最新将军饮马问题讲义名师资料合集

合集下载

中考培优竞赛专题经典讲义 最值问题之将军饮马问题

中考培优竞赛专题经典讲义    最值问题之将军饮马问题

最值问题之将军饮马问题最值问题是老师们最爱考的热门题型之一,综合性较强,需要一定的基本功,一般考察时一般放在压轴位置。

模型讲解【基本模型】问题:在直线l上找一点P,使得P A+PB的值最小解析:连接AB,与直线l交点即为点P(两点之间线段最短)【拓展模型1】问题:在直线/上找一点P,使得P A+PB的值最小解析:点A作关于l的对称点A',连接BA',与直线l的交点即为点P,此时P A+PB的最小值即为线段BA′的长度.【练习】1、尺规作图:在直线MN上找一点P,使得∠APN=∠BPN.(保留作图痕迹)【模型拓展2】1、如图,已知点P为定点,定长线段AB在直线MN上运动,在什么位置时,P A=PB最小?思维转化:将线段AB移动,点P不动,理解为线段AB不动,点P在直线CD上移动,将模型转化为最基本模型【模型拓展3】问题:∠MON内一定点A,点P、Q分别为OM、ON上的动点,求△APQ周长的最小值.解析:点A作关于ON和OM的对称点A1、A2,,连接A1A2,与ON、OM交点即为Q、P,线段A1A2的长度即为△APQ周长的最小值.基本结论:①△A1OA2必为等腰三角形,且腰长等于线段OA的长.②∠A1OA2=2∠MON.四边形ABPQ周长最小的模型,最小值即为线段AB+A'B'的长度和.【模型拓展4】问题:求AB+BC+CD的最小值问题解析:作点A关于ON的对称点A',点D关于OM的对称点D′,连接A'D′,最小值即为线段A'D'的长度.(作点A和点D的对称点的过程中,也可以直接将OM、ON整个对称过去,使得图形更加完整)【模型拓展5】MN垂直两平行线,求AM+MN+NB的最小值模型.其中MN 为定值,故只需求AM +NB 的最小值,将点A 向下平移MN 的长度得到A ′,连接A ′B ,线段A ′B 的长度即为AM +NB 的最小值直线l 上有一长度不变线段MN 移动,求AM +MN +NB 最小值的模型.将A 点向右平移MN 的长度,以此转化为基本模型,最小值即为MN +A 2B【例题讲解】例题1、如图,在平面直角坐标系中,Rt △OAB 的顶点A 在x 轴的正半轴上,顶点B 的坐标为(3,点C 的坐标为(12,0),点P 为斜边OB 上的一动点,则P A +PC 的最小值为 .解:作A 关于OB 的对称点D ,连接CD 交OB 于P ,连接AP ,过D 作DN ⊥OA 于N ,则此时P A +PC 的值最小,∵DP =P A ,∴P A +PC =PD +PC =CD ,∵B (3,∴AB OA =3,∵tan ∠AOB =AB OA AOB =30°,∴OB =2AB = 由三角形面积公式得:12×OA ×AB =12×OB ×AM ,∴AM =32,∴AD =2×32=3,∵∠AMB =90°,∠B =60°,∴∠BAM =30°,∵∠BAO =90°,∴∠OAM =60°,∵DN ⊥OA ,∴∠NDA =30°,∴AN =12AD =32,由勾股定理得:DN ,∵C (12,0),∴CN =3﹣12﹣32=1,在Rt △DNC 中,由勾股定理得:DC ,即P A+PC.【思考】若把题中条件点“C的坐标为(12,0)”改为“点C为OA边上一动点”,其它条件不变,那么此时P A+PC最小值又是多少呢?解答:∵P A+PC=PC+PD=CD≥DN,∴P A+PC.例题2、某长方体的长、宽、高分别为4、3、5,(1)如图1,点A、B分别为该长方体的两个顶点,已知蚂蚁从点A沿长方体侧面爬到点B,则最短路线长是多少?(2)如图2,点A、C分别为该长方体的两个顶点,如果用一根细线从点A开始经过4个侧面缠绕一圈到达点C,那么所用细线最短长度是.(3)如图2,点A、C分别为该长方体的两个顶点,如果用一根细线从点A开始经过4个侧面缠绕三圈到达点C,那么所用细线最短长度是.(4)如图3,已知圆柱高4米,底面周长1米.如果用花圈从上往下均匀缠绕圆柱3圈(如图),那么螺旋形花圈的长至少米.答案:例题3、如图,在五边形ABCDE中,∠BAE=120°,∠B=∠E=90°,AB=BC=1,AE=DE=2,在BC、DE上分别找一点M、N.(1)当△AMN的周长最小时,∠AMN+∠ANM=;(2)求△AMN的周长最小值.解:作A 关于BC 和ED 的对称点A ′,A ″,连接A ′A ″,交BC 于M ,交ED 于N ,则A ′A ″即为△AMN 的周长最小值.⑴作EA 延长线的垂线,垂足为H ,∠BAE =120°,∴∠AA ′A ″+∠AA ″A ′=60°,∠AA ′A ″=∠A ′AM ,∠AA ″A ′=∠EAN ,∴∠CAN =120°-∠AA ′A ″-∠AA ″A ′=60°,也就是说∠AMN +∠ANM =180°-60°=120°.⑵过点A ′作EA 延长线的垂线,垂足为H ,∵AB =BC =1,AE =DE =2,∴AA ′=2BA =2,AA ″=2AE =4,则Rt △A ′HA 中,∵∠EAB =120°,∴∠HAA ′=60°,∵A ′H ⊥HA ,∴∠AA ″H =30°,∴AH =12AA ′=1,∴A ′H ,A ″H =1+4=5,∴A ′A ″=例题4、如图,正方形ABCD 的边长为4,点E 在边BC 上且CE =1MN 在AC 上运动.(1)求四边形BMNE 周长最小值;(2)当四边形BMNE 的周长最小时,则tan ∠MBC 的值为 .解:作EF ∥AC 且EF DF 交AC 于M ,在AC 上截取MN DF 交BC 于P ,作FQ ⊥BC 于Q ,作出点E 关于AC 的对称点E ′,则CE ′=CE =1,将MN 平移至E ′F ′处,则四边形MNE ′F ′为平行四边形,当BM +EN =BM +FM =BF ′时,四边形BMNE 的周长最小,由∠FEQ =∠ACB =45°,可求得FQ =EQ =1,∵∠DPC =∠FPQ ,∠DCP =∠FQP ,∴△PFQ ∽△PDC , ∴PQ PQ QE EC ++=PQ CD ,∴2PQ PQ +=14,解得:PQ =23,∴PC =83,由对称性可求得tan∠MBC=tan∠PDC=23.例题5、在平面直角坐标系中,已知点A(一2,0),点B(0,4),点E在OB上,且∠OAE=∠OB A.如图,将△AEO沿x轴向右平移得到△AE′O′,连接A'B、BE'.当AB+BE'取得最小值时,求点E'的坐标.【提示】将△AEO向右平移转化为△AEO不动,点B向左平移,则点B移动的轨迹为一平行于x轴的直线,所以作点E关于该直线的对称点E1,连接AE1,与该直线交点F即为最小时点B的位置,求出BF长度即可求出点E向右平移的距离.例题6、如图,已知正比例函数y=kx(k>0)的图像与x轴相交所成的锐角为70°,定点A的坐标为(0,4),P为y轴上的一个动点,M、N为函数y=kx(k>0)的图像上的两个动点,则AM+MP+PN的最小值为.解:如图所示,直线OC 、y 轴关于直线y =kx 对称,直线OD 、直线y =kx 关于y 轴对称,点A ′是点A 关于直线y =kx 的对称点.作A ′E ⊥OD 垂足为E ,交y 轴于点P ,交直线y =kx 于M ,作PN ⊥直线y =kx 垂足为N ,∵PN =PE ,AM =A ′M ,∴AM +PM +PN =A ′M +PM +PE =A ′E 最小(垂线段最短),在RT △A ′EO 中,∵∠A ′EO =90°,OA ′=4,∠A ′OE =3∠AOM =60°,∴OE =12OA ′=2,A ′E .∴AM +MP +PN 的最小值为【巩固练习】1、如图所示,正方形ABCD 的面积为12,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD +PE 的和最小,则这个最小值为 .2、在菱形ABCD 中,对角线AC =6,BD =8,点E 、F 、P 分别是边AB 、BC 、AC 上的动点,PE +PF 的最小值是 .3、如图,在边长为2的等边△ABC 中,D 为BC 的中点,E 是AC 边上一点,则BE +DE 的最小值为 .4、如图,钝角三角形ABC 的面积为9,最长边AB =6,BD 平分∠ABC ,点M 、N 分别是BD 、BC 上的动点,则CM +MN 的最小值为 .5、如图,在△ABC 中,AM 平分∠BAC ,点D 、E 分别为AM 、AB 上的动点,(1)若AC =4,S △ABC =6,则BD +DE 的最小值为(2)若∠BAC =30°,AB =8,则BD +DE 的最小值为 .(3)若AB =17,BC =10,CA =21,则BD +DE 的最小值为 .AB C DEM6、如图,在△ABC 中,AB =BC =4,S △ABC =,点P 、Q 、K 分别为线段AB 、BC 、AC 上任意一点,则PK +QK 的最小值为 .7、如图,AB 是⊙O 的直径,AB =8,点M 在⊙O 上,∠MAB =20°,N 是弧MB 的中点,P 是直径AB 上的一动点,则PM +PN 的最小值为 .B8、如图,在锐角△ABC 中,AB =4,∠BAC =45°,∠BAC 的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,则BM +MN 的最小值是.9、如图,圆柱形玻璃杯高为12cm 、底面周长为18cm ,在杯内离杯底4cm 的点C 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm 与蜂蜜相对的点A 处,则蚂蚁到达蜂蜜的最短距离为cm .10、如图,菱形OABC中,点A在x轴上,顶点C的坐标为(1,动点D、E分别在射线OC、OB上,则CE+DE+DB的最小值是.11、如图,点A(a,1)、B(-1,b)都在双曲线y=-3x(x<0)上,点P、Q分别是x轴、y轴上的动点,当四边形P ABQ的周长取最小值时,PQ所在直线的解析式是.12、如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB上的动点,△PMN周长的最小值是5cm,则∠AOB的度数是.13、如图,∠AOB=30°,点M、N分别在边OA、OB上,且OM=1,ON=3,点P、Q分别在边OB、OA上,则MP+PQ+QN的最小值是.14、如图,在Rt△ABC中,∠ACB=90°,点D是AB边的中点,过D作DE⊥BC于点E.(1)点P是边BC上的一个动点,在线段BC上找一点P,使得AP+PD最小,在下图中画出点P;(2)在(1)的条件下,连接CD交AP于点Q,求AQ与PQ的数量关系;AC E D15、在矩形ABCD 中,AB =6,BC =8,G 为边AD 的中点.(1)如图1,若E 为AB 上的一个动点,当△CGE 的周长最小时,求AE 的长.(2)如图2,若E 、F 为边AB 上的两个动点,且EF =4,当四边形CGEF 的周长最小时,求AF 的长.16、图1,图2为同一长方体房间的示意图,图2为该长方体的表面展开图.(1)蜘蛛在顶点A ′处,①苍蝇在顶点B 处时,试在图1中画出蜘蛛为捉住苍蝇,沿墙面爬行的最近路线;②苍蝇在顶点C 处时,图2中画出了蜘蛛捉住苍蝇的两条路线,往天花板ABCD 爬行的最近路线A 'GC 和往墙面BB 'C 'C 爬行的最近路线A 'HC ,试通过计算判断哪条路线更近?(2)在图3中,半径为10dm 的OM 与D 'C '相切,圆心M 到边CC ′的距离为15dm ,蜘蛛P 在线段AB 上,苍蝇Q 在OM 的圆周上,线段PQ 为蜘蛛爬行路线.若PQ 与OM 相切,试求PQ 的长度的范围.17.如图,抛物线21242y x x =-++交y 轴于点B ,点A 为x 轴上的一点,OA =2,过点A 作直线MN ⊥AB 交抛物线与M 、N 两点.(1)求直线AB 的解析式;(2)将线段AB 沿y 轴负方向平移t 个单位长度,得到线段11A B ,求11MA MB +取最小值时实数t 的值.参考答案1.解:连接BD,∵点B与D关于AC对称,∴PD=PB,∴PD+PE=PB+PE=BE最小.∵正方形ABCD的面积为12,∴AB=又∵△ABE是等边三角形,∴BE=AB=.2.解:∵四边形ABCD是菱形,对角线AC=6,BD=8,∴AB=5,作E关于AC的对称点E′,作E′F⊥BC于F交AC于P,连接PE,则E′F即为PE+PF的最小值,∵12⋅AC⋅BD=AD⋅E′F,∴E′F=245,∴PE+PF的最小值为245.3.解:作B关于AC的对称点B′,连接BB′、B′D,交AC于E,此时BE+ED=B′E+ED=B′D,根据两点之间线段最短可知B′D就是BE+ED的最小值,∵B、B′关于AC的对称,∴AC、BB′互相垂直平分,∴四边形ABCB′是平行四边形,∵三角形ABC是边长为2,D为BC的中点,∴AD⊥BC,AD BD=CD=1,BB′=2AD=,作B′G⊥BC的延长线于G,∴B′G=AD,在Rt△B′BG中,BG=3,∴DG=BG﹣BD=3﹣1=2,在Rt△B′DG中,B′D故BE +ED4.解:过点C 作CE ⊥AB 于点E ,交BD 于点M ,过点M 作MN ⊥BC 于N ,∵BD 平分∠ABC ,ME ⊥AB 于点E ,MN ⊥BC 于N ,∴MN =ME ,∴CE =CM +ME =CM +MN 是最小值.∵三角形ABC 的面积为9,AB =6,∴12×6 CE =9,∴CE =3.即CM +MN 的最小值为3.5.H E'A C DEM提示:作点E 关于AM 的对称点E ′,BH ⊥AC 于H ,易知BD +DE 的最小值即为BH 的长.答案:(1)3;(2)4;(3)8.6.解:如图,过A 作AH ⊥BC 交CB 的延长线于H ,∵AB =CB =4,S △ABC =AH =∴cos ∠HAB =AH ABHAB =30°,∴∠ABH =60°,∴∠ABC =120°, ∵∠BAC =∠C =30°,作点P 关于直线AC 的对称点P ′,过P ′作P ′Q ⊥BC 于Q 交AC 于K ,则P′Q的长度=PK+QK的最小值,∴∠P′AK=∠BAC=30°,∴∠HAP′=90°,∴∠H=∠HAP′=∠P′QH=90°,∴四边形AP′QH是矩形,∴P′Q=AH=即PK+QK的最小值为7.解:作点N关于AB的对称点N′,连接OM、ON、ON′、MN′,则MN′与AB的交点即为PM+PN的最小时的点,PM+PN的最小值=MN′,∵∠MAB=20°,∴∠MOB=2∠MAB=2×20°=40°,∵N是弧MB的中点,∴∠BON=12∠MOB=12×40°=20°,由对称性,∠N′OB=∠BON=20°,∴∠MON′=∠MOB+∠N′OB=40°+20°=60°,∴△MON′是等边三角形,∴MN′=OM=OB=12AB=182⨯=4,∴PM+PN的最小值为4,8.解:如图,作BH⊥AC,垂足为H,交AD于M′点,过M′点作M′N′⊥AB,垂足为N′,则BM′+M′N′为所求的最小值.∵AD是∠BAC的平分线,∴M′H=M′N′,∴BH是点B到直线AC的最短距离,∵AB=4,∠BAC=45°,∴BH=AB⋅sin45°=4=∵BM+MN的最小值是BM′+M′N′=BM′+M′H=BH=9.解:沿过A 的圆柱的高剪开,得出矩形EFGH ,过C 作CQ ⊥EF 于Q ,作A 关于EH 的对称点A ′,连接A ′C 交EH 于P ,连接AP ,则AP +PC 就是蚂蚁到达蜂蜜的最短距离,∵AE =A ′E ,A ′P =AP ,∴AP +PC =A ′P +PC =A ′C ,∵CQ =12×18cm =9cm ,A ′Q =12cm ﹣4cm +4cm =12cm ,在Rt △A ′QC 中,由勾股定理得:A ′C =15cm ,故答案为:15.10.解:连接AC ,作B 关于直线OC 的对称点E ′,连接AE ′,交OC 于D ,交OB 于E ,此时CE +DE +BD 的值最小,∵四边形OCBA 是菱形,∴AC ⊥OB ,AO =OC ,即A 和C 关于OB 对称,∴CE =AE ,∴DE +CE =DE +AE =AD ,∵B 和E ′关于OC 对称,∴DE ′=DB ,∴CE +DE +DB =AD +DE ′=AE ′,过C 作CN ⊥OA 于N ,∵C (1),∴ON =1,CN由勾股定理得:OC =2,即AB =BC =OA =OC =2,∴∠CON =60°,∴∠CBA =∠COA =60°, ∵四边形COAB 是菱形,∴BC ∥OA ,∴∠DCB =∠COA =60°,∵B 和E ′关于OC 对称,∴∠BFC =90°,∴∠E ′BC =90°﹣60°=30°,∴∠E ′BA =60°+30°=90°,CF =12BC =1,由勾股定理得:BF E ′F ,在Rt △EBA 中,由勾股定理得:AE ′=4,即CE +DE +DB 的最小值是4.11.解:把点A(a,1)、B(﹣1,b)代入y=﹣3x(x<0)得a=﹣3,b=3,则A(﹣3,1)、B (﹣1,3),作A点关于x轴的对称点C,B点关于y轴的对称点D,所以C点为(﹣3,﹣1),D点为(1,3),连结CD分别交x轴、y轴于P点、Q点,此时四边形P ABQ的周长最小,设直线CD的解析式为y=kx+b,则313k bk b-+=-⎧⎨+=⎩,解得12kb=⎧⎨=⎩,所以直线CD的解析式为y=x+2.12.解:分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,如图所示:∵点P关于OA的对称点为D,关于OB的对称点为C,∴PM=DM,OP=OD,∠DOA=∠POA;∵点P关于OB的对称点为C,∴PN=CN,OP=OC,∠COB=∠POB,∴OC=OP=OD,∠AOB=12∠COD,∵△PMN周长的最小值是5cm,∴PM+PN+MN=5,∴DM+CN+MN=5,即CD=5=OP,∴OC=OD=CD,即△OCD是等边三角形,∴∠COD=60°,∴∠AOB=30°;13.解:作M关于OB的对称点M′,作N关于OA的对称点N′,连接M ′N ′,即为MP +PQ +QN 的最小值.根据轴对称的定义可知:∠N ′OQ =∠M ′OB =30°,∠ONN ′=60°,∴△ONN ′为等边三角形,△OMM ′为等边三角形,∴∠N ′OM ′=90°,∴在Rt △M ′ON ′中,M ′N ′14.A'AB PC EDQA'A B P C E D解:(1)作点A 关于BC 的对称点A ′,连DA ′交BC 于点P.(2)由(1)可证得PA 垂直平分CD ,∴AQCQ =3PQ15.解:(1)∵E 为AB 上的一个动点,∴作G 关于AB 的对称点M ,连接CM 交AB 于E ,那么E 满足使△CGE 的周长最小; ∵在矩形ABCD 中,AB =6,BC =8,G 为边AD 的中点,∴AG =AM =4,MD =12, 而AE ∥CD ,∴△AEM ∽△DCM ,∴AE :CD =MA :MD ,∴AE =CD MA MD=2; (2)∵E 为AB 上的一个动点,∴如图,作G 关于AB 的对称点M ,在CD 上截取CH =4,然后连接HM 交AB 于E ,接着在EB 上截取EF =4,那么E 、F 两点即可满足使四边形CGEF 的周长最小.∵在矩形ABCD 中,AB =6,BC =8,G 为边AD 的中点,∴AG =AM =4,MD =12,而CH =4,∴DH =2,而AE∥CD,∴△AEM∽△DHM,∴AE:HD=MA:MD,∴AE=HD MAMD⨯=23,∴AF=4+23=143.16.解:(1)①根据“两点之间,线段最短”可知:线段A′B为最近路线,如图1所示.②Ⅰ.将长方体展开,使得长方形ABB′A′和长方形ABCD在同一平面内,如图2①.在Rt△A′B′C中,∠B′=90°,A′B′=40,B′C=60,∴ACⅡ.将长方体展开,使得长方形ABB′A′和长方形BCC′B′在同一平面内,如图2②.在Rt△A′C′C中,∠C′=90°,A′C′=70,C′C=30,∴A′C=ABCD爬行的最近路线A′GC更近;(2)过点M作MH⊥AB于H,连接MQ、MP、MA、MB,如图3.∵半径为10dm的⊙M与D′C′相切,圆心M到边CC′的距离为15dm,BC′=60dm,∴MH=60﹣10=50,HB=15,AH=40﹣15=25,根据勾股定理可得AM,MB∴50≤MP∵⊙M 与PQ 相切于点Q ,∴MQ ⊥PQ ,∠MQP =90°,∴PQ当MP =50时,PQ当MP时,PQ55.∴PQ 长度的范围是≤PQ ≤55dm .17.解:(1)依题意,易得B (0,4),A (2,0),则AB 解析式:42+-=x y(2)∵AB ⊥MN∴直线MN :121-=x y 与抛物线联立可得:⎪⎪⎩⎪⎪⎨⎧-=++-=12142212x y x x y 解得:M (-2,-2)将AB 向负方向平移t 个单位后,A 1(2,-t ),B 1(0,4-t ) 则A 1关于直线x =-2的对称点A 2为(-6,-t )当A 2、M 、B 1三点共线时,11MA MB +取最小值 ∴314=t。

人教版八年级上册 13.4 将军饮马模型浅解 讲义-精选教学文档

人教版八年级上册 13.4 将军饮马模型浅解 讲义-精选教学文档

将军饮马问题将军饮马问题=轴对称问题=最短距离问题(轴对称是工具,最短距离是题眼)。

所谓轴对称是工具,即这类问题最常用的做法就是作轴对称。

而最短距离是题眼,也就意味着归类这类的题目的理由。

比如题目经常会出现线段 a+b 这样的条件或者问题。

一旦出现可以快速联想到将军饮马问题,然后利用轴对称解题。

将军饮马故事“将军饮马”问题是数学问题中的经典题目,主要转化成“两点之间线段最短问题”原题:如图,一位将军,从A地出发,骑马到河边给马饮水,然后再到B 地,问怎样选择饮水的地点,才能使所走的路程最短?•A•B模型一:一条定直线,同侧两定点在直线l的同侧有两点A,B,在L上求一点P,使得PA+PB值最小。

一般做法:作点 A(B)关于直线的对称点,连接 A’B,A’B 与直线交点即为所求点。

A’B即为最短距离。

理由:A’为 A 的对称点,所以无论 P 在直线任何位置都能得到 AP=A’P。

所以 PA+PB=PA’+PB。

这样问题就化成了求 A’到 B 的最短距离,直接相连就可以了。

例一:某供电部门准备在输电主干线L上连接一个分支线路,分支点为M,同时向新落成的A、B两个居民小区送电。

已知两个居民小区A、B分别到主干线的距离AA1=2千米,BB1=1千米,且A1B1=4千米。

(1)如果居民小区A、B位于主干线L的两旁,如图(1)所示,那么分支点M在什么地方时总路线最短?最短线路的长度是多少千米?(2)如果居民小区A、B位于主干线L的同旁,如图(2)所示,那么分支点M在什么地方时总路线最短?此时分支点M与A1的距离是多少千米?第 1 页第 2 页模型二:一条定直线,一定点,一动点如图,已知直线L 和定点A ,在直线K 上找一点B,在直线L 上找一点P ,使得AP+PB 值最小。

做法:做A 点关于l 的对称点A`点,再过A`点做AB 垂直k 于B 点,交l 于P点,此时AP+PB 值最小。

理由:对称后,AP=A`P,A`点到直线k 的最短距离为垂线段A`B ,故AP+PB 的最小值为A`B 。

将军饮马(最完整讲义)

将军饮马(最完整讲义)

第1讲将军饮马模型➢知识点睛“将军饮马”问题主要利用构造对称图形解决两条线段和差、三角形周长、四边形周长等一类问题,会与直线、角、三角形、四边形、圆、抛物线等图形结合,在近年的中考和竞赛中经常出现,而且大多以压轴题的形式出现。

一、定直线与两定点模型作法结论A、在直线l异侧当两定点B时,在直线l上找上点P,使PA+最小.PBA、在直线l同侧当两定点B时,在直线l上找上点P,使PA+最小.PBA、在直线l同侧当两定点B时,在直线l上找上点P,使PA-最大.PBA、在直线l异侧当两定点B时,在直线l上找上点P,使PA-最大.PBA、在直线l同侧当两定点B时,在直线l上找上点P,使PA-最小.PB二、角到定点模型作法结论点P 在AOB ∠的内部,在OA 上找一点M ,在OB 上找一点N ,使得PCD ∆周长最小.点P 在AOB ∠的内部,在OA 上找一点M ,在OB 上找一点N ,使得MN PN +最小.点Q P 、在AOB ∠的内部,在OA 上找一点M ,在OB 上找一点N ,使得四边形PMNQ 周长最小.点M 在AOB ∠的外部,在射线OA 上找一点P ,使PM 与点P 到射线OB 的距离和最小.点M 在AOB ∠的内部,在射线OA 上找一点P ,使PM 与点P 到射线OB 的距离和最小.点Q P 、分别在AOB ∠的边OB OA 、是,在OA 上找一点M ,在OB 上找一点N ,使得MQ MN PN ++最小.二、两定点一定长模型作法结论如图在直线l 上找上两点N M 、(M 在左),使NB MN AM ++最小,且d MN =.如图,21//l l ,21l l 、之间的距离为d ,在21l l 、上分别找N M 、两点,使1l MN ⊥,且NB MN AM ++最小.如图,21//l l ,43//l l ,21l l 、之间的距离为1d ,43//l l 之间的距离为2d ,在21l l 、上分别找N M 、两点,使1l MN ⊥,在43l l 、上分别找Q P 、两点,使3l PQ ⊥且QB PQ NP MN AM ++++最小.如图,在⊙O 上找一点N ,在直线l 找一点M ,使得MN AM +最小.➢ 精讲精练例1:如图,点P 是∠AOB 内任意一点,∠AOB =30°,OP =8,点M 和点N 分别是射线OA 和射线OB 上的动点,则△PMN 周长的最小值.P OBAMN例2:如图,正方形ABCD 的边长是4,M 在DC 上,且DM =1, N 是AC 边上的一动点,则△DMN 周长的最小值.例3:如图,在Rt △ABO 中,∠OBA =90°,A (4,4),点C 在边AB 上,且AC :CB =1:3,点D 为OB 的中点,点P 为边OA 上的动点,当点P 在OA 上移动时,使四边形PDBC 周长最小的点P 的坐标为( )A .(2,2)B .5(2,5)2C .8(3,8)3D .(3,3)第3题图 第4题图 第5题图例4:如图,在△ABC 中,AC =BC ,∠ACB =90°,点D 在BC 上,BD =3,DC =1,点P 是AB 上的动点,则PC +PD 的最小值为( ) A .4B .5C .6D .7例5:如图,在等边△ABC 中,AB =6, N 为AB 上一点且BN =2AN , BC 的高线AD 交BC 于点D ,M 是AD 上的动点,连结BM ,MN ,则BM +MN 的最小值是___________. PDCBAA BCDMNNMDCBA例6:如图,在Rt △ABD 中,AB =6,∠BAD =30°,∠D =90°,N 为AB 上一点且BN =2AN , M 是AD 上的动点,连结BM ,MN ,则BM +MN 的最小值.例7:如图,在Rt △ABC 中,∠ACB =90°,AC =6.AB =12,AD 平分∠CAB ,点F 是AC 的中点,点E 是AD 上的动点,则CE +EF 的最小值为( ) A .3 B .4 C . D .第7题图 第8题图 第9题图例8:如图,在锐角三角形ABC 中,BC =4,∠ABC =60°, BD 平分∠ABC ,交AC 于点D ,M 、N 分别是BD ,BC 上的动点,则CM +MN 的最小值是( ) A B .2 C .D .4例9:如图,在菱形ABCD 中,AC =BD =6,E 是BC 的中点,P 、M 分别是AC 、AB 上的动点,连接PE 、PM ,则PE +PM 的最小值是( ) A .6B .C .D .4.5NMDBA E AFCDBNM DCBAEPDCBAM例10:如图,矩形ABOC 的顶点A 的坐标为(-4,5),D 是OB 的中点,E 是OC 上的一点,当△ADE 的周长最小时,点E 的坐标是( ) A .4(0,)3B .5(0,)3C .(0,2)D .10(0,)3第10题图 第11题图 第12题图例11:如图,在矩形ABCD 中,AB =6,AD =3,动点P 满足13PAB ABCD S S ∆=矩形,则点P 到A 、B 两点距离之和PA +PB 的最小值为( ) A .B .C .D 例12:如图,矩形ABCD 中,AB =10,BC =5,点E 、F 、G 、H 分别在矩形ABCD 各边上,且AE =CG ,BF =DH ,则四边形EFGH 周长的最小值为( )A .B .C .D .例13:如图,∠AOB =60°,点P 是∠AOB 内的定点且OP M 、N 分别是射线OA 、OB 上异于点O 的动点,则△PMN 周长的最小值是( )A B C .6D .3第13题图 第14题图 CBH FGEDCB AA BMOPN例14:如图,∠AOB 的边OB 与x 轴正半轴重合,点P 是OA 上的一动点,点N (3,0)是OB 上的一定点,点M 是ON 的中点,∠AOB =30°,要使PM +PN 最小,则点P 的坐标为 .例15:如图,已知正比例函数y =kx (k >0)的图像与x 轴相交所成的锐角为70°,定点A 的坐标为(0,4),P 为y 轴上的一个动点,M 、N 为函数y =kx (k >0)的图像上的两个动点,则AM +MP +PN 的最小值为___________.第15题图例16:如图,在平面直角坐标系中,矩形ABCD 的顶点B 在原点,点A 、C 在坐标轴上,点D 的坐标为(6,4),E 为CD 的中点,点P 、Q 为BC 边上两个动点,且PQ =2,要使四边形APQE 的周长最小,则点P 的坐示应为______________.例17:如图,矩形ABCD 中,AD =2,AB =4,AC 为对角线,E 、F 分别为边AB 、CD 上的动点,且EF ⊥AC 于点M ,连接AF 、CE ,求AF +CE 的最小值.AB CD EFMx例18:如图,正方形ABCD 的面积是12,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,求PD+PE 的最小值。

将军饮马(最完整讲义)

将军饮马(最完整讲义)

第1讲将军饮马模型➢知识点睛一、“将军饮马”问题主要利用构造对称图形解决两条线段和差、三角形周长、四边形周长等一类问题, 会与直线、角、三角形、四边形、圆、抛物线等图形结合, 在近年的中考和竞赛中经常出现, 而且大多以压轴题的形式出现。

二、定直线与两定点模型作法结论当两定点在直线异侧时, 在直线上找上点, 使最小.当两定点在直线同侧时, 在直线上找上点, 使最小.当两定点在直线同侧时, 在直线上找上点, 使最大.当两定点在直线异侧时, 在直线上找上点, 使最大.当两定点在直线同侧时, 在直线上找上点, 使最小.二、角到定点模型作法结论点在的内部, 在上找一点, 在上找一点,使得周长最小.点在的内部, 在上找一点, 在上找一点,使得最小.点在的内部, 在上找一点, 在上找一点,使得四边形周长最小.点在的外部, 在射线上找一点, 使与点到射线的距离和最小.点在的内部, 在射线上找一点, 使与点到射线的距离和最小.点分别在的边是, 在上找一点, 在上找一点,使得最小.三、两定点一定长模型作法结论如图在直线上找上两点(在左), 使最小,且.如图, , 之间的距离为, 在上分别找两点, 使, 且最小.如图, , ,之间的距离为, 之间的距离为, 在上分别找两点, 使, 在上分别找两点, 使且最小.如图, 在⊙上找一点, 在直线找一点,使得最小.➢精讲精练例1: 如图, 点P是∠AOB内任意一点, ∠AOB=30°, OP=8, 点M和点N分别是射线OA和射线OB上的动点,则△PMN周长的最小值.例2: 如图, 正方形ABCD 的边长是4, M 在DC 上, 且DM=1, N 是AC 边上的一动点, 则△DMN 周长的最小值.A .例3: 如图, 在Rt △ABO 中, ∠OBA=90°, A (4,4), 点C 在边AB 上, 且AC:CB=1:3, 点D 为OB 的中点, 点P 为边OA 上的动点, 当点P 在OA 上移动时, 使四边形PDBC 周长最小的点P 的坐标为 B. ,C .,D .第3题图 第4题图 第5题图例4: 如图, 在△ABC 中, AC=BC, ∠ACB=90°, 点D 在BC 上, BD=3, DC=1, 点P 是AB 上的动点, 则PC+PD 的最小值为 A. 4 B. 5 C. 6 D. 7例5:如图, 在等边△ABC 中, AB=6, N 为AB 上一点且BN=2AN, BC 的高线AD 交BC 于点D, M 是AD 上的动点, 连结BM, MN, 则BM+MN 的最小值是___________.A BCDMN例6: 如图, 在Rt △ABD 中, AB=6, ∠BAD=30°, ∠D=90°, N 为AB 上一点且BN=2AN, M 是AD 上的动点, 连结BM, MN, 则BM+MN 的最小值.例7: 如图, 在Rt △ABC 中, ∠ACB=90°, AC=6. AB=12, AD 平分∠CAB, 点F 是AC 的中点, 点E 是AD 上的动点, 则CE+EF 的最小值为 A. 3 B. 4 C.D.第7题图 第8题图 第9题图A .例8: 如图, 在锐角三角形ABC 中, BC=4, ∠ABC=60°, BD 平分∠ABC, 交AC 于点D, M 、N 分别是BD, BC 上的动点, 则CM+MN 的最小值是B. 2C.D. 4例9: 如图, 在菱形ABCD 中, AC=, BD=6, E 是BC 的中点, P 、M 分别是AC.AB 上的动点, 连接PE 、PM, 则PE+PM 的最小值是A. 6B.C.D. 4.5E AFCDBNM DCBAEPDCBAMA .例10: 如图, 矩形ABOC 的顶点A 的坐标为(-4,5), D 是OB 的中点, E 是OC 上的一点, 当△ADE 的周长最小时, 点E 的坐标是B. C. D.第10题图 第11题图 第12题图例11: 如图, 在矩形ABCD 中, AB=6, AD=3, 动点P 满足, 则点P 到A.B 两点距离之和PA+PB 的最小值为A. B. C. D.例12: 如图, 矩形ABCD 中, AB=10, BC=5, 点E 、F 、G 、H 分别在矩形ABCD 各边上, 且AE=CG, BF=DH, 则四边形EFGH 周长的最小值为A. B. C. D.例13: 如图, ∠AOB=60°, 点P 是∠AOB 内的定点且OP=, 若点M 、N 分别是射线OA.OB 上异于点O 的动点, 则△PMN 周长的最小值是A. B. C. 6 D. 3第13题图 第14题图CBH FGEDCB AABMOPN例14: 如图, ∠AOB 的边OB 与x 轴正半轴重合, 点P 是OA 上的一动点, 点N (3,0)是OB 上的一定点, 点M 是ON 的中点, ∠AOB=30°, 要使PM+PN 最小, 则点P 的坐标为 .例15:如图, 已知正比例函数y=kx (k>0)的图像与x 轴相交所成的锐角为70°, 定点A 的坐标为(0, 4), P 为y 轴上的一个动点, M 、N 为函数y=kx (k>0)的图像上的两个动点, 则AM+MP+PN 的最小值为___________.第15题图例16: 如图, 在平面直角坐标系中, 矩形ABCD 的顶点B 在原点, 点A.C 在坐标轴上, 点D 的坐标为(6, 4), E 为CD 的中点, 点P 、Q 为BC 边上两个动点, 且PQ=2, 要使四边形APQE 的周长最小, 则点P 的坐示应为______________.例17:如图, 矩形ABCD 中, AD=2, AB=4, AC 为对角线, E 、F 分别为边AB 、CD 上的动点, 且EF ⊥AC 于点M,连接AF 、CE, 求AF+CE 的最小值.x例18: 如图, 正方形ABCD的面积是12, △ABE是等边三角形, 点E在正方形ABCD内, 在对角线AC上有一点P, 求PD+PE的最小值。

将军饮马问题(讲)

将军饮马问题(讲)

将军饮马问题类型一、基本模式类型二、轴对称变换的应用(将军饮马问题)2、如图所示,如果将军从马棚M出发,先赶到河OA上的某一位置P,再马上赶到河OB上的某一位置Q,然后立即返回校场N.请为将军重新设计一条路线(即选择点P和Q),使得总路程MP+PQ+QN最短.【变式】如图所示,将军希望从马棚M出发,先赶到河OA上的某一位置P,再马上赶到河OB上的某一位置Q.请为将军设计一条路线(即选择点P和Q),使得总路程MP+PQ最短.3、将军要检阅一队士兵,要求(如图所示):队伍长为a,沿河OB排开(从点P到点Q);将军从马棚M出发到达队头P,从P至Q检阅队伍后再赶到校场N.请问:在什么位置列队(即选择点P和Q),可以使得将军走的总路程MP+PQ+QN最短?4. 如图,点M在锐角∠AOB内部,在OB边上求作一点P,使点P到点M的距离与点P到OA 边的距离之和最小5已知∠MON内有一点P,P关于OM,ON的对称点分别是和,分别交OM, ON于点A、B,已知=15,则△PAB 的周长为()A. 15 B 7.5 C. 10 D. 246. 已知∠AOB,试在∠AOB内确定一点P,如图,使P到OA、OB的距离相等,并且到M、N 两点的距离也相等.7、已知∠MON=40°,P为∠MON内一定点,OM上有一点A,ON上有一点B,当△PAB的周长取最小值时,求∠APB的度数.8. 如图,在四边形ABCD中,∠A=90°,AD=4,连接BD,BD⊥CD,∠ADB=∠C.若P是BC 边上一动点,则DP长的最小值为______.练习1、已知点A在直线l外,点P为直线l上的一个动点,探究是否存在一个定点B,当点P在直线l上运动时,点P与A、B两点的距离总相等,如果存在,请作出定点B;若不存在,请说明理由.2、 如图,在公路a 的同旁有两个仓库A 、B ,现需要建一货物中转站,要求到A 、B 两仓库的距离和最短,这个中转站M 应建在公路旁的哪个位置比较合理?aBA3、 已知:A 、B 两点在直线l 的同侧, 在l 上求作一点M ,使得||AM BM -最小.4、如图,正方形ABCD 中,8AB =,M 是DC 上的一点,且2DM =,N 是AC 上的一动点,求DN MN +的最小值与最大值.NMD CB A5、如图,已知∠AOB 内有一点P ,试分别在边OA 和OB 上各找一点E 、F ,使得△PEF 的周长最小。

专题07 将军饮马模型(原卷版)

专题07 将军饮马模型(原卷版)

专题07.将军饮马模型将军饮马模型在考试中,无论是解答题,还是选择、填空题,都是学生感觉有困难的地方,也恰是学生能力区分度最重要的地方,主要考查转化与化归等的数学思想。

在各类考试中都以中高档题为主。

在解决几何最值问题主要依据是:①两点之间,线段最短;②垂线段最短,涉及的基本方法还有:利用轴对称变换化归到“三角形两边之和大于第三边”、“三角形两边之差小于第三边”等。

希望通过本专题的讲解让大家对这类问题有比较清晰的认识。

··模型1、将军饮马--两定一动求线段和的最小值【模型探究】A,B为定点,m为定直线,P为直线m上的一个动点,求AP+BP的最小。

(1)如图1,点A、B在直线m两侧:辅助线:连接AB交直线m于点P,则AP+BP的最小值为AB.(2)如图2,点A、B在直线同侧:辅助线:过点A作关于定直线m的对称点A’,连接A’B交直线m于点P,则AP+BP的最小值为A’B.图1图2例1.(2022·江苏·八年级专题练习)要在街道旁修建一个奶站,向居民区A、B提供牛奶,小聪根据实际情况,以街道旁为x轴,测得A点的坐标为(0,3),B点的坐标为(6,5),则从A、B两点到奶站距离之和的最小值是____.例2.(2022·江苏·八年级专题练习)如图,等边△ABC的边长为6,AD是BC边上的中线,M是AD上的动点,E是边AC上一点,若AE=2,则EM+CM的最小值为()AB .C .D .例3.(2022·江苏·八年级专题练习)如图所示,在ABC 中,AB AC =,直线EF 是AB 的垂直平分线,D 是BC 的中点,M 是EF 上一个动点,ABC 的面积为12,4BC =,则BDM 周长的最小值是_________.例4.(2023·湖北洪山·八年级期中)如图,将△ABC 沿AD 折叠使得顶点C 恰好落在AB 边上的点M 处,D 在BC 上,点P 在线段AD 上移动,若AC =6,CD =3,BD =7,则△PMB 周长的最小值为___.例5.(2023·江阴市八年级月考)某班级在探究“将军饮马问题”时抽象出数学模型:直线l 同旁有两个定点A 、B ,在直线l 上存在点P ,使得PA PB +的值最小.解法:如图1,作点A 关于直线l 的对称点A ',连接A B ',则A B '与直线l 的交点即为P ,且PA PB +的最小值为A B '.请利用上述模型解决下列问题:(1)几何应用:如图2,ABC ∆中,90C ∠=︒,2AC BC ==,E 是AB 的中点,P 是BC 边上的一动点,则PA PE +的最小值为;(2)几何拓展:如图3,ABC ∆中,2AC =,30A ∠=︒,若在AB 、AC 上各取一点M 、N 使CM MN +的值最小,画出图形,求最小值并简要说明理由.模型2、将军饮马--两动一定求线段和的最小值【模型探究】已知定点A 位于定直线m ,n 的内侧,在直线m 、n 分别上求点P 、Q 点PA +PQ +QA 周长最短.辅助线:过点A 作关于定直线m 、n 的对称点A’、A’’,连接A’A’’交直线m 、n 于点P 、Q ,则PA +PQ +QA 的最小值为A’A’’.例1.(2022·江苏·无锡市八年级期末)如图,已知∠AOB 的大小为α,P 是∠AOB 内部的一个定点,且OP =4,点E 、F 分别是OA 、OB 上的动点,若△PEF 周长的最小值等于4,则α=()A .30°B .45°C .60°D .90°例2.(2022·江苏九年级一模)如图,Rt △ABC 中,∠C =90°,AC =3,BC =4,D ,E ,F 分别是AB ,BC ,AC 边上的动点,则△DEF 的周长的最小值是()A .2.5B .3.5C .4.8D .6例3.(2023春·贵州毕节·七年级统考期末)如图所示,30AOB ∠= ,点P 为AOB ∠内一点,8OP =,点,M N 分别在,OA OB 上,求PMN ∆周长的最小值.例4.(2023.山东八年级期末)如图所示,在四边形ABCD 中,∠A =90º,∠C =90º,∠D =60º,AD =3,AB=,若点M、N分别为边CD,AD上的动点,则△BMN的周长最小值为()A. B. C.6 D.3模型3、将军饮马--两动两定求线段和的最小值【模型探究】A,B为定点,在定直线m、n上分别找两点P、Q,使PA+PQ+QB最小。

第13讲 将军饮马

第13讲 将军饮马

第十三讲将军饮马1.(2021春•靖远县期末)如图,直线l是一条河,A、B是两个新农村定居点.欲在l上的某点处修建一个水泵站,直接向A、B两地供水.现有如下四种管道铺设方案,图中实线表示铺设的供水管道,则铺设管道最短的方案是()A.B.C.D.2.(2021•襄州区模拟)如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为()A.6B.8C.10D.123.如图,点P是∠AOB内任意一点,且∠AOB=35°,点M和点N分别是射线OA和射线OB上的动点,当△PMN周长取最小值时,则∠MPN的度数为()A.145°B.110°C.100°D.70°4.如图,已知△ABC为等腰直角三角形,AC=BC=4,∠BCD=15°,P为CD上的动点,则|P A﹣PB|的最大值为.5.已知∠MON=40°,P为∠MON内一点,A为OM上的点,B为ON上的点,问当△P AB的周长取最小值时.(1)找到A、B点,保留作图痕迹;(2)求此时∠APB等于多少度?如果∠MON=θ,∠APB又等于多少?6.(2021春•郏县期末)已知点P在∠MON内.(1)如图1,点P关于射线OM的对称点是G,点P关于射线ON的对称点是H,连接OG、OH、OP.①若∠MON=50°,则∠GOH=;②若PO=5,连接GH,请说明当∠MON为多少度时,GH=10;(2)如图2,若∠MON=60°,A、B分别是射线OM、ON上的任意一点,当△P AB的周长最小时,求∠APB的度数.7.我们知道:光反射时,反射光线、入射光线和法线在同一平面内,反射光线、入射光线分别在法线两侧,反射角等于入射角.如图,AO为入射光线,入射点为O,ON为法线(过入射点O且垂直于镜面的直线),OB为反射光线,此时反射角∠BON等于入射角∠AON.问题思考:(1)如图1,一束光线从点A处入射到平面镜上,反射后恰好过点B,请在图中确定平面镜上的入射点P,保留作图痕迹;(2)如图2,两平面镜OM、ON相交于点O,且OM⊥ON,一束光线从点A出发,经过平面镜反射后,恰好经过点B OM反射后过点B,也可以只经过平面镜ON反射后过点B.除了小昕的两种做法外,你还有其它做法吗?如果有,请在图中画出光线的行进路线,保留作图痕迹;问题拓展:(3)如图3,两平面镜OM、ON相交于点O,且∠MON=20°,一束光线从点P出发,经过若干次反射后,最后反射出去时,光线平行于平面镜OM.设光线出发时与射线PM的夹角为θ(0°<θ<180°),请直接写出满足条件的所有θ的度数(注:OM、ON足够长)8.如图,已知点A是锐角∠MON内的一点.(1)按要求画图:(不写作法,尺规作图,保留作图痕迹)①分别作点A关于OM,ON的对称点A',A''.②试分别在OM、ON上确定点B,点C,使△ABC的周长最小.(2)若∠MON=45°时,试判断△ABC的形状,并说明理由.9.如图,∠MON=60°,点A、B分别是射线OM、射线ON上的动点,连接AB,∠MAB的角平分线与∠NBA的角平分线交于点P.(1)当OA=OB时,求证:AP∥OB;(2)在点A、B运动的过程中,∠P的大小是否发生改变?若不改变,请求出∠P的度数;若改变,请说明理由;(3)连接OP,C是线段OP上的动点,D是线段OA上的动点,当S△OAB=12,OB=6时,求AC+CD 的最小值.10.阅读理解题:【几何模型】条件:如图1,A、B是直线l同旁的两个定点.问题;在直线l上确定一点P,使P A+PB的值最小.方法:作点A关于直线l的对称点A',连接A′B交l于点P,则P A+PB=A'P+PB=A'B,由“两点之间,线段最短”可知,点P即为所求的点.【模型应用】如图2所示,两个村子A、B在一条河CD的同侧,A、B两村到河边的距离分别为AC=1千米,BD=3千米,CD=3千米.现要在河边CD上建造一水厂,向A、B两村送水,铺设水管的工程费用为每千米200元,请你在CD上选择水厂位置,使铺设水管的费用最省,并求出最省的铺设水管的费用W.【拓展延伸】如图,△ABC中,点D在BC边上,过D作DE⊥BC交AB于点E,P为DC上的一个动点,连接P A、PE,若P A+PE最小,则点P应该满足(唯一选项正确)A.∠APC=∠EPD B.P A=PEC.∠APE=90°D.∠APC=∠DEP专题强化练习04最值问题—将军饮马模型【名题展示1】几何模型:条件:如图1,A、B是直线l同旁的两个定点.问题:在直线l上确定一点P,使P A+PB的值最小.方法:作点A关于直线l的对称点A′,连接A′B交l于点P,则P A+PB=A′B的值最小(不必证明).模型应用:(1)如图2,角是大家喜爱的一种轴对称图形,它的角平分线所在的直线就是对称轴.现在有∠AOC=90°,OA=3,OB=4,P为∠AOC的角平分线上一动点,请求出AP+PB的最小值.(2)①如图,∠AOB=30°,P是∠AOB内一点,PO=10,Q、R分别是OA、OB上的动点,请直接写出△PQR周长的最小值10.②如图,∠AOB=20°,点M.N分别在边OA、OB上,且OM=ON=2,点P,Q分别在OB、OA上,则MP+PQ+QN的最小值是2.【分析】(1)∠AOC的平分线为OD,作AA′⊥OD交OC于A′,连接BA′交OD于P,连接P A,如图2,利用题中模型得到P A+PB最短,此时P A+PB=BA′,利用对称的性质得到OA′=OA=3,然后利用勾股定理计算出BA′即可;(2)①作点P关于OB的对称点P′,点P关于OA的对称点P″,连接P′P″交OB于R,交OA于Q,连接PR、PQ,如图3,利用对称的性质得到△PQR周长=P′P″,根据两点之间线段最短可判断此时△PQR周长最小,最小值为P′P″的长,再证明△P′OP″为等边三角形得到P′P″=OP′=OP =10,从而得到△PQR周长的最小值;②作点M关于OB的对称点M′,点N关于OA的对称点N′,连接M′N′交OB于P,交OA于Q,连接PM、NQ,如图4,同样方法判断此时MP+PQ+QN的值最小,最小值为M′N′,再证明△M′ON′为等边三角形得到M′N′=OM′=2,从而得到MP+PQ+QN的最小值.【详解】解:(1)∠AOC的平分线为OD,作AA′⊥OD交OC于A′,连接BA′交OD于P,连接P A,如图2,则P A+PB最短,此时P A+PB=BA′,∵OD平分∠AOC,AA′⊥OD,∴OA′=OA=3,在Rt△OBA′中,BA′==5,即AP+PB的最小值为5;(2)①作点P关于OB的对称点P′,点P关于OA的对称点P″,连接P′P″交OB于R,交OA于Q,连接PR、PQ,如图3,则OP=OP′,OP=OP″,RP=RP′,QP=QP″,∴△PQR周长=PR+RQ+PQ=RP′+RQ+QP″=P′P″,∴此时△PQR周长最小,最小值为P′P″的长,∵OP=OP′,OP=OP″,PP′⊥OB,PP″⊥OA,∴∠1=∠2,∠3=∠4,∴∠P′OP″=∠1+∠2+∠3+∠4=2∠2+2∠3=2∠BOA=60°,∴△P′OP″为等边三角形,∴P′P″=OP′=OP=10,即△PQR周长的最小值为10;②作点M关于OB的对称点M′,点N关于OA的对称点N′,连接M′N′交OB于P,交OA于Q,连接PM、NQ,如图4,则OM=OM′=2,ON=ON′=2,PM=PM′,QN=QN′,∴MP+PQ+QN=PM′+PQ+QN′=M′N′,∴此时MP+PQ+QN的值最小,最小值为M′N′,∵OM=OM′,ON=ON′,MM′⊥OB,NN′⊥OA,∴∠M′OB=∠AOB=20°,∠N′OA=∠AOB=20°,∴∠M′ON′=60°,∴△M′ON′为等边三角形,∴M′N′=OM′=2,即MP+PQ+QN的值最小为2.故答案为10,2.【名题展示2】作图题:(1)如图1,一个牧童从P点出发,赶着羊群去河边喝水,则应当怎样选择饮水路线,才能使羊群走的路程最短?请在图中画出最短路线.(2)如图2,直线l是一条河,A、B是两个村庄,欲在l上的某处修建一个水泵站M,向A、B两地供水,要使所需管道MA+MB的长度最短,在图中标出M点.(3)如图3,在一条河的两岸有A,B两个村庄,现在要在河上建一座小桥,桥的方向与河岸方向垂直,桥在图中用一条线段CD表示.试问:桥CD建在何处,才能使A到B的路程最短呢?请在图中画出桥CD的位置.画出示意图,并用平移的原理说明理由.【分析】(1)把河岸看做一条直线,利用点到直线的所有连接线段中,垂直线段最短的性质即可解决问题.(2)根据两点之间线段最短详解.(3)先确定AA′=CD,且AA′∥CD,连接BA′,与河岸的交点就是点C,过点C作CD垂直河岸,交另一河岸于点D,CD就是所求的桥的位置.【详解】解:(1)如图1.(2)如图2.(3)如图3,先确定AA′=CD,且AA′∥CD,连接BA′,与河岸的交点就是点C,过点C作CD垂直河岸,交另一河岸于点D,CD就是所求的桥的位置.理由:由作图过程可知,四边形ADCA′为平行四边形,AD平移至A′C即可得到线段A′B,两点之间,线段最短,由于河宽不变,CD即为桥.【同步强化】1.如图,直线l是一条河,A、B是两个新农村定居点.欲在l上的某点处修建一个水泵站,直接向A、B两地供水.现有如下四种管道铺设方案,图中实线表示铺设的供水管道,则铺设管道最短的方案是()A.B.C.D.【分析】利用对称的性质,通过等线段代换,将所求路线长转化为两定点之间的距离.【详解】解:作点A关于直线l的对称点A′,连接BA′交直线l于M.根据两点之间,线段最短,可知选项D铺设的管道最短.故选:D.2.如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为()A.6B.8C.10D.12【分析】连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再再根据EF是线段AC的垂直平分线可知,点C关于直线EF的对称点为点A,故AD的长为CM+MD的最小值,由此即可得出结论.【详解】解:连接AD,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=BC•AD=×4×AD=16,解得AD=8,∵EF是线段AC的垂直平分线,∴点C关于直线EF的对称点为点A,∴AD的长为CM+MD的最小值,∴△CDM的周长最短=CM+MD+CD=AD+BC=8+×4=8+2=10.故选:C.3.如图,点P是∠AOB内任意一点,且∠AOB=35°,点M和点N分别是射线OA和射线OB上的动点,当△PMN周长取最小值时,则∠MPN的度数为()A.145°B.110°C.100°D.70°【分析】P点关于OB的对称点E,连接EP,EO,EM,作P点关于OA的对称点F,连接NF,PF,OF,则有PM+PN+MN=EM+NF+MN≥EF,所以当E、M、N、F共线时,△PMN的周长最小,所以∠MPN =180°﹣∠EOF=180°﹣70°=110°.【详解】解:作P点关于OB的对称点E,连接EP,EO,EM,∴EM=MP,∠MPO=∠OEM,作P点关于OA的对称点F,连接NF,PF,OF,∴PN=FN,∠OPN=∠OFN,∴PM+PN+MN=EM+NF+MN≥EF,∴当E、M、N、F共线时,△PMN的周长最小,由对称可知,∠EOM=∠MOP,∠PON=∠FON,∴∠EOF=2∠MOP+2∠PON=2∠AOB,∵∠AOB=35°,∴∠EOF=70°,∴∠MPN=180°﹣70°=110°,故选:B.4.如图,已知△ABC为等腰直角三角形,AC=BC=4,∠BCD=15°,P为CD上的动点,则|P A﹣PB|的最大值为4.【分析】作A关于CD的对称点A′,连接A′B交CD于P,则点P就是使|P A﹣PB|的值最大的点,|P A ﹣PB|=A′B,连接A′C,根据等腰直角三角形的性质得到∠CAB=∠ABC=45°,∠ACB=90°,根据三角形的内角和得到∠ACD=75°,于是得到∠CAA′=15°,根据轴对称的性质得到A′C=BC,∠CA′A=∠CAA′=15°,推出△A′BC是腰三角形,根据等边三角形的性质即可得到结论.【详解】解:作A关于CD的对称点A′,连接A′B交CD于P,则点P就是使|P A﹣PB|的值最大的点,|P A﹣PB|=A′B,连接A′C,∵△ABC为等腰直角三角形,AC=BC=4,∴∠CAB=∠ABC=45°,∠ACB=90°,∵∠BCD=15°,∴∠ACD=75°,∴∠CAA′=15°,∵AC=A′C,∴A′C=BC,∠CA′A=∠CAA′=15°,∴∠ACA′=150°,∵∠ACB=90°,∴∠A′CB=60°,∴△A′BC是等边三角形,∴A′B=BC=4.故答案为:4.5.已知∠MON=40°,P为∠MON内一点,A为OM上的点,B为ON上的点,问当△P AB的周长取最小值时.(1)找到A、B点,保留作图痕迹;(2)求此时∠APB等于多少度?如果∠MON=θ,∠APB又等于多少?【分析】(1)作出点P关于OM、OB的对称点A′、B′,然后连接A′B′,A′B′与OM、ON交点即可找到A、B两点的位置;(2)首先由翻折的性质可知:∠A′PB′=140°,然后在△A′B′P中,由三角形的内角和定理可求得:∠A′+∠B′=40°,由轴对称的性质可知∠A′P A+∠BPB′=40°,从而可求得∠APB的度数.【详解】解:(1)如图所示:(2)如图下图所示:连AP、BP.∵点A′与点P关于直线OM对称,点B′与点P关于ON对称,∴A′P⊥OM,B′P⊥ON,A′A=AP,B′B=BP.∴∠A′=∠AP A′,∠B′=∠BPB′.∵A′P⊥OM,B′P⊥ON,∴∠MON+∠A′PB′=180°.∴∠A′PB′=180°﹣40°=140°.在△A′B′P中,由三角形的内角和定理可知:∠A′+∠B′=180°﹣140°=40°.∴∠A′P A+∠BPB′=40°.∴∠APB=140°﹣40=100°.如果∠MON=θ,则∠A′PB′=180°﹣θ.在△A′B′P中,由三角形的内角和定理可知:∠A′+∠B′=θ.∴∠A′P A+∠BPB′=θ.∴∠APB=180°﹣2θ.6.作图题(1)如图1,一个牧童从P点出发,赶着羊群去河边喝水,则应当怎样选择饮水路线,才能使羊群走的路程最短?请在图中画出最短路线.(2)如图2,在一条河的两岸有A,B两个村庄,现在要在河上建一座小桥,桥的方向与河岸方向垂直,桥在图中用一条线段CD表示.试问:桥CD建在何处,才能使A到B的路程最短呢?请在图中画出桥CD的位置.【分析】(1)把河岸看做一条直线,利用点到直线的所有连接线段中,垂直线段最短的性质即可解决问题.(2)先确定AA′=CD,且AA′∥CD,连接BA′,与河岸的交点就是点C,过点C作CD垂直河岸,交另一河岸于点D,CD就是所求的桥的位置.【详解】解:(1)根据垂直线段最短的性质,即可画出这条从草地到河边最近的线路,如图1所示:(2)先确定AA′=CD,且AA′∥CD,连接BA′,与河岸的交点就是点C,过点C作CD垂直河岸,交另一河岸于点D,CD就是所求的桥的位置.如图2,7.已知点P在∠MON内.(1)如图1,点P关于射线OM的对称点是G,点P关于射线ON的对称点是H,连接OG、OH、OP.①若∠MON=50°,则∠GOH=100°;②若PO=5,连接GH,请说明当∠MON为多少度时,GH=10;(2)如图2,若∠MON=60°,A、B分别是射线OM、ON上的任意一点,当△P AB的周长最小时,求∠APB的度数.【分析】(1)依据轴对称可得OG=OP,OM⊥GP,即可得到OM平分∠POG,ON平分∠POH,进而得出∠GOH=2∠MON=2×50°=100°;②当∠MON=90°时,∠GOH=180°,此时点G,O,H在同一直线上,可得GH=GO+HO=10;(2)设点P关于OM、ON对称点分别为P′、P″,当点A、B在P′P″上时,△P AB周长为P A+AB+BP =P′P″,此时周长最小.根据轴对称的性质,可求出∠APB的度数.【详解】解:(1)①∵点P关于射线OM的对称点是G,点P关于射线ON的对称点是H,∴OG=OP,OM⊥GP,∴OM平分∠POG,同理可得ON平分∠POH,∴∠GOH=2∠MON=2×50°=100°,故答案为:100°;②∵PO=5,∴GO=HO=5,当∠MON=90°时,∠GOH=180°,∴点G,O,H在同一直线上,∴GH=GO+HO=10;(2)如图所示:分别作点P关于OM、ON的对称点P′、P″,连接OP′、OP″、P′P″,P′P″交OM、ON于点A、B,连接P A、PB,则AP=AP',BP=BP“,此时△P AB周长的最小值等于P′P″的长.由轴对称性质可得,OP′=OP″=OP,∠P′OA=∠POA,∠P″OB=∠POB,∴∠P′OP″=2∠MON=2×60°=120°,∴∠OP′P″=∠OP″P′=(180°﹣120°)÷2=30°,∴∠OP A=∠OP'A=30°,同理可得∠BPO=∠OP″B=30°,∴∠APB=30°+30°=60°.8.我们知道:光反射时,反射光线、入射光线和法线在同一平面内,反射光线、入射光线分别在法线两侧,反射角等于入射角.如图,AO为入射光线,入射点为O,ON为法线(过入射点O且垂直于镜面的直线),OB为反射光线,此时反射角∠BON等于入射角∠AON.问题思考:(1)如图1,一束光线从点A处入射到平面镜上,反射后恰好过点B,请在图中确定平面镜上的入射点P,保留作图痕迹;(2)如图2,两平面镜OM、ON相交于点O,且OM⊥ON,一束光线从点A出发,经过平面镜反射后,恰好经过点B.小昕说,光线可以只经过平面镜OM反射后过点B,也可以只经过平面镜ON反射后过点B.除了小昕的两种做法外,你还有其它做法吗?如果有,请在图中画出光线的行进路线,保留作图痕迹;问题拓展:(3)如图3,两平面镜OM、ON相交于点O,且∠MON=20°,一束光线从点P出发,经过若干次反射后,最后反射出去时,光线平行于平面镜OM.设光线出发时与射线PM的夹角为θ(0°<θ<180°),请直接写出满足条件的所有θ的度数(注:OM、ON足够长)【分析】(1)如图1,作A关于平面镜ML的对称点A′,连接A′B交ML于点P,则点P即为所求,只要证明∠3=∠4即可.(2)如图2,作A关于OM的对称点A′,作B关于ON的对称点B′,连接A′B′分别交OM、ON 于点P、Q.(3)θ=40°,80°,120°,160°.分别作出图形即可解决问题.【详解】解:(1)如图1,作A关于平面镜ML的对称点A′,连接A′B交ML于点P,则点P即为所求.证明:如图作PN⊥ML,∵A与A′关于ML对称,∴∠1=∠2,∵∠2+∠3=90°,∠1+∠2+∠3+∠4=180°,∴∠1+∠4=90°,∴∠3=∠4,∴AP是入射光线,PB是反射光线,P即为入射点.(2)如图2,作A关于OM的对称点A′,作B关于ON的对称点B′,连接A′B′分别交OM、ON 于点P、Q.则光线的行进路线为A→P→Q→B.(3)θ=40°,80°,120°,160°.理由如图所示,9.如图,已知点A是锐角∠MON内的一点.(1)按要求画图:(不写作法,尺规作图,保留作图痕迹)①分别作点A关于OM,ON的对称点A',A''.②试分别在OM、ON上确定点B,点C,使△ABC的周长最小.(2)若∠MON=45°时,试判断△ABC的形状,并说明理由.【分析】(1)①应分别作出点A关于OM,ON两条射线的对称点即可;②连接两个对称点的交点与OM,ON的交点即为所确定的点.(2)依据轴对称的性质,即可得出△A'OB≌△AOB,∠A'OB=∠AOB,∠OA'B=∠OAB,同理可得∠A “OC=∠AOC,∠OA“C=∠OAC,依据∠OA'A“+∠OA“A'=90°,即可得到∠OAB+∠OAC=90°,进而得出△ABC是直角三角形.【详解】解:(1)①如图所示,②如图所示,连接A′A″,分别交OM,ON于点B、点C,则点B、点C即为所求.(2)△ABC是直角三角形.如图,连接A'O,A“O,AO,由轴对称的性质,可得OM垂直平分AA',∴OA'=OA,BA'=BA,而OB=OB,∴△A'OB≌△AOB,∴∠A'OB=∠AOB,∠OA'B=∠OAB,同理可得∠A“OC=∠AOC,∠OA“C=∠OAC,∵∠MON=45°,∴∠A'OA“=90°,∴∠OA'A“+∠OA“A'=90°,∴∠OAB+∠OAC=90°,即∠BAC=90°,∴△ABC是直角三角形.10.如图,∠MON=60°,点A、B分别是射线OM、射线ON上的动点,连接AB,∠MAB的角平分线与∠NBA的角平分线交于点P.(1)当OA=OB时,求证:OB;(2)在点A、B运动的过程中,∠P的大小是否发生改变?若不改变,请求出∠P的度数;若改变,请说明理由;(3)连接OP,C是线段OP上的动点,D是线段OA上的动点,当S△OAB=12,OB=6时,求AC+CD 的最小值.【分析】(1)首先证明△ABO是等边三角形,再证明∠P AB=∠ABO=60°,可得结论.(2)如图2中,∠P的大小不变,∠P=60°.求出∠P AB+∠PBA的大小,可得结论.(3)如图3中,过点A作AH⊥OB于H,过点P作PJ⊥AB于J,PK⊥OM于K,PI⊥ON于I.首先证明OP平分∠MON,作点D关于OB的对称点D′,连接CD′,则有AC+CD=AC+CD′≥AH,求出AH,可得结论.【详解】(1)证明:如图1中,∵∠O=60°,OA=OB,∴△OAB是等边三角形,∴∠OAB=∠ABO=60°,∴∠BAM=180°﹣60°=120°,∵P A平分∠BAM,∴∠P AB=∠BAM=60°,∴∠P AB=∠ABO=60°,∴AP∥OB.(2)解:如图2中,∠P的大小不变,∠P=60°.理由如下:∵∠MAB=∠O+∠OBA,∠ABN=∠O+∠OAB,∴∠MAB+∠ABN=∠O+∠ABO+∠OAB+∠O=180°+60°=240°,∵P A,PB分别平分∠MAB,ABN,∴∠P AB+∠PBA=(∠MAB+∠ABN)=120°,∴∠P=180°﹣120°=60°.(3)解:如图3中,过点A作AH⊥OB于H,过点P作PJ⊥AB于J,PK⊥OM于K,PI⊥ON于I.∵P A平分∠MAB,PK⊥OM,PJ⊥AB,∴PK=PJ,∵PB平分∠ABN,PJ⊥AB,PI⊥ON,∴PJ=PI,∴PK=PI,∴OP平分∠MON,作点D关于OB的对称点D′,连接CD′,∵S△AOB=•OB•AH,∴12=×6×AH,∴AH=4,∵CD=CD′,∴AC+CD=AC+CD′≥AH,∴AC+CD≥4,∴AC+CD的最小值为4.11.阅读理解题:【几何模型】条件:如图1,A、B是直线l同旁的两个定点.问题;在直线l上确定一点P,使P A+PB的值最小.方法:作点A关于直线l的对称点A',连接A′B交l于点P,则P A+PB=A'P+PB=A'B,由“两点之间,线段最短”可知,点P即为所求的点.【模型应用】如图2所示,两个村子A、B在一条河CD的同侧,A、B两村到河边的距离分别为AC=1千米,BD=3千米,CD=3千米.现要在河边CD上建造一水厂,向A、B两村送水,铺设水管的工程费用为每千米200元,请你在CD上选择水厂位置,使铺设水管的费用最省,并求出最省的铺设水管的费用W.【拓展延伸】如图,△ABC中,点D在BC边上,过D作DE⊥BC交AB于点E,P为DC上的一个动点,连接P A、PE,若P A+PE最小,则点P应该满足A(唯一选项正确)A.∠APC=∠EPD B.P A=PEC.∠APE=90°D.∠APC=∠DEP【分析】【模型应用】根据轴对称的性质确定水厂位置,作A′E⊥BD交BD的延长线于点E,根据矩形的性质分别求出DE、A′E,根据勾股定理求出A′B,得到P A+PB,结合题意计算即可;【拓展延伸】延长ED至E′,连接AE′交BC于点P,则点P即为所求,根据轴对称的性质、对顶角相等详解.【详解】解:【模型应用】延长AC至A′,连接BA′交CD于点P,则点P即为所求的水厂位置,作A′E⊥BD交BD的延长线于点E,则四边形CA′ED为矩形,∴DE=A′C=AC=1,A′E=CD=3,∴BE=BD+DE=4,由勾股定理得,A′B===5,则P A+PB=A′B=5,∴最省的铺设水管的费用W=200×5=1000(元);【拓展延伸】延长ED至E′,连接AE′交BC于点P,则点P即为所求,连接EP,∵点E与点E′关于BC对称,∴∠E′PD=∠EPD,∵∠E′PD=∠APC,∴∠APC=∠EPD,A正确;P A>PE,B错误;∠APE的度数不确定,C错误;∠APC与∠DEP的关系不确定,D错误;故选:A.12.几何知识可以解决生活中许多距离最短的问题.让我们从书本一道习题入手进行探索.[回顾](1)如图1,AB是公路l两侧的两个村庄.现要在公路l上修建一个垃圾站C,使它到A、B两村庄的路程之和最小,请在图中画出点C的位置,并说明理由.[探索](2)如图2,在B村庄附件有一个生态保护区,现要在公路l修建一个垃圾站C,使它到A、B两村庄的路程之和最小,从B村庄到公路不能穿过生态保护区,请在图中画出点C的位置.(3)如图3,A、B是河两侧的两个村庄.现要在河上修建一座桥,使得桥与河岸垂直,且A村到B村的总路程最短,请在图中画出桥的位置.(保留画图痕迹)【分析】(1)连接AB交直线l C,点C即为所求作.(2)根据两点之间线段最短解决问题.(3)作AA′∥CD,且AA′=1,连接BA′得到点C,作线段CD⊥河岸即可.【详解】解:(1)如图,点C即为所求作.(2)如图,点C即为所求作.(3)如图,线段CD可即为所求作.。

将军饮马问题讲义

将军饮马问题讲义

将军饮马问题之阳早格格创做唐往诗人李颀的诗《古从军止》启头二句道:"黑日登山视烽火,薄暮饮马傍接河."诗中隐含着一个有趣的数教问题.如图所示,诗中将军正在瞅视烽火之后从山足下的A面出收,走到河边饮马后再到B面宿营.请问何如走才搞使总的路途最短?那个问题早正在古罗马时代便有了,传道亚历山大乡有一位粗通数教战物理的教者,名喊海伦.一天,一位罗马将军博程去考察他,背他请教一个百思不得其解的问题.将军每天从军营A出收,先到河边饮马,而后再去河岸共侧的B天启会,该当何如走才搞使路途最短?今后,那个被称为"将军饮马"的问题广大流传.将军饮马问题=轴对于称问题=最短距离问题(轴对于称是工具,最短距离是题眼).所谓轴对于称是工具,即那类问题最时常使用的搞法便是做轴对于称.而最短距离是题眼,也便表示着归类那类的题手段缘由.比圆题目时常会出现线段a+b 那样的条件大概者问题.一往出现不妨赶快偶像到将军问题,而后利用轴对于称解题.一.六大模型1.如图,曲线l 战l 的同侧二面A、B,正在曲线l 上供做一面P,使PA+PB 最小.2.如图,曲线l 战l 的共侧二面A、B,正在曲线l 上供做一面P,使PA+PB 最小.3.如图,面P 是∠MON 内的一面,分别正在OM,ON 上做面A,B.使△PAB 的周少最小.4.如图,面P,Q 为∠MON 内的二面,分别正在OM,ON 上做面A,B.使四边形PAQB 的周少最小.5.如图,面A 是∠MON 中的一面,正在射线ON 上做面P,使PA 取面P 到射线OM 的距离之战最小6. .如图,面A 是∠MON 内的一面,正在射线ON 上做面P,使PA 取面P 到射线OM 的距离之战最小罕睹问题最先明黑几个观念,动面、定面、对于称面.动面普遍便是题目中的所供面,即那个大概的面.定面即为题目中牢固的面.对于称的面,做图所得的面,需要连线的面.1. 怎么对于称,做谁的对于称?.简朴道所有题目需要做对于称的面,皆是题手段定面.大概者道惟有定面才不妨去做对于称的.(不决定的面做对于称式不意思的)那么做谁的对于称面?最先要粗确闭于对于称的对于象肯定是一条线,而不是一个面.那么是哪一条线?普遍而止皆是动面天圆曲线.2. 对于称完以去战谁对接?一句话:战其余一个定面贯串.千万于不克不迭战一个动面贯串.粗确一个观念:定面的对于称面也是一个定面.比圆模型二战模型三.3. 所供面怎么决定?最先一定要明黑,所供面末尾反应正在图上一定是个接面.本量便是咱们所绘曲线战已知曲线的接面.底下咱们去瞅瞅将军饮马取二次函数分离的问题:1.如图,扔物线y=ax2+bx+c通过A(1,0)、B(4,0)、C(0,3)三面.(1)供扔物线的剖析式;(2)如图,正在扔物线的对于称轴上是可存留面P,使得四边形PAOC的周少最小?若存留,供出四边形PAOC周少的最小值;若不存留,请证明缘由.【分解】(1)设接面式为y=a(x﹣1)(x﹣4),而后把C面坐标代进供出a=,于是得到扔物线剖析式为y=x2﹣x+3;(2)先决定扔物线的对于称轴为曲线x=,连结BC接曲线x=于面P,如图,利用对于称性得到PA=PB,所以PA+PC=PC+PB=BC,根据二面之间线段最短得到PC+PA最短,于是可推断此时四边形PAOC的周少最小,而后估计出BC=5,再估计OC+OA+BC即可.【解问】解:(1)设扔物线剖析式为y=a(x﹣1)(x﹣4),把C(0,3)代进得a•(﹣1)•(﹣4)=3,解得a=,所以扔物线剖析式为y=(x﹣1)(x﹣4),即y=x2﹣x+3;(2)存留.果为A(1,0)、B(4,0),所以扔物线的对于称轴为曲线x=,连结BC接曲线x=于面P,如图,则PA=PB,PA+PC=PC+PB=BC,此时PC+PA最短,所以此时四边形PAOC的周少最小,果为BC==5,所以四边形PAOC周少的最小值为3+1+5=9.【面评】原题考查了待定系数法供二次函数的剖析式:正在利用待定系数法供二次函数闭系式时,要根据题目给定的条件,采用妥当的要领设出闭系式,进而代进数值供解.普遍天,当已知扔物线上三面时,常采用普遍式,用待定系数法列三元一次圆程组去供解;当已知扔物线的顶面大概对于称轴时,常设其剖析式为顶面式去供解;当已知扔物线取x轴有二个接面时,可采用设其剖析式为接面式去供解.也考查了最短路径问题.2.(2015•上乡区一模)设扔物线y=(x+1)(x﹣2)取x轴接于A、C二面(面A正在面C的左边),取y轴接于面B.(1)供A、B、C三面的坐标;(2)已知面D正在坐标仄里内,△ABD是顶角为120°的等腰三角形,供面D的坐标;(3)若面P、Q位于扔物线的对于称轴上,且PQ=,供四边形ABQP周少的最小值.【考面】二次函数概括题.【分解】(1)令x=0,供出取y轴的坐标;令y=0,供出取x 轴的坐标;(2)分三种情况计划:①当AB为底时,若面D正在AB上圆;若面D正在AB下圆;②当AB为腰时,A为顶面时,③当AB为腰时,A为顶面时;小心解问即可.(3)当AP+BQ最小时,四边形ABQP的周少最小,根据轴对于称最短路径问题解问.【解问】解:(1)当x=0时,y=﹣;当y=0时,x=﹣1大概x=2;则A(﹣1,0),B(0,﹣),C(2,0);(2)如图,Rt△ABO中,OA=1,OB=,∴AB=2,∠ABO=30°,∠BAO=60°,∴△ABD是顶角为120°的等腰三角形.①当AB为底时,若面D正在AB上圆,由∠ABO=∠BAD=30°,AB=2,得D1(0,﹣),若面D正在AB下圆,由∠BAD=∠DBA=30°,AB=2,得D2(﹣1,﹣),②当AB为腰时,A为顶面时,∵∠DAB=120°,∠OAB=60°,AD=AB=2,∴面D正在y轴大概x轴上,若D正在y轴上,得D3(0,),若D正在x轴上,得D4(﹣3,0);③当AB为腰时,A为顶面时,若面D正在第三象限,∵∠DBO=150°,BD=2,得D5(﹣1,﹣2);若面D正在第四象限时,∵DB∥x轴,BD=2,得D6(2,﹣),∴切合央供的面D的坐标为(0,﹣),(﹣1,﹣),(0,),(﹣3,0),(﹣1,﹣2),(2,﹣);(3)当AP+BQ最小时,四边形ABQP的周少最小,把面B进取仄移个单位后得到B1(0,﹣),∵BB1∥PQ,且BB1=PQ,∴四边形BB1PQ是仄止四边形,∴BQ=B1P,∴AP+BQ=AP+B1P,要正在曲线x=上找一面P,使得AP+B1P最小,做面B1闭于曲线x=的对于称面,得B2(1,﹣),则AB2便是AP+BQ的最小值,AB2==,AB=2,PQ=,∴四边形ABQP的周少最小值是+2.【面评】原题考查了二次函数概括题,波及二次函数取x轴的接面、取y轴的接面、等腰三角形的本量、勾股定理等真量,存留性问题的出现使得易度删大.。

将军饮马问题(解析版)

将军饮马问题(解析版)

将军饮马问题模型的概述:唐朝诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题:将军在观望烽火之后从山脚下的A点出发,走到河边让战马饮水后再到B 点宿营。

问如何行走才能使总的路程最短。

模型一(两点在河的异侧):将军在观望烽火之后从山脚下的A点出发,走到河边让战马饮水后再到B 点宿营,将在何处渡河使行走距离最短并求最短距离。

方法:如右图,连接AB,与线段L交于点M,在M处渡河距离最短,最短距离为线段AB的长。

模型二(两点在河的同侧):将军在观望烽火之后从山脚下的A点出发,需先走到河边让战马饮水后再到B点宿营,将在何处渡河使行走距离最短并求最短距离。

方法:如右图,作点B关于直线L的对称点B',连接AB',与直线L的交点即为所求的渡河点,最短距离为线段AB'的长。

模型三:如图,将军同部队行驶至P处,准备在此驻扎,但有哨兵发现前方为两河AB、BC的交汇处,为防止敌军在对岸埋伏需派侦察兵到河边观察,再返回P处向将军汇报情况,问侦察兵在AB、BC何处侦查才能最快完成任务并求最短距离。

数学描述:如图在直线AB、BC上分别找点M、N,使得∆PMN周长最小。

方法:如右图,分别作点P关于直线AB、BC的对称点P'、P'',连接P'P'',与两直线的交点即为所求点M、N,最短距离为线段P'P''的长。

模型四如图,深夜为防止敌军在对岸埋伏,将军又派一队侦察兵到河边观察,并叮嘱观察之后先去存粮位置点Q处查看再返回P处向将军汇报情况,问侦察在AB、BC何处侦查才能最快完成任务并求最短距离。

数学描述:如图在直线AB、BC上分别找点M、N,使得四边形PQNM周长最小。

方法:如右图,分别作点P、点Q关于直线AB、BC的对称点P'、Q',连接P'Q',与两直线的交点即为所求点M、N,最短距离为线段(PQ+P'Q')的长。

最短路径(将军饮马)问题(知识梳理与考点分类讲解)(人教版)(教师版) 24-25学年八年级数学上册

最短路径(将军饮马)问题(知识梳理与考点分类讲解)(人教版)(教师版) 24-25学年八年级数学上册

专题13.10最短路径(将军饮马)问题(知识梳理与考点分类讲解)第一部分【知识点归纳】【模型一:两定交点型】如图1,直线l和l的异侧两点A.B,在直线l上求作一点P,使PA+PB 最小;图1【模型二:两定一动型】如图2,直线l和l的同侧两点A.B,在直线l上求作一点P,使PA+PB 最小(同侧转化为异侧);图2【模型三:一定两动型】如图3,点P是∠MON内的一点,分别在OM,ON上作点A,B。

使△PAB的周长最小。

图3【模型四:两定两动型】如图4,点P,Q为∠MON内的两点,分别在OM,ON上作点A,B。

使四边形PAQB的周长最小。

图4【模型五:一定两动(垂线段最短)型】如图5,点A是∠MON外的一点,在射线ON上作点P,使PA与点P到射线OM的距离之和最小。

图5【模型六:一定两动,找(作)对称点转化型】如图6,点A是∠MON内的一点,在射线ON 上作点P,使PA与点P到射线OM的距离之和最小。

图6【考点1】两定一动型;【考点2】一定两动(两点之间线段最短)型;【考点3】一定两动(垂线段最短)型;【考点4】两定两动型;【考点5】一定两动(等线段)转化型;.第二部分【题型展示与方法点拨】【考点1】两定一动型;【例1】(23-24八年级上·全国·课后作业)如图,在ABC ∆中,3,4AB AC ==,EF 垂直平分BC ,交AC 于点D ,则ABP 周长的最小值是()A .12B .6C .7D .8【答案】C 【分析】本题主要考查了,轴对称﹣最短路线问题的应用,解此题的关键是找出P 的位置.凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,根据题意知点B 关于直线EF 的对称点为点C ,故当点P 与点D 重合时,AP BP +的值最小,即可得到ABP 周长最小.解:∵EF 垂直平分BC ,∴点B ,C 关于EF 对称.∴当点P 和点D 重合时,AP BP +的值最小.此时AP BP AC +=,∵3,4AB AC ==,ABP ∴ 周长的最小值是347AP BP AB AB AC ++=+=+=,故选:C .【变式】(23-24八年级上·广东广州·期中)如图,在ABC V 中,1216AB AC ==,,20BC =.将ABC V 沿射线BM 折叠,使点A 与BC 边上的点D 重合,E 为射线BM 上的一个动点,则CDE 周长的最小值.【答案】24【详解】设BM 与AC 的交点为点F ,连接AE ,DF 先根据折叠的性质可得12BD AB ==,DF AF =,DE AE =,BDF BAF ∠=∠,再根据两点之间线段最短可得当点E 与点F 重合时,CDE 周长最小,进而求解即可.解:如图,设BM 与AC 的交点为点F ,连接AE ,DF ,由折叠的性质得:12BD AB ==,DF AF =,DE AE =,BDF BAF ∠=∠,20128CD BC BD ∴=-=-=,CDE ∴ 周长8CD DE CE AE CE =++=++,要使CDE 周长最小,只需AE CE +最小,由两点之间线段最短可知,当点E 与点F 重合时,最小值为AC ,∴CDE 周长为:681624AC +=+=.故答案为:24.【点拨】本题考查了折叠的性质等知识点,熟练掌握折叠的性质是解题关键.【考点2】一定两动(两点之间线段最短)型;【例2】(23-24八年级上·湖北省直辖县级单位·期末)如图,45MON ∠=︒,P 为MON ∠内一点,A 为OM 上一点,B 为ON 上一点,当PAB 的周长取最小值时,APB ∠的度数为()A .45︒B .90︒C .100︒D .135︒【答案】B 【分析】本题主要考查了最短路线问题、四边形的内角和定理、轴对称的性质等知识点,掌握两点之间线段最短的知识画出图形是解题的关键.如图:作P 点关于OM ON 、的对称点A B ''、,连接A B '',此时PAB 的周长最小为A B '',求出A B ''即可.解:如图:作P 点关于OM ON 、的对称点A B ''、,然后连接A B '',∵点A '与点P 关于直线OM 对称,点B '与点P 关于ON 对称,∴A P OM B P ON A A AP B B BP ''''⊥⊥==,,,,∴A APA B BPB ''''∠=∠∠=∠,,∵A P OM B P ON ''⊥⊥,,∴180MON A PB ''∠+∠=︒,∴18045135A PB ''∠=︒-︒=︒,在A B P ''△中,由三角形的内角和定理可知:18013545A B ''∠+∠=︒-︒=︒,∴45A PA BPB ''∠+∠=︒,∴1354590APB ∠=︒-︒=︒.故选:B .【变式】(23-24八年级上·江苏无锡·期中)如图,45AOB ∠=︒,点M N 、分别在射线OA OB 、上,5MN =,15OMN S = ,点P 是直线MN 上的一个动点,点P 关于OA 的对称点为1P ,点P 关于OB 的对称点为2P ,连接1OP 、2OP 、12PP ,当点P 在直线MN 上运动时,则12OPP 面积的最小值是.【考点3】一定两动型(垂线段最短);【例3】(22-23八年级上·湖北武汉·期末)如图,在ABC V 中,3AB =,4BC =,5AC =,AB BC ⊥,点P 、Q 分别是边BC 、AC 上的动点,则AP PQ +的最小值等于()A .4B .245C .5D .275【答案】B 【分析】作A 过于BC 的对称点A ',过点A '作A Q AC '⊥,交AC 于点Q ,交BC 于点P ,根据对称可得:AP PQ A P PQ A Q ''+=+≥,得到当,,A P Q '三点共线时,AP PQ +最小,再根据垂线段最短,得到A Q AC '⊥时,A Q '最小,进行求解即可.解:作A 过于BC 的对称点A ',过点A '作A Q AC '⊥,交AC 于点Q ,交BC 于点P ,【变式】(23-24七年级下·陕西西安·阶段练习)如图,在Rt ABC △中,90ACB ∠=︒,3AC =,4BC =,5AB =,AD 是ABC V 的角平分线,若P Q 、分别是AD 和AC 边上的动点,则PC PQ +的最小值是.AD 是BAC ∠的平分线,1QAD Q AD∴∠=∠在AQD 与1AQ D 中【考点4】两定两动型;【例4】如图,已知24AOB ∠=︒,OP 平分AOB ∠,1OP =,C 在OA 上,D 在OB 上,E 在OP 上.当CP CD DE ++取最小值时,此时PCD ∠的度数为()A .36︒B .48︒C .60︒D .72︒【答案】D 【分析】作点P 关于OA 的对称点P',作点E 关于OB 的对称点'E ,连接'OP 、'PP 、'OE 、'EE 、''P E ,则由轴对称知识可知=''CP CD DE CP CD DE ++++,所以依据垂线段最短知:当''P C D E 、、、在一条直线上,且'''P E OE ⊥时,CP CD DE ++取最小值,根据直角三角形的两锐角互余及三角形外角的性质可以'P C PC =,'E D ED =,'1OP OP ==,=''CP CD DE CP CD DE ++++,'P OE ∠''P C D E 、、、在一条直线上,且''P E ''=9048=42OP E ∠︒-︒︒,'='''=7842CP P OP P OP E ∠∠-∠︒-︒=【答案】44βα-=︒【分析】本题考查轴对称—最短问题、三角形的内角和定理.三角形的外角的性质等知识,解题的关键是灵活运用所学知识解决问题.OQM OQM NQP '∴∠=∠=∠,OPQ ∠∴1(180)2PQN AOB α∠=︒-=∠+∠44βα∴-=︒,故答案为:44βα-=︒.【考点5】一定两动(等线段)转化型;【例5】(20-21八年级上·湖北鄂州·期中)如图,AD 为等腰△ABC 的高,其中∠ACB =50°,AC =BC ,E ,F 分别为线段AD ,AC 上的动点,且AE =CF ,当BF +CE 取最小值时,∠AFB 的度数为()A .75°B .90°C .95°D .105°【答案】C 【分析】先构造△CFH 全等于△AEC ,得到△BCH 是等腰直角三角形且FH=CE ,当FH+BF 最小时,即是BF+CE 最小时,此时求出∠AFB 的度数即可.解:如图,作CH ⊥BC ,且CH=BC ,连接HB ,交AC 于F ,此时△BCH 是等腰直角三角形且FH+BF 最小,∵AC=BC ,∴CH=AC ,∵∠HCB=90°,AD ⊥BC ,∴AD//CH ,∵∠ACB=50°,∴∠ACH=∠CAE=40°,∴△CFH ≌△AEC ,∴FH=CE ,∴FH+BF=CE+BF 最小,此时∠AFB=∠ACB+∠HBC=50°+45°=95°.故选:C .【点拨】本题考查全等三角形的性质和判定、等腰三角形的性质、最短路径问题,关键是作出辅助线,有一定难度.【变式】(23-24七年级下·四川宜宾·期末)在ABC V 中,80CAB ∠=︒,2AB =,3AC =,点E 是边AB 的中点,CAB ∠的角平分线交BC 于点D .作直线AD ,在直线AD 上有一点P ,连结PC 、PE ,则PC PE -的最大值是.∵CAB ∠的角平分线交∴FAP ∠∠=∵AP AP =,∴APF APE ≌∴PF PE =,第三部分【中考链接与拓展延伸】1、直通中考【例1】(2020·湖北·中考真题)如图,D 是等边三角形ABC 外一点.若8,6BD CD ==,连接AD ,则AD 的最大值与最小值的差为.【答案】12【分析】以CD 为边向外作等边三角形CDE ,连接BE ,可证得△ECB ≌△DCA 从而得到BE=AD ,再根据三角形的三边关系即可得出结论.解:如图1,以CD 为边向外作等边三角形CDE ,连接BE ,∵CE=CD ,CB=CA ,∠ECD=∠BCA=60°,∴∠ECB=∠DCA ,∴△ECB ≌△DCA (SAS ),∴BE=AD ,∵DE=CD=6,BD=8,∴8-6<BE<8+6,∴2<BE<14,∴2<AD<14.∴则AD 的最大值与最小值的差为12.故答案为:12【点拨】本题考查三角形全等与三角形的三边关系,解题关键在于添加辅助线构建全等三角形把AD 转化为BE 从而求解,是一道较好的中考题.【例2】(2020·新疆·中考真题)如图,在ABC V 中,90,60,4A B AB ∠=∠=︒=︒,若D 是BC 边上的动点,则2AD DC +的最小值为.在Rt DFC △中,30DCF ∠=︒,12DF DC ∴=,122()2AD DC AD DC +=+2()AD DF =+,∴当A ,D ,F 在同一直线上,即此时,60B ADB ∠=∠=︒,2、拓展延伸【例1】(23-24八年级上·江苏镇江·阶段练习)如图,AC 、BD 在AB 的同侧,点M 为线段AB 中点,2AC =,8BD =,8AB =,若120CMD ∠=︒,则CD 的最大值为()A .18B .16C .14D .12【答案】C 【分析】本题考查等边三角形的判定和性质,两点之间线段最短,解题的关键是学会添加常用辅助线,学会利用两点之间线段最短解决最值问题.如图,作点A 关于CM 的对称点A ',点B 关于DM 的对称点B ',证明'' A MB 为等边三角形,即可解决问题.解:如图,作点A 关于CM 的对称点A ',点B 关于DM 的对称点B ',∵120CMD ∠=︒,∴60∠+∠=︒AMC DMB ,∴60''∠+∠=︒CMA DMB ,∴60''∠=︒A MB ,∵MA MB MA MB ''===,∴'' A MB 为等边三角形∵14CD CA A B B D CA AM BD ''''<++=++=,∴CD 的最大值为14,故选:C .【例2】(22-23八年级上·湖北武汉·期末)如图,锐角ABC V 中,302A BC ∠=︒=,,ABC V 的面积是6,D 、E 、F 分别是三边上的动点,则DEF 周长的最小值是()A .3B .4C .6D .7∴AM AE AN ==,MF =∵BAC BAD DAC ∠=∠+∠∴MAN MAB BAD ∠=∠+∠∴(2MAN BAE EAC ∠=∠+∠。

专题06 将军饮马模型(解析版)

专题06 将军饮马模型(解析版)

专题06.将军饮马模型将军饮马模型在考试中,无论是解答题,还是选择、填空题,都是学生感觉有困难的地方,也恰是学生能力区分度最重要的地方,主要考查转化与化归等的数学思想。

在各类考试中都以中高档题为主。

在解决几何最值问题主要依据是:①两点之间,线段最短;②垂线段最短,涉及的基本方法还有:利用轴对称变换化归到“三角形两边之和大于第三边”、“三角形两边之差小于第三边”等。

希望通过本专题的讲解让大家对这类问题有比较清晰的认识。

将军饮马模型在上学期(北师大版七年级下册)已经涉及,但是由于缺乏计算工具(勾股定理),所以只能是作出相关图形,很难进行相关最值的计算。

模型1、将军饮马--两定一动求线段和的最小值【模型探究】A,B为定点,m为定直线,P为直线m上的一个动点,求AP+BP的最小。

(1)如图1,点A、B在直线m两侧:辅助线:连接AB交直线m于点P,则AP+BP的最小值为AB.(2)如图2,点A、B在直线同侧:辅助线:过点A作关于定直线m的对称点A’,连接A’B交直线m于点P,则AP+BP的最小值为A’B.图1图2例1.(2022·江苏·八年级专题练习)要在街道旁修建一个奶站,向居民区A、B提供牛奶,小聪根据实际情况,以街道旁为x轴,测得A点的坐标为(0,3),B点的坐标为(6,5),则从A、B两点到奶站距离之和的最小值是____.【答案】10【分析】作A点关于x轴的对称点A',连接A'B与x轴交于点P,连接AP,则A'B即为所求.【详解】解:作A点关于x轴的对称点A',连接A'B与x轴交于点P,连接AP,∵AP =A 'P ,∴AP +BP ∵A (0,3),∴A '(0∴P 点到A 、B 的距离最小值为【点睛】本题考查轴对称求最短距离,熟练掌握轴对称求最短距离的方法,会根据两点坐标求两点间距离例2.(2023·河南南阳·八年级阶段练习)如图,等边ABC ∆的边长为4,点E 是AC 边的中点,点P 是ABC ∆的中线AD 上的动点,则EP CP +的最小值是_____.∵△ABC 是等边三角形,AD 是∴AD 是BC 的垂直平分线,∴点∵△ABC 是等边三角形,E 是例4.(2022·湖北江夏初二月考)在平面直角坐标系中,Rt △OAB 的顶点A 在x 轴上,点A 的坐标为(4,0),∠AOB =30°,点E 的坐标为(1,0),点P 为斜边OB 上的一个动点,则PA+PE 的最小值为_____.【分析】作A 关于OB 的对称点D ,连接ED 交OB 于P ,连接AP ,过D 作DN ⊥OA 于N ,则此时PA+PC 的值最小,求出AM 和AD ,再求出DN 、EN ,根据勾股定理求出ED ,即可得出答案.【解析】作A 关于OB 的对称点D ,连接ED 交OB 于P ,连接AP ,过D 作DN ⊥OA 于N ,则此时PA+PC 的值最小,∵DP =PA ,∴PA+PE =PD+PE =ED ,∵点A 的坐标为(4,0),∠AOB =30°,∴OA =4,∴AM =12OA =2,∴AD =2×2=4,∵∠AMB =90°,∠B =60°,∴∠BAM =30°,∵∠DNO =∠OAB =90°,∴DN ∥AB ,∴∠NDA =∠BAM =30°,∴AN =12AD =2,由勾股定理得:DN =,∵E (1,0),∴EN =4﹣1﹣2=1,在Rt △DNE 中,由勾股定理得:DE =,即PA+PC 【点睛】本题考查了轴对称确定最短路线问题,坐标与图形性质,含30度角的直角三角形的性质,勾股定理的应用,熟练掌握最短路径的确定方法找出点P 的位置以及表示PA+PE 的最小值的线段是解题的关键.例4.(2023·广东·八年级期中)如图,在△ABC 中,∠C =90°,CB =CA =4,∠A 的平分线交BC 于点D ,若点P 、Q 分别是AC 和AD 上的动点,则CQ +PQ 的最小值是.【解答】解:如图,作点P 关于直线AD 的对称点P ′,连接CP ′交AD 于点Q ,则CQ +PQ =CQ +P ′Q =CP ′.∵根据对称的性质知△APQ ≌△AP ′Q ,∴∠PAQ =∠P ′AQ .又∵AD 是∠A 的平分线,点P 在AC 边上,点Q 在直线AD 上,∴∠PAQ =∠BAQ ,∴∠P ′AQ =∠BAQ ,∴点P ′在边AB 上.∵当CP ′⊥AB 时,线段CP ′最短.∵在△ABC 中,∠C =90°,CB =CA =4,∴AB=4,且当点P ′是斜边AB 的中点时,CP ′⊥AB ,此时CP ′=AB =2,即CQ +PQ 的最小值是2.故填:2.例5.(2023·江阴市八年级月考)某班级在探究“将军饮马问题”时抽象出数学模型:直线l 同旁有两个定点A 、B ,在直线l 上存在点P ,使得PA PB +的值最小.解法:如图1,作点A 关于直线l 的对称点A ',连接A B ',则A B '与直线l 的交点即为P ,且PA PB +的最小值为A B '.请利用上述模型解决下列问题:(1)几何应用:如图2,ABC ∆中,90C ∠=︒,2AC BC ==,E 是AB 的中点,P 是BC 边上的一动点,则PA PE +的最小值为;(2)几何拓展:如图3,ABC ∆中,2AC =,30A ∠=︒,若在AB 、AC 上各取一点M 、N 使CM MN +的值最小,画出图形,求最小值并简要说明理由.【答案】(1;(2【分析】(1)作点A 关于BC 的对称点A′,连接A′E 交BC 于P ,此时PA+PE 的值最小.连接BA′,先根据勾股定理求出BA′的长,再判断出∠A′BA=90°,根据勾股定理即可得出结论;(2)作点C 关于直线AB 的对称点C′,作C′N ⊥AC 于N 交AB 于M ,连接AC′,根据等边三角形的性质解答.【详解】解:(1)如图2所示,作点A 关于BC 的对称点A′,连接A′E 交BC 于P ,此时PA+PE 的值最小.连接BA′.由勾股定理得,,∵E 是AB 的中点,∴BE=12,∵90C ∠=︒,2AC BC ==,∴∠A′BC=∠ABC=45°,∴∠A′BA=90°,∴PA+PE 的最小值=A′E=;(2)如图3,作点C 关于直线AB 的对称点C′,作C′N ⊥AC 于N 交AB 于M ,连接AC′,则C′A=CA=2,∠C′AB=∠CAB=30°,∴△C′AC 为等边三角形,∴∠AC′N=30°,∴AN=12C′A=1,∴CM+MN 的最小值为.【点睛】本题考查的是轴对称--最短路线问题、勾股定理、等边三角形的判定和性质、含30°角的直角三角形的性质、垂线段最短,解这类问题的关键是将所给问题抽象或转化为数学模型,把两条线段的和转化为一条线段.模型2、将军饮马--两动一定求线段和的最小值【模型探究】已知定点A 位于定直线m ,n 的内侧,在直线m 、n 分别上求点P 、Q 点PA +PQ +QA 周长最短.辅助线:过点A 作关于定直线m 、n 的对称点A’、A’’,连接A’A’’交直线m 、n 于点P 、Q ,则PA +PQ +QA 的最小值为A’A’’.例1.(2022·上虞市初二月考)如图,点P 是∠AOB 内任意一点,OP =6cm ,点M 和点N 分别是射线OA 和射线OB 上的动点,若△PMN 周长的最小值是6cm ,则∠AOB 的度数是()A.15B.30C.45D.60【答案】B【分析】分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,由对称的性质得出PM=DM,OP=OC,∠COA=∠POA;PN=DN,OP=OD,∠DOB=∠POB,得出∠AOB=12∠COD,证出△OCD是等边三角形,得出∠COD=60°,即可得出结果.【解析】分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,如图所示:∵点P关于OA的对称点为D,关于OB的对称点为C,∴PM=DM,OP=OD,∠DOA=∠POA;∵点P关于OB的对称点为C,∴PN=CN,OP=OC,∠COB=∠POB,∴OC=OP=OD,∠AOB=12∠COD,∵△PMN周长的最小值是6cm,∴PM+PN+MN=6,∴DM+CN+MN=6,即CD=6=OP,∴OC=OD=CD,即△OCD是等边三角形,∴∠COD=60°,∴∠AOB=30°,故选:B.【点睛】此题考查轴对称的性质,最短路线问题,等边三角形的判定与性质,熟练掌握轴对称的性质,证明三角形是等边三角形是解题的关键.例2.(2022·江苏九年级一模)如图,Rt△ABC中,∠C=90°,AC=3,BC=4,D,E,F分别是AB,BC,AC边上的动点,则△DEF的周长的最小值是()A.2.5B.3.5C.4.8D.6【答案】C【分析】如图作D关于直线AC的对称点M,作D关于直线BC的对称点N,连接CM,CN,CD,EN,FM,DN,DM.由∠MCA=∠DCA,∠BCN=∠BCD,∠ACD+∠BCD=90°,推出∠MCD+∠NCD=180°,可得M、B、N 共线,由DF+DE+EF=FM+EN+EF,FM+EN+EF≥MN,可知当M、F、E、N共线时,且CD⊥AB时,DE+EF+FD的值最小,最小值=2CD,求出CD的值即可解决问题.【详解】解:如图,作D关于直线AC的对称点M,作D关于直线BC的对称点N,连接CM,CN,CD,EN,FM,DN,DM.∴DF=FM,DE=EN,CD=CM,CD=CN,∴CD=CM=CN,∵∠MCA=∠DCA,∠BCN=∠BCD,∠ACD+∠BCD=90°,∴∠MCD+∠NCD=180°,∴M、C、N共线,∵DF+DE+EF=FM+EN+EF,∵FM+EN+EF≥MN,∴当M、F、E、N共线时,且CD⊥AB时,DE+EF+FD的值最小,最小值为MN=2CD,∵CD⊥AB,∴12•AB•CD=12•AB•AC,∴CD=•AB ACAB=125=2.4,∴DE+EF+FD的最小值为4.8.故选:C.【点睛】本题考查了轴对称-最短问题、两点之间线段最短、垂线段最短等知识,解题的关键是灵活运用轴对称以及垂线段最短解决最短问题,属于中考选择题中的压轴题.例3.(2023.山东八年级期末)如图所示,在四边形ABCD中,∠A=90º,∠C=90º,∠D=60º,AD=3,AB=,若点M、N分别为边CD,AD上的动点,则△BMN的周长最小值为()A. B. C.6 D.3【答案】C【解析】作点B关于CD、AD的对称点分别为点B'和点B'',连接B'B''交DC和AD于点M和点N,连接MB、NB;再DC和AD上分别取一动点M’和N’(不同于点M和N),连接M'B,M'B',N’B和N'B'',如图1所示:∵B'B''<M'B'+M'N'+N'B",B'M'=BM',B"N'=BN',∴BM'+M'N'+BN'>B'B",又∵B'B"=B'M+MN+NB",MB=MB',NB=NB'',∴NB+NM+BM<BM'+M’N'+BN'NB+NM+BM时周长最小;连接DB,过点B'作B'H⊥DB''于B’’D的延长线于点H,如图示2所示:在Rt△ABD中,AD=3,AB=,,∴∠2=30º,∴∠5=30º,DB=DB'',又∵∠ADC=∠1+∠2=60º,∴∠1=30º,∴∠7=30º,DB'=DB,∴∠B'DB''=∠1+∠2+∠5+∠7=120º,DB'=DB''=DB,又∵∠B'DB"+∠6=180º,∴∠6=60º,∴HD=,HB'=3,在Rt△B'HB''中,由勾股定理得:B'B"=,NB+NM+BM=6,故选C.模型3、将军饮马--两动两定求线段和的最小值【模型探究】A,B为定点,在定直线m、n上分别找两点P、Q,使PA+PQ+QB最小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

将军饮马问题
唐朝诗人李颀的诗《古从军行》开头两句
说:"白日登山望烽火,黄昏饮马傍交河. "
诗中隐含着一个有趣的数学问题.
如图所示,诗中将军在观望烽火之后从山脚下
的A点出发,走到河边饮马后再到B点宿营.
请问怎样走才能使总的路程最短?
这个问题早在古罗马时代就有了,传说亚历山大城有一位精通数学和物理的学者,名叫海伦.一天,一位罗马将军专程去拜访他,向他请教一个百思不得其解的问题.
将军每天从军营A出发,先到河边饮马,然后再去河岸同侧的B地开会,应该怎样走才能使路程最短?从此,这个被称为"将军饮马"的问题广泛流传.
将军饮马问题=轴对称问题=最短距离问题(轴对称是工具,最短距离是题眼)。

所谓轴对称是工具,即这类问题最常用的做法就是作轴对称。

而最短距离是题眼,也就意味着归类这类的题目的理由。

比如题目经常会出现线段 a+b 这样的条件或者问题。

一旦出现可以快速联想到将军问题,然后利用轴对称解题。

一.六大模型
1.如图,直线l 和l 的异侧两点A、B,
在直线l 上求作一点P,使PA+PB 最小。

2.如图,直线l 和l 的同侧两点A、B,
在直线l 上求作一点P,使PA+PB 最小。

3.如图,点P 是∠MON 内的一点,分别在OM,ON 上作点A,B。

使△PAB 的周长最小.
4.如图,点P,Q 为∠MON 内的两点,分别在OM,ON 上作点A,B。

使四边形PAQB 的周长最小。

5.如图,点A 是∠MON 外的一点,在射线ON 上作点P,
使PA 与点P 到射线OM 的距离之和最小
6. .如图,点A 是∠MON 内的一点,在射线ON 上作点P,使PA 与点P 到射线OM 的距离之和最小
常见问题
首先明白几个概念,动点、定点、对称点。

动点一般就是题目中的所求点,
即那个不定的点。

定点即为题目中固定的点。

对称的点,作图所得的点,需要连
线的点。

1. 怎么对称,作谁的对称?。

简单说所有题目需要作对称的点,都是题目的定点。

或者说只有定点才可以去作对称的。

(不确定的点作对称式没有意义的)那么作谁的对称点?首先要明确关于对称的对象肯定是一条线,而不是一个点。

那么是哪一条线?一般而言都是动点所在直线。

2. 对称完以后和谁连接?
一句话:和另外一个定点相连。

绝对不能和一个动点相连。

明确一个概念:定点的对称点也是一个定点。

例如模型二和模型三。

3. 所求点怎么确定?
首先一定要明白,所求点最后反应在图上一定是个交点。

实际就是我们所画直线和已知直线的交点。

下面我们来看看将军饮马与二次函数结合的问题:
1.如图,抛物线y=ax2+bx+c经过A(1,0)、B(4,0)、C(0,3)三点.
(1)求抛物线的解析式;
(2)如图,在抛物线的对称轴上是否存在点P,使得四边形PAOC的周长最小?若存在,求出四边形PAOC周长的最小值;若不存在,请说明理由.
【分析】(1)设交点式为y=a(x﹣1)(x﹣4),然后把C点坐标代入求出a=,于是得到抛物线解析式为y=x2﹣x+3;
(2)先确定抛物线的对称轴为直线x=,连结BC交直线x=于点P,如图,利用对称性
得到PA=PB,所以PA+PC=PC+PB=BC,根据两点之间线段最短得到PC+PA最短,于是可判断此时四边形PAOC的周长最小,然后计算出BC=5,再计算OC+OA+BC即可.
【解答】解:(1)设抛物线解析式为y=a(x﹣1)(x﹣4),
把C(0,3)代入得a•(﹣1)•(﹣4)=3,解得a=,
所以抛物线解析式为y=(x﹣1)(x﹣4),即y=x2﹣x+3;
(2)存在.
因为A(1,0)、B(4,0),
所以抛物线的对称轴为直线x=,
连结BC交直线x=于点P,如图,则PA=PB,PA+PC=PC+PB=BC,此时PC+PA最短,
所以此时四边形PAOC的周长最小,
因为BC==5,
所以四边形PAOC周长的最小值为3+1+5=9.
【点评】本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.也考查了最短路径问题.
2.(2015•上城区一模)设抛物线y=(x+1)(x﹣2)与x轴交于A、C两点(点A在
点C的左边),与y轴交于点B.
(1)求A、B、C三点的坐标;
(2)已知点D在坐标平面内,△ABD是顶角为120°的等腰三角形,求点D的坐标;
(3)若点P、Q位于抛物线的对称轴上,且PQ=,求四边形ABQP周长的最小值.【考点】二次函数综合题.
【分析】(1)令x=0,求出与y轴的坐标;令y=0,求出与x轴的坐标;
(2)分三种情况讨论:①当AB为底时,若点D在AB上方;若点D在AB下方;②当AB为腰时,A为顶点时,③当AB为腰时,A为顶点时;仔细解答即可.
(3)当AP+BQ最小时,四边形ABQP的周长最小,根据轴对称最短路径问题解答.
【解答】解:(1)当x=0时,y=﹣;
当y=0时,x=﹣1或x=2;
则A(﹣1,0),B(0,﹣),C(2,0);
(2)如图,Rt△ABO中,OA=1,OB=,
∴AB=2,∠ABO=30°,∠BAO=60°,
∴△ABD是顶角为120°的等腰三角形.
①当AB为底时,若点D在AB上方,由∠ABO=∠BAD=30°,AB=2,得D1(0,﹣),
若点D在AB下方,由∠BAD=∠DBA=30°,AB=2,得D2(﹣1,﹣),
②当AB为腰时,A为顶点时,
∵∠DAB=120°,∠OAB=60°,AD=AB=2,
∴点D在y轴或x轴上,
若D在y轴上,得D3(0,),若D在x轴上,得D4(﹣3,0);
③当AB为腰时,A为顶点时,
若点D在第三象限,
∵∠DBO=150°,BD=2,得D5(﹣1,﹣2);
若点D在第四象限时,
∵DB∥x轴,BD=2,得D6(2,﹣),
∴符合要求的点D的坐标为(0,﹣),(﹣1,﹣),(0,),(﹣3,0),(﹣1,﹣
2),(2,﹣);
(3)当AP+BQ最小时,四边形ABQP的周长最小,
把点B向上平移个单位后得到B1(0,﹣),
∵BB1∥PQ,且BB1=PQ,
∴四边形BB1PQ是平行四边形,
∴BQ=B1P,
∴AP+BQ=AP+B1P,
要在直线x=上找一点P,使得AP+B1P最小,
作点B1关于直线x=的对称点,得B2(1,﹣),
则AB2就是AP+BQ的最小值,AB2==,
AB=2,PQ=,
∴四边形ABQP的周长最小值是+2.
【点评】本题考查了二次函数综合题,涉及二次函数与x轴的交点、与y轴的交点、等腰三角形的性质、勾股定理等内容,存在性问题的出现使得难度增大.。

相关文档
最新文档