高中数学核心方法:构造法

合集下载

高中数学构造法求解题技巧

高中数学构造法求解题技巧

高中数学构造法求解题技巧高中数学构造法是一种解题思路和技巧,它通过构造适当的数学结构,使得问题的求解变得更加简单明了。

构造方法在高中数学中应用广泛,可以用于解决各类题型,包括代数题、几何题、概率题等等。

一、构造法的基本思想构造法是一种通过建立合适的数学结构,简化问题的解决方法和步骤的思想。

通过构造一些符合题意的数学对象,我们可以发现一些规律,从而提供问题的解答方式。

二、构造法的常见技巧1.构造等差数列或等比数列在解决一些代数问题时,我们可以尝试构造一个等差数列或者等比数列。

通过构造这样的数列,我们可以找到其中的规律,从而解决问题。

2.构造图形在解决几何问题时,我们可以尝试构造一个与原图形相似或者关联的图形。

通过构造这样的图形,我们可以将复杂的几何问题简化为一些基本的几何性质,从而解决问题。

3.构造排列组合在解决一些概率问题和组合问题时,我们可以尝试构造排列组合。

通过构造排列组合,我们可以得到一些计算公式或者规律,从而解决问题。

4.构造方程组在解决一些代数问题时,我们可以尝试构造一个方程组。

通过构造这样的方程组,我们可以得到一些方程之间的关系,从而解决问题。

5.构造递推公式在解决一些数列问题时,我们可以尝试构造一个递推公式。

通过构造递推公式,我们可以找到数列中的规律,从而解决问题。

三、构造法的实例分析1.构造等差数列例题:有一些连续的整数,它们的和是45,这些整数中最小的是多少?解析:我们可以假设这些连续的整数的首项是x,公差是1,那么这些整数的和可以表示为:x+(x+1)+(x+2)+...+(x+n)=45。

通过求和公式,我们可以得到(x+45)/(n+1)=45,进一步化简得到x=15-n。

我们可以发现,当n=30时,x=15-n=0,此时连续整数中的最小值为0。

2.构造图形例题:在平面直角坐标系中,有一条线l过点(0, 0)和(1, 2),线l与x轴、y轴以及x=y共同围成一个三角形,求这个三角形的面积。

“构造法”的高中数学解题思路探索

“构造法”的高中数学解题思路探索

“构造法”的高中数学解题思路探索摘要:构造法是一种传统的数学思想方法。

构造是给需要解决的问题提供一个框架。

框架的含义非常广泛,可以是一个图形、一个方程、一个函数或一种算法。

构造法运用的主要数学方法是化归,化归的目的是将一个不熟悉的问题A转化成熟悉的问题B,再解决问题。

基于此,本文章对“构造法”的高中数学解题思路探索进行探讨,以供相关从业人员参考。

关键词:构造法;高中数学;解题应用引言构造法就是根据数学问题条件或者结论的特征,以问题中的数学元素为“元件”,数学关系为“框架”构造出新的数学对象或者数学模型。

将抽象的问题具象化,使学生快速理解题目,从而有效提高学生的数学解题能力和课堂效率。

一、构造法的基本内涵根据对高中数学解题方法展开的大量实际调查研究能够知道,在解决高中数学问题的过程中,运用构造的思维和方法,能够在很大程度上降低数学题的难度。

对数学问题的题干进行梳理、对内容进行分析,结合新的函数、方法、图形等手段,将原本抽象、复杂、模糊的数学问题变得具体、简单、清晰,使学生通过解决多个简单的数学问题将一个复杂的数学问题有效解决,这就是构造发挥作用的具体流程。

在利用构造方法解决数学问题的过程中需要注意,构造出的数学函数、方法、图形等必须具备以下几个特点,第一,必须能够与原题之间保持有效的联系。

第二,必须保证构建出的函数、方法、图形具有的解题难度比原有解决方法的难度小。

第三,构造出的函数、方法、图形在周期性、奇偶性、单调性、值域等方面必须与题目相符,这样能够有效杜绝构造错误的情况发生。

第四,要结合题目的内容进行对应函数、方法、图形的构造。

除此之外,在进行函数、方法、图形构造的过程中还需要注意,要对命题的条件、结论、特点等进行分析,通过提取出其中的逻辑、构想等,依照题目条件进行重新组合,从而得出解题所需要的构造。

二、高中数学解题应用构造法应注意的情况首先,应注重对学生观察能力的培养。

构造法属于创新思维方法,需要学生在细致观察中灵活调用所学知识。

例谈“构造法”在高中数学解题中的应用

例谈“构造法”在高中数学解题中的应用

例谈 构造法 在高中数学解题中的应用曾㊀智(光泽县第一中学ꎬ福建南平354100)摘㊀要:高中数学新课程提出ꎬ高中数学的教学重点之一就是空间形式与数量关系ꎬ这两点数学知识是探讨研究自然规律与社会规律的基础工具.构造法ꎬ一方面ꎬ它是高中数学学习的一种重要方法ꎬ能够有效帮助学生理解空间形式与数量关系ꎻ另一方面ꎬ它也是培养学生 构造思维 的重要基础ꎬ是高中数学教育的关键之一.本文在此背景下ꎬ总结了在高中数学解题中应用 构造法 的原则ꎬ又进一步分类总结了具体应用 构造法 的解题案例ꎬ以期为我国高中数学教师开展 构造法 教学提供参考.关键词:构造法ꎻ高中数学ꎻ应用中图分类号:G632㊀㊀㊀文献标识码:A㊀㊀㊀文章编号:1008-0333(2024)03-0060-03收稿日期:2023-10-25作者简介:曾智(1984.1-)ꎬ男ꎬ福建省光泽人ꎬ本科ꎬ中学一级教师ꎬ从事高中数学教学研究.㊀㊀高中数学知识相对于初中而言难度更高ꎬ高中生在学习中不免会面临许多难以解决的问题ꎬ尤其是高中生本身解题经验较少ꎬ解题时常常会出现无法找到题目提供的各项条件与问题间的联系的情况ꎬ进而使解题变得十分艰难[1].这种情况一方面会导致学生解题效率降低ꎬ数学考试成绩下降ꎬ另一方面也会使学生长期承受较大的学习压力ꎬ导致对数学学习的兴趣降低ꎬ甚至抵触数学学习[2].此时ꎬ若学生掌握了 构造法 ꎬ则能够以新的角度审视难题ꎬ通过分析问题条件构造与题目本不相关的知识或模型ꎬ间接地解决难题[3].在这一过程中ꎬ高中生的数学思维能力与逻辑推理能力也得到了提高.因此ꎬ对 构造法 在高中数学解题中的应用进行研究ꎬ是具有一定的理论与现实价值的.1在高中数学解题中应用 构造法 的原则在高中数学解题中应用 构造法 是具有一定的原则的ꎬ其具体内容包括:相似性原则㊀在实际应用 构造法 进行解题时ꎬ需要仔细分析题目中提供的条件或题目本身特征ꎬ展开具有相似性的联想ꎬ进而构造出合理的数学对象ꎬ最终通过该数学对象完成数学解题[4].直观性原则㊀高中生在以 构造法 解题时ꎬ应遵循直观性原则ꎬ通过构造某种辅助解题的数学形式ꎬ使得题目中的条件与结论间形成直观的联系ꎬ进而快速地完成解题.熟悉化原则㊀这一原则指的是高中生在解题时应仔细分析题目的结构特征ꎬ并将其与自身熟悉的某种数学式㊁形㊁方程等进行对比ꎬ进而构造出能够与题目相对应的数学形式ꎬ从而解决问题[5].2应用 构造法 进行高中数学解题的案例应用 构造法 进行高中数学解题的重点在于:(1)应用 构造法 的目的ꎬ即想要通过该方法得到的结论是什么ꎻ(2)构造哪种数学形式才能实现应用 构造法 的目的.只有有效实现上述两个重点ꎬ高中生才能够应用 构造法 解决问题[6].本文通过展示几类高中数学常见问题的 构造法 解法ꎬ展示 构造法 的具体应用方法ꎬ如下所示.2.1 函数构造法 解题案例在高中数学学习中ꎬ函数是重点学习的内容之一ꎬ而在实际题目中ꎬ包含函数的题目往往还会与方06程㊁数列㊁图形等其他数学知识结合ꎬ使高中生解题难度增大.在这一类问题中应用 构造法 能够有效降低解题难度ꎬ进而加快学生解题速度[7].具体案例如下.案例1㊀求函数f(x)=lnx-x+1x-1ꎬ讨论f(x)的单调性ꎬ并证明f(x)有且仅有两个零点.解㊀f(x)的定义域为(0ꎬ1)ɣ(1ꎬ+¥)ꎬ因为fᶄ(x)=1x+2(x-1)2>0ꎬ则f(x)在0ꎬ1()和(1ꎬ+ɕ)这两个区间上单调递增.通过分析题意发现该函数有两个零点ꎬ因为f(e)=1-e+1e-1<0ꎬf(e2)=2-e2+1e2-1=e2-3e2-1>0ꎬ则f(x)在(1ꎬ+¥)有唯一零点x1ꎬ即f(x1)=0.又因为0<1x1<1ꎬ则f(1x1)=-lnx1+x1+1x1-1=-f(x1)=0.故f(x)在0ꎬ1()有唯一零点1x1.综上所述ꎬf(x)有且仅有两个零点.2.2 方程构造法 解题案例在 构造法 中ꎬ方程是一种较为常见的数学形式. 方程构造法 是高中数学解题中的常用方法之一ꎬ尤其是在函数相关题目的解题中.这种方法主要是通过分析题目中的数量关系或特征结构ꎬ构造出一组等量的关系式ꎬ并通过解析关系式找到题目中几个未知量间的关系ꎬ进而得到方程中包含的等量关系[8].具体案例如下.案例2㊀若a1ꎬa2ꎬa3ꎬa4均为非零的实数ꎬ且(a21+a22)a24-2a2(a1+a3)a4+a22+a23=0ꎬ证明四个非零实数中a1ꎬa2ꎬa3能够形成一个等比数列ꎬ且该数列的公比为a4.证明㊀分析题目可推导得出ꎬ在四个非零实数中ꎬa4这一非零实数是一元二次方程(a21+a22)x2-2a2(a1+a3)x+(a22+a23)=0的实数根ꎬ则可以推出关系式:ә=4a22(a1+a3)2-4(a21+a22)(a22+a23)=4(2a1a22a3-a21a23-a42)=-4(a22-a1a3)2ȡ0ꎬ因此ꎬ只有当a22-a1a3=0时ꎬ关系式才能成立ꎬ则可推导出a22=a1a3ꎬ同时由于题中表明a1ꎬa2ꎬa3均为非零实数.则可得出a1ꎬa2ꎬa3能够形成等比数列.且通过构造的求根公式可知a4=2a2(a1+a3)2(a21+a22)=a2(a1+a3)a21+a1a3=a2a1ꎬ则a4为该等比数列的公比.综上所述可以证明a1ꎬa2ꎬa3能够形成一个等比数列ꎬ且该数列的公比为a4.2.3 向量构造法 解题案例在高中数学的所有知识点中ꎬ向量的相关知识是教学与学习的重难点之一.在高中数学考试中ꎬ与这一知识点相关的题目大多相对简单ꎬ以选择题或填空题为主ꎬ但当这一知识点出现在解答题中时ꎬ常常与立体几何相联系ꎬ解题难度增加许多ꎬ对学生的数学能力要求也相对较高[9].应用 向量构造法 进行解题ꎬ能够引导高中生将日常学习的向量知识点与三角函数㊁复数㊁函数等知识点联系起来ꎬ进而更加轻松地解决问题ꎬ案例如下.案例3㊀已知cosA+cosB+cosC=sinA+sinB+sinC=0ꎬ求sin2A+sin2B+sin2C的值.解㊀设P(cosAꎬsinA)ꎬQ(cosBꎬsinB)ꎬR(cosCꎬsinC)为单位圆上的三个点ꎬ则根据题意可以推导得出O是әPQR的外心.由此可以得到关系式:OPң=(cosAꎬsinA)ꎬOQң=(cosBꎬsinB)ꎬORң=(cosCꎬsinC).因为cosA+cosB+cosC=sinA+sinB+sinC=0ꎬ则OPң+OQң+ORң=(cosA+cosB+cosCꎬsinA+sinB+sinC)=0ꎬ可以推导得出O是әPQR重心ꎬ也是әPQR的外心ꎬ则әPQR为正三角形.由此可得出关系式B=A+2π3+2kπꎬC=A-2π3+2kπꎬ则sin2A+sin2B+sin2C=sin2A+sin2A+2π3æèçöø÷+sin2A-2π3æèçöø÷=sin2A+sinAcos2π3+cosAsin2π3æèçöø÷2+sinAcos2π3-cosAsin2π3æèçöø÷216=sin2A+12sin2A+32cos2A=32综上所述可得ꎬsin2A+sin2B+sin2C=32.2.4 复数构造法 解题案例复数构造法 的应用ꎬ简单来说可以主要分为两类ꎬ一类题目本身就是复数问题ꎬ通过应用复数本身的性质就可以完成解题ꎻ另一类则是非复数问题ꎬ需要间接构造复数形式来完成解题[10].案例如下.案例4㊀求函数f(x)=(x-5)2+16+(x-1)2+4的最小值.证明:构造复数z1=5-x+4iꎬz2=x-1+2iꎬ则f(x)=z1+z2ȡz1+z2=4+6i=213.当z1=kz2ꎬ即5-x+4i=k(x-1)+2i[]时取等号ꎬ解得x=73ꎬ即x=73时ꎬf(x)有最小值213.2.5 图形构造法 解题案例数形结合思维是高中数学思维培养中的关键ꎬ这一思维的形成与 图形构造法 的应用有着密不可分的关系.应用 图形构造法 进行解题的案例具体如下所示.案例5㊀证明正弦两角和公式sin(α+β)=sinαcosβ+cosαsinβ.证明:如图1所示ꎬ在线段CD上任取一点Aꎬ以A为圆心ꎬ1为半径做圆弧分别过C点和D点ꎬ且和CD垂直的直线相交于点B与点Eꎬ令øBAC=αꎬøEAD=βꎬ则øBAE=π-(α+β)ꎬBC=sinαꎬAC=cosαꎬDE=sinβꎬAD=cosβ.图1㊀案例5证明示意图梯形BCDE=әABC+әADE+әABEꎬ考虑面积相等可得:12(sinα+sinβ)(cosα+cosβ)=12sinαcosα+12sinβcosβ+12ˑ12ˑsin(π-α-β)即(sinα+sinβ)(cosα+cosβ)=sinαcosα+sinβcosβ+sin(α+β)ꎬ展开整理得sin(α+β)=sinαcosβ+cosαsinβ即可得证.3结束语«普通高中数学课程标准»中提出ꎬ数学核心素养包含具有数学基本特征的思维品格和关键能力ꎬ是数学知识㊁技能㊁思想㊁经验及情感㊁态度㊁价值观的综合体现. 构造法 作为高中最常使用的数学思想方法之一ꎬ能够有效培养高中生的创造思维与创新意识ꎬ综合提升其数学学科思维ꎬ但目前我国高中生对于 构造法 的了解大多有限.本文探讨了 构造法 在高中数学解题中的应用ꎬ为 构造法 在我国高中的推广应用贡献力量.㊀参考文献:[1]吴玉辉.构造法在高中数学圆锥曲线解题中的应用[J].华夏教师ꎬ2021(35):31-32.[2]顾建华.基于 构造法 的高中数学解题思路探索[J].科学咨询(教育科研)ꎬ2020(10):166.[3]吴建文.构造法在高中数学教学中的应用[J].华夏教师ꎬ2019(19):40.[4]袁胜蓝ꎬ袁野.高中数学数列通项公式的几种求法[J].六盘水师范学院学报ꎬ2019ꎬ31(03):117-120.[5]杨丽菲.高中数学解题中应用构造法的实践尝试[J].科学大众(科学教育)ꎬ2018(12):7.[6]何婷.构造函数求解高中数学问题[J].科学咨询(科技 管理)ꎬ2018(06):144.[7]李正臣.高中数学解题中应用构造法之实践[J].科学大众(科学教育)ꎬ2018(02):34.[8]罗杰.分析高中数学三角函数的解题技巧[J].中国高新区ꎬ2017(22):102.[9]洪云松.高中数学圆锥曲线解题中构造法的使用[J].农家参谋ꎬ2017(13):160.[10]刘米可.构造函数法在高中数学解题中的应用[J].经贸实践ꎬ2016(23):226.[责任编辑:李㊀璟]26。

高中数学数列构造法讲解

高中数学数列构造法讲解

高中数学数列构造法讲解
高中数学数列构造法是一种常用的数学分析方法,它可以帮助我们通过对数列的结构、变化规律及其特点等进行分析推导,理解数列的内在本质,从而解决问题。

首先,我们需要明确数列的定义,即数列是一组有序的数,每个数都是一定规律地从前一个数变化而来。

其次,构造数列时,我们要确定数列的元素,确定数列的有序规律,并通过对数列的初始值、变化规律等参数的推导,推断其他数列的变化特点。

接下来,我们要研究的是如何构造数列。

首先,要明确数列的变化规律,即每一项的变化规律。

比如,等差数列的变化规律是每一项减去前一项的结果为一定的常数,等比数列的变化规律是每一项乘以前一项的结果为一定的常数。

其次,我们要确定数列的初始值,即每一项变化的起始值。

若数列的变化规律已经确定,则可以从初始值出发,根据变化规律一步步推导出其他数列的变化特点。

接着,我们要根据数列的变化规律,推导出数列的参数,即每一项变化的参数,如等差数列的公差,等比数列的公比等。

最后,我们要求出数列的总和,确定数列的范围,计算出数列的各项之和,从而解决实际问题。

总之,通过高中数学数列构造法,我们可以通过分析数列的结构、变化规律及其特点等,从而解决实际问题,深入理解数列的内在本质。

高中数学解题方法之构造法(含答案)

高中数学解题方法之构造法(含答案)

十、构造法解数学问题时,常规的思考方法是由条件到结论的定向思考,但有些问题用常规的思维方式来寻求解题途径却比较困难,甚至无从着手。

在这种情况下,经常要求我们改变思维方向,换一个角度去思考从而找到一条绕过障碍的新途径。

历史上有不少著名的数学家,如欧几里得、欧拉、高斯、拉格朗日等人,都曾经用“构造法”成功地解决过数学上的难题。

数学是一门创造性的艺术,蕴含着丰富的美,而灵活、巧妙的构造令人拍手叫绝,能为数学问题的解决增添色彩,更具研究和欣赏价值。

近几年来,构造法极其应用又逐渐为数学教育界所重视,在数学竞赛中有着一定的地位。

构造需要以足够的知识经验为基础,较强的观察能力、综合运用能力和创造能力为前提,根据题目的特征,对问题进行深入分析,找出“已知”与“所求(所证)”之间的联系纽带,使解题另辟蹊径、水到渠成。

用构造法解题时,被构造的对象是多种多样的,按它的内容可分为数、式、函数、方程、数列、复数、图形、图表、几何变换、对应、数学模型、反例等,从下面的例子可以看出这些想法的实现是非常灵活的,没有固定的程序和模式,不可生搬硬套。

但可以尝试从中总结规律:在运用构造法时,一要明确构造的目的,即为什么目的而构造;二要弄清楚问题的特点,以便依据特点确定方案,实现构造。

再现性题组 1、求证: 31091022≥++=x x y (构造函数) 2、若x > 0, y > 0, x + y = 1,则42511≥⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+y y x x (构造函数) 3、已知01a <<,01b <<,求证:22)1()1()1()1(22222222≥-+-+-+++-++b a b a b a b a(构造图形、复数) 4、求证:9)9(272≤-+x x ,并指出等号成立的条件。

(构造向量)5、已知:a>0、b>0、c>0 ,求证:222222c ac a c bc b b ab a ++≥+-++-当且仅当ca b 111+=时取等号。

构造法在高中数学解题中的应用方法

构造法在高中数学解题中的应用方法

构造法在高中数学解题中的应用方法构造法是一种常用的解题方法,在高中数学中有着广泛的应用。

它通过巧妙地构造一些数学对象或者利用某些数学性质,来解决问题。

下面将介绍构造法在高中数学解题中的常见应用方法。

1.构造图形构造图形是构造法的一种常见应用方法。

在解决几何问题时,我们可以通过构造一些特殊的图形,来辅助求解。

要证明一个角为直角,可以通过构造一个等腰直角三角形;要证明两条线段相等,可以构造两个相等的线段等等。

通过构造图形,我们可以更加直观地理解问题,并且根据构造出的特殊图形进行推理和证明。

2.构造等式构造等式是构造法的另一种常见应用方法。

在解决代数问题时,我们可以通过构造一些特殊的等式,利用等式的性质和关系来推导和求解。

要解方程组可以通过构造一个与原方程组等价的等式,从而利用等式的性质消去未知数。

又要证明两个多项式恒等,可以通过构造一个等式,使得等式两边的多项式进行运算后得到相同的结果。

通过构造等式,我们可以把复杂的问题转化为更简单的等式求解问题。

3.构造序列4.构造方法构造方法是构造法的一个重要应用。

在解决问题时,我们可以通过构造一种方法或者算法,来找到问题的解决思路。

要证明一个命题成立,可以通过构造一个反证法,假设命题不成立,然后推导出矛盾;要解决一个最优化问题,可以通过构造一个函数或者模型,然后利用函数的性质进行优化。

通过构造方法,我们可以建立问题与数学方法之间的联系,从而解决问题。

构造法是一种重要的解题方法,在高中数学中有着广泛的应用。

通过构造图形、构造等式、构造序列和构造方法等,我们可以更加直观地理解问题,利用数学性质和关系进行推理和证明,以达到解决问题的目的。

希望通过这些介绍,能够帮助到学生在高中数学中更好地运用构造法解题。

高中数学数列构造法

高中数学数列构造法

高中数学数列构造法高中数学中,数列是一种类似表格的形式,用来表示某个变量随着另一个变量的变化而变化。

它可以用来表示一组数据,也可以用来表示一般公式的变化,其中每一项都具有规律性。

构造一个数列,是一个过程,只有掌握了构造数列的方法和步骤,才能够推导出某个数列的相关关系。

一、列举法列举法是构造数列最简单的方法,就是一个一个列出多个项,形成一个数列。

在列举的过程中,我们可以使用等差数列、等比数列、定比数列等方法来构造,比如:例1:数列{1,3,5,7,9,11,13,15}这是一个等差数列,每一项都比上一项多2,因此这个数列的前两项是1和3,等差是2。

例2:数列{1,2,4,8,16,32,64,128}这是一个等比数列,每一项都是上一项的2倍,因此这个数列的前两项是1和2,公比是2。

二、公式法公式法是构造数列最常见的方法,也是最有效的方法,它可以很快速地找出数列中的每一项,只要找出数列的模式,就可以利用公式求出任意项的值。

比如:例1:数列:2,4,6,8,10,……这是一个等差数列,每一项都比上一项多2,因此这个数列的前两项是2和4,等差是2,可以用等差数列的公式表示,即a_n=a_1+(n-1)d,其中a_n表示数列的第n项,a_1表示数列的第一项,d表示数列的公差,因此数列可以表示为a_n=2+(n-1)×2。

例2:数列:3,9,27,81,243,……这是一个等比数列,每一项都是上一项的3倍,因此这个数列的前两项是3和9,公比是3,可以用等比数列的公式表示,即a_n=a_1r^(n-1),其中a_n表示数列的第n项,a_1表示数列的第一项,r表示数列的公比,因此数列可以表示为a_n=3×3^(n-1)。

三、递推法递推法是指根据已知结果,推算出未知结果的方法,根据给定的前两项,推算出后续项的值。

递推可以分为等差数列和等比数列,等差数列为每一项加上相同的数值,而等比数列则为每一项乘以相同的数值。

构造法在中学数学中的运用

构造法在中学数学中的运用

构造法在中学数学中的运用1. 引言1.1 构造法的概念构造法是数学中一种重要的方法,它主要利用具体的图像或实例来解决问题。

通过构造法,我们可以通过建立几何图形、代数方程或概率模型等手段,来找到问题的解决方案或证明定理的方法。

构造法的核心思想是通过构建某种结构或模型,来揭示问题的本质或得到问题的答案。

在运用构造法时,我们需要具有一定的数学基础和逻辑思维能力,能够将抽象的概念具体化,通过各种图形、符号或模型来进行推理和证明。

构造法既可以用于解决几何问题,也可以用于证明数学定理,甚至可以在代数方程求解和概率统计中发挥作用。

通过构造法,我们可以更直观地理解和解决数学问题,提高数学思维和解题能力。

构造法的灵活性和实用性使其在数学教学中具有重要意义。

教师可以通过引导学生运用构造法来解决问题,培养学生的逻辑思维能力和创造力。

构造法在某些复杂的问题上可能存在局限性,需要结合其他数学方法进行分析和求解。

构造法是数学中一种重要的思维工具,对学生和教师都具有积极的意义。

1.2 构造法的重要性构造法是一种数学问题解决方法,其重要性不容忽视。

构造法在数学教学中能够培养学生的逻辑思维能力和创造力。

通过学习构造法,学生可以培养问题解决的能力,锻炼他们的思维方式。

构造法在解决实际问题中能够提供一种直观的解决思路。

许多数学问题或者实际生活中的问题可以通过构造法找到解决方法,这种方法更符合直觉,让人易于理解。

构造法在证明数学定理的过程中也有重要作用。

通过构造法,可以更清晰地展示问题的解决过程,从而使得数学定理的证明更加严谨和易懂。

构造法对于数学教学和解决数学及实际问题具有重要意义,不容忽视。

2. 正文2.1 构造法在解决几何问题中的运用构造法在解决几何问题中的运用是数学中一个重要且常用的方法。

它通过几何图形的方式来解决问题,通常通过画图、构造辅助线等方式来找到问题的解决方法。

构造法在几何问题中的运用可以帮助学生更直观地理解问题,并且提高他们的解题能力。

构造法在高中数学解题中的应用方法

构造法在高中数学解题中的应用方法

构造法在高中数学解题中的应用方法构造法在高中数学解题中的应用方法构造法是一种数学解题方法,通过构造出符合题目要求的具体例子或特殊性质,来证明或推导出一般性的结论。

它在高中数学解题中有着广泛的应用,特别是在几何问题和代数问题中常用。

在几何问题中,构造法常常被用来构造符合题目要求的图形。

在证明两条垂直平分线相交于一个点时,可以通过构造两条垂直平分线的交点,来证明这个结论。

在证明三角形的性质时,也可以通过构造特殊的角度或边长来推导出一般性的结论。

在代数问题中,构造法常常被用来构造出满足特定条件的方程或函数。

在证明关于二次方程的性质时,可以通过构造一个满足特定条件的二次方程,来推导出一般性的结论。

在求解方程组或不等式时,构造法也常常被用来构造出满足条件的解集。

构造法的应用方法可以总结为以下几个步骤:1. 分析题目要求,确定需要构造的对象或性质。

需要构造一个特定的图形、一个满足特定条件的方程等等。

2. 根据题目条件和要求,确定构造的具体步骤和方法。

确定构造一个特定角度的方法是通过画一条与其他角度相等的角,或者确定构造一个方程的方法是通过设立一个满足特定条件的系数等等。

3. 进行实际的构造过程。

根据确定的方法,进行具体的构造过程,得到符合题目要求的对象或性质。

4. 利用构造出的对象或性质,进行证明或推导过程。

如果是证明问题,可以利用构造出的对象或性质来构造出一般性的结论,或者进行逆向推理。

如果是求解问题,可以利用构造出的对象或性质来得到解集的一般性特点。

构造法在高中数学中的应用举例:1. 证明点到直线的距离公式。

通过构造垂直于直线的垂线,并计算垂线的长度,来推导出点到直线的距离公式。

2. 求解二元一次方程组。

通过构造一个方程组,其中一个方程的两个系数相等,来得到相应的解集。

3. 证明勾股定理。

通过构造一个直角三角形,其中两条直角边的长度符合特定关系,来证明勾股定理的一般性。

4. 求解不等式。

通过构造一个满足特定条件的变量取值范围,来确定不等式的解集。

构造法在高中数学中的应用

构造法在高中数学中的应用

构造法在高中数学中的应用一、引言数学是一门基础学科,也是一门探索智慧的学科。

构造法是数学中的一种重要方法,它以构造对象的方式来研究问题,通过构造、演绎和逆向思维等方法,常常能够用简明直观的方式解决复杂的问题。

构造法在高中数学教学中具有重要的地位和应用价值。

二、构造法的基本思想构造法的基本思想是通过构造对象来认识并解决问题。

在数学中,我们通常通过定义、定理和公理等方式来描述事物的性质,并用符号和公式表示。

然而,在具体问题的解决中,这些抽象的定义和公式往往显得晦涩难懂,难以理解和操作。

而构造法通过创造具体实物的方式,可以将抽象问题具象化,便于理解和演绎,使问题变得直观而具体。

三、构造法在几何中的应用1.平行线和垂直线的构造几何中,平行线和垂直线是很重要的概念。

构造法可以用来构造平行线和垂直线,帮助学生更好地理解和应用这些概念。

例如,给定一条直线和一点,在这条直线上构造一条平行线或垂直线,可以通过画半圆、等腰直角三角形等方法实现,使得学生在实际操作中更容易理解和记忆。

2.三角形的构造三角形是几何中的基本概念之一,构造法可以帮助学生更好地理解三角形的性质与关系。

例如,已知三角形两边的长度和它们夹角的大小,可以通过构造一条边和这两边夹角相等的弧线,再通过弧线的交点将这条边延长,从而构造出这个三角形。

这种构造方法不仅使学生更直观地理解三角形,还能够提高他们的构造和推理能力。

3.相似三角形的构造相似三角形是几何中的重要内容,构造法可以帮助学生更好地理解和应用相似三角形的性质。

例如,已知一条直线上有两个点A和B,需要在另一条直线上找到一点C,使得三角形ABC与已知三角形相似。

构造法可以通过构造AB上的一条线段CD,使得AD与BC平行,并且使得AD和BC之间的比例与已知相似三角形的比例相等,从而实现相似三角形的构造。

四、构造法在代数中的应用1.方程的构造在代数中,方程是一个重要的概念,构造法可以帮助学生构造和解决各种类型的方程。

构造法在高中数学解题中的应用方法

构造法在高中数学解题中的应用方法

构造法在高中数学解题中的应用方法
构造法是一种在数学解题中常用的方法,它通过构造特定的数、图形或形式来解决问题。

构造法在高中数学中的应用十分广泛,不仅能够帮助学生理解问题,还能够培养学生
的逻辑思维和创造力。

一、构造法在代数问题中的应用
1. 构造特殊的数:通过构造特殊的数来解决问题,如通过构造一个满足条件的整数、有理数或无理数等。

在解方程问题中,可以通过构造特殊的数来找到解的规律或确定解的
范围。

2. 构造函数式:通过构造合适的函数式来解决问题。

在函数的极值问题中,可以通
过构造一个函数式来描述问题,并通过分析函数式的性质来确定极值点。

3. 构造方程组:通过构造一组方程来解决问题。

在线性方程组的解题中,可以通过
构造一组满足条件的方程来确定未知数的值。

三、构造法在概率与统计问题中的应用
1. 构造样本空间:通过构造合适的样本空间来解决概率问题。

在求解随机事件的概
率问题中,可以通过构造一个恰当的样本空间来确定事件发生的可能性。

2. 构造频数表或频率分布图:通过构造频数表或频率分布图来解决统计问题。

在统
计一组数据的分布特征时,可以通过构造一个频数表或频率分布图来描述数据的分布情
况。

3. 构造统计模型:通过构造合适的统计模型来解决概率与统计问题。

在求解样本均值、方差等问题时,可以通过构造一个适当的统计模型来计算所需的统计量。

高中数学核心方法 构造法

高中数学核心方法 构造法

高中数学核心方法:构造法构造法,这是一种高级的数学思维方法,它通过将问题转化为另一种形式,从而帮助我们更深入地理解问题并找到解决方案。

尽管构造法在数学的其他领域中也有应用,但本文将集中讨论它在高中数学中的应用。

一、理解构造法构造法是一种通过创建或构造某种对象或模型来解决数学问题的策略。

这个对象或模型通常是为了更好地描绘和理解问题,以及提供一种能够揭示问题本质的直观表示。

在构造法的使用过程中,我们需要运用类比、想象和猜测等思维方式,以图找到解决问题的线索和灵感。

二、构造法的优势1、直观性:构造法能将抽象的数学问题转化为更具体、更直观的形式,从而让问题更容易理解。

2、创新性:通过构造法,我们可以从全新的角度看待问题,这有助于我们发现新的解决方案。

3、有效性:构造法能让我们更清楚地看到问题的核心,从而更有效地解决问题。

三、构造法的应用实例1、函数图像的构造:在解决一些函数问题时,我们可以根据函数的性质,如奇偶性、单调性等,来构造函数的图像。

这可以帮助我们直观地理解函数的行为,从而更容易地解决问题。

2、数列的构造:在解决一些数列问题时,我们可以根据数列的性质来构造新的数列,如等差数列等比数列等。

这可以帮助我们更好地理解数列的规律,从而更容易地解决问题。

3、几何图形的构造:在解决一些几何问题时,我们可以根据题目的条件来构造出相应的几何图形。

这可以帮助我们直观地理解问题的条件和结论,从而更容易地解决问题。

四、如何掌握构造法1、深入理解:要掌握构造法,首先需要对数学的基础知识有深入的理解。

只有理解了问题的本质,才能找到合适的构造方法。

2、练习实践:通过大量的练习和实践,我们可以逐渐掌握构造法的技巧和精髓。

只有不断地尝试和应用,才能真正理解和掌握这种方法。

3、总结反思:每次使用构造法解决问题后,都需要进行总结和反思。

看看哪些地方做得好,哪些地方需要改进,这样才能不断提高自己的构造法能力。

4、寻求帮助:如果遇到困难,不要害羞或害怕,积极寻求帮助。

构造法在高中数学解题中的应用方法

构造法在高中数学解题中的应用方法

构造法在高中数学解题中的应用方法构造法(Construction Method)是高中数学解题中常用的一种方法。

它是通过构造出具体的数学对象,来辅助推导、证明或解决问题的方法。

在解题过程中,构造法可以帮助学生更直观地理解问题,找到问题的关键点,以及掌握解题的整体思路。

构造法主要应用于以下几个方面:1.构造例证在解决某些问题时,我们可以通过构造出具体的例子来验证问题的正确性或错误性。

通过构造出例子,我们可以更直观地看到问题的特点和规律,从而帮助我们更好地推导出结论。

解决一元二次方程ax^2+bx+c=0有一根,可以构造出一个例子:取a=1,b=-3,c=2,此时方程变为x^2-3x+2=0,可以通过因式分解或求根公式得到唯一解x=1。

通过这个例子,我们可以推广出“一元二次方程ax^2+bx+c=0有一根”的结论。

在证明某些命题是错误的时候,我们可以通过构造出具体的反例来证明其错误。

通过构造出反例,我们可以找到其错误的根源,从而帮助我们更好地理解、修正或推广结论。

要证明命题“在一个三角形内,三条中线相等”的正确性,可以通过构造一个反例:取一个等腰直角三角形,此时由于直角边上的中线和斜边上的中线不等长,所以反例证明了该命题是错误的。

3.构造辅助线构造辅助线是解决几何问题中常用的方法之一。

通过在几何图形中构造出一些额外的直线或线段,可以使问题更加清晰明了,从而更容易推导出结论。

通过构造辅助线,我们可以创造新的图形,将原有的问题转化为更简单的几何关系来求解。

在证明两条直线垂直的问题中,可以通过构造出两条辅助线,使原有的问题转化为三角形中的角关系,从而更容易推导出结论。

4.构造等式5.构造问题模型在解决数学建模问题时,构造问题模型是非常重要的一步。

通过构造问题模型,将原有的实际问题转化为数学问题,可以更好地分析和解决问题。

通过构造问题模型,我们可以将问题抽象化,寻找问题的关键变量和问题之间的关系,从而更好地理清问题的逻辑,确定问题的解题思路。

构造法在高中数学解题中的应用方法

构造法在高中数学解题中的应用方法

构造法在高中数学解题中的应用方法构造法是一种寻找解题思路的方法,在高中数学中有广泛的应用。

本文将介绍构造法在高中数学解题中的具体应用方法。

1.构造反函数法当需要求解一元函数的反函数时,可以利用构造反函数法。

具体步骤如下:(1)设函数f(x)的反函数为y=f-1(x)。

(3)将x=f(y)代入f(x)中,得到f(f-1(x))=x。

(1)根据已知条件,设多项式函数为f(x)=ax3+bx2+cx+d。

(2)由于f(1)=1,可以得到a+b+c+d=1。

(6)解方程组得到a=-1/2,b=5/2,c=-3/2,d=1。

(1)根据问题的条件,画出几何图形。

(2)在图形中引入一些辅助线段或角度,使得问题的解析式可以便于构造。

(3)根据条件求解出构造线段或角度的长度或大小。

(4)利用这些线段或角度构造出所求的几何图形。

例如,如果需要求解一条线段与已知线段成等角的问题,则可以先利用等角三角形,再利用正弦定理求解。

2.构造相似图形法(2)通过平移、旋转、缩放等方式得到相似图形。

(3)记录下相应的线段的长度比,角度的大小比等信息。

(4)据此得出两个图形相似的条件。

例如,在证明斜率相等的两条直线是平行的时,可以构造相似三角形,利用三角形内角和定理解决问题。

(1)根据数列的性质,确定数列的通项公式。

(2)构造出几个特殊的数字,计算出对应的数列值。

例如,在求解等差数列的通项公式时,可以构造出首项为1,公差为2的数列,计算出该数列的前几项值,据此求解对应的通项公式。

2.构造递归数列法(2)构造出一个新的数列,使得该数列的通项公式与递归数列的通项公式相同。

例如,在求解斐波那契数列(1,1,2,3,5,8,13……)的通项公式时,可以构造一个数列(1,x,x+1,x+2,x+3,x+5,x+8……),该数列的通项公式为xn=a1fn-1+a2fn,其中a1=1,a2=0,n≥2,据此可以求解出递归数列的通项公式。

高中数学数列构造法讲解

高中数学数列构造法讲解

高中数学数列构造法讲解数列是在自然界和实际生活中普遍存在的一种简单事物。

它的发现,是古希腊数学家丢番图在《算术》中完成的。

公元前三世纪以后,随着经济和科学的发展,人们开始对数进行分类,数学上就出现了整数和小数。

而当数被分成有限个部分时,数列就产生了。

一、构造法是学习数列极为有效的方法,其思路如下:(1)对称三角形法:将原数列前面两项(x, y)按照“ x+y=1”的对称关系联接起来,组成一个对称三角形,利用“直角三角形斜边上的中线等于斜边上的一半”的性质可以把这个对称三角形分解成两个全等的直角三角形。

1、已知,求。

分析:可先求出a1,再由直角三角形的性质得到a2;又由a2=b1,得到b2=c1。

2、已知,求。

分析:由数列求和公式,再结合公比的知识可以求出a2。

3、已知,求。

分析:(1)由题意可知数列中各项相差1,故a1-1=c1, a2-1=b2, a3-1=c2, a4-1=c3;(2)把对称三角形的底边y=1,则a2-y=c2;(3)因为c(3)等于1,所以a3-1=c2;(4)最后再将a1-1=c2代入数列中得到: a1=c1。

二、构造法要注意几点问题:3、已知,求。

分析:(1)根据奇数项的二次函数的性质,得到f(a) = -4,再根据两个正整数的和与积的运算法则可得a=5;(2)因为b=-2,则-b+b=1,得b=4;(3)因为e=2,故a=2;(4)根据f(a)=e, f(a)=a-1, f(a)=1,得a=1。

4、已知,求。

分析:根据(1)(2),设其为a1,得到a1=1;再根据对称三角形的性质,可得到a2=b1, b2=c1,即可得出a3=c2,a4=c3;最后代入数列求得即可得到a5=a3。

三、注意问题:在运用对称三角形法构造数列时,要注意两点:(1)应将原数列前面两项按“ x+y=1”的对称关系用线连接起来;(2)当数列中出现等差数列或等比数列时,往往通过两个等比数列之间的转化来构造数列,但注意转化过程中的“等量关系”不能改变。

高中数学基本不等式常用方法

高中数学基本不等式常用方法

高中数学基本不等式常用方法
高中数学基本不等式常用的方法有:
1. 分段讨论法:这种方法主要应用于处理不同区间上的不等式问题。

在解决这类问题时,需要将整体划分为若干个区间,对每个区间分别进行讨论,然后将结果综合起来。

2. 平方平均数与算术平均数、几何平均数、调和平均数之间的关系:对于非负实数 a 和 b,有如下关系:平方平均数≥ 算术平均数≥ 几何平均数≥ 调和平均数。

当且仅当 a = b 时,等号成立。

3. 调整系数:在处理某些特定类型的不等式问题时,可以通过调整系数来简化问题。

4. 换元法:对于一些复杂的不等式问题,可以通过引入新变量进行换元,将复杂的问题转化为简单的问题。

常用的换元方法有三角换元和代数换元。

5. 构造法:对于一些含有参数和绝对值的二次函数的最值问题,可以通过构造法来解决。

首先考虑区间的端点和中点,然后借助绝对值不等式进行合理配凑,最后得到所求的最优解。

6. 反证法:当直接证明某个命题困难时,可以尝试使用反证法。

首先作出与求证结论相反的假设,然后通过正确的推理导出矛盾,最后说明假设不成立,从而肯定原命题成立。

7. 放缩法:通过合理地放大或缩小某些量,将原不等式转化为易于处理的形式,从而解决问题。

8. 数学归纳法:对于一些与自然数相关的不等式问题,可以使用数学归纳法进行证明。

以上方法仅供参考,可以根据具体的问题选择合适的方法进行解答。

高中数学七大基本思想方法讲解

高中数学七大基本思想方法讲解

高中数学七大基本思想方法讲解高中数学的七大基本思想方法是:分类讨论法、递推法、画图法、符号法、假设法、构造法和倒推法。

第一,分类讨论法。

分类讨论法是指将问题中的条件按照具有共同特征的情况分别讨论,从而对问题进行全面深入的解析。

通过逐个分类讨论,找出各个情况的共性和特点,以及不同情况下的不同解决方法。

这种方法可以将复杂的问题变得简单明了,易于理解与解答。

举个例子,假设有一道题目要求求解方程2x+3=5的解集。

我们可以将其分为两类:当x为正数时,方程有且仅有一个解;当x为负数时,方程无解。

通过将问题进行分类讨论,我们可以得到方程的解集为{x,x=1}。

第二,递推法。

递推法是指通过已知的初始值或者关系式来推导出未知项的计算方法。

这一方法常常用于求解数列中的其中一项或一些项,以及解决一些逻辑推理问题。

在递推的过程中,可以发现规律,从而推导出一般项、通项、边界条件等重要信息。

以求解斐波那契数列为例,斐波那契数列的前两项为1,从第三项开始,每一项都是前两项的和。

我们可以利用这个关系式进行递推:F(n)=F(n-1)+F(n-2)。

通过递推,我们可以得到斐波那契数列的通项公式。

第三,画图法。

画图法是通过绘制几何图形的方法,对问题进行可视化的处理。

它可以使抽象的数学问题变得具体明了,通过观察图形的性质和特点,可以得到问题的解。

举个例子,假设要求解一个三角形的内角和。

我们可以通过画一个三角形,并在其中一点做垂线,将三角形划分为若干个小三角形。

通过观察这些小三角形,我们可以发现它们的内角和等于一个直角。

然后,我们可以用这个结论推导出原始三角形的内角和。

第四,符号法。

符号法是指通过引入合适的符号和代数运算,将实际问题抽象成为可以用代数式描述的数学问题。

通过对符号及其运算规则的运用,可以更加简洁地表达数学问题,进而进行求解。

比如,假设有一道题目要求求两个数的和,可以用符号法表示为a+b=x。

通过引入符号a、b和运算符号+,我们将实际问题抽象成了一个代数问题。

构造法在高中数学解题中的运用分析

构造法在高中数学解题中的运用分析

构造法在高中数学解题中的运用分析摘要:构造法是指在数学解题过程中,按照题目已经给出的条件,通过一定的构造方法得出题目的结论的数学模式。

在高中数学教学中应用构造法进行数学例题的讲解,能够为学生提供快速解题的方法。

利用逆向思维的构造法解决高中数学中的难题,能够充分的提高学生的解题速度和正确率。

本文主要从利用构造法解题的三种途径入手,通过分析例题的解题步骤,讲解具体构造法在其中发挥的重要作用。

关键词:构造法;高中;数学;解题高中数学这门学科要求学生必须能够形成自己的数理思维能力。

为了适应高中数学题目的复杂性和抽象性,教师应当在解题教学中合理引入构造法。

在遇到比较复杂难解的数学试题时,高中生可以利用题目已知的条件,由结论逆推出未知的部分条件,解决题目条件不足的问题,这种逆向推导思维就是构造法。

高中解题过程利用构造法有多种形式,可以构造方程、函数、数列等等形式来解决疑难复杂的数学问题。

利用构造法解题能够简化学生的解题过程,提高高中的解题效率和正确率。

一、利用构造法构造方程解题对于一些比较复杂的高中数学问题的解题过程,常用的构造法解题形式就是构造方程法,通过分析题目中已知的变量条件,构建出一元二次或者二元二次方程,通过方程的跟与题干中系数之间的关系来解决数学题目。

高中数学老师需要重点对构造方程法向学生进行讲解,包括构造方程法使用时的注意事项,题干中出现什么条件时可以使用构造方程法?如何根据题干中出现的部分已知条件构造方程等等,通过合适的例题进行构造方程法使用全过程的演示,保证整个解题的步骤,保证每一个学生都能听懂,并学会熟练的使用构造方程法解决数学难题。

同时,高中数学老师也可以引导学生自行在题目中已有的条件上,选择合适的等量方程,简化数学题目,将已知条件和结论更直观的联系起来,进而快速而正确的解决遇到的数学难题。

例题1:已知x、y分别为实数,且满足如下关系式,(x-1)3+2022(x-1)=-1同时满足(y-1)3+2022(y-1)=1,要求求出x+y=?首先分析这道题目,大部分高中生看到题目的第一部反映就是先求出x的值,然后再求出y的值,最后两者想加,得出题目中要求的答案。

构造法高中数学

构造法高中数学

构造法高中数学
1.构造函数法
2.构造圆模型
3.构造常见几何体
4.构造等差等比数列
5.构造向量解决平面几何问题
6.组合计数中的重要构造方法
7.圆锥曲线中的齐次化构造
8.构造概率模型解决问题
最近在立体几何选题压轴题的研究过程中,深深地感受到了构造法在解决一些数学问题中的巨大优势!这种方法在数学史上,也是威力巨大,比如维尔斯特拉斯就构造一个处处连续但却处处不可导的函数,再如黎曼函数的构造来表明牛顿积分的缺陷等等...这些构造出来的例子极大的推动了数学的发展.
当然,在高中数学中也经常出现构造方法,比如,在立体几何中经常通过构造一个正方体,圆锥等来解决一些比较陌生的问题. 此外,一些看似无关联的问题,经过抽象也可以构造出数学模型,例如当证明:世界上任意6个人,必有3人互相认识或3人互相不认识,就可以构造一个叫图论的数学模型来解决.
所以,当通过构造出来的数学方法,对象等能够使得原问题中隐含的关系和性质在新构造的数学对象中清晰地展现出来,并借助该数学对象方便快捷地解决数学问题的方法,就可以称为构造法. 基于此,我粗略的整理了一些目前高中数学中构造法的典型应用,这些方法在解决相关问题时可以起到“四两拨千斤”的效果,极大地提高了解题效率,是平时复习中不可不总结的.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学核心方法:构造法
构造法,顾名思义是指当解决某些数学问题使用通常方法按照定向思维难以解决问题时,应根据题设条件和结论的特征、性质,从新的角度,用新的观点去观察、分析、理解对象,牢牢抓住反映问题的条件与结论之间的内在联系,运用问题的数据、外形、坐标等特征,使用题中的已知条件为原材料,运用已知数学关系式和理论为工具,在思维中构造出满足条件或结论的数学对象,从而,使原问题中隐含的关系和性质在新构造的数学对象中清晰地展现出来,并借助该数学对象方便快捷地解决数学问题的方法。

历史上有不少著名的数学家,如欧几里得、欧拉、高斯、拉格朗日等人,都曾经用“构造法”成功地解决过数学上的难题。

数学是一门创造性的艺术,蕴含着丰富的美,而灵活、巧妙的构造令人拍手叫绝,能为数学问题的解决增添色彩,更具研究和欣赏价值。

近几年来,构造法极其应用又逐渐为数学教育界所重视,在数学竞赛中有着一定的地位。

构造需要以足够的知识经验为基础,较强的观察能力、综合运用能力和创造能力为前提,根据题目的特征,对问题进行深入分析,找出“已知”与“所求(所证)”之间的联系纽带,使解题另辟蹊径、水到渠成。

用构造法解题时,被构造的对象是多种多样的,按它的内容可分为数、式、函数、方程、数列、复数、图形、图表、几何变换、对应、数学模型、反例等,从下面的例子可以看出这些想法的实现是非常灵
活的,没有固定的程序和模式,不可生搬硬套。

但可以尝试从中总结规律:在运用构造法时,一要明确构造的目的,即为什么目的而构造;二要弄清楚问题的特点,以便依据特点确定方案,实现构造。

下面,我们通过几个例题,来简单看一下高中阶段几种常见的构造法。

例1.(构造函数)已知三角形的三边长分别为,,a b c ,且m 为正数,求证:a b c a m b m c m +>+++
解:构造函数()1x m f x x m x m =
=-++,则()f x 在()0+∞,上是增函数。

0a b c +>> ,()()f a b f c ∴+>。

()()()()a b a b a b f a f b f a b f c a m b m a b m a b m a b m
++=
+>+==+>++++++++ a b c a m b m c m ∴+>+++
例2.(构造距离)求函数
()f x =的最小值。

解:()f x =其几何意义是平面内动点(),0P x 到两定点()()1,4,3,2M N --的距离之和,当
,,P M N 三点共线时距离之和最小为MN ==即()
f x 的最小值为。

例3.(构造直线斜率)求函数()sin cos 3x f x x =- 的值域。

解:构造动点()cos ,sin P x x 与定点()3,0Q 的连线的斜率,而动点P 的轨迹为单位圆。

设直线PQ 的方程为()3y k x =-,即30kx y k --= 。

211,,844k k ≤∴≤∴-≤≤
即y ≤≤
例4.(构造方程)已知,,a b c R ∈,2221,1a b c a b c ++=++=,求c 的取值范围。

解: ()()2222222a b c ab ac bc a b c ++-++=++ ,
0ab ac bc ∴++=
1a b c +=- ()()1ab c a b c c ∴=-+=--
将,a b 看成方程()()2110x c x c c ----=的两根,
()()2,,0,1410a b R c c c ∈∆≥∴-+-≥
即()()11130,13
c c c -+≤∴-≤≤
练习
1. 求证: 31091022≥++=
x x y (构造函数) 解:设)3(92≥+=t x t 则
t t y t f 1)(2+==,用定义法可证:f (t )在),3[+∞上单调递增,令:3≤12t t < 则0)1)((11)()(2
1212122
212121>--=+-+=-t t t t t t t t t t t f t f
∴310313)3(910322=+=≥++=
f x x y
2. 已知01a <<,01b <<,求证:
22)1()1()1()1(22222222≥-+-+-+++-++b a b a b a b a
(构造图形)
解:构造单位正方形,O 是正方形内一点,O 到AD , AB 的距离为a , b , 则|AO | + |BO | + |CO | + |DO |≥|AC | + |BD |, 其中22||b a AO +=, 22)1(||b a BO +-=
2
2)1()1(||-+-=b a CO 22)1(||-+=b a DO
又:2||||=
=BD AC ∴
22)1()1()1()1(22222222≥-+-+-+++-++b a b a b a b a
3. 求函数y =
解:由根号下的式子看出11x+x =-且01x ≤≤
故可联想到三角函数关系式并构造2sin x θ=
(0)2πθ≤≤ 所以
sin cos )4y x x πθ=+=+, 当4πθ=即12x =时,max y =4. 求证:9)9(272≤-+x x ,并指出等号成立的条件。

(构造向量) 解:不等式左边可看成
7与 x 和2与29x -两两乘积的和,从而联想
到数量积的 坐标表示,将左边看成向量a =(
7,2)与b =( x , 29x -)的数量积,又
||||a b a b ≤,。

相关文档
最新文档