之间直线最短19、x? ?1·()=x? ?1,括号内应填的代数式是( ) [单选题] *A. x? ?1B. x? ?1C. x2(正确答案)D. x20、35.若代数式x2﹣16x+k2是完全平方式,则k等于()[单选题] * A.6B.64C.±64D.±8(正确答案)21、在0°~360°范围中,与-460°终边相同的角是()[单选题] * 200°(正确答案)560°-160°-320°22、下列各式计算正确的是( ) [单选题] *A. (x3)3=x?B. a?·a?=a2?C. [(-x)3]3=(-x)?(正确答案)D. -(a2)?=a1?23、9.点(-3,4)到y轴的距离是()[单选题] *A.3(正确答案)B.4C.-3D.-424、20.水文观测中,常遇到水位上升或下降的问题.我们规定:水位上升为正,水位下降为负;几天后为正,几天前为负.如果水位每天上升3cm,今天的水位为0cm,那么2天前的水位用算式表示正确的是()[单选题] *A.(+3)×(+2)B.(+3)×(﹣2)(正确答案)C.(﹣3)×(+2)D.(﹣3)×(﹣2)25、6.有15张大小、形状及背面完全相同的卡片,卡片正面分别画有正三角形、正方形、圆,从这15张卡片中任意抽取一张正面的图形既是轴对称图形,又是中心对称图形的概率是1/3?,则正面画有正三角形的卡片张数为()[单选题] *A.3B.5C.10(正确答案)D.1526、22.如图棋盘上有黑、白两色棋子若干,找出所有使三颗颜色相同的棋在同一直线上的直线,满足这种条件的直线共有()[单选题] *A.5条(正确答案)B.4条C.3条D.2条27、由数字1、2、3、4、5可以组成多少个不允许有重复数字的三位数?()[单选题]*A、125B、126C、60(正确答案)D、12028、3、把方程x2-8x+3=0化成(x+m)2=n的形式,则m、n的值是()[单选题] *A、4,13B、-4,19C、-4,13(正确答案)D、4,1929、下列说法中,不正确的是[单选题] *A.0是自然数B.0是正数(正确答案)C.0是整数D.0是有理数30、计算(2x-1)(5x+2)的结果是() [单选题] *A. 10x2-2B. 10x2-5x-2C. 10x2+4x-2D. 10x2-x-2(正确答案)。

高中数学必修二练习册答案

高中数学必修二练习册答案
当截距不为 时,设 或 过点 ,
则得 ,或 ,即 ,或
这样的直线有 条: , ,或 。
4.解:设直线为 交 轴于点 ,交 轴于点 ,
得 ,或
解得 或
,或 为所求。
第三章 直线和方程[综合训练B组]
一、选择题
1.B线段 的中点为 垂直平分线的 ,
2.A
3.B令 则
4.C由 得 对于任何 都成立,则
5.B
3.D垂直于同一条直线的两条直线有三种位置关系
4.B连接 ,则 垂直于平面 ,即 ,而 ,
5.D八卦图可以想象为两个平面垂直相交,第三个平面与它们的交线再垂直相交
6.C当三棱锥 体积最大时,平面 ,取 的中点 ,
则△ 是等要直角三角形,即
二、填空题
1.异面或相交就是不可能平行
2. 直线 与平面 所成的 的角为 与 所成角的最小值,当 在 内适当旋转就可以得到 ,即 与 所成角的的最大值为
⑶两条直线都和第三条直线垂直,则这两条直线三种位置关系都有可能
⑷一条直线和一个平面内无数条直线没有公共点,则这条直线也可在这个平面内
2. D对于前三个,可以想象出仅有一个直角的平面四边形沿着非直角所在的对角线翻折;对角为直角的平面四边形沿着非直角所在的对角线翻折;在翻折的过程中,某个瞬间出现了有三个直角的空间四边形
3.解:令 则 可看作圆 上的动点到点 的连线的斜率
而相切时的斜率为 , 。
4.解:(1) ①; ②;
② ①得: 为公共弦所在直线的方程;
(2)弦长的一半为 ,公共弦长为 。
第四章 圆和方程[提高训练C组]
一、选择题
1.C由平面几何知识知 的垂直平分线就是连心线
2.B对 分类讨论得两种情况3.C

数学选择性必修二苏教版课时作业本答案通城学典2021

数学选择性必修二苏教版课时作业本答案通城学典2021

数学选择性必修二苏教版课时作业本答案通城学典20211、为筹备班级联欢会,班长对全班同学爱吃哪几种水果做了民意调查,然后决定买什么水果,最值得关注的应该是统计调查数据的( ) [单选题] *A.中位数B.平均数C.众数(正确答案)D.方差2、3.(2020·新高考Ⅰ,1,5分)设集合A={x|1≤x≤3},B={x|2<x<4},则A∪B=( ) [单选题] * A.{x|2<x≤3}B.{x|2≤x≤3}C.{x|1≤x<4}(正确答案)D.{x|1<x<4}3、11、在第二、四象限内两条坐标轴夹角平分线上的点,它们的横坐标与纵坐标是()[单选题] *A.相等B.互为相反数(正确答案)C.零D.以上结论都不对4、23.将x-y-6=0改写成用含x的式子表示y的形式为()[单选题] *A. x=y+6B. y=x-6(正确答案)C. x=6-yD. y=6=x5、17.若a与﹣2互为相反数,则a的值是()[单选题] *A.﹣2B.C.D.2(正确答案)6、下列计算正确的是( ) [单选题] *A. 9a3·2a2=18a?(正确答案)B. 2x?·3x?=5x?C. 3 x3·4x3=12x3D. 3y3·5y3=15y?7、已知2x=8,2y=4,则2x+y=()[单选题] *A 、32(正确答案)B 、33C、16D、48、6.方程x2=3x的根是()[单选题] *A、x = 3B、x = 0C、x1 =-3, x2 =0D、x1 =3, x2 = 0(正确答案)9、12.(2020·天津,2,5分)设a∈R,则“a>1”是“a2(平方)>a”的( ) [单选题] * A.充分不必要条件(正确答案)B.必要不充分条件C.充要条件D.既不充分也不必要条件10、10.下列各数:5,﹣,03003,,0,﹣,12,1010010001…(每两个1之间的0依次增加1个),其中分数的个数是()[单选题] *A.3B.4(正确答案)C.5D.611、9、横坐标为3的点一定在()[单选题] *A.与x轴平行,且与x轴的距离为3的直线上B.与y轴平行,且与y轴的距离为3的直线上C.与x轴正半轴相交,与y轴平行,且与y轴的距离为3的直线上(正确答案)D.与y轴正半轴相交,与x轴平行,且与x轴的距离为3的直线上12、下列说法错误的是[单选题] *A.+(-3)的相反数是3B.-(+3)的相反数是3C.-(-8)的相反数是-8(正确答案)C.-(+八分之一)的相反数是813、19.下列两个数互为相反数的是()[单选题] *A.(﹣)和﹣(﹣)B.﹣5和(正确答案)C.π和﹣14D.+20和﹣(﹣20)14、390°是第()象限角?[单选题] *第一象限(正确答案)第二象限第三象限第四象限15、-120°用弧度制表示为()[单选题] *-2π/3(正确答案)2π/3-π/3-2π/516、2、在轴上的点的纵坐标是()[单选题] * A.正数B.负数C.零(正确答案)D.实数17、5.下列说法中正确的是()[单选题] * A.没有最大的正数,但有最大的负数B.没有最小的负数,但有最小的正数C.没有最小的有理数,也没有最大的有理数(正确答案)D.有最小的自然数,也有最小的整数18、10.如图是丁丁画的一张脸的示意图,如果用表示左眼,用表示右眼,那么嘴的位置可以表示成().[单选题] *A.(1,0)B(-1,0)(正确答案)C(-1,1)D(1,-1)19、47、若△ABC≌△DEF,AB=2,AC=4,且△DEF的周长为奇数,则EF的值为()[单选题] *A.3B.4C.1或3D.3或5(正确答案)20、25.{菱形}∩{矩形}应()[单选题] *A.{正方形}(正确答案)B.{矩形}C.{平行四边形}D.{菱形}21、20.如图,OC是∠AOB的平分线,OD是∠BOC的平分线,那么下列各式中正确的是()[单选题] *21.A.∠COD=∠AOBB.∠AOD=∠AOBC.∠BOD=∠AODD.∠BOC=∠AOD(正确答案)22、8.修建高速公路时,经常把弯曲的公路改成直道,从而缩短路程,其道理用数学知识解释正确的是()[单选题] *A.线段可以比较大小B.线段有两个端点C.两点之间,线段最短(正确答案)D.过两点有且只有一条直线23、10. 如图所示,小明周末到外婆家,走到十字路口处,记不清哪条路通往外婆家,那么他一次选对路的概率是(? ? ?).[单选题] *A.1/2B.1/3(正确答案)C.1/4D.124、下列说法中,正确的是()[单选题] *A、第一象限角是锐角B、第一象限角是锐角(正确答案)C、小于90°的角是锐角D、第一象限的角不可能是钝角25、△ABC中的边BC上有一点D,AB=13,BD=7,DC=5,AC=7,则AD的长()[单选题] *A、8(正确答案)B、9C、6D、326、如果四条不共点的直线两两相交,那么这四条直线()[单选题] *A、必定在同一平面内B、必定在同一平面内C可能在同一平面内,也可能不在同一平面内(正确答案)D、无法判断27、-330°是第()象限角?[单选题] *第一象限(正确答案)第二象限第三象限第四象限28、4.一个数是25,另一个数比25的相反数大- 7,则这两个数的和为[单选题] *A.7B. - 7(正确答案)C.57D. - 5729、5、若关于x的一元二次方程(a-1)x2+x+a2-1=0的一个根是0,则a的值是()[单选题] *A、1B、-1(正确答案)C 、1或-1D、230、2.当m=-2时,代数式-2m-5的值是多少()[单选题] *A.-7B.7C.-1(正确答案)D.1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档