牛顿法潮流计算综述
带最优乘子的牛顿法潮流计算的基本原理与求解步骤
解:基本原理 将潮流计算问题概括为求解如下的非线性代数方程组
f i ( x) g i ( x) bi 0
(i 1,2,, n)
(1)
或 f (x) = 0 (2) T 式中:x 为待求变量组成的 n 维向量,x =[x1,x2,…,xn] ,bi 为给定的常量。 可以构造标量函数为
F ( x) f i ( x) 2 [ g i ( x) bi ]2
i 1 i 1 n n
(3) (4)
或
F ( x) [ f ( x)]T f ( x)
若式(1)表示的非线性代数方程的解存在,则以平方和形式出现的标量函数 F(x) 的最小值应该为零。 若此最小值不能变为零,则说明不存在能满足原方程组即式
* * * T (1) 的解。这样,就把原来的解代数方程组的问题转化为求 x [ x1 , x2 , xn ] ,
从而使 F ( x * ) min 的问题。这里记使 F ( x) min 的 x 为 x*。 牛顿法计算过程中的迭代公式为:
x ( k 1) x ( k ) ( k ) x ( k )
(10) 其中
f ( x) [ f1 ( x), f 2 ( x),, f n ( x)]T
为使表达式简明起见,定义如下三个向量 a [a1 , a 2 , , a n ]T y s y ( x ( 0) ) b [b1 , b2 ,, bn ]T J ( x ( 0) )x c [c1 , c 2 , , c n ]T y (x) 于是式(10)可简化成
上述就是带最优乘子的牛顿法潮流计算的基本原理。 求解步骤 (1) 确定一个初始估算值 x ( 0) ; (2) 置迭代次数 k=0; (3) 从 x ( k ) 出发,计算雅可比矩阵;利用常规牛顿潮流算法每次迭代所求出的修 正向量 x ( k ) J ( x ( k ) ) 1 f ( x ( k ) ) 作为搜索方向;根据式(11)、 (15) 和(16)求出最 优步长因子 ( k ) ,由此得到下一个迭代点,即 x ( k 1) x ( k ) ( k ) x ( k ) ; (4) 校验 F ( x ( k 1) < 是否成立, 如成立, 则 x ( k 1) 就是要求的解; 否则, 令 k k 1, 转向步骤(3),重复循环计算。
潮流计算的主要方法
潮流计算的主要方法
最近几年,随着计算机仿真技术和复杂系统全面发展,潮流计算也受到越来越多的重视。
潮流计算是研究不同电力网络的物理特性和操作规律的一项重要工作。
针对潮流计算的主要方法,总结如下:
一、基于动力学的方法
1. 碰撞模型:根据动力学方法,计算电力系统的运行稳定性。
基于动力学的碰撞模型能够快速而精确地预测两个潮流的变化情况。
2. 时变快速收敛:在碰撞模型的基础上,为快速求解电力系统潮流,提出了时变快速收敛算法。
可以更快地获得潮流解。
二、基于牛顿迭代法的方法
1.牛顿迭代潮流计算方法:根据牛顿迭代法,采用迭代算法,求解电力系统潮流运行状态。
2. 功率流计算方法:计算机基于牛顿迭代法,快速求解节点电能的功率流公式。
可以有效的缩短潮流计算的时间,提高计算效率。
三、基于模糊聚类算法的方法
1. 基于模糊聚类的潮流计算方法:采用模糊聚类算法,对潮流计算进行多维度分析,可以得出最优的潮流结果。
2. 基于模糊划分的多目标模糊控制:根据模糊聚类理论,对潮流算法进行最佳控制,以满足电力网不同优化目标。
四、基于期望最大化的方法
1、基于粒子群优化的潮流计算方法:采用粒子群优化算法,将电力网潮流计算定义为多目标最优化问题,以期望最大化来求解潮流值,提高计算效率。
2、基于遗传算法的潮流计算方法:遗传算法利用进化过程来搜索全局最优解,使用遗传变异原则来改变候选解,以期望最大化来求解潮流计算问题。
牛顿、拉夫逊法在潮流计算中的应用
牛顿-拉夫逊法在潮流计算中的应用简介牛顿迭代法又称为牛顿-拉夫逊方法,它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。
多数方程不存在求根公式,因此求精确根非常困难,甚至不可能,从而寻找方程的近似根就显得特别重要。
方法使用函数f(x)的泰勒级数的前面几项来寻找方程f(x) = 0的根。
牛顿迭代法是求方程根的重要方法之一,其最大优点是在方程f(x) = 0的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根。
由于便于编写程序用计算机求解,应用较广。
下面以一元非线性代数方程的求解为例,来说明牛顿-拉夫逊法的基本思想。
设欲求解的非线性代数方程为f(x)=o设方程的真实解为x*,则必有f(x*)=0。
用牛顿-拉夫逊法求方程真实解x*的步骤如下:首先选取余割合适的初始估值x°作为方程f(x)=0的解,若恰巧有f(x°)=0,则方程的真实解即为x*= x°若f(x°)≠0,则做下一步。
取x¹=x°+Δx°为第一次的修正估值,则f(x¹)=f(x°+Δx°)其中Δx°为初始估值的增量,即Δx°=x¹-x°。
设函数f(x)具有任意阶导数,即可将上式在x°的邻域展开为泰勒级数,即:f(x¹)=f(x°+Δx°)=f(x°)+f'(x°)Δx°+[f''(x°)(Δx°)2]/2+…若所取的|Δx°|足够小,则含(Δx°)²的项及其余的一切高阶项均可略去,并使其等于零,即:f(x¹)≈f(x°)+f'(x°)Δx°=0Δx°=-f(x°)/f'(x°)x¹= x°-f(x°)/f'(x°)可见,只要f'(x°)≠0,即可根据上式求出第一次的修正估值x¹,若恰巧有f(x¹)=0,则方程的真实解即为x*=x¹。
牛顿拉夫逊法潮流计算
牛顿拉夫逊法潮流计算牛顿-拉夫逊法(Newton-Raphson method)是一种用于求解非线性方程的数值方法。
它通过迭代逼近根的方式,将非线性方程转化为一系列的线性方程来求解。
在电力系统中,潮流计算用于确定电力网中节点的电压幅值和相角。
潮流计算是电力系统分析的重要基础,可以用于计算电力系统的潮流分布、功率损耗、节点电压稳定度等参数,为电力系统的规划、运行和控制提供参考依据。
牛顿-拉夫逊法是一种常用的潮流计算方法,它的基本思想是通过不断迭代来逼近电网的潮流分布,直到满足一定的收敛条件。
下面将对牛顿-拉夫逊法的具体步骤进行详细介绍。
首先,我们需要建立电力网络的节点潮流方程,即功率方程。
对于每一个节点i,其节点功率方程可以表示为:Pi - Vi * (sum(Gij * cos(θi - θj)) - sum(Bij * sin(θi -θj))) = 0Qi - Vi * (sum(Gij * sin(θi - θj)) + sum(Bij * cos(θi -θj))) = 0其中,Pi和Qi分别为节点i的有功功率和无功功率,Vi和θi分别为节点i的电压幅值和相角,Gij和Bij分别为节点i和节点j之间的导纳和电纳。
接下来,我们需要对每个节点的电压幅值和相角进行初始化。
一般情况下,可以将电压幅值设置为1,相角设置为0。
然后,我们可以开始进行迭代计算。
在每一轮迭代中,我们需要计算每个节点的雅可比矩阵和功率残差,然后更新电压幅值和相角。
雅可比矩阵可以通过对节点功率方程进行求导得到,具体如下:dPi/dVi = -sum(Vj * (Gij * sin(θi - θj) + Bij * cos(θi - θj)))dPi/dθi = sum(Vj * (Gij * Vi * cos(θi - θj) - Bij * Vi * sin(θi - θj)))dQi/dVi = sum(Vj * (Gij * cos(θi - θj) - Bij * sin(θi - θj)))dQi/dθi = sum(Vj * (Gij * Vi * sin(θi - θj) + Bij * Vi * cos(θi - θj)))功率残差可以通过将节点功率方程代入得到,如下:RPi = Pi - Vi * (sum(Gij * cos(θi - θj)) - sum(Bij *sin(θi - θj)))RQi = Qi - Vi * (sum(Gij * sin(θi - θj)) + sum(Bij *cos(θi - θj)))最后,我们可以使用牛顿-拉夫逊法的迭代公式来更新电压幅值和相角,具体如下:Vi(new) = Vi(old) + ΔViθi(new) = θi(old) + Δθi其中,ΔVi和Δθi分别为通过求解线性方程组得到的电压幅值和相角的增量。
牛顿-拉夫逊潮流计算
牛顿-拉夫逊潮流计算学生:李敏2007109522指导老师:李咸善潮流计算原理:节点分为三类,PQ 节点,PV 节点,平衡节点,每个节点涉及4个量:P(i),Q(i),U(i),Q(i)根据各节点的功率,电压列写平衡方程,组成多维非线性方程,用数学方法(牛顿拉夫逊)将方程组转化为线性的,可以解方程组。
在牛顿法中通过节点给定值可求得PQ 节点和pv 节点的电压相位和PQ 节点的电压有效值U(i),及PV 节点的Q(i),便可求得所有节点的参量,实现整个系统参数的明了化。
牛顿拉夫逊的基本原理数学表述如下:�牛顿-拉夫逊法计算潮流�由线路参数得出节点导纳矩阵Y �功率方程:(cos sin )1,2,3,,(sin cos )Gi Li i j ij ij ij ij j i GiLi i j ij ij ij ij j i P P U U G B i n Q Q U U G B θθθθ∈∈⎧−=+⎪⎪=⋅⋅⋅⎨⎪−=−⎪⎩∑∑其中iji jθθθ=−雅可比矩阵各元素的表达式(sin cos )(cos sin )()ij i j ij ij ij ij ij i j ij ij ij ij ij ij ijij H U U G B N U U G B j i M N L Hθθθθ=−−⎧⎪=−+⎪≠⎨=−⎪⎪=⎩22(sin cos )(cos sin )2(cos sin )(sin cos )2ii i j ij ij ij ij j ij iii i j ij ij ij ij i ii j ij i ii i j ij ij ij ij j i j iii i j ij ij ij ij i iij i j i H U U G B N U U G B U G M U U G B L U U G B U B θθθθθθθθ∈≠∈≠∈≠∈≠⎧=−⎪⎪⎪=−+−⎪⎪⎨=−+⎪⎪⎪=−−+⎪⎪⎩∑∑∑∑用MATLAB 语言编程调试心得体会:李老师布置这个课外题已经很长时间了,一直没有静下心来做,因为前阵子在忙着学习cad 考试耽搁了一些时间,所以没有及时的完成,这个任务我很妥了一段时间,觉得只有一点C 语言基础想自己动手编一个潮流程序还是很困难的,所以就一直没有开始。
(完整word版)牛顿拉夫逊法潮流计算
摘要本文,首先简单介绍了基于在MALAB中行潮流计算的原理、意义,然后用具体的实例,简单介绍了如何利用MALAB去进行电力系统中的潮流计算。
众所周知,电力系统潮流计算是研究电力系统稳态运行情况的一种计算,它根据给定的运行条件及系统接线情况确定整个电力系统各部分的运行状态:各线的电压、各元件中流过的功率、系统的功率损耗等等。
在电力系统规划的设计和现有电力系统运行方式的研究中,都需要利用潮流计算来定量地分析比较供电方案或运行方式的合理性、可靠性和经济性。
此外,在进行电力系统静态及暂态稳定计算时,要利用潮流计算的结果作为其计算的基础;一些故障分析以及优化计算也需要有相应的潮流计算作配合;潮流计算往往成为上述计算程序的一个重要组成部分。
以上这些,主要是在系统规划设计及运行方式安排中的应用,属于离线计算范畴。
牛顿-拉夫逊法在电力系统潮流计算的常用算法之一,它收敛性好,迭代次数少.本文介绍了电力系统潮流计算机辅助分析的基本知识及潮流计算牛顿-拉夫逊法,最后介绍了利用MTALAB程序运行的结果。
关键词:电力系统潮流计算,牛顿-拉夫逊法,MATLABABSTRACTThis article first introduces the flow calculation based on the principle of MALAB Bank of China,meaning, and then use specific examples,a brief introduction, how to use MALAB to the flow calculation in power systems。
As we all know, is the study of power flow calculation of power system steady-state operation of a calculation,which according to the given operating conditions and system wiring the entire power system to determine the operational status of each part:the bus voltage flowing through the components power, system power loss and so on. In power system planning power system design and operation mode of the current study, are required to quantitatively calculated using the trend analysis and comparison of the program or run mode power supply reasonable, reliability and economy.In addition, during the power system static and transient stability calculation, the results of calculation to take advantage of the trend as its basis of calculation;number of fault analysis and optimization also requires a corresponding flow calculation for cooperation;power flow calculation program often become the an important part. These,mainly in the way of system design and operation arrangements in the application areas are off—line calculation。
牛顿-拉夫逊算法(极坐标)潮流计算算例
极坐标系下的潮流计算
潮流计算
在电力系统中,潮流计算是一种常用的计算方法,用于确定在给定网络结构和参数下,各节点的电压 、电流和功率分布。在极坐标系下进行潮流计算,可以更好地描述和分析电力系统的电磁场分布和变 化。
极坐标系下的潮流计算特点
在极坐标系下进行潮流计算,可以更直观地描述电力线路的走向和角度变化,更好地反映电力系统的 复杂性和实际情况。此外,极坐标系下的潮流计算还可以方便地处理电力系统的非对称性和不对称故 障等问题。
03
CATALOGUE
极坐标系下的牛顿-拉夫逊算法
极坐标系简介
极坐标系
一种二维坐标系统,由一个原点(称为极点)和一条从极点出发的射线(称为 极轴)组成。在极坐标系中,点P的位置由一个角度θ和一个距离r确定。
极坐标系的应用
极坐标系广泛应用于物理学、工程学、经济学等领域,特别是在电力系统和通 信网络中,用于描述电场、磁场、电流和电压等物理量的分布和变化。
极坐标形式
将电力系统的节点和支路参数以极坐 标形式表示,将实数问题转化为复数 问题,简化计算过程并提高计算效率 。
02
CATALOGUE
牛顿-拉夫逊算法原理
算法概述
牛顿-拉夫逊算法是一种迭代算法,用于求解非线性方程组。在电力系统中,它 被广泛应用于潮流计算,以求解电力网络中的电压、电流和功率等参数。
准确的结果。
通过极坐标系的处理,算法 能够更好地处理电力系统的 复杂结构和不对称性,提高 了计算的准确性和适应性。
算例分析表明,该算法在处理 大规模电力系统时仍具有较好 的性能,能够满足实际应用的
需求。
展望
进一步研究牛顿-拉夫逊算法在极坐标 系下的收敛性分析,探讨收敛速度与电 力系统规模、结构和参数之间的关系, 为算法的优后的电压、电流和功 率等参数。
牛顿拉夫逊法计算潮流计算
例题
PG1 P1 PL1 0.5 1 0.5
QG1 Q1 QL1 0.02363 0.5 0.52363
3
3
QG2 Q2 f2 (G2 je j B2 j f j ) e2 (G2 j f j B2 je j ) 0.05708
2 3
0
e3 0
f3 0
例题
0 20 0 10
J (0) 2 0 0 10
0
0
0 20
0
0
2
0
第五步:求修正量
UP222(0(0) ) UP322(30(0) )
J
(0)
fe22((00)) fe33((00))
2)计算各节点运算功率:
S (0) i
S Li
U
(
0)
2 i
yi
0
配电网前推回推潮流计算的步骤
3)从网络末端开始,逐步前推,由节点电
U (0) i
压 ,求全网各支路功率分布。
前推过程为:
P (1) ij
Pj(0)
P (1) jk
Pij(1)
kC j
Q(1) ij
Q(0) j
j 1
j 1
1 (10 0.66693410 0.0166934) 0.5
3
3
Q1 f1 (G1 je j B1 j f j ) e1 (G1 j f j B1 je j )
j 1
j 1
1 (20 10 0.99777610 0.999861) 0.02363
牛顿拉夫逊法潮流计算
牛顿拉夫逊法潮流计算牛顿拉夫逊法是计算电力系统中电流、电压的常用方法之一,也称为牛顿-拉夫逊-里特法或简称为NR法。
资深的电力系统工程师一定对这个方法非常熟悉,但是对于刚刚接触电力系统的人来说,可能会对此感到迷惑。
本文将为大家简单介绍牛顿拉夫逊法的基本步骤,帮助大家更好地理解和使用。
在介绍牛顿拉夫逊法之前,我们需要先了解一些电力系统的基本概念。
电力系统由许多发电厂、输电线路、变电站和用户组成,其中输电线路和变电站是将电能长距离输送和转换的设备。
电力系统中的发电机、负荷和输电线路都具有电阻和电抗,它们之间的复杂相互作用决定了电力系统中的电流和电压。
牛顿拉夫逊法用于计算电力系统节点之间的电流和电压。
节点是指电力系统中有电流和电压变化的点,例如发电机和变电站。
在计算电力系统节点的电流和电压时,我们需要使用一些基本的公式和原理,比如克希荷夫定律和欧姆定律。
下面是牛顿拉夫逊法的基本步骤:1. 确定电力系统中的节点和口纳负荷在计算电力系统的电流和电压之前,我们需要先确定电力系统中所有的节点和负载。
这通常是由电网规划人员完成的。
2. 初始化电力系统中的电流和电压在计算过程中,我们需要先给电力系统中的节点和口纳负荷赋初值。
此时,我们需要假设所有节点的电压相同,即电力系统处于平衡状态。
3. 建立节点电流和电压的方程组建立节点电流和电压的方程组并对其进行求解是计算电力系统电流和电压的关键步骤。
利用克希荷夫定律和欧姆定律,可以得到关于节点电流和电压的一系列方程,这个方程组的解即为电力系统的电流和电压。
4. 更新节点电流和电压求解得到电力系统的电流和电压之后,我们需要更新节点电流和电压的值。
更新后的节点电流和电压将作为下一次计算的初值。
5. 判断计算结果收敛在使用牛顿拉夫逊法计算电力系统电流和电压时,我们需要判断计算结果是否收敛。
如果计算结果没有收敛,即结果不稳定或不趋于一个确定的值,那么我们需要重新建立方程组并进行求解。
牛顿拉斐逊法潮流计算
牛顿拉斐逊法潮流计算牛顿拉夫逊法(Newton-Raphson method)是一种数值计算方法,用于解非线性方程。
其原理是通过迭代来逼近方程的根。
在电力系统中,牛顿拉夫逊法常用于求解潮流计算问题。
潮流计算是电力系统调度运行和规划的基础工作,其目的是确定电力系统各节点的电压幅值和相角,以及各支线上的功率和无功功率。
通过潮流计算可以有效地评估电力系统的稳定性和运行状态,并为电力系统的调度和规划提供参考依据。
牛顿拉夫逊法的核心思想是通过接近方程的根来求解非线性方程。
其基本步骤如下:1.初始化:选取一个初始点作为方程的近似解,通常选择电力系统的平衡状态作为初值。
2.构造雅可比矩阵:根据潮流方程的特点,建立牛顿拉夫逊法的雅可比矩阵。
雅可比矩阵描述了非线性方程的导数关系,用于迭代计算过程中的线性化。
3.迭代计算:利用雅可比矩阵和当前解向量,构建迭代格式,并计算得到新的解向量。
迭代格式中,包括牛顿方程和拉夫逊方程。
牛顿方程用于计算不平衡功率的校正量,而拉夫逊方程用于计算不平衡电压的校正量。
4.收敛判断:判断迭代计算得到的新解是否满足收敛条件。
通常使用误差向量的范数作为判断依据。
如果误差向量的范数小于预先设定的阈值,即可认为迭代已经收敛。
5.循环迭代:如果迭代计算得到的新解不满足收敛条件,继续进行迭代计算,直到达到收敛条件为止。
牛顿拉夫逊法的优点是收敛速度较快,尤其适用于求解非线性方程的问题。
然而,该方法也存在一些缺点。
首先,牛顿拉夫逊法需要提供一个合适的初始点,如果初始点选择不当,可能会导致迭代过程发散。
其次,构造雅可比矩阵和计算迭代格式的过程较为复杂,需要一定的数学基础和计算能力。
在电力系统潮流计算中,牛顿拉夫逊法广泛应用于求解节点电压和支路功率的平衡方程。
通过牛顿拉夫逊法,可以准确地计算出系统各节点的电压幅值和相角,指导电网的调度运营和规划工作。
总之,牛顿拉夫逊法是一种重要的数值计算方法,特别适用于求解非线性方程。
第三节牛顿拉夫逊法潮流计算
第三节牛顿拉夫逊法潮流计算牛顿-拉夫逊法(Newton-Raphson method)是一种数值计算方法,用于求解非线性方程和潮流计算问题。
它是基于牛顿迭代法和拉夫逊迭代法的结合,可高效地求解电力系统潮流计算问题。
潮流计算是电力系统运行分析中的重要环节,其目标是确定系统中每个节点的电压和相角,并计算各个支路的电流,以评估系统的功率传输和稳定性。
在传统的高压电力系统中,由于负荷、发电机和传输线等元件的非线性特性,潮流计算问题呈现为非线性的数学方程组,通常采用迭代方法求解。
牛顿-拉夫逊法的基本思想是通过对方程组的线性化近似,迭代求解线性方程组的解,以接近方程组的精确解。
它通过将非线性方程组转化为以下形式进行迭代:F(x)=0其中,F(x)是非线性方程组的向量函数,x是未知向量。
牛顿-拉夫逊法的迭代过程可通过以下步骤进行:1.初始化变量:根据系统的初始状态进行节点电压和相角的初始化。
2.计算雅可比矩阵:通过对非线性方程组进行偏导,得到雅可比矩阵。
雅可比矩阵描述了各个节点潮流量与节点电压和相角之间的关系。
3.迭代计算:通过牛顿迭代法进行迭代计算,直到达到指定的收敛条件。
具体步骤为:a.解线性方程组:根据雅可比矩阵和当前节点电压和相角,求解线性方程组,得到修正量。
b.更新变量:根据修正量和当前节点电压和相角,更新节点电压和相角的值。
c.判断收敛:判断修正量是否满足收敛条件,如果满足则结束迭代计算,否则返回步骤a。
牛顿-拉夫逊法的优点是收敛速度快,精度高。
然而,它的缺点是对于方程组的收敛性和初始值的选择要求较高,存在收敛到局部最小值的问题。
为了克服这些问题,可以采用改进的牛顿-拉夫逊法,如增加松弛因子或采用多起点迭代法等。
总之,牛顿-拉夫逊法是一种高效的求解非线性方程组和潮流计算问题的数值方法。
它在电力系统潮流计算中广泛应用,帮助分析和评估电力系统的稳定性和功率传输能力。
随着电力系统的规模和复杂性的增加,牛顿-拉夫逊法的进一步改进和优化仍然是一个研究的热点问题。
牛顿拉夫逊介绍(原理、计算方法、程序).
3 牛顿-拉夫逊法概述3.1 牛顿-拉夫逊法基本原理电力系统潮流计算是电力系统分析中的一种最基本的计算,是对复杂电力系统正常和故障条件下稳态运行状态的计算。
潮流计算的目标是求取电力系统在给定运行状态的计算。
即节点电压和功率分布,用以检查系统各元件是否过负荷。
各点电压是否满足要求,功率的分布和分配是否合理以及功率损耗等。
对现有电力系统的运行和扩建,对新的电力系统进行规划设计以及对电力系统进行静态和暂态稳定分析都是以潮流计算为基础。
潮流计算结果可用如电力系统稳态研究,安全估计或最优潮流等对潮流计算的模型和方法有直接影响。
实际电力系统的潮流技术那主要采用牛顿-拉夫逊法。
牛顿--拉夫逊法(简称牛顿法)在数学上是求解非线性代数方程式的有效方法。
其要点是把非线性方程式的求解过程变成反复地对相应的线性方程式进行求解的过程。
即通常所称的逐次线性化过程。
对于非线性代数方程组: ()0f x = 即 12(,,,)0i n f x x x = (1,2,,)i n = (3-1)在待求量x 的某一个初始估计值(0)x 附近,将上式展开成泰勒级数并略去二阶及以上的高阶项,得到如下的经线性化的方程组:(0)'(0)(0)()()0f x f x x +∆= (3-2) 上式称之为牛顿法的修正方程式。
由此可以求得第一次迭代的修正量(0)'(0)1(0)[()]()x f x f x -∆=- (3-3) 将(0)x ∆和(0)x 相加,得到变量的第一次改进值(1)x 。
接着就从(1)x 出发,重复上述计算过程。
因此从一定的初值(0)x 出发,应用牛顿法求解的迭代格式为:'()()()()()k k k f x x f x ∆=- (3-4) (1)()()k k k x x x +=+∆ (3-5) 上两式中:'()f x 是函数()f x 对于变量x 的一阶偏导数矩阵,即雅可比矩阵J ;k 为迭代次数。
电力系统网络潮流计算—牛顿拉夫逊法
电力系统网络潮流计算—牛顿拉夫逊法牛顿拉弗逊法(Newton-Raphson Method)是一种常用的电力系统网络潮流计算方法,用于求解复杂电力系统中的节点电压和支路潮流分布。
本文将对牛顿拉弗逊法进行详细介绍,并讨论其优缺点及应用范围。
牛顿拉弗逊法的基本原理是通过迭代计算,将电力系统网络潮流计算问题转化为一个非线性方程组的求解问题。
假设电力系统有n个节点,则该方程组的节点电压和支路潮流分布可以通过以下公式表示:f(x)=0其中,f为非线性函数,x为待求解的节点电压和支路潮流分布。
通过泰勒展开,可以将f在其中一点x_k处展开为:f(x)≈f(x_k)+J_k(x-x_k)其中,J_k为f在x_k处的雅可比矩阵,x_k为当前迭代步骤的解。
通过令f(x)≈f(x_k)+J_k(x-x_k)=0,可以求解方程J_k(x-x_k)=-f(x_k),得到下一步的迭代解x_{k+1}。
通过不断迭代,可以逐步接近真实的解,直到满足收敛条件为止。
牛顿拉弗逊法的迭代公式如下:x_{k+1}=x_k-(J_k)^{-1}f(x_k)其中,(J_k)^{-1}为雅可比矩阵J_k的逆矩阵。
牛顿拉弗逊法的优点之一是收敛速度快。
相比其他方法,如高斯赛德尔法,牛顿拉弗逊法通常需要更少的迭代次数才能达到收敛条件。
这是因为牛顿拉弗逊法利用了函数的一阶导数信息,能够更快地找到接近解的方向。
然而,牛顿拉弗逊法也存在一些缺点。
首先,该方法要求求解雅可比矩阵的逆矩阵,计算量较大。
尤其是在大型电力系统网络中,雅可比矩阵往往非常大,计算逆矩阵的复杂度高。
其次,如果初始猜测值不合理,可能会导致算法无法收敛,需要选择合适的初始值,否则可能陷入局部极小值。
牛顿拉弗逊法在电力系统网络潮流计算中有广泛的应用。
该方法可以用于计算节点电压和支路潮流分布,提供电力系统分析和设计的重要数据。
它可以用于稳态分析、短路分析、负荷流分析等多种电力系统问题的求解。
这些问题在电力系统规划、运行和控制等方面都具有重要意义。
基于极坐标的牛顿拉夫逊潮流计算
基于极坐标的牛顿拉夫逊潮流计算引言:牛顿-拉夫逊潮流计算是电力系统潮流计算的一种常用方法,用于评估电力系统的电压、功率等参数。
在传统的牛顿-拉夫逊潮流计算中,节点的注入功率和节点电压之间用直角坐标系表示,但在一些情况下,使用直角坐标系并不方便。
因此,基于极坐标的牛顿-拉夫逊潮流计算应运而生。
本文将介绍基于极坐标的牛顿-拉夫逊潮流计算的原理和步骤。
一、基本原理基于极坐标的牛顿-拉夫逊潮流计算使用极坐标系来表示节点的注入功率和节点电压。
在极坐标中,节点的注入功率复数可以表示为S=P+jQ,其中P为有功功率,Q为无功功率。
节点的电压复数可以表示为V=V∠θ,其中V为电压幅值,θ为电压相角。
使用复数的运算规则可以推导出通过变压器、感性和容性元件的电流和功率的计算公式。
二、步骤1.初始化:a.设置节点电压估计值V0和电压相角估计值θ0。
b.将节点注入功率S注入1设置为节点P和Q的初始估计值。
2.计算注入电流:a. 计算节点注入电流I^inj = S^inj / V0^*,其中^*表示复共轭。
b. 计算节点电流注入I^ = I^inj + Σ I^flow,其中Σ表示对所有与节点连接的边的求和,I^flow为边的注入电流,需要通过变压器、感性和容性元件的运算公式计算。
3.更新节点电压:a.计算新的节点电压的幅值和相角:V = ,I^flow, * Zflow,这里Zflow为边的阻抗。
θ = Arg(I^flow) + φflow,φflow为边的阻抗相角。
b.计算新的节点电压估计值V0和电压相角估计值θ0。
V0 = ,I^inj, * Z1 + V * Z2,其中Z1和Z2为接地导线的阻抗。
θ0 = Arg(I^inj) + Arg(V)。
4.更新节点注入功率:a. 计算节点注入功率复数S^inj = P + jQ。
b. 将节点注入功率复数S^inj转化为直角坐标系中的实部和虚部,得到新的节点有功功率和无功功率。
牛顿拉夫逊法概要
一、牛顿-拉夫逊法概要首先对一般的牛顿-拉夫逊法作一简单说明。
已知一个变量X的函数(4-6)解此方程式时,由适当的近似值X(0)出发,根据(4-7)反复进行计算,当X(n)满足适当的收敛判定条件时就是(4-6)式的根。
这样的方法就是所谓的牛顿-拉夫逊法。
式(4-7)就是取第n次近似解X(n)在曲线上的点处的切线与X轴的交点作下一次X (n+1)值的方法。
参考图4-2(a)。
在这一方法中为了能收敛于真解,初值X(0)的选取及函数f(X)必须满足适当的条件,如图4-2(b)所示的那种情况就不能收敛或收敛到别的根上去。
这一方法还可以做下面的解释,设第n次迭代得到的解与真值之差,即的误差为时,则(4-8)把在附近对用泰勒级数展开(4-9)上式略去以下的项(4-10)的误差可近似由上式计算出来图4-2(4-11)比较式(4-7)和(4-11),可以看出牛顿-拉夫逊法的修正量和的误差的一次项相等。
用同样的方法考虑,给出对n个变量的n个方程式(4-12)对其近似解的修正量,可以解下面的方程式来确定(4-13)式(4-13)的右边的矩阵的等都是对于的值。
这一矩阵称为雅可比(Jacobi)矩阵。
按上述得到的修正量后,得到如下关系:这比进一步接近于真值。
这一步骤在收敛到希望的值以前重复进行。
一般要反复计算到满足时为止。
ε为预先规定的小正数,此处是第n次迭代Xi的近似值。
一、牛顿-拉夫逊法潮流计算把牛顿法用于潮流计算,要求将潮流方程改写成形如方程式(4-12)所示的形式。
为此,首先应将潮流方程(4-5)的变形式的右端展开,并且分开实部和虚部。
采用直角坐标时,节点电压可表示为:节点导纳矩阵元素则表示为:将上述表示式代入的右端,展开并分出实部和虚部,便得:(4-14)按照上节的分类,PQ节点的有功功率和无功功率给定的,第I个节点的给这功率设为Pis 和Qis。
假定系统中的第1,2,………m号节点为PQ节点,对其中每一个节点可列(i=1,2,…………,m)(4-15)PV节点的有功功率和节点电压幅值是给定的。
牛顿-拉夫逊法潮流计算
目录摘要11.设计意义与要求2 1.1设计意义21.2设计要求32.牛顿—拉夫逊算法3 2.1牛顿算法数学原理:32.2 直角坐标系下牛顿法潮流计算的原理43 详细设计过程10 3.1节点类型103.2待求量103.3导纳矩阵103.4潮流方程113.5修正方程124.程序设计15 4.1 节点导纳矩阵的形成154.2 计算各节点不平衡量164.3 雅克比矩阵计算- 19 -4.4 LU分解法求修正方程- 22 -4.5 计算网络中功率分布- 25 -5.结果分析- 25 -6.小结- 29 -参考文献- 30 -附录:- 31 -摘要潮流计算是电力网络设计及运行中最基本的计算,对电力网络的各种设计方案及各种运行方式进行潮流计算,可以得到各种电网各节点的电压,并求得网络的潮流及网络中各元件的电力损耗,进而求得电能损耗。
在数学上是多元非线性方程组的求解问题,求解的方法有很多种。
牛顿—拉夫逊法是数学上解非线性方程式的有效方法,有较好的收敛性。
将牛顿法用于潮流计算是以导纳矩阵为基础的,由于利用了导纳矩阵的对称性、稀疏性及节点编号顺序优化等技巧,使牛顿法在收敛性、占用存、计算速度等方面都达到了一定的要求。
本文以一个具体例子分析潮流计算的具体方法,并运用牛顿—拉夫逊算法求解线性方程关键词:电力系统潮流计算牛顿—拉夫逊算法1.设计意义与要求1.1设计意义潮流计算是电力系统分析中的一种最基本的计算,他的任务是对给定运行条件确定系统运行状态,如各母线上的电压(幅值及相角)、网络中的功率分布及功率损耗等。
潮流计算的结果是电力系统稳定计算和故障分析的基础。
具体表现在以下方面:(1)在电网规划阶段,通过潮流计算,合理规划电源容量及接入点,合理规划网架,选择无功补偿方案,满足规划水平的大、小方式下潮流交换控制、调峰、调相、调压的要求。
(2)在编制年运行方式时,在预计负荷增长及新设备投运基础上,选择典型方式进行潮流计算,发现电网中薄弱环节,供调度员日常调度控制参考,并对规划、基建部门提出改进网架结构,加快基建进度的建议。
牛顿拉夫逊法概要
一、牛顿-拉夫逊法概要首先对一般的牛顿-拉夫逊法作一简单说明。
已知一个变量X的函数(4-6)解此方程式时,由适当的近似值X(0)出发,根据(4-7)反复进行计算,当X(n)满足适当的收敛判定条件时就是(4-6)式的根。
这样的方法就是所谓的牛顿-拉夫逊法。
式(4-7)就是取第n次近似解X(n)在曲线上的点处的切线与X轴的交点作下一次X (n+1)值的方法。
参考图4-2(a)。
在这一方法中为了能收敛于真解,初值X(0)的选取及函数f(X)必须满足适当的条件,如图4-2(b)所示的那种情况就不能收敛或收敛到别的根上去。
这一方法还可以做下面的解释,设第n次迭代得到的解与真值之差,即的误差为时,则(4-8)把在附近对用泰勒级数展开(4-9)上式略去以下的项(4-10)的误差可近似由上式计算出来图4-2(4-11)比较式(4-7)和(4-11),可以看出牛顿-拉夫逊法的修正量和的误差的一次项相等。
用同样的方法考虑,给出对n个变量的n个方程式(4-12)对其近似解的修正量,可以解下面的方程式来确定(4-13)式(4-13)的右边的矩阵的等都是对于的值。
这一矩阵称为雅可比(Jacobi)矩阵。
按上述得到的修正量后,得到如下关系:这比进一步接近于真值。
这一步骤在收敛到希望的值以前重复进行。
一般要反复计算到满足时为止。
ε为预先规定的小正数,此处是第n次迭代Xi的近似值。
一、牛顿-拉夫逊法潮流计算把牛顿法用于潮流计算,要求将潮流方程改写成形如方程式(4-12)所示的形式。
为此,首先应将潮流方程(4-5)的变形式的右端展开,并且分开实部和虚部。
采用直角坐标时,节点电压可表示为:节点导纳矩阵元素则表示为:将上述表示式代入的右端,展开并分出实部和虚部,便得:(4-14)按照上节的分类,PQ节点的有功功率和无功功率给定的,第I个节点的给这功率设为Pis 和Qis。
假定系统中的第1,2,………m号节点为PQ节点,对其中每一个节点可列(i=1,2,…………,m)(4-15)PV节点的有功功率和节点电压幅值是给定的。
潮流计算的牛顿法
潮流计算的牛顿法一.程序原理说明1.基本步骤:(1) 形成节点导纳阵。
(2) 给定各节点电压初值`)0()0(,f e 。
(3) 将电压初值)0()0(,fe 代入下式,求修正方程式的常数项)0(2)0()0()(,,V Q P ∆∆∆。
对于PQ 节点:0)()(=+---=∆∑∑∈∈ij j ij j ij ij i j ij j ij i is i e B f G f f B e G e P P0)()(=++--=∆∑∑∈∈ij j ij j ij ij i j ij j ij i is i e B f G e f B e G f Q Q对于PV 节点:0)()(=+---=∆∑∑∈∈ij j ij j ij ij i j ij j ij i is i e B f G f f B e G e P P0)(2222=+-=∆i i is i f e V V(4) 将电压初值代入下式中求修正方程式系数矩阵(雅可比矩阵)各元素。
当i j ≠时:)(i ij i ij j ij i f B e G f Q e P +-=∂∆∂-=∂∆∂i ij i ij jij i f G e B e Q f P -=∂∆∂=∂∆∂022=∂∆∂-=∂∆∂ji j i f V e V 当j = i 时:i ii i ii i ii i ii i j j ij j ij i if B e G a f B e G f B e G f Q ++-=++--=∂∆∂∑∈)( i ii i ii i ii i ii i j j ij j ij i if G e B b f G e B e B f G f P -+-=-++-=∂∆∂∑∈)( i ii i ii i ii i ii i j j ij j ij i if G e B b f G e B e B f G e Q -+=-++=∂∆∂∑∈)( i ii e e V 22-=∂∆∂i ii f f V 22-=∂∆∂ (5) 解如下修正方程式,求修正量)0()0(,fe ∆∆。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
潮流例题:根据给定的参数或工程具体要求(如图),收集和查阅资料;学习相关软件(软件自选:本设计选择Matlab进行设计)。
2.在给定的电力网络上画出等值电路图。
3.运用计算机进行潮流计算。
4.编写设计说明书。
一、设计原理
1.牛顿-拉夫逊原理
牛顿迭代法是取x0 之后,在这个基础上,找到比x0 更接近的方程的跟,一步一步迭代,从而找到更接近方程根的近似跟。
牛顿迭代法是求方程根的重要方法之一,其最大优点是在方程f(x) = 0 的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根。
电力系统潮流计算,一般来说,各个母线所供负荷的功率是已知的,各个节点电压是未知的(平衡节点外)可以根据网络结构形成节点导纳矩阵,然后由节点导纳矩阵列写功率方程,由于功率方程里功率是已知的,电压的幅值和相角是未知的,这样潮流计算的问题就转化为求解非线性方程组的问题了。
为了便于用迭代法解方程组,需要将上述功率方程改写成功率平衡方程,并对功率平衡方程求偏导,得出对应的雅可比矩阵,给未知节点赋电压初值,一般为额定电压,将初值带入功率平衡方程,得到功率不平衡量,这样由功率不平衡量、雅可比矩阵、节点电压不
平衡量(未知的)构成了误差方程,解误差方程,得到节点电压不平衡量,节点电压加上节点电压不平衡量构成新的节点电压初值,将新的初值带入原来的功率平衡方程,并重新形成雅可比矩阵,然后计算新的电压不平衡量,这样不断迭代,不断修正,一般迭代三到五次就能收敛。
牛顿—拉夫逊迭代法的一般步骤:
(1)形成各节点导纳矩阵Y。
(2)设个节点电压的初始值U和相角初始值e 还有迭代次数初值为0。
(3)计算各个节点的功率不平衡量。
(4)根据收敛条件判断是否满足,若不满足则向下进行。
(5)计算雅可比矩阵中的各元素。
(6)修正方程式个节点电压
(7)利用新值自第(3)步开始进入下一次迭代,直至达到精度退出循环。
(8)计算平衡节点输出功率和各线路功率
2.网络节点的优化
1)静态地按最少出线支路数编号
这种方法由称为静态优化法。
在编号以前。
首先统计电力网络个节点的出线支路数,然后,按出线支路数有少到多的节点顺序编号。
当由n 个节点的出线支路相同时,则可以按任意次序对这n 个节点进行编号。
这种编号方法的根据是导纳矩阵中,出线支路数最少的节点所对应的行中非零元素也2)动态地按增加出线支路数最少编号在上述的方法中,各节点的出线支路数是按原始网络统计出来的,在编号过程中认为固定不变的,事实上,在节点消去过程中,每消去一个节点以后,与该节点相连的各节点的出线支路数将发生变化(增加,减少或保持不变)。
因此,如果每消去一个节点后,立即修正尚未编号节点的出线支路数,然后选其中支路数最少的一个节点进行编号,就可以预期得到更好的效果,动态按最少出线支路数编号方法的特点就是按出线最少原则编号时考虑了消去过程中各节点出线支路数目的变动情况。
3.MATLAB编程应用
Matlab 是“Matrix Laboratory”的缩写,主要包括:一般数值分析,矩阵运算、数字信号处理、建模、系统控制、优化和图形显示等应用程序。
由于使用Matlab 编程运算与人进行科学计算的思路和表达方式完全一致,所以不像学习高级语言那样难于掌握,而且编程效率和计算效率极高,还可在计算机上直接输出结果和精美的图形拷贝,所以它的确为一高效的科研助手。
二、设计内容
1.设计流程图
2.程序
clear;clc
%重新编号,把原题中的节点1,2,3,4,5重新依次编号为5,1,2,3,4,其中1-4号为PQ节点,5号为平衡节点
y=0;
%输入原始数据,求节点导纳矩阵
y (1,2)=1/(0.06+0.18i); y (1,3)=1/(0.06+0.18i); y (1,4)=1/(0.04+0.12i);
y(1,5)=1/(0.02+0.06i);
y(2,3)=1/(0.01+0.03i);y(2,5)=1/(0.08+0.24i);
y(3,4)=1/(0.08+0.24i);
y(4,5)=0;
for i=1:5
for j=i:5
y(j,i)=y(i,j);
end
end
Y=0;
%求互导纳
for i=1:5
for j=1:5
if i~=j
Y(i,j)=-y(i,j);
end
end
end
%求自导纳
for i=1:5
Y(i,i)=sum(y(i,:));
end
Y %Y 为导纳矩阵
G=real(Y);
B=imag(Y);
%原始节点功率
S(1)=0.2+0.2i;
S(2)=-0.45-0.15i;
S(3)=-0.4-0.05i;
S(4)=-0.6-0.1i;
S(5)=0;
P=real(S);
Q=imag(S);
%赋初值
U=ones(1,5);U(5)=1.06;
e=zeros(1,5);
ox=ones(8,1);fx=ones(8,1);
count=0 %计算迭代次数
while max(fx)>1e-5
for i=1:4
for j=1:4
H(i,j)=0;N(i,j)=0;M(i,j)=0;L(i,j)=0;oP(i)=0;oQ(i)=0;
end
end
for i=1:4
for j=1:5
oP(i)=oP(i)-U(i)*U(j)*(G(i,j)*cos(e(i)-e(j))+B(i,j)*sin(e(i)-e(j)));
oQ(i)=oQ(i)-U(i)*U(j)*(G(i,j)*sin(e(i)-e(j))-B(i,j)*cos(e(i)-e(j)));
end
oP(i)=oP(i)+P(i); oQ(i)=oQ(i)+Q(i);
end
fx=[oP,oQ]';
%求雅克比矩阵
%当i~=j时候求H,N,M,L 如下:
for i=1:4
for j=1:4
if i~=j H(i,j)=-U(i)*U(j)*(G(i,j)*sin(e(i)-e(j))-B(i,j)*cos(e(i)-e(j)));
N(i,j)=-U(i)*U(j)*(G(i,j)*cos(e(i)-e(j))+B(i,j)*sin(e(i)-e(j)));
L(i,j)=H(i,j);
M(i,j)=-N(i,j);
end
end
end
H,N,M,L
%当i=j 时H,N,M,L如下:
for i=1:4
for j=1:5
if i~=j
H(i,i)=H(i,i)+U(i)*U(j)*(G(i,j)*sin(e(i)-e(j))-B(i, j)*cos (e(i)-e(j))); N(i,i)=N(i,i)-U(i)*U(j)*(G(i, j)*cos(e(i)-e(j))+B(i,j)*sin(e(i)-e(j)));
M(i,i)=M(i,i)-U(i)*U(j)*(G(i,j)*cos(e(i)-e(j))+B(i,j)*sin(e(i)-e(j)));
L(i,i)=L(i,i)-U(i)*U(j)*(G(i,j)*sin(e(i)-e(j))-B(i,j)*cos(e(i)-e(j)));
end
end
N(i,i)=N(i,i)-2*(U(i))^2*G(i,i);
L(i,i)=L(i,i)+2*(U(i))^2*B(i,i);
end
J=[H,N;M,L] %J 为雅克比矩阵
ox=-((inv(J))*fx);
for i=1:4
oe(i)=ox(i); oU(i)=ox(i+4)*U(i);
end
for i=1:4
e(i)=e(i)+oe(i); U(i)=U(i)+oU(i);
end
count=count+1;
end
ox,U,e,count
%求节点注入的净功率
i=5;
for j=1:5
P(i)=U(i)*U(j)*(G(i,j)*cos(e(i)-e(j))+B(i,j)*sin(e(i)-e(j)))+P(i);
Q(i)=U(i)*U(j)*(G(i,j)*sin(e(i)-e(j))-B(i,j)*cos(e(i)-e(j)))+Q(i);
end
S(5)=P(5)+Q(5)*sqrt(-1);
S
%求节点注入电流
I=Y*U'
3.运行结果
Y值:
迭代过程:
电压值:
平衡节点注入功率及电流:。