有机波谱分析全套课件(新)
合集下载
《有机波谱分析》课件
有机波谱分析
1
主要内容:
有机波谱分析 ①红外光谱 ②紫外光谱 ③核磁共振谱(包括1HNMR和13CNMR) ④质谱(包括色质联谱) 。
2
第一章 红外光谱
3
1.1 概述
•
红外光谱具有测定方法简便、迅速、所需
试样量少,得到的信息量大的优点,而且仪器
价格比核磁共振谱和质谱便宜,因此红外光谱
在结构分析中得到广泛的应用。
根据存在的化学键和官能团以及其他结构 信息,通过与标准谱图的对比推断分子结构, 进行定性分析。
5
3.定量分析 红外光谱适用于一些异构体和特殊体系的
定量分析,它们的红外光谱尤其是指纹区的光 谱各有特征,因此可利用各自特征吸收峰的强 度定量。 4.鉴定无机化合物
不要认为红外光谱只能鉴定有机物,它也是 鉴定无机物很好的手段之一,例如络合物的研 究,地矿科学的研究也普遍采用红外光谱。
双原子分子中原子是通过化学键联结起来 的,可以把两个原子看成是两个小球,把化学键 看作质量可以忽略不计的弹簧,如图1-3所示。它 们在平衡位置附近作简谐振动。
图1—3 双原子分子振动示意图
A—平衡状态;B—伸展状态
16
根据虎克定律双原子分子的频率公式为:
基团和化学键的特征频率取决于化学键 的强弱和化学键所连接的两个原子的质量。
• 中红外区(波长范围2.5-25μm)(4000-400cm-1 )
分子中原子振动的基频谱带在此区。所谓基频是分子从 基态跃迁到第一激发态的共振吸收频率。此区适用于有机化 合物的结构分析和定量分析。
• 远红外区(波长范围25—1000μm)(400-10cm-1 )
主要是分子的骨架弯曲振动及无机化合物重原子之间的 振动,金属有机化合物、金属络合物的伸缩和变角振动等, 主要用于研究分子结构及气体的纯转动光谱。各类化合物在 远红外区的吸收规律不如中红外区成熟。
1
主要内容:
有机波谱分析 ①红外光谱 ②紫外光谱 ③核磁共振谱(包括1HNMR和13CNMR) ④质谱(包括色质联谱) 。
2
第一章 红外光谱
3
1.1 概述
•
红外光谱具有测定方法简便、迅速、所需
试样量少,得到的信息量大的优点,而且仪器
价格比核磁共振谱和质谱便宜,因此红外光谱
在结构分析中得到广泛的应用。
根据存在的化学键和官能团以及其他结构 信息,通过与标准谱图的对比推断分子结构, 进行定性分析。
5
3.定量分析 红外光谱适用于一些异构体和特殊体系的
定量分析,它们的红外光谱尤其是指纹区的光 谱各有特征,因此可利用各自特征吸收峰的强 度定量。 4.鉴定无机化合物
不要认为红外光谱只能鉴定有机物,它也是 鉴定无机物很好的手段之一,例如络合物的研 究,地矿科学的研究也普遍采用红外光谱。
双原子分子中原子是通过化学键联结起来 的,可以把两个原子看成是两个小球,把化学键 看作质量可以忽略不计的弹簧,如图1-3所示。它 们在平衡位置附近作简谐振动。
图1—3 双原子分子振动示意图
A—平衡状态;B—伸展状态
16
根据虎克定律双原子分子的频率公式为:
基团和化学键的特征频率取决于化学键 的强弱和化学键所连接的两个原子的质量。
• 中红外区(波长范围2.5-25μm)(4000-400cm-1 )
分子中原子振动的基频谱带在此区。所谓基频是分子从 基态跃迁到第一激发态的共振吸收频率。此区适用于有机化 合物的结构分析和定量分析。
• 远红外区(波长范围25—1000μm)(400-10cm-1 )
主要是分子的骨架弯曲振动及无机化合物重原子之间的 振动,金属有机化合物、金属络合物的伸缩和变角振动等, 主要用于研究分子结构及气体的纯转动光谱。各类化合物在 远红外区的吸收规律不如中红外区成熟。
有机化合物波谱分析_ppt课件
二. 弯曲振动(变形振动,变角振动)
弯曲振动:指键角发生周期性变化,而键长不变的振动。
包括面内弯曲振动、面外弯曲和变形振动。
面内弯曲振动β:包括剪式振动和面内摇摆。
剪式振动δ
面内摇摆ρ
面外弯曲γ:包括面外摇摆和蜷曲。
面外摇摆ω
蜷曲τ
变形振动δ :包括对称变形振动和不对称变形振动。
对称的变形振动δs
可 见 光 红 外 光
波 长 引 起 分 子 振 动 和 转 动 状 态 变 化 引 起 单 电 子 自 旋 改 变 长
波 谱 区
微 波
无 线 电 波引 起 磁 性 核 的 自 旋 改 变
有机化学四大谱
1. 红外光谱 (IR) (Infrared Spectroscopy) 2. 紫外光谱 (UV) (Ultraviolet Spectroscopy) 3. 核磁共振谱 (NMR)
鉴定化合物结构:根据红外吸收曲线的峰位、峰强以及峰
形判断化合物的官能团,确定化合物类别。 红外光谱产生必要条件
分子在振、转过程中的净偶极矩的变化不为0,即分子产生
红外活性振动过程中: Δμ ≠ 0
8.1.1 分子的振动和红外光谱
8.1.1.1 振动方程式
1 v = 振 动 2 π
√ √
1 1 1 K = + K m m 2 μ 2 1 π
不同能量的电磁波能引起物质不同运动状态的变化,促 使一定能态的基态跃迁至激发态,在连续的电磁波谱上出现 吸收信号。
高 能 辐 射 区
γ射 线 x射 线 紫 外 光
引 起 原 子 核 的 裂 变 使 内 层 电 子 逸 出 轨 道 引 起 原 子 和 分 子 外 层 价 电 子 跃 迁
有机化学有机化合物的波谱分析PPT课件
红外光谱是以波长λ或波数σ第为5横页/坐共8标0页,表示吸收峰的峰位;以透射比 T(以百分数表示,又称为透光率或透过率)为纵坐标,表示吸收强度。
5
7.2.1分子化学键的振动和红外光谱
1.振动方程式
可把双原子分子的振动近似地看成用弹簧连接着的两个小球的 简谐振动。根据Hooke定律可得其振动频率为:
分子化学键的振动是量子化的,其能级为:
式中: υ为振动量子数(0,1,2,…);h为Planck常量;ν振为化学 键的振动频率。
第8页/共80页
8
分子由基态υ =0跃迁到激发态υ =1时吸收光的能量为:
第9页/共80页
9
分子振动频率习惯以σ表示,由(7–2)式、(7–3)式和(7–5)式得:
红外吸收峰的峰位(σ)取决于键的力常数,以及键两端所连原子的 质量m1和m2,即取决于化合物分子的结构。这是红外光谱用来测 定化合物结构的理论依据。
n≥4在 725~720 处有吸 收。
32
1300 cm-1以下区域的光谱:715 cm-1处的面外弯曲振动吸收,表明 烯烃为顺式构型。
综合以上分析,有双键吸收,无三键及甲基吸收,另一不饱 和≥4在 725~720 处有吸 收。
33
7.3核磁共振谱(NMR)
这样对测定有机化合物结构毫无意义。但实验证明,在相同频 率照射下,化学环境不同的质子在不同的磁场强度处出现吸收峰。
第20页/共80页
20
3.鉴定已知化合物
用被测物的标准试样与被测物在相同条件下测定红外光谱,若 吸收峰位置、强度和形状完全相同,可认为是同一种物质(对映异 构体除外)。若无标准试样而有标准谱图,可查阅标准谱图。
查阅时应注意被测物与标准谱图所用试样的状态、制样方法、 所用仪器的分辨率等是否相同。
5
7.2.1分子化学键的振动和红外光谱
1.振动方程式
可把双原子分子的振动近似地看成用弹簧连接着的两个小球的 简谐振动。根据Hooke定律可得其振动频率为:
分子化学键的振动是量子化的,其能级为:
式中: υ为振动量子数(0,1,2,…);h为Planck常量;ν振为化学 键的振动频率。
第8页/共80页
8
分子由基态υ =0跃迁到激发态υ =1时吸收光的能量为:
第9页/共80页
9
分子振动频率习惯以σ表示,由(7–2)式、(7–3)式和(7–5)式得:
红外吸收峰的峰位(σ)取决于键的力常数,以及键两端所连原子的 质量m1和m2,即取决于化合物分子的结构。这是红外光谱用来测 定化合物结构的理论依据。
n≥4在 725~720 处有吸 收。
32
1300 cm-1以下区域的光谱:715 cm-1处的面外弯曲振动吸收,表明 烯烃为顺式构型。
综合以上分析,有双键吸收,无三键及甲基吸收,另一不饱 和≥4在 725~720 处有吸 收。
33
7.3核磁共振谱(NMR)
这样对测定有机化合物结构毫无意义。但实验证明,在相同频 率照射下,化学环境不同的质子在不同的磁场强度处出现吸收峰。
第20页/共80页
20
3.鉴定已知化合物
用被测物的标准试样与被测物在相同条件下测定红外光谱,若 吸收峰位置、强度和形状完全相同,可认为是同一种物质(对映异 构体除外)。若无标准试样而有标准谱图,可查阅标准谱图。
查阅时应注意被测物与标准谱图所用试样的状态、制样方法、 所用仪器的分辨率等是否相同。
《有机波谱分析》PPT课件
不对称伸缩振动(vas) 精选课件ppt (2926 cm-1)
5
(2)弯曲振动:
+
+
+ +
C
C
C
C
剪式振动(δs)
面内摇摆振动(ρ) 面外摇摆振动(ω)
扭式振动(τ)
面内
面外 弯曲振动只改变键角,不改变键长
值得注意的是:不是所有的振动都能引起红外吸收,
只有偶极矩(μ)发生变化的,才能有红外吸收。
X-H 伸缩振动吸收范围。X代表O、N、C、S, 对应醇、酚、羧酸、胺、亚胺、炔烃、烯烃、芳烃 及饱和烃类的 O-H、N-H、C-H 伸缩振动。
1. O-H 醇与酚:游离态--3640~3610cm-1,峰形尖锐。
缔合--精3选30课0件cpmpt -1附近,峰形宽而钝 11
羧酸:3300~2500cm-1,中心约3000cm-1,谱带宽
2 . N-H
胺类: 游离——3500~3300cm-1
缔合——吸收位置降低约100cm-1 伯胺:3500,3400cm-1,(吸收强度比羟基弱) 仲胺:3400cm-1(吸收峰比羟基要尖锐) 叔胺:无吸收
酰胺:伯酰胺:3350,3150cm-1 附近出现双峰
仲酰胺:3200cm-1 附近出现一条谱带
第三章 红外光谱
3.1 基本原理
3.1.1波长和波数
电磁波的波长( )、频率( v)、能量(E)之间的关系:
精选课件ppt
1
3.1.2 近红外、中红外和远红外
波段名称 近红外 中红外 远红外
波长 μ 0.75—2.5 2.5-25
25-1000
波数(cm-1) 13300-4000 4000-400
有机波谱知识课件
有机波谱知识课件
• 分子对紫外光或可见光的吸收是基于分子的价电 子在不同电子能级上的跃迁。
• 紫外吸收光谱又称为电子光谱。但和原子光谱 不同,紫外光谱并不是一个纯的电子光谱,在电
子跃迁过程中同时伴随有振动和转动能级的跃迁。
•
因此,紫外光谱并非原子光谱式的线光谱,
而是由多个吸收波长极为相近的吸收线组成的带
• 非共轭的不饱和化合物 • 非共轭的不饱和化合物中所含的不饱键虽可产
生跃迁,但相应的吸收带仍在远紫外区,不能被 应用于结构分析。
有机波谱知识课件
• 含共轭体系的脂肪族化合物 • 当分子中存在共轭体系时,成键轨道和
反键轨道间的能级差变小,吸收波长总是 高于200nm,且吸收强度也增强。这是紫外 吸收光谱法研究的重点。
键轨道间的跃迁,因轨道间的能级差最大,所需 的能量最高,相应的吸收峰波长较短,一般为 150-160 nm,即在真空紫外(远紫外光)区。
有机波谱知识课件
• π→π*跃迁是不饱和键中的π电子吸收能 量跃迁到π*反键轨道的跃迁,其所需能量 较要小,吸收峰波长一般为160-180nm,仍 在远紫外光区。
动过程中必须有瞬间偶极矩的改变。 • 对称分子:没有偶极矩,辐射不能引起共振,
无红外活性。 如:N2、O2、Cl2 等。 非对称分子:有偶极矩,红外活性。
• 分子的振动可近似看为一些用弹簧连接的小球 的运动。
有机波谱知识课件
• 任意两个相邻的能级间的能量差为: •
• •
• K化学键的力常数,与键能和键长有关, m为双原子的折 合质量 m =m1m2/(m1+m2)
有机波谱知识课件
• F. X-H面内弯曲振动及X-Y伸缩振动区(14751000cm-1)
• 分子对紫外光或可见光的吸收是基于分子的价电 子在不同电子能级上的跃迁。
• 紫外吸收光谱又称为电子光谱。但和原子光谱 不同,紫外光谱并不是一个纯的电子光谱,在电
子跃迁过程中同时伴随有振动和转动能级的跃迁。
•
因此,紫外光谱并非原子光谱式的线光谱,
而是由多个吸收波长极为相近的吸收线组成的带
• 非共轭的不饱和化合物 • 非共轭的不饱和化合物中所含的不饱键虽可产
生跃迁,但相应的吸收带仍在远紫外区,不能被 应用于结构分析。
有机波谱知识课件
• 含共轭体系的脂肪族化合物 • 当分子中存在共轭体系时,成键轨道和
反键轨道间的能级差变小,吸收波长总是 高于200nm,且吸收强度也增强。这是紫外 吸收光谱法研究的重点。
键轨道间的跃迁,因轨道间的能级差最大,所需 的能量最高,相应的吸收峰波长较短,一般为 150-160 nm,即在真空紫外(远紫外光)区。
有机波谱知识课件
• π→π*跃迁是不饱和键中的π电子吸收能 量跃迁到π*反键轨道的跃迁,其所需能量 较要小,吸收峰波长一般为160-180nm,仍 在远紫外光区。
动过程中必须有瞬间偶极矩的改变。 • 对称分子:没有偶极矩,辐射不能引起共振,
无红外活性。 如:N2、O2、Cl2 等。 非对称分子:有偶极矩,红外活性。
• 分子的振动可近似看为一些用弹簧连接的小球 的运动。
有机波谱知识课件
• 任意两个相邻的能级间的能量差为: •
• •
• K化学键的力常数,与键能和键长有关, m为双原子的折 合质量 m =m1m2/(m1+m2)
有机波谱知识课件
• F. X-H面内弯曲振动及X-Y伸缩振动区(14751000cm-1)
《有机波谱分析》课件
紫外-可见光谱分析
紫外-可见光谱原理
解释紫外-可见光谱的原理和 作用。
紫外-可见光谱仪的 组成和使用
详细介绍紫外-可见光谱仪的 构成和正确使用方法。
吸收峰的解析和比 较光法、内标法、 工作曲线法的应用
教授如何分析紫外-可见光谱 图中的吸收峰,并介绍比较 光法、内标法和工作曲线法 的应用。
质谱分析
《有机波谱分析》PPT课件
基本概念介绍
波谱分析的定义、有机化合物的基本特点、波长、频率和波数的关系。
红外光谱分析
1
红外光谱原理
介绍红外光谱分析的原理和应用。
红外光谱仪的组成和使用
2
详细解释红外光谱仪的组成,以及如
何正确使用。
3
光谱峰的解析和峰谷法、拔山
法的应用
教授如何分析红外光谱图中的峰和谷, 并介绍峰谷法和拔山法的应用。
1 质谱分析的原理
解释质谱分析的原理和作用。
2 质谱仪的组成和使用
详细介绍质谱仪的构成和正确使用方法。
3 质谱图的解析和母离子峰、片段离子峰的应用
教授如何分析质谱图中的母离子峰和片段离子峰,并介绍它们的应用。
多元分析
多光谱分析的原理
介绍多光谱分析的原理和它在 有机波谱分析中的应用。
主成分分析和聚类分析 的应用
说明主成分分析和聚类分析如 何应用于有机波谱分析中。
多元分析在有机波谱分 析中的实践
详细说明多元分析是如何在有 机波谱分析中得到实际应用的。
结论
1 有机波谱分析的应用前景
展望有2 knowledge check: 选择题
提供一些选择题,用于检验听众对于有机波谱分析的理解。
有机化学课件-波谱分析
995~985,915~905(单 取代烯) 980~960(反式二取代烯) 690(顺式二取代烯) 910~890(同碳二取代烯) 840~790(三取代烯)
C H 面外 弯曲振动
660~630(末端炔烃)
烷烃:C—H伸缩振动 2940 cm-1和 2860 cm-1,C—H 面内
弯曲1460(不对称)和1380 cm-1 (对称), -(CH2)n- (n>=4)一般在 720 cm-1处有特征峰(弱)
第八章 有机化合物的波谱分析
1.分子吸收光谱和分子结构 2.红外吸收光谱 3.核磁共振谱
第八章
1.紫外光谱(UV) 2.红外光谱(IR)
有机化合物的波谱分析
3.核磁共振谱(NMR ) 4.质谱(MS)
有机化学中应用最广泛的四大波谱:
一、分子的吸收光谱和分子结构 E= hν= hc/λ ν= c/λ 1/λ=σ E 代表光子的能量,单位为J; h planck 常数 6.63x10-34J•S
TMS:四甲基硅烷
低场
屏蔽效应大,共振信号在高场,
CH3
吸收峰为单峰,化学惰性。
TMS 化学位移定为0 ppm 高场
10
9
8பைடு நூலகம்
7
6
5
4
3
2
1
零 点
-1
-2
-3
TMS
三、核磁共振谱
3. 影响化学位移的因素
(1). 电负性的影响 电负性较大的吸电子基团,使与之相连的碳上的质子周围 电子云密度降低,屏蔽作用弱,共振信号→低场(位移增大)
1
0
一张NMR谱图,通常可以给出四种重要的结构信息:化学位 移、自旋裂分、偶合常数和峰面积(积分线) 峰面积大小与质子数成正比,可由阶梯式积分曲线高度求出。
有机波谱分析复习 ppt课件
故该化合物的结构为A。
PPT课件
6
二、红外光谱
4.某化合物分子式为C7H5NO2 ,其 红外谱图有下列结构信息:3095cm1,2840cm-1(中强),2730cm-1 (中强),1708cm-1,1608cm-1, 1535cm-1,1348cm-1,853cm-1, 822cm-1。试推求该化合物的结构, 并指定各峰的归属。
波谱分析复习
PPT课件
1
一、紫外光谱
1.(1)共轭非封闭体系烯烃的 π→π*跃迁均为强吸收带, λmax=210-250nm ,ε≧104,称为 K带;
(2)n→π*跃迁λmax>250nm , ε﹤100,为禁阻跃迁,吸收带弱, 称为R带。
PPT课件
2
2.2-(环己-1-烯基)-2-丙醇在硫酸
S CH2
m/z=88
CH3
+
H2C CH
S CH2
m/z=73
PPT课件
26
PPT课件
18
四、核磁共振碳谱
O
9. CH3CH2CNHCH2CH3 的13C谱峰归属。
170.8
O CH3CH2CNHCH2CH3
42.3 23.3 11.2 23.2
23.2 42.3 170.8 23.3 11.2
180
160
140
120
100
80
60
40
20
0
PPM
PPT课件
19
10.
O 的13C谱峰归属。
PPT课件
23
14. CH3SCH2CH(OH)CH3的主要碎 片离子峰如下图。
PPT课件
24
OH
47
PPT课件
6
二、红外光谱
4.某化合物分子式为C7H5NO2 ,其 红外谱图有下列结构信息:3095cm1,2840cm-1(中强),2730cm-1 (中强),1708cm-1,1608cm-1, 1535cm-1,1348cm-1,853cm-1, 822cm-1。试推求该化合物的结构, 并指定各峰的归属。
波谱分析复习
PPT课件
1
一、紫外光谱
1.(1)共轭非封闭体系烯烃的 π→π*跃迁均为强吸收带, λmax=210-250nm ,ε≧104,称为 K带;
(2)n→π*跃迁λmax>250nm , ε﹤100,为禁阻跃迁,吸收带弱, 称为R带。
PPT课件
2
2.2-(环己-1-烯基)-2-丙醇在硫酸
S CH2
m/z=88
CH3
+
H2C CH
S CH2
m/z=73
PPT课件
26
PPT课件
18
四、核磁共振碳谱
O
9. CH3CH2CNHCH2CH3 的13C谱峰归属。
170.8
O CH3CH2CNHCH2CH3
42.3 23.3 11.2 23.2
23.2 42.3 170.8 23.3 11.2
180
160
140
120
100
80
60
40
20
0
PPM
PPT课件
19
10.
O 的13C谱峰归属。
PPT课件
23
14. CH3SCH2CH(OH)CH3的主要碎 片离子峰如下图。
PPT课件
24
OH
47
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)烷烃(2)烯烃(3)共轭烯烃 (4)芳烃(5)卤代烃(6)炔烃
二.波谱分析
而现在的结构测定,则采用现代仪器分析法,其
优点是:省时、省力、省钱、快速、准确,样品消 耗量是微克级的,甚至更少。它不仅可以研究分 子的结构,而且还能探索到分子间各种集聚态的 结构构型和构象的状况,对人类所面临的生命科 学、材料科学的发展,是极其重要的。
OH O HO NCH3 吗 啡 碱
而现在的结构测定,则采用现代仪器分析法,其 优点是:省时、省力、省钱、快速、准确,样品消耗 量是微克级的,甚至更少。它不仅可以研究分子的结 构,而且还能探索到分子间各种集聚态的结构构型和 构象的状况,对人类所面临的生命科学、材料科学的 发展,是极其重要的。
一、有机化合物结构测定的经典方法 (化学鉴定法)
说明:
(1)元素化合价不分正负,也不论何种元素,只按 价分 类计算。(如C、Si;H、Cl)
(2)元素化合价应按其在化合物中实际提供的成键电子 数计算。
(3)对含有变价元素,如S、N、P等化合物,不防对每 种可能化合价都作一次不饱和度的计算;然后根据波谱证 据取舍之。 (4)二价原子数目不直接进入计算式。
有机波谱分析
一.课程简介
二.意义
三.学习内容及时间安排
第一章
前 言:
绪论
有机化合物的结构表征(即测定) —— 从分子水平认 识物质的基本手段,是有机化学的重要组成部分。过 去,主要依靠化学方法进行有机化合物的结构测定, 其 缺点是:费时、费力、费钱,需要的样品量大。例如: 鸦片中吗啡碱结构的测定,从1805年开始研究,直至 1952年才完全阐明,历时147年。
1
H'
H 核:
自旋取向数 = 2×1/2 + 1 = 2 一 致 H0 相 反
即:H核在外场有两个自旋方向相反的取向。
4.1.3 磁共振的产生
磁性核的自旋取向表明 它在外加磁场中的取向 它的某个特定能级状态(用 磁量子数ms表示)。取值为 –I … 0 … +I。
即:每一个取向都代表一个能级状态,有一个ms 。
Ω = 1 + n4 + 1 / 2(3n5 – n1)
式中n5代表分子式中五价原子的数目。
第四章
4.1 4.1.1 原子核的自旋
核磁共振谱
基本原理
核象电子一样,也有自旋现象,从而有自旋角动量。
旋进轨道 自旋轴
自旋的质子
H0
核的自旋角动量(ρ )是量子化的,不能任意取值,
可用自旋量子数(I)来描述。
偶 数
偶 数
例如:
H
A (1 ) Z (1 )
C
A (12) Z (6)
N
A (14) Z (7)
奇 - 奇
偶 - 偶
偶 - 奇
I为半整数(1/2)
有共振吸收
I = 0
无
I为整数
有共振吸收
4.1.2 自旋核在外加磁场中的取向 取向数 = 2 I + 1
(在没有外电场时,自旋核的取向是任意的)。
H'
微粒性:可用光量子的能量来描述:
E hv
hc
式中: E 为光量子能量,单位为 J h 为Planck 常数,其量值为 6.63 × 10-34 J s-1
该式表明:分子吸收电磁波,从低能级跃迁到高 能级,其吸收光的频率与吸收能量的关系。由此可见,
与E,v 成反比,即 ↓,v↑(每秒的振动次数↑),E↑。
四.不饱和度(unsaturated number)
(index of hydrogen deficiency)
根据分子式计算不饱和度,其经验公式为:
Ω = 1 + n4 + 1 / 2(n3 – n1)
式中:Ω —代表不饱和度;n1、n3、n4分别代表分
子中一价、三价和四价原子的数目。
双键和饱和环状结构的Ω 为1、三键为2、苯环为4。
对有机化合物的结构表征应用最为广泛的是:紫
外光谱(ultraviolet spectroscopy 缩写为UV)、红外光 谱(infrared spectroscopy 缩写为IR)、核磁共振谱 (nuclear magnetic resonance 缩写为NMR)和质谱 (mass spectroscopy 缩写为MS). 三.有机波谱引论
1.光的本质 光是一种电磁波,具有波粒二相性。 波动性:可用波长( )、频率(v )和波数( v)来描述。
按量子力学,其关系为:
v
c
cv
式中: ν 为频率,单位为 Hz 10 c 为光速,其量值 = 3 × 10 cm.s-1 λ 为波长 (cm), 也用nm作单位(1nm=10-7 cm) _ v 1cm长度中波的数目,单位cm-1
h I ( I 1) 2
产生共振信号。
∴
I=0、1/2、1……
I = 0, ρ =0, 无自旋,不能产生自旋角动量,不会
只有当I > O时,才能发生共振吸收,产生共振Fra bibliotek信号。
I 的取值可用下面关系判断:
质量数(A)
奇 数
原子序数(Z)
奇数或偶数 奇 数
自旋量子数(I)
整 数 0
半整数 n + 1/2。n = 0,1,2,…
2.分子运动形式及对应的光谱范围
在分子光谱中,根据电磁波的波长 ()划分为几个 不同的区域,如下图所示:
3.分子的总能量由以下几种能量组成:
电子自旋 微波波谱 E总 = Ee
电子能
+
Ev
振动能
+
Er
转动能
紫外光谱 可见光谱
红外光谱 所需能量较低,波长较长
4.―四谱”的产生
带电物质粒子的质量谱(MS) ↗ ↗电子:电子能级跃迁(UV) 分子 → 原子 ↓ ↘核自旋能级的跃迁(NMR) 振动能级(IR)
如:1H核:∵ I=1/2 ∴ ms为 -1/2 和 +1/2
ν= γ H0 高能态 H' ms = _ 1/2 外 场 H' ms = + 1/2
2π E = hν H0
γ — 磁旋比(物质的特征常数)
E = hν = γ
h H0 2π
低能态
结论:
(1)ΔE ∝ H0; (2) 1H受到一定频率(v)的电磁辐射,且提供的能 量 =ΔE,则发生共振吸收,产生共振信号。
1.初步实验 2. 测定物理常数 3. 元素分析 4.分组实验 5. 官能团实验
1.初步实验
(1).外观:形、色、味 (2).燃烧实验
2.测定物理常数 熔点、沸点、比重、分子量、折光率、 旋光度
3.元素分析:C、H、S、N、Cl、Br、I
4.分组实验 (1)溶解度分组
(2)指示剂分组 5.官能团实验
二.波谱分析
而现在的结构测定,则采用现代仪器分析法,其
优点是:省时、省力、省钱、快速、准确,样品消 耗量是微克级的,甚至更少。它不仅可以研究分 子的结构,而且还能探索到分子间各种集聚态的 结构构型和构象的状况,对人类所面临的生命科 学、材料科学的发展,是极其重要的。
OH O HO NCH3 吗 啡 碱
而现在的结构测定,则采用现代仪器分析法,其 优点是:省时、省力、省钱、快速、准确,样品消耗 量是微克级的,甚至更少。它不仅可以研究分子的结 构,而且还能探索到分子间各种集聚态的结构构型和 构象的状况,对人类所面临的生命科学、材料科学的 发展,是极其重要的。
一、有机化合物结构测定的经典方法 (化学鉴定法)
说明:
(1)元素化合价不分正负,也不论何种元素,只按 价分 类计算。(如C、Si;H、Cl)
(2)元素化合价应按其在化合物中实际提供的成键电子 数计算。
(3)对含有变价元素,如S、N、P等化合物,不防对每 种可能化合价都作一次不饱和度的计算;然后根据波谱证 据取舍之。 (4)二价原子数目不直接进入计算式。
有机波谱分析
一.课程简介
二.意义
三.学习内容及时间安排
第一章
前 言:
绪论
有机化合物的结构表征(即测定) —— 从分子水平认 识物质的基本手段,是有机化学的重要组成部分。过 去,主要依靠化学方法进行有机化合物的结构测定, 其 缺点是:费时、费力、费钱,需要的样品量大。例如: 鸦片中吗啡碱结构的测定,从1805年开始研究,直至 1952年才完全阐明,历时147年。
1
H'
H 核:
自旋取向数 = 2×1/2 + 1 = 2 一 致 H0 相 反
即:H核在外场有两个自旋方向相反的取向。
4.1.3 磁共振的产生
磁性核的自旋取向表明 它在外加磁场中的取向 它的某个特定能级状态(用 磁量子数ms表示)。取值为 –I … 0 … +I。
即:每一个取向都代表一个能级状态,有一个ms 。
Ω = 1 + n4 + 1 / 2(3n5 – n1)
式中n5代表分子式中五价原子的数目。
第四章
4.1 4.1.1 原子核的自旋
核磁共振谱
基本原理
核象电子一样,也有自旋现象,从而有自旋角动量。
旋进轨道 自旋轴
自旋的质子
H0
核的自旋角动量(ρ )是量子化的,不能任意取值,
可用自旋量子数(I)来描述。
偶 数
偶 数
例如:
H
A (1 ) Z (1 )
C
A (12) Z (6)
N
A (14) Z (7)
奇 - 奇
偶 - 偶
偶 - 奇
I为半整数(1/2)
有共振吸收
I = 0
无
I为整数
有共振吸收
4.1.2 自旋核在外加磁场中的取向 取向数 = 2 I + 1
(在没有外电场时,自旋核的取向是任意的)。
H'
微粒性:可用光量子的能量来描述:
E hv
hc
式中: E 为光量子能量,单位为 J h 为Planck 常数,其量值为 6.63 × 10-34 J s-1
该式表明:分子吸收电磁波,从低能级跃迁到高 能级,其吸收光的频率与吸收能量的关系。由此可见,
与E,v 成反比,即 ↓,v↑(每秒的振动次数↑),E↑。
四.不饱和度(unsaturated number)
(index of hydrogen deficiency)
根据分子式计算不饱和度,其经验公式为:
Ω = 1 + n4 + 1 / 2(n3 – n1)
式中:Ω —代表不饱和度;n1、n3、n4分别代表分
子中一价、三价和四价原子的数目。
双键和饱和环状结构的Ω 为1、三键为2、苯环为4。
对有机化合物的结构表征应用最为广泛的是:紫
外光谱(ultraviolet spectroscopy 缩写为UV)、红外光 谱(infrared spectroscopy 缩写为IR)、核磁共振谱 (nuclear magnetic resonance 缩写为NMR)和质谱 (mass spectroscopy 缩写为MS). 三.有机波谱引论
1.光的本质 光是一种电磁波,具有波粒二相性。 波动性:可用波长( )、频率(v )和波数( v)来描述。
按量子力学,其关系为:
v
c
cv
式中: ν 为频率,单位为 Hz 10 c 为光速,其量值 = 3 × 10 cm.s-1 λ 为波长 (cm), 也用nm作单位(1nm=10-7 cm) _ v 1cm长度中波的数目,单位cm-1
h I ( I 1) 2
产生共振信号。
∴
I=0、1/2、1……
I = 0, ρ =0, 无自旋,不能产生自旋角动量,不会
只有当I > O时,才能发生共振吸收,产生共振Fra bibliotek信号。
I 的取值可用下面关系判断:
质量数(A)
奇 数
原子序数(Z)
奇数或偶数 奇 数
自旋量子数(I)
整 数 0
半整数 n + 1/2。n = 0,1,2,…
2.分子运动形式及对应的光谱范围
在分子光谱中,根据电磁波的波长 ()划分为几个 不同的区域,如下图所示:
3.分子的总能量由以下几种能量组成:
电子自旋 微波波谱 E总 = Ee
电子能
+
Ev
振动能
+
Er
转动能
紫外光谱 可见光谱
红外光谱 所需能量较低,波长较长
4.―四谱”的产生
带电物质粒子的质量谱(MS) ↗ ↗电子:电子能级跃迁(UV) 分子 → 原子 ↓ ↘核自旋能级的跃迁(NMR) 振动能级(IR)
如:1H核:∵ I=1/2 ∴ ms为 -1/2 和 +1/2
ν= γ H0 高能态 H' ms = _ 1/2 外 场 H' ms = + 1/2
2π E = hν H0
γ — 磁旋比(物质的特征常数)
E = hν = γ
h H0 2π
低能态
结论:
(1)ΔE ∝ H0; (2) 1H受到一定频率(v)的电磁辐射,且提供的能 量 =ΔE,则发生共振吸收,产生共振信号。
1.初步实验 2. 测定物理常数 3. 元素分析 4.分组实验 5. 官能团实验
1.初步实验
(1).外观:形、色、味 (2).燃烧实验
2.测定物理常数 熔点、沸点、比重、分子量、折光率、 旋光度
3.元素分析:C、H、S、N、Cl、Br、I
4.分组实验 (1)溶解度分组
(2)指示剂分组 5.官能团实验