浙江省普通高中作业本 数学 必修5 2014 升级版 参考答案
2014年浙江省高考数学试卷(理科)(附参考答案+详细解析Word打印版)
2014年浙江省普通高等学校招生统一考试数学试卷(理科)一、选择题(每小题5分,共50分)1.(5分)设全集U={x∈N|x≥2},集合A={x∈N|x2≥5},则∁U A=()A.∅B.{2}C.{5}D.{2,5}2.(5分)已知i是虚数单位,a,b∈R,则“a=b=1”是“(a+bi)2=2i”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件3.(5分)某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是()A.90cm2B.129cm2C.132cm2D.138cm24.(5分)为了得到函数y=sin3x+cos3x的图象,可以将函数y=cos3x的图象()A.向右平移个单位B.向左平移个单位C.向右平移个单位D.向左平移个单位5.(5分)在(1+x)6(1+y)4的展开式中,记x m y n项的系数为f(m,n),则f (3,0)+f(2,1)+f(1,2)+f(0,3)=()A.45 B.60 C.120 D.2106.(5分)已知函数f(x)=x3+ax2+bx+c.且0<f(﹣1)=f(﹣2)=f(﹣3)≤3,则()A.c≤3 B.3<c≤6 C.6<c≤9 D.c>97.(5分)在同一直角坐标系中,函数f(x)=x a(x>0),g(x)=log a x的图象可能是()A.B.C.D.8.(5分)记max{x,y}=,min{x,y}=,设,为平面向量,则()A.min{|+|,|﹣|}≤min{||,||} B.min{|+|,|﹣|}≥min{||,||}C.max{|+|2,|﹣|2}≤||2+||2 D.max{|+|2,|﹣|2}≥||2+||2 9.(5分)已知甲盒中仅有1个球且为红球,乙盒中有m个红球和n个蓝球(m ≥3,n≥3),从乙盒中随机抽取i(i=1,2)个球放入甲盒中.(a)放入i个球后,甲盒中含有红球的个数记为ξi(i=1,2);(b)放入i个球后,从甲盒中取1个球是红球的概率记为p i(i=1,2).则()A.p1>p2,E(ξ1)<E(ξ2)B.p1<p2,E(ξ1)>E(ξ2)C.p1>p2,E(ξ1)>E(ξ2)D.p1<p2,E(ξ1)<E(ξ2)10.(5分)设函数f1(x)=x2,f2(x)=2(x﹣x2),,,i=0,1,2,…,99.记I k=|f k(a1)﹣f k(a0)|+|f k(a2)﹣f k(a1)丨+…+|f k(a99)﹣f k(a98)|,k=1,2,3,则()A.I1<I2<I3B.I2<I1<I3C.I1<I3<I2D.I3<I2<I1二、填空题11.(4分)在某程序框图如图所示,当输入50时,则该程序运算后输出的结果是.12.(4分)随机变量ξ的取值为0,1,2,若P(ξ=0)=,E(ξ)=1,则D(ξ)=.13.(4分)当实数x,y满足时,1≤ax+y≤4恒成立,则实数a的取值范围是.14.(4分)在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有种(用数字作答).15.(4分)设函数f(x)=,若f(f(a))≤2,则实数a的取值范围是.16.(4分)设直线x﹣3y+m=0(m≠0)与双曲线=1(a>0,b>0)的两条渐近线分别交于点A,B.若点P(m,0)满足|PA|=|PB|,则该双曲线的离心率是.17.(4分)如图,某人在垂直于水平地面ABC的墙面前的点A处进行射击训练.已知点A到墙面的距离为AB,某目标点P沿墙面上的射线CM移动,此人为了准确瞄准目标点P,需计算由点A观察点P的仰角θ的大小.若AB=15m,AC=25m,∠BCM=30°,则tanθ的最大值是.(仰角θ为直线AP与平面ABC所成角)三、解答题18.(14分)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a≠b,c=,cos2A﹣cos2B=sinAcosA﹣sinBcosB(1)求角C的大小;(2)若sinA=,求△ABC的面积.19.(14分)已知数列{a n}和{b n}满足a1a2a3…a n=(n∈N*).若{a n}为等比数列,且a1=2,b3=6+b2.(Ⅰ)求a n和b n;(Ⅱ)设c n=(n∈N*).记数列{c n}的前n项和为S n.(i)求S n;(ii)求正整数k,使得对任意n∈N*均有S k≥S n.20.(15分)如图,在四棱锥A﹣BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,AC=.(Ⅰ)证明:DE⊥平面ACD;(Ⅱ)求二面角B﹣AD﹣E的大小.21.(15分)如图,设椭圆C:(a>b>0),动直线l与椭圆C只有一个公共点P,且点P在第一象限.(Ⅰ)已知直线l的斜率为k,用a,b,k表示点P的坐标;(Ⅱ)若过原点O的直线l1与l垂直,证明:点P到直线l1的距离的最大值为a ﹣b.22.(14分)已知函数f(x)=x3+3|x﹣a|(a∈R).(Ⅰ)若f(x)在[﹣1,1]上的最大值和最小值分别记为M(a),m(a),求M (a)﹣m(a);(Ⅱ)设b∈R,若[f(x)+b]2≤4对x∈[﹣1,1]恒成立,求3a+b的取值范围.2014年浙江省高考数学试卷(理科)参考答案与试题解析一、选择题(每小题5分,共50分)1.(5分)设全集U={x∈N|x≥2},集合A={x∈N|x2≥5},则∁U A=()A.∅B.{2}C.{5}D.{2,5}【分析】先化简集合A,结合全集,求得∁U A.【解答】解:∵全集U={x∈N|x≥2},集合A={x∈N|x2≥5}={x∈N|x≥3},则∁U A={2},故选:B.【点评】本题主要考查全集、补集的定义,求集合的补集,属于基础题.2.(5分)已知i是虚数单位,a,b∈R,则“a=b=1”是“(a+bi)2=2i”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【分析】利用复数的运算性质,分别判断“a=b=1”⇒“(a+bi)2=2i”与“a=b=1”⇐“(a+bi)2=2i”的真假,进而根据充要条件的定义得到结论.【解答】解:当“a=b=1”时,“(a+bi)2=(1+i)2=2i”成立,故“a=b=1”是“(a+bi)2=2i”的充分条件;当“(a+bi)2=a2﹣b2+2abi=2i”时,“a=b=1”或“a=b=﹣1”,故“a=b=1”是“(a+bi)2=2i”的不必要条件;综上所述,“a=b=1”是“(a+bi)2=2i”的充分不必要条件;故选:A.【点评】本题考查的知识点是充要条件的定义,复数的运算,难度不大,属于基础题.3.(5分)某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是()A.90cm2B.129cm2C.132cm2D.138cm2【分析】几何体是直三棱柱与直四棱柱的组合体,根据三视图判断直三棱柱的侧棱长与底面的形状及相关几何量的数据,判断四棱柱的高与底面矩形的边长,把数据代入表面积公式计算.【解答】解:由三视图知:几何体是直三棱柱与直四棱柱的组合体,其中直三棱柱的侧棱长为3,底面是直角边长分别为3、4的直角三角形,四棱柱的高为6,底面为矩形,矩形的两相邻边长为3和4,∴几何体的表面积S=2×4×6+3×6+3×3+2×3×4+2××3×4+(4+5)×3=48+18+9+24+12+27=138(cm2).故选:D.【点评】本题考查了由三视图求几何体的表面积,根据三视图判断几何体的形状及数据所对应的几何量是解题的关键.4.(5分)为了得到函数y=sin3x+cos3x的图象,可以将函数y=cos3x的图象()A.向右平移个单位B.向左平移个单位C.向右平移个单位D.向左平移个单位【分析】利用两角和与差的三角函数化简已知函数为一个角的一个三角函数的形式,然后利用平移原则判断选项即可.【解答】解:函数y=sin3x+cos3x=,故只需将函数y=cos3x的图象向右平移个单位,得到y==的图象.【点评】本题考查两角和与差的三角函数以及三角函数的平移变换的应用,基本知识的考查.5.(5分)在(1+x)6(1+y)4的展开式中,记x m y n项的系数为f(m,n),则f (3,0)+f(2,1)+f(1,2)+f(0,3)=()A.45 B.60 C.120 D.210【分析】由题意依次求出x3y0,x2y1,x1y2,x0y3,项的系数,求和即可.【解答】解:(1+x)6(1+y)4的展开式中,含x3y0的系数是:=20.f(3,0)=20;含x2y1的系数是=60,f(2,1)=60;含x1y2的系数是=36,f(1,2)=36;含x0y3的系数是=4,f(0,3)=4;∴f(3,0)+f(2,1)+f(1,2)+f(0,3)=120.故选:C.【点评】本题考查二项式定理系数的性质,二项式定理的应用,考查计算能力.6.(5分)已知函数f(x)=x3+ax2+bx+c.且0<f(﹣1)=f(﹣2)=f(﹣3)≤3,则()A.c≤3 B.3<c≤6 C.6<c≤9 D.c>9【分析】由f(﹣1)=f(﹣2)=f(﹣3)列出方程组求出a,b,代入0<f(﹣1)≤3,即可求出c的范围.【解答】解:由f(﹣1)=f(﹣2)=f(﹣3)得,解得,则f(x)=x3+6x2+11x+c,由0<f(﹣1)≤3,得0<﹣1+6﹣11+c≤3,故选:C.【点评】本题考查方程组的解法及不等式的解法,属于基础题.7.(5分)在同一直角坐标系中,函数f(x)=x a(x>0),g(x)=log a x的图象可能是()A.B.C.D.【分析】结合对数函数和幂函数的图象和性质,分当0<a<1时和当a>1时两种情况,讨论函数f(x)=x a(x≥0),g(x)=log a x的图象,比照后可得答案.【解答】解:当0<a<1时,函数f(x)=x a(x≥0),g(x)=log a x的图象为:此时答案D满足要求,当a>1时,函数f(x)=x a(x≥0),g(x)=log a x的图象为:无满足要求的答案,综上:故选D,故选:D.【点评】本题考查的知识点是函数的图象,熟练掌握对数函数和幂函数的图象和性质,是解答的关键.8.(5分)记max{x,y}=,min{x,y}=,设,为平面向量,则()A.min{|+|,|﹣|}≤min{||,||} B.min{|+|,|﹣|}≥min{||,||}C.max{|+|2,|﹣|2}≤||2+||2 D.max{|+|2,|﹣|2}≥||2+||2【分析】将,平移到同一起点,根据向量加减法的几何意义可知,+和﹣分别表示以,为邻边所做平行四边形的两条对角线,再根据选项内容逐一判断.【解答】解:对于选项A,取⊥,则由图形可知,根据勾股定理,结论不成立;对于选项B,取,是非零的相等向量,则不等式左边min{|+|,|﹣|}=0,显然,不等式不成立;对于选项C,取,是非零的相等向量,则不等式左边max{|+|2,|﹣|2}=|+|2=4,而不等式右边=||2+||2=2,故C不成立,D选项正确.故选:D.【点评】本题在处理时要结合着向量加减法的几何意义,将,,,放在同一个平行四边形中进行比较判断,在具体解题时,本题采用了排除法,对错误选项进行举反例说明,这是高考中做选择题的常用方法,也不失为一种快速有效的方法,在高考选择题的处理上,未必每一题都要写出具体解答步骤,针对选择题的特点,有时“排除法”,“确定法”,“特殊值”代入法等也许是一种更快速,更有效的方法.9.(5分)已知甲盒中仅有1个球且为红球,乙盒中有m个红球和n个蓝球(m ≥3,n≥3),从乙盒中随机抽取i(i=1,2)个球放入甲盒中.(a)放入i个球后,甲盒中含有红球的个数记为ξi(i=1,2);(b)放入i个球后,从甲盒中取1个球是红球的概率记为p i(i=1,2).则()A.p1>p2,E(ξ1)<E(ξ2)B.p1<p2,E(ξ1)>E(ξ2)C.p1>p2,E(ξ1)>E(ξ2)D.p1<p2,E(ξ1)<E(ξ2)【分析】首先,这两次先后从甲盒和乙盒中拿球是相互独立的,然后分两种情况:即当ξ=1时,有可能从乙盒中拿出一个红球放入甲盒,也可能是拿到一个蓝球放入甲盒;ξ=2时,则从乙盒中拿出放入甲盒的球可能是两蓝球、一红一蓝、或者两红;最后利用概率公式及分布列知识求出P1,P2和E(ξ1),E(ξ2)进行比较即可.【解答】解析:,,,所以P1>P2;由已知ξ1的取值为1、2,ξ2的取值为1、2、3,所以,==,E(ξ1)﹣E(ξ2)=.故选:A.【点评】正确理解ξi(i=1,2)的含义是解决本题的关键.此题也可以采用特殊值法,不妨令m=n=3,也可以很快求解.10.(5分)设函数f1(x)=x2,f2(x)=2(x﹣x2),,,i=0,1,2,…,99.记I k=|f k(a1)﹣f k(a0)|+|f k(a2)﹣f k(a1)丨+…+|f k(a99)﹣f k(a98)|,k=1,2,3,则()A.I1<I2<I3B.I2<I1<I3C.I1<I3<I2D.I3<I2<I1【分析】根据记I k=|f k(a1)﹣f k(a0)|+|f k(a2)﹣f k(a1)丨+…+|f k(a99)﹣f k (a98)|,分别求出I1,I2,I3与1的关系,继而得到答案【解答】解:由,故==1,由,故×=×<1,+=,故I2<I1<I3,故选:B.【点评】本题主要考查了函数的性质,关键是求出这三个数与1的关系,属于难题.二、填空题11.(4分)在某程序框图如图所示,当输入50时,则该程序运算后输出的结果是6.【分析】根据框图的流程模拟运行程序,直到满足条件S>50,跳出循环体,确定输出的i的值.【解答】解:由程序框图知:第一次循环S=1,i=2;第二次循环S=2×1+2=4,i=3;第三次循环S=2×4+3=11,i=4;第四次循环S=2×11+4=26,i=5;第五次循环S=2×26+5=57,i=6,满足条件S>50,跳出循环体,输出i=6.故答案为:6.【点评】本题考查了直到型循环结构的程序框图,根据框图的流程模拟运行程序是解答此类问题的常用方法.12.(4分)随机变量ξ的取值为0,1,2,若P(ξ=0)=,E(ξ)=1,则D(ξ)=.【分析】结合方差的计算公式可知,应先求出P(ξ=1),P(ξ=2),根据已知条件结合分布列的性质和期望的计算公式不难求得.【解答】解析:设P(ξ=1)=p,P(ξ=2)=q,则由已知得p+q=,,解得,,所以.故答案为:【点评】本题综合考查了分布列的性质以及期望、方差的计算公式.13.(4分)当实数x,y满足时,1≤ax+y≤4恒成立,则实数a的取值范围是[] .【分析】由约束条件作出可行域,再由1≤ax+y≤4恒成立,结合可行域内特殊点A,B,C的坐标满足不等式列不等式组,求解不等式组得实数a的取值范围.【解答】解:由约束条件作可行域如图,联立,解得C(1,).联立,解得B(2,1).在x﹣y﹣1=0中取y=0得A(1,0).要使1≤ax+y≤4恒成立,则,解得:1.∴实数a的取值范围是.解法二:令z=ax+y,当a>0时,y=﹣ax+z,在B点取得最大值,A点取得最小值,可得,即1≤a≤;当a<0时,y=﹣ax+z,在C点取得最大值,①a<﹣1时,在B点取得最小值,可得,解得0≤a≤(不符合条件,舍去)②﹣1<a<0时,在A点取得最小值,可得,解得1≤a≤(不符合条件,舍去)综上所述即:1≤a≤;故答案为:.【点评】本题考查线性规划,考查了数形结合的解题思想方法,考查了数学转化思想方法,训练了不等式组得解法,是中档题.14.(4分)在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有60种(用数字作答).【分析】分类讨论,一、二、三等奖,三个人获得;一、二、三等奖,有1人获得2张,1人获得1张.【解答】解:分类讨论,一、二、三等奖,三个人获得,共有=24种;一、二、三等奖,有1人获得2张,1人获得1张,共有=36种,共有24+36=60种.故答案为:60.【点评】本题考查排列、组合及简单计数问题,考查学生的计算能力,属于基础题.15.(4分)设函数f(x)=,若f(f(a))≤2,则实数a的取值范围是(﹣∞,] .【分析】画出函数f(x)的图象,由f(f(a))≤2,可得f(a)≥﹣2,数形结合求得实数a的取值范围.【解答】解:∵函数f(x)=,它的图象如图所示:由f(f(a))≤2,可得f(a)≥﹣2.当a<0时,f(a)=a2+a=(a+)2﹣≥﹣2恒成立;当a≥0时,f(a)=﹣a2≥﹣2,即a2≤2,解得0≤a≤,则实数a的取值范围是a≤,故答案为:(﹣∞,].【点评】本题主要考查分段函数的应用,其它不等式的解法,体现了数形结合的数学思想,属于中档题.16.(4分)设直线x﹣3y+m=0(m≠0)与双曲线=1(a>0,b>0)的两条渐近线分别交于点A,B.若点P(m,0)满足|PA|=|PB|,则该双曲线的离心率是.【分析】先求出A,B的坐标,可得AB中点坐标为(,),利用点P(m,0)满足|PA|=|PB|,可得=﹣3,从而可求双曲线的离心率.【解答】解:双曲线(a>0,b>0)的两条渐近线方程为y=±x,则与直线x﹣3y+m=0联立,可得A(,),B(﹣,),∴AB中点坐标为(,),∵点P(m,0)满足|PA|=|PB|,∴=﹣3,∴a=2b,∴=b,∴e==.故答案为:.【点评】本题考查双曲线的离心率,考查直线的位置关系,考查学生的计算能力,属于中档题.17.(4分)如图,某人在垂直于水平地面ABC的墙面前的点A处进行射击训练.已知点A到墙面的距离为AB,某目标点P沿墙面上的射线CM移动,此人为了准确瞄准目标点P,需计算由点A观察点P的仰角θ的大小.若AB=15m,AC=25m,∠BCM=30°,则tanθ的最大值是.(仰角θ为直线AP与平面ABC所成角)【分析】过P作PP′⊥BC,交BC于P′,连接AP′,则tanθ=,求出PP′,AP′,利用函数的性质,分类讨论,即可得出结论.【解答】解:∵AB=15m,AC=25m,∠ABC=90°,∴BC=20m,过P作PP′⊥BC,交BC于P′,连接AP′,则tanθ=,设B P′=x,则CP′=20﹣x,由∠BCM=30°,得PP′=CP′tan30°=(20﹣x),在直角△ABP′中,AP′=,∴tanθ=•,令y=,则函数在x∈[0,20]单调递减,∴x=0时,取得最大值为=.若P′在CB的延长线上,PP′=CP′tan30°=(20+x),在直角△ABP′中,AP′=,∴tanθ=•,令y=,则y′=0可得x=时,函数取得最大值,故答案为:.【点评】本题考查利用数学知识解决实际问题,考查函数的单调性,考查学生分析解决问题的能力,属于中档题.三、解答题18.(14分)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a≠b,c=,cos2A﹣cos2B=sinAcosA﹣sinBcosB(1)求角C的大小;(2)若sinA=,求△ABC的面积.【分析】(1)利用倍角公式、两角和差的正弦公式可得,由a≠b得,A≠B,又A+B∈(0,π),可得,即可得出.(2)利用正弦定理可得a,利用两角和差的正弦公式可得sinB,再利用三角形的面积计算公式即可得出.【解答】解:(1)由题意得,,∴,化为,由a≠b得,A≠B,又A+B∈(0,π),得,即,∴;(2)由,利用正弦定理可得,得,由a<c,得A<C,从而,故,∴.【点评】本题考查了正弦定理、倍角公式、两角和差的正弦公式、三角形的面积计算公式,考查了推理能力与计算能力,属于中档题.19.(14分)已知数列{a n}和{b n}满足a1a2a3…a n=(n∈N*).若{a n}为等比数列,且a1=2,b3=6+b2.(Ⅰ)求a n和b n;(Ⅱ)设c n=(n∈N*).记数列{c n}的前n项和为S n.(i)求S n;(ii)求正整数k,使得对任意n∈N*均有S k≥S n.【分析】(Ⅰ)先利用前n项积与前(n﹣1)项积的关系,得到等比数列{a n}的第三项的值,结合首项的值,求出通项a n,然后现利用条件求出通项b n;(Ⅱ)(i)利用数列特征进行分组求和,一组用等比数列求和公式,另一组用裂项法求和,得出本小题结论;(ii)本小题可以采用猜想的方法,得到结论,再加以证明.【解答】解:(Ⅰ)∵a1a2a3…a n=(n∈N*)①,当n≥2,n∈N*时,②,由①②知:,令n=3,则有.∵b3=6+b2,∴a3=8.∵{a n}为等比数列,且a1=2,∴{a n}的公比为q,则=4,,∴q>0,∴q=2.由题意知a n>0∴(n∈N*).又由a1a2a3…a n=(n∈N*)得:,,∴b n=n(n+1)(n∈N*).(Ⅱ)(i)∵c n===.∴S n=c1+c2+c3+…+c n====;(ii)因为c1=0,c2>0,c3>0,c4>0;当n≥5时,,而=>0,得,所以,当n≥5时,c n<0,综上,对任意n∈N*恒有S4≥S n,故k=4.【点评】本题考查了等比数列通项公式、求和公式,还考查了分组求和法、裂项求和法和猜想证明的思想,证明可以用二项式定理,还可以用数学归纳法.本题计算量较大,思维层次高,要求学生有较高的分析问题解决问题的能力.本题属于难题.20.(15分)如图,在四棱锥A﹣BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,AC=.(Ⅰ)证明:DE⊥平面ACD;(Ⅱ)求二面角B﹣AD﹣E的大小.【分析】(Ⅰ)依题意,易证AC⊥平面BCDE,于是可得AC⊥DE,又DE⊥DC,从而DE⊥平面ACD;(Ⅱ)作BF⊥AD,与AD交于点F,过点F作FG∥DE,与AE交于点G,连接BG,由(Ⅰ)知DE⊥AD,则FG⊥AD,所以∠BFG就是二面角B﹣AD﹣E的平面角,利用题中的数据,解三角形,可求得BF=,AF=AD,从而GF=,cos∠BFG==,从而可求得答案.【解答】证明:(Ⅰ)在直角梯形BCDE中,由DE=BE=1,CD=2,得BD=BC=,由AC=,AB=2得AB2=AC2+BC2,即AC⊥BC,又平面ABC⊥平面BCDE,从而AC⊥平面BCDE,所以AC⊥DE,又DE⊥DC,从而DE⊥平面ACD;(Ⅱ)作BF⊥AD,与AD交于点F,过点F作FG∥DE,与AE交于点G,连接BG,由(Ⅰ)知DE⊥AD,则FG⊥AD,所以∠BFG就是二面角B﹣AD﹣E的平面角,在直角梯形BCDE中,由CD2=BC2+BD2,得BD⊥BC,又平面ABC⊥平面BCDE,得BD⊥平面ABC,从而BD⊥AB,由于AC⊥平面BCDE,得AC⊥CD.在Rt△ACD中,由DC=2,AC=,得AD=;在Rt△AED中,由ED=1,AD=得AE=;在Rt△ABD中,由BD=,AB=2,AD=得BF=,AF=AD,从而GF=,在△ABE,△ABG中,利用余弦定理分别可得cos∠BAE=,BG=.在△BFG中,cos∠BFG==,所以,∠BFG=,二面角B﹣AD﹣E的大小为.【点评】本题主要考查空间点、线、面位置关系,二面角等基础知识,同时考查空间想象能力,推理论证能力和运算求解能力.21.(15分)如图,设椭圆C:(a>b>0),动直线l与椭圆C只有一个公共点P,且点P在第一象限.(Ⅰ)已知直线l的斜率为k,用a,b,k表示点P的坐标;(Ⅱ)若过原点O的直线l1与l垂直,证明:点P到直线l1的距离的最大值为a ﹣b.【分析】(Ⅰ)设直线l的方程为y=kx+m(k<0),由,消去y得(b2+a2k2)x2+2a2kmx+a2m2﹣a2b2=0,利用△=0,可求得在第一象限中点P的坐标;(Ⅱ)由于直线l1过原点O且与直线l垂直,设直线l1的方程为x+ky=0,利用点到直线间的距离公式,可求得点P到直线l1的距离d=,整理即可证得点P到直线l1的距离的最大值为a﹣b..【解答】解:(Ⅰ)设直线l的方程为y=kx+m(k<0),由,消去y得(b2+a2k2)x2+2a2kmx+a2m2﹣a2b2=0.由于直线l与椭圆C只有一个公共点P,故△=0,即b2﹣m2+a2k2=0,此时点P的横坐标为﹣,代入y=kx+m得点P的纵坐标为﹣k•+m=,∴点P的坐标为(﹣,),又点P在第一象限,故m>0,故m=,故点P的坐标为P(,).(Ⅱ)由于直线l1过原点O且与直线l垂直,故直线l1的方程为x+ky=0,所以点P到直线l1的距离d=,整理得:d=,因为a2k2+≥2ab,所以≤=a﹣b,当且仅当k2=时等号成立.所以,点P到直线l1的距离的最大值为a﹣b.【点评】本题主要考查椭圆的几何性质、点到直线间的距离、直线与椭圆的位置关系等基础知识,同时考查解析几何的基本思想方法、基本不等式应用等综合解题能力.22.(14分)已知函数f(x)=x3+3|x﹣a|(a∈R).(Ⅰ)若f(x)在[﹣1,1]上的最大值和最小值分别记为M(a),m(a),求M (a)﹣m(a);(Ⅱ)设b∈R,若[f(x)+b]2≤4对x∈[﹣1,1]恒成立,求3a+b的取值范围.【分析】(Ⅰ)利用分段函数,结合[﹣1,1],分类讨论,即可求M(a)﹣m(a);(Ⅱ)令h(x)=f(x)+b,则h(x)=,h′(x)=,则[f(x)+b]2≤4对x∈[﹣1,1]恒成立,转化为﹣2≤h(x)≤2对x∈[﹣1,1]恒成立,分类讨论,即可求3a+b的取值范围.【解答】解:(Ⅰ)∵f(x)=x3+3|x﹣a|=,∴f′(x)=,①a≤﹣1时,∵﹣1≤x≤1,∴x≥a,f(x)在(﹣1,1)上是增函数,∴M(a)=f(1)=4﹣3a,m(a)=f(﹣1)=﹣4﹣3a,∴M(a)﹣m(a)=8;②﹣1<a<1时,x∈(a,1),f(x)=x3+3x﹣3a,在(a,1)上是增函数;x∈(﹣1,a),f(x)=x3﹣3x+3a,在(﹣1,a)上是减函数,∴M(a)=max{f(1),f(﹣1)},m(a)=f(a)=a3,∵f(1)﹣f(﹣1)=﹣6a+2,∴﹣1<a≤时,M(a)﹣m(a)=﹣a3﹣3a+4;<a<1时,M(a)﹣m(a)=﹣a3+3a+2;③a≥1时,有x≤a,f(x)在(﹣1,1)上是减函数,∴M(a)=f(﹣1)=2+3a,m(a)=f(1)=﹣2+3a,∴M(a)﹣m(a)=4;(Ⅱ)令h(x)=f(x)+b,则h(x)=,h′(x)=,∵[f(x)+b]2≤4对x∈[﹣1,1]恒成立,∴﹣2≤h(x)≤2对x∈[﹣1,1]恒成立,由(Ⅰ)知,①a≤﹣1时,h(x)在(﹣1,1)上是增函数,最大值h(1)=4﹣3a+b,最小值h(﹣1)=﹣4﹣3a+b,则﹣4﹣3a+b≥﹣2且4﹣3a+b≤2矛盾;②﹣1<a≤时,最小值h(a)=a3+b,最大值h(1)=4﹣3a+b,∴a3+b≥﹣2且4﹣3a+b≤2,令t(a)=﹣2﹣a3+3a,则t′(a)=3﹣3a2>0,t(a)在(0,)上是增函数,∴t(a)>t(0)=﹣2,∴﹣2≤3a+b≤0;③<a<1时,最小值h(a)=a3+b,最大值h(﹣1)=3a+b+2,则a3+b≥﹣2且3a+b+2≤2,∴﹣<3a+b≤0;④a≥1时,最大值h(﹣1)=3a+b+2,最小值h(1)=3a+b﹣2,则3a+b﹣2≥﹣2且3a+b+2≤2,∴3a+b=0.综上,3a+b的取值范围是﹣2≤3a+b≤0.【点评】本题考查导数的综合运用,考查函数的最值,考查分类讨论、化归与转化的数学思想,难度大.。
人教版高中数学必修5教科书课后习题答案
人民教育出版社 高中数学必修五第一章 解三角形1.1两角和与差的正弦、余弦和正切公式 练习(P4) 1、(1)14a ≈,19b ≈,105B =︒; (2)18a ≈cm ,15b ≈cm ,75C =︒. 2、(1)65A ≈︒,85C ≈︒,22c ≈;或115A ≈︒,35C ≈︒,13c ≈; (2)41B ≈︒,24A ≈︒,24a ≈. 练习(P8) 1、(1)39.6,58.2, 4.2 cm A B c ≈︒≈︒≈; (2)55.8,81.9,10.5 cm B C a ≈︒≈︒≈. 2、(1)43.5,100.3,36.2A B C ≈︒≈︒≈︒; (2)24.7,44.9,110.4A B C ≈︒≈︒≈︒. 习题1.1 A 组(P10) 1、(1)38,39,80a cm b cm B ≈≈≈︒; (2)38,56,90a cm b cm C ≈≈=︒ 2、(1)114,43,35;20,137,13A B a cm A B a cm ≈︒≈︒≈≈︒≈︒≈ (2)35,85,17B C c cm ≈︒≈︒≈;(3)97,58,47;33,122,26A B a cm A B a cm ≈︒≈︒≈≈︒≈︒≈; 3、(1)49,24,62A B c cm ≈︒≈︒≈; (2)59,55,62A C b cm ≈︒≈︒≈; (3)36,38,62B C a cm ≈︒≈︒≈; 4、(1)36,40,104A B C ≈︒≈︒≈︒; (2)48,93,39A B C ≈︒≈︒≈︒;习题1.1 A 组(P10)1、证明:如图1,设ABC ∆的外接圆的半径是R ,①当ABC ∆时直角三角形时,90C ∠=︒时,ABC ∆的外接圆的圆心O 在Rt ABC ∆的斜边AB 上.在Rt ABC ∆中,sin BC A AB=,sin ACB AB = 即sin 2a A R =,sin 2b B R = 所以2sin a R A =,2sin b R B = 又22sin902sin c R R RC ==⋅︒= 所以2sin , 2sin , 2sin a R A b R B c R C ===②当ABC ∆时锐角三角形时,它的外接圆的圆心O 在三角形内(图2),作过O B 、的直径1A B ,连接1A C ,则1A BC ∆直角三角形,190ACB ∠=︒,1BAC BAC ∠=∠. 在1Rt A BC ∆中,11sin BCBAC A B=∠, 即1sin sin 2aBAC A R=∠=, 所以2sin a R A =,同理:2sin b R B =,2sin c R C =③当ABC ∆时钝角三角形时,不妨假设A ∠为钝角, 它的外接圆的圆心O 在ABC ∆外(图3)(第1题图1) (第1题图2)作过O B 、的直径1A B ,连接1A C .则1A BC ∆直角三角形,且190ACB ∠=︒,1180BAC∠=︒-∠在1Rt A BC ∆中,12sin BC R BAC =∠,即2sin(180)a R BAC =︒-∠即2sin a R A =同理:2sin b R B =,2sin c R C =综上,对任意三角形ABC ∆,如果它的外接圆半径等于则2sin , 2sin , 2sin a R A b R B c R C ===2、因为cos cos a A b B =,所以sin cos sin cos A A B B =,即sin2sin2A B = 因为02,22A B π<<,所以22A B =,或22A B π=-,或222A B ππ-=-. 即A B =或2A B π+=.所以,三角形是等腰三角形,或是直角三角形.在得到sin2sin2A B =后,也可以化为sin2sin20A B -= 所以cos()sin()0A B A B +-= 2A B π+=,或0A B -=即2A B π+=,或A B =,得到问题的结论.1.2应用举例 练习(P13)1、在ABS ∆中,32.20.516.1AB =⨯= n mile ,115ABS ∠=︒,根据正弦定理,sin sin(6520)AS ABABS =∠︒-︒得sin 16.1sin115sin(6520)AS AB ABS ==⨯∠=⨯︒-︒∴S 到直线AB 的距离是sin 2016.1sin115sin 207.06d AS =⨯︒=⨯︒≈(cm ). ∴这艘船可以继续沿正北方向航行. 2、顶杆约长1.89 m. 练习(P15)1、在ABP ∆中,180ABP γβ∠=︒-+,180()180()(180)BPA ABP αβαβγβγα∠=︒---∠=︒---︒-+=-在ABP ∆中,根据正弦定理,sin sin AP ABABP APB=∠∠ sin(180)sin()AP aγβγα=︒-+-sin()sin()a AP γβγα⨯-=-(第1题图3)所以,山高为sin sin()sin sin()a h AP αγβαγα-==-2、在ABC ∆中,65.3AC =m ,25251738747BAC αβ'''∠=-=︒-︒=︒909025256435ABC α''∠=︒-=︒-︒=︒ 根据正弦定理,sin sin AC BCABC BAC=∠∠ sin 65.3sin7479.8sin sin6435AC BAC BC ABC '⨯∠⨯︒==≈'∠︒m井架的高约9.8m.3、山的高度为200sin38sin 29382sin9⨯︒︒≈︒m练习(P16) 1、约63.77︒. 练习(P18) 1、(1)约2168.52 cm ; (2)约2121.75 cm ; (3)约2425.39 cm . 2、约24476.40 m3、右边222222cos cos 22a b c a c b b C c B b c ab ac+-+-=+=⨯+⨯22222222222a b c a c b a a a a a+-+-=+===左边 【类似可以证明另外两个等式】习题1.2 A 组(P19)1、在ABC ∆中,350.517.5BC =⨯= n mile ,14812622ABC ∠=︒-︒=︒78(180148)110ACB ∠=︒+︒-︒=︒,1801102248BAC ∠=︒-︒-︒=︒根据正弦定理,sin sin AC BCABC BAC=∠∠ sin 17.5sin 228.82sin sin 48BC ABC AC BAC ⨯∠⨯︒==≈∠︒n mile货轮到达C 点时与灯塔的距离是约8.82 n mile. 2、70 n mile.3、在BCD ∆中,301040BCD ∠=︒+︒=︒,1801804510125BDC ADB ∠=︒-∠=︒-︒-︒=︒130103CD =⨯= n mile根据正弦定理,sin sin CD BDCBD BCD=∠∠ 10sin (18040125)sin 40BD=∠︒-︒-︒︒10sin 40sin15BD ⨯︒=︒在ABD ∆中,451055ADB ∠=︒+︒=︒,1806010110BAD ∠=︒-︒-︒=︒1801105515ABD ∠=︒-︒-︒=︒根据正弦定理,sin sin sin AD BD AB ABD BAD ADB ==∠∠∠,即sin15sin110sin55AD BD AB==︒︒︒10sin 40sin15sin1510sin 40sin15 6.84sin110sin110sin 70BD AD ⨯︒⨯︒⨯︒⨯︒︒===≈︒︒︒n mile sin5510sin 40sin5521.65sin110sin15sin70BD AB ⨯︒⨯︒⨯︒==≈︒︒⨯︒n mile如果一切正常,此船从C 开始到B 所需要的时间为:6.8421.65206010306086.983030AD AB +++⨯+≈+⨯≈ min即约1小时26分59秒. 所以此船约在11时27分到达B 岛. 4、约5821.71 m5、在ABD ∆中,700 km AB =,1802135124ACB ∠=︒-︒-︒=︒根据正弦定理,700sin124sin35sin 21AC BC==︒︒︒700sin35sin124AC ⨯︒=︒,700sin 21sin124BC ⨯︒=︒700sin35700sin 21786.89 km sin124sin124AC BC ⨯︒⨯︒+=+≈︒︒所以路程比原来远了约86.89 km.6、飞机离A 处探照灯的距离是4801.53 m ,飞机离B 处探照灯的距离是4704.21 m ,飞机的高度是约4574.23 m.7、飞机在150秒内飞行的距离是15010001000 m 3600d =⨯⨯根据正弦定理,sin(8118.5)sin18.5d x=︒-︒︒这里x 是飞机看到山顶的俯角为81︒时飞机与山顶的距离.飞机与山顶的海拔的差是:sin18.5tan81tan8114721.64 m sin(8118.5)d x ⨯︒⨯︒=⨯︒≈︒-︒ 山顶的海拔是2025014721.645528 m -≈8、在ABT ∆中,21.418.6 2.8ATB ∠=︒-︒=︒,9018.6ABT ∠=︒+︒,15 m AB =根据正弦定理,sin 2.8cos18.6AB AT =︒︒,即15cos18.6sin 2.8AT ⨯︒=︒塔的高度为15cos18.6sin 21.4sin 21.4106.19 m sin 2.8AT ⨯︒⨯︒=⨯︒≈︒9、3261897.8 km 60AE ⨯== 在ACD ∆中,根据余弦定理:AC =101.235== 根据正弦定理,sin sin AD ACACD ADC=∠∠ sin 57sin66sin 0.5144101.235AD ADC ACD AC ⨯∠⨯︒∠==≈30.96ACD ∠≈︒13330.96102.04ACB ∠≈︒-︒=︒(第9题)在ABC ∆中,根据余弦定理:AB =245.93=≈222222245.93101.235204cos 0.584722245.93101.235AB AC BC BAC AB AC +-+-∠==≈⨯⨯⨯⨯54.21BAC ∠=︒在ACE ∆中,根据余弦定理:CE =90.75=≈22222297.890.75101.235cos 0.42542297.890.75AE EC AC AEC AE EC +-+-∠=≈≈⨯⨯⨯⨯64.82AEC ∠=︒180(18075)7564.8210.18AEC ︒-∠-︒-︒=︒-︒=︒所以,飞机应该以南偏西10.18︒的方向飞行,飞行距离约90.75 km . 10、如图,在ABC ∆AC ==37515.44 km ==222222640037515.44422000.692422640037515.44AB AC BC BAC AB AC +-+-∠=≈≈-⨯⨯⨯⨯133.82BAC ∠≈︒, 9043.82BAC ∠-︒≈︒ 所以,仰角为43.82︒11、(1)211sin 2833sin 45326.68 cm 22S ac B ==⨯⨯⨯︒≈(2)根据正弦定理:sin sin a c A C =,36sin sin66.5sin sin32.8a c C A =⨯=⨯︒︒2211sin66.5sin 36sin(32.866.5)1082.58 cm 22sin32.8S ac B ︒==⨯⨯⨯︒+︒≈︒(3)约为1597.94 2cm12、212sin 2nR nπ.13、根据余弦定理:222cos 2a c b B ac +-= 所以222()2cos 22a a a m c c B =+-⨯⨯⨯B22222()22a a c b c a c ac +-=+-⨯⨯222222222211()[42()]()[2()]22a c a c b b c a =+-+-=+-所以a m =b m =,c m =14、根据余弦定理的推论,222cos 2b c a A bc +-=,222cos 2c a b B ca+-=所以,左边(cos cos )c a B b A =-222222()22c a b b c a c a b ca bc +-+-=⨯-⨯222222221()(22)222c a b b c a c a b c c +-+-=-=-=右边习题1.2 B 组(P20)1、根据正弦定理:sin sin a b A B =,所以sin sin a Bb A= 代入三角形面积公式得211sin 1sin sin sin sin 22sin 2sin a B B CS ab C a C a A A==⨯⨯= 2、(1)根据余弦定理的推论:222cos 2a b c C ab +-=由同角三角函数之间的关系,sin C == 代入1sin 2S ab C =,得12S ====记1()2p a b c =++,则可得到1()2b c a p a +-=-,1()2c a b p b +-=-,1()2a b c p c +-=-代入可证得公式(2)三角形的面积S 与三角形内切圆半径r 之间有关系式122S p r pr =⨯⨯=其中1()2p a b c =++,所以S r p == (3)根据三角形面积公式12a S a h =⨯⨯所以,22()()()a S h p p a p a p a a a ==---,即2()()()a h p p a p a p a a =--- 同理2()()()b h p p a p a p a b =---,2()()()c h p p a p a p a c=---第一章 复习参考题A 组(P24)1、(1)219,3851,8.69 cm B C c ''≈︒≈︒≈; (2)4149,10811,11.4 cm B C c ''≈︒≈︒≈;或13811,1149, 2.46 cm B C c ''≈︒≈︒≈ (3)112,3858,28.02 cm A B c ''≈︒≈︒≈; (4)2030,1430,22.92 cm B C a ''≈︒≈︒≈; (5)1620,1140,53.41 cm A C b ''≈︒≈︒≈; (6)2857,4634,10429A B C '''=︒=︒=︒; 2、解法1:设海轮在B 处望见小岛在北偏东75︒,在C 处望见小岛在北偏东60︒,从小岛A 向海轮的航线BD 作垂线,垂线段AD 的长度为x n mile ,CD 为y n mile.则 tan 30tan 308tan 30tan15tan1588tan15x x y y x x x x y y ⎧⎧=︒=⎪⎪⎪⎪︒⇒⇒=-⎨⎨︒︒⎪⎪=︒=+⎪⎪+︒⎩⎩8tan15tan304tan30tan15x ︒︒==︒-︒所以,这艘海轮不改变航向继续前进没有触礁的危险. 3、根据余弦定理:2222cos AB a b ab α=+-所以 222cos AB a b ab α=+-222cos 2a AB b B a AB+-=⨯⨯2222222cos 22cos a a b ab b a a b ab αα++--=⨯⨯+-22cos 2cos a b a b ab αα-=+-从B ∠的余弦值可以确定它的大小.类似地,可以得到下面的值,从而确定A ∠的大小. 22cos cos 2cos b a A a b ab αα-=+-4、如图,,C D 是两个观测点,C 到D 的距离是d ,航船在时刻1t 在A 处,以从A 到B 的航向航行,在此时测出ACD ∠和CDA ∠. 在时刻2t ,航船航行到B 处,此时,测出CDB ∠和BCD ∠. 根据正弦定理,在BCD ∆中,可以计算出BC 的长,在ACD ∆中,可以计算出AC 的长. 在ACB ∆中,AC 、BC 已经算出,ACB ACD BCD ∠=∠-∠,解ACD ∆, 求出AB 的长,即航船航行的距离,算出CAB ∠,这样就可以算出航船的航向和速度.(第2题)dCBA(第4题)5、河流宽度是sin()sin sin h αβαβ-. 6、47.7 m.7、如图,,A B 是已知的两个小岛,航船在时刻1t 在C 处,以从C 到D 的航向航行,测出ACD ∠和BCD ∠. 在时刻2t ,航船航行到D 处,根据时间和航船的速度,可以计算出C 到D 的距离是d ,在D 处测出CDB ∠和 CDA ∠. 根据正弦定理,在BCD ∆中,可以计算出BD 的长,在ACD ∆中,可以计算出AD 的长. 在ABD ∆中,AD 、BD 已经算出,ADB CDB CDA ∠=∠-∠,根据余弦定理,就可 以求出AB 的长,即两个海岛,A B 的距离.第一章 复习参考题B 组(P25)1、如图,,A B 是两个底部不可到达的建筑物的尖顶,在地面某点处,测出图中AEF ∠,AFE ∠的大小,以及EF 的距离. 定理,解AEF ∆,算出AE . 在BEF ∆中,测出BEF ∠和BFE ∠, 利用正弦定理,算出BE . 在AEB ∆中,测出AEB ∠,利用余弦定 理,算出AB 的长. 本题有其他的测量方法.2、关于三角形的面积公式,有以下的一些公式:(1)已知一边和这边上的高:111,,222a b c S ah S bh S ch ===;(2)已知两边及其夹角:111sin ,sin ,sin 222S ab C S bc A S ca B===;(3)已知三边:S =,这里2a b cp ++=;(4)已知两角及两角的共同边:222sin sin sin sin sin sin ,,2sin()2sin()2sin()b C Ac A B a B CS S S C A A B B C ===+++;(5)已知三边和外接圆半径R :4abc S R=. 3、设三角形三边长分别是1,,1n n n -+,三个角分别是,3,2απαα-.由正弦定理,11sin sin 2n n αα-+=,所以1cos 2(1)n n α+=-. 由余弦定理,222(1)(1)2(1)cos n n n n n α-=++-⨯+⨯⨯.即2221(1)(1)2(1)2(1)n n n n n n n +-=++-⨯+⨯⨯-,化简,得250n n -=所以,0n =或5n =. 0n =不合题意,舍去. 故5n =所以,三角形的三边分别是4,5,6. 可以验证此三角形的最大角是最小角的2倍. 另解:先考虑三角形所具有的第一个性质:三边是连续的三个自然数.(1)三边的长不可能是1,2,3. 这是因为123+=,而三角形任何两边之和大于第三边. (2)如果三边分别是2,3,4a b c ===.因为 2222223427cos 22348b c a A bc +-+-===⨯⨯22717cos22cos 12()1832A A =-=⨯-=2222222341cos 22234a b c C ab +-+-===-⨯⨯在此三角形中,A 是最小角,C 是最大角,但是cos2cos A C ≠, 所以2A C ≠,边长为2,3,4的三角形不满足条件.(3)如果三边分别是3,4,5a b c ===,此三角形是直角三角形,最大角是90︒,最小角不等于45︒. 此三角形不满足条件. (4)如果三边分别是4,5,6a b c ===.此时,2222225643cos 22564b c a A bc +-+-===⨯⨯2231cos22cos 12()148A A =-=⨯-=2222224561cos 22458a b c C ab +-+-===⨯⨯此时,cos2cos A C =,而02,A C π<<,所以2A C = 所以,边长为4,5,6的三角形满足条件.(5)当4n >,三角形的三边是,1,2a n b n c n ==+=+时,三角形的最小角是A ,最大角是C . 222cos 2b c a A bc +-=222(1)(2)2(1)(2)n n n n n +++-=++2652(1)(2)n n n n ++=++52(2)n n +=+1322(2)n =++222cos 2a b c C ab +-=222(1)(2)2(1)n n n n n ++-+=+2232(1)n n n n --=+32n n -=1322n=-cos A 随n 的增大而减小,A 随之增大,cos C 随n 的增大而增大,C 随之变小. 由于4n =时有2C A =,所以,4n >,不可能2C A =. 综上可知,只有边长分别是4,5,6的三角形满足条件.第二章 数列2.1数列的概念与简单表示法 练习(P31) 1、2、前5项分别是:1,0,1,0,1--.3、例1(1)1(2,)1(21,)n n m m N na n m m N n⎧-=∈⎪⎪=⎨⎪=-∈⎪⎩**; (2)2(2,)0(21,)n n m m N a n m m N ⎧=∈⎪=⎨=-∈⎪⎩**说明:此题是通项公式不唯一的题目,鼓励学生说出各种可能的表达形式,并举出其他可能的通项公式表达形式不唯一的例子.4、(1)1()21n a n Z n +=∈-; (2)(1)()2n n a n Z n +-=∈; (3)121()2n n a n Z +-=∈ 习题2.1 A 组(P33) 1、(1)2,3,5,7,11,13,17,19;(2) (3)1,1.7,1.73,1.732,…1.732050; 2,1.8,1.74,1.733,…,1.732051.2、(1)11111,,,,491625; (2)2,5,10,17,26--.3、(1)(1),4-,9,(16-),25,(36-),49; 12(1)n n a n +=-; (2)1,(,2;n a =4、(1)1,3,13,53,2132; (2)141,5,,,5454--.5、对应的答案分别是:(1)16,21;54n a n =-;(2)10,13;32n a n =-;(3)24,35;22n a n n =+.6、15,21,28; 1n n a a n -=+. 习题2.1 B 组(P34)1、前5项是1,9,73,585,4681.该数列的递推公式是:1118,1n n a a a +=+=.通项公式是:817n n a -=.2、110(10.72)10.072a =⨯+=﹪; 2210(10.72)10.144518a =⨯+=﹪; 3310(10.72)10.217559a =⨯+=﹪; 10(10.72)n n a =⨯+﹪. 3、(1)1,2,3,5,8; (2)358132,,,,2358.2.2等差数列练习(P39)1、表格第一行依次应填:0.5,15.5,3.75;表格第二行依次应填:15,11-,24-.2、152(1)213n a n n =+-=+,1033a =.3、4n c n =4、(1)是,首项是11m a a md +=+,公差不变,仍为d ;(2)是,首项是1a ,公差2d ;(3)仍然是等差数列;首项是716a a d =+;公差为7d . 5、(1)因为5375a a a a -=-,所以5372a a a =+. 同理有5192a a a =+也成立; (2)112(1)n n n a a a n -+=+>成立;2(0)n n k n k a a a n k -+=+>>也成立. 习题2.2 A 组(P40)1、(1)29n a =; (2)10n =; (3)3d =; (4)110a =.2、略.3、60︒.4、2℃;11-℃;37-℃.5、(1)9.8s t =; (2)588 cm ,5 s. 习题2.2 B 组(P40)1、(1)从表中的数据看,基本上是一个等差数列,公差约为2000,52010200280.2610a a d =+=⨯ 再加上原有的沙化面积5910⨯,答案为59.2610⨯;(2)2021年底,沙化面积开始小于52810 hm ⨯. 2、略. 2.3等差数列的前n 项和 练习(P45) 1、(1)88-; (2)604.5.2、59,11265,112n n a n n ⎧=⎪⎪=⎨+⎪>⎪⎩ 3、元素个数是30,元素和为900.习题2.3 A 组(P46)1、(1)(1)n n +; (2)2n ; (3)180个,和为98550; (4)900个,和为494550.2、(1)将120,54,999n n a a S ===代入1()2n n n a a S +=,并解得27n =; 将120,54,27n a a n ===代入1(1)n a a n d =+-,并解得1713d =.(2)将1,37,6293n d n S ===代入1(1)n a a n d =+-,1()2n n n a a S +=,得111237()6292n n a a a a =+⎧⎪⎨+=⎪⎩;解这个方程组,得111,23n a a ==.(3)将151,,566n a d S ==-=-代入1(1)2n n n S na d -=+,并解得15n =;将151,,1566a d n ==-=代入1(1)n a a n d =+-,得32n a =-.(4)将2,15,10n d n a ===-代入1(1)n a a n d =+-,并解得138a =-;将138,10,15n a a n =-=-=代入1()2n n n a a S +=,得360n S =-. 3、44.5510⨯m. 4、4.5、这些数的通项公式:7(1)2n -+,项数是14,和为665.6、1472.习题2.3 B 组(P46)1、每个月的维修费实际上是呈等差数列的. 代入等差数列前n 项和公式,求出5年内的总共的维修费,即再加上购买费,除以天数即可. 答案:292元.2、本题的解法有很多,可以直接代入公式化简,但是这种比较繁琐. 现提供2个证明方法供参考. (1)由 61615S a d =+,1211266S a d =+,18118153S a d =+ 可得61812126()2()S S S S S +-=-. (2)1261212126()()S S a a a a a a -=+++-+++7812a a a =+++126(6)(6)(6)a d a d a d =++++++126()36a a a d =++++636S d =+同样可得:1812672S S S d -=+,因此61812126()2()S S S S S +-=-.3、(1)首先求出最后一辆车出发的时间4时20分;所以到下午6时,最后一辆车行驶了1小时40分.(2)先求出15辆车总共的行驶时间,第一辆车共行驶4小时,以后车辆行驶时间依次递减,最后一辆行驶1小时40分. 各辆车的行驶时间呈等差数列分布,代入前n 项和公式,这个车队所有车的行驶时间为2418531522S +=⨯= h. 乘以车速60 km/h ,得行驶总路程为2550 km. 4、数列1(1)n n ⎧⎫⎨⎬+⎩⎭的通项公式为111(1)1n a n n n n ==-++ 所以111111111()()()()1122334111n nS n n n n =-+-+-++-=-=+++ 类似地,我们可以求出通项公式为1111()()n a n n k k n n k==-++的数列的前n 项和. 2.4等比数列 练习(P52)1、2、由题意可知,每一轮被感染的计算机台数构成一个首项为180a =,公比为20q =的等比数列,则第5轮被感染的计算机台数5a 为 447518020 1.2810a a q ==⨯=⨯.3、(1)将数列{}n a 中的前k 项去掉,剩余的数列为12,,k k a a ++. 令,1,2,k i b a i +==,则数列12,,k k a a ++可视为12,,b b .因为11(1)i k i i k ib a q i b a ++++==≥,所以,{}n b 是等比数列,即12,,k k a a ++是等比数列.(2){}n a 中的所有奇数列是135,,,a a a ,则235211321(1)k k a a a q k a a a +-=====≥.所以,数列135,,,a a a 是以1a 为首项,2q 为公比的等比数列.(3){}n a 中每隔10项取出一项组成的数列是11223,,,a a a ,则1112231111121110(1)k k a a a q k a a a +-=====≥所以,数列11223,,,a a a 是以1a 为首项,11q 为公比的等比数列.猜想:在数列{}n a 中每隔m (m 是一个正整数)取出一项,组成一个新的数列,这个数列是以1a 为首项,1m q +为公比的等比数列.4、(1)设{}n a 的公比为q ,则24228511()a a q a q ==,而262837111a a a q a q a q ⋅=⋅= 所以2537a a a =⋅,同理2519a a a =⋅ (2)用上面的方法不难证明211(1)nn n a a a n -+=⋅>. 由此得出,n a 是1n a -和1n a +的等比中项. 同理:可证明,2(0)nn k n k a a a n k -+=⋅>>. 由此得出,n a 是n k a -和n k a +的等比中项(0)n k >>. 5、(1)设n 年后这辆车的价值为n a ,则13.5(110)n n a =-﹪. (2)4413.5(110)88573a =-≈﹪(元). 用满4年后卖掉这辆车,能得到约88573元.习题2.4 A 组(P53)1、(1)可由341a a q =,得11a =-,6671(1)(3)729a a q ==-⨯-=-. 也可由671a a q =,341a a q =,得337427(3)729a a q ==⨯-=-(2)由131188a q a q =⎧⎪⎨=⎪⎩,解得12723a q =⎧⎪⎨=⎪⎩,或12723a q =-⎧⎪⎨=-⎪⎩(3)由416146a q a q ⎧=⎪⎨=⎪⎩,解得232q =,862291173692a a q a q q a q ==⋅==⨯=还可由579,,a a a 也成等比数列,即2759a a a =,得22795694a a a ===.(4)由411311156a q a a q a q ⎧-=⎪⎨-=⎪⎩①②①的两边分别除以②的两边,得2152q q +=,由此解得12q =或2q =. 当12q =时,116a =-. 此时2314a a q ==-. 当2q =时,11a =. 此时2314a a q ==. 2、设n 年后,需退耕n a ,则{}n a 是一个等比数列,其中18(110),0.1a q =+=﹪.那么2005年需退耕5551(1)8(110)13a a q =+=+≈﹪(万公顷) 3、若{}n a 是各项均为正数的等比数列,则首项1a 和公比q 都是正数. 由11n n a a q-=11(1)22)n n qq --===.那么数列{}n a为首项,12q 为公比的等比数列.4、这张报纸的厚度为0.05 mm ,对折一次后厚度为0.05×2 mm ,再对折后厚度为0.05×22 mm ,再对折后厚度为0.05×32 mm. 设00.05a =,对折n 次后报纸的厚度为n a ,则{}n a 是一个等比数列,公比2q =. 对折50次后,报纸的厚度为505050131000.052 5.6310 mm 5.6310 m a a q ==⨯≈⨯=⨯这时报纸的厚度已经超出了地球和月球的平均距离(约83.8410 m ⨯),所以能够在地球和月球之间建一座桥.5、设年平均增长率为1,105q a =,n 年后空气质量为良的天数为n a ,则{}n a 是一个等比数列.由3240a =,得2231(1)105(1)240a a q q =+=+=,解得10.51q =≈ 6、由已知条件知,,2a bA G +==,且02a b A G +-== 所以有A G ≥,等号成立的条件是a b =. 而,a b 是互异正数,所以一定有A G >.7、(1)2±; (2)22()ab a b ±+. 8、(1)27,81; (2)80,40,20,10. 习题2.4 B 组(P54)1、证明:由等比数列通项公式,得11m m a a q -=,11n n a a q -=,其中1,0a q ≠所以 1111m m n m n n a a q q a a q---== 2、(1)设生物体死亡时,体内每克组织中的碳14的原子核数为1个单位,年衰变率为q ,n 年后的残留量为n a ,则{}n a 是一个等比数列. 由碳14的半衰期为5730则 57305730112n a a qq===,解得157301()0.9998792q =≈ (2)设动物约在距今n 年前死亡,由0.6n a =,得10.9998790.6n n a a q ===. 解得 4221n ≈,所以动物约在距今42213、在等差数列1,2,3,…中,有7108917a a a a +==+,1040203050a a a a +==+ 由此可以猜想,在等差数列{}n a 中若*(,,,)k s p q k s p q N +=+∈,则k s p q a a a a +=+. 从等差数列与函数之间的联系的角度来分析这个问题:由等差数列{}n a 的图象,可以看出k p a k a p =,s q a sa q=根据等式的性质,有k s p q a a k sa a p q++=++,所以k s p q a a a a +=+. 猜想对于等比数列{}n a ,类似的性质为:若*(,,,)k s p q k s p q N +=+∈,则k s p q a a a a ⋅=⋅. 2.5等比数列的前n 项和 练习(P58) 1、(1)6616(1)3(12)189112a q S q --===--. (2)1112.7()9190311451()3n n a a q S q----===----. 2、设这个等比数列的公比为q(第3题)所以 101256710()()S a a a a a a =+++++++555S q S =+55(1)q S =+50=同理 1015105S S q S =+.因为 510S =,所以由①得 5101051416S q q S =-=⇒= 代入②,得1015105501610210S S q S =+=+⨯=.3、该市近10年每年的国内生产总值构成一个等比数列,首项12000a =,公比 1.1q =设近10年的国内生产总值是10S ,则10102000(1 1.1)31874.81 1.1S -=≈-(亿元)习题2.5 A 组(P61)1、(1)由34164641a q a ===--,解得4q =-,所以144164(4)5111(4)a a q S q ---⨯-===---. (2)因为2131233(1)S a a a a q q --=++=++,所以2113q q --++=,即2210q q --=解这个方程,得1q =或12q =-. 当1q =时,132a =;当12q =-时,16a =.2、这5年的产值是一个以1138 1.1151.8a =⨯=为首项, 1.1q =为公比的等比数列所以5515(1)151.8(1 1.1)926.75411 1.1a q S q -⨯-==≈--(万元) 3、(1)第1个正方形的面积为42cm ,第2个正方形的面积为22cm ,…,这是一个以14a =为首项,12q =为公比的等比数列所以第10个正方形的面积为99710114()22a a q -==⨯=(2cm )(2)这10个正方形的面积和为77110101422821112a a qS q---⨯-===---(2cm )4、(1)当1a =时,2(1)(1)(2)()12(1)2n n na a a n n --+-++-=-----=-当1a ≠时,22(1)(2)()()(12)n n a a a n a a a n -+-++-=+++-+++(1)(1)12n a a n n a -+=-- (2)1212(235)(435)(35)2(12)3(555)n n n n -------⨯+-⨯+-⨯=+++-+++11(1)5(15)323(1)(15)2154n n n n n n ----+-⨯-⨯=+--- (3)设21123n n S x x nx -=++++……①则 212(1)n n n xS x x n x nx -=+++-+……②①-②得,21(1)1n n n x S x x x nx --=++++-……③当1x =时,(1)1232n n n S n +=++++=;当1x ≠时,由③得,21(1)1n n n x nx S x x -=--- 5、(1)第10次着地时,经过的路程为91002(50251002)-++++⨯1291911002100(222)2(12)100200299.61 (m)12------=+⨯+++-=+⨯≈- (2)设第n 次着地时,经过的路程为293.75 m ,则1(1)12(1)12(12)1002100(222)100200293.7512n n ---------+⨯+++=+⨯=-所以130********.75n --⨯=,解得120.03125n -=,所以15n -=-,则6n = 6、证明:因为396,,S S S 成等差数列,所以公比1q ≠,且9362S S S =+即,936111(1)(1)(1)2111a q a q a q q q q---⨯=+--- 于是,9362q q q =+,即6321q q =+ 上式两边同乘以1a q ,得741112a q a q a q =+ 即,8252a a a =+,故285,,a a a 成等差数列 习题2.5 B 组(P62) 1、证明:11111()(1())1n n n n n n n n n b bb a b a a a b b a a b aa ab a+++---+++=+++==--2、证明:因为7714789141277()S S a a a q a a a q S -=+++=+++= 141421141516211277()S S a a a q a a a q S -=+++=+++=所以71472114,,S S S --成等比数列3、(1)环保部门每年对废旧物资的回收量构成一个等比数列,首项为1100a =,公比为 1.2q =. 所以,2010年能回收的废旧物资为89100 1.2430a =⨯≈(t )(2)从2002年到2010年底,能回收的废旧物资为9919(1)100(1 1.2)208011 1.2a q S q --==≈--(t )可节约的土地为165048320⨯=(2m ) 4、(1)依教育储蓄的方式,应按照整存争取定期储蓄存款利率计息,免征利息税,且若每月固定存入a 元,连续存n 个月,计算利息的公式为()2a na n+⨯月利率.因为整存整取定期储蓄存款年利率为2.52﹪,月利率为0.21﹪故到期3年时一次可支取本息共(505036)360.2118001869.932+⨯⨯⨯+=﹪(元)若连续存6年,应按五年期整存整取定期储蓄存款利率计息,具体计算略. (2)略.(3)每月存50元,连续存3年按照“零存整取”的方式,年利率为1.89﹪,且需支付20﹪的利息税所以到期3年时一次可支取本息共1841.96元,比教育储蓄的方式少收益27.97元.(4)设每月应存入x 元,由教育储蓄的计算公式得36(36)0.2136100002x x x +⨯+=﹪解得267.39x ≈(元),即每月应存入267.39(元) (5)(6)(7)(8)略5、设每年应存入x 万元,则2004年初存入的钱到2010年底利和为7(12)x +﹪,2005年初存入的钱到2010年底利和为6(12)x +﹪,……,2010年初存入的钱到2010年底利和为(12)x +﹪. 根据题意,76(12)(12)(12)40x x x ++++++=﹪﹪﹪根据等比数列前n 项和公式,得7(12)(1 1.02)401 1.02x +-=-﹪,解得52498x ≈(元)故,每年大约应存入52498元第二章 复习参考题A 组(P67)1、(1)B ; (2)B ; (3)B ; (4)A .2、(1)212n n n a -=; (2)12(1)(21)1(2)n n n a n +--=+; (3)7(101)9n n a =-; (4)1(1)n n a =+-或1cos n a n π=+.3、4、如果,,a b c 成等差数列,则5b =;如果,,a b c 成等比数列,则1b =,或1-.5、n a 按顺序输出的值为:12,36,108,324,972. 86093436sum =.6、81381.9(10.13)1396.3⨯+≈﹪(万) 7、从12月20日到次年的1月1日,共13天. 每天领取的奖品价值呈等差数列分布.110,100d a ==. 由1(1)2n n n S a n d -=+得:1313121001310208020002S ⨯=⨯+⨯=>. 所以第二种领奖方式获奖者受益更多.8、因为28374652a a a a a a a +=+=+=所以34567285450()2a a a a a a a +++++==+,则28180a a +=.9、容易得到101010,1012002n n na n S +==⨯=,得15n =.10、212212()()()n n n n S a a a a nd a nd a nd ++=+++=++++++2121()n a a a n nd S n d =++++⨯=+32122312(2)(2)(2)n n n n S a a a a nd a nd a nd ++=+++=++++++2121()22n a a a n nd S n d =++++⨯=+容易验证2132S S S =+. 所以,123,,S S S 也是等差数列,公差为2n d . 11、221(1)(1)4(1)221a f x x x x x =+=+-++=-- 223(1)(1)4(1)267a f x x x x x =-=---+=-+ 因为{}n a 是等差数列,所以123,,a a a 也是等差数列. 所以,2132a a a =+. 即,20286x x =-+. 解得1x =或3x =. 当1x =时,1232,0,2a a a =-==. 由此可求出24n a n =-. 当3x =时,1232,0,2a a a ===-. 由此可求出42n a n =-.第二章 复习参考题B 组(P68)1、(1)B ; (2)D .2、(1)不成等差数列. 可以从图象上解释. ,,a b c 成等差,则通项公式为y pn q =+的形式,且,,a b c 位于同一直线上,而111,,a b c 的通项公式却是1y pn q =+的形式,111,,a b c不可能在同一直线上,因此肯定不是等差数列.(2)成等比数列. 因为,,a b c 成等比,有2b ac =. 又由于,,a b c 非零,两边同时取倒数,则有21111b ac a c==⨯. 所以,111,,a b c也成等比数列.3、体积分数:60.033(125)0.126⨯+≈﹪,质量分数:60.05(125)0.191⨯+≈﹪.4、设工作时间为n ,三种付费方式的前n 项和分别为,,n n n A B C . 第一种付费方式为常数列;第二种付费方式为首项是4,公差也为4的等差数列;第三种付费方式为首项是0.4,公比为2的等比数列. 则38n A n =,2(1)44222n n n B n n n -=+⨯=+, 0.4(12)0.4(21)12n n n C -==--. 下面考察,,n n n A B C 看出10n <时,380.4(21)n n >-. 因此,当工作时间小于10天时,选用第一种付费方式. 10n ≥时,,n n n n A C B C ≤≤因此,当工作时间大于10天时,选用第三种付费方式.5、第一星期选择A 种菜的人数为n ,即1a n =,选择B 种菜的人数为500a -. 所以有以下关系式:2118030a a b =⨯+⨯﹪﹪3228030a a b =⨯+⨯﹪﹪……118030n n b a a b --=⨯+⨯﹪﹪500n n a b +=所以111502n n a a -=+,115003502n n n b a a -=-=-如果1300a =,则2300a =,3300a =,…,10300a = 6、解:由1223n n n a a a --=+得 1123()n n n n a a a a ---+=+以及1123(3)n n n n a a a a ----=--所以221213()37n n n n a a a a ---+=+=⨯,221213(1)(3)(1)13n n n n a a a a ----=--=-⨯. 由以上两式得,11437(1)13n n n a --=⨯+-⨯所以,数列的通项公式是11137(1)134n n n a --⎡⎤=⨯+-⨯⎣⎦ 7、设这家牛奶厂每年应扣除x 万元消费基金2002年底剩余资金是1000(150)x +-﹪2003年底剩余资金是2[1000(150)](150)1000(150)(150)x x x x +-+-=+-+-﹪﹪﹪﹪ ……5年后达到资金 54321000(150)(150)(150)(150)(150)2000x x x x +-+-+-+-+=﹪﹪﹪﹪﹪ 解得 459x ≈(万元)第三章 不等式3.1不等关系与不等式 练习(P74)1、(1)0a b +≥; (2)4h ≤; (3)(10)(10)3504L W L W ++=⎧⎨>⎩.2、这给两位数是57.3、(1)>; (2)<; (3)>; (4)<;习题3.1 A 组(P75)1、略.2、(1)24<; (2>3、证明:因为20,04x x >>,所以21104x x x ++>+>因为22(1)02x +>>,所以12x+>4、设A 型号帐篷有x 个,则B 型号帐篷有(5)x +个,050448054853(5)484(4)48x x x x x x >⎧⎪+>⎪⎪<⎪⎨<-<⎪⎪+<⎪+⎪⎩≥5、设方案的期限为n 年时,方案B 的投入不少于方案A 的投入.所以,(1)5105002n n n -+⨯≥ 即,2100n ≥.习题3.1 B 组(P75)1、(1)因为222259(56)30x x x x x ++-++=+>,所以2225956x x x x ++>++ (2)因为222(3)(2)(4)(69)(68)10x x x x x x x ----=-+--+=>所以2(3)(2)(4)x x x ->--(3)因为322(1)(1)(1)0x x x x x --+=-+>,所以321x x x >-+(4)因为22222212(1)1222(1)(1)10x y x y x y x y x y ++-+-=++-+-=-+-+> 所以2212(1)x y x y ++>+-2、证明:因为0,0a b c d >>>>,所以0ac bd >>又因为0cd >,所以10cd >于是0a bd c>>>3、设安排甲种货箱x 节,乙种货箱y 节,总运费为z .所以 352515301535115050x y x y x y +⎧⎪+⎨⎪+=⎩≥≥ 所以28x ≥,且30x ≤所以 2822x y =⎧⎨=⎩,或2921x y =⎧⎨=⎩,或3020x y =⎧⎨=⎩所以共有三种方案,方案一安排甲种货箱28节,乙种货箱22节;方案二安排甲种货箱29节,乙种货箱21节;方案三安排甲种货箱30节,乙种货箱20节. 当3020x y =⎧⎨=⎩时,总运费0.5300.82031z =⨯+⨯=(万元),此时运费较少. 3.2一元二次不等式及其解法 练习(P80) 1、(1)1013x x ⎧⎫-⎨⎬⎩⎭≤≤; (2)R ; (3){}2x x ≠; (4)12x x ⎧⎫≠⎨⎬⎩⎭; (5)31,2x x x ⎧⎫<->⎨⎬⎩⎭或; (6)54,43x x x ⎧⎫<>⎨⎬⎩⎭或; (7)503x x ⎧⎫-<<⎨⎬⎩⎭.2、(1)使2362y x x =-+的值等于0的x的集合是1⎧⎪⎨⎪⎪⎩⎭;使2362y x x =-+的值大于0的x的集合为11x x x ⎧⎪<>+⎨⎪⎪⎩⎭或; 使2362y x x =-+的值小于0的x的集合是11x x ⎧⎪<<⎨⎪⎪⎩⎭. (2)使225y x =-的值等于0的x 的集合{}5,5-; 使225y x =-的值大于0的x 的集合为{}55x x -<<; 使225y x =-的值小于0的x 的集合是{}5,5x x x <->或. (3)因为抛物线2+610y x x =+的开口方向向上,且与x 轴无交点 所以使2+610y x x =+的等于0的集合为∅; 使2+610y x x =+的小于0的集合为∅; 使2+610y x x =+的大于0的集合为R. (4)使231212y x x =-+-的值等于0的x 的集合为{}2; 使231212y x x =-+-的值大于0的x 的集合为∅;使231212y x x =-+-的值小于0的x 的集合为{}2x x ≠. 习题3.2 A 组(P80)1、(1)35,22x x x ⎧⎫<->⎨⎬⎩⎭或; (2)x x ⎧⎪<<⎨⎪⎪⎩⎭;(3){}2,5x x x <->或; (4){}09x x <<.2、(1)解2490x x -+≥,因为200∆=-<,方程2490x x -+=无实数根所以不等式的解集是R ,所以y R. (2)解2212180x x -+-≥,即2(3)0x -≤,所以3x =所以y {}3x x =3、{33m m m <-->-+或;4、R.5、设能够在抛出点2 m 以上的位置最多停留t 秒. 依题意,20122v t gt ->,即212 4.92t t ->. 这里0t >. 所以t 最大为2(精确到秒)答:能够在抛出点2 m 以上的位置最多停留2秒. 6、设每盏台灯售价x 元,则15[302(15)]400x x x ⎧⎨-->⎩≥. 即1520x <≤.所以售价{}1520x x x ∈<≤习题3.2 B 组(P81)1、(1)x ⎧⎪<<⎨⎪⎪⎩⎭; (2){}37x x <<; (3)∅; (4)113x x ⎧⎫<<⎨⎬⎩⎭. 2、由22(1)40m m ∆=--<,整理,得23210m m +->,因为方程23210m m +-=有两个实数根1-和13,所以11m <-,或213m >,m 的取值范围是11,3m m m ⎧⎫<->⎨⎬⎩⎭或.3、使函数213()324f x x x =--的值大于0的解集为33x x x ⎧⎪<<+⎨⎪⎪⎩⎭或.4、设风暴中心坐标为(,)a b ,则a =22450b +<,即150150b -<<151)13.72=≈(h ),3001520=. 所以,经过约13.7小时码头将受到风暴的影响,影响时间为15小时.3.3二元一次不等式(组)与简单的线性规划问题 练习(P86) 1、B . 2、D . 3、B .4解:设家具厂每天生产A 类桌子x 张,B 类桌子y 张.对于A 类桌子,x 张桌子需要打磨10x min ,着色6x min ,上漆6x min 对于B 类桌子,y 张桌子需要打磨5y min ,着色12y min ,上漆9y min 而打磨工人每天最长工作时间是450min ,所以有105450x y +≤. 类似地,612480x y +≤,69450x y +≤ 在实际问题中,0,0x y ≥≥;所以,题目中包含的限制条件为 1054506124806945000x y x y x y x y +⎧⎪+⎪⎪+⎨⎪⎪⎪⎩≤≤≤≥≥练习(P91)1、(1)目标函数为2z x y =+,可行域如图所示,作出直线2y x z =-+,可知z 要取最大值,即直线经过点C 时,解方程组11x y y +=⎧⎨=-⎩得(2,1)C -,所以,max 222(1)3z x y =+=⨯+-=.(2)目标函数为35z x y =+,可行域如图所示,作出直线35z x y =+ 可知,直线经过点B 时,Z 取得最大值. 直线经过点A 时,Z 取得最小值. 解方程组 153y x x y =+⎧⎨-=⎩,和15315y x x y =+⎧⎨+=⎩(第1题)可得点(2,1)A --和点(1.5,2.5)B .所以max 3 1.55 2.517z =⨯+⨯=,min 3(2)5(1)11z =⨯-+⨯-=-2、设每月生产甲产品x 件,生产乙产品y 件,每月收入为z 元,目标函数为30002000z x y =+,需要满足的条件是 2400250000x y x y x y +⎧⎪+⎪⎨⎪⎪⎩≤≤≥≥,作直线30002000z x y =+当直线经过点A 时,z 取得最大值. 解方程组 24002500x y x y +=⎧⎨+=⎩可得点(200,100)A ,z 的最大值为800000元. 习题3.3 A 组(P93)1、画图求解二元一次不等式:(1)2x y +≤; (2)22x y ->; (3)2y -≤; (4)3x ≥2、3(第2题)解:设每周播放连续剧甲x 次,播放连续剧乙y目标函数为6020z x y =+,所以,题目中包含的限制条件为8040320600x y x y x y +⎧⎪+⎪⎨⎪⎪⎩≤≥≥≥可行域如图. 解方程组80403206x y x y +⎧⎨+⎩==得点M 的坐标为(2,4),所以max 6020200z x y =+= 答:电视台每周应播放连续剧甲2次,播放连续剧乙4次,才能获得最高的收视率. 4、设每周生产空调器x 台,彩电y 台,则生产冰箱120x y --台,产值为z . 则,目标函数为432(120)2240z x y x y x y =++--=++ 所以,题目中包含的限制条件为111(120)402341202000x y x y x y x y ⎧++--⎪⎪⎪--⎨⎪⎪⎪⎩≤≥≥≥即,312010000x y x y x y +⎧⎪+⎪⎨⎪⎪⎩≤≤≥≥ 可行域如图,解方程组3120100x y x y +⎧⎨+⎩==得点M 的坐标为(10,90),所以max 2240350z x y =++=(千元)答:每周应生产空调器10台,彩电90台,冰箱20台,才能使产值最高,最高产值是350千元.习题3.3 B 组(P93)1、画出二元一次不等式组 231223600x y x y x y +⎧⎪+>-⎪⎨⎪⎪⎩≤≥≥,所表示的区域如右图2、画出(21)(3)0x y x y +--+>表示的区域.3、设甲粮库要向A 镇运送大米x 吨、向B 镇运送大米y 吨,总运费为z . 则乙粮库要向A 镇运送大米(70)x -吨、向B 镇运送大米(110)y -吨,目标函数(总运费)为 122025101512(70)208(110)609030200z x y x y x y =⨯⨯+⨯⨯+⨯⨯-+⨯⨯-=++.所以,题目中包含的限制条件为 100(70)(110)800700x y x y x y +⎧⎪-+-⎪⎨⎪⎪⎩≤≤≤≤≥.所以当70,30x y ==时,总运费最省 min 37100z =(元) 所以当0,100x y ==时,总运费最不合理 max 39200z =(元)使国家造成不该有的损失2100元.答:甲粮库要向A 镇运送大米70吨,向B 镇运送大米30吨,乙粮库要向A 镇运送大米0吨,向B 镇运送大米80吨,此时总运费最省,为37100元. 最不合理的调运方案是要向A 镇运送大米0吨,向B 镇运送大米100吨,乙粮库要向A 镇运送大米70吨,向B 镇运送大米10吨,此时总运费为39200元,使国家造成损失2100元.3.42a b+练习(P100)(第2题)1、因为0x >,所以12x x +≥当且仅当1x x =时,即1x =时取等号,所以当1x =时,即1x x+的值最小,最小值是2. 2、设两条直角边的长分别为,a b ,0,a >且0b >,因为直角三角形的面积等于50.即 1502ab =,所以 20a b +==≥,当且仅当10a b ==时取等号.答:当两条直角边的长均为10时,两条直角边的和最小,最小值是20. 3、设矩形的长与宽分别为a cm ,b cm. 0a >,0b > 因为周长等于20,所以10a b +=所以 2210()()2522a b S ab +===≤,当且仅当5a b ==时取等号.答:当矩形的长与宽均为5时,面积最大.4、设底面的长与宽分别为a m ,b m. 0a >,0b >因为体积等于323m ,高2m ,所以底面积为162m ,即16ab =所以用纸面积是 222324()32323264S ab bc ac a b =++=+++=+=≥ 当且仅当4a b ==时取等号答:当底面的长与宽均为4米时,用纸最少. 习题3.4 A 组(P100) 1、(1)设两个正数为,a b ,则0,0a b >>,且36ab =所以 12a b +==≥,当且仅当6a b ==时取等号. 答:当这两个正数均为6时,它们的和最小.(2)设两个正数为,a b ,依题意0,0a b >>,且18a b +=所以2218()()8122a b ab +==≤,当且仅当9a b ==时取等号.答:当这两个正数均为9时,它们的积最大. 2、设矩形的长为x m ,宽为y m ,菜园的面积为S 2m . 则230x y +=,S x y =⨯由基本不等式与不等式的性质,可得211219002252()222242x y S x y +=⨯⨯=⨯=≤. 当2x y =,即1515,2x y ==时,菜园的面积最大,最大面积是22522m .3、设矩形的长和宽分别为x 和y ,圆柱的侧面积为z ,因为2()36x y +=,即18x y +=. 所以222()1622x y z x y πππ+=⨯⨯⨯=≤, 当x y =时,即长和宽均为9时,圆柱的侧面积最大.4、设房屋底面长为x m ,宽为y m ,总造价为z 元,则12xy =,12y x=。
高中数学必修五习题及解析
必修五第一章 解三角形1.在△ABC 中,AB =5,BC =6,AC =8,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .非钝角三角形 解析:最大边AC 所对角为B ,则cosB =52+62-822×5×6=-320<0,∴B 为钝角. 答案 C2.在△ABC 中,已知a =1,b =3,A =30°,B 为锐角,那么A ,B ,C 的大小关系为( ) A .A>B>CB .B>A>C C .C>B>AD .C>A>B解析 由正弦定理a sinA =b sinB ,∴sinB =bsinA a =32.∵B 为锐角,∴B =60°,则C =90°,故C>B>A. 答案 C 3.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( )A .4 2B .4 3C .4 6 D.323解:由A +B +C =180°,可求得A =45°,由正弦定理,得b =asinB sinA =8×sin60°sin45°=8×3222=4 6.答案 C4.在△ABC 中,AB =5,BC =7,AC =8,则BA →·BC →的值为( ) A .5 B .-5 C .15 D .-15 解析 在△ABC 中,由余弦定理得cosB =AB 2+BC 2-AC 22AB ·BC =25+49-642×5×7=17.∴BA →·BC →=|BA →|·|BC →|cosB =5×7×17=5. 答案 A5.假设三角形三边长之比是1:3:2,则其所对角之比是( ) A .1:2:3B .1:3:2C .1:2: 3 D.2:3:2解析 设三边长分别为a ,3a,2a ,设最大角为A ,则cosA =a 2+3a2-2a22·a ·3a=0,∴A =90°.设最小角为B ,则cosB =2a2+3a2-a 22·2a ·3a=32, ∴B =30°,∴C =60°. 因此三角之比为1:2:3. 答案 A6.在△ABC 中,假设a =6,b =9,A =45°,则此三角形有( ) A .无解 B .一解 C .两解 D .解的个数不确定解析 由b sinB =a sinA ,得sinB =bsinAa =9×226=3 24>1.∴此三角形无解. 答案 A7.已知△ABC 的外接圆半径为R ,且2R(sin 2A -sin 2C)=(2a -b)sinB(其中a ,b 分别为A ,B 的对边),那么角C 的大小为( )A .30°B .45°C .60°D .90° 解析 根据正弦定理,原式可化为2R ⎝ ⎛⎭⎪⎫a 24R 2-c 24R 2=(2a -b)·b 2R , ∴a 2-c 2=(2a -b)b ,∴a 2+b 2-c 2=2ab ,∴cosC =a 2+b 2-c 22ab =22,∴C =45°. 答案 B8.在△ABC 中,已知sin 2A +sin 2B -sinAsinB =sin 2C ,且满足ab =4,则该三角形的面积为( ) A .1 B .2 C. 2 D. 3解析 由a sinA =b sinB =csinC =2R ,又sin 2A +sin 2B -sinAsinB =sin 2C ,可得a 2+b 2-ab =c 2.∴cosC =a 2+b 2-c 22ab =12,∴C =60°,sinC =32.∴S △ABC =12absinC = 3.答案 D9.在△ABC 中,A =120°,AB =5,BC =7,则sinBsinC 的值为( )A.85B.58C.53D.35解析 由余弦定理,得 cosA =AB 2+AC 2-BC 22AB ·AC ,解得AC =3. 由正弦定理sinB sinC =AC AB =35. 答案 D10.在三角形ABC 中,AB =5,AC =3,BC =7,则∠BAC 的大小为( ) A.2π3 B.5π6 C.3π4D.π3解析 由余弦定理,得cos ∠BAC =AB 2+AC 2-BC 22AB ·AC =52+32-722×5×3=-12,∴∠BAC =2π3.答案 A11.有一长为1 km 的斜坡,它的倾斜角为20°,现要将倾斜角改为10°,则坡底要加长( )A .0.5 kmB .1 kmC .1.5 kmD.32km 解析 如图,AC =AB ·sin20°=sin20°,BC =AB ·cos20°=cos20°,DC =ACtan10°=2cos 210°,∴DB =DC -BC =2cos 210°-cos20°=1. 答案 B12.已知△ABC 中,A ,B ,C 的对边分别为a ,b ,c.假设a =c =6+2,且A =75°,则b 为( ) A .2 B .4+2 3 C .4-2 3D.6- 2解析 在△ABC 中,由余弦定理,得a 2=b 2+c 2-2bccosA ,∵a =c ,∴0=b 2-2bccosA =b 2-2b(6+2)cos75°,而cos75°=cos(30°+45°)=cos30°cos45°-sin30°sin45°=22⎝ ⎛⎭⎪⎫32-12=14(6-2),∴b 2-2b(6+2)cos75°=b 2-2b(6+2)·14(6-2)=b 2-2b =0,解得b =2,或b =0(舍去).故选A. 答案 A13.在△ABC 中,A =60°,C =45°,b =4,则此三角形的最小边是____________.解析 由A +B +C =180°,得B =75°,∴c 为最小边,由正弦定理,知c =bsinC sinB =4sin45°sin75°=4(3-1). 答案 4(3-1)14.在△ABC 中,假设b =2a ,B =A +60°,则A =________. 解析 由B =A +60°,得sinB =sin(A +60°)=12sinA +32cosA.又由b =2a ,知sinB =2sinA.∴2sinA =12sinA +32cosA.即32sinA =32cosA.∵cosA ≠0, ∴tanA =33.∵0°<A<180°,∴A =30°. 答案 30° 15.在△ABC 中,A +C =2B ,BC =5,且△ABC 的面积为103,则B =_______,AB =_______. 解析 由A +C =2B 及A +B +C =180°,得B =60°.又S =12AB ·BC ·sinB ,∴10 3=12AB ×5×sin60°,∴AB =8. 答案 60° 816.在△ABC 中,已知(b +c):(c +a):(a +b)=8:9:10,则sinA :sinB :sinC =________.解析 设⎩⎪⎨⎪⎧b +c =8k ,c +a =9k ,a +b =10k ,可得a :b :c =11:9:7.∴sinA :sinB :sinC =11:9:7. 答案 11:9:7三、解答题(本大题共6个小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤) 17.(10分)在非等腰△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且a 2=b(b +c). (1)求证:A =2B ;(2)假设a =3b ,试判断△ABC 的形状.解 (1)证明:在△ABC 中,∵a 2=b ·(b +c)=b 2+bc ,由余弦定理,得cosB =a 2+c 2-b 22ac =bc +c 22ac =b +c 2a =a 2b =sinA2sinB,∴sinA =2sinBcosB =sin2B.则A =2B 或A +2B =π.假设A +2B =π,又A +B +C =π,∴B =C.这与已知相矛盾,故A =2B. (2)∵a =3b ,由a 2=b(b +c),得3b 2=b 2+bc ,∴c =2b. 又a 2+b 2=4b 2=c 2.故△ABC 为直角三角形.18.(12分)锐角三角形ABC 中,边a ,b 是方程x 2-23x +2=0的两根,角A ,B 满足2sin(A +B)-3=0.求: (1)角C 的度数;(2)边c 的长度及△ABC 的面积.解 (1)由2sin(A +B)-3=0,得sin(A +B)=32. ∵△ABC 为锐角三角形,∴A +B =120°,∴∠C =60°. (2)∵a ,b 是方程x 2-23x +2=0的两个根, ∴a +b =23,ab =2.∴c 2=a 2+b 2-2abcosC =(a +b)2-3ab =12-6=6. ∴c = 6.S △ABC =12absinC =12×2×32=32.19.(12分)如右图,某货轮在A 处看灯塔B 在货轮的北偏东75°,距离为12 6 nmile ,在A 处看灯塔C 在货轮的北偏西30°,距离为8 3 nmile ,货轮由A 处向正北航行到D 处时,再看灯塔B 在北偏东120°,求: (1)A 处与D 处的距离; (2)灯塔C 与D 处的距离.解 (1)在△ABD 中,∠ADB =60°,B =45°,AB =126,由正弦定理,得AD =ABsinBsin ∠ADB=126×2232=24(nmile).(2)在△ADC 中,由余弦定理,得 CD 2=AD 2+AC 2-2AD ·AC ·cos30°. 解得CD =83(nmile).∴A 处与D 处的距离为24 nmile ,灯塔C 与D 处的距离为8 3 nmile.20.(12分)已知△ABC 的角A ,B ,C 所对的边分别是a ,b ,c ,设向量m =(a ,b),n =(sinB ,sinA),p =(b -2,a -2).(1)假设m ∥n ,求证:△ABC 为等腰三角形;(2)假设m ⊥p ,边长c =2,角C =π3,求△ABC 的面积.解 (1)证明:∵m ∥n ,∴asinA =bsinB.由正弦定得知,sinA =a 2R ,sinB =b 2R (其中R 为△ABC 外接圆的半径),代入上式,得a ·a 2R =b ·b2R ,∴a =b.故△ABC为等腰三角形.(2)∵m ⊥p ,∴m ·p =0,∴a(b -2)+b(a -2)=0,∴a +b =ab. 由余弦定理c 2=a 2+b 2-2abcosC 得 4=(a +b)2-3ab ,即(ab)2-3ab -4=0.解得ab =4,ab =-1(舍去).∴△ABC 的面积S =12absinC =12×4×sin π3= 3.第二章 数列1.已知正项数列{a n }中,a 1=l ,a 2=2,2a n 2=a n+12+a n−12〔n ≥2〕,则a 6=〔 〕 A .16 B .4 C .2√2 D .45【解答】解:∵正项数列{a n }中,a 1=1,a 2=2,2a n 2=a n+12+a n ﹣12〔n ≥2〕, ∴a n+12﹣a n 2=a n 2﹣a n ﹣12,∴数列{a n 2}为等差数列,首项为1,公差d=a 22﹣a 12=3,∴a n 2=1+3〔n ﹣1〕=3n ﹣2,∴a n =√3n +2 ∴a 6=√3×6−2=4, 故选:B 2.《张丘建算经》卷上第22题﹣﹣“女子织布”问题:某女子善于织布,一天比一天织得快,而且每天增加的数量相同.已知第一天织布5尺,30天共织布390尺,则该女子织布每天增加〔 〕 A .47尺 B .1629尺 C .815尺 D .1631尺 【解答】解:设该妇子织布每天增加d 尺, 由题意知S 30=30×5+30×292d =390,解得d=1629.故该女子织布每天增加1629尺.故选:B .3.已知数列{a n }满足a 1=1,a n+1={2a n ,(n 为正奇数)a n +1,(n 为正偶数),则其前6项之和是〔 〕A .16B .20C .33D .120【解答】解:∵a 1=1,a n+1={2a n ,(n 为正奇数)a n +1,(n 为正偶数),∴a 2=2a 1=2,a 3=a 2+1=2+1=3,a 4=2a 3=6,a 5=a 4+1=7,a 6=2a 5=14 ∴其前6项之和是1+2+3+6+7+14=33故选C . 4.定义n p 1+p 2+⋯+p n为n 个正数p 1,p 2,…p n 的“均倒数”.假设已知数列{a n }的前n 项的“均倒数”为12n+1,又b n =a n +14,则1b 1b 2+1b 2b 3+⋯+1b 10b 11=〔 〕A . 111 B . 910C . 1011 D . 1112【解答】解:由已知得,na1+a 2+⋯+a n=12n+1∴a 1+a 2+…+a n =n 〔2n+1〕=S n当n ≥2时,a n =S n ﹣S n ﹣1=4n ﹣1,验证知当n=1时也成立,∴a n =4n ﹣1, ∴b n =a n +14,∴1bn ′b n+1=1n −1n+1∴1b1b 2+1b2b 3+⋯+1b10b 11=(1-12)+(12−13)+(13−14)+⋯+(110−111)=1−111=1011. 故选C .5.已知等比数列{a n }是递增数列,S n 是{a n }的前n 项和.假设a 1,a 3是方程x 2﹣5x+4=0的两个根,则S 6= 63 . 【解答】解:解方程x 2﹣5x+4=0,得x 1=1,x 2=4.因为数列{a n }是递增数列,且a 1,a 3是方程x 2﹣5x+4=0的两个根,所以a 1=1,a 3=4.设等比数列{a n }的公比为q ,则q 2=a 3a 1=41=4,所以q=2.则S 6=a 1(1−q 6)1−q=1×(1−26)1−2=63. 故答案为63.6.如图给出一个“三角形数阵”.已知每一列数成等差数列,从第三行起,每一行数成等比数列,而且每一行的公比都相等,记第i 行第j 列的数为a ij 〔i ≥j ,i ,j ∈N *〕,则a 53等于 ,a mn = 〔m ≥3〕.14 12,14 34,34,316【解答】解:①第k 行的所含的数的个数为k ,∴前n 行所含的数的总数=1+2+…+n=n(n+1)2.a 53表示的是第5行的第三个数,由每一列数成等差数列,且第一列是首项为12,公差d=12−14=14的等差数列,∴第一列的第5 个数=14+(5−1)×14=54;又从第三行起,每一行数成等比数列,而且每一行的公比都相等,由第三行可知公比q=3834=12,∴第5行是以为首项,12为公比的等比数列,∴a 53=54×(12)2=516.②a mn 表示的是第m 行的第n 个数,由①可知:第一列的第m 个数=14+(m −1)×14=m4,∴a mn =m 4×(12)n−1=m 2n+1.故答案分别为516, m2n+1.7.等差数列{a n }中,a 7=4,a 19=2a 9,〔Ⅰ〕求{a n }的通项公式;〔Ⅱ〕设b n =1na n,求数列{b n }的前n 项和S n .【考点】8E :数列的求和;84:等差数列的通项公式. 【分析】〔I 〕由a 7=4,a 19=2a 9,结合等差数列的通项公式可求a 1,d ,进而可求a n 〔II 〕由b n =1na n=2n(n+1)=2n −2n+1,利用裂项求和即可求解【解答】解:〔I 〕设等差数列{a n }的公差为d ∵a 7=4,a 19=2a 9,∴{a 1+6d =4a 1+18d =2(a 1+8d)解得,a 1=1,d=12∴a n =1+12(n −1)=1+n 2〔II 〕∵b n =1na n=2n(n+1)=2n −2n+1∴S n =2(1−12+12−13+⋯+1n −1n+1)=2(1−1n+1)=2nn+18.已知等差数列{a n },的前n 项和为S n ,且a 2=2,S 5=15,数列{b n }满足b 1=12,b n+1=n+12n b n . 〔1〕求数列{a n },{b n }的通项公式;〔2〕记T n 为数列{b n }的前n 项和,f (n )=2S n (2−T n )n+2,试问f 〔n 〕是否存在最大值,假设存在,求出最大值,假设不存在请说明理由. 将b n+1=n+12nb n 整理,得到{b n n}是首项为12,公比为12的等比数列,应用等比数列的通项即可求出b n ;〔2〕运用错位相减法求出前n 项和T n ,化简f 〔n 〕,运用相邻两项的差f 〔n+1〕﹣f 〔n 〕,判断f 〔n 〕的增减性,从而判断f 〔n 〕是否存在最大值. 【解答】解:〔1〕设等差数列{a n }首项为a 1,公差为d , 则{a 1+d =25a 1+10d =15解得a 1=1,d=1,∴a n =n ,又b n+1n+1=b n 2n ,即{b nn }是首项为12,公比为12的等比数列, ∴bn n =b 11(12)n−1,∴b n =n2n ;〔2〕由〔1〕得:T n =12+222+323+⋯+n2n ,12T n=123+223+324+⋯+n−12n +n2n+1,相减,得12T n =12+122+123+⋯+12n +n2n+1, =12(1−12n )1−12,∴T n =2−n+22n,又S n =12n 〔n+1〕,∴f (n )=2S n (2−T n )n+2=n 2+n 2n,∴f (n +1)−f (n )=(n+102+n+12n+1−n 2+n 2n=(n+1)(2−n)2n−1,当n >3时,f 〔n+1〕﹣f 〔n 〕<0,数列{f 〔n 〕}是递减数列, 又f (1)=1,f (2)=32,f (3)=32 ∴f 〔n 〕存在最大值,且为32.9.设数列{a n }的前项n 和为S n ,假设对于任意的正整数n 都有S n =2a n −3n .〔1〕设b n =a n +5,求证:数列{b n }是等比数列,并求出{a n }的通项公式。
数学作业本必修五答案
数学作业本必修五答案【篇一:高中数学课时作业必修5】形1.1正弦定理和余弦定理............................................................1 课时1 正弦定理(1)..................................................................1 课时2 正弦定理(2)..................................................................3 课时3 余弦定理(1)..................................................................5 课时4 余弦定理(2) (7)1.2应用举例…………………………………………………………………9 课时5 正弦定理、余弦定理的综合运用…………………………………9 课时6 正弦定理、余弦定理的应用(测量距离、高度问题)…………11 课时7 正弦定理、余弦定理的应用(测量角度问题)…………………13 第二章数列2.1 数列的概念与简单表示法...................................................15 课时1 数列的概念与简单表示法................................................15 2.2等差数列...........................................................................17 课时2 等差数列的概念与通项公式(1) (17)课时3 等差数列的概念与通项公式(2)……………………………………19 2. 3 等差数列的前n项和…………………………………………………21 课时4 等差数列的前n项和………………………………………………21 课时5 习题课(1)……………………………………………………………23 2.4等比数列 (25)课时6 等比数列的概念与通项公式(1)……………………………………25 课时7 等比数列的概念与通项公式(2)……………………………………27 2. 5 等比数列的前n项和…………………………………………………29 课时8 等比数列的前n项和………………………………………………29 课时9 一般数列求通项……………………………………………………31 课时10 一般数列求和……………………………………………………33 课时11 习题课(2) (35)第三章不等式3.1 不等关系与不等式……………………………………………………37 课时1 不等关系与不等式…………………………………………………37 3.2 一元二次不等式及其解法……………………………………………39 课时2 一元二次不等式及其解法(1) (39)课时3 一元二次不等式及其解法(2)………………………………………41 3.3二元一次不等式(组)与简单的线性规划问题……………………43 课时4二元一次不等式(组)表示的平面区域…………………………43 课时5 简单的线性规划问题………………………………………………45 课时6 习题课(1)…………………………………………………………47 3. 4a?b…………………………………………49 2课时7 基本不等式的证明………………………………………………49 课时8 基本不等式的应用………………………………………………51 课时9 习题课(2)…………………………………………………………53 附:第一章检测卷第二章检测卷第三章检测卷模块检测卷(1) 模块检测卷(2) 参考答案与点拨第一章三角形1.1正弦定理和余弦定理课时1 正弦定理(1)a.2.在△abc中,∠a、∠b、∠c的对边为a、b、c,若...323a.2 b..6.已知△abc中,若a=2,则∠c=.则a=10.△abc中,,求a+b的值; (2)若,求a、b、c的值.12.在△abc中,tana=1,tanb=3. (1)求∠c的大小. (2)若abbc边的长.4513.在△abc中,∠a、∠b、∠c的对边分别为a、b、c,若m=(b,3a),n=(c,b),且m∥n,∠c-∠a=求∠b.2,54,cosc=135. (1)求sina的值. (2)设△abc的面积s△abc=33,2课时2 正弦定理(2)1.若sinacosbcosc==,则△abc是 ( )abca.x2 b.x2 c.2x.2xcosb= ( )a.5.在△abc中,6.(2009.湖南)在锐角△abc中,bc=1, ∠b=2∠a,则ac的值等于____,ac的取值范围为____.cosa7.在△abc中,已知atanb=btana,则△abc为____三角形.22,∠a=2∠b.则cosc=1,s△abcb=____.38.有一道解三角形的题目,因纸张破损有一条件模糊不清,具体如下:“在△abc中,角∠a、∠b、∠c所对的边分别为a、b、c.已知”经推断,破损处的条件为三角b=?,____,求∠a.4形一边的长度,且答案提示∠a=?,试在横线上将条件补充完整. 69.在△abc中,已知22ac=2,求△abc的面积.212.在△abc中,2∠a=∠b+∠c,b=ac,求bsinb的值.c13.已知△abc中,∠a、∠b、∠c对应的边是a、b、c,∠a=2∠若∠a的内角平分线ad的长为2,求b的值.14.在锐角△abc中,若∠b=2∠a,求b的取值范围,a(1)求sinc的值. (2)课时3 余弦定理(1)2221.在△abc中,∠a、∠b、∠c的对边分别为a、b、c,若c?a?b0,则△abc ( )2aba.一定是锐角三角形 b.一定是直角三角形 c.一定是钝角三角形 d.是锐角或直角三角形2.在△abc中,a:b:c=12,则∠a:∠b:∠c的值为 ( )a. 1: 2:3 b.2:3:1 c.1:3:2 d.3:1:2a.? b.? c.?或5? d.?或2?6363634.在△abc中,若a=2bcosc,则△abc的形状为 ( ) a.直角三角形 b.等腰三角形 c.等边三角形 d.等腰或直角三角形c222,则∠b的值为6.在△abc中,sina:sinb:sinc=3:5:7,则最大角等于____. 7.在△abc中,∠a、∠b、∠c所对的边分别为a、b、c.若a=1, 8.在△abc中,10.设锐角三角形abc的内角∠a、∠b、∠c的对边a、b、c,a=2bsina. (1)求∠b的大小. (2)若c=5,求b。
高中数学人教版必修5课后习题答案[电子档]
..高中数学必修5课后习题答案..下载可编辑..第二章 数列2.1 数列的概念与简单表示法练习(P31) 1、2、前5项分别是:1,0,1,0,1--.3、例1(1)1(2,)1(21,)n n m m N na n m m N n⎧-=∈⎪⎪=⎨⎪=-∈⎪⎩**; (2)2(2,)0(21,)n n m m N a n m m N ⎧=∈⎪=⎨=-∈⎪⎩**说明:此题是通项公式不唯一的题目,鼓励学生说出各种可能的表达形式,并举出其他可能的通项公式表达形式不唯一的例子.4、(1)1()21n a n Z n +=∈-; (2)(1)()2n n a n Z n +-=∈; (3)121()2n n a n Z +-=∈ 习题2.1 A 组(P33)1、(1)2,3,5,7,11,13,17,19;(2)2,6,22,3,10,23,14,15,4,32; (3)1,1.7,1.73,1.732,…1.732050; 2,1.8,1.74,1.733,…,1.732051.2、(1)11111,,,,491625; (2)2,5,10,17,26--.3、(1)(1),4-,9,(16-),25,(36-),49; 12(1)n n a n +=-; (2)1,2,(3),2,5,(6),7; n a n =.4、(1)1,3,13,53,2132; (2)141,5,,,5454--.5、对应的答案分别是:(1)16,21;54n a n =-;(2)10,13;32n a n =-;(3)24,35;22n a n n =+. 6、15,21,28; 1n n a a n -=+.习题2.1 B 组(P34)1、前5项是1,9,73,585,4681.n 1 2 … 5 … 12 … n n a 21 33 … 69 … 153 … 3(34)n +该数列的递推公式是:1118,1n n a a a +=+=.通项公式是:817n n a -=.2、110(10.72)10.072a =⨯+=﹪; 2210(10.72)10.144518a =⨯+=﹪; 3310(10.72)10.217559a =⨯+=﹪; 10(10.72)n n a =⨯+﹪. 3、(1)1,2,3,5,8; (2)358132,,,,2358.2.2 等差数列练习(P39)1、表格第一行依次应填:0.5,15.5,3.75;表格第二行依次应填:15,11-,24-.2、152(1)213n a n n =+-=+,1033a =.3、4n c n =4、(1)是,首项是11m a a md +=+,公差不变,仍为d ;(2)是,首项是1a ,公差2d ;(3)仍然是等差数列;首项是716a a d =+;公差为7d . 5、(1)因为5375a a a a -=-,所以5372a a a =+. 同理有5192a a a =+也成立; (2)112(1)n n n a a a n -+=+>成立;2(0)n n k n k a a a n k -+=+>>也成立.习题2.2 A 组(P40)1、(1)29n a =; (2)10n =; (3)3d =; (4)110a =.2、略.3、60︒.4、2℃;11-℃;37-℃.5、(1)9.8s t =; (2)588 cm ,5 s.习题2.2 B 组(P40)1、(1)从表中的数据看,基本上是一个等差数列,公差约为2000,52010200280.2610a a d =+=⨯ 再加上原有的沙化面积5910⨯,答案为59.2610⨯; (2)2021年底,沙化面积开始小于52810 hm ⨯.2、略.2.3 等差数列的前n 项和练习(P45) 1、(1)88-; (2)604.5.2、59,11265,112n n a n n ⎧=⎪⎪=⎨+⎪>⎪⎩3、元素个数是30,元素和为900.习题2.3 A 组(P46)1、(1)(1)n n +; (2)2n ; (3)180个,和为98550; (4)900个,和为494550.2、(1)将120,54,999n n a a S ===代入1()2n n n a a S +=,并解得27n =; 将120,54,27n a a n ===代入1(1)n a a n d =+-,并解得1713d =.(2)将1,37,6293n d n S ===代入1(1)n a a n d =+-,1()2n n n a a S +=,得111237()6292n n a a a a =+⎧⎪⎨+=⎪⎩;解这个方程组,得111,23n a a ==.(3)将151,,566n a d S ==-=-代入1(1)2n n n S na d -=+,并解得15n =;将151,,1566a d n ==-=代入1(1)n a a n d =+-,得32n a =-.(4)将2,15,10n d n a ===-代入1(1)n a a n d =+-,并解得138a =-;将138,10,15n a a n =-=-=代入1()2n n n a a S +=,得360n S =-. 3、44.5510⨯m. 4、4.5、这些数的通项公式:7(1)2n -+,项数是14,和为665.6、1472.习题2.3 B 组(P46)1、每个月的维修费实际上是呈等差数列的. 代入等差数列前n 项和公式,求出5年内的总共的维修费,即再加上购买费,除以天数即可. 答案:292元.2、本题的解法有很多,可以直接代入公式化简,但是这种比较繁琐. 现提供2个证明方法供参考. (1)由 61615S a d =+,1211266S a d =+,18118153S a d =+ 可得61812126()2()S S S S S +-=-.(2)1261212126()()S S a a a a a a -=+++-+++L L 7812a a a =+++L126(6)(6)(6)a d a d a d =++++++L 126()36a a a d =++++L 636S d =+同样可得:1812672S S S d -=+,因此61812126()2()S S S S S +-=-.3、(1)首先求出最后一辆车出发的时间4时20分;所以到下午6时,最后一辆车行驶了1小时40分.(2)先求出15辆车总共的行驶时间,第一辆车共行驶4小时,以后车辆行驶时间依次递减,最后一辆行驶1小时40分. 各辆车的行驶时间呈等差数列分布,代入前n 项和公式,这个车队所有车的行驶时间为2418531522S +=⨯= h. 乘以车速60 km/h ,得行驶总路程为2550 km. 4、数列1(1)n n ⎧⎫⎨⎬+⎩⎭的通项公式为111(1)1n a n n n n ==-++ 所以111111111()()()()1122334111n nS n n n n =-+-+-++-=-=+++L 类似地,我们可以求出通项公式为1111()()n a n n k k n n k==-++的数列的前n 项和. 2.4 等比数列练习(P52) 1、2、由题意可知,每一轮被感染的计算机台数构成一个首项为180a =,公比为20q =的等比数列,则第5轮被感染的计算机台数5a 为 447518020 1.2810a a q ==⨯=⨯.3、(1)将数列{}n a 中的前k 项去掉,剩余的数列为12,,k k a a ++L . 令,1,2,k i b a i +==L ,则数列12,,k k a a ++L 可视为12,,b b L . 因为11(1)i k i i k ib a q i b a ++++==≥,所以,{}n b 是等比数列,即12,,k k a a ++L 是等比数列. (2){}n a 中的所有奇数列是135,,,a a a L ,则235211321(1)k k a a aq k a a a +-=====L L ≥. 所以,数列135,,,a a a L 是以1a 为首项,2q 为公比的等比数列. (3){}n a 中每隔10项取出一项组成的数列是11223,,,a a a L ,1a 3a 5a 7aq2 4 8 16 2或2-50 20.080.00320.2则1112231111121110(1)k k a a a q k a a a +-=====L L ≥ 所以,数列11223,,,a a a L 是以1a 为首项,11q 为公比的等比数列.猜想:在数列{}n a 中每隔m (m 是一个正整数)取出一项,组成一个新的数列,这个数列是以1a 为首项,1m q +为公比的等比数列.4、(1)设{}n a 的公比为q ,则24228511()a a q a q ==,而262837111a a a q a q a q ⋅=⋅= 所以2537a a a =⋅,同理2519a a a =⋅ (2)用上面的方法不难证明211(1)nn n a a a n -+=⋅>. 由此得出,n a 是1n a -和1n a +的等比中项. 同理:可证明,2(0)nn k n k a a a n k -+=⋅>>. 由此得出,n a 是n k a -和n k a +的等比中项(0)n k >>. 5、(1)设n 年后这辆车的价值为n a ,则13.5(110)n n a =-﹪. (2)4413.5(110)88573a =-≈﹪(元). 用满4年后卖掉这辆车,能得到约88573元. 习题2.4 A 组(P53)1、(1)可由341a a q =,得11a =-,6671(1)(3)729a a q ==-⨯-=-. 也可由671a a q =,341a a q =,得337427(3)729a a q ==⨯-=-(2)由131188a q a q =⎧⎪⎨=⎪⎩,解得12723a q =⎧⎪⎨=⎪⎩,或12723a q =-⎧⎪⎨=-⎪⎩(3)由416146a q a q ⎧=⎪⎨=⎪⎩,解得232q =,862291173692a a q a q q a q ==⋅==⨯=还可由579,,a a a 也成等比数列,即2759a a a =,得22795694a a a ===.(4)由411311156a q a a q a q ⎧-=⎪⎨-=⎪⎩L L L L ①②①的两边分别除以②的两边,得2152q q +=,由此解得12q =或2q =.当12q =时,116a =-. 此时2314a a q ==-. 当2q =时,11a =. 此时2314a a q ==. 2、设n 年后,需退耕n a ,则{}n a 是一个等比数列,其中18(110),0.1a q =+=﹪.那么2005年需退耕5551(1)8(110)13a a q =+=+≈﹪(万公顷) 3、若{}n a 是各项均为正数的等比数列,则首项1a 和公比q 都是正数. 由11n n a a q-=,得111(1)22111()n n n n a a qa qa q ---===.那么数列{}n a 是以1a 为首项,12q 为公比的等比数列.4、这张报纸的厚度为0.05 mm ,对折一次后厚度为0.05×2 mm ,再对折后厚度为0.05×22 mm ,再对折后厚度为0.05×32 mm. 设00.05a =,对折n 次后报纸的厚度为n a ,则{}n a 是一个等比数列,公比2q =. 对折50次后,报纸的厚度为505050131000.052 5.6310 mm 5.6310 m a a q ==⨯≈⨯=⨯这时报纸的厚度已经超出了地球和月球的平均距离(约83.8410 m ⨯),所以能够在地球和月球之间建一座桥.5、设年平均增长率为1,105q a =,n 年后空气质量为良的天数为n a ,则{}n a 是一个等比数列. 由3240a =,得2231(1)105(1)240a a q q =+=+=,解得24010.51105q =-≈ 6、由已知条件知,,2a bA G ab +==,且22()0222a b a b ab a b A G ab ++---=-==≥ 所以有A G ≥,等号成立的条件是a b =. 而,a b 是互异正数,所以一定有A G >.7、(1)2±; (2)22()ab a b ±+. 8、(1)27,81; (2)80,40,20,10.习题2.4 B 组(P54)1、证明:由等比数列通项公式,得11m m a a q -=,11n n a a q -=,其中1,0a q ≠所以 1111m m n m n n a a q q a a q---== 2、(1)设生物体死亡时,体内每克组织中的碳14的原子核数为1个单位,年衰变率为q ,n 年后的残留量为n a ,则{}n a 是一个等比数列. 由碳14的半衰期为5730则 57305730112n a a qq===,解得157301()0.9998792q =≈ (2)设动物约在距今n 年前死亡,由0.6n a =,得10.9998790.6n n a a q ===.解得 4221n ≈,所以动物约在距今4221年前死亡.3、在等差数列1,2,3,…中,有7108917a a a a +==+,1040203050a a a a +==+ 由此可以猜想,在等差数列{}n a 中若*(,,,)k s p q k s p q N +=+∈,则k s p q a a a a +=+. 从等差数列与函数之间的联系的角度来分析这个问题:由等差数列{}n a 的图象,可以看出k p a k a p =,s q a sa q=根据等式的性质,有k s p q a a k sa a p q++=++,所以k s p q a a a a +=+. 猜想对于等比数列{}n a ,类似的性质为:若*(,,,)k s p q k s p q N +=+∈,则k s p q a a a a ⋅=⋅.2.5 等比数列的前n 项和练习(P58) 1、(1)6616(1)3(12)189112a q S q --===--. (2)1112.7()9190311451()3n n a a q S q----===----. 2、设这个等比数列的公比为q所以 101256710()()S a a a a a a =+++++++L L 555S q S =+55(1)q S =+50= 同理 1015105S S q S =+. 因为 510S =,所以由①得 5101051416S q q S =-=⇒= 代入②,得1015105501610210S S q S =+=+⨯=.3、该市近10年每年的国内生产总值构成一个等比数列,首项12000a =,公比 1.1q =设近10年的国内生产总值是10S ,则10102000(1 1.1)31874.81 1.1S -=≈-(亿元)习题2.5 A 组(P61)1、(1)由34164641a q a ===--,解得4q =-,所以144164(4)5111(4)a a q S q ---⨯-===---. a sa q a pa ksq p kOna n (第3题)(2)因为2131233(1)S a a a a q q --=++=++,所以2113q q --++=,即2210q q --=解这个方程,得1q =或12q =-. 当1q =时,132a =;当12q =-时,16a =.2、这5年的产值是一个以1138 1.1151.8a =⨯=为首项, 1.1q =为公比的等比数列所以5515(1)151.8(1 1.1)926.75411 1.1a q S q -⨯-==≈--(万元) 3、(1)第1个正方形的面积为42cm ,第2个正方形的面积为22cm ,…,这是一个以14a =为首项,12q =为公比的等比数列所以第10个正方形的面积为99710114()22a a q -==⨯=(2cm )(2)这10个正方形的面积和为77110101422821112a a qS q---⨯-===---(2cm )4、(1)当1a =时,2(1)(1)(2)()12(1)2n n na a a n n --+-++-=-----=-L L 当1a ≠时,22(1)(2)()()(12)n n a a a n a a a n -+-++-=+++-+++L L L(1)(1)12n a a n n a -+=-- (2)1212(235)(435)(35)2(12)3(555)n n n n -------⨯+-⨯+-⨯=+++-+++L L11(1)5(15)323(1)(15)2154n nn n n n ----+-⨯-⨯=+---(3)设21123n n S x x nx -=++++L ……① 则 212(1)n n n xS x x n x nx -=+++-+L ……②①-②得,21(1)1n n n x S x x x nx --=++++-L ……③当1x =时,(1)1232n n n S n +=++++=L ;当1x ≠时,由③得,21(1)1n n n x nx S x x -=--- 5、(1)第10次着地时,经过的路程为91002(50251002)-++++⨯L1291911002100(222)2(12)100200299.61 (m)12------=+⨯+++-=+⨯≈-L (2)设第n 次着地时,经过的路程为293.75 m ,则1(1)12(1)12(12)1002100(222)100200293.7512n n ---------+⨯+++=+⨯=-L所以130********.75n --⨯=,解得120.03125n -=,所以15n -=-,则6n = 6、证明:因为396,,S S S 成等差数列,所以公比1q ≠,且9362S S S =+即,936111(1)(1)(1)2111a q a q a q q q q---⨯=+--- 于是,9362q q q =+,即6321q q =+ 上式两边同乘以1a q ,得741112a q a q a q =+ 即,8252a a a =+,故285,,a a a 成等差数列习题2.5 B 组(P62)1、证明:11111()(1())1n n n n n n n n n bb b a b a a a b b a a b a a a b a+++---+++=+++==--L L2、证明:因为7714789141277()S S a a a q a a a q S -=+++=+++=L L 141421141516211277()S S a a a q a a a q S -=+++=+++=L L 所以71472114,,S S S --成等比数列3、(1)环保部门每年对废旧物资的回收量构成一个等比数列,首项为1100a =,公比为 1.2q =. 所以,2010年能回收的废旧物资为89100 1.2430a =⨯≈(t )(2)从2002年到2010年底,能回收的废旧物资为9919(1)100(1 1.2)208011 1.2a q S q --==≈--(t ) 可节约的土地为165048320⨯=(2m )4、(1)依教育储蓄的方式,应按照整存争取定期储蓄存款利率计息,免征利息税,且若每月固定存入a 元,连续存n 个月,计算利息的公式为()2a na n+⨯月利率.因为整存整取定期储蓄存款年利率为2.52﹪,月利率为0.21﹪故到期3年时一次可支取本息共(505036)360.2118001869.932+⨯⨯⨯+=﹪(元)若连续存6年,应按五年期整存整取定期储蓄存款利率计息,具体计算略. (2)略.(3)每月存50元,连续存3年按照“零存整取”的方式,年利率为1.89﹪,且需支付20﹪的利息税所以到期3年时一次可支取本息共1841.96元,比教育储蓄的方式少收益27.97元.(4)设每月应存入x 元,由教育储蓄的计算公式得36(36)0.2136100002x x x +⨯+=﹪解得267.39x ≈(元),即每月应存入267.39(元)(5)(6)(7)(8)略5、设每年应存入x 万元,则2004年初存入的钱到2010年底利和为7(12)x +﹪,2005年初存入的钱到2010年底利和为6(12)x +﹪,……,2010年初存入的钱到2010年底利和为(12)x +﹪. 根据题意,76(12)(12)(12)40x x x ++++++=L ﹪﹪﹪ 根据等比数列前n 项和公式,得7(12)(1 1.02)401 1.02x +-=-﹪,解得52498x ≈(元)故,每年大约应存入52498元第二章 复习参考题A 组(P67)1、(1)B ; (2)B ; (3)B ; (4)A .2、(1)212n n n a -=; (2)12(1)(21)1(2)n n n a n +--=+; (3)7(101)9n n a =-; (4)1(1)n n a =+-或1cos n a n π=+.3、4、如果,,a b c 成等差数列,则5b =;如果,,a b c 成等比数列,则1b =,或1-.5、n a 按顺序输出的值为:12,36,108,324,972. 86093436sum =.6、81381.9(10.13)1396.3⨯+≈﹪(万) 7、从12月20日到次年的1月1日,共13天. 每天领取的奖品价值呈等差数列分布.110,100d a ==. 由1(1)2n n n S a n d -=+得:1313121001310208020002S ⨯=⨯+⨯=>.所以第二种领奖方式获奖者受益更多. 8、因为28374652a a a a a a a +=+=+=所以34567285450()2a a a a a a a +++++==+,则28180a a +=.9、容易得到101010,1012002n n na n S +==⨯=,得15n =.10、212212()()()n n n n S a a a a nd a nd a nd ++=+++=++++++L L 2121()n a a a n nd S n d =++++⨯=+L32122312(2)(2)(2)n n n n S a a a a nd a nd a nd ++=+++=++++++L L 2121()22n a a a n nd S n d =++++⨯=+L 容易验证2132S S S =+. 所以,123,,S S S 也是等差数列,公差为2n d . 11、221(1)(1)4(1)221a f x x x x x =+=+-++=-- 223(1)(1)4(1)267a f x x x x x =-=---+=-+ 因为{}n a 是等差数列,所以123,,a a a 也是等差数列. 所以,2132a a a =+. 即,20286x x =-+. 解得1x =或3x =. 当1x =时,1232,0,2a a a =-==. 由此可求出24n a n =-. 当3x =时,1232,0,2a a a ===-. 由此可求出42n a n =-.第二章 复习参考题B 组(P68)1、(1)B ; (2)D .2、(1)不成等差数列. 可以从图象上解释. ,,a b c 成等差,则通项公式为y pn q =+的形式,且,,a b c 位于同一直线上,而111,,a b c 的通项公式却是1y pn q =+的形式,111,,a b c不可能在同一直线上,因此肯定不是等差数列.(2)成等比数列. 因为,,a b c 成等比,有2b ac =. 又由于,,a b c 非零,两边同时取倒数,则有21111b ac a c==⨯. 所以,111,,a b c也成等比数列.3、体积分数:60.033(125)0.126⨯+≈﹪,质量分数:60.05(125)0.191⨯+≈﹪. 4、设工作时间为n ,三种付费方式的前n 项和分别为,,n n n A B C . 第一种付费方式为常数列;第二种付费方式为首项是4,公差也为4的等差数列;第三种付费方式为首项是0.4,公比为2的等比数列. 则38n A n =,2(1)44222n n n B n n n -=+⨯=+, 0.4(12)0.4(21)12n n n C -==--. 下面考察,,n n n A B C 看出10n <时,380.4(21)n n >-. 因此,当工作时间小于10天时,选用第一种付费方式. 10n ≥时,,n n n n A C B C ≤≤因此,当工作时间大于10天时,选用第三种付费方式.5、第一星期选择A 种菜的人数为n ,即1a n =,选择B 种菜的人数为500a -. 所以有以下关系式:2118030a a b =⨯+⨯﹪﹪3228030a a b =⨯+⨯﹪﹪……118030n n b a a b --=⨯+⨯﹪﹪500n n a b +=所以111502n n a a -=+,115003502n n n b a a -=-=-如果1300a =,则2300a =,3300a =,…,10300a = 6、解:由1223n n n a a a --=+得 1123()n n n n a a a a ---+=+以及1123(3)n n n n a a a a ----=--所以221213()37n n n n a a a a ---+=+=⨯,221213(1)(3)(1)13n n n n a a a a ----=--=-⨯. 由以上两式得,11437(1)13n n n a --=⨯+-⨯所以,数列的通项公式是11137(1)134n n n a --⎡⎤=⨯+-⨯⎣⎦ 7、设这家牛奶厂每年应扣除x 万元消费基金2002年底剩余资金是1000(150)x +-﹪2003年底剩余资金是2[1000(150)](150)1000(150)(150)x x x x +-+-=+-+-﹪﹪﹪﹪ ……5年后达到资金 54321000(150)(150)(150)(150)(150)2000x x x x +-+-+-+-+=﹪﹪﹪﹪﹪ 解得 459x ≈(万元)第三章 不等式3.1 不等关系与不等式练习(P74)1、(1)0a b +≥; (2)4h ≤; (3)(10)(10)3504L W L W ++=⎧⎨>⎩.2、这给两位数是57.3、(1)>; (2)<; (3)>; (4)<;习题3.1 A 组(P75)1、略.2、(1)3274+<; (2)710314+>+.3、证明:因为20,04x x >>,所以21104x x x ++>+>因为22(1)(1)02x x +>+>,所以112xx +>+4、设A 型号帐篷有x 个,则B 型号帐篷有(5)x +个,050448054853(5)484(4)48x x x x x x >⎧⎪+>⎪⎪<⎪⎨<-<⎪⎪+<⎪+⎪⎩≥5、设方案的期限为n 年时,方案B 的投入不少于方案A 的投入.所以,(1)5105002n n n -+⨯≥ 即,2100n ≥.习题3.1 B 组(P75)1、(1)因为222259(56)30x x x x x ++-++=+>,所以2225956x x x x ++>++ (2)因为222(3)(2)(4)(69)(68)10x x x x x x x ----=-+--+=>所以2(3)(2)(4)x x x ->--(3)因为322(1)(1)(1)0x x x x x --+=-+>,所以321x x x >-+(4)因为22222212(1)1222(1)(1)10x y x y x y x y x y ++-+-=++-+-=-+-+> 所以2212(1)x y x y ++>+-2、证明:因为0,0a b c d >>>>,所以0ac bd >>又因为0cd >,所以10cd>于是0a bd c>>,所以a b d c > 3、设安排甲种货箱x 节,乙种货箱y 节,总运费为z .所以 352515301535115050x y x y x y +⎧⎪+⎨⎪+=⎩≥≥ 所以28x ≥,且30x ≤所以 2822x y =⎧⎨=⎩,或2921x y =⎧⎨=⎩,或3020x y =⎧⎨=⎩所以共有三种方案,方案一安排甲种货箱28节,乙种货箱22节;方案二安排甲种货箱29节,乙种货箱21节;方案三安排甲种货箱30节,乙种货箱20节. 当3020x y =⎧⎨=⎩时,总运费0.5300.82031z =⨯+⨯=(万元),此时运费较少. 3.2 一元二次不等式及其解法练习(P80) 1、(1)1013x x ⎧⎫-⎨⎬⎩⎭≤≤; (2)R ; (3){}2x x ≠; (4)12x x ⎧⎫≠⎨⎬⎩⎭; (5)31,2x x x ⎧⎫<->⎨⎬⎩⎭或; (6)54,43x x x ⎧⎫<>⎨⎬⎩⎭或; (7)503x x ⎧⎫-<<⎨⎬⎩⎭.2、(1)使2362y x x =-+的值等于0的x 的集合是331,133⎧⎫⎪⎪-+⎨⎬⎪⎪⎩⎭;使2362y x x =-+的值大于0的x 的集合为331,133x x x ⎧⎫⎪⎪<->+⎨⎬⎪⎪⎩⎭或; 使2362y x x =-+的值小于0的x 的集合是331133x x ⎧⎫⎪⎪-<<+⎨⎬⎪⎪⎩⎭. (2)使225y x =-的值等于0的x 的集合{}5,5-; 使225y x =-的值大于0的x 的集合为{}55x x -<<; 使225y x =-的值小于0的x 的集合是{}5,5x x x <->或. (3)因为抛物线2+610y x x =+的开口方向向上,且与x 轴无交点 所以使2+610y x x =+的等于0的集合为∅;使2+610y x x =+的小于0的集合为∅; 使2+610y x x =+的大于0的集合为R. (4)使231212y x x =-+-的值等于0的x 的集合为{}2; 使231212y x x =-+-的值大于0的x 的集合为∅; 使231212y x x =-+-的值小于0的x 的集合为{}2x x ≠.习题3.2 A 组(P80)1、(1)35,22x x x ⎧⎫<->⎨⎬⎩⎭或; (2)131322x x ⎧⎫⎪⎪-<<⎨⎬⎪⎪⎩⎭; (3){}2,5x x x <->或; (4){}09x x <<.2、(1)解2490x x -+≥,因为200∆=-<,方程2490x x -+=无实数根所以不等式的解集是R ,所以249y x x =-+的定义域是R. (2)解2212180x x -+-≥,即2(3)0x -≤,所以3x = 所以221218y x x =-+-的定义域是{}3x x = 3、{}322,322m m m <-->-+或; 4、R.5、设能够在抛出点2 m 以上的位置最多停留t 秒.依题意,20122v t gt ->,即212 4.92t t ->. 这里0t >. 所以t 最大为2(精确到秒)答:能够在抛出点2 m 以上的位置最多停留2秒. 6、设每盏台灯售价x 元,则15[302(15)]400x x x ⎧⎨-->⎩≥. 即1520x <≤.所以售价{}1520x x x ∈<≤习题3.2 B 组(P81)1、(1)55255222x x ⎧⎫-+⎪⎪<<⎨⎬⎪⎪⎩⎭; (2){}37x x <<; (3)∅; (4)113x x ⎧⎫<<⎨⎬⎩⎭. 2、由22(1)40m m ∆=--<,整理,得23210m m +->,因为方程23210m m +-=有两个实数根1-和13,所以11m <-,或213m >,m 的取值范围是11,3m m m ⎧⎫<->⎨⎬⎩⎭或.3、使函数213()324f x x x =--的值大于0的解集为42423,322x x x ⎧⎫⎪⎪<-<+⎨⎬⎪⎪⎩⎭或. 4、设风暴中心坐标为(,)a b ,则3002a =,所以22(3002)450b +<,即150150b -<< 而300215015(221)13.7202-=-≈(h ),3001520=. 所以,经过约13.7小时码头将受到风暴的影响,影响时间为15小时.3.3 二元一次不等式(组)与简单的线性规划问题练习(P86)1、B .2、D .3、B .4、分析:把已知条件用下表表示:工序所需时间/分钟收益/元 打磨 着色 上漆桌子A 10 6 6 40桌子B 5 12 9 30 工作最长时间 450 480 450解:设家具厂每天生产A 类桌子x 张,B 类桌子y 张.对于A 类桌子,x 张桌子需要打磨10x min ,着色6x min ,上漆6x min 对于B 类桌子,y 张桌子需要打磨5y min ,着色12y min ,上漆9y min 而打磨工人每天最长工作时间是450min ,所以有105450x y +≤. 类似地,612480x y +≤,69450x y +≤ 在实际问题中,0,0x y ≥≥;所以,题目中包含的限制条件为 1054506124806945000x y x y x y x y +⎧⎪+⎪⎪+⎨⎪⎪⎪⎩≤≤≤≥≥练习(P91)1、(1)目标函数为2z x y =+,可行域如图所示,作出直线2y x z =-+,可知z 要取最大值,即直线经过点C 时,解方程组11x y y +=⎧⎨=-⎩得(2,1)C -,所以,max 222(1)3z x y =+=⨯+-=...(2)目标函数为35z x y =+,可行域如图所示,作出直线35z x y =+可知,直线经过点B 时,Z 取得最大值. 直线经过点A 时,Z 取得最小值. 解方程组 153y x x y =+⎧⎨-=⎩,和15315y x x y =+⎧⎨+=⎩可得点(2,1)A --和点(1.5,2.5)B .所以max 3 1.55 2.517z =⨯+⨯=,min 3(2)5(1)11z =⨯-+⨯-=-2、设每月生产甲产品x 件,生产乙产品y 件,每月收入为z 元,目标函数为30002000z x y =+,需要满足的条件是 2400250000x y x y x y +⎧⎪+⎪⎨⎪⎪⎩≤≤≥≥,作直线30002000z x y =+,当直线经过点A 时,z 取得最大值. 解方程组 24002500x y x y +=⎧⎨+=⎩可得点(200,100)A ,z 的最大值为800000元.习题3.3 A 组(P93)1、画图求解二元一次不等式:(1)2x y +≤; (2)22x y ->; (3)2y -≤; (4)3x ≥y=x x+y=1CBA -1O1yx5x +3y=15x -5y=3y=x+1yx15B3AO(1)(2)(第1题)(第2题)xyA500200400250Oy=2x -2y xO1-11yx22Oxy321Oxy -2O2、3、分析:将所给信息下表表示:每次播放时间/分 广告时间/分 收视观众/万连续剧甲 80 1 60 连续剧乙 40 1 20 播放最长时间 320 最少广告时间 6解:设每周播放连续剧甲x 次,播放连续剧乙y 次,收视率为z . 目标函数为6020z x y =+,所以,题目中包含的限制条件为8040320600x y x y x y +⎧⎪+⎪⎨⎪⎪⎩≤≥≥≥可行域如图. 解方程组80403206x y x y +⎧⎨+⎩==得点M 的坐标为(2,4),所以max 6020200z x y =+=(万)答:电视台每周应播放连续剧甲2次,播放连续剧乙4次,才能获得最高的收视率. 4、设每周生产空调器x 台,彩电y 台,则生产冰箱120x y --台,产值为z . 则,目标函数为432(120)2240z x y x y x y =++--=++ 所以,题目中包含的限制条件为111(120)402341202000x y x y x y x y ⎧++--⎪⎪⎪--⎨⎪⎪⎪⎩≤≥≥≥即,312010000x y x y x y +⎧⎪+⎪⎨⎪⎪⎩≤≤≥≥ 可行域如图,解方程组3120100x y x y +⎧⎨+⎩==y=x 3+1y=x+2y=4-x -1-15424O 1(第2题)yx586O1(第3题)y=120-3xy=100-xxy12010010040MO得点M 的坐标为(10,90),所以max 2240350z x y =++=(千元)答:每周应生产空调器10台,彩电90台,冰箱20台,才能使产值最高,最高产值是350千元.习题3.3 B 组(P93)1、画出二元一次不等式组 231223600x y x y x y +⎧⎪+>-⎪⎨⎪⎪⎩≤≥≥,所表示的区域如右图2、画出(21)(3)0x y x y +--+>表示的区域.3、设甲粮库要向A 镇运送大米x 吨、向B 镇运送大米y 吨,总运费为z . 则乙粮库要向A 镇运送大米(70)x -吨、向B 镇运送大米(110)y -吨,目标函数(总运费)为 122025101512(70)208(110)609030200z x y x y x y =⨯⨯+⨯⨯+⨯⨯-+⨯⨯-=++.所以,题目中包含的限制条件为 100(70)(110)800700x y x y x y +⎧⎪-+-⎪⎨⎪⎪⎩≤≤≤≤≥.所以当70,30x y ==时,总运费最省 min 37100z =(元)y=-2-23xy=4-23xyx-3-22564O1(第1题)y=12-x 2y=x+3yx-2-33O1(第2题)所以当0,100x y ==时,总运费最不合理 max 39200z =(元)使国家造成不该有的损失2100元.答:甲粮库要向A 镇运送大米70吨,向B 镇运送大米30吨,乙粮库要向A 镇运送大米0吨,向B 镇运送大米80吨,此时总运费最省,为37100元. 最不合理的调运方案是要向A 镇运送大米0吨,向B 镇运送大米100吨,乙粮库要向A 镇运送大米70吨,向B 镇运送大米10吨,此时总运费为39200元,使国家造成损失2100元.3.4 基本不等式2a bab +≤练习(P100)1、因为0x >,所以1122x x x x+⨯=≥当且仅当1x x =时,即1x =时取等号,所以当1x =时,即1x x+的值最小,最小值是2. 2、设两条直角边的长分别为,a b ,0,a >且0b >,因为直角三角形的面积等于50.即 1502ab =,所以 2210020a b ab +==≥,当且仅当10a b ==时取等号.答:当两条直角边的长均为10时,两条直角边的和最小,最小值是20. 3、设矩形的长与宽分别为a cm ,b cm. 0a >,0b > 因为周长等于20,所以10a b +=所以 2210()()2522a b S ab +===≤,当且仅当5a b ==时取等号.答:当矩形的长与宽均为5时,面积最大. 4、设底面的长与宽分别为a m ,b m. 0a >,0b >因为体积等于323m ,高2m ,所以底面积为162m ,即16ab =所以用纸面积是 222324()3242323264S ab bc ac a b ab =++=+++=+=≥ 当且仅当4a b ==时取等号答:当底面的长与宽均为4米时,用纸最少.习题3.4 A 组(P100)1、(1)设两个正数为,a b ,则0,0a b >>,且36ab =所以 223612a b ab +==≥,当且仅当6a b ==时取等号. 答:当这两个正数均为6时,它们的和最小.(2)设两个正数为,a b ,依题意0,0a b >>,且18a b +=所以2218()()8122a b ab +==≤,当且仅当9a b ==时取等号.答:当这两个正数均为9时,它们的积最大. 2、设矩形的长为x m ,宽为y m ,菜园的面积为S 2m . 则230x y +=,S x y =⨯由基本不等式与不等式的性质,可得211219002252()222242x y S x y +=⨯⨯=⨯=≤. 当2x y =,即1515,2x y ==时,菜园的面积最大,最大面积是22522m .3、设矩形的长和宽分别为x 和y ,圆柱的侧面积为z ,因为2()36x y +=,即18x y +=. 所以222()1622x y z x y πππ+=⨯⨯⨯=≤, 当x y =时,即长和宽均为9时,圆柱的侧面积最大. 4、设房屋底面长为x m ,宽为y m ,总造价为z 元,则12xy =,12y x= 12360031200680058004800580023600124800580034600z y x x x⨯=⨯+⨯+=++⨯⨯+=≥ 当且仅当1236004800x x⨯=时,即3x =时,z 有最小值,最低总造价为34600元. 习题3.4 B 组(P101)1、设矩形的长AB 为x ,由矩形()ABCD AB AD >的周长为24,可知,宽12AB x =-. 设PC a =,则DP x a =-所以 222(12)()x x a a -+-=,可得21272x x a x -+=,1272x DP x a x-=-=.所以ADP ∆的面积 211272187272(12)66[()18]2x x x S x x x x x--+-=-=⨯=⨯-++由基本不等式与不等式的性质 6[27218]6(18122)108722S ⨯-+=⨯-=-≤当72x x=,即62x =m 时,ADP ∆的面积最大,最大面积是(108722)-2m . 2、过点C 作CD AB ⊥,交AB 延长线于点D .设BCD α∠=,ACB β∠=,CD x =.在BCD ∆中,tan b c x α-=. 在ACD ∆中,tan()a cxαβ-+= 则tan()tan tan tan[()]1tan()tan αβαβαβααβα+-=+-=++⋅()()1a c b ca b x x a c b c a c b c x x x x----==----+⋅+()()2()()2a b a ba cbc a c b c x x--=----⋅≤当且仅当()()a cbc x x--=,即()()x a c b c =--时,tan β取得最大,从而视角也最大.第三章 复习参考题A 组(P103)1、511212537+<+. 2、化简得{}23A x x =-<<,{}4,2B x x x =<->或,所以{}23A B x x =<<I3、当0k <时,一元二次不等式23208kx kx +-<对一切实数x 都成立,即二次函数2328y kx kx =+-在x 轴下方,234(2)()08k k ∆=--<,解之得:30k -<<.当0k >时,二次函数2328y kx kx =+-开口朝上一元二次不等式23208kx kx +-<不可能对一切实数x 都成立,所以,30k -<<. 4、不等式组438000x y x y ++>⎧⎪<⎨⎪<⎩表示的平面区域的整点坐标是(1,1)--.5、设每天派出A 型车x 辆,B 型车y 辆,成本为z .所以 070494860360x y x y x y ⎧⎪⎪⎨+⎪⎪+⎩≤≤≤≤≤≥,目标函数为160252z x y =+把160252z x y =+变形为40163252y x z =-+,得到斜率为4063-,在y 轴上的截距为1252z ,随z 变化的一族平行直线. 在可行域的整点中,点(5,2)M 使得z 取得最小值. 所以每天派出A 型车5辆,B 型车2辆,成本最小,最低成本为1304元.6、设扇形的半径是x ,扇形的弧长为y ,因为 12S xy =扇形的周长为 2224Z x y xy S =+=≥当2x y =,即x S =,2y S =时,Z 可以取得最小值,最小值为4S . 7、设扇形的半径是x ,扇形的弧长为y ,因为2P x y =+扇形的面积为221112(2)()244216x y P Z xy x y +===≤ 当2x y =,即4P x =,2P y =时,Z 可以取得最大值,半径为4P 时扇形面积最大值为216P .8、设汽车的运输成本为y , 2()s say bv a sbv v v=+⨯=+当sasbv v=时,即a v b =且a cb ≤时,y 有最小值. 22sa say sbv sbv s ab v v=+⨯=≥,最小值为2s ab . 当a cb >时,由函数sa y sbv v =+的单调性可知,vc =时y 有最小值,最小值为sa sbc c+. 第三章 复习参考题B 组(P103)1、D2、(1)32264x x x x ⎧⎫<--<<>⎨⎬⎩⎭或或 (2)231334x x x x ⎧⎫-<>⎨⎬⎩⎭或或≤≤3、1m =4、设生产裤子x 条,裙子y 条,收益为z .则目标函数为2040z x y =+,所以约束条件为 10210600x y x y x y x y +⎧⎪+⎪⎪+⎨⎪⎪⎪⎩≤≤≤≥≥5、因为22x y +是区域内的点到原点的距离的平方 所以,当240330x y x y -+=⎧⎨--=⎩即2,3A A x y ==时,22x y +的最大值为13.当4525x y ⎧=⎪⎪⎨⎪=⎪⎩时,22x y +最小,最小值是45.6、按第一种策略购物,设第一次购物时的价格为1p ,购n kg ,第二次购物时的价格为2p ,仍购n kg ,按这种策略购物时两次购物的平均价格为121222p n p n p p n ++=. 若按第二种策略购物,第一次花m 元钱,能购1m p kg 物品,第二次仍花m 元钱,能购2m p kg 物品,两次购物的平均价格为12122211m m m p p p p =++ x+y=62x+y=10x+y=10yx1010656O(第4题)xy12L 1L 3L 2AB C (第5题)比较两次购物的平均价格:221212121212121212121222()4()011222()2()p p p p p p p p p p p p p p p p p p p p +++---=-==++++≥ 所以,第一种策略的平均价格高于第二种策略的平均价格,因而,用第二种策略比较经济. 一般地,如果是n 次购买同一种物品,用第二种策略购买比较经济.。
高中学习数学人教版必修5课后学习试题答案[电子档]
高中数学必修5课后习题答案第二章数列数列的概念与简单表示法〔P31〕1、n12⋯5⋯12⋯na n2133⋯69⋯153⋯3(34n)2、前5分是:1,0,1,0,1.1*3、例1〔1〕a nn(n2m,m N;2(n2m,mN*)1〔2〕a n2m1,mN*) 2m1,m)(n(n Nn明:此是通公式不唯一的目,鼓励学生出各种可能的表达形式,并出其他可能的通公式表达形式不唯一的例子.1(1)n14、〔1〕a n(nZ);〔2〕a n(nZ);〔3〕a nn1(nZ)2n2n22习题A 组〔P33〕1、〔1〕2,3,5,7,11,13,17,19 ;〔2〕2, 6,2 2,3, 10,2 3,14, 15,4,3 2;3〕1,,,,⋯;2 ,,,,⋯,.2、〔1〕1,1,1,1,1;〔2〕2,5,10,17,26.9 162 53、〔1〕〔1〕,4,9,〔16〕,25,〔36〕,49;an(1)n1n2;〔2〕1,2,〔3〕,2,5,〔6〕,7;ann.4、〔1〕1,3,13,53,213;〔2〕1,5,,5.45、的答案分是:〔1〕16,21;;〔2〕10,13;a n3n an22na n2;〔3〕24,35;n6、15,21,28;a n a n1n.习题B 组〔P34〕1、前5是1,9,73,585,4681.该数列的递推公式是:a n118an,a11.通项公式是:a n8n1.72、a 11(1﹪;a21(1﹪2;))a 31(1﹪)3;an1(1﹪)n.3、〔1〕1,2,3,5,8;〔2〕2,3,5,8,13.28等差数列练习〔P39〕1、表格第一行依次应填:,,;表格第二行依次应填:15,11,2 4.2、a n152(n1)2n13,a1033.3、c n4n4、〔1〕是,首项是a m1a1md,公差不变,仍为d;〔2〕是,首项是a1,公差2d;〔3〕仍然是等差数列;首项是a7a16d;公差为7d.5、〔1〕因为a5a3a7a5,所以2a5a3a7同理有2a5a1a9也成立;〔2〕2a na n1an1(n1)成立;2a na nk a nk(nk0)也成立.习题A组〔P40〕1、〔1〕a n 29;〔2〕n10;〔3〕d3;〔4〕a110.2、略.3、60.4、2℃;11℃;37℃.、〔1〕s;〔2〕588cm,5s.习题B 组〔P40〕1、〔1〕从表中的数据看,根本上是一个等差数列,公差约为2000,a2021a2002105再加上原有的沙化面积9 105,答案为105;2〕2021年底,沙化面积开始小于8105hm2.2、略.等差数列的前n项和练习〔P45〕1、〔1〕88;〔2〕.59,n12、a n126n,n1123、元素个数是30,元素和为900.习题A 组〔P46〕1、〔1〕n(n1);〔2〕n2;〔3〕180个,和为98550;〔4〕900个,和为494550.2、〔1〕将a120,a n54,S n999代入S nn(a1an),并解得n27;2将a120,a n54,n27代入a na1(n1)d,并解得d17.13〔2〕将d1,n37,S629代入a a(n1)d,Sn(a1a n),n n2a n112得37(a1an)629;解这个方程组,得a111,a n23.〔3〕将a1d,S n5代入S nna1n(n)d,并解得n15;将a15,d1,n15代入a na1(n1)d,得a n3.2〔4〕将d2,n15,a n10代入a na1(n1)d,并解得a138;将a138,a n10,n15代入S nn(a1an),得S n360.23、104m.4、4.5、这些数的通项公式:7(n 1)2,项数是14,和为665.6、1472.习题B 组〔P46〕1、每个月的维修费实际上是呈等差数列的.代入等差数列前n项和公式,求出5年内的总共的维修费,即再加上购置费,除以天数即可.答案:292元.2、此题的解法有很多,可以直接代入公式化简,但是这种比较繁琐 .现提供2个证明方法供参考.〔1〕由S66a115d,S1212a166d,S1818a1153d可得S6(S18S12)2(S12S6).〔2〕S12S6(a1a2La12)(a1a2La6)a7a812(a16d)(a26d)L(a66d)(a1a2a6)36dS636d同样可得:S18S12S672d,因此S6(S18S12)2(S12S6).3、〔1〕首先求出最后一辆车出发的时间4时20分;所以到下午6时,最后一辆车行驶了1小时40分.〔2〕先求出15辆车总共的行驶时间,第一辆车共行驶4小时,以后车辆行驶时间依次递减,最后一辆行驶1小时40分.各辆车的行驶时间呈等差数列分布,代入前n项和公式,41285h.这个车队所有车的行驶时间为S3 15乘以车速60km/h,得行驶总路程为2550km.4、数列1的通项公式为a n111 n(n1)n(n1)nn1所以S n(11)(11)(11)L(11)1n122334nn1n1n1类似地,我们可以求出通项公式为an111n(nk)(nn)的数列的前n项和.k k等比数列练习〔P52〕1、a1a3a5a7248162或25022、由题意可知,每一轮被感染的计算机台数构成一个首项为180,公比为q20的等比数列,那么第5轮被感染的计算机台数a5为a5a1q48204107.3、〔1〕将数列an中的前k项去掉,剩余的数列为a k1,a k2,L令ba ki,i1,2,L,那么数列a k1,a k2,L可视为b1,b2,L.因为b iaki1q(i≥1),所以,b n是等比数列,即a k1,a k2,L是等比数列.iaki〔2〕a n中的所有奇数列是a1,a3,a5,L,那么a3a5L2k Lq2(k ≥1).a 1a3a 2k所以,数列a1,a3,a5,L是以a1为首项,q2为公比的等比数列.〔3〕a n中每隔10项取出一项组成的数列是a1,a12,a23,L,那么a12a23La11k1Lq11(k≥1) a1a12a11k1所以,数列a1,a12,a23,L是以a1为首项,q11为公比的等比数列.猜想:在数列a n中每隔m〔m是一个正整数〕取出一项,组成一个新的数列,这个数列是以a1为首项,q m1为公比的等比数列.4、〔1〕设an的公比为q,那么a52(a1q4)2a12q8,而a3a7a1q2a1q6a12q8所以a52a37,同理a52a19〔2〕用上面的方法不难证明n2a n1a n1(n1).由此得出,a n是a n1和a n1的等比中项.同理:可证明,a n2anka nk(n k).由此得出,a n是a nk和a n k的等比中项(nk0).5、〔1〕设n年后这辆车的价值为a n,那么a n13.5(1﹪n10)〔2〕413.5(1﹪488573〔元〕.用满4年后卖掉这辆车,能得到约88573元.10)习题A组〔P53〕1、〔1〕可由a4a1q3,得a11,a7a1q61)3)6729.也可由a7a1q6,a4a1q3,得a7a4q3273)3729a1q18a127a127〔2〕由a1q,解得q,或q 8〔3〕由a1q423a1q6,解得q,62 aq8aq6q2aq2639 112还可由a5,a7,a9也成等比数列,即a72a5a9,得a9a72629.a54〔4〕由a1q4115LL①a1q3a1q6LL②①的两边分别除以②的两边,得q215,由此解得q1或q2.q22当q1时,a116.此时a3a1q24.当q2时,a11.此时a3a1q24.22、设n年后,需退耕a n,那么a n是一个等比数列,其中a18(11﹪.),q那么2005年需退耕a5a1(1q)58(110﹪)513〔万公顷〕3、假设a n是各项均为正数的等比数列,那么首项a1和公比q都是正数.11由a n a1q n1,得a n a1q n1a1q2a1(q2)(n1). 1那么数列a n是以a1为首项,q2为公比的等比数列.4、这张报纸的厚度为mm,对折一次后厚度为×2mm,再对折后厚度为×22mm,再对折后厚度为×23mm.设a0,对折n次后报纸的厚度为a n,那么an是一个等比数列,公比q2.对折50次后,报纸的厚度为50a0q502501013mm1010m这时报纸的厚度已经超出了地球和月球的平均距离〔约108m〕,所以能够在地球和月球之间建一座桥.5、设年平均增长率为q,a1105,n年后空气质量为良的天数为a n,那么an是一个等比数列.由a3240,得a3a1(1q)2105(1q)2240,解得q2401056、由条件知,Ab,Gab,且Aabab2ab(ab)2≥0 2222所以有A≥G,等号成立的条件是ab.而a,b是互异正数,所以一定有A>G.7、〔1〕2;〔2〕ab(a2b2).8、〔1〕27,81;〔2〕80,40,20,10.习题B 组〔P54〕1、证明:由等比数列通项公式,得a m a1q m1,a n a1q n1,其中a1,q0所以a m a1q m1qmna n a1q n12、〔1〕设生物体死亡时,体内每克组织中的碳14的原子核数为1个单位,年衰变率为q,n年后的残留量为a n,那么a n 是一个等比数列.由碳14的半衰期为5730那么a na1q5730q5731,解得q(1)5730122〔2〕设动物约在距今n年前死亡,由a n,得a n a1q n.解得n4221,所以动物约在距今4221年前死亡.3、在等差数列1,2,3,⋯中,有a7a1017 a8a9,a10a4050 a20a30由此可以猜想,在等差数列a n中假设k s p q(k,s,p,q N*),a k a s a p a q.从等差数列与函数之的系的角度来分析个:由等差数列an的象,可以看出ak,a s sap q q根据等式的性,有akas ks,所以a kasa p a q.apaq p q猜想于等比数列an,似的性:假设k p q(k,s,p,qN*),ak a s a p a q.等比数列的前n项和〔P58〕a 1(13(1a1an q1(1)91.1、〔1〕S6189.〔2〕S n903111q1145()32、个等比数列的公比 q所以S10(a1a2La5)(a6a7La10)S5q5S5(1q5)S55同理S1510q10 S5.因S510,所以由①得q5S1014q1016S5代入②,得S15S10q10S551610210.3、市近10年每年的国内生构成一个等比数列,首a12000,公比q近10年的国内生是2000(110)S10,S10〔元〕习题A组〔P61〕1、〔1〕由q3a46464,解得q4,所以S41a4q164(4)51.a111q1(4)〔2〕因S31a2a3a3(q2q11),所以q2q113,即2q2q10解个方程,得q1或q1.当q1,a13;当q1,a16.222、5年的是一个以a1138首,q公比的等比数列所以S5a1(1q5)15)〔万元〕1q13、〔1〕第1个正方形的面4cm2,第2个正方形的面2cm2,⋯,是一个以a14首,q1公比的等比数列所以第10个正方形的面a10a1q9(1)927〔cm2〕2a1a10q427〔2〕10个正方形的面和S1027〔cm2〕1q14、〔1〕当a1,(a1)(a22)(a nn)1L(n)n1)n当a1,(a1)(a22)L(a nn)(a2Lan)(12n)a(1an)n(n)2〔235(35(3522n355〕(21)42)n n)(1)(512n)2n( n1)51(15n)n(n1)3(15n)51〔3〕S n12x3x2nx n1⋯⋯①xS n2x2(n1)x n1nx n⋯⋯②①-②得,(1x)S n1x x2xn1nx n⋯⋯③当x1,S n23n n(n1);当x1,由③得,S n n2nx n1)1x5、〔1〕第10次着地,的路程1002(5025L10029) 1002100(2122L29)21(129)10020021(m)〔2〕第n次着地,的路程m ,1002100(2122L2(n1))10020021(1(n1))21所以3002001,解得21n,所以1n5,n66、明:因S3,S9,S6成等差数列,所以公比q1,且2S9S3S69 3 6即,2a1(1q)a1(1q)a1(1q)1q1q1q于是,2q9q3q6,即2q61q3上式两边同乘以a1q,得2a1q7a1q a1q4即,2a8a2a5,故a2,a8,a5成等差数列习题B 组〔P62〕b L(b)n)1(b)n1n111、证明:a nan1b Lbnan(1an aaa a ba2、证明:因为S14S7a8a9L14q7(a1a2La7)q7S7 SSa5aLa1q14(aa2La)q14S2 1141677所以S7,S147,S2114成等比数列3〔、1〕环保部门每年对废旧物资的回收量构成一个等比数列,首项为a1100,公比为q.所以,2021年能回收的废旧物资为a91008430〔t〕〔2〕从2002年到2021年底,能回收的废旧物资为S9a1(1q9)100(19)〔t〕1q12080可节约的土地为165048320〔m2〕4、〔1〕依教育储蓄的方式,应按照整存争取定期储蓄存款利率计息,免征利息税,且假设每月固定存入a元,连续存n个月,计算利息的公式为(a na)n月利率.2因为整存整取定期储蓄存款年利率为﹪,月利率为﹪故到期3年时一次可支取本息共(50536)36﹪1800〔元〕2假设连续存6年,应按五年期整存整取定期储蓄存款利率计息,具体计算略.〔2〕略.〔3〕每月存50元,连续存3年按照“零存整取〞的方式,年利率为﹪,且需支付20﹪的利息税所以到期3年时一次可支取本息共元,比教育储蓄的方式少收益元.〔4〕设每月应存入x元,由教育储蓄的计算公式得36(x36x)10000 2﹪36x解得x〔元〕,即每月应存入〔元〕〔5〕〔6〕〔7〕〔8〕略5、设每年应存入x万元,那么2004年初存入的钱到2021年底利和为x(12﹪)7,2005年初存入的到2021年底利和x(12﹪)6,⋯⋯,2021年初存入的到2021年底利和x(12﹪).根据意,x(12﹪)7x(12﹪)6Lx(12﹪)40根据等比数列前n和公式,得x(12﹪)(17)40,解得x52498〔元〕1故,每年大存入52498元第二章复习参考题A组〔P67〕1、〔1〕B;〔2〕B;〔3〕B;〔4〕A.2、〔1〕a n2n;〔2〕a n1(1)n1(2n1);2n(2n)2〔3〕a n(10n1)7;〔4〕a n1(1)n或a n1cosn.93、4、如果a,b,c成等差数列,b 5;如果a,b,c成等比数列,b1,或1.5、a n按序出的:12,36,108,324,972.sum86093436.6、(1﹪)8〔万〕7、从12月20日到次年的1月1日,共13天.每天取的品价呈等差数列分布.d10, a1100.由S na1nn(n1)d得:S131001313121020802000.2所以第二种方式者受益更多.8、因a2a8a3a7a4a62a5所a a a a45a8),180以a3456750(a2a28.9、容易得到a n10n,S n110n01200,得n15.210、S2n1an2La2n(a1nd)(a2nd)L(a n nd)(a1a2La n)nndS1n2dS32n1a2n2L3n(a12nd)(a22nd)L(a n2nd) (a1a2Lan)n2ndS12n2d容易验证2S2S1S3.所以,S1,S2,S3也是等差数列,公差为n2d.11、a1f(x1)(x1)24(x1)2x22x1 a3f(x1)(x1)24(x1)2x26x7因为a n是等差数列,所以a1,a2,a3也是等差数列.所以,2a2a1a3.即,02x28x6.解得x1或x3.当x1时,a12,a2,a32.由此可求出a n2n4.当x3时,a12,a2,a32.由此可求出a n42n.第二章复习参考题B组〔P68〕1、〔1〕B;〔2〕D.2、〔1〕不成等差数列.可以从图象上解释.a,b,c成等差,那么通项公式为ypnq的形式,且a,b,c位于同一直线上,而1,1,1的通项公式却是y1的形式,1,1,1不可能在同一直abcpn q abc线上,因此肯定不是等差数列.〔2〕成等比数列.因为a,b,c成等比,有b2ac.又由于a,b,c非零,两边同时取倒数,那么有111 .b 2a c所以,1也成等比数列.a3、体积分数:(125﹪)6,质量分数:(125﹪)6.4、设工作时间为n,三种付费方式的前n项和分别为A n,B n,C n.第一种付费方式为常数列;第二种付费方式为首项是4,公差也为4的等差数列;第三种付费方式为首项是,公比为2的等比数列.那么A n38n,B n4nn(n1)42n22n,C n.4(12n).4(2n1).212下面考察A n,B n,C n看出n10时,38n.4(2n1).因此,当工作时间小于10天时,选用第一种付费方式.n≥10时,A n≤C n,B n≤C n因此,当工作时间大于10天时,选用第三种付费方式.5、第一星期选择 A种菜的人数为n,即a1n,选择B种菜的人数为500 a.所以有以下关系式:a2a180﹪b130﹪a 3280﹪b230﹪⋯⋯an a n180﹪b b130﹪a nbn500所以a n1a n1,b n500an350an11502如果a1300,a2300,a3300,⋯,a103006、解:由a n2a n13a n2得a nan13(a n1a n2)以及a n3a n(a n13a n2)所以a nan13n2(a2a1)3n27,a n3a n1(1)n2(a23a1)(1)n213.由以上两式得,4a n n171)n113所以,数列的通公式是n3n11)n1137、家牛奶厂每年扣除 x万元消基金2002 年底剩余金是1000(1 50﹪) x2003 年底剩余金是[1000(1 50﹪) x](1 50﹪) x 1000(1 50﹪)2(1 50﹪)x x⋯⋯5 年后到达金1000(1 50﹪)5(1 50﹪)4x (1 50﹪)3x (1 50﹪)2x (1 50﹪)x2000解得x 459〔万元〕第三章不等式不等关系与不等式练习〔P74〕1、〔1〕a b≥0;〔2〕h≤4;〔3〕(L10)(W10)350.L4W2、这给两位数是57.3、〔1〕;〔2〕;〔3〕;〔4〕;习题A组〔P75〕1、略.2、〔1〕2374;〔2〕70314.3、证明:因为x,x20,所以x2x1044因为(1x)2(1x)20,所以11xx0x504、设A型号帐篷有x个,那么B型号帐篷有(x)个,4x485x4853(x5)484(x)≥485、设方案的期限为n年时,方案B的投入不少于方案A的投入.所以,5nn(n1)10≥500即,n2≥100.2习题B 组〔P75〕1、〔1〕因为2x 25x(x 25x 6) x 23,所以2x 2 5xx25x6〔2〕因为(x3)2x2)(x4)(x 2 6x9) (x 26x8)1所以(x 3)2x 2)(x 4)〔3〕因为x 3 (x 21)(x 1)(x 2 1) 0,所以x 32x 1〔4〕因为x 2212(x y1)x 2y22x2y(x1)2 (y 1)210所以x 2212(xy1)2、证明:因为a b0,c d cd 00,所以 1 0cdacbd于是a ba b0,所以cd c d3、设安排甲种货箱x节,乙种货箱y节,总运费为z.3 5x 25y≥15 30所以15x35y≥1150所以x≥28,且x≤30xy50所以x28,或x29,或x3 0y 22y 21y2 0所以共有三种方案,方案一安排甲种货箱28节,乙种货箱22节;方案二安排甲种货箱29节,乙种货箱21节;方案三安排甲种货箱30节,乙种货箱20节.当x30时,总运费z302031〔万元〕,此时运费较少.y2 0一元二次不等式及其解法练习〔P80〕1、〔1〕x1≤x≤10;〔2〕R;〔3〕xx2;〔4〕xx132〔5〕xx或3;〔6〕xx54;〔7〕0 1,x2,342、〔1〕使y3x26x2的值等于0的x的集合是113;3使y 3x26x2的值大于0的x的集合为xx13,或x1;33使y 3x26x2的值小于0的x的集合是x1x13.33〔2〕使y252的值等于0的x的集合5,5;使y 252的值大于0的x的集合为x5x5;使y 252的值小于0的x的集合是xx5,或x5.〔3〕因为抛物线x2+6x10的开口方向向上,且与x轴无交点所以使yx2+6x10的等于0的集合为;使x2+6x10的小于0的集合为;使x2+6x10的大于0的集合为R.〔4〕使y3x212x12的值等于0的x的集合为2;使y3x212x12的值大于0的x的集合为;使y3x212x12的值小于0的x的集合为xx2.习题A组〔P80〕1、〔1〕xx3,或x;〔2〕x13x13;222〔3〕xx2,或x5;〔4〕x0x9.2、〔1〕解x24x9≥0,因为20,方程x24x9=0无实数根所以不等式的解集是R,所以y24x9的定义域是R.〔2〕解2x212x18≥0,即(x3)2≤0,所以x3所以y2x212x18的定义域是xx33、mm322,或m322;4、R.5、设能够在抛出点2m以上的位置最多停留t秒.依题意,v0t1t2,即12t22.这里t.所以t最大为2〔精确到秒〕22m以上的位置最多停留2秒.答:能够在抛出点6、设每盏台灯售价元,x≥.即15≤x20.所以售价那么15x [302(x15)]400xx15≤x2 0习题B 组〔P81〕1、〔1〕x552x552;〔2〕x3x7;〔3〕;〔4〕x1x1.222、由(1m)24m2,整理,得3m22m10,因为方程3m22m10有两个实数根1和1,所以m11,或1,m的取值范围是1. 3m2mm1,m33、使函数f(x)1x 23x 3的值大于0的解集为x x342 ,或x342.24224、设风暴中心坐标为(a,b),那么a3002,所以(3002)2 b2450,即150b150而300215015(221)〔h 〕,30015.20 22015小时.所以,经过约小时码头将受到风暴的影响,影响时间为二元一次不等式〔组〕与简单的线性规划问题 练习〔P86〕 1、B. 2、D. 3、B.4、分析:把条件用下表表示:工序所需时间/分钟收益/元打磨着色上漆桌子A1664桌子B 51293工作最长时间450 480450解:设家具厂每天生产A 类桌子x 张,B 类桌子y 张.对于A 类桌子,x 张桌子需要打磨10x min ,着色6xmin ,上漆6x min对于B 类桌子,y 张桌子需要打磨5ymin ,着色12ymin ,上漆9ymin 而打磨工人每天最长工作时间是450min ,所以有10x5y≤450.类似12y≤480,9y≤450地,6x6x在实际问题中,x≥0,y≥0;10x5y≤4506x12y≤480所以,题目中包含的限制条件为6x9y≤45x≥0y≥0练习〔P91〕1、〔1〕目标函数为z2xy,可行域如下列图,作出直线y2xz,可知z要取最大值,即直线经过点C时,解方程组x y1得C(2,1),所以,z max2xy22(1)3.y1yx〔1〕〔2〕〔第1题〕〔2〕目标函数为z3x5y,可行域如下列图,作出直线z3x5y可知,直线经过点B 时,Z取得最大值.直线经过点A时,Z取得最小值.解方程组y1,和y x1x 5y35x3y15可得点A(2,1)和点B(1.5,2.5).所以z max 31.5 5 2.5 17,z min3(2) 5 (1) 112、设每月生产甲产品x件,生产乙产品y件,每月收入为z元,目标函数为z3000x2000y,x2y≤400需要满足的条件是2x≤500,作直线z3000x2000y,x≥0y≥0当直线经过点A时,z取得最大值. x 2y 400解方程组2x y 500可得点A(200,100),z的最大值为800000元.〔第2题〕习题A 组〔P93〕1、画图求解二元一次不等式:〔1〕x y≤2;〔2〕2x y 2;〔3〕y≤2;〔4〕x≥3〔1〕〔2〕〔3〕〔4〕2、〔第2题〕3、分析:将所给信息下表表示:每次播放时间/分广告时间/分收视观众/万连续剧甲80160连续剧乙40120播放最长时间3 20最少广告时间6解:设每周播放连续剧甲x次,播放连续剧乙y次,收视率为z.目标函数为z60x20y,8 0x 40y≤3 20所以,题目中包含的限制条件为xy≥6x≥0y≥0可行域如图.解方程组80x 40y=32xy =6得点M的坐标为(2,4),所以z max60x20y200〔万〕〔第3题〕答:电视台每周应播放连续剧甲2次,播放连续剧乙4次,才能获得最高的收视率.4、设每周生产空调器x台,彩电y台,那么生产冰箱120xy台,产值为z.那么,目标函数为z4x3y2(120xy)2xy240所以,题目中包含的限制条件为1 x 1y 1(120xy)≤403x y≤120234x y≤100120x y≥20即,x≥0x≥0y≥0 y≥0可行域如图,解方程组3xy=120xy=10得点M的坐标为(10,90),所以z max2x y 240 350〔千元〕答:每周应生产空调器10台,彩电90台,冰箱20台,才能使产值最高,最高产值是350千元.习题B组〔P93〕2 x 3y≤121、画出二元一次不等式组2x3y6,x≥0y≥0所表示的区域如右图〔第1题〕2、画出(x 2y 1)(x y 3) 0表示的区域.〔第2题〕3、设甲粮库要向 A镇运送大米x吨、向B镇运送大米y吨,总运费为z. 那么乙粮库要向A 镇运送大米(70 x)吨、向B镇运送大米(110 y)吨,目标函数〔总运费〕为z1 220x2510y1512(70x)208(110y)60x90y30200.y≤100所以,题目中包含的限制条件为(70x)(110)≤80.0≤x≤7y≥0所以当x70,y3时,总运费最省zmin37100〔元〕所以当x0,y100时,总运费最不合理z max39200〔元〕使国家造成不该有的损失2100元.答:甲粮库要向A镇运送大米70吨,向B镇运送大米30吨,乙粮库要向A镇运送大米0吨,向B镇运送大米80吨,此时总运费最省,为37100元.最不合理的调运方案是要向A镇运送大米0吨,向B镇运送大米100吨,乙粮库要向A镇运送大米70吨,向B镇运送大米10吨,此时总运费为39200元,使国家造成损失2100元.根本不等式ab≤a b2练习〔P100〕1、因为x0,所以x1≥212 x x当且仅当x1时,即x1时取等号,所以当x1时,即x1的值最小,最小值是2.x x2、设两条直角边的长分别为a,b,a0,且b0,因为直角三角形的面积等于50.即1ab50,所以ab≥2ab210020,当且仅当a b10时取等号.210时,两条直角边的和最小,最小值是20 .答:当两条直角边的长均为3、设矩形的长与宽分别为acm,bcm.a0,b0因为周长等于20,所以a b1所以Sab≤(ab)21)225,当且仅当ab5时取等号.2答:当矩形的长与宽均为5时,面积最大.4、设底面的长与宽分别为am,bm.a0,b因为体积等于32m3,高2m,所以底面积为16m2,即ab16所以用纸面积是S2ab2bc2ac324(ab)≥3242ab323264当且仅当a 4时取等号答:当底面的长与宽均为4米时,用纸最少.习题A组〔P100〕1、〔1〕设两个正数为a,b,那么a 0,b0,且ab36所以ab≥2ab3612,当且仅当a6时取等号.答:当这两个正数均为6时,它们的和最小.〔2〕设两个正数为a,b,依题意a0,b0,且ab 18所以ab≤(ab)218)281,当且仅当a b9时取等号.2答:当这两个正数均为9时,它们的积最大.2、设矩形的长为 xm,宽为ym,菜园的面积为Sm2.那么x 2y 30,S x y由根本不等式与不等式的性质,可得1x2y≤1(x2y)21900225.222242当x2y,即x15,y15时,菜园的面积最大,最大面积是225m2.223、设矩形的长和宽分别为x和y,圆柱的侧面积为z,因为2(xy)36,即xy18.所以z2y≤2(xy)2162,2当x y时,即长和宽均为9时,圆柱的侧面积最大.4、设房屋底面长为xm,宽为ym,总造价为z元,那么xy12,y12xz 3y12006x8001236004800x5800≥23600124800580034600580x当且仅当1236004800x时,即x3时,z有最小值,最低总造价为34600元.x习题B组〔P101〕1、设矩形的长AB为x,由矩形ABCD(AB AD)的周长为24,可知,宽AB12x.设PCa,那么DP x a所以(12x)2(xa)2a2,可得a212x72,DP a12x72.x x所以ADP的面积112x726x218x726[(x7218] S(12x)x x)2x由根本不等式与不等式的性质S≤627218]6(18122)108722当x 72,即x2m时,ADP的面积最大,最大面积是(108722)m2.2、过点C作CD AB,交AB延长线于点D.设BCD,ACB,CDx.在BCD中,tanc.在ACD中,tan(c x x那么tantan[()]tan(tantan(tana ca bx x1a x(ac)(bc)x x≤a b aac)(bc)2(ac)(bc)2x当且仅当x(ac)(bc),即x ac)(bc)时,tan取得最大,从而视角也最大.x第三章复习参考题A组〔P103〕1、512 .12372、化简得A2x 3,Bxx4,或x2,所以AIB x2x33、当k0时,一元二次不等式2kx2x0对一切实数x都成立,即二次函数y2kx2kx3在x轴下方,824(2k)(3,解之得:3k0.k)8当k0时,二次函数y2kx2x3开口朝上一元二次不等式2kx2kx0不可能对一切实数x都成立,所以,3k0.4x3y804、不等式组x0表示的平面区域的整点坐标是(1,1).y05、设每天派出A型车x辆,B型车y辆,本钱为z.≤x≤7所以≤y≤4,目标函数为z160x252yy≤948x60y≥360把z 160x 252y变形为y401z,得到斜率为40,在y轴上的截距为1z,随6325263252z变化的一族平行直线.在可行域的整点中,点M(5,2)使得z取得最小值.所以每天派出A型车5辆,B型车2辆,本钱最小,最低本钱为1304元.6、设扇形的半径是x,扇形的弧长为y,因为S1xy2扇形的周长为Z 2xy≥22xy4当2xy,即xS,y2S时,Z可以取得最小值,最小值为4S.7、设扇形的半径是x,扇形的弧长为y,因为P2x y扇形的面积为Z1xy1(2x)y≤1(2xy)2P2 24416当2xy,即x P,yP时,Z可以取得最大值,半径为P时扇形面积最大值为P24 2 4 168、设汽车的运输本钱为y,y(bv2a)ssbvsav当sbv sa时,即va且a≤c时,y有最小值.v b by sbv sa≥2sbvsasab,最小值为2s ab.v v当a>c时,由函数ysbv sa的单调性可知,vc时y有最小值,最小值为sbcsa.b v c第三章复习参考题B组〔P103〕1、D2、〔1〕xx2或2x3或x6〔2〕xx≤1或2≤x3或x34343、m14、设生产裤子x条,裙子y条,收益为z.那么目标函数为z 20x 40y,所以约束条件为y≤102xy≤10 y≤6x≥0y≥0〔第4题〕5、因为x2y2是区域内的点到原点的距离的平方所以,当x2y403x30即x A2,y A3时,x2y2的最大值为13.x45时,x2y2最小,最小值是4.当2556、按第一种策略购物,设第一次购物时的价格为仍购nkg,按这种策略购物时两次购物的平均价格为〔第5题〕p1,购nkg,第二次购物时的价格为 p2,p1n p2np1p2.2n 2假设按第二种策略购物,第一次花m元钱,能购m kg物品,第二次仍花m元钱,能购m kgp1p22m 2物品,两次购物的平均价格为m m 1 1p1p2p1p2比较两次购物的平均价格:p1p221p22p1p2(p1p2)24p1p2(p1p2)2≥02112p1p22(p1p2)2(p1p2)p1p2所以,第一种策略的平均价格高于第二种策略的平均价格,因而,用第二种策略比较经济.一般地,如果是n次购置同一种物品,用第二种策略购置比较经济.。
精编人教版高中数学必修5课后习题答案[电子档]
.......高中数学必修5课后习题答案.......第二章 数列2.1 数列的概念与简单表示法练习(P31) 1、2、前5项分别是:1,0,1,0,1--.3、例1(1)1(2,)1(21,)n n m m N n a n m m N n⎧-=∈⎪⎪=⎨⎪=-∈⎪⎩**; (2)2(2,)0(21,)n n m m N a n m m N ⎧=∈⎪=⎨=-∈⎪⎩**说明:此题是通项公式不唯一的题目,鼓励学生说出各种可能的表达形式,并举出其他可能的通项公式表达形式不唯一的例子.4、(1)1()21n a n Z n +=∈-; (2)(1)()2n n a n Z n +-=∈; (3)121()2n n a n Z +-=∈ 习题2.1 A 组(P33)1、(1)2,3,5,7,11,13,17,19;(2)2,6,22,3,10,23,14,15,4,32; (3)1,1.7,1.73,1.732,…1.732050; 2,1.8,1.74,1.733,…,1.732051.2、(1)11111,,,,491625; (2)2,5,10,17,26--.3、(1)(1),4-,9,(16-),25,(36-),49; 12(1)n n a n +=-;n 1 2 … 5 … 12 … n n a2133…69…153…3(34)n +(2)1,2,(3),2,5,(6),7; n a n =.4、(1)1,3,13,53,2132; (2)141,5,,,5454--.5、对应的答案分别是:(1)16,21;54n a n =-;(2)10,13;32n a n =-;(3)24,35;22n a n n =+.6、15,21,28; 1n n a a n -=+.习题2.1 B 组(P34)1、前5项是1,9,73,585,4681.该数列的递推公式是:1118,1n n a a a +=+=.通项公式是:817n n a -=.2、110(10.72)10.072a =⨯+=﹪; 2210(10.72)10.144518a =⨯+=﹪; 3310(10.72)10.217559a =⨯+=﹪; 10(10.72n n a =⨯+﹪. 3、(1)1,2,3,5,8; (2)358132,,,,2358.2.2 等差数列练习(P39)1、表格第一行依次应填:0.5,15.5,3.75;表格第二行依次应填:15,11-,24-.2、152(1)213n a n n =+-=+,1033a =.3、4n c n =4、(1)是,首项是11m a a md +=+,公差不变,仍为d ;(2)是,首项是1a ,公差2d ;(3)仍然是等差数列;首项是716a a d =+;公差为7d . 5、(1)因为5375a a a a -=-,所以5372a a a =+. 同理有5192a a a =+也成立; (2)112(1)n n n a a a n -+=+>成立;2(0)n n k n k a a a n k -+=+>>也成立.习题2.2 A 组(P40)1、(1)29n a =; (2)10n =; (3)3d =; (4)110a =.2、略.3、60︒.4、2℃;11-℃;37-℃.5、(1)9.8s t =; (2)588 cm ,5 s.习题2.2 B 组(P40)1、(1)从表中的数据看,基本上是一个等差数列,公差约为2000,52010200280.2610a a d =+=⨯再加上原有的沙化面积5910⨯,答案为59.2610⨯; (2)2021年底,沙化面积开始小于52810 hm ⨯. 2、略.2.3 等差数列的前n 项和练习(P45)1、(1)88-; (2)604.5.2、59,11265,112n n a n n ⎧=⎪⎪=⎨+⎪>⎪⎩3、元素个数是30,元素和为900.习题2.3 A 组(P46)1、(1)(1)n n +; (2)2n ; (3)180个,和为98550; (4)900个,和为494550.2、(1)将120,54,999n n a a S ===代入1()2n n n a a S +=,并解得27n =; 将120,54,27n a a n ===代入1(1)n a a n d =+-,并解得1713d =. (2)将1,37,6293n d n S ===代入1(1)n a a n d =+-,1()2n n n a a S +=,得111237()6292n n a a a a =+⎧⎪⎨+=⎪⎩;解这个方程组,得111,23n a a ==.(3)将151,,566n a d S ==-=-代入1(1)2n n n S na d -=+,并解得15n =;将151,,1566a d n ==-=代入1(1)n a a n d =+-,得32n a =-.(4)将2,15,10n d n a ===-代入1(1)n a a n d =+-,并解得138a =-;将138,10,15n a a n =-=-=代入1()2n n n a a S +=,得360n S =-. 3、44.5510⨯m. 4、4.5、这些数的通项公式:7(1)2n -+,项数是14,和为665.6、1472.习题2.3 B 组(P46)1、每个月的维修费实际上是呈等差数列的. 代入等差数列前n 项和公式,求出5年内的总共的维修费,即再加上购买费,除以天数即可. 答案:292元.2、本题的解法有很多,可以直接代入公式化简,但是这种比较繁琐. 现提供2个证明方法供参考.(1)由 61615S a d =+,1211266S a d =+,18118153S a d =+ 可得61812126()2()S S S S S +-=-. (2)1261212126()()S S a a a a a a -=+++-+++7812a a a =+++ 126(6)(6)(6)a d a d a d =++++++ 126()36a a a d =++++636S d =+同样可得:1812672S S S d -=+,因此61812126()2()S S S S S +-=-. 3、(1)首先求出最后一辆车出发的时间4时20分;所以到下午6时,最后一辆车行驶了1小时40分.(2)先求出15辆车总共的行驶时间,第一辆车共行驶4小时,以后车辆行驶时间依次递减,最后一辆行驶1小时40分. 各辆车的行驶时间呈等差数列分布,代入前n 项和公式,这个车队所有车的行驶时间为2418531522S +=⨯= h. 乘以车速60 km/h ,得行驶总路程为2550 km.4、数列1(1)n n ⎧⎫⎨⎬+⎩⎭的通项公式为111(1)1n a n n n n ==-++ 所以111111111()()()()1122334111n nS n n n n =-+-+-++-=-=+++ 类似地,我们可以求出通项公式为1111()()n a n n k k n n k==-++的数列的前n 项和.2.4 等比数列练习(P52) 1、2、由题意可知,每一轮被感染的计算机台数构成一个首项为180a =,公比为20q =的等比数列,则第5轮被感染的计算机台数5a 为 447518020 1.2810a a q ==⨯=⨯.3、(1)将数列{}n a 中的前k 项去掉,剩余的数列为12,,k k a a ++. 令,1,2,k i b a i +==,则数列12,,k k a a ++可视为12,,b b .因为11(1)i k i i k ib a q i b a ++++==≥,所以,{}n b 是等比数列,即12,,k k a a ++是等比数列.1a3a5a7aq2 4 8 16 2或2-5020.080.00320.2(2){}n a 中的所有奇数列是135,,,a a a ,则235211321(1)k k a a a q k a a a +-=====≥.所以,数列135,,,a a a 是以1a 为首项,2q 为公比的等比数列.(3){}n a 中每隔10项取出一项组成的数列是11223,,,a a a ,则1112231111121110(1)k k a a a q k a a a +-=====≥所以,数列11223,,,a a a 是以1a 为首项,11q 为公比的等比数列.猜想:在数列{}n a 中每隔m (m 是一个正整数)取出一项,组成一个新的数列,这个数列是以1a 为首项,1m q +为公比的等比数列.4、(1)设{}n a 的公比为q ,则24228511()a a q a q ==,而262837111a a a q a q a q ⋅=⋅=所以2537a a a =⋅,同理2519a a a =⋅(2)用上面的方法不难证明211(1)n n n a a a n -+=⋅>. 由此得出,n a 是1n a -和1n a +的等比中项.同理:可证明,2(0)n n k n k a a a n k -+=⋅>>. 由此得出,n a 是n k a -和n k a +的等比中项(0)n k >>.5、(1)设n 年后这辆车的价值为n a ,则13.5(110)n n a =-﹪.(2)4413.5(110)88573a =-≈﹪(元). 用满4年后卖掉这辆车,能得到约88573元.习题2.4 A 组(P53)1、(1)可由341a a q =,得11a =-,6671(1)(3)729a a q ==-⨯-=-. 也可由671a a q =,341a a q =,得337427(3)729a a q ==⨯-=-(2)由131188a q a q =⎧⎪⎨=⎪⎩,解得12723a q =⎧⎪⎨=⎪⎩,或12723a q =-⎧⎪⎨=-⎪⎩(3)由416146a q a q ⎧=⎪⎨=⎪⎩,解得232q =,862291173692a a q a q q a q ==⋅==⨯=还可由579,,a a a 也成等比数列,即2759a a a =,得22795694a a a ===.(4)由411311156a q a a q a q ⎧-=⎪⎨-=⎪⎩①②①的两边分别除以②的两边,得2152q q +=,由此解得12q =或2q =. 当12q =时,116a =-. 此时2314a a q ==-. 当2q =时,11a =. 此时2314a a q ==.2、设n 年后,需退耕n a ,则{}n a 是一个等比数列,其中18(110),0.1a q =+=﹪. 那么2005年需退耕5551(1)8(110)13a a q =+=+≈﹪(万公顷)3、若{}n a 是各项均为正数的等比数列,则首项1a 和公比q 都是正数. 由11n n a a q-=,得111(1)22111()n n n n a a qa qa q ---===.那么数列{}n a 是以1a 为首项,12q 为公比的等比数列.4、这张报纸的厚度为0.05 mm ,对折一次后厚度为0.05×2 mm ,再对折后厚度为0.05×22 mm ,再对折后厚度为0.05×32 mm. 设00.05a =,对折n 次后报纸的厚度为n a ,则{}n a 是一个等比数列,公比2q =. 对折50次后,报纸的厚度为50505013100.052 5.6310 m m 5.6310 m a a q ==⨯≈⨯=⨯ 这时报纸的厚度已经超出了地球和月球的平均距离(约83.8410 m ⨯),所以能够在地球和月球之间建一座桥.5、设年平均增长率为1,105q a =,n 年后空气质量为良的天数为n a ,则{}n a 是一个等比数列. 由3240a =,得2231(1)105(1)240a a q q =+=+=,解得24010.51105q =-≈ 6、由已知条件知,,2a bA G ab +==,且22()0222a b a b ab a b A G ab ++---=-==≥ 所以有A G ≥,等号成立的条件是a b =. 而,a b 是互异正数,所以一定有A G >. 7、(1)2±; (2)22()ab a b ±+. 8、(1)27,81; (2)80,40,20,10.习题2.4 B 组(P54)1、证明:由等比数列通项公式,得11m m a a q -=,11n n a a q -=,其中1,0a q ≠所以 1111m m n m n n a a q q a a q---== 2、(1)设生物体死亡时,体内每克组织中的碳14的原子核数为1个单位,年衰变率为q ,n 年后的残留量为n a ,则{}n a 是一个等比数列. 由碳14的半衰期为5730则 57305730112n a a qq===,解得157301()0.9998792q =≈ (2)设动物约在距今n 年前死亡,由0.6n a =,得10.9998790.6n n a a q ===. 解得 4221n ≈,所以动物约在距今4221年前死亡.3、在等差数列1,2,3,…中,有7108917a a a a +==+,1040203050a a a a +==+ 由此可以猜想,在等差数列{}n a 中若*(,,,)k s p q k s p q N +=+∈,则k s p q a a a a +=+. 从等差数列与函数之间的联系的角度来分析这个 问题:由等差数列{}n a 的图象,可以看出k p a k a p =,s q a s a q= 根据等式的性质,有k s p q a a k sa a p q++=++,所以k s p q a a a a +=+. 猜想对于等比数列{}n a ,类似的性质为:若*(,,,)k s p q k s p q N +=+∈,则k s p q a a a a ⋅=⋅.2.5 等比数列的前n 项和练习(P58)1、(1)6616(1)3(12)189112a q S q --===--. (2)1112.7()9190311451()3n n a a qS q----===----. a sa q a pa ksq p kOna n(第3题)2、设这个等比数列的公比为q 所以 101256710()()S a a a a a a =+++++++555S q S =+55(1)q S =+50=同理 1015105S S q S =+.因为 510S =,所以由①得 5101051416S q q S =-=⇒= 代入②,得1015105501610210S S q S =+=+⨯=.3、该市近10年每年的国内生产总值构成一个等比数列,首项12000a =,公比 1.1q =设近10年的国内生产总值是10S ,则10102000(1 1.1)31874.81 1.1S -=≈-(亿元) 习题2.5 A 组(P61)1、(1)由34164641a q a ===--,解得4q =-,所以144164(4)5111(4)a a q S q ---⨯-===---. (2)因为2131233(1)S a a a a q q --=++=++,所以2113q q --++=,即2210q q --=解这个方程,得1q =或12q =-. 当1q =时,132a =;当12q =-时,16a =.2、这5年的产值是一个以1138 1.1151.8a =⨯=为首项, 1.1q =为公比的等比数列所以5515(1)151.8(1 1.1)926.75411 1.1a q S q -⨯-==≈--(万元) 3、(1)第1个正方形的面积为42cm ,第2个正方形的面积为22cm ,…,这是一个以14a =为首项,12q =为公比的等比数列 所以第10个正方形的面积为99710114()22a a q -==⨯=(2cm )(2)这10个正方形的面积和为77110101422821112a a qS q---⨯-===---(2cm )4、(1)当1a =时,2(1)(1)(2)()12(1)2n n na a a n n --+-++-=-----=-当1a ≠时,22(1)(2)()()(12)n n a a a n a a a n -+-++-=+++-+++(1)(1)12n a a n n a -+=--(2)1212(235)(435)(35)2(12)3(555)n n n n -------⨯+-⨯+-⨯=+++-+++11(1)5(15)323(1)(15)2154n nn n n n ----+-⨯-⨯=+--- (3)设21123n n S x x nx -=++++……①则 212(1)n n n xS x x n x nx -=+++-+……②①-②得,21(1)1n n n x S x x x nx --=++++-……③当1x =时,(1)1232n n n S n +=++++=;当1x ≠时,由③得,21(1)1n n n x nx S x x -=--- 5、(1)第10次着地时,经过的路程为91002(50251002)-++++⨯1291911002100(222)2(12)100200299.61 (m)12------=+⨯+++-=+⨯≈- (2)设第n 次着地时,经过的路程为293.75 m ,则1(1)12(1)12(12)1002100(222)100200293.7512n n ---------+⨯+++=+⨯=-所以130********.75n --⨯=,解得120.03125n -=,所以15n -=-,则6n = 6、证明:因为396,,S S S 成等差数列,所以公比1q ≠,且9362S S S =+即,936111(1)(1)(1)2111a q a q a q q q q---⨯=+--- 于是,9362q q q =+,即6321q q =+ 上式两边同乘以1a q ,得741112a q a q a q =+ 即,8252a a a =+,故285,,a a a 成等差数列习题2.5 B 组(P62)1、证明:11111()(1())1n n n n n n n n n b b b a b a a a b b a a b aa ab a+++---+++=+++==-- 2、证明:因为7714789141277()S S a a a q a a a q S -=+++=+++=141421141516211277()S S a a a q a a a q S -=+++=+++=所以71472114,,S S S --成等比数列3、(1)环保部门每年对废旧物资的回收量构成一个等比数列,首项为1100a =,公比为 1.2q =. 所以,2010年能回收的废旧物资为89100 1.2430a =⨯≈(t )(2)从2002年到2010年底,能回收的废旧物资为9919(1)100(1 1.2)208011 1.2a q S q --==≈--(t ) 可节约的土地为165048320⨯=(2m )4、(1)依教育储蓄的方式,应按照整存争取定期储蓄存款利率计息,免征利息税,且若每月固定存入a 元,连续存n 个月,计算利息的公式为()2a na n+⨯月利率. 因为整存整取定期储蓄存款年利率为2.52﹪,月利率为0.21﹪ 故到期3年时一次可支取本息共(505036)360.2118001869.932+⨯⨯⨯+=﹪(元)若连续存6年,应按五年期整存整取定期储蓄存款利率计息,具体计算略. (2)略.(3)每月存50元,连续存3年按照“零存整取”的方式,年利率为1.89﹪,且需支付20﹪的利息税所以到期3年时一次可支取本息共1841.96元,比教育储蓄的方式少收益27.97元. (4)设每月应存入x 元,由教育储蓄的计算公式得36(36)0.2136100002x x x +⨯+=﹪ 解得267.39x ≈(元),即每月应存入267.39(元) (5)(6)(7)(8)略5、设每年应存入x 万元,则2004年初存入的钱到2010年底利和为7(12)x +﹪,2005年初存入的钱到2010年底利和为6(12)x +﹪,……,2010年初存入的钱到2010年底利和为(12)x +﹪. 根据题意,76(12)(12)(12)40x x x ++++++=﹪﹪﹪根据等比数列前n 项和公式,得7(12)(1 1.02)401 1.02x +-=-﹪,解得52498x ≈(元) 故,每年大约应存入52498元第二章 复习参考题A 组(P67)1、(1)B ; (2)B ; (3)B ; (4)A .2、(1)212n n n a -=; (2)12(1)(21)1(2)n n n a n +--=+; (3)7(101)9n n a =-; (4)1(1)n n a =+-或1cos n a n π=+.3、4、如果,,a b c 成等差数列,则5b =;如果,,a b c 成等比数列,则1b =,或1-.5、n a 按顺序输出的值为:12,36,108,324,972. 86093436sum =.6、81381.9(10.13)1396.3⨯+≈﹪(万)7、从12月20日到次年的1月1日,共13天. 每天领取的奖品价值呈等差数列分布. 110,100d a ==. 由1(1)2n n n S a n d -=+得:1313121001310208020002S ⨯=⨯+⨯=>. 所以第二种领奖方式获奖者受益更多. 8、因为28374652a a a a a a a +=+=+=所以34567285450()2a a a a a a a +++++==+,则28180a a +=.9、容易得到101010,1012002n n na n S +==⨯=,得15n =. 10、212212()()()n n n n S a a a a nd a nd a nd ++=+++=++++++2121()n a a a n nd S n d =++++⨯=+32122312(2)(2)(2)n n n nS a a a a n d a n d a n d ++=+++=++++++ 2121()22n a a a n n d S n d =++++⨯=+ 容易验证2132S S S =+. 所以,123,,S S S 也是等差数列,公差为2n d . 11、221(1)(1)4(1)221a f x x x x x =+=+-++=-- 223(1)(1)4(1)267a f x x x x x =-=---+=-+ 因为{}n a 是等差数列,所以123,,a a a 也是等差数列. 所以,2132a a a =+. 即,20286x x =-+. 解得1x =或3x =. 当1x =时,1232,0,2a a a =-==. 由此可求出24n a n =-. 当3x =时,1232,0,2a a a ===-. 由此可求出42n a n =-.第二章 复习参考题B 组(P68)1、(1)B ; (2)D .2、(1)不成等差数列. 可以从图象上解释. ,,a b c 成等差,则通项公式为y pn q =+的形式,且,,a b c 位于同一直线上,而111,,a b c 的通项公式却是1y pn q =+的形式,111,,a b c不可能在同一直线上,因此肯定不是等差数列.(2)成等比数列. 因为,,a b c 成等比,有2b ac =. 又由于,,a b c 非零,两边同时取倒数,则有21111b ac a c==⨯.所以,111,,a b c也成等比数列.3、体积分数:60.033(125)0.126⨯+≈﹪,质量分数:60.05(125)0.191⨯+≈﹪.4、设工作时间为n ,三种付费方式的前n 项和分别为,,n n n A B C . 第一种付费方式为常数列;第二种付费方式为首项是4,公差也为4的等差数列;第三种付费方式为首项是0.4,公比为2的等比数列. 则38n A n =,2(1)44222n n n B n n n -=+⨯=+, 0.4(12)0.4(21)12n n n C -==--. 下面考察,,n n n A B C 看出10n <时,380.4(21)n n >-. 因此,当工作时间小于10天时,选用第一种付费方式. 10n ≥时,,n n n n A C B C ≤≤因此,当工作时间大于10天时,选用第三种付费方式.5、第一星期选择A 种菜的人数为n ,即1a n =,选择B 种菜的人数为500a -.所以有以下关系式:2118030a a b =⨯+⨯﹪﹪3228030a a b =⨯+⨯﹪﹪……118030n n b a a b --=⨯+⨯﹪﹪500n n a b +=所以111502n n a a -=+,115003502n n n b a a -=-=-如果1300a =,则2300a =,3300a =,…,10300a = 6、解:由1223n n n a a a --=+得 1123()n n n n a a a a ---+=+以及1123(3)n n n n a a a a ----=--所以221213()37n n n n a a a a ---+=+=⨯,221213(1)(3)(1)13n n n n a a a a ----=--=-⨯. 由以上两式得,11437(1)13n n n a --=⨯+-⨯所以,数列的通项公式是11137(1)134n n n a --⎡⎤=⨯+-⨯⎣⎦7、设这家牛奶厂每年应扣除x万元消费基金2002年底剩余资金是1000(150)x﹪+-2003年底剩余资金是2+-+-=+-+-﹪﹪﹪﹪[1000(150)](150)1000(150)(150)x x x x……5年后达到资金5432﹪﹪﹪﹪﹪+-+-+-+-+=1000(150)(150)(150)(150)(150)2000x x x x 解得459x≈(万元)第三章 不等式3.1 不等关系与不等式练习(P74)1、(1)0a b +≥; (2)4h ≤; (3)(10)(10)3504L W L W ++=⎧⎨>⎩.2、这给两位数是57.3、(1)>; (2)<; (3)>; (4)<;习题3.1 A 组(P75)1、略.2、(1)3274+<; (2)710314+>+.3、证明:因为20,04x x >>,所以21104x x x ++>+>因为22(1)(1)02x x +>+>,所以112xx +>+4、设A 型号帐篷有x 个,则B 型号帐篷有(5)x +个,050448054853(5)484(4)48x x x x x x >⎧⎪+>⎪⎪<⎪⎨<-<⎪⎪+<⎪+⎪⎩≥5、设方案的期限为n 年时,方案B 的投入不少于方案A 的投入. 所以,(1)5105002n n n -+⨯≥ 即,2100n ≥. 习题3.1 B 组(P75)1、(1)因为222259(56)30x x x x x ++-++=+>,所以2225956x x x x ++>++ (2)因为222(3)(2)(4)(69)(68)10x x x x x x x ----=-+--+=>所以2(3)(2)(4)x x x ->--(3)因为322(1)(1)(1)0x x x x x --+=-+>,所以321x x x >-+(4)因为22222212(1)1222(1)(1)10x y x y x y x y x y ++-+-=++-+-=-+-+> 所以2212(1)x y x y ++>+-2、证明:因为0,0a b c d >>>>,所以0ac bd >> 又因为0cd >,所以10cd> 于是0a bd c>>,所以a b d c > 3、设安排甲种货箱x 节,乙种货箱y 节,总运费为z .所以 352515301535115050x y x y x y +⎧⎪+⎨⎪+=⎩≥≥ 所以28x ≥,且30x ≤所以 2822x y =⎧⎨=⎩,或2921x y =⎧⎨=⎩,或3020x y =⎧⎨=⎩所以共有三种方案,方案一安排甲种货箱28节,乙种货箱22节;方案二安排甲种货箱29节,乙种货箱21节;方案三安排甲种货箱30节,乙种货箱20节. 当3020x y =⎧⎨=⎩时,总运费0.5300.82031z =⨯+⨯=(万元),此时运费较少. 3.2 一元二次不等式及其解法练习(P80) 1、(1)1013x x ⎧⎫-⎨⎬⎩⎭≤≤; (2)R ; (3){}2x x ≠; (4)12x x ⎧⎫≠⎨⎬⎩⎭; (5)31,2x x x ⎧⎫<->⎨⎬⎩⎭或; (6)54,43x x x ⎧⎫<>⎨⎬⎩⎭或; (7)503x x ⎧⎫-<<⎨⎬⎩⎭.2、(1)使2362y x x =-+的值等于0的x 的集合是331,133⎧⎫⎪⎪-+⎨⎬⎪⎪⎩⎭;使2362y x x =-+的值大于0的x 的集合为331,133x x x ⎧⎫⎪⎪<->+⎨⎬⎪⎪⎩⎭或;使2362y x x =-+的值小于0的x 的集合是331133x x ⎧⎫⎪⎪-<<+⎨⎬⎪⎪⎩⎭.(2)使225y x =-的值等于0的x 的集合{}5,5-; 使225y x =-的值大于0的x 的集合为{}55x x -<<; 使225y x =-的值小于0的x 的集合是{}5,5x x x <->或. (3)因为抛物线2+610y x x =+的开口方向向上,且与x 轴无交点 所以使2+610y x x =+的等于0的集合为∅; 使2+610y x x =+的小于0的集合为∅; 使2+610y x x =+的大于0的集合为R. (4)使231212y x x =-+-的值等于0的x 的集合为{}2; 使231212y x x =-+-的值大于0的x 的集合为∅; 使231212y x x =-+-的值小于0的x 的集合为{}2x x ≠.习题3.2 A 组(P80)1、(1)35,22x x x ⎧⎫<->⎨⎬⎩⎭或; (2)131322x x ⎧⎫⎪⎪-<<⎨⎬⎪⎪⎩⎭; (3){}2,5x x x <->或; (4){}09x x <<.2、(1)解2490x x -+≥,因为200∆=-<,方程2490x x -+=无实数根所以不等式的解集是R ,所以249y x x =-+的定义域是R. (2)解2212180x x -+-≥,即2(3)0x -≤,所以3x = 所以221218y x x =-+-的定义域是{}3x x =3、{}322,322m m m <-->-+或; 4、R. 5、设能够在抛出点2 m 以上的位置最多停留t 秒.依题意,20122v t gt ->,即212 4.92t t ->. 这里0t >. 所以t 最大为2(精确到秒)答:能够在抛出点2 m 以上的位置最多停留2秒. 6、设每盏台灯售价x 元,则15[302(15)]400x x x ⎧⎨-->⎩≥. 即1520x <≤.所以售价{}1520x x x ∈<≤习题3.2 B 组(P81)1、(1)55255222xx ⎧⎫-+⎪⎪<<⎨⎬⎪⎪⎩⎭; (2){}37x x <<; (3)∅; (4)113x x ⎧⎫<<⎨⎬⎩⎭. 2、由22(1)40m m ∆=--<,整理,得23210m m +->,因为方程23210m m +-=有两个实数根1-和13,所以11m <-,或213m >,m 的取值范围是11,3m m m ⎧⎫<->⎨⎬⎩⎭或.3、使函数213()324f x x x =--的值大于0的解集为42423,322x x x ⎧⎫⎪⎪<-<+⎨⎬⎪⎪⎩⎭或.4、设风暴中心坐标为(,)a b ,则3002a =,所以22(3002)450b +<,即150150b -<< 而300215015(221)13.7202-=-≈(h ),3001520=.所以,经过约13.7小时码头将受到风暴的影响,影响时间为15小时.3.3 二元一次不等式(组)与简单的线性规划问题练习(P86) 1、B . 2、D . 3、B .4、分析:把已知条件用下表表示:工序所需时间/分钟收益/元打磨着色 上漆 桌子A 10 6 6 40 桌子B 5 12 9 30 工作最长时间450480450解:设家具厂每天生产A 类桌子x 张,B 类桌子y 张.对于A 类桌子,x 张桌子需要打磨10x min ,着色6x min ,上漆6x min 对于B 类桌子,y 张桌子需要打磨5y min ,着色12y min ,上漆9y min 而打磨工人每天最长工作时间是450min ,所以有105450x y +≤. 类似地,612480x y +≤,69450x y +≤ 在实际问题中,0,0x y ≥≥;所以,题目中包含的限制条件为 1054506124806945000x y x y x y x y +⎧⎪+⎪⎪+⎨⎪⎪⎪⎩≤≤≤≥≥练习(P91)1、(1)目标函数为2z x y =+,可行域如图所示,作出直线2y x z =-+,可知z 要取最大值,即直线经过点C 时,解方程组11x y y +=⎧⎨=-⎩ 得(2,1)C -,所以,max 222(1)3z x y =+=⨯+-=.y=x x+y=1CBA -1O1yx5x +3y=15x -5y=3y=x+1yx15B3AO(2)目标函数为35z x y=+,可行域如图所示,作出直线35z x y=+可知,直线经过点B时,Z取得最大值. 直线经过点A时,Z取得最小值.解方程组153y xx y=+⎧⎨-=⎩,和15315y xx y=+⎧⎨+=⎩可得点(2,1)A--和点(1.5,2.5)B.所以max 3 1.55 2.517z=⨯+⨯=,min 3(2)5(1)11z=⨯-+⨯-=-2、设每月生产甲产品x件,生产乙产品y件,每月收入为z元,目标函数为30002000z x y=+,需要满足的条件是24002500x yx yxy+⎧⎪+⎪⎨⎪⎪⎩≤≤≥≥,作直线30002000z x y=+,当直线经过点A时,z取得最大值.解方程组2400 2500 x yx y+=⎧⎨+=⎩可得点(200,100)A,z的最大值为800000元. 习题3.3 A组(P93)1、画图求解二元一次不等式:(第2题)x yA500200400250O(1)2x y +≤; (2)22x y ->; (3)2y -≤; (4)3x ≥2、3、分析:将所给信息下表表示:每次播放时间/分广告时间/分收视观众/万连续剧甲 80 1 60 连续剧乙 40 1 20 播放最长时间 320 最少广告时间6解:设每周播放连续剧甲x 次,播放连续剧乙y 次,收视率为z .目标函数为6020z x y =+,y=2x -2y xO1-1-21yx22Oxy321Oy≤-2xy -2O(1) (2) (3) (4)y=x 3+1y=x+2y=4-x-1-15424O1(第2题)y86所以,题目中包含的限制条件为8040320600x y x y x y +⎧⎪+⎪⎨⎪⎪⎩≤≥≥≥可行域如图. 解方程组80403206x y x y +⎧⎨+⎩==得点M 的坐标为(2,4),所以max 6020200z x y =+=(万)答:电视台每周应播放连续剧甲2次,播放连续剧乙4次,才能获得最高的收视率. 4、设每周生产空调器x 台,彩电y 台,则生产冰箱120x y --台,产值为z . 则,目标函数为432(120)2240z x y x y x y =++--=++ 所以,题目中包含的限制条件为111(120)402341202000x y x y x y x y ⎧++--⎪⎪⎪--⎨⎪⎪⎪⎩≤≥≥≥即,312010000x y x y x y +⎧⎪+⎪⎨⎪⎪⎩≤≤≥≥ 可行域如图,解方程组3120100x y x y +⎧⎨+⎩==得点M 的坐标为(10,90),所以max 2240350z x y =++=(千元)答:每周应生产空调器10台,彩电90台,冰箱20台,才能使产值最高,最高产值是350千元.习题3.3 B 组(P93)1、画出二元一次不等式组 231223600x y x y x y +⎧⎪+>-⎪⎨⎪⎪⎩≤≥≥,所表示的区域如右图y=120-3xy=100-xxy12010010040MOy=-2-23xy=4-23xyx-3-22564O1(第1题)2、画出(21)(3)0x y x y +--+>表示的区域.3、设甲粮库要向A 镇运送大米x 吨、向B 镇运送大米y 吨,总运费为z . 则乙粮库要向A 镇运送大米(70)x -吨、向B 镇运送大米(110)y -吨,目标函数(总运费)为122025101512(70)208(110)60z x y x y x y =⨯⨯+⨯⨯+⨯⨯-+⨯⨯-=++. 所以,题目中包含的限制条件为 100(70)(110)800700x y x y x y +⎧⎪-+-⎪⎨⎪⎪⎩≤≤≤≤≥.所以当70,30x y ==时,总运费最省 min 37100z =(元) 所以当0,100x y ==时,总运费最不合理 max 39200z =(元)y=12-x2y=x+3yx-2-33O1(第2题)使国家造成不该有的损失2100元.答:甲粮库要向A 镇运送大米70吨,向B 镇运送大米30吨,乙粮库要向A 镇运送大米0吨,向B 镇运送大米80吨,此时总运费最省,为37100元. 最不合理的调运方案是要向A 镇运送大米0吨,向B 镇运送大米100吨,乙粮库要向A 镇运送大米70吨,向B 镇运送大米10吨,此时总运费为39200元,使国家造成损失2100元.3.4 基本不等式2a bab +≤练习(P100)1、因为0x >,所以1122x x x x+⨯=≥当且仅当1x x =时,即1x =时取等号,所以当1x =时,即1x x+的值最小,最小值是2. 2、设两条直角边的长分别为,a b ,0,a >且0b >,因为直角三角形的面积等于50. 即1502ab =,所以 2210020a b ab +==≥,当且仅当10a b ==时取等号. 答:当两条直角边的长均为10时,两条直角边的和最小,最小值是20. 3、设矩形的长与宽分别为a cm ,b cm. 0a >,0b > 因为周长等于20,所以10a b += 所以 2210()()2522a b S ab +===≤,当且仅当5a b ==时取等号. 答:当矩形的长与宽均为5时,面积最大. 4、设底面的长与宽分别为a m ,b m. 0a >,0b >因为体积等于323m ,高2m ,所以底面积为162m ,即16ab =所以用纸面积是 222324()3242323264S ab bc ac a b ab =++=+++=+=≥ 当且仅当4a b ==时取等号答:当底面的长与宽均为4米时,用纸最少.习题3.4 A 组(P100)1、(1)设两个正数为,a b ,则0,0a b >>,且36ab =所以 223612a b ab +==≥,当且仅当6a b ==时取等号. 答:当这两个正数均为6时,它们的和最小.(2)设两个正数为,a b ,依题意0,0a b >>,且18a b += 所以2218()()8122a b ab +==≤,当且仅当9a b ==时取等号. 答:当这两个正数均为9时,它们的积最大. 2、设矩形的长为x m ,宽为y m ,菜园的面积为S 2m . 则230x y +=,S x y =⨯由基本不等式与不等式的性质,可得211219002252()222242x y S x y +=⨯⨯=⨯=≤. 当2x y =,即1515,2x y ==时,菜园的面积最大,最大面积是22522m . 3、设矩形的长和宽分别为x 和y ,圆柱的侧面积为z ,因为2()36x y +=,即18x y +=. 所以222()1622x y z x y πππ+=⨯⨯⨯=≤, 当x y =时,即长和宽均为9时,圆柱的侧面积最大.4、设房屋底面长为x m ,宽为y m ,总造价为z 元,则12xy =,12y x=1236003120068005800480058002360012480058000z y x x x⨯=⨯+⨯+=++⨯⨯+=≥ 当且仅当1236004800x x⨯=时,即3x =时,z 有最小值,最低总造价为34600元. 习题3.4 B 组(P101)1、设矩形的长AB 为x ,由矩形()ABCD AB AD >的周长为24,可知,宽12AB x =-. 设PC a =,则DP x a =-所以 222(12)()x x a a -+-=,可得21272x x a x -+=,1272x DP x a x-=-=.所以ADP ∆的面积 211272187272(12)66[()18]2x x x S x x x x x--+-=-=⨯=⨯-++ 由基本不等式与不等式的性质 6[27218]6(18122)108722S ⨯-+=⨯-=-≤ 当72x x=,即62x =m 时,ADP ∆的面积最大,最大面积是(108722)-2m . 2、过点C 作CD AB ⊥,交AB 延长线于点D . 设BCD α∠=,ACB β∠=,CD x =. 在BCD ∆中,tan b c x α-=. 在ACD ∆中,tan()a cxαβ-+= 则tan()tan tan tan[()]1tan()tan αβαβαβααβα+-=+-=++⋅()()1a c b ca b x x a c b c a c b c x x x x----==----+⋅+()()2()()2a ba ba cbc a c b c x x--=----⋅≤当且仅当()()a cbc x x--=,即()()x a c b c =--时,tan β取得最大,从而视角也最大. 第三章 复习参考题A 组(P103)1、511212537+<+. 2、化简得{}23A x x =-<<,{}4,2B x x x =<->或,所以{}23A B x x =<<3、当0k <时,一元二次不等式23208kx kx +-<对一切实数x 都成立,即二次函数2328y kx kx =+-在x 轴下方,234(2)()08k k ∆=--<,解之得:30k -<<.当0k >时,二次函数2328y kx kx =+-开口朝上一元二次不等式23208kx kx +-<不可能对一切实数x 都成立,所以,30k -<<.4、不等式组438000x y x y ++>⎧⎪<⎨⎪<⎩表示的平面区域的整点坐标是(1,1)--.5、设每天派出A 型车x 辆,B 型车y 辆,成本为z .所以 070494860360x y x y x y ⎧⎪⎪⎨+⎪⎪+⎩≤≤≤≤≤≥,目标函数为160252z x y =+把160252z x y =+变形为40163252y x z =-+,得到斜率为4063-,在y 轴上的截距为1252z ,随z 变化的一族平行直线. 在可行域的整点中,点(5,2)M 使得z 取得最小值. 所以每天派出A 型车5辆,B 型车2辆,成本最小,最低成本为1304元.6、设扇形的半径是x ,扇形的弧长为y ,因为 12S xy =扇形的周长为 2224Z x y xy S =+=≥当2x y =,即x S =,2y S =时,Z 可以取得最小值,最小值为4S . 7、设扇形的半径是x ,扇形的弧长为y ,因为2P x y =+扇形的面积为221112(2)()244216x y P Z xy x y +===≤当2x y =,即4P x =,2P y =时,Z 可以取得最大值,半径为4P时扇形面积最大值为216P .8、设汽车的运输成本为y , 2()s say bv a sbv v v=+⨯=+当sasbv v=时,即a v b =且a cb ≤时,y 有最小值. 22sa say sbv sbv s ab v v=+⨯=≥,最小值为2s ab . 当a cb >时,由函数sa y sbv v =+的单调性可知,vc =时y 有最小值,最小值为sa sbc c+. 第三章 复习参考题B 组(P103)1、D2、(1)32264x x x x ⎧⎫<--<<>⎨⎬⎩⎭或或 (2)231334x x x x ⎧⎫-<>⎨⎬⎩⎭或或≤≤3、1m =4、设生产裤子x 条,裙子y 条,收益为z .则目标函数为2040z x y =+,所以约束条件为 10210600x y x y x y x y +⎧⎪+⎪⎪+⎨⎪⎪⎪⎩≤≤≤≥≥5、因为22x y +是区域内的点到原点的距离的平方所以,当240330x y x y -+=⎧⎨--=⎩即2,3A A x y ==时,22x y +的最大值为13.当4525x y ⎧=⎪⎪⎨⎪=⎪⎩时,22x y +最小,最小值是45.6、按第一种策略购物,设第一次购物时的价格为1p ,购n kg ,第二次购物时的价格为2p ,仍购n kg ,按这种策略购物时两次购物的平均价格为121222p n p n p p n ++=. 若按第二种策略购物,第一次花m 元钱,能购1m p kg 物品,第二次仍花m 元钱,能购2m p kg x+y=62x+y=10x+y=10yx1010656O(第4题)xy12L 1L 3L 2ABC (第5题).............. 物品,两次购物的平均价格为12122211m m m p p p p =++ 比较两次购物的平均价格:221212121212121212121222()4()011222()2()p p p p p p p p p p p p p p p p p p p p +++---=-==++++≥ 所以,第一种策略的平均价格高于第二种策略的平均价格,因而,用第二种策略比较经济. 一般地,如果是n 次购买同一种物品,用第二种策略购买比较经济.。
数学必修1作业本答案【浙江省普通高中新课程人教版】
浙江省普通高中新课程(人教版)——数学必修1作业本参考答案与提示第一章集合与函数概念1.1集合1 1 1集合的含义与表示1.D.2.A.3.C.4.{1,-1}.5.{x|x=3n+1,n∈N}.6.{2,0,-2}.7.A={(1,5),(2,4),(3,3),(4,2),(5,1)}.8.1.9.1,2,3,6.10.列举法表示为{(-1,1),(2,4)},描述法的表示方法不唯一,如可表示为(x,y)|y=x+2,y=x2.11.-1,12,2.1 1 2集合间的基本关系1.D.2.A.3.D.4. ,{-1},{1},{-1,1}.5. m=4/3 ,n=4/3 .6.①③⑤.7.A=B.8.15,13.9.a≥4.10.A={ ,{1},{2},{1,2}},B∈A.11.a=b=1.1 1 3集合的基本运算(一)1.C.2.A.3.C.4.4.5.{x|-2≤x≤1}.6.4.7.{-3}.8.A∪B={x|x<3,或x≥5}.9.A∪B={-8,-7,-4,4,9}.10.1.11.{a|a=3,或-22<a<22}.提示:∵A∪B=A,∴B A.而A={1,2},对B进行讨论:①当B= 时,x2-ax+2=0无实数解,此时Δ=a2-8<0,∴-22<a<22.②当B≠ 时,B={1,2}或B={1}或B={2};当B={1,2}时,a=3;当B={1}或B={2}时,Δ=a2-8=0,a=±22,但当a=±22时,方程x2-ax+2=0的解为x=±2,不合题意.1 1 3集合的基本运算(二)1.A.2.C.3.B.4.{x|x≥2,或x≤1}.5.2或8.6.x|x=n+12,n∈Z.7.{-2}.8.{x|x>6,或x≤2}.9.A={2,3,5,7},B={2,4,6,8}.10.A,B的可能情形有:A={1,2,3},B={3,4};A={1,2,4},B={3,4};A={1,2,3,4},B={3,4}.11.a=4,b=2.提示:∵A∩ 綂UB={2},∴2∈A,∴4+2a-12=0 a=4,∴A={x|x2+4x-12=0}={2,-6},∵A∩ 綂UB={2},∴-6 綂UB,∴-6∈B,将x=-6代入B,得b2-6b+8=0 b=2,或b=4.①当b=2时,B={x|x2+2x-24=0}={-6,4},∴-6 綂UB,而2∈綂UB,满足条件A∩ 綂UB={2}.②当b=4时,B={x|x2+4x-12=0}={-6,2},∴2 綂UB,与条件A∩ 綂UB={2}矛盾.1.2函数及其表示1 2 1函数的概念(一)1.C.2.C.3.D.4.22.5.-2,32∪32,+∞.6.[1,+∞).7.(1)12,34.(2){x|x≠-1,且x≠-3}.8.-34.9.1.10.(1)略.(2)72.11.-12,234.1 2 1函数的概念(二)1.C.2.A.3.D.4.{x∈R|x≠0,且x≠-1}.5.[0,+∞).6.0.7.-15,-13,-12,13.8.(1)y|y≠25.(2)[-2,+∞).9.(0,1].10.A∩B=-2,12;A∪B=[-2,+∞).11.[-1,0).1 2 2函数的表示法(一)1.A.2.B.3.A.4.y=x/100.5.y=x2-2x+2.6.1/x.7.略.8.x=1 2 3 4y=82 85 89 889.略.10.1.11.c=-3.1 2 2函数的表示法(二)1.C.2.D.3.B.4.1.5.3.6.6.7.略.8.f(x)=2x(-1≤x<0),-2x+2(0≤x≤1).9.f(x)=x2-x+1.提示:设f(x)=ax2+bx+c,由f(0)=1,得c=1,又f(x+1)-f(x)=2x,即a(x+1)2+b(x+1)+c-(ax2+bx+c)=2x,展开得2ax+(a+b)=2x,所以2a=2,a+b=0,解得a=1,b=-1.10.y=1.2(0<x≤20),2.4(20<x≤40),3.6(40<x≤60),4.8(60<x≤80).11.略.1.3函数的基本性质1 3 1单调性与最大(小)值(一)1.C.2.D.3.C.4.[-2,0),[0,1),[1,2].5.-∞,32.6.k<12.7.略.8.单调递减区间为(-∞,1),单调递增区间为[1,+∞).9.略.10.a≥-1.11.设-1<x1<x2<1,则f(x1)-f(x2)=x1x21-1-x2x22-1=(x1x2+1)(x2-x1)(x21-1)(x22-1),∵x21-1<0,x22-1<0,x1x2+1<0,x2-x1>0,∴(x1x2+1)(x2-x1)(x21-1)(x22-1)>0,∴函数y=f(x)在(-1,1)上为减函数.1 3 1单调性与最大(小)值(二)1.D.2.B.3.B.4.-5,5.5.25.6.y=316(a+3x)(a-x)(0<x<a),312a2,5364a2.7.12.8.8a2+15.9.(0,1].10.2500m2.11.日均利润最大,则总利润就最大.设定价为x元,日均利润为y元.要获利每桶定价必须在12元以上,即x>12.且日均销售量应为440-(x-13)·40>0,即x<23,总利润y=(x-12)[440-(x-13)·40]-600(12<x<23),配方得y=-40(x-18)2+840,所以当x=18∈(12,23)时,y取得最大值840元,即定价为18元时,日均利润最大.1 3 2奇偶性1.D.2.D.3.C.4.0.5.0.6.答案不唯一,如y=x2.7.(1)奇函数.(2)偶函数.(3)既不是奇函数,又不是偶函数.(4)既是奇函数,又是偶函数.8.f(x)=x(1+3x)(x≥0),x(1-3x)(x<0).9.略.10.当a=0时,f(x)是偶函数;当a≠0时,既不是奇函数,又不是偶函数.11.a=1,b=1,c=0.提示:由f(-x)=-f(x),得c=0,∴f(x)=ax2+1bx,∴f(1)=a+1b=2 a=2b-1.∴f(x)=(2b-1)x2+1bx.∵f(2)<3,∴4(2b-1)+12b<3 2b-32b<0 0<b<32.∵a,b,c∈Z,∴b=1,∴a=1. 单元练习1.C.2.D.3.D.4.D.5.D.6.B.7.B.8.C.9.A.10.D.11.{0,1,2}.12.-32.13.a=-1,b=3.14.[1,3)∪(3,5].15.f12<f(-1)<f-72.16.f(x)=-x2-2x-3.17.T(h)=19-6h(0≤h≤11),-47(h>11).18.{x|0≤x≤1}.19.f(x)=x只有唯一的实数解,即xax+b=x(*)只有唯一实数解,当ax2+(b-1)x=0有相等的实数根x0,且ax0+b≠0时,解得f(x)=2xx+2,当ax2+(b-1)x=0有不相等的实数根,且其中之一为方程(*)的增根时,解得f(x)=1.20.(1)x∈R,又f(-x)=(-x)2-2|-x|-3=x2-2|x|-3=f(x),所以该函数是偶函数.(2)略.(3)单调递增区间是[-1,0],[1,+∞),单调递减区间是(-∞,-1],[0,1].21.(1)f(4)=4×1 3=5.2,f(5.5)=5×1.3+0.5×3.9=8.45,f(6.5)=5×1.3+1×3.9+0.5×6 5=13.65.(2)f(x)=1.3x(0≤x≤5),3.9x-13(5<x≤6),6.5x-28.6(6<x≤7).22.(1)值域为[22,+∞).(2)若函数y=f(x)在定义域上是减函数,则任取x1,x2∈(0,1]且x1<x2,都有f(x1)>f(x2)成立,即(x1-x2)2+ax1x2>0,只要a<-2x1x2即可,由于x1,x2∈(0,1],故-2x1x2∈(-2,0),a<-2,即a的取值范围是(-∞,-2).第二章基本初等函数(Ⅰ)2.1指数函数2 1 1指数与指数幂的运算(一)1.B.2.A.3.B.4.y=2x(x∈N).5.(1)2.(2)5.6.8a7.7.原式=|x-2|-|x-3|=-1(x<2),2x-5(2≤x≤3),1(x>3).8.0.9.2011.10.原式=2yx-y=2.11.当n为偶数,且a≥0时,等式成立;当n为奇数时,对任意实数a,等式成立.2 1 1指数与指数幂的运算(二)1.B.2.B.3.A.4.94.5.164.6.55.7.(1)-∞,32.(2)x∈R|x≠0,且x≠-52.8.原式=52-1+116+18+110=14380.9.-9a.10.原式=(a-1+b-1)·a-1b-1a-1+b-1=1ab.11.原式=1-2-181+2-181+2-141+2-121-2-18=12-827.2 1 1指数与指数幂的运算(三)1.D.2.C.3.C.4.36.55.5.1-2a.6.225.7.2.8.由8a=23a=14=2-2,得a=-23,所以f(27)=27-23=19.9.4 7288,0 0885.10.提示:先由已知求出x-y=-(x-y)2=-(x+y)2-4xy=-63,所以原式=x-2xy+yx-y=-33.11.23.2 1 2指数函数及其性质(一)1.D.2.C.3.B.4.A B.5.(1,0).6.a>0.7.125.8.(1)图略.(2)图象关于y轴对称.9.(1)a=3,b=-3.(2)当x=2时,y有最小值0;当x=4时,y有最大值6.10.a=1.11.当a>1时,x2-2x+1>x2-3x+5,解得{x|x>4};当0<a<1时,x2-2x+1<x2-3x+5,解得{x|x<4}.2 1 2指数函数及其性质(二)1.A.2.A.3.D.4.(1)<.(2)<.(3)>.(4)>.5.{x|x≠0},{y|y>0,或y<-1}.6.x<0.7.56-0.12>1=π0>0.90.98.8.(1)a=0.5.(2)-4<x≤0.9.x2>x4>x3>x1.10.(1)f(x)=1(x≥0),2x(x<0).(2)略.11.am+a-m>an+a-n.2 1 2指数函数及其性质(三)1.B.2.D.3.C.4.-1.5.向右平移12个单位.6.(-∞,0).7.由已知得0.3(1-0.5)x≤0.08,由于0.51.91=0.2667,所以x≥1.91,所以2h后才可驾驶.8.(1-a)a>(1-a)b>(1-b)b.9.815×(1+2%)3≈865(人).10.指数函数y=ax满足f(x)·f(y)=f(x+y);正比例函数y=kx(k≠0)满足f(x)+f(y)=f(x+y).11.34,57.2.2对数函数2 2 1对数与对数运算(一)1.C.2.D.3.C.4.0;0;0;0.5.(1)2.(2)-52.6.2.7.(1)-3.(2)-6.(3)64.(4)-2.8.(1)343.(2)-12.(3)16.(4)2.9.(1)x=z2y,所以x=(z2y)2=z4y(z>0,且z≠1).(2)由x+3>0,2-x<0,且2-x≠1,得-3<x<2,且x≠1.10.由条件得lga=0,lgb=-1,所以a=1,b=110,则a-b=910.11.左边分子、分母同乘以ex,去分母解得e2x=3,则x=12ln3.2 2 1对数与对数运算(二)1.C.2.A.3.A.4.0 3980.5.2logay-logax-3logaz.6.4.7.原式=log2748×12÷142=log212=-12.8.由已知得(x-2y)2=xy,再由x>0,y>0,x>2y,可求得xy=4.9.略.10.4.11.由已知得(log2m)2-8log2m=0,解得m=1或16.2 2 1对数与对数运算(三)1.A.2.D.3.D.4.43.5.24.6.a+2b2a.7.提示:注意到1-log63=log62以及log618=1+log63,可得答案为1.8.由条件得3lg3lg3+2lg2=a,则去分母移项,可得(3-a)lg3=2alg2,所以lg2lg3=3-a2a.9.2 5.10.a=log34+log37=log328∈(3,4).11.1.2 2 2对数函数及其性质(一)1.D.2.C.3.C.4.144分钟.5.①②③.6.-1.7.-2≤x≤2.8.提示:注意对称关系.9.对loga(x+a)<1进行讨论:①当a>1时,0<x+a<a,得-a<x<0;②当0<a<1时,x+a>a,得x>0.10.C1:a=32,C2:a=3,C3:a=110,C4:a=25.11.由f(-1)=-2,得lgb=lga-1①,方程f(x)=2x即x2+lga·x+lgb=0有两个相等的实数根,可得lg2a-4lgb=0,将①式代入,得a=100,继而b=10.2 2 2对数函数及其性质(二)1.A.2.D.3.C.4.22,2.5.(-∞,1).6.log20 4<log30.4<log40.4.7.logbab<logba<logab.8.(1)由2x-1>0得x>0.(2)x>lg3lg2.9.图略,y=log12(x+2)的图象可以由y=log12x的图象向左平移2个单位得到.10.根据图象,可得0<p<q<1.11.(1)定义域为{x|x≠1},值域为R.(2)a=2.2 2 2对数函数及其性质(三)1.C.2.D.3.B.4.0,12.5.11.6.1,53.7.(1)f35=2,f-35=-2.(2)奇函数,理由略.8.{-1,0,1,2,3,4,5,6}.9.(1)0.(2)如log2x.10.可以用求反函数的方法得到,与函数y=loga(x+1)关于直线y=x对称的函数应该是y=ax-1,和y=logax+1关于直线y=x对称的函数应该是y=ax-1.11.(1)f(-2)+f(1)=0.(2)f(-2)+f-32+f12+f(1)=0.猜想:f(-x)+f(-1+x)=0,证明略.2 3幂函数1.D.2.C.3.C.4.①④.5.6.2518<0.5-12<0.16-14.6.(-∞,-1)∪23,32.7.p=1,f(x)=x2.8.图象略,由图象可得f(x)≤1的解集x∈[-1,1].9.图象略,关于y=x对称.10.x∈0,3+52.11.定义域为(-∞,0)∪(0,∞),值域为(0,∞),是偶函数,图象略.单元练习1.D.2.D.3.C.4.B.5.C.6.D.7.D.8.A.9.D.10.B.11.1.12.x>1.13.④.14.25 8.提示:先求出h=10.15.(1)-1.(2)1.16.x∈R,y=12x=1+lga1-lga>0,讨论分子、分母得-1<lga<1,所以a∈110,10.17.(1)a=2.(2)设g(x)=log12(10-2x)-12x,则g(x)在[3,4]上为增函数,g(x)>m对x∈[3,4]恒成立,m<g(3)=-178.18.(1)函数y=x+ax(a>0),在(0,a]上是减函数,[a,+∞)上是增函数,证明略.(2)由(1)知函数y=x+cx(c>0)在[1,2]上是减函数,所以当x=1时,y有最大值1+c;当x=2时,y 有最小值2+c2.19.y=(ax+1)2-2≤14,当a>1时,函数在[-1,1]上为增函数,ymax=(a+1)2-2=14,此时a=3;当0<a<1时,函数[-1,1]上为减函数,ymax=(a-1+1)2-2=14,此时a=13.∴a=3,或a=13.20.(1)F(x)=lg1-xx+1+1x+2,定义域为(-1,1).(2)提示:假设在函数F(x)的图象上存在两个不同的点A,B,使直线AB恰好与y轴垂直,则设A(x1,y),B(x2,y)(x1≠x2),则f(x1)-f(x2)=0,而f(x1)-f(x2)=lg1-x1x1+1+1x1+2-lg1-x2x2+1-1x2+2=lg(1-x1)(x2+1)(x1+1)(1-x2)+x2-x1(x1+2)(x2 +2)=①+②,可证①,②同正或同负或同为零,因此只有当x1=x2时,f(x1)-f(x2)=0,这与假设矛盾,所以这样的两点不存在.(或用定义证明此函数在定义域内单调递减)第三章函数的应用3 1函数与方程3 1 1方程的根与函数的零点1.A.2.A.3.C.4.如:f(a)f(b)≤0.5.4,254.6.3.7.函数的零点为-1,1,2.提示:f(x)=x2(x-2)-(x-2)=(x-2)(x-1)(x+1).8.(1)(-∞,-1)∪(-1,1).(2)m=12.9.(1)设函数f(x)=2ax2-x-1,当Δ=0时,可得a=-18,代入不满足条件,则函数f(x)在(0,1)内恰有一个零点.∴f(0)·f(1)=-1×(2a-1-1)<0,解得a>1.(2)∵在[-2,0]上存在x0,使f(x0)=0,则f(-2)·f(0)≤0,∴(-6m-4)×(-4)≤0,解得m≤-23.10.在(-2,-1 5),(-0 5,0),(0,0 5)内有零点.11.设函数f(x)=3x-2-xx+1.由函数的单调性定义,可以证明函数f(x)在(-1,+∞)上是增函数.而f(0)=30-2=-1<0,f(1)=31-12=52>0,即f(0)·f(1)<0,说明函数f(x)在区间(0,1)内有零点,且只有一个.所以方程3x=2-xx+1在(0,1)内必有一个实数根.3 1 2用二分法求方程的近似解(一)1.B.2.B.3.C.4.[2,2 5].5.7.6.x3-3.7.1.8.提示:先画一个草图,可估计出零点有一个在区间(2,3)内,取2与3的平均数2 5,因f(2 5)=0 25>0,且f(2)<0,则零点在(2,2 5)内,再取出2 25,计算f(2 25)=-0 4375,则零点在(2 25,2 5)内.以此类推,最后零点在(2 375,2 4375)内,故其近似值为2 4375.9.1 4375.10.1 4296875.11.设f(x)=x3-2x-1,∵f(-1)=0,∴x1=-1是方程的解.又f(-0 5)=-0 125<0,f(-0 75)=0 078125>0,x2∈(-0 75,-0 5),又∵f(-0 625)=0 005859>0,∴x2∈(-0 625,-0 5).又∵f(-0 5625)=-0 05298<0,∴x2∈(-0 625,-0 5625),由|-0.625+0.5625|<0.1,故x2=-0.5625是原方程的近似解,同理可得x3=1 5625.3 1 2用二分法求方程的近似解(二)1.D.2.B.3.C.4.1.5.1.6.2 6.7.a>1.8.画出图象,经验证可得x1=2,x2=4适合,而当x<0时,两图象有一个交点,∴根的个数为3.9.对于f(x)=x4-4x-2,其图象是连续不断的曲线,∵f(-1)=3>0,f(2)=6>0,f(0)<0,∴它在(-1,0),(0,2)内都有实数解,则方程x4-4x-2=0在区间[-1,2]内至少有两个实数根.10.m=0,或m=92.11.由x-1>0,3-x>0,a-x=(3-x)(x-1),得a=-x2+5x-3(1<x<3),由图象可知,a>134或a≤1时无解;a=134或1<a≤3时,方程仅有一个实数解;3<a<134时,方程有两个实数解.3 2函数模型及其应用3.2.1几类不同增长的函数模型1.D.2.B.3.B.4.1700.5.80.6.5.7.(1)设一次订购量为a时,零件的实际出厂价恰好为51元,则a=100+60-510.02=550(个). (2)p=f(x)=60(0<x≤100,x∈N*),62-x50(100<x<550,x∈N*),51(x≥550,x∈N*).8.(1)x年后该城市人口总数为y=100×(1+1.2%)x.(2)10年后该城市人口总数为y=100×(1+1.2%)10=100×1.01210≈112.7(万).(3)设x年后该城市人口将达到120万人,即100×(1+1.2%)x=120,x=log1.012120100=log1.0121.2=lg1.2lg1.012≈15(年).9.设对乙商品投入x万元,则对甲商品投入9-x万元.设利润为y万元,x∈[0,9].∴y=110(9-x)+25x=110(-x+4x+9)=110[-(x-2)2+13],∴当x=2,即x=4时,ymax=1.3.所以,投入甲商品5万元、乙商品4万元时,能获得最大利润1.3万元.10.设该家庭每月用水量为xm3,支付费用为y元,则y=8+c,0≤x≤a,①8+b(x-a)+c,x>a.②由题意知0<c<5,所以8+c<13.由表知第2、3月份的费用均大于13,故用水量15m3,22m3均大于am3,将15,22分别代入②式,得19=8+(15-a)b+c,33=8+(22-a)b+c,∴b=2,2a=c+19.③再分析1月份的用水量是否超过最低限量,不妨设9>a,将x=9代入②,得9=8+2(9-a)+c,2a=c+17与③矛盾,∴a≥9.1月份的付款方式应选①式,则8+c=9,c=1,代入③,得a=10.因此a=10,b=2,c=1.(第11题)11.根据提供的数据,画出散点图如图:由图可知,这条曲线与函数模型y=ae-n 接近,它告诉人们在学习中的遗忘是有规律的,遗忘的进程不是均衡的,而是在记忆的最初阶段遗忘的速度很快,后来就逐渐减慢了,过了相当长的时间后,几乎就不再遗忘了,这就是遗忘的发展规律,即“先快后慢”的规律.观察这条遗忘曲线,你会发现,学到的知识在一天后,如果不抓紧复习,就只剩下原来的13.随着时间的推移,遗忘的速度减慢,遗忘的数量也就减少.因此,艾宾浩斯的实验向我们充分证实了一个道理,学习要勤于复习,而且记忆的理解效果越好,遗忘得越慢.3 2 2函数模型的应用实例1.C.2.B.3.C.4.2400.5.汽车在5h内行驶的路程为360km.6.10;越大.7.(1)1 5m/s.(2)100.8.从2015年开始.9.(1)应选y=x(x-a)2+b,因为①是单调函数,②至多有两个单调区间,而y=x(x-a)2+b可以出现两个递增区间和一个递减区间.(2)由已知,得b=1,2(2-a)2+b=3,a>1,解得a=3,b=1.∴函数解析式为y=x(x-3)2+1.10.设y1=f(x)=px2+qx+r(p≠0),则f(1)=p+q+r=1,f(2)=4p+2q+r=1 2,f(3)=9p+3q+r=1 3,解得p=-0 05,q=0 35,r=0 7,∴f(4)=-0 05×42+0 35×4+0 7=1 3,再设y2=g(x)=abx+c,则g(1)=ab+c=1,g(2)=ab2+c=1 2,g(3)=ab3+c=1 3,解得a=-0 8,b=0 5,c=1 4,∴g(4)=-0 8×0 54+1 4=1 35,经比较可知,用y=-0 8×(0 5)x+1 4作为模拟函数较好.11.(1)设第n年的养鸡场的个数为f(n),平均每个养鸡场养g(n)万只鸡,则f(1)=30,f(6)=10,且点(n,f(n))在同一直线上,从而有:f(n)=34-4n(n=1,2,3,4,5,6).而g(1)=1,g(6)=2,且点(n,g(n))在同一直线上,从而有:g(n)=n+45(n=1,2,3,4,5,6).于是有f(2)=26,g(2)=1.2(万只),所以f(2)·g(2)=31.2(万只),故第二年养鸡场的个数是26个,全县养鸡31.2万只.(2)由f(n)·g(n)=-45n-942+1254,得当n=2时,[f(n)·g(n)]max=31.2.故第二年的养鸡规模最大,共养鸡31.2万只.单元练习1.A.2.C.3.B.4.C.5.D.6.C.7.A.8.C.9.A.10.D.11.±6.12.y=x2.13.-3.14.y3,y2,y1.15.令x=1,则12-0>0,令x=10,则1210×10-1<0.选初始区间[1,10],第二次为[1,5.5],第三次为[1,3.25],第四次为[2.125,3.25],第五次为[2.125,2.6875],所以存在实数解在[2,3]内.(第16题)16.按以下顺序作图:y=2-xy=2-|x|y=2-|x-1|.∵函数y=2-|x-1|与y=m的图象在0<m≤1时有公共解,∴0<m≤1.17.两口之家,乙旅行社较优惠,三口之家、多于三口的家庭,甲旅行社较优惠.18.(1)由题意,病毒总数N关于时间n的函数为N=2n-1,则由2n-1≤108,两边取对数得(n-1)lg2≤8,n≤27.6,即第一次最迟应在第27天时注射该种药物.(2)由题意注入药物后小白鼠体内剩余的病毒数为226×2%,再经过n天后小白鼠体内病毒数为226×2%×2n,由题意,226×2%×2n≤108,两边取对数得26lg2+lg2-2+nlg2≤8,得x≤6.2,故再经过6天必须注射药物,即第二次应在第33天注射药物.19.(1)f(t)=300-t(0≤t≤200),2t-300(200<t≤300),g(t)=1200(t-150)2+100(0≤t≤300).(2)设第t天时的纯利益为h(t),则由题意得h(t)=f(t)-g(t),即h(t)=-1200t2+12t+1752(0≤t≤200),-1200t2+72t-10252(200<t≤300).当0≤t≤200时,配方整理得h(t)=-1200(t-50)2+100,∴当t=50时,h(t)在区间[0,200]上取得最大值100;当200<t≤300时,配方整理得h(t)=-1200(t-350)2+100,∴当t=300时,h(t)取得区间[200,300]上的最大值87.5.综上,由100>87.5可知,h(t)在区间[0,300]上可以取得最大值100,此时t=50,即从2月1日开始的第50天时,西红柿纯收益最大.20.(1)由提供的数据可知,描述西红柿种植成本Q与上市时间t的变化关系的函数不可能是常数函数,从而用函数Q=at+b,Q=a·bt,Q=a·logbt中的任何一个进行描述时都应有a≠0,而此时上述三个函数均为单调函数,这与表格提供的数据不吻合.所以选取二次函数Q=at2+bt+c进行描述.将表格所提供的三组数据分别代入Q=at2+bt+c,得到150=2500a+50b+c,108=12100a+110b+c,150=62500a+250b+c.解得a=1200,b=-32,c=4252.∴描述西红柿种植成本Q与上市时间t的关系的函数为:Q=1200t2-32t+4252.(2)当t=150时,西红柿种植成本最低为Q=100(元/100kg).综合练习(一)1.D.2.D.3.D.4.A.5.B.6.D.7.D.8.D.9.B.10.B.11.{x|x≤5且x≠2}.12.1.13.4.14.0.15.10.16.0.8125.17.4.18.{-6,-5,-4,-3,-2,-1,0}.19.(1)略.(2)[-1,0]和[2,5].20.略.21.(1)∵f(x)的定义域为R,设x1<x2,则f(x1)-f(x2)=a-12x1+1-a+12x2+1=2x1-2x2(1+2x1)(1+2x2),∵x1<x2,∴2x1-2x2<0,(1+2x1)(1+2x2)>0.∴f(x1)-f(x2)<0,即f(x1)<f(x2),所以不论a取何值,f(x)总为增函数.(2)∵f(x)为奇函数,∴f(-x)=-f(x),即a-12-x+1=-a+12x+1,解得a=12.∴f(x)=12-12x+1.∵2x+1>1,∴0<12x+1<1,∴-1<-12x+1<0,∴-12<f(x)<12,所以f(x)的值域为-12,12.综合练习(二)1.B.2.B.3.D.4.A.5.A.6.C.7.A.8.A.9.B.10.B.11.log20.3<20.3.12.-2.13.-4.14.8.15.P=12t5730(t>0).16.2.17.(1,1)和(5,5).18.-2.19.(1)由a(a-1)+x-x2>0,得[x-(1-a)]·(x-a)<0.由2∈A,知[2-(1-a)]·(2-a)<0,解得a∈(-∞,-1)∪(2,+∞).(2)当1-a>a,即a<12时,不等式的解集为A={x|a<x<1-a};当1-a<a,即a>12时,不等式的解集为A={x|1-a<x<a}.20.在(0,+∞)上任取x1<x2,则f(x1)-f(x2)=ax1-1x1+1-ax2-1x2+1=(a+1)(x1-x2)(x1+1)(x2+1),∵0<x1<x2,∴x1-x2<0,x1+1>0,x2+1>0,所以要使f(x)在(0,+∞)上递减,即f(x1)-f(x2)>0,只要a+1<0即a<-1,故当a<-1时,f(x)在区间(0,+∞)上是单调递减函数.21.设利润为y万元,年产量为S百盒,则当0≤S≤5时,y=5S-S22-0.5-0.25S=-S22+4.75S-0.5,当S>5时,y=5×5-522-0.5-0.25S=12-0.25S,∴利润函数为y=-S22+4.75S-0.5(0≤S≤5,S∈N*),-0.25S+12(S>5,S∈N*).当0≤S≤5时,y=-12(S-4.75)2+10.78125,∵S∈N*,∴当S=5时,y有最大值10 75万元;当S>5时,∵y=-0.25S+12单调递减,∴当S=6时,y有最大值10 50万元.综上所述,年产量为500盒时工厂所得利润最大.22.(1)由题设,当0≤x≤2时,f(x)=12x·x=12x2;当2<x<4时,f(x)=12·22·22-12(x-2)·(x-2)-12·(4-x)·(4-x)=-(x-3)2+3;当4≤x≤6时,f(x)=12(6-x)·(6-x)=12(x-6)2.∴f(x)=12x2(0≤x≤2),-(x-3)2+3(2<x<4),12(x-6)2(4≤x≤6).(2)略.(3)由图象观察知,函数f(x)的单调递增区间为[0,3],单调递减区间为[3,6],当x=3时,函数f(x)取最大值为3.。
数学必修5习题答案
数学必修5习题答案数学是一门抽象而又具有逻辑性的学科,对于很多学生来说,数学课堂上的习题是一道难以逾越的障碍。
然而,通过认真思考和练习,我们可以找到数学必修5习题的答案。
本文将探讨一些常见的数学必修5习题,并给出相应的解答。
第一部分:代数1. 已知方程2x + 3 = 7,求解x的值。
解答:将方程两边减去3,得到2x = 4。
再除以2,得到x = 2。
所以x的值为2。
2. 求解方程3x - 4 = 10。
解答:将方程两边加上4,得到3x = 14。
再除以3,得到x = 4.67。
所以x的值为4.67。
第二部分:几何1. 已知一个三角形的两边长分别为3cm和4cm,夹角为60度,求解第三边的长度。
解答:根据余弦定理,第三边的平方等于两边平方之和减去两倍的两边的乘积与夹角的余弦的乘积。
即c² = a² + b² - 2abcosC。
代入已知值,得到c² = 3² +4² - 2×3×4×cos60° = 9 + 16 - 24×0.5 = 1。
所以第三边的长度为1cm。
2. 已知一个正方形的边长为5cm,求解其对角线的长度。
解答:根据勾股定理,正方形的对角线的长度等于边长的平方根的两倍。
即d= 5√2。
所以对角线的长度为5√2 cm。
第三部分:概率1. 一个骰子投掷一次,求解出现奇数的概率。
解答:骰子有6个面,其中3个是奇数(1、3、5)。
所以出现奇数的概率为3/6 = 1/2。
2. 一个扑克牌从一副标准牌中随机抽取一张,求解抽到红心的概率。
解答:一副标准牌中有52张牌,其中有13张红心。
所以抽到红心的概率为13/52 = 1/4。
通过以上例题,我们可以看到数学必修5习题的答案并不难找到,只需要运用正确的方法和公式进行计算即可。
当然,在解题过程中,我们也要注意细节和计算的准确性。
数学是一门需要反复练习和思考的学科,通过不断的实践和探索,我们可以更好地理解和应用数学知识。