第4章 随机历程通过线性系统分析

合集下载

自动控制原理课后习题答案

自动控制原理课后习题答案
• 1932年,Nyquist提出了一种根据系统的开环频率 响应(对稳态正弦输入) 。
• 20世纪40年代,Evans提出并完善了根轨迹法。
• 20世纪50年代末,最优控制系统设计。
• 20世纪50年代末,基于时域分析的现代控制理 论。
• 60年代~80年代:最优控制、随机系统的最优控 制、复杂系统的自适应控制和学习控制得到了研 究。
5. 干扰量(Disturbance):引起被控量偏离预定运 行规律的量。除给定值之外,凡能引起被控量变 化的因素,都是干扰。干扰又称扰动
6.反馈(Feedback):将系统输出量引回输入端,并 与参考输入进行比较的过程。
7.前向通路 (Forward Channel):从给定量到被控 量的通道。
缺点: 闭环控制系统的参数如果匹配得不好,会造成被控量的 较大摆动,甚至系统无法正常工作。
例: 飞机自动驾驶控制
被控对象: 飞机
被控量: 飞机的俯仰角 θ
控制任务:系统在任何扰动作用下,保持飞机俯仰角不变。
仰俯角控制系统方块图
IV 复合控制
开环控制和闭环控制相结合的一种控制。实质上,它是在 闭环控制回路的基础上,附加了一个输入信号或扰动作用 的顺馈通路,来提高系统的控制精度。
an
d
n n
c(t
)
dt n
+
an-1
d n-1n-1c(t ) dt n-1
+"+
a1
dc(t) dt
+
a0c(t )
=
bm
d m m r (t ) dt m
+ bm-1
d m-1m-1r (t ) dt m-1
+" + b1

实验三 随机过程通过线性系统

实验三  随机过程通过线性系统

实验名称线性系统对随机过程的响应一、实验目的通过本仿真实验了解正态白色噪声随机过程通过线性系统后相关函数以及功率谱的变化;培养计算机编程能力。

二、实验平台MATLAB R2014a三、实验要求(1)运用正态分布随机数产生函数产生均值为m=0,根方差σ=1的白色正态分布序列{u(n)|n=1,2,…,2000},画出噪声u(n)的波形图。

(2)设离散时间线性系统的差分方程为x(n)=u(n)-0.36u(n-1)+0.85u(n-2)(n=3,4,…,2000).画出x(n)的波形图。

(3)随机过程x(n)的理论上的功率谱函数为在[0,π]范围内对w进行采样,采样间隔0.001π,计算S(i×0.001π) (i=1,2,…,1000);画出波形图。

(4)根据步骤二产生的数据序列x(n)计算相关函数的估计值与理论值1.1296、-0.666、0.85、0、0、0的差异。

(5)根据相关函数的估计值对随机过程的功率谱密度函数进行估计在[0,π]范围内对w进行采样,采样间隔0.001π,计算S(i×0.001π) (i=1,2,…,1000);画出波形图,比较其与理论上的功率谱密度函数S(w)的差异。

(6)依照实验1的方法统计数据x(n)在不同区间出现的概率,计算其理论概率,观察二者是否基本一致。

四、实验代码及结果A、运用正态分布随机数产生函数产生均值为m=0,根方差σ=1的白色正态分布序列{u(n)|n=1,2,…,2000},画出噪声u(n)的波形图。

代码实现:波形图:分析:运用正态分布随机数产生函数产生均值为0,根方差σ=1的白色噪声样本序列。

B、设离散时间线性系统的差分方程为x(n)=u(n)-0.36u(n-1)+0.85u(n-2)(n=3,4,…,2000).画出x(n)的波形图。

代码实现:波形图:分析:正态随机序列通过离散时间线性系统生成的仍是正态随机序列。

C、随机过程x(n)的理论上的功率谱函数为在[0,π]范围内对w进行采样,采样间隔0.001π,计算S(i×0.001π) (i=1,2,…,1000);画出波形图。

线性系统分析_习题答案

线性系统分析_习题答案

线性系统分析_(吴大正_第四版)习题答案(总184页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除专业课习题解析课程西安电子科技大学844信号与系统2专业课习题解析课程第1讲第一章信号与系统(一)3专业课习题解析课程第2讲第一章信号与系统(二)451-1画出下列各信号的波形【式中)()(t t t r ε=】为斜升函数。

(2)∞<<-∞=-t et f t,)( (3))()sin()(t t t f επ=(4))(sin )(t t f ε= (5))(sin )(t r t f = (7))(2)(k t f kε= (10))(])1(1[)(k k f kε-+=解:各信号波形为 (2)∞<<-∞=-t et f t,)((3))()sin()(t t t f επ=6(4))(sin )(t t f ε=(5))(sin )(t r t f =7(7))(2)(k t f k ε=(10))(])1(1[)(k k f k ε-+=81-2 画出下列各信号的波形[式中)()(t t t r ε=为斜升函数]。

(1))2()1(3)1(2)(-+--+=t t t t f εεε (2))2()1(2)()(-+--=t r t r t r t f (5))2()2()(t t r t f -=ε (8))]5()([)(--=k k k k f εε (11))]7()()[6sin()(--=k k k k f εεπ (12))]()3([2)(k k k f k---=εε解:各信号波形为(1))2()1(3)1(2)(-+--+=t t t t f εεε9(2))2()1(2)()(-+--=t r t r t r t f(5))2()2()(t t r t f -=ε10(8))]5()([)(--=k k k k f εε(11))]7()()[6sin()(--=k k k k f εεπ11(12))]()3([2)(k k k f k ---=εε1-3 写出图1-3所示各波形的表达式。

线性系统理论(郑大钟第二版)第4章

线性系统理论(郑大钟第二版)第4章
第三章 线性系统的稳定性及李雅普诺夫 分析方法
§1 稳定性基本概念
一、外部稳定性与内部稳定性 1.外部稳定性 考虑一个线性因果系统,在零初始条件下,如果对应于任意有界输 入的输出均为有界,则称该系统是外部稳定的。
u(t ) k1
y(t ) k2
系统的外部稳定性也称有界输入-有界输出(BIBO)稳定性。 对于线性定常连续系统,外部稳定的充要条件是系统传递函数 的全部极点具有负实部。
n
it
i 1
i i
2.非线性系统情况 对于非本质性的非线性系统,可以在一定条件下用它的近似 线性化模型来研究它在平衡点的稳定性。
非线性自治系统: x f ( x)
f ( x )为n维非线性向量函数,并对各状态变量连续可微。
xe 0
是系统的一个平衡点。
将f ( x )在平衡点xe 邻域展成泰勒级数: f ( x ) f ( xe )
(t t0 )
则称平衡状态 xe 是稳定的。 可以将下式看成为状态空间中以 xe 为球心,以 为半径的一个超 球体,球域记为 S ( ) ;把上式视为以 xe为球心,以 为半径的一个 超球体,球域记为 S ( ) 。球域 S ( )依赖于给定的实数 和初始时间t 0 。
平衡状态 xe 是稳定的几何解释: 从球域 S ( )内任一点出发的运动 x(t; x0 , t0 )对所有的 t t0 都不超越球域 S ( ) 。 x2 一个二维状态空间中零平衡 S ( ) xe 0 是稳定的几何解释 状态 如右图 。 S ( ) 如果 与 t 0 无关,称为是 一致稳定,定常系统是一致 稳定的。 上述稳定保证了系统受扰运动的有 界性,通常将它称为李雅普诺夫意义 下的稳定,以区别于工程意义的稳定 (还应该具有对于平衡状态的渐进性)。

《随机分析》课件

《随机分析》课件

随机过程的数字特征
01
数字特征
数字特征是描述随机过程的一些 具体数值,如样本均值、样本方
差等。
03
样本方差
样本方差是随机过程的另一个具 体数值,表示随机过程的波动程
度。
02
样本均值
样本均值是随机过程的一个具体 数值,表示随机过程的平均水平

04
其他数字特征
除了样本均值和样本方差外,还 有其他一些数字特征可以用来描 述随机过程,如偏度、峰度等。
根据转移概率的性质,可以将状态分为吸收 态、周期态、正常返态和非周期态等。
马尔科夫链的极限定理与平稳分布
要点一
极限定理
要点二
平稳分布
描述马尔科夫链在长时间运行后趋于稳定状态的性质。
在极限状态下,马尔科夫链的状态分布趋于一个稳定的分 布,称为平稳分布。
马尔科夫链的应用
01
02
03
排队论
马尔科夫链用于描述排队 系统中的顾客行为和等待 时间。
生物信息学
马尔科夫链用于描述基因 序列的进化模型和蛋白质 序列的预测。
金融工程
马尔科夫链用于描述股票 价格的变化和风险评估。
05
随机分析的应用
在金融领域的应用
风险评估
随机分析用于评估投资风险,通过模拟未来 市场走势和价格波动,为投资者提供决策依 据。
金融衍生品定价
随机分析在金融衍生品定价中发挥关键作用,如期 权、期货等金融工具的定价模型基于随机分析理论 。
随机动力学
03
随机分析用于描述系统中的随机扰动对动力学行为的影响,如
混沌理论中的随机扰动。
在社会科学中的应用
经济学
在经济学中,随机分析用于研究经济现象中的不确定性,如市场 供需、价格波动等。

(NEW)吴大正《信号与线性系统分析》(第4版)笔记和课后习题(含考研真题)详解

(NEW)吴大正《信号与线性系统分析》(第4版)笔记和课后习题(含考研真题)详解

目 录第1章 信号与系统1.1 复习笔记1.2 课后习题详解1.3 名校考研真题详解第2章 连续系统的时域分析2.1 复习笔记2.2 课后习题详解2.3 名校考研真题详解第3章 离散系统的时域分析3.1 复习笔记3.2 课后习题详解3.3 名校考研真题详解第4章 傅里叶变换和系统的频域分析4.1 复习笔记4.2 课后习题详解4.3 名校考研真题详解第5章 连续系统的s域分析5.1 复习笔记5.2 课后习题详解5.3 名校考研真题详解第6章 离散系统的z域分析6.1 复习笔记6.2 课后习题详解6.3 名校考研真题详解第7章 系统函数7.1 复习笔记7.2 课后习题详解7.3 名校考研真题详解第8章 系统的状态变量分析8.1 复习笔记8.2 课后习题详解8.3 名校考研真题详解第1章 信号与系统1.1 复习笔记一、信号的基本概念与分类信号是载有信息的随时间变化的物理量或物理现象,其图像为信号的波形。

根据信号的不同特性,可对信号进行不同的分类:确定信号与随机信号;周期信号与非周期信号;连续时间信号与离散时间信号;实信号与复信号;能量信号与功率信号等。

二、信号的基本运算1加法和乘法f1(t)±f2(t)或f1(t)×f2(t)两信号f1(·)和f2(·)的相加、减、乘指同一时刻两信号之值对应相加、减、乘。

2.反转和平移(1)反转f(-t)f(-t)波形为f(t)波形以t=0为轴反转。

图1-1(2)平移f(t+t0)t0>0,f(t+t0)为f(t)波形在t轴上左移t0;t0<0,f(t+t0)为f(t)波形在t轴上右移t0。

图1-2平移的应用:在雷达系统中,雷达接收到的目标回波信号比发射信号延迟了时间t0,利用该延迟时间t0可以计算出目标与雷达之间的距离。

这里雷达接收到的目标回波信号就是延时信号。

3.尺度变换f(at)若a>1,则f(at)波形为f(t)的波形在时间轴上压缩为原来的;若0<a<1,则f(at)波形为f(t)的波形在时间轴上扩展为原来的;若a<0,则f(at)波形为f(t)的波形反转并压缩或展宽至。

随机过程第三版课后答案

随机过程第三版课后答案

随机过程第三版课后答案【篇一:随机过程习题答案】们的均值分别为mx和my,它们的自相关函数分别为rx(?)和ry(?)。

(1)求z(t)=x(t)y(t)的自相关函数;(2)求z(t)=x(t)+y(t)的自相关函数。

答案:(1)rz(?)?e?z(t??)z(t)??e?x(t??)y(t??)x(t)y(t)?利用x(t)和y(t)独立的性质:rz(?)?e?x(t??)x(t)?e?y(t??)y(t)???rx(?)ry(?)(2)rz(?)?e?z(t??)z(t)??e??x(t??)?y(t??)???x(t)?y(t)?? ?e?x(t??)x (t)?x(t??)y(t)?y(t??)x(t)?y(t??)y(t)?仍然利用x(t)和y(t)互相独立的性质:rz(?)?rx(?)?2mxmy?ry(?)2、一个rc低通滤波电路如下图所示。

假定输入是均值为0、双边功率谱密度函数为n0/2的高斯白噪声。

(1)求输出信号的自相关函数和功率谱密度函数;(2)求输出信号的一维概率密度函数。

电流:i(t)电压:y(t)答案:(1)该系统的系统函数为h(s)?y(s)1? x(s)1?rcs则频率响应为h(j?)?11?jrc?n02而输入信号x(t)的功率谱密度函数为px(j?)?该系统是一个线性移不变系统,所以输出y(t)的功率谱密度函数为:py(j?)?px(j?)h(j?)?2n0/21?rc?2对py(j?)求傅里叶反变换,就得到输出的自相关函数:1ry(?)?2?????py(j?)ej??1d??2?n0/2j?????1?rc?2ed??(2)线性系统输入为高斯随机过程,则输出也一定是高斯的。

因此,为了求输出的一维概率密度函数,仅需知道输出随机过程的均值和方差即可。

均值:已知输入均值mx=0,则输出均值my=mxh(0)=02方差:ry(0)?var(y)?my因为均值为0,所以方差var(y)?ry(0)?一维pdf:略12?n0/2???1?rc2?2d??3、理想带通滤波器的中心频率为fc、带宽为b,其在通带的频率增益为1。

线性系统理论-郑大钟(3-4章)

线性系统理论-郑大钟(3-4章)

1

2 n
n 1 n
t e n
1

0 1
21
n 1 2
(n 1)1 (n 1)(n 2) n 3 1 2! n2 (n 1)1 n 1 1 1
矩阵指数函数的算法 1:定义法
e At I At
1 2 2 A t 2!
只能得到eAt的数值结果,难以获得eAt解析表达式,但用计算机计算,具 有编程简单和算法迭代的优点。 2:特征值法
A P 1 AP
A PA P 1
e At Pe A t P 1
P为变换A为约当规范型的变换矩阵 1)若A的特征值为两两互异
如果系统矩阵A(t),B(t)的所有元在时间定义区间[t0,tα]上为时间t的连续实函数,输 入u(t)的所有元为时间t的连续实函数,那么状态方程的解x(t)存在且唯一。 从数学观点,上述条件可减弱为: ①系统矩阵A(t)的各个元aij(t)在时间区间[t0,tα]上为绝对可积,即:

t
t0
| aij (t ) | dt ,
-1
te1t 1t e e3t
0 2tet e 2t 1 3tet 2et 2e 2t 2 tet et e 2t
e At 0 I 1 A 2 A2 (2tet e 2t ) I (3tet 2et 2e 2t ) A (tet et e 2t ) A2 2et e 2t 0 e t e 2t 0 et 0 2et 2e 2t 0 et 2e 2t
s3 ( s 1)( s 2) 2 ( s 1)( s 2)

线性系统课后答案第4章

线性系统课后答案第4章

PROBLEMS OF CHAPTER 44.1 An oscillation can be generated by 一个振荡器可由下式描述:X X ⎥⎦⎤⎢⎣⎡-=0110 试证其解为:Show that its solution is )0(cos sin sin cos )(X t t t t t X ⎥⎦⎤⎢⎣⎡-=Proof: )0()0()(0110X eX e t X t At ⎥⎦⎤⎢⎣⎡-== ,the eigenvalues of A are j,-j;Let λββλ10)(+=h .If te h λλ=)(,then on the spectrum of A,thentj t e j j h t j t e j j h jt jt sin cos )(sin cos )(1010-==-=-+==+=-ββββ thenttsin cos 10==ββso ⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡=+=t t t t t t A I A h cos sin sin cos 0110sin 1001cos )(10ββ )0(cos sin sin cos )0()0()(0110X t t t t X eX e t X t At ⎥⎦⎤⎢⎣⎡-===⎥⎦⎤⎢⎣⎡- 4.2 Use two different methods to find the unit-step response of 用两种方法求下面系统的单位阶跃响应:U X X ⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡--=112210[]X Y 32=Answer: assuming the initial state is zero state.method1:we use (3.20) to compute⎥⎦⎤⎢⎣⎡-+++=⎥⎦⎤⎢⎣⎡+-=---s s s s s s A sI 212221221)(211then t At e t t tt tt A sI L e ---⎥⎦⎤⎢⎣⎡--+=-=sin cos sin 2sin sin cos ))((11 and )22(5)22(5)()()(221++=++=-=-s s s s s s s BU A sI C s Y then t e t y tsin 5)(-= for t>=0method2:ttt tt At tt A tt A te t e t e t e t e C Be e CA B d e C d Bu e C t y --------=⎥⎦⎤⎢⎣⎡---+⎥⎦⎤⎢⎣⎡--=-===⎰⎰sin 51sin 3cos 1sin 2cos 015.01)()()(010)(0)(τττττfor t>=04.3 Discretize the state equation in Problem 4.2 for T=1 and T=π.离散化习题4.3中的状态方程,T 分别取1和π Answer:][][][][][]1[0k DU k CX k Y k BU d e k X e k X TA AT +=⎪⎭⎫ ⎝⎛+=+⎰ααFor T=1,use matlab: [ab,bd]=c2d(a,b,1) ab =0.5083 0.3096 -0.6191 -0.1108 bd =1.0471 -0.1821[]][32][][1821.00471.1][1108.06191.03096.05083.0]1[k X k Y k U k X k X =⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡--=+for T=π,use matlab:[ab,bd]=c2d(a,b,3.1415926) ab =-0.0432 0.0000 -0.0000 -0.0432 bd =1.5648 -1.0432[]][32][][0432.15648.1][0432.0000432.0]1[k X k Y k U k X k X =⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡--=+ 4.4 Find the companion-form and modal-form equivalent equations of 求系统的等价友形和模式规范形。

《应用随机过程》-课程教学大纲

《应用随机过程》-课程教学大纲

《应用随机过程》课程教学大纲一、课程基本信息课程代码:16055502课程名称:应用随机过程英文名称:Applied Stochastic Processes课程类别:专业课学时:32学分: 2适用对象:财经类专业本科生考核方式:考试先修课程:微积分、线性代数、概率论二、课程简介中文简介紧抓课程改革核心环节,不断提升教学质量,将“课程思政”作为融合德育与智育的融合主渠道,是逐步实现“立德树人”的综合教育理念的前进方向。

《应用随机过程》是面向经济统计专业三年级学生开设的一门必修课,随机过程通常被视为概率论的动态部分,即研究的是随机现象的动态特征,着重对随时间和空间变化的随机现象提出各种不同的模型并研究其内在的性质与相互联系。

具有较强的理论性。

该学科在社会科学、自然科学、经济和管理等各个领域中都有广泛的应用,培养学生的科学精神,探索自然和人类的奥秘。

英文简介The course Applied Stochastic Processes is one of the compulsory courses for the junior undergraduates majoring in Economic Statistics,which is usually viewed as the dynamic part of probability theories. It focuses on the dynamic feature of stochastic phenomena and emphasizes modeling the stochastic phenomena varying with time and space .Moreover,it explores the inner property and relationship among various models and it is quite theoretical and widely used in social science,natural science,Economic and management science etc.三、课程性质与教学目的本课程是经济统计专业一门应用性很强的专业课。

精品文档-随机信号分析基础(梁红玉)-第5章

精品文档-随机信号分析基础(梁红玉)-第5章
(1) 输出信号Y(t)的功率谱与自相关函数; (2) Y(t)的一维概率密度函数; (3) P[Y(t)≥0]。 解 (1) 输入X(t)是平稳信号, 采用如下的频域分
yt
xt
ht
h
x tΒιβλιοθήκη dx h td
第五章 随机信号通过线性系统分析
显然, y(t)也是一个确定的时间函数。 对于随机信号
X(t)中的所有样本函数{xi(t)}(i=1, 2, …), 通过线性系统 后可得到另一个随机信号Y(t)所有的样本函数{yi(t)}(i=1, 2, …)。 其中
yi
t
yt
0
h
x t
d
t
x
h t
d
(5-5)
第五章 随机信号通过线性系统分析
若输入信号x(t)也是因果信号, 即当t<0时, 有x(t)=0, 上式可以写为
y
t
t
0
h
x
t
d
t
0
x
h
t
d
(5-6)
图5-3给出了线性时不变系统时域输入输出关系。
第五章 随机信号通过线性系统分析
图5-3 时域输入输出关系
(5-21)
若输入信号X(t)广义平稳, 且τ=|t2-t1|, 则式(5-
20)变为
RXY
h
RX
d
RX
h
(5-22)
第五章 随机信号通过线性系统分析
类似地, 式(5-21)变为
RYX(τ)=RX(τ)*h(-τ)
(5-23)
根据以上分析, 我们可以得到重要的结论: 若输入
信号X(t)是平稳的, 则线性时不变系统输出Y(t)也是平稳的,

《随机分析》课件

《随机分析》课件

02
概率空间与随机变量
概率空间
01
02
03
样本空间
定义为一个包含所有可能 结果的集合,表示试验的 所有可能结果。
事件
样本空间中的某些子集, 表示试验中可能出现的结 果。
概率
用于描述事件发生的可能 性大小的数值,满足非负 性、规范性、可加性等性 质。
随机变量的定义与性质
定义
随机变量是定义在样本空间上的一个 实值函数,表示试验结果的数值特征 。
随机过程的独立性与平稳性
独立性
如果两个随机过程相互独立,则一个随 机过程的输出不会影响另一个随机过程 的输出。
VS
平稳性
如果一个随机过程的统计特性不随时间推 移而改变,则称该随机过程是平稳的。
04
马尔科夫链பைடு நூலகம்
马尔科夫链的定义与性质
定义
马尔科夫链是一个随机过程,其中每个状态只依赖于前一个状态,具有记忆性。
计算方法
极限分布可以通过求解转移概率矩阵的特征 向量得到,也可以通过迭代法或直接计算法 进行计算。在某些特殊情况下,如齐次马尔 科夫链,极限分布可以通过简单公式求解。
05
随机分析的应用实例
蒙特卡洛模拟
蒙特卡洛模拟是一种基于概率统计的数值模拟方法,通过随机抽样和统 计方法来求解数学、物理、工程等领域的问题。
随机分析的基本概念
随机变量
可以取不同值的变量,其取值 具有不确定性。
期望值
随机变量的平均值,用于描述 随机变量的中心趋势。
概率
描述随机事件发生的可能性, 通常用实数表示。
分布函数
描述随机变量取值的概率分布 情况,通常用概率密度函数或 累积分布函数表示。
方差

随机信号分析报告实验:随机过程通过线性系统地分析报告

随机信号分析报告实验:随机过程通过线性系统地分析报告

实验三 随机过程通过线性系统的分析实验目的1. 理解和分析白噪声通过线性系统后输出的特性。

2. 学习和掌握随机过程通过线性系统后的特性,验证随机过程的正态化问题。

实验原理1.白噪声通过线性系统设连续线性系统的传递函数为)(ωH 或)(s H ,输入白噪声的功率谱密度为2)(0N S X =ω,那么系统输出的功率谱密度为2)()(02N H S Y ⋅=ωω (3.1) 输出自相关函数为⎰∞∞-=ωωπτωτd e H N R j Y 20)(4)( (3.2)输出相关系数为)0()()(Y Y Y R R ττγ=(3.3) 输出相关时间为⎰∞=00)(ττγτd Y (3.4)输出平均功率为[]⎰∞=202)(2)(ωωπd H N t Y E (3.5)上述式子表明,若输入端是具有均匀谱的白噪声,则输出端随机信号的功率谱主要由系统的幅频特性)(ωH 决定,不再是常数。

2.等效噪声带宽在实际中,常常用一个理想系统等效代替实际系统的)(ωH ,因此引入了等效噪声带宽的概念,他被定义为理想系统的带宽。

等效的原则是,理想系统与实际系统在同一白噪声的激励下,两个系统的输出平均功率相等,理想系统的增益等于实际系统的最大增益。

实际系统的等效噪声带宽为⎰∞=∆022max)()(1ωωωωd H H e (3.6)或⎰∞∞--=∆j j e ds s H s H H j )()()(212maxωω (3.7)3.线性系统输出端随机过程的概率分布 (1)正态随机过程通过线性系统若线性系统输入为正态过程,则该系统输出仍为正态过程。

(2)随机过程的正态化随机过程的正态化指的是,非正态随机过程通过线性系统后变换为正态过程。

任意分布的白噪声通过线性系统后输出是服从正态分布的;宽带噪声通过窄带系统,输出近似服从正态分布。

实验内容设白噪声通过图3.1所示的RC 电路,分析输出的统计特性。

图3.1 RC 电路(1)试推导系统输出的功率谱密度、相关函数、相关时间和系统的等效噪声带宽。

第5章_随机过程通过线性系统_

第5章_随机过程通过线性系统_
G YX ( ω ) = G X ( ω ) H ( ω )

∫ h(τ )x ( t τ , ξ


i
)d τ
∫ h(τ )x ( t τ , ξ
0
i
)d τ
也只能是随机过程的一个样本且有界。 即,系统输出 y(t,ξi ) 也只能是随机过程的一个样本且有界。 其无法代表系统输出随机过程的全体。 其无法代表系统输出随机过程的全体。只有当每个输入样本
x(t , ξ ) 都是有界的,才有 都是有界的,
其中, 称为系统的功率传输函数 所以, 系统的功率传输函数。 其中,|H(ω)|2称为系统的功率传输函数。所以, 系统的输出功率=系统的输入功率 系统的输入功率× 系统的输出功率 系统的输入功率× |H(ω)| 2。
系统输出Y(t)的自相关函数 的自相关函数 系统输出
1 +∞ RY (τ ) = GY (ω )e jωτ dω 2π ∫ ∞ 1 +∞ 2 H (ω ) G X (ω )e jωτ dω = 2π ∫ ∞
x(t ) X (ω) h(t ) H (ω) y(t ) = x(t ) h(t ) Y (ω) = X (ω) H (ω)
问题:随机信号通过线性系统情况如何呢?其输入、 问题:随机信号通过线性系统情况如何呢?其输入、输出以 及与系统函数间的关系如何? 及与系统函数间的关系如何?
随机信号——函数值无法用数学式或列表形式确切的表述 。 函数值无法用数学式或列表形式确切的表述。 随机信号 函数值无法用数学式或列表形式确切的表述 其原因是: 其原因是: 随机性,即任何时刻点上的取值不能预先确定。 1.随机性,即任何时刻点上的取值不能预先确定。因为 随机过程( 信号) 随时间或依时序组成的每个时间点上 随机过程 ( 信号 ) 是 随时间或依时序组成的 每个时间点上 随机变量的集合 的集合, 的 随机变量 的集合 , 所以随机信号每个时间点上对应的函 数值都是一个随机变量 。 即便通过一个具体的实验所得到 数值都是一个 随机变量。 随机变量 的确定函数 也只能是该随机过程的一个样本函数 函数, x ( 函数 的确定函数,也只能是该随机过程的一个样本t , ξ i ) , 它也无法表征整个随机过程的行为 它也无法表征整个随机过程的行为 。 波及性, 2.波及性,随机过程可以认为是某个随机系统中某一个 端口的输出, 端口的输出 , 各时间点上随机变量的取值往往具有前后的 波及影响, 既不同时间点上随机变量间的关联性。 波及影响 , 既不同时间点上随机变量间的关联性 。 这种波 及或关联性是由随机系统的各种惯性决定的。 惯性决定的 及或关联性是由随机系统的各种惯性决定的。

随机信号分析(常建平_李海林版)课后习题答案

随机信号分析(常建平_李海林版)课后习题答案

由于百度文库格式转换的原因,不能整理在一个word 文档里面,下面是三四章的答案。

给大家造成的不便,敬请谅解随机信号分析 第三章习题答案、随机过程 X(t)=A+cos(t+B),其中A 是均值为2,方差为1的高斯变量,B 是(0,2π)上均匀分布的随机变量,且A 和B 独立。

求(1)证明X(t)是平稳过程。

(2)X(t)是各态历经过程吗?给出理由。

(3)画出该随机过程的一个样本函数。

(1)(2)3-1 已知平稳过程()X t 的功率谱密度为232()(16)X G ωω=+,求:①该过程的平均功率?②ω取值在(4,4)-范围内的平均功率?解[][]()[]2()cos 211,cos 5cos 22X E X t E A E t B A B R t t EA τττ=++=⎡⎤⎣⎦+=+=+与相互独立()()()21521()lim2TT T E X t X t X t X t dt AT-→∞⎡⎤=<∞⇒⎣⎦==⎰是平稳过程()()[]()()4112211222222242'4(1)24()()444(0)41132(1)224414414(2)121tan 13224X X XE X t G d RFG F e R G d d d arc x x ττωωωωωππωωπωωπωπωω∞----∞∞-∞-∞∞--∞∞⎡⎤⨯⎡⎤==⋅=⋅⎢⎥+⎣⎦====+==⎛⎫+ ⎪==⎣⎦=++⎝⎭=⎰⎰⎰⎰⎰P P P P 方法一()方:时域法取值范围为法二-4,4内(频域的平均率法功)2d ω=3-7如图3.10所示,系统的输入()X t 为平稳过程,系统的输出为()()()Y t X t X t T =--。

证明:输出()Y t 的功率谱密度为()2()(1cos )Y X G G T ωωω=-[][]:()[()()]{()()}{()(}2()()()()()()()()2(()[)()(()()]()())Y X X X Y X X Y Y Y X X X Y Y j T j T R E Y t Y t E X t X t T X t X t T R R R R E Y t Y t G F R T T e e G R G R G G G G ωωτττττωτωττωττττωωωω-⇒⇒=+=--+-+-=--=+=-⇔⇔∴=-+-=已知平稳过程的表达式利用定义求利用傅解系统输入输出立叶平变稳换的延时特性2()2()22()(1cos )j T j T X X X e e G G G T ωωωωωω-⎡⎤+-⎢⎥⎣⎦=-3-9 已知平稳过程()X t 和()Y t 相互独立,它们的均值至少有一个为零,功率谱密度分别为 216()16X G ωω=+22()16Y G ωωω=+令新的随机过程()()()()()()Z t X t Y t V t X t Y t =+⎧⎨=-⎩ ①证明()X t 和()Y t 联合平稳; ②求()Z t 的功率谱密度()Z G ω ③求()X t 和()Y t 的互谱密度()XY G ω ④求()X t 和()Z t 的互相关函数()XZ R τ ⑤求()V t 和()Z t 的互相关函数()VZ R τ 解:()()4124(1)()()()2[()]()0[()]0()2[()]0()()(,)[()][()]0()()(2)()()()()[()()][()()][()X X X Y XY Z X t Y t R F G e E X t R E X t R eE Y t X t Y t R t t E X t E Y t X t Y t Z t X t Y t R E Z t Z t E X t Y t X t τττωτδττττττ---==∞=⇒=⎡⎤⎣⎦=-⇒=∴+=⋅+=⇒=+=+=++、都平稳=与与联合独平立稳[][]{}2214||()]()()()()()0()()()16()()()116(3)()0()0(4)()[()()]()()()()()()[()]2(5)(X YX XY Y XY Z X Y Z X Y XY XY XZ X XY X X VZ Y t R R R R R R R R G G G R G R E X t Z t E X t X t Y t R R R F G e R ττττττττττωωωωωτωτττττττωτ--++=+++=∴=++∴=+==+=→==+=+++=+==={}4||)[()()][()()][()()]()()()4X Y E V t Z t E X t Y t X t Y t R R e ττττττδτ-=+=-+++=-=+-3-11 已知可微平稳过程()X t 的自相关函数为2()2exp[]X R ττ=-,其导数为()()Y t X t '=。

随机信号 清华大学《现代信号处理》讲义 -张贤达

随机信号 清华大学《现代信号处理》讲义 -张贤达
最优化: min Em = min
i = m +1

M
q iH R x q i
约束条件:q iH q i = 1 拉格朗日乘子法: 代价函数 J (q i ) =
i = m +1

M
q R xqi +
H i
i = m +1

M
λi (1 q iH q i )
J (q i ) = R x q i λi q i = 0 * q i 特征值λi 和特征向量u i
课程特点及考核
课程特点 现代信号处理的主要理论、方法和应用 “与前沿接轨” 数学知识(矩阵分析、数理统计、最优化) 创新能力的培养 考核方式 习题(11%) 计算机仿真(实验3次,24%) 考试(65%)
第一章 随机信号
本章主要介绍随机信号的基本概念: 本章主要介绍随机信号的基本概念:相关 函数、功率谱密度、两个信号的正交、 函数、功率谱密度、两个信号的正交、统计不 相关和统计独立、 相关和统计独立、相干信号以及它们的几个典 型应用。 型应用。
R x q i = λi q i
Lagrange乘子λi 和基向量必须分别选取为自相关矩阵R x的
正交的两个典型应用( 正交的两个典型应用(续)
离散K-L变换 x = ∑ wi u i
i =1 m
若R x只有K 个大特征值,其余M K 个特征值可忽略,则 x = ∑ wi u i
i =1 K
正交的几何解释
1. 常数向量的正交(常数向量:元素为常量的向量)
夹角: cos θ = x, y x, x xH y = x y y, y
正交:
x, y = x H y = 0
两常数向量夹角为90°

线性系统理论-郑大钟(第二版)(黄振中)

线性系统理论-郑大钟(第二版)(黄振中)

g(s)
Y (s) U (s)
bm s m bm1s m1 b1s1 s n an1s n1 a1s
b0 a0
其对应的状态空间描述可按如下两类情况导出
(1)m=n,即系统为真情形
x1 x2 x2 x3
0 1 0 0 0
x 0
0
0 x u
0
动态系统的分类
从机制的角度 1.连续变量动态系统CVDS 从特性的角度 1.线性系统
2.离散事件动态系统DEDS
2.非线性系统
从作用时间 1.连续时间系统 连续系统按其参数 1.集中参数系统: 属有穷维系统 类型的角度 2.离散时间系统 的空间分布类型 2.分布参数系统: 属于无穷维系统
本书中仅限于研究线性系统和集中参数系统
y2
up
yq
(1) 系统的外部描述
u1
y1
外部描述常被称作为输出—输入描述
u2
x1, x2 ,, xn
y2
例如.对SISO线性定常系统:时间域的外部描述: u p
yq
y(n) an1 y(n1) a1 y(1) a0 y bn1u(n1) b1u (1) b0u
复频率域描述即传递函数描述
线性系统
线性系统理论的研究对象为线性系统,其模型方程具有线性属性即满足叠加原理。
若表征系统的数学描述为L 系统模型
L (c1u1 c2u 2 ) c1L (u1) c2L (u 2 )
系统模型是对系统或其部分属性的一个简化描述
①系统模型的作用:仿真、预测预报、综合和设计控制器 ②模型类型的多样性:用数学模型描述、用文字、图表、数据或计算机程序表示 ③数学模型的基本性:着重研究可用数学模型描述的一类系统 ④建立数学模型的途径:解析、辨识 ⑤系统建模的准则:折衷
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(3)时不变线性系统的传输函数
由 y(t) h(t) x(t) 有:
Y () H () X ()
X () 、Y () 、 H () 分别为 x(t) 、 y(t) 、 h(t) 的付里叶变换。
称 H () 为系统的传输函数。
4.2 随机过程通过线性系统
基本假设:系统输入 X (t) 是随机过程,系统输出Y (t) 也是随机过程。
性。
4.1 线性系统的基本理论
1.系统的物理表示 系统的物理示意图如图 1。 2.线性系统
x1 (t) 、 x2 (t) 是系统的两个输入,若:
L[1x1 (t) 2 x2 (t)] 1L[x1 (t)] 2 L[x2 (t)]
则称系统 L[] 为线性系统。
3.时不变系统

这一表达在形式上具有方便性,但在计算上较困难。 2、 输出均值
随机过程难以把握,应用的重点是随机过程的均值与相关。
定理: mY (t) h45
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,通系电1,力过根保管据护线生高0不产中仅工资2艺料22高试2可中卷以资配解料置决试技吊卷术顶要是层求指配,机置对组不电在规气进范设行高备继中进电资行保料空护试载高卷与中问带资题负料2荷试2,下卷而高总且中体可资配保料置障试时2卷,32调需3各控要类试在管验最路;大习对限题设度到备内位进来。行确在调保管整机路使组敷其高设在中过正资程常料1工试中况卷,下安要与全加过,强度并看工且25作尽52下可22都能护可地1关以缩于正小管常故路工障高作高中;中资对资料于料试继试卷电卷连保破接护坏管进范口行围处整,理核或高对者中定对资值某料,些试审异卷核常弯与高扁校中度对资固图料定纸试盒,卷位编工置写况.复进保杂行护设自层备动防与处腐装理跨置,接高尤地中其线资要弯料避曲试免半卷错径调误标试高方中等案资,,料要编试求5写、卷技重电保术要气护交设设装底备备置。4高调、动管中试电作线资高气,敷料中课并设3试资件且、技卷料中拒管术试试调绝路中验卷试动敷包方技作设含案术,技线以来术槽及避、系免管统不架启必等动要多方高项案中方;资式对料,整试为套卷解启突决动然高过停中程机语中。文高因电中此气资,课料电件试力中卷高管电中壁气资薄设料、备试接进卷口行保不调护严试装等工置问作调题并试,且技合进术理行,利过要用关求管运电线行力敷高保设中护技资装术料置。试做线卷到缆技准敷术确设指灵原导活则。。:对对在于于分调差线试动盒过保处程护,中装当高置不中高同资中电料资压试料回卷试路技卷交术调叉问试时题技,,术应作是采为指用调发金试电属人机隔员一板,变进需压行要器隔在组开事在处前发理掌生;握内同图部一纸故线资障槽料时内、,设需强备要电制进回造行路厂外须家部同出电时具源切高高断中中习资资题料料电试试源卷卷,试切线验除缆报从敷告而设与采完相用毕关高,技中要术资进资料行料试检,卷查并主和且要检了保测解护处现装理场置。设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
第 4 章 随机过程通过线性系统分析
引言:信号与系统的传统理论方法的基础是卷积运算。如图,
输入 x(t) L[] 输出 y(t)
图 1:系统的物理示意图
x(t) 是系统的输入, y(t) 是系统的输出, h(t) 是系统的冲激响应函数
4.时不变线性系统
(1)线性时不变系统的冲激响应 对于时不变线性系统,有:
h(t c) L[ (t c)]
(2)时不变系统的数学运算
x(t) 是系统的输入, y(t) 是系统的输出, h(t) 是系统的冲激响应函数。对于时不变
系统, x(t) 、 y(t) 、 h(t) 三者的关系为: y(t) h( ) x(t )d h(t) x(t)
对于常数 c , t c 是一个时移(时延)。若 y(t c) L[x(t c)]
称系统 L[] 为时不变系统。
44
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,通系电1,力过根保管据护线生高0不产中仅工资2艺料22高试2可中卷以资配解料置决试技吊卷术顶要是层求指配,机置对组不电在规气进范设行高备继中进电资行保料空护试载高卷与中问带资题负料2荷试2,下卷而高总且中体可资配保料置障试时2卷,32调需3各控要类试在管验最路;大习对限题设度到备内位进来。行确在调保管整机路使组敷其高设在中过正资程常料1工试中况卷,下安要与全加过,强度并看工且25作尽52下可22都能护可地1关以缩于正小管常故路工障高作高中;中资对资料于料试继试卷电卷连保破接护坏管进范口行围处整,理核或高对者中定对资值某料,些试审异卷核常弯与高扁校中度对资固图料定纸试盒,卷位编工置写况.复进保杂行护设自层备动防与处腐装理跨置,接高尤地中其线资要弯料避曲试免半卷错径调误标试高方中等案资,,料要编试求5写、卷技重电保术要气护交设设装底备备置。4高调、动管中试电作线资高气,敷料中课并设3试资件且、技卷料中拒管术试试调绝路中验卷试动敷包方技作设含案术,技线以来术槽及避、系免管统不架启必等动要多方高项案中方;资式对料,整试为套卷解启突决动然高过停中程机语中。文高因电中此气资,课料电件试力中卷高管电中壁气资薄设料、备试接进卷口行保不调护严试装等工置问作调题并试,且技合进术理行,利过要用关求管运电线行力敷高保设中护技资装术料置。试做线卷到缆技准敷术确设指灵原导活则。。:对对在于于分调差线试动盒过保处程护,中装当高置不中高同资中电料资压试料回卷试路技卷交术调叉问试时题技,,术应作是采为指用调发金试电属人机隔员一板,变进需压行要器隔在组开事在处前发理掌生;握内同图部一纸故线资障槽料时内、,设需强备要电制进回造行路厂外须家部同出电时具源切高高断中中习资资题料料电试试源卷卷,试切线验除缆报从敷告而设与采完相用毕关高,技中要术资进资料行料试检,卷查并主和且要检了保测解护处现装理场置。设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
1、 系统的形式表达
对于系统输入随机过程 X (t) 的一个样本函数 x(t) ,有 y(t) h( ) x(t )d

y(t) 是系统输出随机过程Y (t) 的一个样本函数。
由于 x(t) 、 y(t) 具有随机性,我们可以用随机过程的积分形式来表达系统的关系: Y (t) h( ) X (t )d
其中

(t)

0
对于线性系统,系统的数学运算为:
t0
,为冲激函数。
t0
在卷积运算中, x(t) 、 y(t) 、 h(t) 是函数,是确定性的信号。
h(t) L[ (t)]
y(t) h(t) x(t)
问题:在实际工程中,输入 x(t) 与输出 y(t) 是随机过程的一个样本函数,具有不确定
相关文档
最新文档