用逆矩阵求解线性方程组的方法-Read
毕业论文广义逆矩阵与线性方程组的求解
![毕业论文广义逆矩阵与线性方程组的求解](https://img.taocdn.com/s3/m/11df7b37eefdc8d376ee32f9.png)
广义逆矩阵与线性方程组的求解The solution of linear equations by the generalized inverse matrix专业: 数学与应用数学作者:指导老师:学校二○一摘要本文首先对矩阵的广义逆进行定义及其分类, 然后主要对一些重要的广义逆的性质和求解进行详细的讨论, 其中包括对减号逆的求解、Moore-Penrose 逆的存在性与唯一性的证明、左逆与右逆的性质与求解等等. 通过对这些重要的广义逆矩阵的性质和求解方法的研究, 最后探讨矩阵的广义逆在解线形方程组中的应用.关键词: 广义逆矩阵;线性方程组;相容方程组;通解AbstractThis article first to define the generalized inverse matrix and its classification, and then mainly on some important properties of generalized inverses and solution of a detailed discussion, including a minus sign for solving inverse, Moore-Penrose inverse of the existence and uniqueness of proof, the left inverse and right inverse of the nature of and solution and so on. On these important properties of generalized inverse matrix of the theory and method, the last of the generalized inverse matrix in the solution of linear equations.Keywords: generalized inverse matrix;linear equations;compatibility equations;general solution目录摘要 (I)ABSTRACT (II)0 引言 (2)1 矩阵的几种广义逆 (1)1.1)1(A的定义与计算 (3)1.5加号逆+A的性质及计算 (4)1.6左逆与右逆的定义 (5)2 用广义逆矩阵求解线性方程组 (7)2.1左右逆的应用 (7)2.2相容方程组的通解与-A的应用 (8)2.3+A的应用 (11)参考文献 (14)0 引言广义逆矩阵是通常逆矩阵的推广, 推广的必要性, 首先是从线性方程组的求解问题出发的, 设有线性方程组b Ax = (0.1)当A 是n 阶方阵, 且0det ≠A 时, 则方程组(0.1)的解存在, 并唯一. 1x A b -= (0.2)但是, 在许多实际问题中所遇到的矩阵A 往往是奇异方阵或是任意的n m ⨯矩阵 (一般n m ≠), 显然不存在通常的逆矩阵1-A , 这就促使人们去想象能否推广逆的概念, 引进某种具有普通逆矩阵类似性质的矩阵G , 使得其解仍可以表示为类似于式(0.2)的紧凑形式? 即Gb x = (0.3)1920年摩尔(E.H.Moor )首先引进了广义逆矩阵这一概念, 其后三十年未能引起人们的重视, 指直到1955年, 彭诺斯(R.Penrose )以更明确的形式给出了Moore 的广义逆矩阵的定义后, 广义逆矩阵的研究才进入了一个新的时期, 由于广义逆矩阵在数理统计、系统理论、最优化理论、现代控制理论等许多领域中的重要应用为人们所认识,因而大大推动了对广义逆矩阵的研究, 使得这一学科得到迅速的发展, 已成为矩阵的一个重要分支. (见参考文献[1][2])1 矩阵的几种广义逆1955年, 彭诺斯(R.Penrose )指出, 对任意复数矩阵n m A ⨯, 如果存在复矩阵m n A ⨯,满足A AXA = (1.1) X XAX = (1.2)AX AX H =)( (1.3)XA XA H =)( (1.4)则称X 为A 的一个 Moore —Penrose 广义逆, 并把上面四个方程叫做 Moore —Penrose 方程, 简称 M —P 方程.由于 M —P 的四个方程都各有一定的解释, 并且应用起来各有方便之处, 所以出于不同的目的, 常常考虑满足部分方程的 X , 叫做弱逆, 为引用的方便, 我们给出如下的广义逆矩阵的定义.定义1.1 设n m C A ⨯∈, 若有某个m n C X ⨯∈, 满足 M —P 方程(1.1)~(1.4)中的全部或其中的一部分, 则称X 为A 的广义逆矩阵.(见参考文献[3])例如有某个X , 只要满足式(1.1) , 则X 为A 的{}1广义逆, 记为{}1A X ∈; 如果另一个Y , 满足式(1.1), (1.2)则Y 为A 的{}2,1广义逆, 记为{}2,1A Y ∈; 如果{}4,3,2,1A X ∈, 则X 同时满足四个方程, 它就是 Moore —Penrose 广义逆, 等等. 总之, 按照定义 1.1可推得, 满足1个, 2个, 3个, 4个Moore —Penrose 方程的广义逆矩阵共有1544342414=+++C C C C 种, 但应用较多的事一下五种{}1A , {}2,1A , {}3,1A , {}4,1A , {}4,3,2,1A .其中每一种广义逆矩阵又都包含着一类矩阵, 分述如下:1.{}1A : 其中任意一个确定的广义逆, 称作减号逆, 或g 逆, 记为-A ; 2.{}2,1A : 其中任意一个确定的广义逆, 称作自反广义逆, 记为r A ; 3.{}3,1A : 其中任意一个确定的广义逆, 称作最小范数广义逆, 记为m A ; 4.{}4,1A : 其中任意一个确定的广义逆, 称作最小二乘广义逆, 记为i A ;5.{}4,3,2,1A : 唯一,称作加号逆, 或伪逆, 或 Moore-Penrose 逆, 记为+A .为叙述简单起见, 下面我们以n R 及实矩阵为例进行讨论, 对于n C 及复的矩阵也有相应结果.本文着重介绍减号逆-A 和加号逆+A 以及左逆与右逆的性质及计算, 并讨论它们在解线性方程组中的应用.1.1 (1)A 的定义与计算定义 1.1.1 设m n A C ⨯∈, 若m n C G ⨯∈满足AGA A =, 则称G 为A 的{1}-逆记为(1)A ,由定义可知{}{}m n C G A AGA G A ⨯∈==,|1.例如设1100A ⎛⎫= ⎪⎝⎭, 则100a G ⎛⎫= ⎪⎝⎭就是A 的{1}-逆, 这里a 可以任取. 不难看出A 的{1}-逆并不唯一.定理 1.1.1 设m n r A C ⨯∈, P , Q 分别为m 阶与n 阶非奇异方阵, 且000rIPAQ ⎛⎫= ⎪⎝⎭则 122122{1}(,1,2)r ijI G A Q P G i j G G ⎧⎫⎛⎫⎪⎪==⎨⎬ ⎪⎝⎭⎪⎪⎩⎭为任意阶数的矩阵. (证明见参考文献[7]) 例1 求矩阵101002221453A -⎛⎫⎪= ⎪ ⎪-⎝⎭的广义逆)1(A .解 构造分块矩阵340AI B I ⎛⎫=⎪⎝⎭, 通过适当变化, 将A 进行行列变换化为000rI ⎛⎫⎪⎝⎭形式, 并求出变换P , Q .31314110111001000100022201002220101453001044400110000001011000010000001000000010000001000000010000001000r r c c c c ++--⎛⎫⎛⎫⎪⎪⎪ ⎪ ⎪ ⎪- ⎪⎪−−−→- ⎪ ⎪ ⎪⎪⎪⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭323242221/21000100010012000001211011000011100000100000001000r r c c c c r ---⎛⎫⎪⎪⎪- ⎪−−−→- ⎪ ⎪-- ⎪⎪ ⎪⎝⎭,因此有10001/20121P ⎛⎫ ⎪= ⎪ ⎪-⎝⎭, 1011011100100001Q -⎛⎫⎪--⎪= ⎪⎪⎝⎭.于是我们取12G , 21G , 22G 均为0得()⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛=00000002100010000000100011P Q A .1.2 加号逆+A 的性质及计算定义1.2.1设n m R A ⨯∈, 若存在m n ⨯ 阶矩阵 X , 它同时满足: 1) A AXA = 2)X XAX = 3)()AX AX T= 4)()XA XA T=则称X 为 A 的加号逆, 或伪逆, 或 M oore-Penrose 逆, 记为+A .从定义中可看出, 加号逆必同时是减号逆、自反广义逆、最小范数广义逆和最小二乘广义逆, 在四个条件中, X 与A 完全处于对称地位. 因此A 也是+A 的加号逆, 即有()A A =++; 另外可见, 加号逆很类似于通常的逆阵, 因为通常的逆1-A 也有下列四个类似的性质:1.A A AA =-12. 111---=A AA A3. I AA=-14. I A A =-1由定义1.2.1 中的条件 3)和 4)还可看出, +AA 与A A +都是对称矩阵.前面已经介绍了什么样的矩阵称为M P -广义逆矩阵, 下面将讨论M P -广义逆矩阵的唯一性.定理1.2.1对任意m n A C ⨯∈, A +存在且唯一.证明 设()rank A r =, 若0r =则A 是m n ⨯阶零矩阵, 显然n m ⨯阶零矩阵满足条件.若0r >则A 的满秩分解为A FG =, 其中m r r F C ⨯∈, r n r G C ⨯∈, 于是11()()H H H H B G GG F F F --=即为所求的A +. 因为(1) ()11()()H H H H ABA FG G GG F F F FG FG A --===; (2) 1111()()()()H H H H H H H H BAB G GG F F F FGG GG F F F ----=11()()H H H H G GG F F F B --==;(3) 111()(()())(())H H H H H H H H H AB FGG GG F F F F F F F ---== 1()H H F F F F AB -==;(4) 111()(()())(())H H H H H H H H H BA G GG F F F FG G GG G ---== 1()H H G GG G BA -==. 由此说明了P M -广义逆的存在性.又设,{1,2,3,4}X Y A ∈则有()()()()H H H H H X XAX X AX XX AYA X AX AY XAY =====()()()()H H H H H H H XA YAY XA YA Y A X A Y Y YAY Y =====. 这便说明了A +的唯一性.定理 1.2.2 设A 为秩为r 的m n ⨯矩阵, 其满秩分解为A FG =, 其中m rr F C ⨯∈,r nr G C ⨯∈, 则11()()H H H H A G GG F F F +--=.A +的唯一性前面已经作出了说明, 此定理的证明见参考文献[7]1.3 左逆与右逆的定义定义 1.3.1 设A 是m n ⨯矩阵, 若有n m ⨯矩阵G 满足m AG I =(或n GA I =), 则称G 为A 的右逆(或左逆), 记为1R A -(或1L A -).定理1.3.1 设A 是m n ⨯的矩阵, A 有右(左)逆1R A -(1L A -)的充要条件是()rank A m =(()rank A n =).若A 有右(左)逆, 则其中一个右(左)逆是11()H H R A A AA --=(11()H H L A A A A --=), 通式为11()H H R A VA AVA --=(11()H H L A A VA A V --=)其中V 是任意满足()()()()()H H rank A rank AVA rank A rank A VA ==的矩阵.证明 充分性: 已知()rank A m =, 则()H rank AA m =, H AA 是可逆矩阵, 若记1()H H G A AA -=, 则1()H H m AG AA AA I -==, 因此G 是A 的右逆.必要性: 设G 是A 的一个右逆, 则AG =m I . 由于()()()m m rank I rank AG rank A m ==≤≤,因此()rank A m =.设V 是任意满足()()H rank A rank AVA =的矩阵, 最后证明右逆的通式可以表示成为11()H H R A VA AVA --=的形式.由于1()H H m AVA AVA I -=, 因此1()H H VA AVA -是A 的右逆. 设G 是A 的任意右逆,记H V GG =, 则H H H m AVA AGG A I ==因此()()H rank A rank AVA m ==. 又因为1()H H VA AVA -=H H m m GG A I GI G ==,由上分析可知A 的任意右逆G 都可找到V 使其表示为1()H H G VA AVA -=的形式.因此矩阵A 的右逆的通式为11()H H R A VA AVA --=.对于左逆同理证明.例2求矩阵111000A ⎛⎫⎪= ⎪ ⎪⎝⎭的左逆1L A -. 解 由于1111021101001100H A A ⎛⎫⎛⎫⎛⎫ ⎪== ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪⎝⎭, 所以我们有11121110010()11100110H HL A A A A ---⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭例3 设 ⎥⎦⎤⎢⎣⎡--=210121A ,试求其右逆. 解 易知rank 2=A ,即A 是最大秩矩阵,有11210121210121210121--⎪⎪⎪⎭⎫ ⎝⎛⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎦⎤⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=R A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡824365141.2 用广义逆矩阵求解线性方程组考虑非齐次线性方程b Ax = (2.1) 其中n m C A ⨯∈, m C b ∈给定, 而m C x ∈为待定向量. 若()rankA b A rank =, 则方程(2.1)有解, 或称方程组相容, 否则, ()rankA b A rank ≠, 则方程(2.1)无解, 或称方程组不相容或矛盾方程组.2.1 左右逆的应用定理2.1.1 设Ax b =是相容性线形方程组, A 是行满秩矩阵, 1R A -是它的一个右逆.显然11()R R A A b AA b b --==, 因此1R A b -是线形方程组的解. 又若A 为列满秩矩阵, 1L A -是它的一个左逆, 则1L A b -是线形方程组的解.例4 求方程组Ax b =的解其中111000A ⎛⎫⎪= ⎪⎪⎝⎭, 210b ⎛⎫ ⎪= ⎪ ⎪⎝⎭. 解 显然方程组是相容的. 由于从前面已经知道1010110L A -⎛⎫= ⎪-⎝⎭,因此方程组的解为120101111010L x A b -⎛⎫⎛⎫⎛⎫ ⎪=== ⎪ ⎪ ⎪-⎝⎭⎝⎭⎪⎝⎭.2.2 相容方程组的通解与-A 的应用线性方程组相容时, 若系数矩阵n m C A ⨯∈, 且非奇异(即0det ≠A ), 则有唯一的解b A X 1-= (2.2) 但当A 为奇异方阵或长方矩阵时, 它的解不是唯一的, 此时1-A 不存在或无意义,那么我们自然会想到, 这时是否能用某个矩阵G 把一般解(无穷多)表示成 Gb X = (2.3) 的形式呢? 这个问题是肯定的. 我们将会发现A 的减号逆A 充当了这一小角色.对于一个m n ⨯阶相容的线性方程组, 不论系数矩阵A 是方阵还是长方矩阵, 是满秩的还是降秩的, 我们都有一个标准的求解方法, 并且能把它的解表达成非常简洁的形式. 下面定理形式给出.定理2.2.1 如果线性方程组(2.1)是相容的, -A 是A 的任一个减号逆, 则线性方程组(2.1)的一个特解可表示成b A X -= 而通解可以表示成()z A A I b A X ---+= (2.4)其中z 是与X 同维的任意向量.(见参考文献[6])证 因为b AX =相容, 所以必有一个n 维向量, 使 b AW = 成立, 又由于是-A 是A 的一个减号逆, 所以A A AA =-,则有AW AW AA =-.亦即b b AA =-.由此得出b A X -= (2.5) 是方程组(2.1)的一个特解.其次, 在式子(2.4)两端左乘A . 则有b AA Z A A I A b AA AX ---=-+=)(由于b b A A =-)(, 所以式(2.4)确定的X 是方程组(2.1)的解, 且当x ~为任意一个解时, 令b A X Z --=~, 有)~)(()(b A X A A I Z A A I -----=- =Ab A X A A b A X ---+--~~ =b A b A b A X ---+--~=b A X --~从而得()Z A A I b A X ---+=~证毕.这表明由式(2.4)确定的解时方程组(2.1)的通解. 例5 求解⎩⎨⎧=+-=-+221232321x x x x x解 将方程组写成矩阵形式 b AX = 其中⎥⎦⎤⎢⎣⎡--=210121A ,⎥⎦⎤⎢⎣⎡=21b 由于()rankA b A rank ==2, 所以方程组是相容的, 现在只要要求得A 的一个减号就可以了, 由例1.3.2知矩阵A 的一个减号逆为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-8326451411RA 利用公式(2.4), 我们就可立即求得方程组的通解:()Z A A I b A X R R 11---+=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++-++---+=321321321213192461036913141z z z z z z z z z 也即()()()⎪⎪⎪⎩⎪⎪⎪⎨⎧++-=++-=--+=32133212321123191412461014136913141z z z x z z z x z z z x其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=321z z z Z 为任一向量. 例6 求方程组Ax b =其中101102221453A -⎛⎫ ⎪= ⎪ ⎪-⎝⎭, 101b ⎛⎫⎪= ⎪ ⎪-⎝⎭的解.解 不难看出, 该方程组是相容的, 由于前面已经求得(1)1000120000000A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭, 所以方程组的通解为1342343344110010001011011012001000120002220000010000114530000001000y y y y y y x y y y y +-⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⎛⎫⎛⎫⎢⎥ ⎪ ⎪ ⎪⎪⎪-- ⎪ ⎪⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪=+-= ⎪ ⎪⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎢⎥ ⎪⎪ ⎪⎪⎪⎝⎭⎝⎭⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦其中3y , 4y 为任意实数.2.3 +A 的应用(一)判别线性方程组有解.普通线性代数中判别方程组b AX =有解的方法是用矩阵的秩,即()rankA b A rank =时有解;而有了广义逆矩阵理论之后, 便可用广义逆矩阵的方法判别, 并可同时求出解.结论1: 线性方程组b AX =有解b AA b +=⇔. 证 若线性方程组b AX =有解.不妨设其解为a ,则()()b AA Aa AA a A AA Aa b +++====反之, 若有b AA b +=, 则()()b A X A b A X b A X A b AA b AX ++++=⇒≠=-⇒=-⇒==000即b A X +=为线性方程组的一个解. (二)求齐次线性方程组的解空间利用广义逆矩阵可以求出齐次方程组的一切解结论2: 齐次线性方程组0=AX 的解空间=W {()Y Y A A E +-为任意列向量} 证 任取()W A A E a ∈-=+β, 有()()0=-=-=++ββA AA A A A E A Aa , 则a 为齐次线性方程组的解. 反之.若a 为方程组的解, 即0=Aa (2.3.1)两边左乘以A A +, 得0=+AAa A (2.3.2 )联立以上两式有()0=-+a A A E A (2.3.3)由(2.3.3)知: ()a A A E +-为方程组的解, 且()W a A A E ∈-+.(三) 判别齐次线性方程组有唯一解一般由个方程以及个未知数组成的齐次线性方程组0=AX 有唯一解的充分必要条件是0≠A . 但是当方程组的个数与未知数的个数不相等时, 不是方阵, 不能有用行列式判别. 可以用广义逆矩阵的方法判别如下:结论3: 齐次线性方程组0=AX 有唯一解E A A =⇔+证 ⇒ 若齐次线性方程组有唯一解, 则唯一解即为零解. 若E A A ≠+, 则0≠-+A A E由结论2知, 0≠∃Y , 使得()0≠-=+Y A A E a , 为方程组的解, 这与方程组有唯一零 解矛盾. 所以E A A =+.⇐ 若E A A =+, 则0=-+A A E , 由结论2知此时解空间有唯一零解. (四)求非齐次线性方程组的解空间结论4: 非齐次线性方程组b AX =的解空间=H {()Y Y A A E b A ++-+为任意 列向量}.事实上, 由线性方程组的一般理论知, 非齐次方程组的通解应该为对应齐次 的通解和自身的一个特解之和. 结论1、2告诉我们: b A +为其自身的一个特解; 而()Y Y A A E +-为对应齐次的通解(Y 取任意列向量). 显然即为其解空间.例7 求b AX =的通解. ⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=201,420021b A解 因为 ()2,1201⎪⎪⎪⎭⎫ ⎝⎛==FG A , 5=H GG , 5=F F H ,所以()b b AA A =⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=+--+2012012001000010052512014022012514200214022012512,0,1552111 通解为()Y Y A A E X ⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎭⎫ ⎝⎛=-+⎪⎪⎭⎫ ⎝⎛=+12245121512151. 其中Y 为任意列向量.致谢 本文是在 的指导和帮助下完成的, 在此对汪教授表示衷心的感谢!参考文献[1] 姜同松编. 高等代数解题方法[M]. 石油大学出版社. 2001.[2] 北京大学数学系几何与代数教研室代数小组编. 高等代数[M]. 北京:高等教育出版社,1988.[3] 蔡剑芳. 高等代数综合题解[M]. 湖北科学技术出版社. 1986.[4] 王品超. 高等代数新方法[M]. 济南:山东教育出版社. 1989.[5] 黄有度, 狄成恩, 朱士信. 矩阵理论及其应用[M]. 合肥: 中国科学技术大学出版社, 1995.[6] 林升旭. 矩阵论学习辅导与典型题解析[M]. 武汉: 华中科技大学出版社, 2003.[7] 苏育才, 姜翠波, 张跃辉. 矩阵理论[M]. 北京: 科学出版社, 2006.[8] 李新, 何传江. 矩阵理论及其应用[M]. 重庆: 重庆大学出版社, 2005.[9]Verler.W.J.Vectors Structures and Solutions of linear Matrix Equation, linear Algebra Appl;1975.180-187.[10] Dai Hua.On the symmetric Solutions of linear Matrix Equation, linear Algebra Appl.1990(131)1-7.。
MATLAB计算方法3解线性方程组计算解法
![MATLAB计算方法3解线性方程组计算解法](https://img.taocdn.com/s3/m/1e3dc8c270fe910ef12d2af90242a8956becaac7.png)
MATLAB计算方法3解线性方程组计算解法线性方程组是数学中的一个重要问题,解线性方程组是计算数学中的一个基本计算,有着广泛的应用。
MATLAB是一种功能强大的数学软件,提供了多种解线性方程组的计算方法。
本文将介绍MATLAB中的三种解线性方程组的计算方法。
第一种方法是用MATLAB函数“linsolve”解线性方程组。
该函数使用高斯消元法和LU分解法求解线性方程组,可以处理单个方程组以及多个方程组的情况。
使用该函数的语法如下:X = linsolve(A, B)其中A是系数矩阵,B是常数向量,X是解向量。
该函数会根据A的形式自动选择求解方法,返回解向量X。
下面是一个使用“linsolve”函数解线性方程组的例子:A=[12;34];B=[5;6];X = linsolve(A, B);上述代码中,A是一个2×2的系数矩阵,B是一个2×1的常数向量,X是一个2×1的解向量。
运行代码后,X的值为[-4.0000;4.5000]。
第二种方法是用MATLAB函数“inv”求解逆矩阵来解线性方程组。
当系数矩阵A非奇异(可逆)时,可以使用逆矩阵求解线性方程组。
使用“inv”函数的语法如下:X = inv(A) * B其中A是系数矩阵,B是常数向量,X是解向量。
该方法先计算A的逆矩阵,然后将逆矩阵与B相乘得到解向量X。
下面是一个使用“inv”函数解线性方程组的例子:A=[12;34];B=[5;6];X = inv(A) * B;上述代码中,A是一个2×2的系数矩阵,B是一个2×1的常数向量,X是一个2×1的解向量。
运行代码后,X的值为[-4.0000;4.5000]。
第三种方法是用MATLAB函数“mldivide”(或“\”)求解线性方程组。
该函数使用最小二乘法求解非方阵的线性方程组。
使用“mldivide”函数的语法如下:X=A\B其中A是系数矩阵,B是常数向量,X是解向量。
课程思政元素融入线性代数的教学研究——以逆矩阵为例
![课程思政元素融入线性代数的教学研究——以逆矩阵为例](https://img.taocdn.com/s3/m/6467f654f56527d3240c844769eae009581ba2fc.png)
㊀㊀㊀㊀数学学习与研究㊀2022 4课程思政元素融入线性代数的教学研究课程思政元素融入线性代数的教学研究㊀㊀㊀ 以逆矩阵为例Һ张林丽1㊀张晶晶1㊀刘德兵1㊀原乃冬2㊀(1.海南大学应用科技学院,海南㊀儋州㊀571737;2.海口经济学院网络学院,海南㊀海口㊀571127)㊀㊀ʌ摘要ɔ逆矩阵是线性代数中一个重要的数学概念,本文基于加密电文的破解问题,运用问题驱动法和类比法构造出逆矩阵概念,激发学生的爱国热情,培养学生的创新能力;利用研究式㊁类比式和启发式的教学方法推导出矩阵可逆的充要条件和可逆矩阵的性质,培养学生科学严谨的态度,引导学生树立正确的人生观,提高学生提出㊁分析㊁解决问题的能力以及在学习中发现规律和总结规律的能力;运用启发式教学,探讨逆矩阵在求解矩阵方程和在保密通信中的应用,引导学生行事做人要遵纪守法,提高学生学习的兴趣和应用知识解决实际问题的能力.本案例将课程思政元素与线性代数知识相结合,实现了在教学中立德树人的任务.ʌ关键词ɔ线性代数;逆矩阵;课程思政元素ʌ基金项目ɔ本文系海南大学教育教学改革研究项目(项目编号:hdjy2150,hdjy2074,hdjy2106);海南省高等学校教育教学改革研究项目(项目编号:Hnjg2021ZD-7);海南大学应用科技学院教育教学改革研究项目(项目编号:HDYKJG202001,HDYKJG202005).线性代数是非数学类专业本科生学习的一门公共基础课程,具有内容抽象㊁知识点多和逻辑严密等特点.为了提高学生的学习兴趣,许多学者围绕线性代数教学设计进行了研究[1-4].2016年,习近平总书记在全国高校思想政治工作会议上提出了 各类课程与思想政治理论课要同向同行,形成育才育人协同效应 之后,各高校纷纷开展关于课程思政的研究.教师在线性代数课程教学中恰到好处地增加一些思政元素,通过课程教学的精心组织和实施,既可以向学生渗透数学概念㊁公式㊁定理的形成和发展脉络,培养学生严谨务实的认识论和科学观,又可以从知识点中发掘哲学思想与元素,将一些理论内容与折射出的科学精神相融合,帮助学生树立正确的人生观㊁价值观和世界观,成为全面发展的高素质应用型人才.目前,一些研究者在这一领域进行了部分探究,指出了课程思政元素融入线性代数的必要性和重要意义[5-7].但是目前对课程思政元素融入线性代数的研究大都着眼于理论研究层面,如何将课程思政元素融入线性代数课堂教学中,如何将课程思政落到实处仍需要进一步探索[8].以学生为中心的教学设计,强调的是学生的主体地位,将以 教 为中心变以 学 为中心,可以提高学生学习的积极性和课堂学习效果.本文以逆矩阵这一节教学内容的讲授为例,以学生为中心进行教学模型的合理设计,实现了线性代数教学中思政元素的融入,达到了于润物无声中立德树人的教学目标.一㊁课题引入播放电视剧‘永不消失的电波“中解密电文的一个片段,视频播放完后,教师讲解到:为了保密起见,我们在发送电文时需要对电文加密,接收方再对其解密就能知道原电文的意思.以密码学中的希尔密码为例,其加密方式为:26个英文字母 A-Z 一一对应于自然数 1-26 .比如:我们要发送一份内容为 ABC 的明文电文,一般先使用列矩阵X=(1,2,3)T来表示它,X称为明文矩阵;加密的方法是在X的左侧乘以矩阵A,A称为加密矩阵.设加密矩阵A=111011101æèççöø÷÷,则B=AX=6,5,4()T就是收到的密文矩阵.很显然,已知加密矩阵A和密文矩阵B,要解密得到明文矩阵X就是求解矩阵方程AX=B.今天,老师也给同学们发来一封密信:B=988565775580160119145æèççöø÷÷,秘钥是:ABCBBACDC,请猜猜老师想对同学们说什么呢?想成为密码大师吗?就让我们一起来学习如何利用逆矩阵破解加密电文.设计意图:教师采用问题驱动法,将如何破解加密电文的问题作为引入,激发学生的学习兴趣.‘永不消逝的电波“是一部战争题材的影视剧,电视剧片段的播放能激发学生的爱国热情,我们现在的幸福生活是无数烈士用生命和鲜血换来的,从而勉励学生 不忘初心,牢记使命 ,为祖国的繁荣昌盛而努力奋斗.二㊁逆矩阵的定义上一节的知识内容利用待定系数法求矩阵方程AX=B的解时很麻烦,我们是否可以借鉴一下代数方程ax=b求解的思想方法呢?在代数方程ax=b中,当aʂ0时,因为a㊃a-1=a-1㊃a=1,其解为x=a-1b.在矩阵的运算中,单位矩阵E相当于数的乘法运算中的1,因此,为了求解矩阵方程AX=B和XA=B,希望能找到一个矩阵A-1,满足AA-1=A-1A=E,使得AX=B的解为X=A-1B,以及XA=B的解为X=BA-1.所以有如下定义:All Rights Reserved.㊀㊀㊀㊀㊀数学学习与研究㊀2022 4定义㊀[9]对于n阶矩阵A,如果存在一个n阶矩阵B,使得AB=BA=E,则称A为可逆矩阵,简称矩阵A可逆;并称矩阵B为A的逆矩阵,记作:A-1,即B=A-1,于是有AA-1=A-1A=E.说明:(1)可逆矩阵是方阵;(2)A,B互为逆矩阵,即A-1=B,B-1=A;(3)A的逆矩阵记为:A-1,不能写成1A;(4)A可逆,则|A|ʂ0;(5)A的逆矩阵是唯一的;(6)E-1=E;On不可逆.设计意图:破解密码即求解矩阵方程,教师带领学生类比代数方程构建出逆矩阵的定义,让学生领悟到数学概念是由求解实际问题的需要而构建出来,而不是凭空产生的,帮助学生弄清逆矩阵概念的来龙去脉,激发学生的创造力,培养学生严谨㊁务实的认识论和科学观.为了强化学生对逆矩阵概念的理解,我们给出六点说明,培养学生科学严谨的态度.三㊁矩阵可逆的充要条件由E-1=E;On不可逆,说明并不是每一个方阵都可逆.教师提问:(1)方阵可逆的充要条件是什么呢?我们知道方阵A的行列式是一个数,类比在代数论中,数a 可逆 ⇔aʂ0,是否有方阵A可逆⇔|A|ʂ0?(2)当方阵A可逆时,如何来求方阵A的逆矩阵呢?教师带领学生回忆上节课所讲的伴随矩阵A∗的一个基本性质:AA∗=A∗A=|A|E,它离我们所求的AA-1=A-1A=E只有一步之遥,这一步是需要条件的,请同学们想一想应该是什么呢?进一步启发学生由AA∗=A∗A=|A|E推导出:A可逆的必要条件是|A|ʂ0;又因为A可逆时,一定有|A|ʂ0,于是得到教材中的定理1:定理1(可逆矩阵的判别定理)[9]n㊀阶方阵A可逆的充要条件是|A|ʂ0,且当A可逆时,有A-1=1|A|A∗,其中A∗为A的伴随矩阵.注:利用定理1求逆矩阵的方法称为伴随矩阵法.设计意图:教师利用研究式和类比式的教学方法,有利于学生理解定理,同时培养学生提出问题㊁分析问题和解决问题的能力.通过定理的充分条件和必要条件的推导,培养学生严谨的科学态度.由矩阵的可逆与不可逆,引出 对立和统一 的辩证关系,因对立能由此及彼,因统一能相互利用,构成了线性代数丰富的知识体系.例1㊀已知A=1958æèçöø÷,求A-1.总结㊀当abcdʂ0时,abcdæèçöø÷-1=1ad-bcd-b-caæèçöø÷.口诀㊀主对调㊁次添负㊁乘行列式分之一.注意㊀此口诀只适合于二阶方阵求逆矩阵.例2㊀已知A=4-13-2123-10æèççöø÷÷,求A-1.总结㊀用伴随矩阵法求逆矩阵的步骤:(1)计算行列式|A|,当|A|ʂ0时,方阵A的逆矩阵存在;(2)求伴随矩阵A∗;(3)利用公式A-1=1|A|A∗,求出A-1.设计意图:让学生由一般方法总结出特殊矩阵的逆的求法公式,使计算简洁的同时又培养了学生在学习知识过程中获得的成就感.将全班分成4组,让每个小组合的学生分别计算行列式|A|㊁伴随矩阵A∗的三行,最后教师带领学生一起算出A-1,目的是减少课内简单计算所用的时间,充分突出教学重点,分散教学难点,还能让学生获得到团队合作的成就感.学生由例2的解题过程可以总结出用伴随矩阵法求逆矩阵的三步骤,在第一章学过行列式的计算,在上节课学过伴随矩阵的求法,这样就达了用旧知识解决新问题的目的.对比例1和例2的解题过程,可以看出:随着矩阵阶数的增加,用伴随矩阵法求逆矩阵的计算量将会大大增加,于是在第三章我们会介绍求逆矩阵的新方法 初等变换法.四㊁抽象矩阵可逆的判定从前边的研究中可知定义法和伴随矩阵法各有其利弊,我们将其综合起来可否找到一条捷径呢?带领学生分析:AB=E⇔|A||B|=1⇔|A|ʂ0,|B|ʂ0⇔方阵A,B都可逆,且B=EB=(A-1A)B=A-1(AB)=A-1E=A-1,所以只要满足AB=E就能得出A,B互为逆矩阵的结论.于是得到如下推论:推论㊀[9]:若同阶方阵A,B满足AB=E(或BA=E),则A-1=B,B-1=A.此推论说明:如果要验证A是否可逆,且矩阵B是否为A的逆矩阵,那么只要验证AB=E或BA=E中的一个就行,该方法称为验证法.例3㊀设方阵A满足A2-A-2E=0,证明A可逆,并求A-1.设计意图:教师采用启发式教学,利用分析法从结论出发寻求每一步推导的思路,培养学生的逻辑思维能力,并将研究问题和解决问题贯穿教学的始终.五㊁逆矩阵的运算性质教师让学生利用推论验证:若矩阵A,B可逆,常数kʂ0,则A-1,kA,AB,AT是否可逆?并验证:(A-1)-1=A,(kA)1kA-1()=E,(AB)-1(B-1A-1)=E,(AT)(A-1)T=E,|A-1||A|-1=1.进而得出教材中逆矩阵的5条运算性质[9]:(1)若矩阵A可逆,则A-1也可逆,且(A-1)-1=A;(2)若矩阵A可逆,数kʂ0,则(kA)-1=1kA-1;All Rights Reserved.㊀㊀㊀㊀数学学习与研究㊀2022 4(3)两个同阶可逆矩阵A,B的乘积是可逆矩阵,且(AB)-1=B-1A-1;注:此性质可推广到任意有限个同阶可逆矩阵的情形,即若A1,A2, ,An均是n阶可逆矩阵,则A1A2 An也可逆,且(A1A2 An)-1=A-1n A-12A-11.(4)若矩阵A可逆,则AT也可逆,且有(AT)-1=(A-1)T;(5)若矩阵A可逆,则|A-1|=|A|-1.例4㊀若三阶方阵A的伴随矩阵为A∗,已知|A|=12,求|(3A)-1-2A∗|.设计意图:教师采用启发式教学法,让学生利用推论得出逆矩阵的5条性质,提高学生在学习中发现规律和总结规律的能力,同时培养学生缜密的思维习惯和严谨求实的科学态度.设计例4的目的是锻炼学生利用性质进行计算的能力.六㊁逆矩阵的应用(一)逆矩阵在解矩阵方程中的应用含有未知矩阵X的方程称为矩阵方程,有如下三种标准形式的矩阵方程[9]:(1)矩阵方程AX=B,其中A为n阶可逆方阵,则AX=B有唯一解:X=A-1B;(2)矩阵方程XA=B,其中A为n阶可逆方阵,则XA=B有唯一解:X=BA-1;(3)矩阵方程AXB=C,其中A为n阶可逆方阵,B为m阶可逆方阵,则AXB=C有唯一解:X=A-1CB-1.例5㊀利用逆矩阵求解线性方程组4x1-x2+3x3=2-2x1-x2+3x3=03x1-x2=1ìîíïïï.设计意图:与引入相呼应,强调有了逆矩阵相当于矩阵有了类似于数的除法运算.解释之所以有三种标准形式的矩阵方程,是因为矩阵乘法不满足交换律,即空间位置不能变,但时间次序可以变.教师可顺势引导学生行事做人要遵纪守法.例5的求解过程用到例2的结果,设计的目的是减少课堂上计算的时间,将授课重点放在掌握解决问题的方法和数学的思维方法上.例5讲解完后,教师提问:用逆矩阵求解矩阵方程的条件和Gramer法则的条件是否相同呢?条件是相同的,因为方阵A可逆的充要条件是|A|ʂ0.教师继续提问:矩阵的乘法一般不满足消去律,两个非零矩阵的乘积也可能是零矩阵,即A,B,C是同阶方阵,由AB=AC不一定能推出B=C,由AB=O不一定能推出A=O或B=O.今天学习了逆矩阵之后,请同学们思考一下,要使得推导关系成立,需要加什么条件呢?当方阵A可逆时,在等式AB=AC两边左乘逆矩阵A-1则可得到B=C.在等式AB=O两边左乘逆矩阵A-1则可得到B=O.该提问的设计有利于培养学生 立体㊁全面地学 的学习习惯,以及构建前后知识的关联.(二)逆矩阵在保密通信中的应用已知加密矩阵A和密文矩阵B,要解密得到明文矩阵X就是求解矩阵方程AX=B,而当加密矩阵A是可逆矩阵时,可得明文矩阵X=A-1B.所以,双方只需要事先约定好加密矩阵A,当接收方收到加密电文时,利用逆矩阵A-1即可进行解密.还记得前文老师发来的密信吗?它的答案是:ILOVEYOU.教师进一步提问:是否有其他加密方式呢?因为矩阵方程有三种标准形式,解密的过程就是求解矩阵方程的过程,所以还可以用加密矩阵A右乘明文矩阵X,也可以寻找两个可逆矩阵A和A1,分别左乘和右乘加密AXA1.接着,教师布置今天的一道作业题:请同学们利用今天所学的知识,尝试给老师或者同学发一封有趣的密信.七㊁小结思政元素的融入既要不失时机,又要润物无声.逆矩阵的定义㊁性质和定理中,研究的主体都是互逆矩阵A和B,其实单位矩阵看似可有可无,但其可承载前所未有的重任,如AA-1=A-1A=E,承担着连接两个互逆矩阵的重要桥梁作用;在 已知A2-A-2E=0,证明A可逆,并求A-1 的解题过程中,等位矩阵E也是哪里需要哪里搬.教师也要引导学生树立正确的人生观,我们要做那个 E ,低调做人,认真做事,时刻准备着,哪里需要哪里去;做一名有思想㊁有抱负的人才,在祖国和人民需要的时候,做出应有的贡献.ʌ参考文献ɔ[1]冯艳刚.线性代数微课教学设计研究 以逆矩阵的定义教学为例[J].赤峰学院学报(自然科学版),2018,34(8):154-155.[2]何俊.问题驱动教学法在线性代数课堂教学中的应用[J].课程教育研究,2018(48):123-124.[3]郑玉军,华玉春,汤琼.问题驱动教学法在‘线性代数“课程教学中的应用与实践[J].湖南科技学院学报,2018,39(10):5-7.[4]涂正文,吴艳秋,彭扬.线性代数课程中 逆矩阵 的教学设计与思考[J].亚太教育,2015(10):91.[5]孙晓青,薛秋芳,秦新强.新工科形式下 课程思政 在‘线性代数“课程中的体现[J].当代教育实践与教学研究,2019(13):48-49.[6]张敬华,林玉蕊,赖尾英,等. 课程思政 在‘线性代数“课程教学改革中的研究与探索[J].中文科技期刊数据库(全文版)教育科学,2019(12):350-351.[7]安玉娥,张东,郝瑞丽.大学数学专业课程思政化的有效路径探析 以‘高等代数“课程为例[J].知识文库,2020(13):109-110.[8]张林丽,原乃冬,张晶晶,白忠玉.线性代数中特征值与特征向量的教学设计[J].数学学习与研究,2021(10):8-9.[9]工程数学:线性代数(第6版)[M].北京:高等教育出版社.2014.All Rights Reserved.。
线代矩阵求解题技巧
![线代矩阵求解题技巧](https://img.taocdn.com/s3/m/8c39d629876fb84ae45c3b3567ec102de2bddfda.png)
线代矩阵求解题技巧线性代数是数学中的一个重要分支,广泛应用于科学和工程学科中。
矩阵求解是线性代数中的一个基本概念,它是解线性方程组、求特征值和特征向量等问题的重要工具。
下面将介绍一些线性代数矩阵求解的基本技巧。
1. 高斯消元法高斯消元法是求解线性方程组的常用方法之一。
该方法的基本思想是通过矩阵变换将线性方程组化为上三角形方程组或者行最简形式,从而得到方程组的解。
高斯消元法具体步骤如下:(1)将线性方程组写成增广矩阵的形式;(2)选取一个主元(通常选取主对角线上的元素),并通过一个变换将该元素下面的所有元素置零;(3)对主元元素下面的行执行类似的操作,直到所有元素都变为零或者上三角矩阵形式;(4)回代求解未知数。
2. LU分解LU分解是将一个矩阵分解为下三角矩阵L和上三角矩阵U的乘积的方法。
这个方法通常用于解决多次使用相同矩阵求解线性方程组的场景。
LU分解的具体步骤如下:(1)设一个n阶方阵A,将其分解为A=LU;(2)通过高斯消元法将A化为上三角矩阵U;(3)构造下三角矩阵L,使得A=LU成立。
3. 矩阵的逆和伴随矩阵对于一个可逆矩阵A,可以通过求解逆矩阵来求解线性方程组。
设A为n阶可逆方阵,若存在一个n阶矩阵B,满足AB=BA=I,那么B称为A的逆矩阵,记作A^(-1)。
逆矩阵可以通过伴随矩阵来求解。
对于n阶矩阵A,它的伴随矩阵记作adj(A),它的定义为adj(A)=det(A)·A^(-1),其中det(A)是A的行列式。
逆矩阵的求解可以通过以下步骤:(1)求解矩阵A的行列式det(A);(2)求解矩阵A的伴随矩阵adj(A);(3)求解矩阵A的逆矩阵A^(-1),即A^(-1)=adj(A)/det(A)。
4. 特征值和特征向量特征值和特征向量在矩阵求解中起着重要作用。
设A 是一个n阶方阵,若存在一个非零向量X,满足AX=kX,其中k为常数,则k为A的一个特征值,X为对应的特征向量。
用逆矩阵解矩阵方程
![用逆矩阵解矩阵方程](https://img.taocdn.com/s3/m/126e53bc5727a5e9856a61a0.png)
3 8 6
2 9 6
2 12 9
▌
矩阵方程:
AX = C, XB = D, AXB = F
其中A、B、C、D、F均为已知矩阵,而X为未知矩阵。
当系数矩阵A、B都是可逆矩阵时,
AX = C X A1C
XB = D X CB 1 AXB = F X A1FB 1
[BT ( I AB1)T ]1 {[( I AB1)B]T }1
[( B A)T ]1
1 0 0 0
1
0 0
0 2 0
0 0 3
0 1
0
0 0
0
1 2 0
0
1 3
0
0
0 0 0 4 0 0 0 1 ▌
4
例 设矩阵X 满足 AX A 2X , 其中
4 2 3
A 1 1 0
第7讲用逆矩阵解矩阵 方程
主讲教师:张丽清
知识结构
矩阵方程
复习
行变换
主要内容
矩阵方程是什么? 怎么解矩阵方程?
实例1 矩阵用来表示 线性方程组
下表给出了这三种食物提供的营养以及大学生的正常所需营养(它们的质 量以适当的单位计量)。
根据这个问题建立一个线性方程组,并通过求解方程组来确定每天需要摄入 的上述三种食物的量。
(另法)
(1)由 AX A 2X得
A( X I ) 2X 2( X I ) 2I
整理后可得
( A 2I )[1 ( X I )] I 2
于是 A 2I可逆。
(2)由上式得
X I 2( A 2I )1
1 0 0 1 4 3 0 1 0 2 1 5 3
0 0 1 1 6 4
则线性方程组的矩阵形式为
逆矩阵的几种求法与解析(很全很经典)
![逆矩阵的几种求法与解析(很全很经典)](https://img.taocdn.com/s3/m/54eaac403d1ec5da50e2524de518964bcf84d2a6.png)
逆矩阵的几种求法与解析矩阵是线性代数的主要内容矩阵是线性代数的主要内容,,很多实际问题用矩阵的思想去解既简单又快捷很多实际问题用矩阵的思想去解既简单又快捷..逆矩阵又是矩阵理论的很重要的内容矩阵又是矩阵理论的很重要的内容, , , 逆矩阵的求法自然也就成为线性代数研究的主逆矩阵的求法自然也就成为线性代数研究的主要内容之一要内容之一..本文将给出几种求逆矩阵的方法本文将给出几种求逆矩阵的方法..1.利用定义求逆矩阵定义定义: : : 设设A 、B B 都是都是都是n n n 阶方阵阶方阵阶方阵, , , 如果存在如果存在如果存在n n n 阶方阵阶方阵阶方阵B B B 使得使得使得AB= BA = E, AB= BA = E, AB= BA = E, 则称则称则称A A 为可逆矩阵可逆矩阵, , , 而称而称而称B B 为A A 的逆矩阵的逆矩阵的逆矩阵..下面举例说明这种方法的应用下面举例说明这种方法的应用. .例1 求证求证: : : 如果方阵如果方阵如果方阵A A A 满足满足满足A k= 0, A k= 0, A k= 0, 那么那么那么EA EA EA是可逆矩阵是可逆矩阵是可逆矩阵, , , 且且(E-A E-A))1-= E + A + A 2+…+A 1-K证明 因为因为E E E 与与A A 可以交换可以交换可以交换, , , 所以所以所以(E- A )(E+A + A 2+…+ A 1-K )= E-A K ,因A K = 0 ,= 0 ,于是得于是得于是得(E-A)(E-A)((E+A+A 2+…+…+A +A 1-K )=E =E,,同理可得(同理可得(E + A + A E + A + A 2+…+A 1-K )(E-A)=E (E-A)=E,,因此因此E-A E-A E-A是可逆矩阵是可逆矩阵是可逆矩阵,,且(E-A)1-= E + A + A 2+…+A 1-K .同理可以证明同理可以证明(E+ A)(E+ A)(E+ A)也可逆也可逆也可逆,,且(E+ A)1-= E -A + A 2+…+(+…+(-1-1-1))1-K A 1-K .由此可知由此可知, , , 只要满足只要满足只要满足A A K =0=0,就可以利用此题求出一类矩阵,就可以利用此题求出一类矩阵,就可以利用此题求出一类矩阵E E ±A 的逆矩阵的逆矩阵. .例2 设 A =úúúúûùêêêêëé0000300000200010,求 E-A E-A的逆矩阵的逆矩阵的逆矩阵. .分析 由于由于由于A A 中有许多元素为零中有许多元素为零, , , 考虑考虑考虑A A K 是否为零矩阵是否为零矩阵, , , 若为零矩阵若为零矩阵若为零矩阵, , , 则可以则可以采用例采用例2 2 2 的方法求的方法求的方法求E-A E-A E-A的逆矩阵的逆矩阵的逆矩阵. .解 容易验证容易验证容易验证A 2=úúúúûùêêêêëé0000000060000200, A 3=úúúúûùêêêêëé0000000000006000, A 4=0 而 (E-A)(E+A+ A 2+ A 3)=E,)=E,所以所以所以(E-A)1-= E+A+ A 2+ A 3=úúúûùêêêëé1000310062106211.2.初等变换法求元素为具体数字的矩阵的逆矩阵,求元素为具体数字的矩阵的逆矩阵,常用初等变换法常用初等变换法常用初等变换法..如果如果A A 可逆,则A 可通过初等变换,化为单位矩阵等变换,化为单位矩阵I I ,即存在初等矩阵S P P P ,,21 使(1)s pp p 21A=I A=I,用,用,用A A 1-右乘上式两端,得:右乘上式两端,得: ((2)s p p p 21I= A 1- 比较(比较(11()(22)两式,可以看到当)两式,可以看到当A A 通过初等变换化为单位矩阵的同时,对单位矩阵矩阵I I 作同样的初等变换,就化为作同样的初等变换,就化为A A 的逆矩阵的逆矩阵A A 1-.用矩阵表示(用矩阵表示(A I A I A I))¾¾¾®¾初等行变换为(为(I A I A 1-),就是求逆矩阵的初等行变换法,它是实际应用中比较简单的一种方法它是实际应用中比较简单的一种方法..需要注意的是,在作初等变换时只允许作行初等变换等变换..同样,只用列初等变换也可以求逆矩阵同样,只用列初等变换也可以求逆矩阵. .例1 求矩阵求矩阵A A 的逆矩阵的逆矩阵..已知已知A=A=úúúûùêêêëé521310132.解 [A I]®úúúûùêêêëé100521010310001132®úúúûùêêêëé001132010310100521® úúúûùêêêëé--3/16/16/1100010310100521®úúúûùêêêëé-----3/16/16/110012/32/10103/46/136/1001故 A 1-=úúúûùêêêëé-----3/16/16/112/32/13/46/136/1. 在事先不知道在事先不知道n n 阶矩阵是否可逆的情况下,也可以直接用此方法阶矩阵是否可逆的情况下,也可以直接用此方法..如果在初等变换过程中发现左边的矩阵有一行元素全为0,则意味着则意味着A A 不可逆,因为此时表明A =0=0,,则A 1-不存在不存在. .例2 求A=úúúûùêêêëé987654321.解 [A E]=úúûùêêëé100987010654001321®úúûùêêëé------1071260014630001321® úúúûùêêêëé----121000014630001321. 由于左端矩阵中有一行元素全为由于左端矩阵中有一行元素全为00,于是它不可逆,因此,于是它不可逆,因此A A 不可逆不可逆. .3.伴随阵法定理 n n阶矩阵阶矩阵阶矩阵A=[a A=[a ij ]为可逆的充分必要条件是为可逆的充分必要条件是A A 非奇异非奇异..且A 1-=A 1úúúúûùêêêêëénn nnn n A A A A A A A A A ............ (212221212111)其中其中A A ij 是A 中元素中元素a a ij 的代数余子式的代数余子式. .矩阵úúúúûùêêêêëénn nn n n A A A A A A A A A (2122212)12111称为矩阵称为矩阵A A 的伴随矩阵,记作的伴随矩阵,记作A A 3,于是有,于是有A A 1-=A 1A 3.证明 必要性:设A 可逆,由A A 1-=I =I,,有1-AA =I ,则A 1-A =I ,所以A ¹0,即A 为非奇异为非奇异. .充分性:充分性: 设A 为非奇异,存在矩阵为非奇异,存在矩阵B=A 1úúúúûùêêêêëénn nnn n A A A A A A A A A (21222)1212111, 其中其中AB=úúúûùêêêëénn n n n n a a a a a aa a a ............... (2)12222111211´A 1úúúûùêêêëénn nnn n A A A A A A A A A ............... (212)221212111=A 1úúúúûùêêêêëéA A A A ...00.........0...00...0=úúúúûùêêêêëé1...00...1......0...100 (01)=I同理可证同理可证BA=I. BA=I.由此可知,若由此可知,若A A 可逆,则可逆,则A A 1-=A1A 3. 用此方法求逆矩阵,对于小型矩阵,特别是二阶方阵求逆既方便、快阵,又有规律可循规律可循..因为二阶可逆矩阵的伴随矩阵,因为二阶可逆矩阵的伴随矩阵,只需要将主对角线元素的位置互换,只需要将主对角线元素的位置互换,只需要将主对角线元素的位置互换,次对次对角线的元素变号即可角线的元素变号即可. .若可逆矩阵是三阶或三阶以上矩阵,在求逆矩阵的过程中,需要求9个或个或99个以上代数余子式,还要计算一个三阶或三阶以上行列式,工作量大且中途难免 出现符号及计算的差错出现符号及计算的差错..对于求出的逆矩阵是否正确,一般要通过AA 1-=I =I来检验来检验来检验..一旦发现错误,必须对每一计算逐一排查旦发现错误,必须对每一计算逐一排查. .4.分块矩阵求逆法4.1.准对角形矩阵的求逆命题 设设A 11、A 22都是非奇异矩阵,且都是非奇异矩阵,且A A 11为n 阶方阵,阶方阵,A A 22为m 阶方阵阶方阵úûùêëé22110A A úûùêëé--12211100AA 证明 因为A =22110A A =11A 22A ¹0, 0, 所以所以所以A A 可逆可逆. . 设A 1-=úûùêëéW ZY X,于是有úûùêëéW ZY X úûùêëé22110A A =úûùêëém nI I 00,其中其中 X A X A 11=I n , Y A 22=0=0,,Z A 11=0=0,,W A 22=I m .又因为又因为A A 11、A 22都可逆,用都可逆,用A A 111-、A 122-分别右乘上面左右两组等式得:分别右乘上面左右两组等式得:X= A 111-,Y=0Y=0,,Z=0Z=0,,W= A 122-故 A 21= úûùêëé--1221110A A把上述结论推广到每一个子块都是非奇异矩阵的准对角形状矩阵中去,即:121...-úúúúûùêêêêëék A A A =úúúúúûùêêêêêëé---11211...k A A A 4.2.准三角形矩阵求逆命题 设A 11、A 22都是非奇异矩阵,则有都是非奇异矩阵,则有1221211-úûùêëéA A A =úûùêëé-----122122121111110A A A A A证明 因为因为úûùêëé2212110A A A úûùêëé--I A A I 012111=úûùêëé22110A A两边求逆得两边求逆得1121110--úûùêëé-I A A I 12212110-úûùêëéA A A =úûùêëé--12211100A A 所以所以 1221211-úûùêëéA A A =úûùêëé--I A A I 012111úûùêëé--12211100A A=úûùêëé-----122122121111110A A A A A同理可证同理可证12221110-úûùêëéA A A =úûùêëé-----122122211111110A A A A A 此方法适用于大型且能化成对角子块阵或三角块阵的矩阵此方法适用于大型且能化成对角子块阵或三角块阵的矩阵. . . 是特殊方阵求逆的是特殊方阵求逆的一种方法,并且在求逆矩阵之前,首先要将已给定矩阵进行合理分块后方能使用.5.恒等变形法恒等变形法求逆矩阵的理论依据为逆矩阵的定义,此方法也常用与矩阵的理论推导上就是通过恒等变形把要求的值化简出来,题目中的逆矩阵可以不求,利用AA 1-=E =E,把题目中的逆矩阵化简掉。
逆矩阵的性质及在考研中的应用
![逆矩阵的性质及在考研中的应用](https://img.taocdn.com/s3/m/0c935a3203768e9951e79b89680203d8ce2f6a8e.png)
逆矩阵的性质及在考研中的应用矩阵是线性代数中的基本概念之一,而逆矩阵是矩阵理论中的重要组成部分。
在研究生入学考试中,逆矩阵的出现频率较高,是考生必须掌握的重要内容之一。
本文将介绍逆矩阵的基本性质以及在考研中的应用场景,旨在帮助考生更好地理解和掌握这一部分内容。
逆矩阵是矩阵的一种重要性质,其定义如下:设A是一个可逆矩阵,那么存在一个矩阵B,使得$AB=BA=I$,其中I是单位矩阵。
在这个定义中,矩阵B被称为A的逆矩阵。
$A = \begin{bmatrix} 2 & 3 \ 1 & 2 \end{bmatrix}$计算行列式$det(A)$: $det(A) = |\begin{matrix} 2 & 3 \ 1 & 2 \end{matrix}| = 2 \times 2 - 3 \times 1 = 1$计算A的伴随矩阵A*: $A* = \begin{matrix} & -2 & 3 \ -1 & 2 & \end{matrix}$计算A的逆矩阵A-¹: $A-¹ = \frac{1}{det(A)} \times A* =\frac{1}{1} \times \begin{matrix} & -2 & 3 \ -1 & 2 & \end{matrix} = \begin{matrix} 2 & -3 \ -1 & 2 \end{matrix}$在考研中,逆矩阵的应用主要涉及以下几个方面:解方程:逆矩阵可以用来求解线性方程组。
当方程组的系数矩阵是可逆矩阵时,我们可以通过逆矩阵快速求解方程组。
证明不等式:在证明某些矩阵不等式时,可以通过引入逆矩阵来简化证明过程。
求特征值和特征向量:在计算矩阵的特征值和特征向量时,需要先求出矩阵的逆矩阵。
解决优化问题:在数学优化中,逆矩阵往往作为系数矩阵的逆出现,对于一些约束优化问题,可以通过求解线性方程组来得到优化解。
利用矩阵的逆矩阵求解线性方程组
![利用矩阵的逆矩阵求解线性方程组](https://img.taocdn.com/s3/m/12079a40bfd5b9f3f90f76c66137ee06eff94e0c.png)
利用矩阵的逆矩阵求解线性方程组线性代数是数学的一个重要分支,其研究诸多重要的数学对象,例如向量空间、矩阵、线性变换等。
线性代数的应用非常广泛,例如在物理、工程、计算机科学等领域都有着深入的应用。
矩阵是线性代数研究的核心对象,其可以用于解决许多实际问题,如在计算机图形学中用于表示三维图形的转换矩阵、在物理中用于表示方程组的矩阵等。
线性方程组是线性代数中的一个重要概念,其可以用于描述诸多实际问题,如平衡问题、电路问题、最优化问题等。
线性方程组可以表示为Ax=b的形式,其中A是系数矩阵,x是未知向量,b是已知向量。
如果A是一个可逆矩阵,即它的行列式不为0,那么我们可以用矩阵的逆矩阵来求解该线性方程组。
具体来说,我们可以通过Ax=b得到x=A^(-1)b,其中A^(-1)是A的逆矩阵。
下面我们通过一个简单的例子来说明如何利用矩阵的逆矩阵求解线性方程组。
例1:求解以下线性方程组x + 2y = 53x + 4y = 11解:将该线性方程组转化为矩阵形式,得到$\begin{bmatrix}1 & 2\\3 &4\end{bmatrix}$ $\begin{bmatrix}x\\y\end{bmatrix}$ =$\begin{bmatrix}5\\ 11\end{bmatrix}$我们可以计算出系数矩阵A的行列式为-2,因此它是可逆矩阵。
接下来,我们需要求出A的逆矩阵A^(-1)。
通过一些计算,我们可以得到A^(-1)等于下面这个矩阵:$\begin{bmatrix}-2 & 1\\1.5 & -0.5\end{bmatrix}$现在,我们可以用矩阵的逆矩阵求解线性方程组。
具体来说,我们可以计算出x=A^(-1)b等于下面这个向量:$\begin{bmatrix}x\\y\end{bmatrix}$ = $\begin{bmatrix}-2 & 1\\1.5 & -0.5\end{bmatrix}$ $\begin{bmatrix}5\\ 11\end{bmatrix}$ =$\begin{bmatrix}-3\\4\end{bmatrix}$因此,该线性方程组的解为x=-3,y=4。
矩阵求逆和线性方程组
![矩阵求逆和线性方程组](https://img.taocdn.com/s3/m/1253a9436c175f0e7dd13735.png)
1 1 0 1 1 2 ~ 0 0 1 2 1 2.
0 0 0 0 0
由于RA RB 2, 故方程组有解,且有
x1 x2 x4 1 2
x1 x3
x2 x4 1 2x4 1 2
2
x2 x3
x2 0 x4 0x2 2x4
1
2
x4 0 x2 x4
所以方程组的通解为
1
1
1
1 1
2
~ 0 1 1 2
0
1
1 2
1
2
1 1
~ 0 1 1
2
2
0
0
2 2
1
2
3
1 1
0 1
1
2
1
0
0
1 2
1
1
2
1 当 1时,
1 1 1 1 B ~ 0 0 0 0
0 0 0 0
RA RB 3,方程组有无穷多解.
bij
ms
,
其中A可逆。
A B r E A1B , 得解 X A1B .
伴随矩阵
⑴ 定义 A aij n , A Aji n .
⑵ 讨论伴随矩阵的永恒出发点
AA A E , A可逆时,A A A1.
⑶ 性质
a. AB B A ; b. AT A T ; c. A1 A 1 ;
a11 a12
A
a21 am1
a22 am2
a1n aam2nn ,
A 1 2 n
x1
X
xxn2 ,
b1
b
b2 bn
线性方程组
一 . 主要结论
A ai j mn , A A b , A 1 2 n .
矩阵求逆法求方程的解matlab
![矩阵求逆法求方程的解matlab](https://img.taocdn.com/s3/m/c2205273ef06eff9aef8941ea76e58fafbb0457b.png)
矩阵求逆法求方程的解matlab在数学和计算机科学领域,矩阵求逆法是一种常用的技术,用于解决线性方程组和矩阵方程的问题。
这种方法在矩阵计算和数字模拟中得到了广泛的应用,其中MATLAB作为一种强大的数学软件,在矩阵求逆法方面有着非常强大的功能和应用,本文将介绍矩阵求逆法在MATLAB中的应用,以及如何利用MATLAB求解线性方程组和矩阵方程。
一、矩阵求逆法的原理和方法1.1 矩阵求逆原理矩阵的逆是指对于一个n阶方阵A,如果存在一个n阶方阵B,使得AB=BA=E(E为单位矩阵),则称B为A的逆矩阵。
矩阵求逆法主要利用线性代数的理论,通过矩阵的初等行变换、伴随矩阵和初等矩阵等方法,求解矩阵的逆矩阵。
1.2 矩阵求逆方法矩阵求逆的常用方法有伴随矩阵法、初等行变换法和逆矩阵的性质法等。
伴随矩阵法是一种直接求解逆矩阵的方法,适合于小规模的矩阵计算;初等行变换法是一种通过初等行变换将原矩阵化为单位矩阵,从而得到逆矩阵的方法,适合于大规模的矩阵计算;逆矩阵的性质法是通过矩阵的性质和性质矩阵的快速求解,适合于特定类型的矩阵。
二、MATLAB中矩阵求逆的应用2.1 MATLAB的矩阵操作MATLAB作为一种专业的数学软件,具有强大的矩阵计算和矩阵操作功能。
在MATLAB中,可以通过一系列的内置函数和操作符,快速有效地实现矩阵的加减乘除、转置、逆矩阵等计算。
2.2 MATLAB中矩阵求逆函数在MATLAB中,有多种函数和命令可以实现矩阵求逆的操作,其中最常用的是inv()函数。
该函数可以接受一个矩阵作为输入,输出该矩阵的逆矩阵。
MATLAB还提供了pinv()函数来求解矩阵的伪逆矩阵,以及linsolve()函数来求解线性方程组的解。
2.3 MATLAB中矩阵求逆的实例下面通过一个简单的实例来演示在MATLAB中如何利用矩阵求逆来求解线性方程组的解。
假设有一个线性方程组Ax=b,其中矩阵A为:A = [1, 2; 3, 4]向量b为:b = [5; 7]要求解x,可以通过如下MATLAB代码实现:A = [1, 2; 3, 4];b = [5; 7];x = inv(A) * b;通过上述代码,可以得到线性方程组的解x,从而实现了通过矩阵求逆方法来求解线性方程组的目的。
矩阵的逆与线性方程组的求解
![矩阵的逆与线性方程组的求解](https://img.taocdn.com/s3/m/dfc41809b207e87101f69e3143323968001cf463.png)
● 02
第2章 矩阵的逆
逆矩阵的定义
逆矩阵是指如果一个 矩阵A存在逆矩阵, 那么称矩阵A为可逆 矩阵。逆矩阵具有一 个重要特点,即矩阵 A与其逆矩阵的乘积 等于单位矩阵,也就 是AA的逆 A的逆A = I。
QR分解
01 定义
QR分解的概念
02 计算方法
如何进行QR分解
03 应用
最小二乘拟合、信号处理
● 06
第六章 线性方程组的求解
线性方程组的矩 阵表示
线性方程组$Ax b$ 可以用矩阵表示为 $[A | b]$,这种表示 方法有利于对线性方 程组进行进一步的计 算和求解。矩阵表示 简洁明了,便于处理 复杂的线性方程组。
比较
应用领域
非齐次线性方程 组在实际问题中
的应用
求解方法
通过矩阵求逆或 消元法等方式解 决非齐次线性方
程组
线性方程组的数值解法
01 高斯消元法
一种常用的线性方程组数值解法,通过消元 和回代来求解
02 追赶法
一种适用于特定类型线性方程组的迭代解法
03 数值稳定性
分析不同数值解法的稳定性和精度
总结
转置可逆性质
若矩阵A是可逆矩阵,则A的转置也是可逆 矩阵
04、
总结
逆矩阵在数学中扮演着重要角色,不仅可以帮助 解决线性方程组,还在计算机图形学等领域有着 广泛的应用。了解逆矩阵的定义、求解方法及性 质,对于深入理解线性代数具有重要意义。
● 03
矩阵解方程组的方法
![矩阵解方程组的方法](https://img.taocdn.com/s3/m/e17a8c7b30126edb6f1aff00bed5b9f3f90f72ed.png)
矩阵解方程组的方法全文共四篇示例,供读者参考第一篇示例:矩阵是线性代数中的重要概念,而矩阵解方程组也是线性代数中的基础内容之一。
在实际应用中,往往会遇到包含多个未知数和多个方程的方程组,如何通过矩阵的方法来高效地解决这些方程组成了一项重要的技能。
本文将介绍矩阵解方程组的方法,包括高斯消元法、矩阵求逆法以及克拉默法则等。
一、高斯消元法高斯消元法是解线性方程组的一种基本方法。
它的基本思想是通过对方程组进行一系列的行变换,将其转化为简化的阶梯形或行最简形,从而得到方程组的解。
下面通过一个具体的例子来说明高斯消元法的应用。
考虑如下的线性方程组:\begin{cases}2x + 3y - z = 1 \\3x + 2y + z = 3 \\x - y + 2z = 9\end{cases}首先将上述的方程组写成增广矩阵的形式:然后通过一系列的行变换,将增广矩阵转化为简化的阶梯形:\begin{bmatrix}1 & -1 &2 & | & 9 \\0 & 5 & -5 & | & -10 \\0 & 0 & 1 & | & 0\end{bmatrix}最后通过反向代入法,可以求得方程组的解为x=2, y=-2, z=0。
二、矩阵求逆法A = \begin{bmatrix}1 &2 \\2 & 1\end{bmatrix},X = \begin{bmatrix}x \\y\end{bmatrix},B = \begin{bmatrix}3 \\4\end{bmatrix}然后求解系数矩阵A 的逆矩阵A^{-1}:最后通过矩阵乘法,可以求得方程组的解为X = A^{-1}B =\begin{bmatrix}1 \\1\end{bmatrix}。
三、克拉默法则首先求解系数矩阵A 的行列式|A|:然后求解系数矩阵A 分别替换成结果矩阵B 的行列式|B_x| 和|B_y|:最后通过克拉默法则,可以求得方程组的解为x = \frac{|B_x|}{|A|} = \frac{-5}{-3} = \frac{5}{3},y = \frac{|B_y|}{|A|} = \frac{-2}{-3} = \frac{2}{3}。
逆矩阵说课教学设计
![逆矩阵说课教学设计](https://img.taocdn.com/s3/m/0beda8a7541810a6f524ccbff121dd36a22dc460.png)
逆矩阵说课教学设计一、教学目标:1. 知识目标:了解逆矩阵的概念与性质,并能够运用逆矩阵求解线性方程组。
2. 能力目标:能够正确判断矩阵是否可逆,掌握逆矩阵的求解方法,并能够灵活运用逆矩阵解决实际问题。
3. 情感目标:培养学生对于矩阵运算的兴趣,增强学生的数学抽象思维能力和问题解决能力。
二、教学内容:逆矩阵:1. 逆矩阵的定义及性质;2. 如何判断一个矩阵是否可逆;3. 逆矩阵的求解方法。
三、教学重点:逆矩阵的定义及性质,以及矩阵可逆的判断。
四、教学难点:逆矩阵的求解方法,以及运用逆矩阵解决实际问题。
五、教学过程:步骤一:导入新知1. 引入:根据教材给出的案例,引导学生思考如何解决线性方程组问题。
2. 导入:通过实际生活中的问题,让学生感受到线性方程组的重要性,并引出逆矩阵的概念。
步骤二:理论讲解1. 定义与性质:介绍逆矩阵的定义,以及逆矩阵的运算性质,包括逆矩阵与原矩阵相乘等。
2. 如何判断一个矩阵是否可逆:通过教材中的练习题,演示如何判断一个矩阵是否可逆,引导学生掌握判断方法。
3. 逆矩阵的求解方法:详细介绍矩阵求逆的方法,包括伴随矩阵法、初等行变换法等。
步骤三:例题演练1. 解决实际问题:通过具体生活案例,引导学生运用逆矩阵解决实际问题。
2. 练习题讲解:选取一些典型的练习题,引导学生通过矩阵求逆解决问题,同时讲解解题过程。
步骤四:拓展延伸1. 数学扩展:通过介绍逆矩阵在其他数学领域中的应用,如线性变换、概率统计等,引发学生对逆矩阵的进一步思考和学习兴趣。
2. 实际应用:介绍逆矩阵在工程、经济学等领域的应用,让学生认识到逆矩阵的实际用途和重要性。
六、教学设计理念:本节课的教学设计以问题驱动的方式进行,通过引入实际生活案例,让学生认识到逆矩阵的实际应用场景,并从中引发学生的学习兴趣。
在理论讲解环节,采用简洁明了的语言,结合案例和练习题,让学生逐步掌握逆矩阵的定义、性质与求解方法。
在实际问题解决环节,通过具体问题的讨论与分析,引导学生运用逆矩阵解决实际问题,培养学生的问题解决能力。
逆矩阵的几种求法及解析
![逆矩阵的几种求法及解析](https://img.taocdn.com/s3/m/65c8da4fdd88d0d233d46afa.png)
. .. . .. ..逆矩阵的几种求法与解析矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷.逆矩阵又是矩阵理论的很重要的内容, 逆矩阵的求法自然也就成为线性代数研究的主要内容之一.本文将给出几种求逆矩阵的方法.1.利用定义求逆矩阵定义: 设A、B 都是n 阶方阵, 如果存在n 阶方阵B 使得AB= BA = E, 则称A为可逆矩阵, 而称B为A 的逆矩阵.下面举例说明这种方法的应用.例1求证: 如果方阵A 满足A K= 0, 那么E-A是可逆矩阵, 且(E-A)1-= E + A + A2+…+A1-K证明因为E 与A 可以交换, 所以(E- A )(E+A + A2+…+ A1-K)= E-A K,因A K= 0 ,于是得(E-A)(E+A+A2+…+A1-K)=E,同理可得(E + A + A2+…+A1-K)(E-A)=E,因此E-A是可逆矩阵,且(E-A)1-= E + A + A2+…+A1-K.同理可以证明(E+ A)也可逆,且(E+ A)1-= E -A + A2+…+(-1)1-K A1-K.由此可知, 只要满足A K=0,就可以利用此题求出一类矩阵E±A的逆矩阵.例2 设 A =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000300000200010,求 E-A 的逆矩阵.分析由于A 中有许多元素为零, 考虑A K 是否为零矩阵, 若为零矩阵, 则可以采用例2 的方法求E-A 的逆矩阵.解容易验证A 2=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000000060000200, A 3=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000000000006000, A 4=0而 (E-A)(E+A+ A 2+ A 3)=E,所以(E-A)1-= E+A+ A 2+ A 3=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1000310062106211.2.初等变换法求元素为具体数字的矩阵的逆矩阵,常用初等变换法.如果A 可逆,则A 可通过初等变换,化为单位矩阵I ,即存在初等矩阵S P P P ,,21 使(1)s p p p 21A=I ,用A 1-右乘上式两端,得:(2) s p p p 21I= A 1-比较(1)(2)两式,可以看到当A 通过初等变换化为单位矩阵的同时,对单位矩阵I 作同样的初等变换,就化为A 的逆矩阵A 1-.用矩阵表示(A I )−−−→−初等行变换为(I A 1-),就是求逆矩阵的初等行变换法,它是实际应用中比较简单的一种方法.需要注意的是,在作初等变换时只允许作行初等变换.同样,只用列初等变换也可以求逆矩阵.例1 求矩阵A 的逆矩阵.已知A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡521310132.解 [A I]→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100521010310001132→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001132010310100521→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--3/16/16/1100010310100521→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----3/16/16/110012/32/10103/46/136/1001 故 A 1-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----3/16/16/112/32/13/46/136/1. 在事先不知道n 阶矩阵是否可逆的情况下,也可以直接用此方法.如果在初等变换过程中发现左边的矩阵有一行元素全为0,则意味着A 不可逆,因为此时表明A =0,则A 1-不存在.例2 求A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡987654321.解 [A E]=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100987010654001321→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------1071260014630001321→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----121000014630001321. 由于左端矩阵中有一行元素全为0,于是它不可逆,因此A 不可逆.3.伴随阵法定理 n 阶矩阵A=[a ij ]为可逆的充分必要条件是A 非奇异.且A 1-=A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nnn n A A A A A A A A A .....................212221212111 其中A ij 是A 中元素a ij 的代数余子式.矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nn n n A A A A A AA A A (2122212)12111称为矩阵A 的伴随矩阵,记作A *,于是有A 1-=A 1 A *.证明 必要性:设A 可逆,由A A 1-=I ,有1-AA =I ,则A 1-A =I ,所以A ≠0,即A 为非奇异.充分性: 设A 为非奇异,存在矩阵B=A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nnn n A A A A A A A A A .....................212221212111, 其中AB=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n a a a a a a a a a (2)12222111211⨯A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nnn n A A A A A A A A A ............... (2122212)12111=A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡A A A A ............0...00...0=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1 (00)...1......0...100...01=I同理可证BA=I.由此可知,若A 可逆,则A 1-=A1 A *. 用此方法求逆矩阵,对于小型矩阵,特别是二阶方阵求逆既方便、快阵,又有规律可循.因为二阶可逆矩阵的伴随矩阵,只需要将主对角线元素的位置互换,次对角线的元素变号即可.若可逆矩阵是三阶或三阶以上矩阵,在求逆矩阵的过程中,需要求9个或9个以上代数余子式,还要计算一个三阶或三阶以上行列式,工作量大且中途难免 出现符号及计算的差错.对于求出的逆矩阵是否正确,一般要通过AA 1-=I 来检验.一旦发现错误,必须对每一计算逐一排查.4.分块矩阵求逆法4.1.准对角形矩阵的求逆命题 设A 11、A 22都是非奇异矩阵,且A 11为n 阶方阵,A 22为m 阶方阵⎥⎦⎤⎢⎣⎡221100A A ⎥⎦⎤⎢⎣⎡--12211100A A 证明 因为A =221100A A =11A 22A ≠0, 所以A 可逆.设A 1-=⎥⎦⎤⎢⎣⎡WZY X,于是有⎥⎦⎤⎢⎣⎡W Z Y X ⎥⎦⎤⎢⎣⎡221100A A =⎥⎦⎤⎢⎣⎡m nI I 00, 其中 X A 11=I n , Y A 22=0,Z A 11=0,W A 22=I m .又因为A 11、A 22都可逆,用A 111-、A 122-分别右乘上面左右两组等式得:X= A 111-,Y=0,Z=0,W= A 122-故 A 21= ⎥⎦⎤⎢⎣⎡--12211100A A 把上述结论推广到每一个子块都是非奇异矩阵的准对角形状矩阵中去,即:121...-⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡k A A A =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---11211...k A A A4.2.准三角形矩阵求逆命题 设A 11、A 22都是非奇异矩阵,则有12212110-⎥⎦⎤⎢⎣⎡A A A =⎥⎦⎤⎢⎣⎡-----122122121111110A A A A A证明 因为⎥⎦⎤⎢⎣⎡2212110A A A⎥⎦⎤⎢⎣⎡--I A A I 012111=⎥⎦⎤⎢⎣⎡221100A A 两边求逆得1121110--⎥⎦⎤⎢⎣⎡-I A A I 1221211-⎥⎦⎤⎢⎣⎡A A A =⎥⎦⎤⎢⎣⎡--12211100A A 所以 1221211-⎥⎦⎤⎢⎣⎡A A A=⎥⎦⎤⎢⎣⎡--I A A I 012111⎥⎦⎤⎢⎣⎡--12211100A A =⎥⎦⎤⎢⎣⎡-----122122121111110A A A A A同理可证12221110-⎥⎦⎤⎢⎣⎡A A A =⎥⎦⎤⎢⎣⎡-----122122211111110A A A A A 此方法适用于大型且能化成对角子块阵或三角块阵的矩阵. 是特殊方阵求逆的一种方法,并且在求逆矩阵之前,首先要将已给定矩阵进行合理分块后方能使用.5.恒等变形法恒等变形法求逆矩阵的理论依据为逆矩阵的定义,此方法也常用与矩阵的理论推导上.就是通过恒等变形把要求的值化简出来,题目中的逆矩阵可以不求,利用AA 1-=E ,把题目中的逆矩阵化简掉。
逆矩阵的几种求法与解析(很全很经典)
![逆矩阵的几种求法与解析(很全很经典)](https://img.taocdn.com/s3/m/b0525966f5335a8102d22078.png)
逆矩阵的几种求法与解析矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷.逆矩阵又是矩阵理论的很重要的内容, 逆矩阵的求法自然也就成为线性代数研究的主要内容之一.本文将给出几种求逆矩阵的方法.1.利用定义求逆矩阵定义: 设A 、B 都是n 阶方阵, 如果存在n 阶方阵B 使得AB= BA = E, 则称A 为可逆矩阵, 而称B 为A 的逆矩阵.下面举例说明这种方法的应用.例1 求证: 如果方阵A 满足A k= 0, 那么EA 是可逆矩阵, 且(E-A )1-= E + A + A 2+…+A 1-K证明 因为E 与A 可以交换, 所以(E- A )(E+A + A 2+…+ A 1-K )= E-A K ,因A K = 0 ,于是得(E-A)(E+A+A 2+…+A 1-K )=E , 同理可得(E + A + A 2+…+A 1-K )(E-A)=E ,因此E-A 是可逆矩阵,且(E-A)1-= E + A + A 2+…+A 1-K .同理可以证明(E+ A)也可逆,且(E+ A)1-= E -A + A 2+…+(-1)1-K A 1-K .由此可知, 只要满足A K =0,就可以利用此题求出一类矩阵E ±A 的逆矩阵.例2 设 A =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000300000200010,求 E-A 的逆矩阵.分析 由于A 中有许多元素为零, 考虑A K 是否为零矩阵, 若为零矩阵, 则可以采用例2 的方法求E-A 的逆矩阵.解 容易验证A 2=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000000060000200, A 3=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000000000006000, A 4=0而 (E-A)(E+A+ A 2+ A 3)=E,所以(E-A)1-= E+A+ A 2+ A 3=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1000310062106211.2.初等变换法求元素为具体数字的矩阵的逆矩阵,常用初等变换法.如果A 可逆,则A 可通过初等变换,化为单位矩阵I ,即存在初等矩阵S P P P ,,21 使(1)s p p p 21A=I ,用A 1-右乘上式两端,得:(2) s p p p 21I= A 1-比较(1)(2)两式,可以看到当A 通过初等变换化为单位矩阵的同时,对单位矩阵I 作同样的初等变换,就化为A 的逆矩阵A 1-.用矩阵表示(A I )−−−→−初等行变换为(I A 1-),就是求逆矩阵的初等行变换法,它是实际应用中比较简单的一种方法.需要注意的是,在作初等变换时只允许作行初等变换.同样,只用列初等变换也可以求逆矩阵.例1 求矩阵A 的逆矩阵.已知A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡521310132.解 [A I]→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100521010310001132→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001132010310100521→ ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--3/16/16/1100010310100521→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----3/16/16/110012/32/10103/46/136/1001故 A 1-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----3/16/16/112/32/13/46/136/1. 在事先不知道n 阶矩阵是否可逆的情况下,也可以直接用此方法.如果在初等变换过程中发现左边的矩阵有一行元素全为0,则意味着A 不可逆,因为此时表明A =0,则A 1-不存在.例2 求A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡987654321.解 [A E]=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100987010654001321→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------1071260014630001321→ ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----121000014630001321. 由于左端矩阵中有一行元素全为0,于是它不可逆,因此A 不可逆.3.伴随阵法定理 n 阶矩阵A=[a ij ]为可逆的充分必要条件是A 非奇异.且A 1-=A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nnn n A A A A A A A A A (212221212111)其中A ij 是A 中元素a ij 的代数余子式.矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nn n n A A A A A AA A A (2122212)12111称为矩阵A 的伴随矩阵,记作A 3,于是有A 1-=A 1A 3.证明 必要性:设A 可逆,由A A 1-=I ,有1-AA =I ,则A 1-A =I ,所以A ≠0,即A 为非奇异.充分性: 设A 为非奇异,存在矩阵B=A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nnn n A A A A A A A A A .....................212221212111, 其中AB=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n a a a a a a a a a (2)12222111211⨯A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nn n n A A A A A A A A A ............... (2122212)12111=A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡A A A A ............0...00...0=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1 (00)...1......0...100...01=I同理可证BA=I.由此可知,若A 可逆,则A 1-=A1A 3. 用此方法求逆矩阵,对于小型矩阵,特别是二阶方阵求逆既方便、快阵,又有规律可循.因为二阶可逆矩阵的伴随矩阵,只需要将主对角线元素的位置互换,次对角线的元素变号即可.若可逆矩阵是三阶或三阶以上矩阵,在求逆矩阵的过程中,需要求9个或9个以上代数余子式,还要计算一个三阶或三阶以上行列式,工作量大且中途难免 出现符号及计算的差错.对于求出的逆矩阵是否正确,一般要通过AA 1-=I 来检验.一旦发现错误,必须对每一计算逐一排查.4.分块矩阵求逆法4.1.准对角形矩阵的求逆命题 设A 11、A 22都是非奇异矩阵,且A 11为n 阶方阵,A 22为m 阶方阵⎥⎦⎤⎢⎣⎡221100A A ⎥⎦⎤⎢⎣⎡--12211100A A 证明 因为A =221100A A =11A 22A ≠0, 所以A 可逆.设A 1-=⎥⎦⎤⎢⎣⎡W ZY X,于是有⎥⎦⎤⎢⎣⎡W Z Y X⎥⎦⎤⎢⎣⎡221100A A =⎥⎦⎤⎢⎣⎡m nI I 00,其中 X A 11=I n , Y A 22=0,Z A 11=0,W A 22=I m .又因为A 11、A 22都可逆,用A 111-、A 122-分别右乘上面左右两组等式得:X= A 111-,Y=0,Z=0,W= A 122-故 A 21= ⎥⎦⎤⎢⎣⎡--12211100A A 把上述结论推广到每一个子块都是非奇异矩阵的准对角形状矩阵中去,即:121...-⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡k A A A =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---11211...k A A A 4.2.准三角形矩阵求逆命题 设A 11、A 22都是非奇异矩阵,则有12212110-⎥⎦⎤⎢⎣⎡A A A =⎥⎦⎤⎢⎣⎡-----122122121111110A A A A A证明 因为⎥⎦⎤⎢⎣⎡2212110A A A ⎥⎦⎤⎢⎣⎡--I A A I 012111=⎥⎦⎤⎢⎣⎡22110A A 两边求逆得1121110--⎥⎦⎤⎢⎣⎡-I A A I 12212110-⎥⎦⎤⎢⎣⎡A A A =⎥⎦⎤⎢⎣⎡--12211100A A 所以 1221211-⎥⎦⎤⎢⎣⎡A A A =⎥⎦⎤⎢⎣⎡--I A A I 012111⎥⎦⎤⎢⎣⎡--12211100A A =⎥⎦⎤⎢⎣⎡-----122122121111110A A A A A同理可证12221110-⎥⎦⎤⎢⎣⎡A A A =⎥⎦⎤⎢⎣⎡-----122122211111110A A A A A 此方法适用于大型且能化成对角子块阵或三角块阵的矩阵. 是特殊方阵求逆的一种方法,并且在求逆矩阵之前,首先要将已给定矩阵进行合理分块后方能使用.5.恒等变形法恒等变形法求逆矩阵的理论依据为逆矩阵的定义,此方法也常用与矩阵的理论推导上.就是通过恒等变形把要求的值化简出来,题目中的逆矩阵可以不求,利用AA 1-=E ,把题目中的逆矩阵化简掉。
逆矩阵的几种求法与解析(很全很经典)
![逆矩阵的几种求法与解析(很全很经典)](https://img.taocdn.com/s3/m/e3684706783e0912a2162aa1.png)
逆矩阵的几种求法与解析矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷.逆矩阵又是矩阵理论的很重要的内容, 逆矩阵的求法自然也就成为线性代数研究的主要内容之一.本文将给出几种求逆矩阵的方法.1.利用定义求逆矩阵定义: 设A 、B 都是n 阶方阵, 如果存在n 阶方阵B 使得AB= BA = E, 则称A 为可逆矩阵, 而称B 为A 的逆矩阵.下面举例说明这种方法的应用.例1 求证: 如果方阵A 满足A k= 0, 那么EA 是可逆矩阵, 且(E-A )= E + A + A +…+A 1-21-K 证明 因为E 与A 可以交换, 所以(E- A )(E+A + A +…+ A )= E-A ,21-K K 因A = 0 ,于是得 K (E-A)(E+A+A +…+A )=E ,21-K 同理可得(E + A + A +…+A )(E-A)=E ,21-K 因此E-A 是可逆矩阵,且(E-A)= E + A + A +…+A .1-21-K 同理可以证明(E+ A)也可逆,且(E+ A)= E -A + A +…+(-1)A .1-21-K 1-K 由此可知, 只要满足A =0,就可以利用此题求出一类矩阵E A 的逆矩阵.K ±例2 设 A =,求 E-A 的逆矩阵.⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡00300000200010分析 由于A 中有许多元素为零, 考虑A 是否为零矩阵, 若为零矩阵, 则可以K 采用例2 的方法求E-A 的逆矩阵.解 容易验证A =, A =, A =02⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡00000000600002003⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000000000006004而 (E-A)(E+A+ A + A )=E,所以23(E-A)= E+A+ A + A =.1-23⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡10003100621062112.初等变换法求元素为具体数字的矩阵的逆矩阵,常用初等变换法.如果A 可逆,则A 可通过初等变换,化为单位矩阵I ,即存在初等矩阵使S P P P ,,21 (1)A=I ,用A 右乘上式两端,得:s p p p 211- (2) I= A s p p p 211-比较(1)(2)两式,可以看到当A 通过初等变换化为单位矩阵的同时,对单位矩阵I 作同样的初等变换,就化为A 的逆矩阵A .1-用矩阵表示(A I )为(I A ),就是求逆矩阵的初等行变换法,−−−→−初等行变换1-它是实际应用中比较简单的一种方法.需要注意的是,在作初等变换时只允许作行初等变换.同样,只用列初等变换也可以求逆矩阵.例1 求矩阵A 的逆矩阵.已知A=.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡521310132解 [A I]→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100521010310001132→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001132010310100521 →⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--3/16/16/1100010310100521→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----3/16/16/110012/32/10103/46/136/1001故 A =.1-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----3/16/16/112/32/13/46/136/1在事先不知道n 阶矩阵是否可逆的情况下,也可以直接用此方法.如果在初等变换过程中发现左边的矩阵有一行元素全为0,则意味着A 不可逆,因为此时表明=0,则A 不存在.A 1-例2 求A=.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡987654321解 [A E]=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100987010654001321→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------1071260014630001321 .→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----121000014630001321由于左端矩阵中有一行元素全为0,于是它不可逆,因此A 不可逆.3.伴随阵法定理 n 阶矩阵A=[a ]为可逆的充分必要条件是A 非奇异.且ij A =1-A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nnn n A A A A A A A A A .....................212221212111其中A 是中元素a 的代数余子式.ij A ij 矩阵称为矩阵A 的伴随矩阵,记作A ,于是有A = A .⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nnn n A A A A A AA A A (2122212)1211131-A 13证明 必要性:设A 可逆,由A A =I ,有=,则=,所以1-1-AA I A 1-A I A0,即A 为非奇异.≠充分性: 设A 为非奇异,存在矩阵B=,A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nnn n A A A A A A A A A .....................212221212111其中AB=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n a a a a a a a a a (2)12222111211⨯A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nnn n A A A A A A A A A ............... (2122212)12111===I A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡A AA A ...00.........0...00...0⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1...00...1......0...100...01同理可证BA=I.由此可知,若A 可逆,则A =A .1-A13用此方法求逆矩阵,对于小型矩阵,特别是二阶方阵求逆既方便、快阵,又有规律可循.因为二阶可逆矩阵的伴随矩阵,只需要将主对角线元素的位置互换,次对角线的元素变号即可.若可逆矩阵是三阶或三阶以上矩阵,在求逆矩阵的过程中,需要求9个或9个以上代数余子式,还要计算一个三阶或三阶以上行列式,工作量大且中途难免出现符号及计算的差错.对于求出的逆矩阵是否正确,一般要通过AA =I 来检验.一1-旦发现错误,必须对每一计算逐一排查.4.分块矩阵求逆法4.1.准对角形矩阵的求逆命题 设A 、A 都是非奇异矩阵,且A 为n 阶方阵,A 为m 阶方阵11221122 ⎥⎦⎤⎢⎣⎡221100A A ⎥⎦⎤⎢⎣⎡--12211100A A 证明 因为==0, 所以A 可逆.A 22110A A 11A 22A ≠设A =,于是有=,1-⎥⎦⎤⎢⎣⎡WZYX⎥⎦⎤⎢⎣⎡W Z Y X ⎥⎦⎤⎢⎣⎡221100A A ⎥⎦⎤⎢⎣⎡m nI I 00其中 X A =I , Y A =0,Z A =0,W A =I .又因为A 、A 都可逆,用11n 221122m 1122A 、A 分别右乘上面左右两组等式得:111-122-X= A ,Y=0,Z=0,W= A 111-122-故 A = 21⎥⎦⎤⎢⎣⎡--12211100A A 把上述结论推广到每一个子块都是非奇异矩阵的准对角形状矩阵中去,即:=121...-⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡k A A A ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---11211...k A A A 4.2.准三角形矩阵求逆命题 设A 、A 都是非奇异矩阵,则有1122=12212110-⎥⎦⎤⎢⎣⎡A A A ⎥⎦⎤⎢⎣⎡-----122122121111110A A A A A 证明 因为=⎥⎦⎤⎢⎣⎡2212110A A A⎥⎦⎤⎢⎣⎡--I A A I 012111⎥⎦⎤⎢⎣⎡22110A A 两边求逆得=1121110--⎥⎦⎤⎢⎣⎡-I A A I 12212110-⎥⎦⎤⎢⎣⎡A A A ⎥⎦⎤⎢⎣⎡--12211100A A 所以 =1221211-⎥⎦⎤⎢⎣⎡A A A ⎥⎦⎤⎢⎣⎡--I A A I 012111⎥⎦⎤⎢⎣⎡--12211100A A =⎥⎦⎤⎢⎣⎡-----122122121111110A A A A A 同理可证=12221110-⎥⎦⎤⎢⎣⎡A A A ⎥⎦⎤⎢⎣⎡-----122122211111110A A A A A 此方法适用于大型且能化成对角子块阵或三角块阵的矩阵. 是特殊方阵求逆的一种方法,并且在求逆矩阵之前,首先要将已给定矩阵进行合理分块后方能使用.5.恒等变形法恒等变形法求逆矩阵的理论依据为逆矩阵的定义,此方法也常用与矩阵的理论推导上.就是通过恒等变形把要求的值化简出来,题目中的逆矩阵可以不求,利用AA =E ,把题目中的逆矩阵化简掉。
逆矩阵的初步应用
![逆矩阵的初步应用](https://img.taocdn.com/s3/m/b2dc0f355bcfa1c7aa00b52acfc789eb172d9e8c.png)
逆矩阵的初步应用
逆矩阵在许多领域都有应用,以下是逆矩阵的一些初步应用:
1. 线性方程组的求解:对于一个线性方程组Ax=b,如果矩阵A是可逆矩阵,那么可以使用逆矩阵求解该方程组,即x=A−1b。
2. 矩阵的除法:如果A和B是可逆矩阵,那么可以定义矩阵除法
A/B=AB−1,其中B−1是B的逆矩阵。
3. 求解矩阵的行列式:对于一个n阶方阵A,可以使用逆矩阵计算其行列式,即A=1/A−1,这在某些情况下可以简化计算。
4. 矩阵的相似变换:对于两个n阶方阵A和B,如果它们可以表示为
A=PBP−1,那么称A和B相似,P是可逆矩阵。
相似变换在矩阵的谱分析、矩阵的对角化等问题中有重要应用。
5. 加密技术:在保密通信中,如果A为可逆矩阵,则方程CAB=有唯一解
−1BAC=,其中−1A是A的逆矩阵。
因此,可逆矩阵可以有效地应用于加
密技术。
总之,逆矩阵是数学中的重要概念之一,它在实际生活中也有着广泛的应用。
通过逆矩阵的计算和处理,可以解决各种复杂的问题,从而为人类的生产和生活提供更强大的技术支持。
教学难点复杂线性方程组的解法
![教学难点复杂线性方程组的解法](https://img.taocdn.com/s3/m/24c8fd9ea48da0116c175f0e7cd184254a351b7a.png)
教学难点复杂线性方程组的解法复杂线性方程组是数学教学中难点之一,它的解法需要一定的技巧和思维方法。
本文将介绍几种解复杂线性方程组的方法,以帮助学生更好地理解和掌握这一知识点。
一、高斯消元法高斯消元法是解复杂线性方程组的经典方法,它通过变换矩阵的行列式和行向量,将复杂线性方程组化为简单的三角形式。
以下是使用高斯消元法解复杂线性方程组的步骤:1. 将方程组写成矩阵形式,定义系数矩阵A和常数矩阵B;2. 对矩阵A进行初等行变换,化为上三角矩阵;3. 从最后一行开始,逐行进行回代求解方程组。
这种方法能够简化方程组的求解过程,但对于包含较多方程的复杂线性方程组,计算量较大。
二、克拉默法则克拉默法则是解复杂线性方程组的另一种常见方法,它通过求解每个未知数的行列式来得到方程组的解。
以下是使用克拉默法则解复杂线性方程组的步骤:1. 将方程组写成矩阵形式,定义系数矩阵A和常数矩阵B;2. 求解系数矩阵A的行列式,记为delta;3. 对于每一个未知数,将其系数矩阵A中对应的列替换为常数矩阵B,求解替换后的行列式,记为delta_i;4. 将delta_i除以delta,得到每个未知数的解。
克拉默法则适用于方程组较小的情况,但当方程组变得复杂时,计算量会大大增加。
三、矩阵求逆法矩阵求逆法是解复杂线性方程组的一种常用方法,它通过求解系数矩阵的逆矩阵来得到方程组的解。
以下是使用矩阵求逆法解复杂线性方程组的步骤:1. 将方程组写成矩阵形式,定义系数矩阵A和常数矩阵B;2. 求解系数矩阵A的逆矩阵,记为A_inverse;3. 将逆矩阵A_inverse与常数矩阵B相乘,得到解向量X。
使用矩阵求逆法可以直接求解复杂线性方程组,但要求系数矩阵可逆,且计算逆矩阵的时间复杂度较高。
四、矩阵特征值法矩阵特征值法是解复杂线性方程组的一种高级方法,它通过求解矩阵特征值和特征向量来得到方程组的解。
以下是使用矩阵特征值法解复杂线性方程组的步骤:1. 将方程组写成矩阵形式,定义系数矩阵A和常数矩阵B;2. 求解系数矩阵A的特征值和特征向量;3. 将特征值代入特征向量方程,求解每个特征值对应的特征向量;4. 将特征向量组合成解向量X。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
而其余xi i j 的系数均为 0; 又等式右端为D j .
于是
Dx j D j j 1,2,, n.
2
当 D 0 时,方程组 2 有唯一的一个解
Dn D1 D2 D2 x1 , x2 , x3 , , xn . D D D D
由于方程组 2 与方程组 1 等价, 故
行标、列标.
, ik , j1 , j2 ,
, jk分别为 k 阶子式在 D 中的
a11 a21 D a31 a41
a12 a22 a32 a42
a13 a23 a33 a43
a14 a24 a34 a44
从中取第二 . 三行,第一. 三列, 交叉处元组成一个二阶子式, 记为M;M的余子式记为N,具体 写出来就是
a21 M a31
a23 a33
N
a12 a42
a14 a44
M的代数余子式为
1
2313
N N
定理 在 n 阶行列式中, 取定 k 行(列) (1 k n 1), 由这 k 行(列)组成的所有 k 阶子式与它们的代数余子
式的乘积之和等于行列式 D . 即 D M1 A1 M 2 A2 M t At
构成一个 k 阶行列式 M ,称为 D 的一个 k 阶子式.
定义 划去这 k 行 k 列,余下的元素按照原来的顺序
ik j1 j2 jk
构成一个 n k 阶行列式,称为 M 的余子式.在其前面
i1 i2 ( 1) 冠以符号
,称为 M 的代数余子式.
其中 i1 , i2 ,
一、克拉默法则
如果线性方程组
a11 x1 a12 x2 a1n xn b1 a x a x a x b 21 1 22 2 2n n 2 (1) an1 x1 an 2 x2 ann xn bn a11 a12 a1n
在把 n 个方程依次相加,得
n n n ak 1 Akj x1 akj Akj x j akn Akj xn k 1 k 1 k 1 bk Akj ,
k 1 n
由代数余子式的性质可知, 上式中x j的系数等于D,
例 1.17 利用拉普拉斯定理将下面的行列式按第一. 二行展开
1 1 0 1 2 1 D 0 1 3 0 0 1
0 0 1 4
例 1.17 利用拉普拉斯定理将下面的行列式按第一. 二行展开 1 1 0 0 解 1 2 1 0 D中由第一.二行的元组成的二阶子 D 0 1 3 1 式共有6即 C 2 个 4 0 0 1 4 1 1 1 0 1 0
a11 a1 , j 1 b1 a1 , j 1 a1 n D j a n 1 a n , j 1 bn a n , j 1 a nn
证明
用D中第j列元素的代数余子式 A1 j , A2 j ,, Anj 依次乘方程组1的n个方程, 得
a11 x1 a12 x 2 a1 n x n A1 j b1 A1 j a x a x a x A b A 21 1 22 2 2n n 2j 2 2j a n1 x1 a n 2 x 2 a nn x n Anj bn Anj
(1)方程个数等于未知量个数;
(2)系数行列式不等于零.
2. 克拉默法则建立了线性方程组的解和已知的系 数与常数项之间的关系.它主要适用于理论推导.
四、行列式按某k行(列)展开(Laplace定理)
位于这些行和列交叉处的 k 2个元素,按照原来的顺序
定义 在 n 阶行列式中,任意取定 k 行(列) (1 k n 1),
a 21 a 22 a 2 n 0 的系数行列式不等于零,即D a n1 a n 2 a nn
那么线性方程组1 有解,并且解是唯一的,解 可以表为
Dn D1 D2 D2 x1 , x2 , x3 , , xn . D D D D
其中 D j 是把系数行列式 D 中第 j 列的元素用方程 组右端的常数项代替后所得到的 n 阶行列式,即
Dn D1 D2 D2 x1 , x2 , x3 , , xn . D D D D
也是方程组的 1 解.
例 1.16 解线性方程组
x1 3 x2 7 x3 2 2 x1 4 x2 3 x3 1 3 x 7 x 2 x 3 1 2 3
解: 系数行列式 1 3 7 D 2 4 3 196 3 7 2
由于系数行列式不为零, 所以可以使用克拉默法则, 方程组有唯一解。此时
1 D 2 3
3 4 7
7 3 196 2
2 D1 1 3
1
3 4 7
3 4 7
7 3 54 2
2 1 80 3
M 1
1, M 3
1 0 0
0
2 1 2 0 1 0 其中, M1 , M 2 , M 4的代数余子式为 1 1 2 1 2 3 1 2 1 3 1 1 A1 1 13, A2 1 4 1 4 0 4
A4 1
1
2
7
D2 2 1 3 38 D3 2 3 3 3 2
则有
D1 54 27 D2 38 19 x1 , x2 , D 196 98 D 196 98 D3 80 20 x3 D 196 49
条件
1. 用克拉默法则解方程组的两个条件