拉伸试验报告
拉伸试验实验报告结论
拉伸试验实验报告结论引言拉伸试验是材料力学基础实验之一,通过施加拉力来研究材料在受力下的变形性能。
本次实验旨在探究不同材料在受力下的拉伸特性,为工程领域应用提供科学依据。
实验方法1. 实验材料:选取三种常见工程材料作为试验样品,包括铝合金、塑料和钢材。
2. 实验仪器:采用万能试验机进行拉伸试验,记录并分析试验数据。
3. 实验过程:将试验样品制成标准试样,在试验机上进行拉伸试验,并记录试验数据。
实验结果通过对三种材料进行拉伸试验,得到了三种材料的应力-应变曲线。
根据试验数据计算得到了每个试样的断裂应变、断裂应力和杨氏模量等性能指标。
铝合金试样在拉伸过程中表现出较高的强度和较小的变形能力。
随着加载的增加,铝合金的应力逐渐上升,然后突然下降到零,试样断裂。
根据试验数据计算得到铝合金的断裂应变为0.2,断裂应力为200MPa,杨氏模量为70GPa。
塑料试样在拉伸过程中呈现出较高的变形能力和较低的强度。
随着加载的增加,塑料的应力逐渐上升,然后逐渐降低,直至试样断裂。
根据试验数据计算得到塑料的断裂应变为0.8,断裂应力为80MPa,杨氏模量为3GPa。
钢材试样在拉伸过程中表现出较高的强度和较小的变形能力。
随着加载的增加,钢材的应力逐渐上升,然后突然下降到零,试样断裂。
根据试验数据计算得到钢材的断裂应变为0.4,断裂应力为400MPa,杨氏模量为210GPa。
结论根据实验结果,可以得出以下结论:1. 不同材料具有不同的拉伸特性:铝合金表现出较高的强度和较小的变形能力,塑料表现出较高的变形能力和较低的强度,钢材表现出较高的强度和较小的变形能力。
2. 材料的断裂应变和断裂应力是评估材料性能的重要指标,这些指标可以用来确定材料在实际工作环境中的可靠性和耐用性。
3. 材料的杨氏模量可用于评估材料的刚度和弹性变形能力,对工程设计和材料选择具有重要意义。
综上所述,通过拉伸试验可以研究材料在受力下的拉伸特性,为工程领域的应用提供科学依据。
拉伸强度检测实验报告
拉伸强度检测实验报告1. 实验目的本实验旨在测量材料的拉伸强度,并通过实验结果评估材料的力学性能。
2. 实验装置与材料实验装置包括拉伸试验机、材料样本和测力计。
材料样本选取优质钢材。
3. 实验步骤1. 将样本固定在拉伸试验机上,确保加压装置与材料表面垂直,并施加适当拉伸预载荷来锚定样本。
2. 设置试验机以逐渐增加拉伸负荷的速度开始实验。
3. 记录拉伸试验期间的拉伸荷重和材料的变形情况,包括材料的延伸长度。
4. 当样本断裂时,停止试验并记录断裂点所受的最大拉伸荷重。
4. 实验数据记录与处理实验数据如下:负荷(N)延伸长度(mm)0 0100 2200 4300 6400 8500 10600 12700 14800 16900 181000 20根据实验数据,可以绘制负荷与延伸长度的关系曲线图。
图中的直线段表示材料的弹性阶段,非线性段表示材料的屈服阶段,而最后的急剧上升表示了材料的破坏阶段。
5. 结果分析与讨论根据负荷与延伸长度的关系曲线,可以得到材料的力学性能参数,包括屈服强度、抗拉强度和延伸率。
屈服强度是材料开始发生屈服时所受的最大拉伸荷重。
根据实验数据,屈服强度为600N。
抗拉强度是材料发生破坏时所受的最大拉伸荷重。
根据实验数据,抗拉强度为1000N。
延伸率是材料在破坏前所发生的延伸相对于初始长度的百分比。
根据实验数据,延伸率为200%。
通过对实验结果的分析,可以评估材料的力学性能。
本次实验所选取的优质钢材在拉伸强度方面表现出色,屈服强度和抗拉强度较高,同时还具有较大的延伸率,这意味着该材料在设计工程中能够承受更大的载荷而不易发生破坏。
6. 实验总结通过本次拉伸强度实验,我们了解了材料力学性能的基本概念和测量方法。
通过实验结果,我们可以对材料进行力学性能的评估,从而为工程设计提供有用的参考数据。
此外,实验过程中还需要注意安全操作规范,以确保实验人员的安全。
参考文献1. 张强. 实验力学[M]. 清华大学出版社, 2008.2. 材料力学实验教程. 张明宇主编. 机械工业出版社, 2005.注意:以上实验报告仅为示例,实际情况可能会有所不同。
材料力学拉伸实验报告(1)
材料力学拉伸实验报告(1)材料力学拉伸实验报告一、实验目的研究材料在拉伸力的作用下的断裂性质和机械性能,了解材料的力学行为,检验材料的质量。
二、实验原理拉伸实验是用拉伸试验机将试样沿轴向逐渐拉伸,测量试样拉伸变形量和负荷之间的关系,得到在拉伸状态下材料的力学性质和变形破坏的特征,即应力-应变曲线。
应力-应变曲线是材料拉伸性致塑性行为、弹性行为和断裂行为的表现。
三、实验步骤1.选择平均直径为10mm、长度为50mm的试验铜棒,并通过光栅仪测量试验铜棒的横截面积。
2.将试验铜棒固定在拉伸试验机上,调整夹持架,使试验铜棒不能侧向移动,确定试样的初始长度L0。
3.开始拉伸试验,逐渐增加拉力,记录铜棒的拉伸长度L和拉力F,得到应力-应变曲线。
在试验过程中,每隔一定的时间将试样停止拉伸,记录拉力和长度,检测背景温度和湿度等相关因素。
4.持续拉伸到铜棒断裂,记录材料的极限断裂力和最大断裂拉伸率。
5.将数据记录到实验记录表中。
四、实验数据处理根据实验数据计算出拉伸试验的机械性能参数,如极限强度、屈服强度、断裂拉伸率等等。
1.极限强度:σmax = Fma x / S其中,Fmax为材料拉伸到断裂的最大力;S为试验铜棒的横截面积。
2.屈服强度:σs = Fs / S其中,Fs为材料开始塑性变形前的单位应力;S为试验铜棒的横截面积。
3.断裂拉伸率:A = (Lmax - L0)/ L0 × 100%其中,Lmax为材料拉伸到断裂时的长度;L0为材料载荷前的长度。
五、实验结果分析根据实验数据计算得到的拉伸试验机械性能参数可以反映出材料的力学行为。
在拉伸实验过程中,材料首先呈现弹性变形,后进入塑性变形阶段,这个过程体现在应力-应变曲线上就是曲线急速上升然后平缓变化,然后在拉伸到达一定程度后,材料会出现颈缩现象,最终断裂。
通过拉伸实验,我们可以得到应力-应变曲线,可以直观的看到材料的力学行为并计算出其力学性能参数。
拉伸实验报告
拉伸实验报告篇一:拉伸试验报告ABANER拉伸试验报告[键入文档副标题][键入作者姓名][选取日期][在此处键入文档的摘要。
摘要通常是对文档内容的简短总结。
在此处键入文档的摘要。
摘要通常是对文档内容的简短总结。
]拉伸试验报告一、试验目的1、测定低碳钢在退火、正火和淬火三种不同热处理状态下的强度与塑性性能2、测定低碳钢的应变硬化指数和应变硬化系数二、试验要求:按照相关国标标准(GB/T228-XX:金属材料室温拉伸试验方法)要求完成试验测量工作。
三、引言低碳钢在不同的热处理状态下的力学性能是不同的。
为了测定不同热处理状态的低碳钢的力学性能,需要进行拉伸试验。
拉伸试验是材料力学性能测试中最常见试验方法之一。
试验中的弹性变形、塑性变形、断裂等各阶段真实反映了材料抵抗外力作用的全过程。
它具有简单易行、试样制备方便等特点。
拉伸试验所得到的材料强度和塑性性能数据,对于设计和选材、新材料的研制、材料的采购和验收、产品的质量控制以及设备的安全和评估都有很重要的应用价值和参考价值通过拉伸实验测定低碳钢在退火、正火和淬火三种不同热处理状态下的强度和塑形性能,并根据应力-应变曲线,确定应变硬化指数和系数。
用这些数据来进行表征低碳钢的力学性能,并对不同热处理的低碳钢的相关数据进行对比,从而得到不同热处理对低碳钢的影响。
拉伸实验根据金属材料室温拉伸试验方法的国家标准,制定相关的试验材料和设备,试验的操作步骤等试验条件。
四、试验准备内容具体包括以下几个方面。
1、试验材料与试样(1)试验材料的形状和尺寸的一般要求试样的形状和尺寸取决于被试验金属产品的形状与尺寸。
通过从产品、压制坯或铸件切取样坯经机加工制成样品。
但具有恒定横截面的产品,例如型材、棒材、线材等,和铸造试样可以不经机加工而进行试验。
试样横截面可以为圆形、矩形、多边形、环形,特殊情况下可以为某些其他形状。
原始标距与横截面积有L?kS0关系的试样称为比例试样。
国际上使用的比例系数k的值为5.65。
拉伸试验报告(样本)3
拉伸试验报告(样本)3本次拉伸试验是对金属材料进行的实验,旨在探究该材料的机械性能表现及其材料应力应变关系。
本文将详细叙述实验的原理、步骤、结果及其分析。
一、实验原理拉伸是一种常见的实验方法,它可以测定材料在拉伸过程中的力和变形,在此基础上可以得出材料的弹性、塑性及其破坏性能。
拉伸试验的主要量有应力、应变、杨氏模量、屈服强度、延伸率和断裂强度等参数。
在进行拉伸试验之前,需要对材料进行标准化、钞票和获得力学性能曲线等数据,以便评估材料的力学性能。
二、实验步骤1、制备试件:在符合ASTM标准的制备规范下,从金属材料中切割出试件。
试件形状应按规范制作,并拥有足够强度和标准的减角。
2、固定试件:将试件固定在拉伸试验机的夹具上。
拉伸试验机应保证夹具具有良好的刚性、抗变形能力和与试件之间的最小间隙,以避免附加载荷的引入。
3、调整仪器:根据材料的特性和试验规范,调整拉伸试验机的速度、负载传感器灵敏度等参数,以便进行正常的拉伸测试。
4、开始拉伸:拉伸试验机灵敏的记录器将在试件上施加逐渐增加的拉伸力。
在此过程中,记录并记录试件的伸长量和负载变化。
数据可以通过机器本身内置的数据采集程序或外部检测器收集。
5、分析数据:在试验结束后,将收集的数据分析,以求得材料的各种性能参数,如弹性模量、屈服强度、最大载荷、延伸率等等。
三、实验结果及分析本次实验使用的金属材料为铜,拉伸试验的数据及其分析如下:1、试样尺寸及规格:宽度15mm,厚度1.5mm,长度30mm。
2、试验结果:拉伸最大力为25.6KN,应变为0.1,弹性区斜率为264.18MPa,在应力为0.2时的偏离长度为0.2,屈服强度为210.28MPa,最大载荷为26.3KN。
3、试验分析:(1)根据弹性区斜率的计算式,可以求出该材料的弹性模量。
弹性模量E=σ/ε,其中σ是应力,ε是应变。
通过我们得到的数据可以求出铜材料的弹性模量为264.18MPa。
(2)屈服强度是材料在拉伸试验过程中变形的起点,该点是在应变增加的情况下应力不再增加的点,用于表示材料的塑性性能和使用的过程中抗扭曲性能。
金属材料拉伸试验报告
金属材料拉伸试验报告一、实验目的。
本次实验旨在通过对金属材料进行拉伸试验,了解金属材料在受力作用下的变形和破坏规律,掌握金属材料的拉伸性能参数,为材料的选用和设计提供依据。
二、实验原理。
拉伸试验是通过在金属试样上施加拉力,使试样产生塑性变形,最终达到破坏的一种试验方法。
在拉伸试验中,通常会测定材料的抗拉强度、屈服强度、断裂伸长率等指标。
三、实验步骤。
1. 准备试样,按照标准制备金属试样,保证试样的尺寸符合要求。
2. 安装试验机,将试样安装在拉伸试验机上,并调整好试验机的参数。
3. 进行拉伸试验,开始施加拉力,记录拉力-位移曲线,直至试样发生破坏。
4. 测定参数,根据拉力-位移曲线,测定材料的抗拉强度、屈服强度、断裂伸长率等参数。
四、实验数据及结果分析。
通过拉伸试验得到的数据如下:1. 抗拉强度,XXX MPa。
2. 屈服强度,XXX MPa。
3. 断裂伸长率,XX%。
根据实验数据分析可得,材料在受拉力作用下,首先表现出线性的弹性变形,随后进入塑性变形阶段,最终发生破坏。
在拉伸试验中,抗拉强度是材料抵抗拉伸破坏的能力,屈服强度是材料开始发生塑性变形的临界点,断裂伸长率则反映了材料的延展性能。
五、实验结论。
通过本次拉伸试验,我们得出了材料的抗拉强度、屈服强度、断裂伸长率等重要参数。
这些参数对于材料的选用和工程设计具有重要意义。
在实际工程中,我们应该根据材料的拉伸性能参数,合理选择材料,并设计合适的结构,以确保工程的安全可靠。
六、实验总结。
拉伸试验是对金属材料力学性能进行评价的重要手段,通过拉伸试验可以全面了解材料在受拉力作用下的性能表现。
因此,掌握拉伸试验的原理和方法,对于材料工程师和设计人员来说是非常重要的。
在今后的工作中,我们将继续深入学习材料力学知识,不断提高对材料性能的认识,为工程实践提供更加可靠的技术支持。
七、参考文献。
1. 《金属材料拉伸试验方法》。
2. 《金属材料力学性能测试手册》。
以上就是本次金属材料拉伸试验的报告内容,希望能对大家有所帮助。
拉伸试验报告
拉伸试验报告拉伸试验是材料力学中一种重要的力学试验,它用来考察材料在拉伸时的力学性能,为材料的设计、生产和使用提供重要的依据。
本文将介绍拉伸试验的基本原理、设备和实验步骤,并分析实验结果,给出结论和建议。
一、拉伸试验的基本原理拉伸试验是一种静态力学试验,它利用拉应力作用于试样的两端,使试样产生塑性变形或破坏,从而确定材料的力学性能。
在拉伸试验中,试样的几何形状通常是标准的矩形或圆柱形,试样的长度和直径或厚度要满足一定的标准要求。
试样通常是轴对称的,以保证试样在拉伸过程中的应变均匀分布。
拉伸试验中,试样受到的拉应力和应变的关系通过应力-应变曲线来表示。
应力-应变曲线的形态反映了材料在拉伸过程中的变形和破坏规律,是评价材料力学性能的重要参数。
在应力-应变曲线中,通常分为线性段和非线性段两部分。
线性段又称为弹性段,即受力后试样中的应变与受力前保持一致,所对应的应力称为弹性模量;非线性段又称为屈服段,在这段应力逐渐增加的过程中,试样出现塑性变形,出现明显的应变硬化现象;当应力达到极限值时,试样发生破坏,应变迅速增加至破坏前的最大值,这时应力称为抗拉强度。
二、拉伸试验的设备拉伸试验的设备主要由拉伸机、试样夹具和传感器组成。
常用的拉伸机有液压拉伸机和电子拉伸机两种。
试样夹具通常由两个夹持头和两个试样夹钳组成,夹持头安装在拉伸机的上下夹具上,试样夹钳用于将试样夹在夹持头之间。
传感器主要用于测量试样的应变和载荷,常用的传感器有应变计和荷重传感器。
三、实验步骤拉伸试验的实验步骤如下:1、准备试样:根据标准要求,将试样切割成标准的矩形或圆柱形,并做好试样的编号和记录。
2、安装试样:将试样夹在夹持头之间,确保试样夹紧并保持水平。
3、连接传感器:连接应变计和荷重传感器,并确保传感器的正确安装和校准。
4、调整仪器:调整拉伸机的速度、位移或应变控制模式,选择合适的实验参数。
5、开始拉伸:启动拉伸机,开始实验。
在拉伸过程中,记录试样的真实位移、载荷和应变等数据。
力学拉伸实验报告实验
一、实验目的1. 了解材料在拉伸过程中的力学行为,观察材料的弹性、屈服、强化、颈缩和断裂等物理现象。
2. 测定材料的拉伸强度、屈服强度、抗拉强度等力学性能指标。
3. 掌握万能试验机的使用方法及拉伸实验的基本操作。
二、实验原理材料在拉伸过程中,其内部微观结构发生变化,从而表现出不同的力学行为。
根据胡克定律,当材料处于弹性阶段时,应力与应变呈线性关系。
当应力达到某一值时,材料开始发生屈服,此时应力不再增加,应变迅速增大。
随着应力的进一步增大,材料进入强化阶段,应力逐渐增加,应变增长速度减慢。
当应力达到最大值时,材料发生颈缩现象,此时材料横截面积迅速减小,应变增长速度加快。
最终,材料在某一应力下发生断裂。
三、实验仪器与设备1. 万能试验机:用于对材料进行拉伸试验,可自动记录应力与应变数据。
2. 拉伸试样:采用低碳钢圆棒,规格为直径10mm,长度100mm。
3. 游标卡尺:用于测量拉伸试样的尺寸。
4. 电子天平:用于测量拉伸试样的质量。
四、实验步骤1. 将拉伸试样清洗干净,用游标卡尺测量其直径和长度,并记录数据。
2. 将拉伸试样安装在万能试验机的夹具中,调整夹具间距,确保试样在拉伸过程中均匀受力。
3. 打开万能试验机电源,设置拉伸速度和最大载荷,启动试验机。
4. 观察拉伸过程中试样的变形和破坏现象,记录试样断裂时的载荷。
5. 关闭试验机电源,取出试样,用游标卡尺测量试样断裂后的长度,计算伸长率。
五、实验数据与结果1. 拉伸试样直径:10.00mm2. 拉伸试样长度:100.00mm3. 拉伸试样质量:20.00g4. 拉伸试样断裂载荷:1000N5. 拉伸试样断裂后长度:95.00mm根据实验数据,计算材料力学性能指标如下:1. 抗拉强度(σt):1000N / (π × (10mm)^2 / 4) = 784.62MPa2. 屈服强度(σs):600N / (π × (10mm)^2 / 4) = 471.40MPa3. 伸长率(δ):(95.00mm - 100.00mm) / 100.00m m × 100% = -5%六、实验分析1. 本实验中,低碳钢试样在拉伸过程中表现出明显的弹性、屈服、强化、颈缩和断裂等物理现象,符合材料力学理论。
拉伸试验报告
拉伸试验报告一、实验目的。
本实验旨在通过拉伸试验,对材料的力学性能进行评估,探究材料在受力作用下的变形和破坏规律,为材料的工程应用提供依据。
二、实验原理。
拉伸试验是通过施加轴向拉力,使试样产生拉伸变形,从而研究材料的拉伸性能。
在试验过程中,可以得到应力-应变曲线,通过分析曲线的特征值,可以获得材料的力学性能参数,如屈服强度、抗拉强度、断裂伸长率等。
三、实验设备与试样。
本次实验使用了万能试验机,试样选用了标准的拉伸试验试样。
试样的几何尺寸符合标准要求,以保证实验结果的准确性和可比性。
四、实验步骤。
1. 将试样安装到万能试验机的夹具上,并调整好试样的初始长度。
2. 开始施加拉力,以一定的速度对试样进行拉伸,同时记录拉力和试样的变形情况。
3. 当试样发生破坏时,停止施加拉力,并记录破坏时的拉力和变形情况。
五、实验数据处理与分析。
通过实验得到的拉力-变形曲线,可以得到试样的屈服强度、抗拉强度、断裂伸长率等力学性能参数。
同时,还可以观察试样的破坏形态,分析材料的脆性或韧性特征。
六、实验结果与讨论。
根据实验数据处理与分析的结果,可以得到材料的力学性能参数,并对材料的性能进行评价和讨论。
同时,结合试样的破坏形态,可以对材料的断裂特征进行分析和讨论。
七、结论。
通过本次拉伸试验,得到了材料的力学性能参数,并对材料的性能进行了评价和讨论。
本次实验结果为材料的工程应用提供了重要参考。
八、实验总结。
拉伸试验是材料力学性能评价的重要手段,通过本次实验,对材料的拉伸性能有了更深入的了解。
在今后的工程应用中,将更加准确地选择和使用材料,以确保工程质量和安全。
以上为本次拉伸试验的报告内容,希望对相关人员的工作和研究有所帮助。
拉伸法测_实验报告
一、实验目的1. 掌握拉伸法测定材料弹性模量的原理和方法。
2. 了解实验过程中误差的来源及处理方法。
3. 培养学生严谨的科学态度和实验操作技能。
二、实验原理弹性模量(E)是衡量材料弹性变形能力的重要物理量。
根据胡克定律,在弹性范围内,应力(σ)与应变(ε)成正比,即σ = Eε。
其中,E为材料的弹性模量,σ为应力,ε为应变。
本实验采用拉伸法测定材料的弹性模量。
实验中,通过测量材料在拉伸过程中受到的拉力(F)和对应的伸长量(ΔL),以及材料的初始长度(L0)和截面积(S0),根据公式 E = (FΔL) / (S0ΔL0) 计算出材料的弹性模量。
三、实验仪器与材料1. 实验仪器:- 拉伸试验机:用于施加拉力,测量材料的伸长量。
- 螺旋测微计:用于测量材料的截面积。
- 米尺:用于测量材料的初始长度。
- 光杠杆:用于放大测量微小伸长量。
- 标尺:用于读取光杠杆放大后的伸长量。
2. 实验材料:- 标准金属丝:用于测定弹性模量。
四、实验步骤1. 将金属丝固定在拉伸试验机的夹具上,确保金属丝与拉伸方向一致。
2. 使用螺旋测微计测量金属丝的初始截面积(S0)。
3. 使用米尺测量金属丝的初始长度(L0)。
4. 将金属丝的一端固定在光杠杆的支架上,另一端固定在标尺上。
5. 调整光杠杆,使光杠杆与标尺垂直。
6. 在金属丝的另一端施加拉力,逐渐增加拉力,同时观察光杠杆的偏转角度。
7. 当光杠杆偏转角度达到一定值时,停止增加拉力,保持拉力不变。
8. 记录光杠杆偏转角度和对应的伸长量。
9. 重复上述步骤,至少进行三次实验,以减小误差。
10. 根据实验数据,计算金属丝的弹性模量。
五、实验数据与处理1. 记录实验数据,包括金属丝的初始截面积(S0)、初始长度(L0)、拉力(F)、伸长量(ΔL)和光杠杆偏转角度。
2. 根据公式 E = (FΔL) / (S0ΔL0) 计算出金属丝的弹性模量。
3. 分析实验数据,判断实验结果的可靠性。
拉伸性能实验报告
拉伸性能实验报告
本次实验旨在测试材料的拉伸性能。
实验采用了标准拉伸试验方法,对不同材料进行了拉伸测试。
实验结果表明,不同材料的拉伸性能存在着显著的差异。
实验材料:本次实验选取了三种材料进行测试,分别为聚酰亚胺薄膜、聚乙烯塑料膜和铝合金板材。
实验设备:拉伸试验机、计算机、测量仪器等。
实验方法:将样品夹在拉伸试验机上,先进行预拉伸,然后施加拉伸力,记录样品在拉伸过程中的应变和应力数据,绘制应力应变曲线。
实验结果:
1.聚酰亚胺薄膜:在拉伸过程中表现出极高的拉伸强度和模量,表现出了良好的耐热性和化学稳定性。
2.聚乙烯塑料膜:在拉伸过程中表现出较低的拉伸强度和模量,但表现出了较好的延展性和耐冲击性。
3.铝合金板材:在拉伸过程中表现出较高的拉伸强度和模量,但表现出较低的延展性和韧性。
结论:不同材料的拉伸性能存在着显著的差异,应根据具体应用需求选择合适的材料。
轴向拉伸实验报告书(共9篇)
轴向拉伸实验报告书(共9篇)报告一:轴向拉伸实验报告一、实验目的1.掌握轴向拉伸试验的基本原理和步骤。
2.通过实验,了解材料的拉伸性能数据,如抗拉强度、屈服强度和伸长率等。
二、实验原理轴向拉伸试验是一种常见的材料力学试验方法。
它将试样放置在拉伸试验机上,通过拉伸试验机施加一个慢速的恒定力,使试样开始拉伸,并在逐渐递增的力的作用下一直拉伸到破断。
实验中所需要的材料和试样应该具有以下特点:1.材料的性能必须具有可靠性和代表性。
2.试样的尺寸必须符合标准的要求。
3.在测试温度下,试样的畸变应尽可能小。
在轴向拉伸试验中,一般采用的是标准试验方法。
标准试验方法是国家颁布的实验规程和标准测试方法。
标准测试是为了获得所需数据而进行的一系列措施,包括样品的处理、测试设备的标准化、测量和数据处理。
三、实验步骤1.根据所选材料的类型和所需测试数据选择相应的标准试验方法,并详细描述试验过程。
2.按照标准方法的描述准备所需的测试设备和试样。
3.材料标准化和试样的预处理。
4.测试设备校准和校准。
5.测量并记录实验室条件下的试样尺寸。
6.试样的放置与加载。
7.对试样施加稳定的拉力。
8.记录相关数据并进行曲线拟合和计算。
9.拆除试样并清洁测试设备。
四、实验数据处理和分析1.根据试验过程的数据计算试样的实际应力和应变。
2.根据应力-应变曲线可以评估测试材料的机械特性,如弹性模量、屈服强度、抗拉强度、断裂延伸率等。
3.分析实验结果并得出结论。
五、实验结果我们进行了轴向拉伸试验,并得出不同材料的应力-应变曲线。
通过实验,我们可以得到所需的数据,如抗拉强度、屈服强度和伸长率等。
以不锈钢材料为例,做下图,可以看出随着应力的增加,应变也随之增加。
当应力大到一定程度后,材料出现屈服现象,强度值略有下降。
当应力继续增加时,材料的应变继续增加,直到达到极限状态,破断。
我们可以根据应力-应变曲线中的数据计算出材料的力学特性。
六、实验结论与意义1.轴向拉伸试验是一种非常重要的材料力学测试方法,可以评估材料的机械特性,如弹性模量、屈服强度、抗拉强度、断裂延伸率等。
拉伸实验报告
拉伸实验报告拉伸实验报告一、实验目的通过拉伸实验,了解金属材料在受力下的力学性能,并掌握实验室中拉伸试验的操作方法。
二、实验原理拉伸试验是将试样置于拉伸试验机上,施加拉力,逐渐加大试样的应变,测定在不同应变下的力和伸长量,然后计算应力和应变。
通过绘制应力-应变曲线,可获得材料的力学性能参数,如屈服强度、抗拉强度、断裂强度等。
三、实验仪器与试样实验仪器:拉伸试验机试样:金属材料试样,常见的有钢材、铝材等。
四、实验步骤1. 准备试样:根据实验要求,将金属试样切割成标准尺寸,并进行必要的表面处理。
2. 放置试样:将试样固定在拉伸试验机上,确保试样与试验机保持紧密接触。
3. 调试试验机:开启拉伸试验机的电源,根据试样材料的特性确定试验机的工作参数,如拉拔速度、力程范围等。
4. 实施拉伸:通过操作试验机上的控制按钮,开始施加拉力,并逐渐增大拉力,直到试样断裂。
5. 记录数据:在拉伸实验过程中,实时记录试验机上的读数,包括载荷和伸长量。
6. 分析结果:根据实验数据,计算应力、应变,并绘制应力-应变曲线。
根据曲线上的特征点,确定材料的力学性能,如屈服强度、抗拉强度等。
五、实验结果与分析根据实验数据,我们得到了一条应力-应变曲线。
通过该曲线,我们可以计算出各个特征点的数值,如屈服强度、抗拉强度等。
比较不同材料的曲线,可以得出它们的力学性能差异。
六、实验注意事项1. 操作拉伸试验机时,应注意安全,严禁近距离观察试样断裂过程,以免发生危险。
2. 实施拉伸时,应逐渐增大拉力,以避免试样突然断裂造成伤害。
3. 试样应尽量选择无损伤的部位,以保证实验结果的准确性。
4. 实验结束后,要及时关闭拉伸试验机的电源。
七、实验总结通过本次拉伸实验,我掌握了拉伸试验的基本操作方法,并了解了金属材料受力下的力学性能。
通过分析实验结果,我发现不同材料的力学性能存在差异,这对我今后从事相关行业的工作极具参考意义。
同时,本次实验也加深了我对实验安全操作的认识,提高了我的实验技能。
拉伸试验报告
拉伸试验预习报告一、试验目的1、测定低碳钢在退火、正火和淬火三种不同热处理状态下的强度与塑性性能。
2、测定低碳钢的应变硬化指数和应变硬化系数。
二、试验要求:1、实验速率(1)低碳钢弹性模量E=(196~206) ×106Pa,一般取206×106Pa。
小于150000N/mm2,在弹性范围直至上屈服强度范围内,试验机夹头的分离速率应保持2(N/mm2)∙s-1~20(N/mm2))∙s-1之间。
(2)若仅测定下屈服长度,在试样平行长度的屈服期间应变速率应在0.00025/s~0.0025/s。
(3)同时测定上下屈服强度则满足要求(2)。
2、夹持方法应使用例如楔头夹头、螺纹夹头、套环夹头等合适的夹具夹持试样。
应尽最大的努力确保夹持试样受轴向拉力作用。
3、温度试验温度一般在室温10℃~35℃范围内,。
对温度要求严格的试验,试验温度为23℃±5℃。
三、引言低碳钢材料的机械性能指标是由拉伸破坏试验来确定的,低碳钢拉伸应变曲线有弹性阶段、屈服阶段、强化阶段和颈缩阶段。
通过拉伸试验,可以确定材料的屈服强度、抗拉强度、断后伸长率、断面收缩率等性能指标。
而且可以通过Hollomon公式计算出材料的应变硬化系数与应变硬化指数。
本次实验将通过室温拉伸完成上述性能测试工作。
四、试验内容1、试验材料与试样实验材料:低碳钢(low carbon steel)为碳含量低于0.25%的碳素钢,因其强度低、硬度低而软,故又称软钢。
使用分别经过退火、正火和淬火处理的低碳钢。
低碳钢退火组织为铁素体和少量珠光体,其强度和硬度较低,塑性和韧性较好。
低碳钢正火后硬度略高于退火,韧性也较好。
要想增加低碳钢的硬度,首先要对低碳钢进行渗碳,然后才能进行淬火来提高硬度,这时得到的组织是淬火马氏体。
将这三种实验材料都制成R4标准试样,其形状和尺寸要求,如图1、表1、表2所示:图1试样形状表1 R4试样尺寸表2 R4试样尺寸公差要求2、试验测试内容与相关的测量工具、仪器、设备试验测试内容:(1) 直接测量的物理量:试样的原始标距L0、断后标距L u、原始直径d0、断后直径d u。
钢筋拉伸试验报告
钢筋拉伸试验报告一、实验目的。
本次实验旨在通过对钢筋进行拉伸试验,了解钢筋在拉伸过程中的力学性能,探究钢筋的抗拉强度、屈服强度等参数,为工程建设中钢筋的选材和设计提供参考依据。
二、实验原理。
拉伸试验是通过施加拉力,使材料发生拉伸变形,从而研究材料的抗拉性能。
在拉伸试验中,通过施加外力,材料会产生应力和应变,进而得到应力-应变曲线,通过曲线的特征参数,可以分析材料的力学性能。
三、实验步骤。
1. 准备工作,准备好所需的钢筋样品,清洁表面,进行编号。
2. 实验装置,将钢筋样品固定在拉伸试验机上,调整好试验机的参数。
3. 施加载荷,逐渐施加拉力,记录下拉力和相应的位移数据。
4. 实验数据处理,根据实验数据绘制应力-应变曲线,计算出材料的抗拉强度、屈服强度等参数。
四、实验数据及结果。
通过本次实验,得到了钢筋拉伸试验的数据,根据数据处理得到了应力-应变曲线,进而得到了钢筋的力学性能参数。
具体数据如下:1. 钢筋抗拉强度,XXX MPa。
2. 钢筋屈服强度,XXX MPa。
3. 钢筋断裂伸长率,XX%。
五、实验分析。
根据实验数据和结果分析,可以得出以下结论:1. 钢筋具有较高的抗拉强度和屈服强度,符合设计要求。
2. 钢筋在拉伸过程中表现出良好的延展性,具有较高的断裂伸长率。
3. 通过应力-应变曲线的分析,可以进一步了解钢筋的力学性能,为工程设计提供参考。
六、实验总结。
通过本次钢筋拉伸试验,我们对钢筋的力学性能有了更深入的了解,为工程建设中的钢筋选材和设计提供了重要依据。
同时,也为今后的材料力学性能研究提供了宝贵的数据和经验。
七、致谢。
感谢实验中给予帮助和支持的各位老师和同学,也感谢实验室提供的设备和场地。
钢筋拉伸试验报告到此结束。
材料的拉伸试验实验报告
材料的拉伸试验实验报告实验报告:材料的拉伸试验摘要:本实验通过拉伸试验研究了不同材料在受力时的力学性能。
选择了几种常见的材料样本进行试验,包括金属、塑料和橡胶。
实验结果显示,不同材料的拉伸力学性能不同,金属材料表现出较高的强度和可塑性,而塑料和橡胶材料则表现出较高的延展性。
引言:拉伸试验是一种常见的力学试验方法,它用于研究材料在受力时的性能和行为。
通过对材料施加拉伸力并测量其应力和应变,可以获得材料的力学性能参数,如弹性模量、屈服强度、断裂强度等。
另外,拉伸试验还可以评估材料的可靠性和使用范围。
实验方法:1.实验材料选择:选取了铁、聚乙烯和天然橡胶作为实验材料。
2.样品制备:根据实验要求,将材料切割成尺寸相同的长条样品。
4.数据处理:根据实验数据计算得出应力和应变的数值,进行数据分析。
实验结果:经过实验,得到了三种材料在拉伸过程中的应力-应变曲线,并据此计算出了相应的力学性能参数。
1.铁材料:铁材料在拉伸过程中表现出较高的强度和可塑性。
其应力-应变曲线呈现出明显的弹性阶段、屈服点和硬化段。
弹性阶段的斜率表示了材料的弹性模量,屈服点表示了材料开始塑性变形的临界点。
在达到最大荷载后,材料开始发生断裂。
2.聚乙烯材料:聚乙烯材料在拉伸过程中具有较高的延展性。
其应力-应变曲线呈现出较低的强度和较大的延展性。
相比于铁材料,聚乙烯材料的弹性阶段较短,而屈服点不明显。
在达到最大拉伸荷载后,聚乙烯样品发生断裂。
3.天然橡胶材料:天然橡胶材料也具有较高的延展性,但相对于聚乙烯材料,其强度较高。
应力-应变曲线显示,橡胶材料具有较长的弹性阶段,并在后期逐渐增加应力。
在断裂时,橡胶样品呈现出较大的拉伸变形。
讨论:根据实验结果可以看出,不同材料在受力时表现出不同的力学性能。
金属材料具有较高的强度和可塑性,适用于要求较高强度和刚性的工程领域。
塑料材料具有较高的延展性和韧性,适用于需要柔性和可塑性的应用。
橡胶材料则融合了延展性和较高的强度,适用于需要弹性和抗撕裂性的应用。
材料拉伸实验实验报告
材料拉伸实验实验报告【材料拉伸实验实验报告】一、引言拉伸实验是材料力学中最常见的实验之一,通过对材料进行拉伸加载,可以得到材料的拉伸应力-应变曲线、屈服强度、断裂强度等重要力学性能参数,对于材料的设计和应用有重要的指导作用。
本实验主要通过金属材料的拉伸实验来研究材料的力学特性,提取材料相应的力学性能参数。
二、实验目的1. 掌握拉伸实验的基本原理和操作方法;2. 了解拉伸实验中所涉及的概念和术语;3. 学习应用杨氏模量来表征材料的力学性能。
三、实验原理1. 拉伸应力和拉伸应变:拉伸应力(σ)是指单位截面积上的拉力,即材料的拉伸力与横截面积的比值。
拉伸应变(ε)是指材料在拉伸过程中单位长度的变化量,即实验前后的长度差与原始长度的比值。
2. 拉伸力和力学性能参数:拉伸力是指实验中施加在试样上的力,力学性能参数主要包括屈服强度、断裂强度、弹性模量、塑性应变等。
3. 杨氏模量:杨氏模量(E)是材料的重要力学性能参数,它表征了材料在一定应力范围内对应变的抵抗能力,计算公式为:E = σ / ε,其中σ为拉伸应力,ε为拉伸应变。
四、实验步骤1. 准备试样:根据实验要求,选择合适的金属材料,制作出试样。
2. 安装试样:将试样安装在拉伸试验机上的夹具中,并确保试样的位置合适。
3. 设置实验参数:根据实验要求,设置拉伸试验机的加载速度、采样频率等参数。
4. 进行拉伸实验:启动拉伸试验机,开始加载试样,记录下拉伸过程中的载荷和位移数据。
5. 绘制拉伸应力-应变曲线:根据实验记录的载荷和位移数据,计算出拉伸应力和拉伸应变的数值,并绘制拉伸应力-应变曲线图。
6. 计算力学性能参数:根据绘制的拉伸应力-应变曲线,计算出屈服强度、断裂强度和塑性应变等力学性能参数。
五、实验结果与分析根据实验记录的数据,绘制出拉伸应力-应变曲线,通过曲线的形状和数据的分析,得到试样的力学性能参数。
六、实验结论通过本次拉伸实验,得到了试样的拉伸应力-应变曲线,并计算出了相应的力学性能参数。
实验拉伸实验报告
一、实验目的1. 理解拉伸实验的基本原理和方法。
2. 掌握拉伸实验的操作步骤和注意事项。
3. 通过实验,测定材料的弹性模量、屈服强度、抗拉强度、延伸率等力学性能指标。
4. 分析实验结果,了解材料的力学特性。
二、实验原理拉伸实验是测定材料力学性能的一种基本方法。
在实验过程中,将材料样品固定在拉伸试验机上,逐渐施加拉伸力,使材料产生拉伸变形,直至断裂。
通过测量拉伸过程中的力、变形等参数,可以计算出材料的弹性模量、屈服强度、抗拉强度、延伸率等力学性能指标。
三、实验设备与材料1. 实验设备:电子万能试验机、游标卡尺、夹具、引伸计等。
2. 实验材料:低碳钢试样、铸铁试样等。
四、实验步骤1. 准备试样:根据实验要求,选取合适的试样,并按照国家标准制作成标准试样。
2. 安装试样:将试样安装在拉伸试验机的夹具中,确保试样与夹具紧密接触。
3. 调整试验机:设置试验机的工作参数,如拉伸速度、加载方式等。
4. 进行拉伸实验:启动试验机,使试样受到拉伸力,记录拉伸过程中的力、变形等数据。
5. 分析实验数据:根据实验数据,绘制拉伸曲线,计算材料的弹性模量、屈服强度、抗拉强度、延伸率等力学性能指标。
五、实验结果与分析1. 弹性模量:通过拉伸曲线,可以找到线性部分,根据胡克定律,计算材料的弹性模量。
2. 屈服强度:在拉伸曲线上,找到屈服点,计算屈服强度。
3. 抗拉强度:在拉伸曲线上,找到最大载荷点,计算抗拉强度。
4. 延伸率:在拉伸过程中,测量试样原始长度和断裂后长度,计算延伸率。
六、实验结论通过本次拉伸实验,我们成功测定了低碳钢和铸铁的弹性模量、屈服强度、抗拉强度、延伸率等力学性能指标。
实验结果表明,低碳钢具有较好的弹性和塑性,而铸铁则表现出较高的脆性。
实验过程中,我们掌握了拉伸实验的操作步骤和注意事项,提高了对材料力学性能的认识。
七、实验总结本次拉伸实验,我们了解了拉伸实验的基本原理和方法,掌握了拉伸实验的操作步骤和注意事项。
拉伸实验报告结论
拉伸实验报告结论拉伸实验报告结论引言:拉伸实验是一种常见的材料力学测试方法,通过施加外力对材料进行拉伸,观察其变形和破坏行为,从而获得材料的力学性能参数。
本文将对拉伸实验的结果进行分析和总结,得出结论。
1. 实验目的及方法回顾本次拉伸实验的目的是研究不同材料在受力下的变形和破坏行为,以及计算材料的力学性能参数。
实验中,我们使用了标准拉伸试验机,将不同材料的试样放置在拉伸机上,并施加逐渐增加的拉力。
同时,通过传感器记录试样的变形和力的变化,以便后续分析。
2. 实验结果分析通过对实验数据的分析,我们得出以下结论:2.1 材料的拉伸强度拉伸强度是材料在拉伸过程中所能承受的最大应力。
实验结果显示,不同材料的拉伸强度存在显著差异。
例如,钢材的拉伸强度通常很高,而塑料材料的拉伸强度较低。
这与材料的分子结构和原子间的结合方式有关。
2.2 材料的屈服点屈服点是材料在拉伸过程中开始产生可见塑性变形的应力值。
实验结果表明,不同材料的屈服点也有较大差异。
一些金属材料具有明显的屈服点,而一些非金属材料则没有明显的屈服点。
这些差异可能与材料的晶体结构和原子间的滑移方式有关。
2.3 材料的延伸率延伸率是材料在拉伸过程中的延展性能指标,表示材料在断裂前能够拉伸的长度与原始长度之比。
实验结果表明,不同材料的延伸率也有显著差异。
金属材料通常具有较高的延伸率,而塑料材料的延伸率较低。
这与材料的分子结构和原子间的排列方式有关。
3. 结论通过对拉伸实验结果的分析,我们得出以下结论:3.1 不同材料的力学性能差异较大,这与材料的分子结构、晶体结构以及原子间的结合方式有关。
3.2 金属材料通常具有较高的拉伸强度和延伸率,而塑料材料的拉伸强度和延伸率较低。
3.3 材料的屈服点与其塑性变形能力相关,金属材料通常具有明显的屈服点,而非金属材料则没有明显的屈服点。
综上所述,拉伸实验结果表明不同材料在受力下的力学性能存在显著差异。
通过对这些差异的研究,我们可以更好地理解材料的力学行为,并为材料的设计和应用提供参考依据。
拉伸试验报告
拉伸试验报告目录1. 概述1.1 背景1.2 目的1.3 方法2. 实验步骤2.1 样品制备2.2 实验设备2.3 实验流程3. 结果分析3.1 数据处理3.2 结果讨论4. 结论概述背景拉伸试验是一种常见的力学实验,用于测试材料的强度和延展性。
通过施加拉力来观察材料的变形和破裂情况,从而评估材料的性能。
目的本文旨在对拉伸试验进行详细介绍,并分析实验结果,探讨材料的特性和性能。
方法拉伸试验通常通过一台拉伸试验机进行,样品在被夹住的两端施加拉力,记录拉伸过程中的应力和应变值,从而绘制应力-应变曲线。
实验步骤样品制备1. 选择适当的材料样品,根据实验要求进行制备和加工。
2. 确保样品尺寸符合试验标准,避免出现尺寸对结果的影响。
实验设备1. 拉伸试验机:用于施加拉力和记录拉力与伸长位移的关系。
2. 夹具:固定和夹住样品,保证拉伸试验的准确性和稳定性。
实验流程1. 将样品固定在拉伸试验机的夹具上。
2. 开始施加拉力,同时记录下拉力和位移的数值。
3. 在拉伸过程中定时记录数据,直至样品破坏为止。
4. 结束实验,拔出样品并清理实验设备。
结果分析数据处理1. 绘制应力-应变曲线,分析材料的屈服点、最大应力点和断裂点。
2. 计算材料的弹性模量、屈服强度和断裂强度等参数。
结果讨论1. 分析实验结果,探讨材料的性能和特性。
2. 比较不同材料样品的拉伸性能,找出影响因素并进行讨论。
结论通过拉伸试验,我们可以了解材料的力学性能和工程应用价值,为材料选择和设计提供重要参考依据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.1将试验测得的数据进行整理:
表1 拉伸前试样的直径
编号
上
中
下
平均
1
10.00
10.04
10.00
10.02
10.00
10.00
平均10.02
平均10.01
平均10.00
10.02
2
9.88
9.92
9.88
9.90
9.88
9.90
平均9.90
平均9.89
平均9.89
9.89
3
9.96
9.99
9.96
abaner
拉伸试验报告
[键入文档副标题]
[键入作者姓名]
[选取日期]
[在此处键入文档的摘要。摘要通常是对文档内容的简短总结。在此处键入文档的摘要。摘要通常是对文档内容的简短总结。]
拉伸试验报告
一、试验目的
1、测定低碳钢在退火、正火和淬火三种不同热处理状态下的强度与塑性性能
2、测定低碳钢的应变硬化指数和应变硬化系数
4.3.4真应力真应变与Hollomon公式
真应力与工程应力的换算公式为 ,真应变与工程应变的换算公式为 。在均匀变形的塑形阶段,均匀选取8个点,记录这8个点的工程应力、工程应变值。
Hollomno公式为在真应力-真应变曲线下,表征金属应变硬化能力的经验公式,其经验表达式为:
其中K称为应变硬化系数,n称为应变硬化指数,S为真应力,e为真应变。
5.70
61.58
61.68
61.72
5.76
平均值
61.62
5.73
方差
0.003656
标准差
0.06046
表4 3号试样断后标距和断后直径
断后标距Lu/mm
断后直径Du/mm
测量值
5.70
5.80
5.76
5.80
5.78
5.76
5.78
5.68
5.68
5.72
5.68
5.70
平均值
5.74
方差
0.00212
拉伸过程
(4)继续拉伸试样,直到试样断裂。将试样从试验机上取下,观察端口形貌。可以看到端口周边的剪切唇。
测量断后试样
(5)按照国标精度,测量断后试样颈缩直径、断后标距长度。试样旋转90度,再测量一遍。
输出报告
(6)根据拉伸过程中测得的应力、位移和塑形变形的数据,按照国家标准给定的数据处理方式,计算机输出拉伸试验测得的四项拉伸强度和拉伸塑形的测试结果。
对于中、低碳钢的铸、锻件正火的主要目的是细化组织。与退火相比,正火后珠光体片层较细、铁素体晶粒也比较细小,因而强度和硬度较高。
对于低碳钢工件,由于退火后硬度太低,切削加工中易粘刀,光洁度交叉,效率低,故用正火来提高其硬度,改善其切削加工性能。[1]
在本实验中,我们所检测到的正火处理后材料性能的主要变化应为硬度的升高。
(2)机加工的试样
如果试样的夹持端与平行长度的尺寸不同,他们之间应以过渡弧相连,此弧的过渡半径的尺寸可能很重要。
试样夹持端的形状应适合试验机的夹头。试样轴线应与力的作用线重合。
(5)原始横截面积的测定
原始横截面积的测定应准确到 。比例试样的原始标距与横截面积有 关系。国际上使用的比例系数k的值为5.65,也可以取11.3。本试验中试样的直径为10mm。
范围
修约间隔
ReL、Rm
≤200N/mm2
>200N/mm2-1000N/mm2
>1000N/mm2
1N/mm2
5N/mm2
10N/mm2
A
0.05%
Z
0.05%
由于游标卡尺的精度为0.02mm,因此修约间隔为0.02mm。可以得到如下表所示的测量结果:
表6 修约后的断后标距和断后直径
断后标距Lu/mm
断后直径du/mm
样品1
68.12
5.92
样品2
61.62
5.74
样品3
5.74
4.3伸长率、截面收缩率和拉伸曲线的处理
4.3.1伸长率
由测量得出的试样断后标距以及试样拉伸前的标准标距可以得到伸长率
一号样品的伸长率为
二号样品的伸长率为
4.3.2截面收缩率
由测量的得到的试样断后的缩颈的直径和试样拉伸前的直径可以得到截面收缩率。一号样品的截面收缩率
二、试验要求:
按照相关国标标准(GB/T228-2002:金属材料室温拉伸试验方法)要求完成试验测量工作。
三、
低碳钢在不同的热处理状态下的力学性能是不同的。为了测定不同热处理状态的低碳钢的力学性能,需要进行拉伸试验。
拉伸试验是材料力学性能测试中最常见试验方法之一。试验中的弹性变形、塑性变形、断裂等各阶段真实反映了材料抵抗外力作用的全过程。它具有简单易行、试样制备方便等特点。拉伸试验所得到的材料强度和塑性性能数据,对于设计和选材、新材料的研制、材料的采购和验收、产品的质量控制以及设备的安全和评估都有很重要的应用价值和参考价值
0.0285
304.3976
313.0729
0.0281
5.7464
-3.5719
2.1178
27451.0000
0.0424
348.9963
363.7937
0.0415
5.8966
-3.1814
3.1673
30331.0000
0.0633
385.6109
410.0201
0.0614
6.0162
-2.7907
标准差
0.0461
国标规定断后标距方差小于0.25mm,直径Δdu/du<1%
(1)对2号样品的断后标距进行验证,通过测量的六个标距可以求得平均值
=61.62mm
由此可以求的六组数据的方差为
=0.06mm
由于0.06mm<0.25mm,因此所测得的断后标距的误差范围符合国家标准。
(2)对3号样品的断后直径进行验证,通过测量六组数据可以得到平均值
由拉伸曲线选取的点可以得到lnS对lne的直线关系,经拟合可以得到直线的斜率为n,直线的截距为lnk,由此可以得到n和k的值(k为应变硬化系数,n为应变硬化指数)。
(1)1号试样计算所得数据如下:
表7 1号试样的应力-应变数据
变形量/mm
拉力/N
ΔL/50(ε)
σ
S
e
lnS
lne
1.4241
23943.0000
试验时的温度为室温10-35℃,较为严格的控制为23±5℃,加载速率为6-60MPa/s.
实验室条件:试验程序文件50.0mm,测量范围为标距最大为25mm,精度在(2-100%)FS内精度优于示数的1%。
2.2游标卡尺
游标卡尺的量程:200mm 分度:50 最小分辨能力:0.02mm
四、试验准备内容
具体包括以下几个方面。
1
(1)试验材料的形状和尺寸的一般要求
试样的形状和尺寸取决于被试验金属产品的形状与尺寸。通过从产品、压制坯或铸件切取样坯经机加工制成样品。但具有恒定横截面的产品,例如型材、棒材、线材等,和铸造试样可以不经机加工而进行试验。
试样横截面可以为圆形、矩形、多边形、环形,特殊情况下可以为某些其他形状。
同理可以得到2号、3号试样的截面收缩率为66.32%和66.92%
4.3.3拉伸曲线
从拉伸曲线可以直接得到屈服强度和抗拉强度。
(1)1号试验拉伸的应力应变曲线
图1 1号试样应力应变曲线
(2)2号试样拉伸的应力应变曲线如下:
图22号试样工程应力应变曲线
(3)3号试验拉伸的应力应变曲线如下:
图33号试样工程应力应变曲线
(7)试样的制备
对于名义直径10mm的试样,尺寸公差为0.03mm。对于满足上述机加工条件的名义直径10mm的试样,沿其平行长度的最大直径和最小直径之差不应超过0.04mm。
2
试验测试的主要内容拉伸曲线、伸长率、断面收缩率
测量工具游标卡尺划线仪器引伸计YYU-25/50
测量设备万能试验机WDW-200D
通过拉伸实验测定低碳钢在退火、正火和淬火三种不同热处理状态下的强度和塑形性能,并根据应力-应变曲线,确定应变硬化指数和系数。用这些数据来进行表征低碳钢的力学性能,并对不同热处理的低碳钢的相关数据进行对比,从而得到不同热处理对低碳钢的影响。
拉伸实验根据金属材料室温拉伸试验方法的国家标准,制定相关的试验材料和设备,试验的操作步骤等试验条件。
划线测量
(1)利用游标卡尺测量样品的直径,在不同的部位测量三次,用直尺测量样品的原始标距,同样取不同位置测量三次。然后使用划线器在试样上画出试样的标距。
按照试样
(2)将样品安装在万能拉伸试验机上,按照试验机的操作流程,对样品进行拉伸,在电脑上记录拉伸曲线
界面操作
(3)设置电脑屏幕上的各种拉伸参数,将初始数据设置为零,点击开始按钮,开始拉伸试验。当拉伸量趋于平稳,将引申计取下,避免破坏设备。
9.97
9.97
9.99
平均9.98
平均9.97
平均9.98
9.98
表2 1号试样断后标距和断后直径
断后标距Lu/mm
断后直径Du/mm
数据
68.10
68.12
5.90
5.94
平均值
68.11
5.92
表3 2号试样断后标距和断后直径
断后标距Lu/mm
断后直径Du/mm
测量数据
61.56
61.58
61.58
3.8887
31603.0000
0.0778
401.7824
433.0411
0.0749
6.0708