中考复习:四点共圆问题
九年级数学四点共圆例题讲解
九年级数学四点共圆例题讲解知识点、重点、难点四点共圆是圆的基本内容,它广泛应用于解与圆有关的问题.与圆有关的问题变化多,解法灵活,综合性强,题型广泛,因而历来是数学竞赛的热点内容。
在解题中,如果图形中蕴含着某四点在同一个圆上,或根据需要作出辅助圆使四点共圆,利用圆的有关性质定理,则会使复杂问题变得简单,从而使问题得到解决。
因此,掌握四点共圆的方法很重要.判定四点共圆最基本的方法是圆的定义:如果A、B、C、D四个点到定点O的距离相等,即OA=OB=OC=OD,那么A、B、C、D四点共圆.由此,我们立即可以得出1。
如果两个直角三角形具有公共斜边,那么这两个直角三角形的四个顶点共圆。
将上述判定推广到一般情况,得:2。
如果四边形的对角互补,那么这个四边形的四个顶点共圆。
3.如果四边形的外角等于它的内对角,那么这个四边形的四个顶点共圆。
4。
如果两个三角形有公共底边,且在公共底边同侧又有相等的顶角,那么这两个三角形的四个顶点共圆。
运用这些判定四点共圆的方法,立即可以推出:正方形、矩形、等腰梯形的四个顶点共圆。
其实,在与圆有关的定理中,一些定理的逆定理也是成立的,它们为我们提供了另一些证明四点共圆的方法.这就是:1.相交弦定理的逆定理:若两线段AB和CD相交于E,且AE·EB=CE·ED,则A、B、C、D四点共圆。
2.割线定理的逆定理:若相交于点P的两线段PB、PD上各有一点A、C,且PA·PB =PC·PD,则A、B、C、D四点共圆。
3。
托勒密定理的逆定理:若四边形ABCD中,AB·CD+BC·DA=AC·BD,则ABCD是圆内接四边形。
另外,证多点共圆往往是以四点共圆为基础实现的一般可先证其中四点共圆,然后证其余各点均在这个圆上,或者证其中某些点个个共圆,然后判断这些圆实际是同一个圆。
例题精讲例1:如图,P为△ABC内一点,D、E、F分别在BC、CA、AB上。
中考压轴题专题训练:“四点共圆”典型问题50练(含解析)印刷版
中考压轴题专题训练:“四点共圆”典型问题50练一.选择题(共9小题)1.如图,在等腰Rt△ABC中,∠ABC=90°,AB=BC=4,D是BC中点,∠CAD=∠CBE,则AE=()A.4B.3C.2D.2.在圆内接四边形ABCD中,∠BAD、∠ADC的角平分线交于点E,过E作直线MN平行于BC,与AB、CD交于M、N,则总有MN=()A.BM+DN B.AM+CN C.BM+CN D.AM+DN3.如图,已知(1)已知△ABC的两条中线BD、CE交于点M,A、D、M、E四点共圆,BC=8,则AM 的长为()A.2B.C.D.34.如图,在△ABC中,∠B=75°,∠C=45°,BC=6﹣2,点P是BC上一动点,PE⊥AB于E,PD ⊥AC于D.无论P的位置如何变化,线段DE的最小值为()A.3﹣3B.C.4﹣6D.25.如图①,若BC是Rt△ABC和Rt△DBC的公共斜边,则A、B、C、D在以BC为直径的圆上,则叫它们“四点共圆”.如图②,△ABC的三条高AD、BE、CF相交于点H,则图②中“四点共圆”的组数为()A.2B.3C.4D.66.如图,在四边形ABCD中,AC、BD为对角线,点M、E、N、F分别为AD、AB、BC、CD边的中点,下列说法:①当AC=BD时,M、E、N、F四点共圆.②当AC⊥BD时,M、E、N、F四点共圆.③当AC=BD且AC⊥BD时,M、E、N、F四点共圆.其中正确的是()A.①②B.①③C.②③D.①②③7.如图放置的两个正方形,大正方形ABCD边长为a,小正方形CEFG边长为b(a>b),M在BC边上,且BM=b,连接AM,MF,MF交CG于点P,将△ABM绕点A旋转至△ADN,将△MEF绕点F旋转至△NGF,给出以下五个结论:①∠MAD=∠AND;②CP=b﹣;③△ABM≌△NGF;④S四边形AMFN =a2+b2;⑤A,M,P,D四点共圆,其中正确的个数是()A.2B.3C.4D.58.如图,已知∠A的平分线分别与边BC、△ABC的外接圆交于点D、M,过D任作一条与直线BC不重合的直线l,直线l分别与直线MB、MC交于点P、Q,下列判断错误的是()A.无论直线l的位置如何,总有直线PM与△ABD的外接圆相切B.无论直线l的位置如何,总有∠PAQ>∠BACC.直线l选取适当的位置,可使A、P、M、Q四点共圆D.直线l选取适当的位置,可使S△APQ<S△ABC9.如图,一副直角三角板满足∠ACB=∠EDF=90°,AC=BC,AB=DF,∠EFD=30°,将三角板DEF 的直角顶点D放置于三角板ABC的斜边AB上,再将三角板DEF绕点D旋转,并使边DE与边AC交于点M,边DF与边BC于点N.当∠EDF在△ABC内绕顶点D旋转时有以下结论:①点C,M,D,N四点共圆;②连接CD,若AD=DB,则△ADM∽△CDN;③若AD=DB,则DN•CM=BN•DM;④若AD=DB,则CM+CN=AD;⑤若DB=2AD,AB=6,则2≤S△DMN≤4.其中正确结论的个数是()A.2B.3C.4D.5二.填空题(共14小题)10.若一个圆经过梯形ABCD的四个顶点,则这个梯形是梯形.11.已知AB为圆O的一条弦(非直径),OC⊥AB于C,P为圆O上任意一点,直线PA与直线OC相交于点M,直线PB与直线OC相交于点N.以下说法正确的有.①O,M,B,P四点共圆;②A,M,B,N四点共圆;③A,O,P,N四点共圆.12.已知△ABC中,∠BAC≠90°,AD⊥BC,BE⊥AC,且AD、BE交于点H,连接CH,则∠ACH+∠BAE=.13.已知△ABC为等腰直角三角形,∠C为直角,延长CA至D,以AD为直径作圆,连BD与圆O交于点E,连CE,CE的延长线交圆O于另一点F,那么的值等于.14.已知二次函数y1=a1(x﹣1)2﹣2012,其图象顶点为M,且与x轴交于A(x1,0),B(x2,0)两点,又知二次函数y2=a2(x﹣1)2+1的顶点为N,若A,B,M,N四点共圆,则x1x2﹣x1﹣x2=.15.如图,在四边形ABCD中,∠ABC=∠ADC=90°,∠ABD=72°,则∠CAD的度数为.16.已知:AB=2,AC平分∠DAB,∠DAB+∠DCB=180°,∠DCB=120°,当∠ABD=∠CBF时,则AC=.17.在四边形ABCD中,∠DAC=98°,∠DBC=82°,∠BCD=70°,BC=AD,则∠ACD=.18.如图,在等腰△ABC中,∠ABC=90°,点D为BC的中点,点E在AC边上,以DE为腰作等腰Rt △DEF,连接CF,BF.若CE=1,△CDF的面积为7.5,则BF的长为.19.如图,线段AB、CD相交于E,AE=AC,DE=DB,点M、F、G分别为线段AD、CE、EB的中点,如果∠MAE=25°,∠AMF=40°,那么∠MFG的度数为.20.如图,点O为等边△ABC内一点,OA=2,OC=,连接BO并延长交AC于点D,且∠DOC =30°,过点B作BF⊥BD交CO延长线于点F,连接AF,过点D作DE⊥AF于点E,则DE=.21.如图,正方形ABCD的边长为2,对角线AC、BD交于点O,E为DC上一点,∠DAE=30°,过D 作DF⊥AE于F点,连接OF.则线段OF的长度为.22.如图,ABCD、CEFG是正方形,E在CD上,且BE平分∠DBC,O是BD中点,直线BE、DG交于H.BD,AH交于M,连接OH,则OH=,BM=.23.如图放置的两个正方形,大正方形ABCD边长为a,小正方形CEFG边长为b(a>b),M在BC边上,且BM=b,连接AM,MF,MF交CG于点P,将△ABM绕点A旋转至△ADN,将△MEF绕点F旋转至△NGF,给出以下五个结论:①∠MAD=∠AND;②CP=a﹣;③△ABM≌△NGF;④S四边形AMFN=a2+b2;⑤A,M,P,D四点共圆,其中正确的序号为.三.解答题(共27小题)24.设梯形ABCD中,AB∥CD,E,F分别在腰AD和BC上,若A,B,F,E四点共圆,证明C,D,E,F也必四点共圆.25.已知四边形ABCD为菱形,点E、F、G、H分别为各边中点,判断E、F、G、H四点是否在同一个圆上,如果在同一圆上,找到圆心,并证明四点共圆;如果不在,说明理由.26.如图,在△ABC中,AB<AC,AD平分∠BAC,BM=CM,K为AM上一点,且∠BKC=180°﹣∠BAC.求证:∠BKD=∠CKD.27.如图,O为△ABC外心,D为BC上一点,BD中垂线交AB于F,CD中垂线交AC于E,求证:A、F、O、E四点共圆.28.如图,点E,F分别在线段AC,BC上运动(不与端点重合),而且CE=BF,AC=BC,O是△ABC 的外心,证明C,E,O,F四点共圆.29.如图,点F是△ABC外接圆的中点,点D、E在边AC上,使得AD=AB,BE=EC.证明:B、E、D、F四点共圆.30.如图,AB是⊙O的直径,AC是⊙O的切线,BC交⊙O于点D,点E是AC的中点,连接OD.(1)求证:OD⊥DE;(2)求证:O、A、E、D四点共圆.(3)△ABC满足什么条件时,经过O、A、E、D的圆与BC相切?并说明理由.31.如图,在锐角三角形ABC中,AB=AC,∠ACB的平分线交AB于点D.过△ABC的外心O作直线OG⊥CD交AC于点E,交CD于点G,过点E作EF∥AB交CD于F.(1)求证:C,E,O,F四点共圆;(2)求证:A,O,F三点共线;(3)求证:EA=EF.32.在学习《圆》这一单元时,我们学习了圆周角定理的推论:圆内接四边形的对角互补;事实上,它的逆命题:对角互补的四边形的四个顶点共圆,也是一个真命题.在图形旋转的综合题中经常会出现对角互补的四边形,那么,我们就可以借助“对角互补的四边形的四个顶点共圆”,然后借助圆的相关知识来解决问题,例如:已知:△ABC是等边三角形,点D是△ABC内一点,连接CD,将线段CD绕C逆时针旋转60°得到线段CE,连接BE,DE,AD,并延长AD交BE于点F.当点D在如图所示的位置时:(1)观察填空:①与△ACD全等的三角形是;②∠AFB的度数为;(2)利用题干中的结论,证明:C,D,F,E四点共圆;(3)直接写出线段FD,FE,FC之间的数量关系.33.如图,四边形ABCD中,∠ACB=∠ADB=90°,自对角线AC、BD的交点N作NM⊥AB于点M,线段AC、MD交于点E,BD、MC交于点F,P是线段EF上的任意一点.证明:点P到线段CD的距离等于点P到线段MC、MD的距离之和.34.如图,在△ABC中,过A作BC的垂线,垂足为D,O为AD的中点,以AD为直径的⊙O分别与边AB、AC交于点E、F.试求证:(1)BC是⊙O的切线;(2)B、C、F、E四点共圆吗?说明理由.35.如图,圆O内接四边形ABCD的对边AD,BC延长线交于点P,对角线AC,BD交于点Q,设△PDB 的外接圆交直线PQ与P和另一个点K,求证:(1)OK⊥PQ(2)C,D,O,K四点共圆;(3)三条直线AB,OK,DC交于一点.36.如图,已知锐角三角形ABC,过点A作BC的垂线与以BC为直径的⊙O1分别交于点D,E.过点B 作CA的垂线与以CA为直径的⊙O2分别交于点F,G.求证:E,F,D,G四点共圆,并确定圆心的位置.37.已知△ABC中,∠A=60°,E、F分别为AB、AC延长线上的点,且BE=CF=BC,△ACE的外接圆与EF交于不同于E的点K,设BF与CE交于点T.(1)证明:A、B、T、C四点共圆;(2)证明:点K在∠BAC的角平分线上.38.已知半径为r的⊙O1与半径为R的⊙O2外离,直线DE经过O1切⊙O2于点E并交⊙O1于点A和点D,直线CF经过O2切⊙O1于点F并交⊙O2于点B和点C,连接AB、CD,(1)[以下ⅰ、ⅱ两小题任选一题](ⅰ)求四边形ABCD的面积(ⅱ)求证:A、B、E、F四点在同一个圆上(2)求证:AB∥DC.39.已知:AB是⊙O的直径,C为AB延长线上的一点,过点C作⊙O的割线,与⊙O交于D、E两点,OF是△BOD的外接圆O1的直径,连接CF并延长交⊙O1于点G.求证:O、A、E、G四点共圆.40.如图,四边形ABCD为⊙O的内接四边形,对边BC,AD交于点F,AB、DC交于点E,△ECF的外接圆与⊙O的另一交点为H,AH与EF交于点M,MC与⊙O交于点C.证明:(1)M为EF的中点;(2)A、G、E、F四点共圆.41.已知:AB∥DF,它们之间的距离等于AB;AC∥DE,它们之间的距离等于AC;CB∥EF,它们之间的距离等于BC,求证:A1、B1、C1、A2、B2、C2六点共圆.42.设△ADE内接于圆O,弦BC分别交AD、AE边于点F、G,且AB=AC,求证:F、D、E、G四点共圆.43.若以圆内接四边形ABCD的各边为弦作任意圆,求证:这些圆相交的四点共圆.44.如图,PQ为两圆的公共弦,M为PQ上一点,AB、CD分别是两圆的弦且它们相交于M,求证:A、C、B、D四点共圆.45.如图,⊙O1与⊙O2相交于P、Q两点,过P点作两圆的割线分别交于⊙O1与⊙O2于A、B,过A、B 分别作两圆的切线相交于T,求证:T、A、Q、B四点共圆.46.如图所示,两圆交于A、B两点,过B的直线交两圆于C、D,两圆外有一点P,连接PC,PD,分别交两圆于E,F.求证:P、E、A、F四点共圆.47.如图,⊙O是以等腰Rt△ABC的斜边AB为直径的圆,点P是BA的延长线上的一点,过点P作⊙O 的一条切线,切点为点Q,∠QPB的平分线交AC、BC于点E、F.(1)求证:P、A、E、Q四点共圆.(2)若AE=a,BF=b,求EF的长.48.如图,四边形ABCD内接于⊙O,P、Q、R分别是AB、BC、AD的中点,连接PQ与DA的延长线交于S,连接PR与CB延长线交于T,求证:S、T、Q、R四点共圆.49.如图,两圆T1、T2相交于A、B两点,过点B的一条直线分别交圆T1、T2于点C、D,过点B的另一条直线分别交圆T1、T2于点E、F,直线CF分别交圆T1、T2于点P、Q,设M、N分别是弧PB、弧QB的中点,求证:若CD=EF,则C、F、M、N四点共圆.50.如图,D是△ABC的BC边上的一点,O1、O2和O3分别为△ABC、△ADB和△ADC外接圆的圆心,求证:A、O2、O1、O3四点共圆.中考压轴题专题训练:“四点共圆”典型问题50练参考答案与试题解析一.选择题(共9小题)1.如图,在等腰Rt△ABC中,∠ABC=90°,AB=BC=4,D是BC中点,∠CAD=∠CBE,则AE=()A.4B.3C.2D.【分析】如图,连接DE,由等腰直角三角形的性质可求∠C=∠BAC=45°,AC=AB=4,由∠CAD=∠CBE,可证点A,点B,点D,点E四点共圆,可得∠ABD=∠DEC=90°,由等腰直角三角形的性质可求DE=,即可求解.【解答】解:如图,连接DE,∵∠ABC=90°,AB=BC=4,∴∠C=∠BAC=45°,AC=AB=4,∵D是BC中点,∴CD=BC=2,∵∠CAD=∠CBE,∴点A,点B,点D,点E四点共圆,∴∠ABD=∠DEC=90°,∴∠C=∠EDC=45°,∴DE=CE=CD=,∴AE=AC﹣CE=3,故选:B.2.在圆内接四边形ABCD中,∠BAD、∠ADC的角平分线交于点E,过E作直线MN平行于BC,与AB、CD交于M、N,则总有MN=()A.BM+DN B.AM+CN C.BM+CN D.AM+DN【分析】在NM上截取NF=ND,连结DF,AF,由A,B,C,D四点共圆,得出∠MND+∠MAD=180°,由MN∥BC,得出∠AMN+∠ADN=180°,可得到A,D,N,M四点共圆,再由AE,DE分别平分∠BAD,∠CDA,A,F,E,D四点共圆,由∠MAF=180°﹣∠DAF﹣∠MND=180°﹣∠DEN﹣∠MND =∠EDN=∠ADE=∠AFM,可得出MA=MF,即得出MN=MF+NF=MA+ND.【解答】解:如图,在NM上截取NF=ND,连结DF,AF∴∠NFD=∠NDF,∵A,B,C,D四点共圆,∴∠ADC+∠B=180°,∵MN∥BC,∴∠AMN=∠B,∴∠AMN+∠ADN=180°,∴A,D,N,M四点共圆,∴∠MND+∠MAD=180°,∵AE,DE分别平分∠BAD,∠CDA,∴∠END+2∠DFN=∠END+2∠DAE=180°,∴∠DFN=∠DAE,∴A,F,E,D四点共圆,∴∠DEN=∠DAF,∠AFM=∠ADE,∴∠MAF=180°﹣∠DAF﹣∠MND=180°﹣∠DEN﹣∠MND=∠EDN=∠ADE=∠AFM,∴MA=MF,∴MN=MF+NF=MA+ND.故选:D.3.如图,已知(1)已知△ABC的两条中线BD、CE交于点M,A、D、M、E四点共圆,BC=8,则AM 的长为()A.2B.C.D.3【分析】延长AM交BC于F,连接ED,根据三角形中位线定理得出ED∥BC,即可求得∠DBC=∠MDE,根据四点共圆,可得∠MDE=∠BAF,由题意可得M是三角形的重心,则F是BC的中点,AM=2FM,证得△ABF∽△MBF,可得=,得出AF•FM=BF2=16,根据条件化成AM2=16,即可求得结论.【解答】解:延长AM交BC于F,连接ED,∵BD、CE是△ABC的两条中线,∴ED∥BC,∴∠DBC=∠MDE,∵A、D、M、E四点共圆,∴∠MDE=∠BAF,∵△ABC的两条中线BD、CE交于点M,∴BF=FC=BC=4,∴M为三角形的重心,∴AM=2FM,∵∠BAF=∠MBF,∠AFB=∠BFM,∴△ABF∽△MBF,∴=,∴AF•FM=BF2=16,(AM+AM)•AM=16,∴AM2=16,∴AM=.故选:C.4.如图,在△ABC中,∠B=75°,∠C=45°,BC=6﹣2,点P是BC上一动点,PE⊥AB于E,PD ⊥AC于D.无论P的位置如何变化,线段DE的最小值为()A.3﹣3B.C.4﹣6D.2【分析】下面介绍两种解法:解法一:当AP⊥BC时,线段DE的值最小,利用四点共圆的判定可得:A、E、P、D四点共圆,且直径为AP,得出∠AED=∠C=45°,有一公共角,根据两角对应相等两三角形相似得△AED∽△ACB,则,设AD=2x,表示出AE和AC的长,求出AE与AC的比,代入比例式中,可求出DE的值.解法二:先通过四点共圆同理得到:△EFD为顶角为120°的等腰三角形,所以当AP⊥BC时,线段DE的值最小,再作辅助线,求AP的长,从而得EF的长,由等腰三角形三线合一及勾股定理得DE的值.【解答】解:解法一:当AP⊥BC时,线段DE的值最小,如图1,∵PE⊥AB,PD⊥AC,∴∠AEP=∠ADP=90°,∴∠AEP+∠ADP=180°,∴A、E、P、D四点共圆,且直径为AP,在Rt△PDC中,∠C=45°,∴△PDC是等腰直角三角形,∠APD=45°,∴△APD也是等腰直角三角形,∴∠PAD=45°,∴∠PED=∠PAD=45°,∴∠AED=45°,∴∠AED=∠C=45°,∵∠EAD=∠CAB,∴△AED∽△ACB,∴,设AD=2x,则PD=DC=2x,AP=2x,如图2,取AP的中点O,连接EO,则AO=OE=OP=x,∵∠EAP=∠BAC﹣∠PAD=60°﹣45°=15°,∴∠EOP=2∠EAO=30°,过E作EM⊥AP于M,则EM=x,cos30°=,∴OM=x•=x,∴AM=x+x=x,由勾股定理得:AE=,=,=(+1)x,∴=,∴ED=.则线段DE的最小值为;解法二:如图3,取AP的中点F,连接EF、DF,有EF=DF=AP,∠EFD=120°,∴△EFD为顶角为120°的等腰三角形,∴当AP⊥BC时,线段DE的值最小,如图4,作AB的中垂线,交AP于一点O,交AB于G,连接OB,设OA=OB=2x,∵∠BOP=2∠BAO=30°,∴BP=x,OP=x,∴AP=PC=(2+)x,∵BC=6﹣2,∴x+2x+x=6﹣2,x=4﹣2,∴AP=(2+)x=(2+)(4﹣2)=2,∴EF=FD=1,如图5,过F作FH⊥ED于H,∴EH=DH,∵∠FED=30°,∴FH=,∴EH=DH=,∴DE=;故选:B.5.如图①,若BC是Rt△ABC和Rt△DBC的公共斜边,则A、B、C、D在以BC为直径的圆上,则叫它们“四点共圆”.如图②,△ABC的三条高AD、BE、CF相交于点H,则图②中“四点共圆”的组数为()A.2B.3C.4D.6【分析】根据两个直角三角形公共斜边时,四个顶点共圆,结合图形求解可得.【解答】解:如图,以AH为斜边的两个直角三角形,四个顶点共圆(A、F、H、E),以BH为斜边的两个直角三角形,四个顶点共圆(B、F、H、D),以CH为斜边的两个直角三角形,四个顶点共圆(C、D、H、E),以AB为斜边的两个直角三角形,四个顶点共圆(A、E、D、B),以BC为斜边的两个直角三角形,四个顶点共圆(B、F、E、C),以AC为斜边的两个直角三角形,四个顶点共圆(A、F、D、C),共6组.故选:D.6.如图,在四边形ABCD中,AC、BD为对角线,点M、E、N、F分别为AD、AB、BC、CD边的中点,下列说法:①当AC=BD时,M、E、N、F四点共圆.②当AC⊥BD时,M、E、N、F四点共圆.③当AC=BD且AC⊥BD时,M、E、N、F四点共圆.其中正确的是()A.①②B.①③C.②③D.①②③【分析】连接EM、MF、FN、NE,连接EF、MN,交于点O,利用三角形中位线定理可证到四边形ENFM 是平行四边形;然后根据条件判定四边形ENFM的形状,就可知道M、E、N、F四点是否共圆.【解答】解:连接EM、MF、FN、NE,连接EF、MN,交于点O,如图所示.∵点M、E、N、F分别为AD、AB、BC、CD边的中点,∴EM∥BD∥NF,EN∥AC∥MF,EM=NF=BD,EN=MF=AC.∴四边形ENFM是平行四边形.①当AC=BD时,则有EM=EN,所以平行四边形ENFM是菱形.而菱形的四个顶点不一定共圆,故①不一定正确.②当AC⊥BD时,由EM∥BD,EN∥AC可得:EM⊥EN,即∠MEN=90°.所以平行四边形ENFM是矩形.则有OE=ON=OF=OM.所以M、E、N、F四点共圆,故②正确.③当AC=BD且AC⊥BD时,同理可得:四边形ENFM是正方形.则有OE=ON=OF=OM.所以M、E、N、F四点共圆,故③正确.故选:C.7.如图放置的两个正方形,大正方形ABCD边长为a,小正方形CEFG边长为b(a>b),M在BC边上,且BM=b,连接AM,MF,MF交CG于点P,将△ABM绕点A旋转至△ADN,将△MEF绕点F旋转至△NGF,给出以下五个结论:①∠MAD=∠AND;②CP=b﹣;③△ABM≌△NGF;④S四边形AMFN =a2+b2;⑤A,M,P,D四点共圆,其中正确的个数是()A.2B.3C.4D.5【分析】①根据正方形的性质得到∠BAD=∠ADC=∠B=90°,根据旋转的性质得到∠NAD=∠BAM,∠AND=∠AMB,根据余角的性质得到∠DAM+∠NAD=∠NAD+∠AND=∠AND+∠NAD=90°,等量代换得到∠DAM=∠AND,故①正确;②根据正方形的性质得到PC∥EF,根据相似三角形的性质得到CP=b﹣;故②正确;③根据旋转的性质得到GN=ME,等量代换得到AB=ME=NG,根据全等三角形的判定定理得到△ABM ≌△NGF;故③正确;④由旋转的性质得到AM=AN,NF=MF,根据全等三角形的性质得到AM=NF,推出四边形AMFN=AM2是矩形,根据余角的想知道的∠NAM=90°,推出四边形AMFN是正方形,于是得到S四边形AMFN=a2+b2;故④正确;⑤根据正方形的性质得到∠AMP=90°,∠ADP=90°,得到∠ABP+∠ADP=180°,于是推出A,M,P,D四点共圆,故⑤正确.【解答】解:①∵四边形ABCD是正方形,∴∠BAD=∠ADC=∠B=90°,∴∠BAM+∠DAM=90°,∵将△ABM绕点A旋转至△ADN,∴∠NAD=∠BAM,∠AND=∠AMB,∴∠DAM+∠NAD=∠NAD+∠AND=∠AND+∠NAD=90°,∴∠DAM=∠AND,故①正确;②∵四边形CEFG是正方形,∴PC∥EF,∴△MPC∽△EMF,∴,∵大正方形ABCD边长为a,小正方形CEFG边长为b(a>b),BM=b,∴EF=b,CM=a﹣b,ME=(a﹣b)+b=a,∴,∴CP=b﹣;故②正确;③∵将△MEF绕点F旋转至△NGF,∴GN=ME,∵AB=a,ME=a,∴AB=ME=NG,在△ABM与△NGF中,,∴△ABM≌△NGF;故③正确;④∵将△ABM绕点A旋转至△ADN,∴AM=AN,∵将△MEF绕点F旋转至△NGF,∴NF=MF,∵△ABM≌△NGF,∴AM=NF,∴四边形AMFN是矩形,∵∠BAM=∠NAD,∴∠BAM+DAM=∠NAD+∠DAN=90°,∴∠NAM=90°,∴四边形AMFN是正方形,∵在Rt△ABM中,a2+b2=AM2,=AM2=a2+b2;故④正确;∴S四边形AMFN⑤∵四边形AMFN是正方形,∴∠AMP=90°,∵∠ADP=90°,∴∠AMP+∠ADP=180°,∴A,M,P,D四点共圆,故⑤正确.故选:D.8.如图,已知∠A的平分线分别与边BC、△ABC的外接圆交于点D、M,过D任作一条与直线BC不重合的直线l,直线l分别与直线MB、MC交于点P、Q,下列判断错误的是()A.无论直线l的位置如何,总有直线PM与△ABD的外接圆相切B.无论直线l的位置如何,总有∠PAQ>∠BACC.直线l选取适当的位置,可使A、P、M、Q四点共圆D.直线l选取适当的位置,可使S△APQ<S△ABC【分析】本题要求选出错误的命题,只需找到一个命题,说明该命题是假命题即可.可采用反证法判断C是错误的,运用相交弦定理可得DA•DM=DP•DQ,DA•DM=DB•DC,可得DP•DQ=DB•DC,即=,从而可得△DBP∽△DQC,则有∠BPD=∠QCD.由AM平分∠BAC可得∠BAM=∠MAC,根据圆周角定理可得∠MBC=∠MAC,∠MCB=∠BAM,即可得到∠MBC=∠MCB,从而有∠BPD=∠MBC,与三角形外角的性质∠MBC=∠BPD+∠BDP矛盾,故假设不成立,即选择C错误.【解答】解:假设A、P、M、Q四点共圆,根据相交弦定理可得:DA•DM=DP•DQ,∵A、B、M、C四点共圆,∴根据相交弦定理可得:DA•DM=DB•DC,∴DP•DQ=DB•DC,即=,∵∠BDP=∠QDC,∴△DBP∽△DQC,∴∠BPD=∠QCD,∵AM平分∠BAC,∴∠BAM=∠MAC,∵∠MBC=∠MAC,∠MCB=∠BAM,∴∠MBC=∠MCB,∴∠BPD=∠MBC.与∠MBC=∠BPD+∠BDP矛盾,故假设不成立,因而命题C错误,故选:C.9.如图,一副直角三角板满足∠ACB=∠EDF=90°,AC=BC,AB=DF,∠EFD=30°,将三角板DEF 的直角顶点D放置于三角板ABC的斜边AB上,再将三角板DEF绕点D旋转,并使边DE与边AC交于点M,边DF与边BC于点N.当∠EDF在△ABC内绕顶点D旋转时有以下结论:①点C,M,D,N四点共圆;②连接CD,若AD=DB,则△ADM∽△CDN;③若AD=DB,则DN•CM=BN•DM;④若AD=DB,则CM+CN=AD;⑤若DB=2AD,AB=6,则2≤S△DMN≤4.其中正确结论的个数是()A.2B.3C.4D.5【分析】①正确,如图1中,只要证明∠MCN+∠MDN=180°.②正确,可以证明△ADM与△DCN全等.③正确,如图3中,只要证明△ADM≌△CDN,推出AM=CN,DM=DN,因为AC=BC,推出CM=BN,即可证明.④正确,如图4中,作DH⊥AC于H,DG⊥BC于G.只要证明四边形CHDG是正方形,△DHM≌△DGN,推出MH=NG,推出CM+CN=CH+MH+CG﹣NG=2CH,又因为AD=CD=CH,由此即可证明.⑤正确,如图5中,由△DHM∽△DGN,推出==,设DM=x,则DG=2x,推出S△DMN=•2x•x=x2,当DM⊥AC时,DM的值最小,此时DM=DH=,△DMN的面积最小值为2,当DM ⊥AB时,DM的值最大,此时DM=AD=2,△DMN的面积的最大值为4,由此即可判断.【解答】解:①正确.理由如下:如图1中,∵∠ACB=90°,∠EDF=90°,∴∠MCN+∠MDN=180°,∴点C,M,D,N四点共圆.②正确.理由如下:如图2中,连接CD.∵AC=BC.AD=DB.∴CD⊥AB,CD=AD=DB,∴∠ADC=∠MDN=90°,∴∠ADM=∠CDN,在△ADM和△CDN中,,∴△ADM≌△CDN.故②正确.③正确.理由如下:如图3中∵CA=CB,∠ACB=90°,AD=DB,∴CD=AD=DB,CD⊥AB,∠A=∠ACD=∠DCN=45°,∴∠ADC=∠EDF=90°,∴∠ADM=∠CDN,在△ADM和△CDN中,,∴△ADM≌△CDN,∴AM=CN,DM=DN,∵AC=BC,∴CM=BN,∴DN•CM=BN•DM④正确.理由如下:如图4中,作DH⊥AC于H,DG⊥BC于G.∵∠ACD=∠BCD=45°,∴DH=DG,∵∠DHC=∠HCG=∠CGD=90°,∴四边形CHDG是矩形,∵DH=DG,∴四边形CHDG是正方形,∴∠HDG=∠MDN=90°,CH=CG,∴∠MDH=∠GDN,在△DHM和△DGN中,,∴△DHM≌△DGN,∴MH=NG∴CM+CN=CH+MH+CG﹣NG=2CH,∵AD=CD=CH,∴CM+CN=AD.如图5中,作DH⊥AC于H,DG⊥BC于G.∵AB=6,BD=2AD,∴AD=2,BD=4,∴AH=DH=,DG=GB=2,∵∠DHC=∠HCG=∠CGD=90°,∴四边形CHDG是矩形,∴∠HDG=∠MDN,∴∠MDH=∠NDG,∵∠DHM=∠DGN=90°,∴△DHM∽△DGN,∴==,设DM=x,则DG=2x,=•2x•x=x2,∴S△DMN当DM⊥AC时,DM的值最小,此时DM=DH=,△DMN的面积最小值为2,当DM⊥AB时,DM的值最大,此时DM=AD=2,△DMN的面积的最大值为4,≤4.∴2≤S△DMN故选:D.二.填空题(共14小题)10.若一个圆经过梯形ABCD的四个顶点,则这个梯形是等腰梯形.【分析】由四点共圆和平行线的性质证出∠B=∠C,根据在同一底上的两角相等的梯形是等腰梯形就能求出答案.【解答】解:∵圆经过梯形ABCD的四个顶点,∴∠A+∠C=180°,∵AD∥BC,∴∠A+∠B=180°,∴∠B=∠C,∴梯形ABCD是等腰梯形.故答案为:等腰.11.已知AB为圆O的一条弦(非直径),OC⊥AB于C,P为圆O上任意一点,直线PA与直线OC相交于点M,直线PB与直线OC相交于点N.以下说法正确的有①③.①O,M,B,P四点共圆;②A,M,B,N四点共圆;③A,O,P,N四点共圆.【分析】首先按照题意画出示意图,然后根据四点共圆的判定定理进行判断.①验证∠BPM=∠BOC 即可;②由图形可知明显错误;③推导∠AOP+∠ANP=180°即可.【解答】解:如图,∵OC⊥AB于C,∴∠BOC=∠AOC=∠AOB,NA=NB,∵∠BPM=∠AOB,∴∠BPM=∠BOC,∴O、M、B、P四点共圆,∴①正确.∵四边形AMBN为凹四边形.∴A、M、B、N不共圆,∴②错误.∵NA=NB,∴∠NAB=∠NBA,∵∠NAB+∠NBA+∠ANP=180°,∴∠ANP+2∠NBA=180°∵∠AOP=2∠NBA,∴∠AOP+∠ANP=180°,∴A、O、P、N四点共圆,∴③正确.故答案为:①③12.已知△ABC中,∠BAC≠90°,AD⊥BC,BE⊥AC,且AD、BE交于点H,连接CH,则∠ACH+∠BAE=90°.【分析】根据题意可知,点A、B、D、E共圆,点H是△ABC的垂心.过点A作⊙O的切线AF交BC 的延长线BC于点F.根据切线的性质可知△ABF是直角三角形、由平行线的判定与性质可知∠HCA=∠CAF;最后由图形可知∠BAF=∠FAC+∠CAB=90°,即∠BAC+∠HCA=90°.【解答】解:∵△ABC中,∠BAC≠90°,AD⊥BC,BE⊥AC,∴点A、B、D、E在以AB为直径的⊙O上;过点A作⊙O的切线AF交BC的延长线BC于点F,则AF⊥AB.∵点H是三角形ABC的垂心,∴CH⊥AB,∴CH∥AF,∴∠HCA=∠CAF(两直线平行,内错角相等);又∵∠BAF=∠FAC+∠CAB=90°,∴∠BAC+∠HCA=90°.故答案是:90°.13.已知△ABC为等腰直角三角形,∠C为直角,延长CA至D,以AD为直径作圆,连BD与圆O交于点E,连CE,CE的延长线交圆O于另一点F,那么的值等于.【分析】连接AE,AF,DF,根据AD为直径,可证A、C、B、E四点共圆,则∠ACF=∠ABD,又∠AFC=∠ADB,可证△AFC∽△ADB,则=,而∠FAD=∠FED=∠BEC=∠BAC=45°,根据=求解.【解答】解:如图,连接AE,AF,DF,∵AD为直径,∴∠AED=∠AEB=∠ACB=90°,∴A、C、B、E四点共圆,∴∠ACF=∠ABD,又∵∠AFC=∠ADB,∴△AFC∽△ADB,∴=,∵∠FAD=∠FED=∠BEC=∠BAC=45°,在Rt△ADF中,===.故答案为:.14.已知二次函数y1=a1(x﹣1)2﹣2012,其图象顶点为M,且与x轴交于A(x1,0),B(x2,0)两点,又知二次函数y2=a2(x﹣1)2+1的顶点为N,若A,B,M,N四点共圆,则x1x2﹣x1﹣x2=﹣2013.【分析】不妨设A在B的左边,设MN与AB的交点为H,易证△AHM∽△NHA,从而可求出AH,进而得到x1,同理可求出x2,然后代入所求代数式就可解决问题.【解答】解:不妨设A在B的左边,设MN与AB的交点为H,由题可知:M(1,﹣2012),N(1,1),则MH=2012,NH=1.根据抛物线的对称性可得MN垂直平分AB,故MN为四边形AMBN外接圆的直径,根据圆周角定理可得∠NAM=∠NBM=90°,∴∠NAH+∠MAH=90°,∠HMA+∠MAH=90°,∴∠NAH=∠HMA.∵∠AHN=∠MHA=90°,∴△AHM∽△NHA,∴=,∴AH2=MH•NH=2012,∴AH==2,∴1﹣x1=2,∴x1=1﹣2.同理x2=1+2,∴x1x2﹣x1﹣x2=(1﹣2(1+2)﹣(1﹣2)﹣(1+2)=1﹣2012﹣1+2﹣1﹣2=﹣2013.故答案为﹣2013.15.如图,在四边形ABCD中,∠ABC=∠ADC=90°,∠ABD=72°,则∠CAD的度数为18°.【分析】通过证明点A,点B,点C,点D四点共圆,可得∠ABD=∠ACD=72°,由直角三角形的性质可求解.【解答】解:∵∠ABC=∠ADC=90°,∴点A,点B,点C,点D四点共圆,∴∠ABD=∠ACD=72°,∴∠CAD=90°﹣∠ACD=18°,故答案为:18°.16.已知:AB=2,AC平分∠DAB,∠DAB+∠DCB=180°,∠DCB=120°,当∠ABD=∠CBF时,则AC=+1.【分析】先证明A、B、C、D四点共圆,由圆周角定理得出∠ABD=∠ACD,再由已知条件和圆内接四边形的性质得出∠ACD=∠ADC,由三角形内角和定理求出∠ACD=∠ADC=75°,得出∠ACB=45°,作BM⊥AC于M,则∠AMB=∠CMB=90°,由含30°角的直角三角形的性质和勾股定理得出BM=AB=1,AM=,得出△CBM是等腰直角三角形,因此CM=BM=1,即可得出AC的长.【解答】解:∵∠DAB+∠DCB=180°,∴A、B、C、D四点共圆,∠DAB=180°﹣∠DCB=60°,∴∠ABD=∠ACD,∵∠ABD=∠CBF,∴∠ACD=∠CBF,∵∠CBF=∠ADC,∴∠ACD=∠ADC,∵AC平分∠DAB,∴∠DAC=∠BAC=30°,∴∠ACD=∠ADC=75°,∴∠ACB=120°﹣75°=45°,作BM⊥AC于M,如图所示:则∠AMB=∠CMB=90°,∴BM=AB=1,△CBM是等腰直角三角形,∴AM=BM=,CM=BM=1,∴AC=AM+CM=+1;故答案为:+1.17.在四边形ABCD中,∠DAC=98°,∠DBC=82°,∠BCD=70°,BC=AD,则∠ACD=28°.【分析】以CD为对称轴作△CDE与△CBD对称,可得∠DEC=∠DBC=82°,CE=CB,然后由∠DAC=98°可得∠DEC+∠DAC=180°,得出A、D、E、C四点共圆,然后可得CE=AD,继而得出∠DCA=∠CDE=∠CDB,由∠BCD和∠DBC的度数可求出∠BCD的度数,即可求出∠ACD的度数.【解答】解:以CD为对称轴作△CDE与△CBD对称,则∠DEC=∠DBC,CE=CB,∵∠DAC=98°,∠DBC=82°,∴∠DEC=82°,∴∠DEC+∠DAC=180°,∴A、D、E、C四点共圆,∵BC=AD,CE=CB,∴CE=AD,∴∠DCA=∠CDE=∠CDB,∵∠BCD=70°,∠DBC=82°,∴∠BDC=180°﹣∠BCD﹣∠DBC=28°,∴∠ACD=∠BDC=28°.故答案为:28°.18.如图,在等腰△ABC中,∠ABC=90°,点D为BC的中点,点E在AC边上,以DE为腰作等腰Rt△DEF,连接CF,BF.若CE=1,△CDF的面积为7.5,则BF的长为.【分析】作DN⊥AC,DM⊥FC,FK⊥BC,垂足分别为N,M,K,如图所示.易证∠DFE=∠ACB═45°,可得D、E、C、F四点共圆,从而可证到∠DEN=∠DFM,进而可得△DNE≌△DMF,则有DN =DM,NE=MF.易证四边形DNCM是正方形,设正方形DNCM的边长为x,根据△CDF的面积为7.5建立关于x的方程,求出x,从而可求出FC、KC、BK,然后根据勾股定理就可求出BF的长.【解答】证明:作DN⊥AC,DM⊥FC,FK⊥BC,垂足分别为N,M,K,如图所示.∵△ABC和△DEF都是等腰直角三角形,∴∠DFE=∠ACB=45°,∴D、E、C、F四点共圆,∴∠EDF+∠ECF=180°,∠DEC+∠DFC=180°,∠DCF=∠DEF=45°.∵∠DEN+∠DEC=180°,∴∠DEN=∠DFM.在△DNE和△DMF中,.∴△DNE≌△DMF,∴DN=DM,NE=MF.∵∠DNC=∠NCM=∠DMC=90°,∴四边形DNCM是矩形.∵DN=DM,∴矩形DNCM是正方形.设正方形DNCM的边长为x,则NC=MC=DM=DN=x,∴MF=NE=NC﹣EC=x﹣1,∴FC=MC+FM=x+(x﹣1)=2x﹣1.∵△CDF的面积为7.5,∴x(2x﹣1)=7.5.解得:x1=﹣2.5(舍去),x2=3.∴BD=DC==3,FC=5,∴KF=FC•sin45°=.同理:KC=,∴BK=BC﹣KC=6﹣=,∴BF==.故答案为:.19.如图,线段AB、CD相交于E,AE=AC,DE=DB,点M、F、G分别为线段AD、CE、EB的中点,如果∠MAE=25°,∠AMF=40°,那么∠MFG的度数为45°.【分析】如图,连接AF,DG,由等腰三角形的性质可得∠AFD=∠AGD=90°,可得点A,点F,点G,点D四点共圆,可得∠DFG=∠GAD=25°,由直角三角形的性质和等腰三角形的性质可求∠DFM =20°,即可求解.【解答】解:如图,连接AF,DG,∵AE=AC,DE=DB,点F,点G是CE,BE的中点,∴AF⊥CE,DG⊥BE,∴∠AFD=∠AGD=90°,∴点A,点F,点G,点D四点共圆,∴∠DFG=∠GAD=25°,∵∠AFD=90°,点M是AD中点,∴AM=FM=DM,∴∠DFM=∠FDM,且∠AMF=∠FDM+∠DFM=40°,∴∠DFM=20°,∴∠MFG=∠MFD+∠DFG=45°,故答案为45°.20.如图,点O为等边△ABC内一点,OA=2,OC=,连接BO并延长交AC于点D,且∠DOC=30°,过点B作BF⊥BD交CO延长线于点F,连接AF,过点D作DE⊥AF于点E,则DE=.【分析】过点C作CM⊥CF交BD延长线于点M,连接AM,由∠BMC=∠BAC=∠BFC=60°知A、F、B、C、M五点共圆,证∠AMB=60°、OM=OA=2得△AOM是等边三角形,由∠AOM=60°=∠OMC知MC∥AO,得===,从而有OD=OM=、DM=OM=,由A、F、B、M四点共圆证△ODG是等边三角形,得AG=OA﹣OG=OM﹣OD=DM=、EG=AG=,根据DE=DG+EG=OD+EG得出答案.【解答】解:过点C作CM⊥CF交BD延长线于点M,连接AM,∵∠DOC=30°,∴∠BMC=∠BAC=∠BFC=60°,∴A、F、B、C、M五点共圆,∴∠AMB=∠ACB=60°,∵OC=、∠COD=30°,∴OM==2=OA,∴△AOM是等边三角形,∴∠AOM=60°,∵∠AOM=60°=∠OMC,∴MC∥AO,∴===,∴OD=OM=,DM=OM=,∵A、F、B、M四点共圆,∴∠FAM=180°﹣∠FBM=90°,∴∠EAG=∠FAM﹣∠OAM=30°,∴∠OGD=∠AGE=60°,∴△ODG是等边三角形,∴AG=OA﹣OG=OM﹣OD=DM=,∴EG=AG=,∴DE=DG+EG=OD+EG=,故答案为:.21.如图,正方形ABCD的边长为2,对角线AC、BD交于点O,E为DC上一点,∠DAE=30°,过D作DF⊥AE于F点,连接OF.则线段OF的长度为﹣.【分析】作OG⊥DF于G,连接OG.易证A、O、F、D四点共圆,从而有∠OFG=∠DAO=45°,则有OG=FG.设GF=GO=x,则有DG=1+x,OF=x.然后先求出OD,再在Rt△OGD中运用勾股定理求出x,就可得到OF的长.【解答】解:作OG⊥DF于G,连接OG,如图所示.∵四边形ABCD是正方形,∴∠DAC=45°,∠AOD=90°.∵DF⊥AE,即∠AFD=90°,∴∠AOD=∠AFD.∴A、O、F、D四点共圆.∴∠OFG=∠DAO=45°.∵OG⊥DF,即∠OGF=90°,∴∠FOG=45°=∠OFG.∴OG=FG.∵∠AFD=90°,∠DAE=30°,AD=2,∴DF=1.设GF=GO=x,则有DG=DF+FG=1+x,OF==x.在Rt△AOD中,OD=AD•sin∠DAO=2×=.在Rt△OGD中,∵∠OGD=90°,∴OG2+DG2=OD2.∴x2+(1+x)2=()2.解得:x1=﹣+,x2=﹣﹣(舍去).所以OF=x=﹣.故答案为:﹣.22.如图,ABCD、CEFG是正方形,E在CD上,且BE平分∠DBC,O是BD中点,直线BE、DG交于H.BD,AH交于M,连接OH,则OH=AB,BM=AB.【分析】易得△BCE≌△DCG,得到∠1=∠2,B,C,H,D四点共圆,得出OH=BD=AB,由E关于BD的对称E′,得到△BEE′是等腰三角形,BM⊥E′E于M,由角平分线到角两边的距离相等得出BM=AB.【解答】解:如图,设EE′与BD交于点M′,∵AD=CD∴AE′=CE=EF,∵∠E′AM′=∠EFM′,∠AM′E′=∠FM′F,∴△AM′E′≌△FM′E(AAS),∴EM′=E′M′,∵ME′=ME∴M与M′重合,∵BC=DC,EC=CG,∠BCE=∠DCG,在△BCE和△DCG中,,∴△BCE≌△DCG(SAS),∴∠1=∠2,∴B,C,H,D四点共圆,∴OH=BD=AB,∵E关于BD的对称E′,∵∠3=∠4,BE=BE′,∴△BEE′是等腰三角形,∴BM⊥E′E于M,∴BM=AB.故答案为:AB,AB.23.如图放置的两个正方形,大正方形ABCD边长为a,小正方形CEFG边长为b(a>b),M在BC边上,且BM=b,连接AM,MF,MF交CG于点P,将△ABM绕点A旋转至△ADN,将△MEF绕点F旋转至△NGF,给出以下五个结论:①∠MAD=∠AND;②CP=a﹣;③△ABM≌△NGF;④S四边形AMFN=a2+b2;⑤A,M,P,D四点共圆,其中正确的序号为①③④⑤.【分析】①由正方形的性质得∠BAD=∠ADC=∠B=90°,由旋转的性质得∠NAD=∠BAM,∠AND =∠AMB,由余角的性质进而得∠DAM=∠AND,①正确;②由正方形的性质得PC∥EF,由相似三角形的性质得到CP=b﹣,②错误;③由旋转的性质得GN=ME,则AB=ME=NG,证出△ABM≌△NGF(SAS);③正确;=AM2=a2+b2;④正确;得到S四边形AMFN⑤由正方形的性质得∠AMP=90°,∠ADP=90°,得∠ABP+∠ADP=180°,推出A,M,P,D四点共圆,⑤正确.【解答】解:①∵四边形ABCD是正方形,∴∠BAD=∠ADC=∠B=90°,∴∠BAM+∠DAM=90°,∵将△ABM绕点A旋转至△ADN,∴∠NAD=∠BAM,∠AND=∠AMB,∴∠DAM+∠NAD=∠NAD+∠AND=∠AND+∠NAD=90°,∴∠DAM=∠AND,故①正确;②∵四边形CEFG是正方形,∴PC∥EF,∴△MPC∽△MFE,∴=,∵大正方形ABCD边长为a,小正方形CEFG边长为b(a>b),BM=b,∴EF=b,CM=a﹣b,ME=(a﹣b)+b=a,∴=,∴CP=b﹣;故②错误;③∵将△MEF绕点F旋转至△NGF,∴GN=ME,∵AB=a,ME=a,∴AB=ME=NG,在△ABM与△NGF中,,∴△ABM≌△NGF(SAS);故③正确;④∵将△ABM绕点A旋转至△ADN,∴AM=AN,∵将△MEF绕点F旋转至△NGF,∴NF=MF,∵△ABM≌△NGF,。
专题:四点共圆在中考数学及自主招生中的应用
专题:四点共圆在中考数学及自主招生中的应用四点共圆的判定方法:方法一:若四个点到一个定点的距离相等,则这四个点共圆;方法二:若一个四边形的一组对角互补,则这个四边形的四个点共圆;方法三:若一个四边形的外角等于它相邻的内对角,则这个四边形的四个点共圆;方法四:若两个点在一条线段的同旁,并且和这条线段的两端连线所夹的角相等,那么这两个点和这条线的两个端点共圆方法五:同斜边的直角三角形的顶点共圆C AD B C A D经典例题题型1、先证四点共圆后,然后求线段最值问题(关键是找到动点的轨迹)例1、如图1,OA=OB=4,∠OCA=135°(1)求证:AC⊥BC;(2)如图2,点P与点B关于x轴对称,试求PC的最小值。
题型2、先证四点共圆后,然后求角度、三角函数值、或线段的比值(若从一个点出发的三条线段之间的比值问题,特别注意三弦定理)例2、如图,抛物线y=ax2-4ax+b与x轴交于A、B两点,与y轴交于点C,抛物线的顶点为M,直线y=x-3经过M,B两点,交y轴于点D(1)求抛物线的解析式;(2)设P为x轴上一动点,过P作PC的垂线交直线BD于Q,连接CQ,求∠PQC的度数例3、(2013年哈尔滨)如图,矩形ABCD的对角线AC,BD相交于点O,过点O作OE⊥AC交AB于E,若BC=4,△AOE的面积为5,则sin∠BOE的值为例4、(2013•绍兴)在△ABC中,∠CAB=90°,AD⊥BC于点D,点E为AB的中点,EC与AD交于点G,点F在BC上.(1)如图1,AC:AB=1:2,EF⊥CB,求证:EF=CD.(2)如图2,AC:AB=1:,EF⊥CE,求EF:EG的值.例5、如图1,直线y=−21x+2交x 轴、y 轴于A 、B 两点,C 为直线AB 上第二象限内一点,且S △AOC =8,双曲线 y=xk (x <0)经过点C (1)求k 的值; (2) 如图2,Q 为双曲线上另一点,连接OQ ,过C 作CM ⊥OQ 于M ,CN ⊥y 轴于N ,连接MN 。
九年级数学四点共圆例题讲解
九年级数学四点共圆例题讲解知识点、重点、难点四点共圆就是圆得基本内容,它广泛应用于解与圆有关得问题.与圆有关得问题变化多,解法灵活,综合性强,题型广泛,因而历来就是数学竞赛得热点内容。
在解题中,如果图形中蕴含着某四点在同一个圆上,或根据需要作出辅助圆使四点共圆,利用圆得有关性质定理,则会使复杂问题变得简单,从而使问题得到解决。
因此,掌握四点共圆得方法很重要。
判定四点共圆最基本得方法就是圆得定义:如果A、B、C、D四个点到定点O得距离相等,即OA=OB=OC =OD,那么A、B、C、D四点共圆.由此,我们立即可以得出1、如果两个直角三角形具有公共斜边,那么这两个直角三角形得四个顶点共圆。
将上述判定推广到一般情况,得:2、如果四边形得对角互补,那么这个四边形得四个顶点共圆。
3、如果四边形得外角等于它得内对角,那么这个四边形得四个顶点共圆。
4、如果两个三角形有公共底边,且在公共底边同侧又有相等得顶角,那么这两个三角形得四个顶点共圆。
运用这些判定四点共圆得方法,立即可以推出:正方形、矩形、等腰梯形得四个顶点共圆。
其实,在与圆有关得定理中,一些定理得逆定理也就是成立得,它们为我们提供了另一些证明四点共圆得方法.这就就是:1、相交弦定理得逆定理:若两线段AB与CD相交于E,且AE·EB=CE·ED,则A、B、C、D四点共圆。
2.割线定理得逆定理:若相交于点P得两线段PB、PD上各有一点A、C,且PA·PB =PC·PD,则A、B、C、D四点共圆。
3、托勒密定理得逆定理:若四边形ABCD中,AB·CD+BC·DA=AC·BD,则ABCD就是圆内接四边形。
另外,证多点共圆往往就是以四点共圆为基础实现得一般可先证其中四点共圆,然后证其余各点均在这个圆上,或者证其中某些点个个共圆,然后判断这些圆实际就是同一个圆。
例题精讲例1:如图,P为△ABC内一点,D、E、F分别在BC、CA、AB上。
中考_四点共圆__综合题_归类
1.已知:△AOB中,AB=OB=2,△COD中,CD=OC=3,∠ABO=∠DCO.连接AD、BC,点M、N、P分别为OA、OD、BC的中点.(1)如图1,若A、O、C三点在同一直线上,且∠ABO=60°,则△PMN的形状是等边三角形,此时=1;(2)如图2,若A、O、C三点在同一直线上,且∠ABO=2α,证明△PMN∽△BAO,并计算的值(用含α的式子表示);(3)在图2中,固定△AOB,将△COD绕点O旋转,直接写出PM的最大值.考点:相似三角形的判定与性质;等边三角形的判定;确定圆的条件。
专题:综合题。
分析:(1)由于AB=OB,CD=OC,∠ABO=∠DCO,且∠ABO=60°,则△AOB和△COD都为等边三角形,又A、O、C三点在同一直线上,则△PMN为等边三角形,AD=BC.(2)连接BM、CN,由于△ABO与△MPN都为等腰三角形,且证得∠MPN=∠ABO,则△PMN∽△BAO,的值可在Rt△BMA中求得.(3)结合图形,直接可写出△COD绕点O旋转后PM的最大值.解答:解:(1)连接BM,CN,∵△AOB中,AB=OB=2,△COD中,CD=OC=3,∠ABO=60°,∴△AOB与△COD是等边三角形,又∵点M、N、P分别为OA、OD、BC的中点,∴BM⊥AC,CN⊥BD,∠MBO=∠ABO=∠NCO=∠OCD=30°,∴PM=PN=BC,∴∠PBM=∠PMB,∠PCN=∠PNC,∵∠BAO=∠DCO=60°,∴AB∥CD,∴∠ABC+∠DCB=180°,∴∠MBP+∠BCN=180°﹣∠ABM﹣∠DCN=120°,∴∠BPM+∠NPC=360°﹣2(∠MBP+∠BCN)=120°,∴∠MPN=60°,∴△PMN是等边三角形,∴PM=PN=MN,∵AD=2MN,BC=2PM,∴=1.(2)证明:连接BM、CN.由题意,得BM⊥OA,CN⊥OD,∠AOB=∠COD=90°﹣α.∵A、O、C三点在同一直线上,∴B、O、D三点在同一直线上.∴∠BMC=∠CNB=90°.∵P为BC中点,∴在Rt△BMC中,.在Rt△BNC中,,∴PM=PN.∴B、C、N、M四点都在以P为圆心,为半径的圆上.∴∠MPN=2∠MBN.又∵,∴∠MPN=∠ABO.∴△PMN∽△BAO.∴.由题意,,又.∴.∴.在Rt△BMA中,.∵AO=2AM,∴.∴.(3).当CO∥AB时,即四边形ABCO是梯形时,PM有最大值.PM=(AB+CO)÷2=(2+3)÷2=.点评:本题考查了相似三角形的判定与性质及等边三角形的确定条件,综合性强,较为复杂.3.已知:如图,正方形ABCD中,AC,BD为对角线,将∠BAC绕顶点A逆时针旋转α°(0<α<45),旋转后角的两边分别交BD于点P、点Q,交BC,CD于点E、点F,连接EF,EQ.(1)在∠BAC的旋转过程中,∠AEQ的大小是否改变?若不变写出它的度数;若改变,写出它的变化范围(直接在答题卡上写出结果,不必证明);(2)探究△APQ与△AEF的面积的数量关系,写出结论并加以证明.考点:旋转的性质;正方形的性质。
专题1.5 最值问题-隐圆模型之四点共圆
∠BAD=∠EAC=α,连接CD,BE相交于点P.
(1)求∠BPD的度数(用含α的代数式表示);
(2)连接AP,求证:∠APD=∠ABD.
A D
OP
E
B
C
模型解读---手拉手(双子型)中的四点共圆
D 条件:△OCD∽△OAB
O
结论:①△OAC∽△OBD
E C ②AC与BD交于点E,必有∠AEB=∠AOB;
3.定弦中最小的圆是以该弦为直径的圆。
E
D
A
C
A
B
O
B O
F
典型例题---直径是圆中最长的弦
【例3】在△ABC中,∠ACB=90º,AC=6,BC=8,O为AB的中点,过O作
OE⊥OF,OE、OF分别交射线AC,BC于E、F,则EF的最小值为? A
【简答】∵∠EOF=∠C=90º,∴C,O均在以
EF为直径的圆上∵EF是圆的直径,O、C均
F M
D
C
E
O
A
B
当堂训练---对角互补型四点共圆
1.如图,在四边形ABCD中,∠B=60º,∠D=120º,BC=CD=a,
则AB-AD=( C )
A. a
B.
3 a
C.a
D. 3a
2
2
D
a
120º
C
a
A
60º 60º
Ea
B
当堂训练---对角互补型四点共圆
2.如图,在△ABC中,AD⊥BC于D,DE⊥AB于E,DF⊥AC于F,连接EF.
典型例题---对角互补型四点共圆
【例1】如图,正方形ABCD绕点A逆时针旋转到正方形AEFG,连接 BE,延长BE交于CF于点M,求证:M是线段CF的中点.
中考数学总复习《四点共圆问题》专题(含答案)
如图,在 中, , 中, ,若 三点在同一直线 上. 连接 、 ,点 、 、 分别为 、 、 的中点.求证 .
在梯形ABCD中, , , , 分别在 , 上, .
求证: .
如图 和 中, ,求证点 , , , 四点在同一个圆上.
(1)当点 在 内时,延长 交 于 ,连结 ,则有
四点共圆问题
一、解答题
如图,在平行四边形 中, 为钝角,且 .
(1)求证: 四点共圆;
(2)设线段 与⑴中的圆交于 .求证: .
如图, 为 、 、 、 的斜边,求证: 四点共圆.
如图, 是 外一点, 和 是 的切线, 为切点, 与 交于点 ,过 任作 的弦 .求证: .
已知在凸五边形 中, ,且 ,求证: .
求证:(1)∠FBD=30°;(2)AD=DC.
四点共圆问题答案解析
一、解答题
(1)∵ ,∴ ,
∴ ,∴ 四点共圆.
(2) 连结 ,设 相交于
由(1)可知 是圆的直径,
又∵ 是平行四边形,∴ 是 中点,
∴ 是圆心,∴ ,
∵ ,∴ .
取 的中点 ,连接 ,故
【解析】取斜边中点,利用斜边中线等于斜边长一半,然后利用证明方法一.
如图,在△ABC中,分别以AB,AC为直径在 ABC外作半圆 和半圆 ,其中 和 分别为两个半圆的圆心.F是边BC的中点,点D和点E分别为两个半圆圆弧的中点.过点A作半圆 的切线,交CE的延长线于点Q,过点Q作直线FA的垂线,交BD的延长线于点P,连结PA.
求证:PA是半圆 的切线.
如图,在四边形ABCD中,已知∠BAD=60°,∠ABC=90°,∠BCD=120°,对角线AC,BD交于点E,且DE=2EB,F为AC的中点.
中考复习四点共圆
四点共圆四点共圆的判定(一)判定方法1、若四个点到一个定点的距离相等,则这四个点共圆。
2、若一个四边形的一组对角互补(和为180°),则这个四边形的四个点共圆。
3、若一个四边形的外角等于它的内对角,则这个四边形的四个点共圆。
4、若两个点在一条线段的同旁,并且和这条线段的两端连线所夹的角相等,那么这两个点和这条线的两个端点共圆。
5、同斜边的直角三角形的顶点共圆。
6、若AB、CD两线段相交于P点,且PA×PB=PC×PD,则A、B、C、D四点共圆(相交弦定理的逆定理)。
7、若AB、CD两线段延长后相交于P。
且PA×PB=PC×PD,则A、B、C、D四点共圆(割线定理)。
8、若四边形两组对边乘积的和等于对角线的乘积,则四边形的四个顶点共圆(托勒密定理的逆定理。
(二)证明1、若四个点到一个定点的距离相等,则这四个点共圆。
若可以判断出OA=OB=OC=OD,则A、B、C、D四点在以O为圆心OA为半径的圆上。
2、若一个四边形的一组对角互补(和为180°),则这个四边形的四个点共圆。
若∠A+∠C=180°或∠B+∠D=180°,则点A、B、C、D四点共圆。
3、若一个四边形的外角等于它的内对角,则这个四边形的四个点共圆。
若∠B=∠CDE,则A、B、C、D四点共圆证法同上。
4、若两个点在一条线段的同旁,并且和这条线段的两端连线所夹的角相等,那么这两个点和这条线的两个端点共圆。
若∠A=∠D或∠ABD=∠ACD,则A、B、C、D四点共圆。
5、同斜边的直角三角形的顶点共圆。
如图2,若∠A=∠C=90°,则A、B、C、D四点共圆。
ADCC6、若AB、CD两线段相交于P点,且PA×PB=PC×PD,则A、B、C、D四点共圆(相交弦定理的逆定理)。
7、若AB、CD两线段延长后相交于P。
且PA×PB=PC×PD,则A、B、C、D四点共圆(割线定理)。
中考数学专题复习 四点共圆模型 含答案
共圆模型模型1共端点,等线段模型如图①,出现“共端点,等线段”时,可利用圆定义构造辅助圆.如图②,若OA=OB=OC,则A、B、C三点在以O为圆心,OA为半径的圆上.如图③,常见结论有:∠ACB=12∠AOB,∠BAC=12∠BOC.模型分析∵OA=OB=OC.∴A、B、C三点到点O的距离相等.∴A、B、C三点在以O为圆心,OA为半径的圆上.∵∠ACB是»AB的圆周角,∠AOB是»AB的圆心角,∴∠ACB=12∠AOB.同理可证∠BAC=12∠BOC.(1)若有共端点的三条线段,可考虑构造辅助圆.(2)构造辅助圆是方便利用圆的性质快速解决角度问题.模型实例如图,△ABC和△ACD都是等腰三角形,AB=AC,AC=AD,连接BD.求证:∠1+∠2=90°.证明证法一:如图①,∵AB=AC=AD.∴B、C、D在以A为圆心,AB为半径的⊙A上.∴∠ABC=∠2.在△BAC中,∵∠BAC+∠ABC+∠2=180°,∴2∠1+2∠2=180°.∴∠1+∠2=90°.证法二:如图②,∵AB=AC=AD.∴∠BAC=2∠1.∵AB=AC,∴B、C、D在以A为圆心,AB为半径的⊙O上.延长BA与圆A相交于E,连接CE.∴∠E=∠1.(同弧所对的圆周角相等.)∵AE=AC,∴∠E=∠ACE.∵BE为⊙A的直径,∴∠BCE=90°.∴∠2+∠ACE=90°.∴∠1+∠2=90°.小猿热搜1.如图,△ABC为等腰三角形,AB=AC,在△ABC的外侧作直线AP,点B与点D关于AP轴对称,连接BD、CD,CD与AP交于点E.求证:∠1=∠2.证明∵A、D关于AP轴对称,∴AP是BD的垂直平分线.∴AD=AB,ED=EB.又∵AB=AC.∴C、B、D在以A为圆心,AB为半径的圆上.∵ED=EB,∴∠EDB=∠EBD.∴∠2=2∠EDB.又∵∠1=2∠CDB.∴∠1=∠2.2.己知四边形ABCD,AB∥CD,且AB=AC=AD=a,BC=b,且2a>b,求BD的长.解答以A为圆心,以a为半径作圆,延长BA交⊙A于E点,连接ED.∵AB∥CD,∴∠CAB=∠DCA,∠DAE=∠CDA. ∵AC=AD,∴∠DCA=∠CDA. ∴∠DAE=∠CAB.在△CAB和△DAE中.∴△CAB≌△DAE.∴ED=BC=b∵BE是直径,∴∠EDB=90°.在Rt△EDB中,ED=b,BE=2a,∴BD模型2 直角三角形共斜边模型模型分析如图①、②,Rt△ABC和Rt△ABD共斜边,取AB中点O,根据直角三角形斜边中线等于斜边一半,可得:OC=OD=OA=OB,∴A、B、C、D四点共圆.(1)共斜边的两个直角三角形,同侧或异侧,都会得到四点共圆;(2)四点共圆后可以根据圆周角定理得到角度相等,完成角度等量关系的转化,是证明角度相等重要的途径之一.模型实例例1如图,AD、BE、CF为△ABC的三条高,H为垂线,问:(1)图中有多少组四点共圆?(2)求证:∠ADF=∠ADE.解答(1)6组①C、D、H、E四点共圆,圆心在CH的中点处;②D、B、F、H四点共圆,圆心在BH的中点处;③A、E、H、F四点共圆,圆心在AH的中点处;④C、B、F、E四点共圆,圆心在BC的中点处;⑤B、A、E、D四点共圆,圆心在AB的中点处;⑥C、D、F、A四点共圆,圆心在AC的中点处.(2)如图,由B、D、H、F四点共圆,得∠ADF=∠1.同理:由A、B、D、E四点共圆,得∠ADE=∠1.∴∠ADF=∠ADE.例2如图,E是正方形ABCD的边AB上的一点,过点E作DE的垂线交∠ABC的外角平分线于点F,求证:FE=DE.解答如图,连接DB、DF.∵四边形ABCD是正方形,且BF是∠CBA的外角平分线,∴∠CBF=45°,∠DBC=45°,∴∠DBF=90°.又∵∠DEF=90°,∴D、E、B、F四点共圆.∴∠DFE=∠DBE=45°(同弧所对的圆周角相等).∴△DEF是等腰直角三角形.∴FE=DE.P1.如图,锐角△ABC中,BC.CE是高线,DG⊥CE于G,EF⊥BD于F,求证:FG BC证明:由于Rt△BCE与Rt△BCD共斜边BC,∴B、C、D、E四点共圆.∴∠DBC=∠DEG,同理,Rt∠EDF与Rt△DGE共斜边DE,∴D、E、F、G四点共圆.于是∠DEG=∠DFG,因此,∠DBC=∠DFG.于是FG∥BC2. 如图,BE.CF为△ABC的高,且交于点H,连接AH并延长交于BC于点D,求证:AD⊥BC.3.如图,等边△PQR内接于正方形ABCD,其中点P,Q,R分别在边AD,AB,DC上,M是QR的中点.求证:不论等边△PQR怎样运动,点M为不动点.4.如图,已知△ABC中,AH是高,AT是角平分线,且TD⊥AB,TE⊥AC.求证:∠AHD=∠AHE.证明:(1)∵∠ADT=∠AHT=∠AET=90°,∴D,E,H在以AT为直径的圆上,∴∠AHD=∠ATD,∠AHE=∠ATE,又∵AT是角平分线,TD⊥AB,TE⊥AC,∴∠ATD=∠ATE,∴∠AHD=∠AHE.补充:。
成都石室中学初三数学-课件-中考专题冲刺一 四点共圆问题
(1)如图 1,若 A ,O ,C 三点在同一直线上,且 ABO 60 ,则 PMN 的形状是
.此
时 AD
.
BCBiblioteka 、知识点(2)如图 2,若 A , O , C 三点在同一直线上,且 AO 2 ,证明 PMN∽BAO ,并计算 BO 3
AD 的值; BC (3)在图 2 中,固定 AOB ,将 COD 绕点 O 旋转,直接写出 PM 的最大值
一、知识点
(2014 秋•诸暨市期末)如图,以 RtABC的斜边 BC 为一边在 ABC 的同侧作正方形 BCEF , 设正方形的中心为 O ,连结 AO ,如果 AB 2 , AO 3 2 ,则 tanAOB 的值为 ( )
一、知识点
已知:(如图)边长为 1 的正方形 ABCD 内接于 e O ,点 L 为劣弧 CD(不含端点)上任意一 点.直线 AL 交线段 CD 于点 K ,直线 CL 交直线 AD 于点 M ,直线 MK 交线段 BC 于点 N ,线段 LB 交线段 KN 于点 P .
谢 谢!
(1)求证: MN 2 ; (2)求证: B , M , L , N 四点共圆; (3)求证: KP NP .
一、知识点
已知:AOB 中,AB OB 2 ,COD 中,CD OC 3,ABO DCO ,连接 AD ,BC ,
点 M 、 N 、 P 分别为 OA 、 OD 、 BC 的中点.
北京师范大学出版社
% +
sin ������ =
−������ ± ������2 − 4������������ 2������
中考专题复习: 四点共圆问题
成都石室中学 张烁
一、知识点
如图所示在△ABC 中,∠ACB=65°,BD⊥AC 于点 D,CE⊥AB 于点 E,则∠AED=
初中数学重点梳理:四点共圆
四点共圆知识定位圆在初中几何或者竞赛中占据非常大的地位,它的有关知识如圆与正多边形的关系,圆心角、三角形外接圆、弧、弦、弦心距间的关系,垂径定理,圆内接四边形的性质和判定,点、直线、圆和圆的位置关系是今后我们学习综合题目的重要基础,必须熟练掌握。
本节我们通过一些实例的求解,旨在介绍数学竞赛中圆的内接四边形相关问题的常见题型及其求解方法本讲将通过例题来说明这些方法的运用。
知识梳理1、四点共圆:如果同一平面内的四个点在同一个圆上,则称这四个点共圆,一般简称为“四点共圆”。
四点共圆有三个性质:(1)共圆的四个点所连成同侧共底的两个三角形的顶角相等;(2)圆内接四边形的对角互补;(3)圆内接四边形的外角等于内对角。
2、判定定理:方法1:把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角相等,从而即可肯定这四点共圆。
(可以说成:若线段同侧二点到线段两端点连线夹角相等,那么这二点和线段二端点四点共圆)方法2 :把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆。
(可以说成:若平面上四点连成四边形的对角互补或一个外角等于其内对角,那么这四点共圆)3、托勒密定理:若ABCD四点共圆(ABCD按顺序都在同一个圆上),那么AB*DC+BC*AD=AC*BD。
托勒密定理逆定理:对于任意一个凸四边形ABCD,总有AB*CD+AD*BC≥AC*BD,等号成立的条件是ABCD四点共圆。
4、证明方法:(1)从被证共圆的四点中先选出三点作一圆,然后证另一点也在这个圆周上,若能证明这一点,即可肯定这四点共圆(2)被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角相等(同弧所对的圆周角相等),从而即可肯定这四点共圆。
几何描述:四边形ABCD中,∠BAC=∠BDC,则ABCD四点共圆。
证明:过ABC作一个圆,明显D一定在圆上。
中考数学压轴题破解策略专题20《简单的四点共圆》
专题20《简单的四点共圆》破解策略如果同一平面内的四个点在同一个圆上,则称之为四个点共圆·一般简称为”四点共圆”.四点共圆常用的判定方法有:1.若四个点到一个定点的距离相等,则这四个点共圆.如图,若OA=OB=OC=OD,则A,B,C,D四点在以点O为圆心、OA为半径的圆上.D【答案】(1)略;(2)AB,CD相交成90°时,MN取最大值,最大值是2.【提示】(1)如图,连结OP,取其中点O',显然点M,N在以OP为直径的⊙O'上,连结NO'并延长,交⊙O'于点Q,连结QM,则∠QMN=90°,QN=OP=2,而∠MQN=180°-∠BOC=60°,所以可求得MN的长为定值.(2)由(1)知,四边形PMON内接于⊙O',且直径OP=2,而MN为⊙O'的一条弦,故MN为⊙O'的直径时,其长取最大值,最大值为2,此时∠MON=90°.2.若一个四边形的一组对角互补,则这个四边形的四个顶点共圆.如图,在四边形ABCD中,若∠A+∠C=180°(或∠B+∠D=180°)则A,B,C,D四点在同一个圆上.D【答案】(1)略;(2)AD=3DE;(3)AD=DE·tanα.【提示】(1)证A,D,B,E四点共圆,从而∠AED=∠ABD=45°,所以AD=DE.(2)同(1),可得A ,D ,B ,E 四点共圆,∠AED =∠ABD =30°,所以AD DE= tan30°,即AD =3DE . 3.若一个四边形的外角等于它的内对角,则这个四边形的四个顶点共圆.如图,在四边形ABCD 中,∠CDE 为外角,若∠B =∠CDE ,则A ,B ,C ,D 四点在同一个圆上.【答案】略4.若两个点在一条线段的同旁,并且和这条线段的两端连线所夹的角相等,那么这两个点和这条线段的两个端点共圆.【来源:21·世纪·教育·网】如图,点A ,D 在线段BC 的同侧,若∠A =∠D ,则A ,B ,C ,D 四点在同一个圆上.D【答案】略诸多几何问题,若以四点共圆作桥梁,就能与圆内的等量关系有机地结合起来.利用四点共圆,可证线段相等、角相等、两线平行或垂直,还可以证线段成比例,求定值等.例题讲解例1 如图,在△ABC 中,过点A 作AD ⊥BC 与点D ,过点D 分别作AB ,AC 的垂线,垂足分别为E ,F .求证:B ,E ,F ,C 四点共圆.证明 因为DE ⊥AB ,DF ⊥AC ,所以∠AED +∠AFD =180°,即A ,E ,D ,F 四点共圆.A B C D EF AB CD E F G连结EF ,则∠AEF =∠ADF .因为AD ⊥BC ,DF ⊥AC ,所以∠FCD =∠ADF =∠AEF ,所以B ,E ,F ,C 四点共圆.例2 在锐角△ABC 中,AB =AC ,AD 为BC 边上的高,E 为AC 的中点.若M 为线段BD 上的动点(点M 与点D 不重合),过点C 作CN ⊥AM 与点N ,射线EN 与AB 相交于点P ,证明:∠APE =2∠MA D .证明 如图,连结DE .因为AD ⊥BC ,CN ⊥AM ,E 为AC 的中点,所以DE =AE =CE =NE ,从而A ,N ,D ,C 在以点E 为圆心、AC 为直径的圆上,所以∠DEN =2∠DAN .由题意可得D 为BC 的中点,所以ED ∥AB ,所以∠APE =∠DEP =2∠MA D .进阶训练1.已知⊙O 的半径为2,AB ,CD 是⊙O 的直径,P 是BC 上任意一点,过点P 分别作AB ,CD 的垂线,垂足分别为N ,M .(1)如图1,若直径AB 与CD 相交成120°角,当点P (不与B ,C 重合)从B 运动到C 的过程中,证明MN 的长为定值;(2)如图2,求当直径AB 与CD 相交成多少度角时,MN 的长取最大值,并写出其最大值.答案:(1)略(2)AB ,CD 相交成90°时,MN 取最大值,最大值为2.【提示】(1)如图,连接OP ,取其中点O ′,显然点M .,N 在以OP 为直径的⊙O ′上.连结NO ′并延长,交⊙O ′于点Q ,连结QM ,则∠QMN =90°,QN =OP =2.而∠MQN =180°-∠BOC =60°,所以可求得MN 的长为定值.A B C D E PN M AB C D EP N M AB C D O MN P图1 图2 A B C D P M N O(2)由(1)知,四边形PMON 内接于⊙O ′,且直径OP =2.而MN 为⊙O ′的一条弦,故MN 为⊙O ′的直径时,其长取最大值,最大值为2,此时∠QMN =90°.2.在Rt△ABC 中,∠BAC =90°,过点B 的直线MN ∥AC ,D 为BC 边上一点,连结AD ,作DE ⊥AD 交MN 于点E ,连结AE .(1)如图1,当∠ABC =45°时,求证:AD =DE ;(2)如图2,当∠ABC =30°时,线段AD 与DE 有何数量关系?请说明理由;(3)当∠ABC =α时,请直接写出线段AD 与DE 的数量关系(用含α的三角函数表示).答案:(略);(2)ADDE ;(3)AD =DE ·tan α. 【提示】(1)证A ,D ,B ,E 四点共圆,从而∠AED =∠ABD =45°,所以AD =DE .(2)同(1)可得A ,D ,B ,E 四点共圆,从而∠AED =∠ABD =30°,所以AE DE=tan30°,即ADDE . AB C D O MN QO ′ P图1 图1AB C DEFG 图2 A B C D E M N。
四点共圆例题及答案
四点共圆的应用知识点:(1)如果四个点与一定点距离相等,那么这四个点共圆.(2)如果一个四边形的一组对角互补,那么这个四边形的四个顶点共圆.(3)如果一个四边形的一个外角等于它的内对角,那么这个四边形的四个顶点共圆.(4)如果两个直角三角形有公共的斜边,那么这两个三角形的四个顶点共圆(因为四个顶点与斜边中点距离相等).四点共圆在平面几何证明中应用广泛,熟悉这种应用对于开阔证题思路,提高解题能力都是十分有益的.一用于证明两角相等例1 如图1,已知P为⊙O外一点,PA切⊙O于A,PB切⊙O于B,OP交AB于E.求证:∠APC=∠BPD.证明连结OA,OC,OD.由射影定理,得AE2=PE·EO,又AE=BE,则AE·BE=PE·EO……(1);由相交弦定理,得AE·BE=CE·DE……(2);由(1)、(2)得CE·ED=PE·EO,∴ P、C、O、D四点共圆,则∠1=∠2,∠3=∠4,又∠2=∠4.∴∠1=∠3,易证∠APC=∠BPD(∠4=∠EDO).二用于证明两条线段相筹例2 如图2,从⊙O外一点P引切线PA、PB和割线PDC,从A点作弦AE平行于DC,连结BE交DC于F,求证:FC=FD.证明连结AD、AF、EC、AB.∵PA切⊙O于A,则∠1=∠2.∵AE∥CD,则∠2=∠4.∴∠1=∠4,∴P、A、F、B四点共圆.∴∠5=∠6,而∠5=∠2=∠3,∴∠3=∠6.∵AE∥CD,∴EC=AD,且∠ECF=∠ADF,∴△EFC≌△AFD,∴FC=FD.三用于证明两直线平行例3 如图3,在△ABC中,AB=AC,AD⊥BC,∠B的两条三等分线交AD于E、G,交AC于F、H.求证:EH∥GC.证明连结EC.在△ABE和△ACE中,∵AE=AE,AB=AC,∠BAE=∠CAE,∴△AEB≌AEC,∴∠5=∠1=∠2,∴B、C、H、E四点共圆,∴∠6=∠3.在△GEB和△GEC中,∵GE=GE,∠BEG=∠CEG,EB=EC,∴△GEB ≌△GEC,∴∠4=∠2=∠3,∴∠4=∠6.∴EH∥GC.四用于证明两直线垂直证明在△ABD和△BCE中,∵AB=BC,∠ABD=∠BCE,BD=CE,则△ABD≌△BCE,∴∠ADB=∠BEC,∴P、D、C、E四点共圆.设DC的中点为O 连结OE、DE.易证∠OEC=60°,∠DEO=30°∴∠DEC=90°,于是∠DPC=90°,∴ CP⊥AD.五用于判定切线例5 如图5,AB为半圆直径,P为半圆上一点,PC⊥AB于C,以AC为直径的圆交PA于D,以BC为直径的圆交PB于E,求证:DE是这两圆的公切线.证明连结DC、CE,易知∠PDC=∠PEC=90°,∴ P、D、C、E四点共圆,于是∠1=∠3,而∠3+∠2=90°,∠A+∠2=90°,则∠1=∠A,∴DE是圆ACD的切线.同理,DE是圆BCE的切线.因而DE为两圆的公切线六用于证明比例式例6 AB、CD为⊙O中两条平行的弦,过B点的切线交CD的延长线于G,弦PA、PB分别交CD于E、F.证明如图6.连结BE、PG.∵BG切⊙O于B,则∠1=∠A.∵AB∥CD,则∠A=∠2.于是∠1=∠2,∴P、G、B、E四点共圆.由相交弦定理,得EF·FG=PF·FB.在⊙O中,由相交弦定理,得CF·FD=FP·FB.七用于证明平方式例7 ABCD为圆内接四边形,一组对边AB和DC延长交于P点,另一组对边AD和BC延长交于Q点,从P、Q引这圆的两条切线,切点分别是E、F,(如图 7)求证:PQ2=QF2+PE2.证明作△DCQ的外接圆,交PQ于M,连结MC,∵∠1=∠2=∠3,则P、B、C、M四点共圆.由圆幂定理得PE2=PC·PD=PM·PQ,QF2=QC·QB =QM·QP,两式相加得PE2+QF2=PM·PQ+ QM·QP=PQ(PM+QM)=PQ·PQ=PQ2∴PQ2=PE2+QF2.八用于解计算题例8如图8,△ABC的高AD的延长线交外接圆于H,以AD为直径作圆和AB、AC分别交于E、F点,EF交 AD于 G,若 AG=16cm,AH=25cm,求 AD的长.解连结DE、DF、BH.∵∠1=∠2=∠C=∠H,∴B、E、G、H四点共圆.由圆幂定理,得AE·AB=AG·AN.在△ABD中,∵∠ADB=90°,DE⊥AB,由射影定理,得AD2=AE·AB,∴AD2=AG·AH=16×25=400,∴AD=20cm.九用于证明三点共线例9如图9,D为△ABC外接圆上任意一点,E、F、G为D点到三边垂线的垂足,求证:E、F、G三点在一条直线上.证明连结EF、FG、BD、CD.∵∠BED=∠BFD=90°,则B、E、F、D 四点共圆,∴∠1=∠2,同理∠3=∠4.在△DBE和△DCG中,∵∠DEB=∠DGC,∠DBE=∠DCG,故∠1=∠4,易得∠2=∠3,∴ E、F、G三点在一条直线上.。
人教版数学九年级上册 四点共圆,解题妙不可言
人教版数学九年级上册 四点共圆,解题妙不可言四点共圆是一种重要的解题方法,熟练判断四点共圆,并灵活运用圆的相关性质,能有效进行解题.1.对角互补的四边形四点共圆证线段线段例1如图1,在四边形ABCD 中,∠A=∠BCD=90°,BC=CD=210,CE AD 于点E . 求证:AE=CE ; (2)若tanD=3,求AB 的长.(2018年北京石景山区模拟题)分析:根据∠A=∠BCD=90°,利用对角互补的四边形共圆,作出这个圆,从而把问题转化为圆的知识,在圆的背景下求解,可以帮助同学们更容易找到求解思路.解:如图1,因为∠A+∠BCD=180°,所以四边形ABCD 四点共圆,延长CE 交圆于点F ,连接AF ,因为∠A=∠AEC=90°,所以AB ∥CF ,所以BC=AF,因为BC=CD ,所以AF=CD ,因为∠EAF=∠ECD , ∠F=∠D , 所以△AEF ≌△CED ,所以AE=CE.(2)略点评:对角互补的四边形内接于圆,借助四点共圆,可以创造出更多解题所必需的条件,如夹在两平行弦之间的弦相等,为三角形的全等提供“S ”元素.2.对角互补的四边形四点共圆综合题例2 如图2,四边形ABCD 中,AC ,BD 是它的对角线,∠ADC=∠ABC=90°,∠BCD 是锐角.(1)若BD=BC ,求证:sin ∠BCD=ACBD ; (2)若AB=BC=4,AD+CD=6,求:AC BD 的值. (3)若BD=CD ,,AB=6,BC=8。
求:sin ∠BCD 的值.分析:根据∠ADC=∠ABC=90°,可以判定四边形ABCD 是满足四点共圆,且直径为AC ,作出直径为AC 的圆,就把普通的计算转化为圆的基本计算,充分利用圆的知识使得计算更加简便,提高计算的效率.解:(1)因为∠ADC=∠ABC=90°,所以四点A,B,C,D 都在直径为AC 的圆上,如图2,因为BD=BC ,所以∠BCD=∠BDC ,因为∠BAC=∠BDC ,所以∠BAC=∠BCD ,在直角三角形ABC 中, sin ∠BAC=AC BC ,所以sin ∠BCD=ACBD ; (2)如图3,因为AB=BC=4,所以AC=42,延长DC 到点E ,使得CE=AD ,连接BE ,根据四边形的外角等于内对角,所以∠BCE=∠BAD ,所以△BAD ≌△BCE ,所以BD=BE , ∠ABD=∠CBE ,因为∠ABC=90°,AD+CD=6,所以∠DBE=90°,DE=6,所以BD=32,所以AC BD =432423=. (3)如图4,因为BD=CD ,作直径DF ,交BC 于点E ,连接BF ,则BE ⊥DF ,∠DBF=90°,BE=EC=4, 因为AB=6,BC=8,所以AC=DF=10,易证△DEB ∽△BEF ,所以2BE =DE ∙EF,所以16=(10-EF )∙EF,整理,得2EF -10EF+16=0,解得EF=2或EF=8((舍去), 当EF=2时,BF=25,所以sin ∠BCD=sin ∠F=BF BE =524=552.点评:把一般几何问题转化为四点共圆问题,充分利用圆周角定理,垂径定理,把问题顺利求解,且思路顺畅,是值得熟练掌握的好方法.3.圆定义共圆和同底同侧等角的三角形,四顶点共圆,探究综合题例3 如图5,△ABC 和△ADE 都是等边三角形,将△ADE 绕点A 旋转(保持点D 在△ABC 的内部),连接BD ,CE.(1)求证:BD=CE ;(2)当AB=4,AD=2, ∠DEC=60°时,求BD 的长;(3)设射线BD 和射线CE 相交于点Q ,连接QA ,直接写出旋转过程中,QD,QE,QA 之间的数量关系.分析:第一问:这是常规性的旋转问题,只要牢牢抓住旋转的全等性,借助三角形的全等结论就顺利得出.第二问:解决起来就需要多方面的思考:一是平行线的判定问题,二是三点共线问题,三是三点共圆问题,四是三角形的相似问题,五是一元二次方程的根的问题,都需要缜密思考,规范解答,和谐思考才能顺利得解.第三问:看似简单,但是要真正找到三者的数量关系,还需要动一番脑筋,特别是利用同底同侧对等角的三角形,则四点共圆,把问题转化成圆的相关知识解决,使得解题流畅,简洁,这里的分类思想也发挥着重要的作用.解:(1)如图5,由△ABC 和△ADE 都是等边三角形,所以AB=AC,AD=AE ,∠BAD+∠DAC=60°, ∠CAE+∠DAC=60°,所以∠BAD=∠CAE ,所以△BAD ≌△CAE ,所以BD=CE ;(2)根据(1)知道:∠BDA=∠CEA , 因为∠DEC=60°,所以∠CEA=∠BDA=120°,所以∠ADE+∠BDA=180°,所以B,D,E 三点共线,设点G 是AB 的中点,则AG=AD=AE=DE=2,所以点G,D,E 在以A 为圆心,半径为2的圆上,延长GA 交圆于点F ,连接DG,EF ,如图6, 易证△BGD ∽△BEF ,所以BFBD BE BG =,所以BG ∙BF =BD ∙BE,所以12=BD(BD+2), 整理,得2BD +2BD-12=0,解得BD=-1+13或BD=-1-13 ((舍去),所以BD 的长为13-1;(3)当点D 在三点B,D,E 共线时的左边时,如图7,QD,QE,QA 之间的数量关系是: QD=QA+QE.理由如下:根据(1)知道:∠ABD=∠ACE ,所以∠QBC+∠QCB=60°-∠ABD +60°+∠ACE=120°,所以∠BQC=60°,因为∠DAE=60°,所以∠BQC=∠DAE ,所以A,D,E,Q 四点共圆,延长AQ 到点F ,使得QF=QE,连接EF ,则∠FQE=∠ADE=60°,所以△QEF 是等边三角形, 所以∠DQE=∠AFE=60°,∠FAE=∠QDE,EF=QE ,所以△FAE ≌△QDE ,所以AF=QD , 所以QD=QA+QF=QA+QE.当点D 在三点B,D,E 共线时的右边时,如图8,QD,QE,QA 之间的数量关系是:QA=QD+QE.请同学们仿照上述证明,结合图形自己给出证明.点评:四点共圆是一种非常有效的解题方法,希望同学们能尽量熟练掌握,不仅能开阔自己的视野,提高解题的效率,更重要的是丰富自己的知识储备,不受知识的局限,让自己的数学解题游刃有余,提高自己数学解题能力.4.同底同侧等角的三角形,四顶点共圆,判定四边形的形状例4 如图9,已知△ABC和△ADE都是等边三角形,点D在边BC上,点E在边AD的右侧,连接CE.(1)求证:∠ACE=60°;(2)在边AB上取一点F,使BF=BD,联结DF、EF.求证:四边形CDFE是等腰梯形.分析:第一问:充分利用三角形的全等,结论就顺利得到.第二问:证明抓住两个关键点,一是证明DF=CE,二是证明CD∥EF,利用好等边三角形的性质,四点共圆的判定方法,可以巧妙破解.解:(1)由△ABC和△ADE都是等边三角形,所以AB=AC,AD=AE,∠BAD+∠DAC=60°, ∠CAE+∠DAC=60°,所以∠BAD=∠CAE,所以△BAD≌△CAE,所以∠ABD=∠ACE=60°;(2)由BF=BD,∠ABD=60°,所以△BFD是等边三角形,所以BD=DF=CE.因为∠ADE=∠ACE=60°,所以A,D,C,E四点共圆,因为∠AFD+∠AED=180°,所以点A,F,D,E四点共圆,所以点A,F,D,C,E五点共圆,所以∠AFE=∠ADE=60°,所以∠AFE=∠B,所以CD∥EF,所以四边形CDFE是等腰梯形.点评:此题也可以用其他方法求解,感兴趣的同学可以自我尝试一下.例1 如图,E、F、G、H分别是菱形ABCD各边的中点.求证:E、F、G、H 四点共圆.证明菱形ABCD的对角线AC和BD相交于点O,连接OE、OF、OG、OH.∵AC和BD 互相垂直,∴在Rt△AOB、Rt△BOC、Rt△COD、Rt△DOA中,E、F、G、H,分别是AB、BC、CD、DA的中点,即E、F、G、H四点共圆.(2)若四边形的两个对角互补(或一个外角等于它的内对角),则四点共圆.例2 如图,在△ABC中,AD⊥BC,DE⊥AB,DF⊥AC.求证:B、E、F、C四点共圆.证明∵DE⊥AB,DF⊥AC,∴∠AED+∠AFD=180°,即A、E、D、F四点共圆,∠AEF=∠ADF.又∵AD⊥BC,∠ADF+∠CDF=90°,∠CDF+∠FCD=90°,∠ADF=∠FCD.∴∠AEF=∠FCD,∠BEF+∠FCB=180°,即B、E、F、C四点共圆.(3)若两个三角形有一条公共边,这条边所对的角相等,并且在公共边的同侧,那么这两个三角形有公共的外接圆.证明在△ABC中,BD、CE是AC、AB边上的高.∴∠BEC=∠BDC=90°,且E、D在BC的同侧,∴E、B、C、D四点共圆.∠AED=∠ACB,∠A=∠A,∴△AED∽△ACB.上述三种方法是证“四点共圆”的基本方法,至于证第四点在前三点(不在同一直线上)所确定的圆上就不叙述了.【例1】在圆内接四边形ABCD中,∠A-∠C=12°,且∠A∶∠B=2∶3.求∠A、∠B、∠C、∠D的度数.解∵四边形ABCD内接于圆,∴∠A+∠C=180°.∵∠A-∠C=12°,∴∠A=96°,∠C=84°.∵∠A∶∠B=2∶3,∠D=180°-144°=36°.利用圆内接四边形对角互补可以解决圆中有关角的计算问题.【例2】已知:如图1所示,四边形ABCD内接于圆,CE∥BD交AB 的延长线于E.求证:AD·BE=BC·DC.证明:连结AC.∵CE∥BD,∴∠1=∠E.∵∠1和∠2都是所对的圆周角,∴∠1=∠2.∠1=∠E.∵四边形ABCD内接于圆,∴∠EBC=∠CDA.∴△ADC∽△CBE.AD∶BC=DC∶BE.AD·BE=BC· DC.本例利用圆内接四边形的一个外角等于内对角及平行线的同位角、圆中同弧所对的圆周角得到两个相似三角形的条件,进而得到结论.关于圆内接四边形的性质,还有一个重要定理.现在中学课本一般都不列入,现介绍如下:定理:圆内接四边形两条对角线的乘积等于两组对边乘积的和.已知:如图2所示,四边形ABCD内接于圆.求证:AC·BD=AB·CD +AD·BC.证明:作∠BAE=∠CAD,AE交 BD于 E.∵∠ABD=∠ACD,即 AB·CD=AC·BE.①∵∠BAE+∠CAE=∠CAD+∠CAE,∴∠BAC=∠EAD.又∠ACB=∠ADE,AD·BC=AC·DE.②由①,②得AC·BE+AC·DE=AB·CE+AD·BCAC·BD=AB·CD+AD·BC这个定理叫托勒密(ptolemy)定理,是圆内接四边形的一个重要性质.这个证明的关键是构造△ABE∽△ACD,充分利用相似理论,这在几何中是具有代表性的.在数学竞赛中经常看到它的影子,希望能引起我们注意.命题“菱形都内接于圆”对吗?命题“菱形都内接于圆”是不正确的.所以是假命题.理由是:根据圆的内接四边形的判定方法之一,如果一个四边形的一组对角互补,那么这个四边形内接于圆.这个判定的前提是一组对角互补,而菱形的性质是一组对角相等.而一组相等的角,它们的内角和不一定是180°.如果内角和是180°,而且又相等,那么只可能是每个内角等于90°,既具有菱形的性质,且每个内角等于90°,那末这个四边形一定是正方形.而正方形显然是菱形中的特例,不能说明一般情形.判定四边形内接于圆的方法之二,是圆心到四边形四个顶点的距离相等.圆既是中心对称图形,又是轴对称图形,它的对称中心是圆心.菱形同样既是中心对称图形,又是轴对称图形,它的对称中心是两条对角线的交点.但菱形的对称中心到菱形各个顶点的距离不一定相等.所以,也无法确定菱形一定内接于圆;如果菱形的对称中心到菱形各边顶点的距离相等,再加上菱形的对角线互相垂直平分这些性质,那么这个四边形又必是正方形.综上所述,“菱形都内接于圆”这个命题是错误的.5圆的内接四边形例1 已知:如图7-90,ABCD是对角线互相垂直的圆内接四边形,通过对角线的交点E与AB垂直于点H的直线交CD于点M.求证:CM=MD.证明∠MEC与∠HEB互余,∠ABE与∠HEB互余,所以∠MEC=∠ABE.又∠ABE=∠ECM,所以∠MEC=∠ECM.从而CM=EM.同理MD=EM.所以CM=MD.点评本例的逆命题也成立(即图中若M平分CD,则MH⊥AB).这两个命题在某些问题中有时有用.本例叫做婆罗摩笈多定理.例2 已知:如图7-91,ABCD是⊙O的内接四边形,AC⊥BD,分析一如图7-91(a),由于E是AB的中点,从A引⊙O的需证明GB=CD.但这在第七章ξ 1.4圆周角中的例3已经证明了.证明读者自己完成.*分析二如图7-91(b),设AC,BD垂直于点F.取CD的有OE∥MF.从而四边形OEFM应该是平行四边形.证明了四边形OEFM是平行四边形,问题也就解决了.而证明四边形OEFM是平行四边形已经没有什么困难了.*分析三如图7-91(b),通过AC,BD的交点F作AB的垂线交CD于点M.连结线段EF,MO.由于OE⊥AB,FM⊥AB,所以OE∥FM.又由于EF⊥CD(见例1的点评),MO⊥CD,所以EF∥MO.所以四边形OEFM为平行四边形.从而OE=MF,而由例3 求证:圆内接四边形对边乘积的和等于对角线的乘积,即图中AB·CD+BC·AD=AC·BD.分析在AB·CD+BC·AD=AC·BD中,等号左端是两个乘积的和,要证明这种等式成立,常需把左端拆成两个单项式来证明,即先考虑AB·CD和BC·AD各等于什么,然后再考虑AB·CD+BC·AD是否等于AC·BD.而要考虑AB·CD和BC·AD各等于什么,要用到相似三角形.为此,如图7-92,作AE,令∠BAE=∠CAD,并且与对角线BD相交于点E,这就得到△ABE∽△ACD.由此求得AB·CD=AC·BE.在圆中又出现了△ABC∽△AED,由此又求得BC·AD=AC·ED.把以上两个等式左右各相加,问题就解决了.证明读者自己完成.点评本例叫做托勒玫定理.它在计算与证明中都很有用.意一点.求证:PA=PB+PC.分析一本例是线段和差问题,因此可用截取或延长的方法证明.如图7-93(a),在PA上取点M,使PM=PB,剩下的问题是证明MA=PC,这只要证明△ABM≌△CBP就可以了.证明读者自己完成.分析二如图7-93(a),在PA上取点M,使MA=PC,剩下的问题是证明PM=PB,这只要证明△BPM是等边三角形就可以了.证明读者自己完成.分析三如图7-93(b),延长CP到M,使PM=PB,剩下的问题是证明PA=MC,这只要证明△PAB≌△CMB就可以了.证明读者自己完成.读者可仿以上的方法拟出本例的其他证明.*本例最简单的证明是利用托勒玫定理(例3).证明由托勒玫定理得PA·BC=PB·AC+PC·AB,由于BC=AC=AB,所以有PA=PB+PC.例2 如图7—116,⊙O1和⊙O2都经过A、B两点,经过点A的直线CD与⊙O1交于点C,与⊙O2交于点D.经过点B的直线EF与⊙O1交于点E,与⊙O2交于点F.求证:CE∥DF.分析:要证明CE∥DF.考虑证明同位角(或内错角)相等或同旁内角互补.由于CE、DF分别在两个圆中,不易找到角的关系,若连结AB,则可构成圆内接四边形,利用圆内接四边形的性质定理可沟通两圆中有关角的关系.证明:连结AB.∵ABEC是圆内接四边形,∴∠BAD=∠E.∵ADFB是圆内接四边形,∴∠BAD+∠F=180°,∴∠E+∠F=180°.∴CE∥CF.说明:(1)本题也可以利用同位角相等或内错角相等,两直线平行证明.如延长EF至G,因为∠DFG=∠BAD,而∠BAD=∠E,所以∠DFG=∠E.(2)应强调本题的辅助线是为了构成圆内接四边形,以利用它的性质,导出角之间的关系.(3)对于程度较好的学生,还可让他们进一步思考,若本题不变,但不给出图形,是否还有其他情况?问题提出后可让学生自己画图思考,通过讨论明确本题还应有如图7—117的情况并给予证明.例3 如图7—118,已知在△ABC中,AB=AC,BD平分∠B,△ABD的外接圆和BC交于E.求证:AD=EC.分析:要证AD=EC,不能直接建立它们的联系,考虑已知条件可知∠ABD=∠DBE,容易看出.若连结DE,则有AD=DE.因此只要证DE=EC.由于DE和EC为△DEC的两边,所以只要证∠EDC=∠C.由已知条件可知∠C=∠ABC.因此只要证∠EDC=∠ABC.因为△EDC是圆内接四边形ABED的一个外角,所以可证∠EDC=∠ABC.问题可解决.证明:连结DE.∵BD平分∠ABC,∴,AD=DE.∵ABED是圆内接四边形,∴∠EDC=∠ABC.∵AB=AC,∴∠ABC=∠C,∴∠EDC=∠C.于是有DE=EC.因此AD=EC.四、作业1.如图7—120,在圆内接四边形ABCD中,AC平分BD,并且AC⊥BD,∠BAD=70°18′,求四边形其余各角.2.圆内接四边形ABCD中,∠A、∠B、∠C的度数的比为2∶3∶6,求四边形各内角的度数.3.如图7—121,AD是△ABC外角∠EAC的平分线,AD与三角形的外接圆交于点D.求证:DB=DC.作业答案或提示:1.∠ABC=∠ADC=90°,∠BCD=109°42′.2.∠A=45°,∠B=67.5°,∠C=135°,∠D=112.5°.3.提示:因为∠DBC=∠DAC,∠EAD=∠DCB,∠EAD=∠DAC,所以∠DBC=∠DCB,因此DB=DC.判定四点共圆的方法引导学生归纳判定四点共圆的方法:(1)如果四个点与一定点距离相等,那么这四个点共圆.(2)如果一个四边形的一组对角互补,那么这个四边形的四个顶点共圆.(3)如果一个四边形的一个外角等于它的内对角,那么这个四边形的四个顶点共圆.(4)如果两个直角三角形有公共的斜边,那么这两个三角形的四个顶点共圆(因为四个顶点与斜边中点距离相等).3.如图7—124,已知ABCD为平行四边形,过点A和B的圆与 AD、BC分别交于 E、F.求证:C、D、E、F四点共圆.提示连结EF.由∠B+∠AEF=180°,∠B+∠C=180°,可得∠AEF=∠C.四点共圆的应用山东宁阳教委教研室栗致根四点共圆在平面几何证明中应用广泛,熟悉这种应用对于开阔证题思路,提高解题能力都是十分有益的.一用于证明两角相等例1 如图1,已知P为⊙O外一点,PA切⊙O于A,PB切⊙O于B,OP交AB于E.求证:∠APC=∠BPD.证明连结OA,OC,OD.由射影定理,得AE2=PE·EO,又AE=BE,则AE·BE=PE·EO……(1);由相交弦定理,得AE·BE=CE·DE……(2);由(1)、(2)得CE·ED=PE·EO,∴ P、C、O、D四点共圆,则∠1=∠2,∠3=∠4,又∠2=∠4.∴∠1=∠3,易证∠APC=∠BPD(∠4=∠EDO).二用于证明两条线段相筹例2 如图2,从⊙O外一点P引切线PA、PB和割线PDC,从A点作弦AE平行于DC,连结BE交DC于F,求证:FC=FD.证明连结AD、AF、EC、AB.∵PA切⊙O于A,则∠1=∠2.∵AE∥CD,则∠2=∠4.∴∠1=∠4,∴P、A、F、B四点共圆.∴∠5=∠6,而∠5=∠2=∠3,∴∠3=∠6.∵AE∥CD,∴EC=AD,且∠ECF=∠ADF,∴△EFC≌△AFD,∴FC=FD.三用于证明两直线平行例3 如图3,在△ABC中,AB=AC,AD⊥BC,∠B的两条三等分线交AD于E、G,交AC于F、H.求证:EH∥GC.证明连结EC.在△ABE和△ACE中,∵AE=AE,AB=AC,∠BAE=∠CAE,∴△AEB≌AEC,∴∠5=∠1=∠2,∴B、C、H、E四点共圆,∴∠6=∠3.在△GEB和△GEC中,∵GE=GE,∠BEG=∠CEG,EB=EC,∴△GEB ≌△GEC,∴∠4=∠2=∠3,∴∠4=∠6.∴EH∥GC.四用于证明两直线垂直证明在△ABD和△BCE中,∵AB=BC,∠ABD=∠BCE,BD=CE,则△ABD≌△BCE,∴∠ADB=∠BEC,∴P、D、C、E四点共圆.设DC的中点为O 连结OE、DE.易证∠OEC=60°,∠DEO=30°∴∠DEC=90°,于是∠DPC=90°,∴ CP⊥AD.五用于判定切线例5 如图5,AB为半圆直径,P为半圆上一点,PC⊥AB于C,以AC为直径的圆交PA于D,以BC为直径的圆交PB于E,求证:DE是这两圆的公切线.证明连结DC、CE,易知∠PDC=∠PEC=90°,∴ P、D、C、E四点共圆,于是∠1=∠3,而∠3+∠2=90°,∠A+∠2=90°,则∠1=∠A,∴DE是圆ACD的切线.同理,DE是圆BCE的切线.因而DE为两圆的公切线六用于证明比例式例6 AB、CD为⊙O中两条平行的弦,过B点的切线交CD的延长线于G,弦PA、PB分别交CD于E、F.证明如图6.连结BE、PG.∵BG切⊙O于B,则∠1=∠A.∵AB∥CD,则∠A=∠2.于是∠1=∠2,∴P、G、B、E四点共圆.由相交弦定理,得EF·FG=PF·FB.在⊙O中,由相交弦定理,得CF·FD=FP·FB.七用于证明平方式例7 ABCD为圆内接四边形,一组对边AB和DC延长交于P点,另一组对边AD和BC延长交于Q点,从P、Q引这圆的两条切线,切点分别是E、F,(如图 7)求证:PQ2=QF2+PE2.证明作△DCQ的外接圆,交PQ于M,连结MC,∵∠1=∠2=∠3,则P、B、C、M四点共圆.由圆幂定理得PE2=PC·PD=PM·PQ,QF2=QC·QB =QM·QP,两式相加得PE2+QF2=PM·PQ+ QM·QP=PQ(PM+QM)=PQ·PQ=PQ2∴PQ2=PE2+QF2.八用于解计算题例8如图8,△ABC的高AD的延长线交外接圆于H,以AD为直径作圆和AB、AC分别交于E、F点,EF交 AD于 G,若 AG=16cm,AH=25cm,求 AD的长.解连结DE、DF、BH.∵∠1=∠2=∠C=∠H,∴B、E、G、H四点共圆.由圆幂定理,得AE·AB=AG·AN.在△ABD中,∵∠ADB=90°,DE⊥AB,由射影定理,得AD2=AE·AB,∴AD2=AG·AH=16×25=400,∴AD=20cm.九用于证明三点共线例9如图9,D为△ABC外接圆上任意一点,E、F、G为D点到三边垂线的垂足,求证:E、F、G三点在一条直线上.证明连结EF、FG、BD、CD.∵∠BED=∠BFD=90°,则B、E、F、D 四点共圆,∴∠1=∠2,同理∠3=∠4.在△DBE和△DCG中,∵∠DEB=∠DGC,∠DBE=∠DCG,故∠1=∠4,易得∠2=∠3,∴ E、F、G三点在一条直线上.十用于证明多点共圆例10如图10,H为△ABC的垂心,H1、H2、H3为H点关于各边的对称点,求证:A、B、C、H1、H2、H3六点共圆.证明连结AH2,∵H与H2关于AF对称,则∠1=∠2.∵A、F、D、C 四点共圆,则∠2=∠3,于是∠1=∠3,∴A、H2、B、c四点共圆,即H2在△ABC的外接圆上.同理可证,H1、H3也在△ABC的外接圆上.∴A、B、C、H1、H2、H3六点共圆.相关资源托勒密定理的数形转换功能山东临沂市四中姜开传临沂市第一技校刘久松圆内接四边形两组对边乘积的和等于其对角线的乘积,即在四边形ABCD中,有AB·CD+AD·BC=AC·BD,这就是著名的托勒密定理.本刊1996年第2期给出了它的几种证法,作为续篇,本文就其数形转换功能举例说明如下:1 “形”转换为“数”对于某些几何问题,特别是圆内接多边形问题,如果能根据题设中隐含的数量关系,利用托勒密定理可将“形”转换为“数”,从而达到用代数运算来代替几何推理的目的.例1已知正七边形A1A2 (7)(第21届全俄数学奥林匹克竞赛题)对于这道竞赛题,原证较繁,但通过深挖隐含条件,利用托勒密定理可改变整个解题局面,使证题步骤简缩到最少.如图1,连 A1A5、A3A5,则A1A5=A1A4、A3A5=A1A3.在四边形A1A3A4A5中,由托勒密定理,得A3A4·A1A5+A4A5·A1A3=A1A4·A3A5,即A1A2·A1A4+A1A2·A1A3=A1A3·A1A4,两边同除以A1A2·A1A3·A1A4即得结论式.例2 如图2,A、B、C、D四点在同一圆周上,且BC=CD=4,AE=6,线段BE和DE的长都是整数,则BD的长等于多少?(1988年全国初中数学联赛题)此题若用其它方法解,往往使人一筹莫展.若运用托勒密定理,可使问题化难为易.由△CDE∽△BAE和△CBE∽△DAE,得由托勒密定理,得BD(AE+CE)=4(AB+AD),亦即 CE(AE+CE)=16.设CE=x,整理上式,得x2+6x-16=0.解得x=2(负值已舍),故BE·DE=CE·AE=12.∵BD<BC+CD=8,例3一个内接于圆的六边形,其五个边的边长都为81,AB是它的第六边,其长为31,求从B出发的三条对角线长的和.(第九届美国数学邀请赛试题)原解答过程冗长.若通过托勒密定理的桥梁作用,把“形”转换为“数”,可使问题化繁为简.如图3,设BD=a, BE=b,BF=c,连AC、CE、AE,则CE=AE=BD=a,AC=BF=c.在四边形BCDE中,由托勒密定理,得81b+812=a2①同理81b+31·81=ac ②31a+81a=bc ③解①、③、③组成的方程组,得a=135,b=144,c=105故 a+b+c=384.2 “数”转换为“形”对于某些代数问题,若结构与托勒密定理相似,通过构造圆内接四边形,可把“数”转换为“形”,然后利用“形”的性质,使问题得到解决.这种解法构思巧妙,方法独特,富于创新,出奇制胜.例4 解方程若按常规方法解这个无理方程,过程繁冗.若由方程的结构特征联想到托勒密定理,则构造直径AC=x(x≥11)的圆及圆内接四边形ABCD,使BC=2,CD=11,如图 4,于是由托勒密定理,得在△BCD中,由余弦定理,得经检验x=14是原方程的根.求证: a2+b2=1.这道名题已有多种证法,而且被视为用三角换无法解代数问题的典范.下面再给出一各几何证法.易知0≤a、b≤1且a、b不全为零.当a、b之一为零时,结论显然成立.当a、b全不为零时,由已知等式联想到托勒密定理,作直径AC=1的圆及圆内接四与已知等式比较,得BD=1,即BD也为圆的直径,故a2+b2=1例6设a>c,b>c,c>0,此题若用常规方法证明也不轻松.下面利用托勒密定理给出它的一个巧证.由托勒密定理,得巧用托勒密定理证题河北晋州市数学论文研究协会张东海王素改在解证某些数学题时,如能巧用托勒密定理,可使解证过程简洁清新,兹举例说明.托勒密定理:圆内接四边形中,两条对角线的乘积等于两组对边乘积之和.一、构造“圆”,运用定理【例1】设a,b,x,y是实数,且a2+b2=1,x2+y2=1.求证:ax+by≤1.证作直径AB=1的圆,在AB的两侧任作Rt△ACB和Rt△ADB,使AC=a,BC=b,BD=x, AD=y.(图1)由勾股定理知a,b,x,y满足条件.根据托勒密定理,有AC·BD+BC·AD=AB·CD.∵ CD≤1,∴ax+by≤1.二、利用无形圆,运用定理【例2】等腰梯形一条对角线的平方,等于一腰的平方加上两底之积.已知:梯形 ABCD中,AD=BC,AB∥CD.求证:BD2=BC2+AB·CD.证∵等腰梯形内接于圆,由托勒密定理,有AC·BD=AD·BC+AB·CD.∵AD=BC,AC=BD,∴BD2=BC2+AB·CD.(图略)【例 3】已知:边长为 1的正七边形ABCDEFG中,对角线 AD=a,BG=b(a ≠b).求证:(a+b)2(a-b)=ab2.证连结BD,GE,BE,DG,则 BD=EG=GB=b,DG=BE=DA=a,DE=AB=AG=1.(如图2)在四边形ABDG中,由托勒密定理,有AD·BG=AB·DG+BD·AG,即ab=a+b (1)同理在四边形BDEG中,得BE·DG=DE·BG+BD·EG,即a2=b+b2 (2)将(2)变形为b=a2-b2 (3)(1)×(3),得ab2=(a+b)(a2-b2).故ab2=(a+b)2(a-b).三、构造圆内接四边形,运用定理【例4】在△ABC中,∠A的内角平分线AD交外接圆于D.连结BD.求证:AD·BC=BD·(AB+AC).证(如图3) 连结DC.由托勒密定理.有AD·BC=AB·CD+AC·BD.又∵∠1=∠2,∴BD=DC.∴AD·BC=AB·CD+AC·BD=BD(AB+AC).即AD·BC=BD·(AB+AC).圆内接四边形的面积公式黑龙江绥化五中任天民设圆内接四边形ABCD中各边为a,b,c,d.连结 BD.由∠A+∠C=180°,可以推出sinA=sinC,cosA=-cosC.并且S四边形ABCD=S△ABD+S△BCD所以这样我们得出了圆内接四边形面积的计算公式.在上面的公式中,如果设某一边为零,(不仿设d=0)此时四边形变成三角形,该公式恰是计算三角形面积的海伦公式.圆内接四边形面积公式的得出是受三角形面积公式的启发,通过联想探索出来的,而且两者在形式上又是那么的相近.这种现象在数学中不胜枚举,如果同学们都能从特殊规律去探索一般规律,再从一般规律去认识特殊规律.那么对数学能力的培养将大有裨益.四条边定长四边形面积的最大值上海市育群中学李甲鼎四条边为定长的四边形不具稳定性,但在某种特定的位置下,它能内接于圆,成为圆内接四边形.并且此时达到变化过程中面积最大值.下文证明这个事实.已知:四边形ABCD中:AB=a,BC=b,CD=c,DA=d求证:四边形ABCD中有唯一四边形能内接于圆,且此时面积达到最大值.证明:(1)先证四边形四边定长,有唯一的四边形内接于圆,设∠ABC=α,∠ADC=β,AC=x.令α+β=π,即cosα+cosβ=0x的解唯一确定,代入(1)(2)后cosα、cosβ也随之唯一确,在α,β∈(0,π)的条件下α、β也同时唯一确定.∴四边形四边定长,对角互补,四边形是唯一的.即所得到的四边形为圆内接四边形.(2)当四边定长的四边形内接于圆时,此四边形面积最大.∵四边形ABCD的面积由余弦定理得a2+b2-2abcosα=x2=c2+d2-2cdcosβ显然当α+β=π时(即为圆内接四边形时)S2达到最大值,即S最大.一个几何定理的应用江苏省徐州矿务局庞庄职校张怀林定理:如图1,在圆接四边形ABCD中弦AD平分∠BAC,则2ADcos α=AB+AC.证明连接BD、DC、BC,设已知圆半径为R,则由正弦定理有:BD=DC=2Rsinα,BC=2Rsin2α.由托勒密定理有AB·CD+AC·BD=AD·DC.∴(AB+AC)·2Rsinα=AD·2Rsin2α.则2AD·cosα=AB+AC.下面举例说明它的应用.例1如图2,已知锐角△ABC的∠A平分线交BC于L,交外接圆于N,过L分别作LK⊥AB,LM⊥AC,垂足分别为K、M.求证:四边形AKNM的面积等于△ABC的面积.(第28届IMO)证明由已知得∠BAN=∠CAN,由定理有2ANcosα=AB+AC,=AN·AL·cosα·sinα=AN·AK·sinα=AN·AM·sinα=2S△AKN=2S△AMN.∴S△ABC=S四边形AKNM.(第21届全苏奥数)证明作正七边形外接圆,如图3所示.由定理有2c·cosα=b+c,又在等腰△A1A2A3中有2a·cosα=b.例3在△ABC中,∠C=3∠A,a=27,c=48,则b的值是____.(第36届AHSME试题)解如图4.作△ABC的外接圆,在取三等分点D、E,连CD、CE.由已知得:∠ACD=∠DCE=∠ECB=∠A,CD=AB=48,由定理有2CE·cosA=CB+CD ①2CD·cosA=CE+AC ②又2CB·cosA=CE ③由②、③得:b=AC=CE·(CD-CB)/CB=35.托勒密定理及其应用河北省晋州市数学论文研究协会刘同林托勒密定理:圆内接四边形中,两条对角线的乘积(两对角线所包矩形的面积)等于两组对边乘积之和(一组对边所包矩形的面积与另一组对边所包矩形的面积之和).已知:圆内接四边形ABCD,求证:AC·BD=AB·CD+AD·BC.证明:如图1,过C作CP交BD于P,使∠1=∠2,又∠3=∠4,∴△ACD∽△BCP.又∠ACB=∠DCP,∠5=∠6,∴△ACB∽△DCP.①+②得AC(BP+DP)=AB·CD+AD·BC.即AC·BD=AB·CD+AD·BC.这就是著名的托勒密定理,在通用教材中习题的面目出现,不被重视.笔者认为,既然是定理就可作为推理论证的依据.有些问题若根据它来论证,显然格外简洁清新.兹分类说明如下,以供探究.一、直接应用托勒密定理例1如图2,P是正△ABC外接圆的劣弧上任一点(不与B、C重合),求证:PA=PB+PC.分析:此题证法甚多,一般是截长、补短,构造全等三角形,均为繁冗.若借助托勒密定理论证,则有PA·BC=PB·AC+PC·AB,∵AB=BC=AC.∴PA=PB+PC.二、完善图形借助托勒密定理例2证明“勾股定理”:在Rt△ABC中,∠B=90°,求证:AC2=AB2+BC2证明:如图3,作以Rt△ABC的斜边AC为一对角线的矩形ABCD,显然ABCD是圆内接四边形.由托勒密定理,有AC·BD=AB·CD+AD·BC.①又∵ABCD是矩形,。
【中考数学必备专题】中考模型解题系列之四点共圆模型(含答案)
【中考数学必备专题】中考模型解题系列之四点
共圆模型
一、证明题(共2道,每道50分)
1.设P是平行四边形ABCD内部的一点,且∠PBA=∠PDA.求证:∠PAB=∠PCB.
答案:证明:过点P作EP∥AD,且EP=AD.连接AE,EB
∴四边形AEPD是平行四边形
∴∠ABP=∠ADP=∠AEP,
可得:A、E、B、P共圆.
∴∠PAB=∠BEP
又∵EP∥BC,且EP=BC
∴四边形EBCP是平行四边形
∴∠BEP=∠PCB
∴∠PAB=∠PCB.
解题思路:根据已知作出过P点平行于AD的直线,并选一点E,使AE∥DP,通过倒角得出A、E、B、P四点共圆,即可得出答案.
试题难度:三颗星知识点:平行四边形的判定与性质
2.如图,O是Rt△ABC斜边AB的中点,CH⊥AB于H,延长CH至D,使得CH=DH,F为CO 上任意一点,过B作BE⊥AF于E,连接DE交BC于G.求证:∠CAF=∠CDE.
答案:(1)证明:连接OD,
∵△ABC是Rt三角形,BE⊥AF
∴∠BEA=∠ACB=90°,
∴A,B,E,C,四点共圆,且AB是此圆直径,
又∵CH⊥AB,CH=DH,
∴OC=OD
∴D在此圆上,
∴A,B,C,D,E五点共圆,
∴∠CAF=∠CDE.
解题思路:先连接OD,根据已知条件得出∠BEA=∠ACB=90°,得出A,B,E,C,四点共圆且AB是此圆直径,再根据CH⊥AB,CH=DH,确定出D也在此圆上,从而得出A,B,C,D,E五点共圆,即可证出∠CAF=∠CDE
试题难度:三颗星知识点:确定圆的条件。
四点共圆在中考压轴题中的应用——以广东省近五年的中考题为例
四点共圆在中考压轴题中的应用—–以广东省近五年的中考题为例广东省珠海市文园中学(519000)伍磊摘要四点共圆在初中几何中应用比较广泛,尤其是在近五年的广东省中考题应用更多,新课程背景下的初中数学要求学生形成发散思维,四点共圆为几何题的证明提供了新的方法,对于培养学生的思维水平有着非常重要的作用.关键词四点共圆;压轴题;圆周角;符号语言四点共圆在中考的直接考察意图不明显,但通过四点共圆将各类问题转化为圆的常见问题,再用圆的基本性质将问题解决,达到事半功倍的效果,有助于学生形成新的数学模型.本文通过反证法证明四点共圆的两个判定定理,并将它们应用在近五年广东中考题中,再将常规方法和四点共圆的方法进行对比,总结出四点共圆的优点,培养学生的综合解题能力和严谨的学习态度.1四点共圆的两个判定方法定理1四边形的一组对角互补,那么这个四边形的四个顶点共圆.将定理1转化为符号语言和图形语言.如题图1,在四边形ABCD 中,∠B +∠ADC =180◦.求证:点A,B,C,D 四点共圆.证明:(反证法)因为不在同一直线的三个点确定一个圆,所以设过点A,B,C 三点的圆为⊙O ,假设D 不在⊙O 上,所以D 就在⊙O 外部或内部.∴与x 轴正半轴交点的坐标为(2−n,0)则此抛物线解析式为y =a (x −n )(x −2+n ),即y =ax 2−2ax −an (n −2),∴a =a,b =−2a,c =−an (n −2)1⃝ab =a (−2a )=−2a 2<0,故1⃝正确;2⃝b 2−4ac =(−2a )2−4a (−an )(n −2)=4a 2(n −1)2 0,故2⃝正确;3⃝第一种方法:a +b +2c =a −2a −2an (n −2)=−a (2n 2−4n +1)=−2a (n −2+√22)(n −2−√22)∵−1<n <0,∴n −2+√22<0,n −2−√22<0,∴(n −2+√22)(n −2−√22)>0,又∵a >0,∴−2a (n −2+√22)(n −2−√22)<0,∴a +b +2c <0,故3⃝正确;第二种方法:2n 2−4n +1=2(n −1)2−1,∵−1<n <0,∴1<(n −1)2<4,∴1<2(n −1)2−1<7,即当−1<n <0时,2n 2−4n +1>0,∴−a (2n 2−4n +1)<0,故3⃝正确;4⃝3a +c =3a −an (n −2)=−a (n −3)(n +1),∵a >0,−1<n <0,∴n −3<0,n +1>0,∴3a +c >0,故4⃝错误.初中阶段的函数概念是动态的,重点在于运动变化的过程中变量之间的关系,在遇到实际问题时,需要学生主动发现运动变化中的变量关系,在关系发现的过程中潜移默化的渗透数学抽象,模型思想,即便这几题均没有实际问题的背景,但在教学过程中也要把问题回归到函数概念生成的原点,关注二次函数概念的本质.上面解题使用的方法,抛离了总结的所谓“套路”,虽然看似解法变复杂了,但实则回归了二次函数概念的本质,把此类问题划归为对二次函数解析式的确定,明确二次函数解析式中的待定系数,用更严谨的思维和更规范的表达,体会解决二次函数问题的一般方法.题图1图1(1)当点D 在⊙O 外部,如图1,设CD 与⊙O 交于点E ,连接AE ,∴四边形ABCE 是⊙O 的内接四边形,∴∠B +∠AEC =180◦,∵∠B +∠D =180◦,∴∠D =∠AEC ,∵三角形的外角大于任意一个和他不相邻的内角,∴∠AEC >∠D ,与∠D =∠AEC 矛盾,假设不成立,∴点D 在⊙O 上.(2)当点D 在⊙O 内部,如图2,延长CD 交⊙O 于点F ,连接AF ,∴四边形ABCF 是⊙O 的内接四边形,∴∠B +∠AF C =180◦,∵∠B +∠ADC =180◦,∴∠ADC =∠AF C ,∵三角形的外角大于任意一个和他不相邻的内角,∴∠ADC >∠AF C ,这与∠ADC =∠AF C 矛盾,假设不成立,∴点D 在⊙O 上.综合(1)和(2)得点A,B,C,D 共圆.图2题图2定理2若两个点在一条线段所在直线的的两旁,并且和这条线段的两个端点连线所夹的角相等,那么这两个点和这条线段的两个端点共圆.将定理2转化为符号语言和图形语言.如题图2,点A 和点D 在直线BC 的两旁,连接AB 、AC 、DB 、DC 和AD ,∠BAC =∠BDC (从图形上看也可以看成是在四边形ABCD 中,AC 和BD 是对角线,∠BAC =∠BDC ).求证:点A,B,C,D 四点共圆.证明:(反证法)因为不在同一直线上的三个点确定一个圆,设过点A,B,C 的圆为⊙O ,假设D 不在⊙O 上,所以D就在⊙O 外部或内部.图3图4(1)当点D 在⊙O 外部,如图3,设BD 与⊙O 交于点E ,连接CE ,在同圆中,同弧所对的圆周角相等,∴∠BAC =∠BEC ,∵∠BAC =∠BDC ,∴∠BEC =∠BDC ,∵三角形的外角大于任意一个和他不相邻的内角,∴∠BEC >∠BDC ,这与∠BEC =∠BDC 矛盾,假设不成立,∴点D 在⊙O 上.(2)当点D 在⊙O 内部,如图4,延长BD 交⊙O 于点F ,连接CF ,∵在同圆中,同弧所对的圆周角相等,∴∠BAC =∠BF C ,∵∠BAC =∠BDC ,∴∠BF C =∠BDC ,∵三角形的外角大于任意一个和他不相邻的内角,∴∠BDC >∠BF C ,这与∠BF C =∠BDC 矛盾,假设不成立,∴点D 在⊙O 上.综合(1)和(2)得点A,B,C,D 四点共圆.2四点共圆在近五年广东中考压轴题中的应用以上两个定理在各省市的中考题中应用广泛,接下来我将以广东省近五年的中考压轴题为例.2015年广东省中考题第24题⊙O 是∆ABC 的外接圆,AB 是直径,过弧BC 的中点P 作⊙O 的直径P G 交弦BC 于点D ,连接AG,CP,P B .(1)如题图3,若D 是线段OP 的中点,求∠BAC 的度数;(2)如题图4,在DG 上取一点K ,使DK =DP ,连接CK ,求证:四边形AGKC 是平行四边形;(3)如题图5,取CP 的中点E ,连接ED 并延长ED 交AB 于点H ,连接P H ,求证:P H ⊥AB.题图3题图4题图5图5此题在第(3)中应用定理1证明(3)∵P 是弧BC 的中点且P G 是直径,∴∠P DB =90◦,BD =CD .∵E 为P C 的中点,∴ED 是∆P BC 的中位线,∴DH //P B ,∴∠ODH =∠OP B ,∠ODH =∠OBP ,∵OP =OB ,∴∠OP B =∠OBP ,∴∠ODH =∠OBP ,∴∠HDP +∠P BO =∠HDP +∠ODH =180◦,∴点P 、D 、H 、B 四点共圆,如图5.∴∠P HB =∠P DB =90◦,∴P H ⊥AB .此问也可以证明∆OBD =∆OP H 得∠P HO =∠BDO =90◦,进而得到P H ⊥AB ,但是这种方法相比四点共圆稍显复杂,学生需要从复杂的图形先找到全等三角形,综合性很强.题图62018广东省中考题第24题如题图6,四边形ABCD 中,AB =AD ,以AB 为直径的⊙O 经过点C ,连接AC 和OD 交于点E .(1)证明:OD //BC ;(2)若tan ∠ABC =2,证明:DA 与⊙O 相切;(3)在(2)条件下,连接BD 交于⊙O 于点F ,连接EF ,若BC =1,求EF 的长.图6此题在第(3)中应用定理2.证明(3)连接AF 和CF ,∵AB 为直径,∴∠ACB =∠AF B =90◦,∴∠AF D =180◦−90◦=90◦,∴AF ⊥BD ,由(1)得OD //BC ,∴∠ACB =∠CED =90◦,∴∠AED =180◦−∠CED =180◦−90◦=90◦,∴∠AF D =∠AED =90◦,∴点A 、E 、F 、D 四点共圆,如图6,∴∠F ED =∠F AD ,∵由(2)得∠BAD =90◦且AB =AD ,∴∆ABD 为等腰直角三角形,∴∠ABF =45◦,∵∆ABD 为等腰直角三角形且AF ⊥BD ,∠F AD =∠BAD ÷2=90◦÷2=45◦,∴∠F ED =∠F AD =45◦,∴∠CEF =90◦−45◦=45◦,∵∠ABF 与∠ACF 是弧AF 所对的圆周角,∴∠ABF =∠ACF =45◦,∴∠CF E =90◦,∴∆CEF 为等腰直角三角形,由(2)可知CE =BC =1,∴EF =CE √2=1√2=√22.此问也可以通过相似三角形的判定得∆EF D∆BOD ,再通过相似三角形的对应边成比例得出EF 的长,但是这种方法的计算量相对较大.图72017广东省中考题第25题如图7,在平面直角坐标系中,O 为原点,四边形ABCO 是矩形,点A ,C 的坐标分别是A (0,2)和C (2√3,0),点D 是对角线AC 上一动点(不与A ,C 重合),连结BD ,作DE ⊥BD ,交x 轴于点E ,以线段DE ,BD 为邻边作矩形BDEF .(1)填空:点B 的坐标为;(2)是否存在这样的点D ,使得∆DEC 是等腰三角形?若存在,请求出AD 的长度;若不存在,请说明理由;(3)1⃝求证:DE BD =√33;2⃝设AD =x ,矩形BDEF 的面积为y ,求y 关于x 的函数关系式(可利用1⃝的结论),并求出y 的最小值.此题在第(3)中的第1⃝问分别应用定理1和定理2.图7-1证明(3)1⃝第一种情况,当点E 在点C 的左侧,连接BE ,∵四边形ABCO 和四边形BDEF 是矩形,∴∠BDE =∠BCE =90◦,∴∠BDE +∠BCE =180◦,∴点B 、D 、E 、C 共圆,如图7-1,∵∠DBE 与∠ACO 是弧DE 所对的圆周角,∴∠DBE =∠ACO ,∵tan ∠ACO =AO CO =22√3=√33,∴∠DBE =∠ACO =30◦,∴在Rt ∆DBE 中,DE BD =tan 30◦=√33.第二种情况,当点E 在点C 的左侧,连接BE ,∵∠ACB =90◦−30◦=60◦,∠BDE =90◦,在Rt ∆DBC 中,∠CBD =180◦−∠BDC −∠ACB=180◦−(90◦+∠CDE )−60◦=30◦−∠CDE图8∵∠DEC =30−∠CDE ,∴∠DEC =∠CBD ,∴点B 、D 、E 、C 四点共圆,如图8,∴∠DBE +∠DCE =180◦,∴∠DBE =180◦−∠DCE =180◦−(180◦−30◦)=30◦,∴在Rt ∆DBE 中,DEBD =tan 30◦=√33.综合以上两种情况,DE BD =√33.此问也可以过D 作DH ⊥AB 于点H ,并延长HD 交OE 于G (即利用直角构造相似三角形),可得∆DHB∆DEG ,进而得出DE BD =DG BH =DG CG =tan 30◦=√33,但是利用直角构造相似三角形的是中考的难点,学生不容易想到.波利亚曾经说过:解题是一种实际性的技能,就好像游泳一样,必须模仿和观察别人在解题时的方法,就能独具慧眼.用敏锐的视角发现四点共圆,从而让你感觉到原来圆如此的简单.参考文献[1]张素慧.例谈初中数学四点共圆策略[J],数理化学习(初中版),2016,5,30-31.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四讲 四点共圆问题
“四点共圆”问题在数学竞赛中经常出现,这类问题一般有两种形式:一是以“四点共圆”作为证题的目的,二是以“四点共圆”作为解题的手段,为解决其他问题铺平道路.
1 “四点共圆”作为证题目的
例1.给出锐角△ABC ,以AB 为直径的圆与AB 边的高CC ′及其延长线交于M ,
N .以AC 为直径的圆与AC 边的高BB ′及其延长线将于P ,Q .求证:M ,N ,P ,Q 四点共圆.
分析:设PQ ,MN 交于K 点,连接AP ,AM . 欲证M ,N ,P ,Q 四点共圆,须证 MK ·KN =PK ·KQ , 即证(MC ′-KC ′)(MC ′+KC ′)
=(PB ′-KB ′)·(PB ′+KB ′) 或MC ′2-KC ′2=PB ′2-KB ′2 . ①
不难证明 AP =AM ,从而有
AB ′2+PB ′2=AC ′2+MC ′2.
故 MC ′2-PB ′2=AB ′2-AC ′2
=(AK 2-KB ′2)-(AK 2-KC ′2)
=KC ′2-KB ′2. ②
由②即得①,命题得证.
例2.A 、B 、C 三点共线,O 点在直线外, O 1,O 2,O 3分别为△OAB ,△OBC ,
△OCA 的外心.求证:O ,O 1,O 2, O 3四点共圆.
分析:作出图中各辅助线.易证O 1O 2垂直平分OB ,O 1O 3垂直平分OA .观察△OBC
及其外接圆,立得∠OO 2O 1=2
1∠OO 2B =∠OCB .观察△OCA 及其外接圆,立得∠OO 3O 1=2
1∠OO 3A =∠OCA . 由∠OO 2O 1=∠OO 3O 1⇒O ,O 1,O 2,O 3共圆.
利用对角互补,也可证明O ,O 1,O 2,O 3四点共圆,请同学自证.
2 以“四点共圆”作为解题手段
这种情况不仅题目多,而且结论变幻莫测,可大体上归纳为如下几个方面.
(1)证角相等
例3.在梯形ABCD 中,AB ∥DC ,AB >CD ,K ,M 分别在AD ,BC 上,∠DAM
=∠CBK .
求证:∠DMA =∠CKB . 分析:易知A ,B ,M ,K 四点共圆.连接KM ,
有∠DAB =∠CMK .∵∠DAB +∠ADC =180°,
∴∠CMK +∠KDC =180°. 故C ,D ,K ,M 四点共圆⇒∠CMD =∠DKC .
A B C K M N P Q B ′C ′A B C O O O O 123A B C D K M ··
但已证∠AMB =∠BKA ,
∴∠DMA =∠CKB .
(2)证线垂直
例4.⊙O 过△ABC 顶点A ,C ,且与AB , BC 交于K ,N (K 与N 不同).△ABC
外接圆和△BKN 外接圆相交于B 和 M .求证:∠BMO =90°. 分析:这道国际数学竞赛题,曾使许多选手望而却步.其实,只要把握已知条件和图形特点,借助“四点共圆”,问题是不难解决的.
连接OC ,OK ,MC ,MK ,延长BM 到G .易得∠GMC =
∠BAC =∠BNK =∠BMK .而∠COK =2·∠BAC =∠GMC +
∠BMK =180°-∠CMK ,
∴∠COK +∠CMK =180°⇒C ,O ,K ,M 四点共圆.
在这个圆中,由
OC =OK ⇒ OC =OK ⇒∠OMC =∠OMK .
但∠GMC =∠BMK ,
故∠BMO =90°.
(3)判断图形形状
例5.四边形ABCD 内接于圆,△BCD ,△ACD ,△ABD ,△ABC 的内心依次记
为I A ,I B ,I C ,I D .
试证:I A I B I C I D 是矩形.
分析:连接AI C ,AI D ,BI C ,BI D 和DI B .易得
∠AI C B =90°+21∠ADB =90°+2
1 ∠ACB =∠AI D B ⇒A ,B ,I D ,I C 四点
共圆.
同理,A ,D ,I B ,I C 四点共圆.此时
∠AI C I D =180°-∠ABI D =180°-2
1∠ABC , ∠AI C I B =180°-∠ADI B =180°-2
1∠ADC , ∴∠AI C I D +∠AI C I B
=360°-2
1(∠ABC +∠ADC ) =360°-2
1×180°=270°. 故∠I B I C I D =90°.
同样可证I A I B I C I D 其它三个内角皆为90°.该四边形必为矩形.
(4)计算
例6.正方形ABCD 的中心为O ,面积为1989㎝2.P 为正方形内
一点,且∠OPB =45°,PA :PB =5:14.则PB =__________
分析:答案是PB =42㎝.怎样得到的呢?
连接OA ,OB .易知O ,P ,A ,B
四点共圆,有∠APB =∠AOB =90°.
A B O K N C M G
故PA 2+PB 2=AB 2=1989.
由于PA :PB =5:14,可求PB .
(5)其他
例7.设有边长为1的正方形,试在这个正方形的内接正三角形中找出面积最大
的和一个面积最小的,并求出这两个面积(须证明你的论断).
分析:设△EFG 为正方形ABCD 的一个内接正三角形,由于正三角形的三个顶
点至少必落在正方形的三条边上,所以不妨令F ,G 两点在正方形的一组
对边上. 作正△EFG 的高EK ,易知E ,K ,G ,
D 四点共圆⇒∠KD
E =∠KGE =60°.同 理,∠KAE =60°.故△KAD 也是一个正 三角形,K 必为一个定点. 又正三角形面积取决于它的边长,当K
F 丄AB 时,边长为1,这时边长
最小,而面积S =4
3也最小.当KF 通过B 点时,边长为2·32-,这时边长最大,面积S =23-3也最大.
例8.NS 是⊙O 的直径,弦AB 丄NS 于M ,P 为ANB 上异于N 的任一点,PS
交AB 于R ,PM 的延长线交⊙O 于Q .求证:RS >MQ .
分析:连接NP ,NQ ,NR ,NR 的延长线交⊙O 于Q ′.连接
MQ ′,SQ ′.
易证N ,M ,R ,P 四点共圆,从而,∠SNQ ′=∠MNR =
∠MPR =∠SPQ =∠SNQ .
根据圆的轴对称性质可知Q 与Q ′关于NS 成轴对称⇒MQ ′=MQ . 又易证M ,S ,Q ′,R 四点共圆,且RS 是这个圆的直径(
∠RMS =90°),MQ ′是一条弦(∠MSQ ′<90°),故RS >MQ ′.但MQ =MQ ′,所以,RS >MQ .
A B
C D E F K G ······。