有理数的除法(教学设计)

合集下载

人教版数学七年级上册1.4《有理数的除法》(第1课时)教学设计

人教版数学七年级上册1.4《有理数的除法》(第1课时)教学设计

人教版数学七年级上册1.4《有理数的除法》(第1课时)教学设计一. 教材分析人教版数学七年级上册1.4《有理数的除法》(第1课时)是学生在学习了有理数加减乘运算的基础上,进一步深化对有理数运算的理解和掌握。

本节内容主要介绍了有理数的除法运算,包括同号有理数的除法、异号有理数的除法以及除以0的情况。

通过本节课的学习,学生能够掌握有理数除法的基本运算方法,并能够正确进行计算。

二. 学情分析学生在进入七年级之前,已经初步掌握了有理数的基本概念和加减乘运算。

但是,对于除法运算,学生可能还存在一些困惑和误解。

因此,在教学过程中,教师需要针对学生的实际情况进行引导和讲解,帮助学生理解和掌握有理数的除法运算。

三. 教学目标1.知识与技能目标:学生能够理解有理数除法的基本概念,掌握同号有理数、异号有理数以及除以0的除法运算方法,并能够正确进行计算。

2.过程与方法目标:通过小组合作、讨论交流等方法,培养学生解决问题的能力和团队合作精神。

3.情感态度与价值观目标:激发学生对数学学习的兴趣,培养学生的耐心和细心,使学生能够积极主动地参与数学学习。

四. 教学重难点1.教学重点:学生能够掌握有理数除法的基本运算方法,并能够正确进行计算。

2.教学难点:学生能够理解和掌握同号有理数、异号有理数以及除以0的除法运算方法。

五. 教学方法1.引导法:教师通过提问、引导,激发学生的思考,帮助学生理解和掌握有理数除法的基本概念和运算方法。

2.实例讲解法:教师通过具体的例子,解释和说明有理数除法的运算规则,让学生能够直观地理解和掌握。

3.小组合作法:学生分组进行讨论和交流,共同解决问题,培养团队合作精神和解决问题的能力。

六. 教学准备1.教学PPT:教师准备相关的教学PPT,包括有理数除法的运算规则、例题等,以便进行直观的教学展示。

2.练习题:教师准备一些练习题,用于学生在课堂上进行操练和巩固所学知识。

七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾之前学过的有理数加减乘运算,激发学生的学习兴趣,为新课的学习做好铺垫。

有理数的除法教案(14篇)

有理数的除法教案(14篇)

有理数的除法教案(14篇)有理数的除法教案1教学目标1.理解有理数除法的意义,娴熟掌控有理数除法法那么,会进行运算;2.了解倒数概念,会求给定有理数的倒数;3.通过将除法运算转化为乘法运算,培育同学的转化的思想;通过运算,培育同学的运算技能。

教学建议〔一〕重点、难点分析本节教学的重点是娴熟进行运算,教学难点是理解法那么。

1.有理数除法有两种法那么。

法那么1:除以一个数等于乘以这个数的倒数。

是把除法转化为乘法来解决问题。

法那么2是把有理数除法纳入有理数运算的统一程序:一确定符号;二计算绝对值。

如:按法那么1计算:原式;按法那么2计算:原式。

2.对于除法的两个法那么,在计算时可依据详细的状况选用,一般在不能整除的状况下应用第一法那么。

如;在有整除的状况下,应用第二个法那么比较方便,如;在能整除的状况下,应用第二个法那么比较方便,如,如写成就麻烦了。

〔二〕知识结构〔三〕教法建议1.同学实际运算时,老师要强调先确定商的符号,然后在依据不怜悯况采用适当的方法求商的绝对值,求商的绝对值时,可以径直除,也可以乘以除数的倒数。

2.关于0不能做除数的问题,让同学结合学校的知识接受这一认识就可以了,不必详细讲解并描述0为什么不能做除数的理由。

3.理解倒数的概念〔1〕依据定义乘积为1的两个数互为倒数,即:,那么互为倒数。

如:,那么2与,-2与互为倒数。

〔2〕由倒数的定义,我们可以得到求已知数倒数的一种基本方法:即用1除以已知数,所得商就是已知数的倒数。

如:求的倒数:计算,-2就是的倒数。

一般我们求已知数的倒数很少用这种方法,实际应用时我们常把已知数看作分数形式,然后把分子、分母颠倒位置,所得新数就是原数的倒数。

如-2可以看作,分子、分母颠倒位置后为,就是的倒数。

〔3〕倒数与相反数这两个概念很简单混淆。

要留意区分。

首先倒数是指乘积为1的两个数,而相反数是指和为0的两个数。

如:,2与互为倒数,2与-2互为相反数。

其次互为倒数的两个数符号相同,而互为相反数符号相反。

有理数除法的教案 [有理数的除法教案]

有理数除法的教案 [有理数的除法教案]

有理数除法的优秀教案一、教学目标1. 知识与技能:(1)理解有理数除法的概念;(2)掌握有理数除法的运算方法;(3)能够运用有理数除法解决实际问题。

2. 过程与方法:(1)通过实例演示,引导学生掌握有理数除法的运算规律;(2)利用数轴和图形,帮助学生直观地理解有理数除法的过程;(3)设计练习题,让学生在实践中提高有理数除法的运算能力。

3. 情感态度与价值观:(1)培养学生对数学的兴趣和自信心;(2)培养学生勇于探索、积极思考的精神;(3)培养学生合作交流、归纳总结的能力。

二、教学重点与难点1. 教学重点:(1)掌握有理数除法的运算方法;(2)能够运用有理数除法解决实际问题。

2. 教学难点:(1)理解有理数除法中的符号变化;(2)掌握有理数除法在数轴上的表示方法。

三、教学过程1. 导入新课:(1)复习相关知识点,如相反数、绝对值、有理数乘法等;(2)通过实例引入有理数除法,激发学生的学习兴趣。

2. 知识讲解:(1)讲解有理数除法的定义和运算规律;(2)利用数轴和图形,直观地展示有理数除法的过程;(3)解释有理数除法中的符号变化,如“÷”、“-”等。

3. 课堂练习:(1)设计练习题,让学生独立完成;(2)引导学生总结有理数除法的运算规律;(3)分析练习过程中出现的问题,进行解答和讲解。

四、教学评价1. 课堂表现:(1)观察学生在课堂上的参与程度、提问回答等情况;(2)评价学生对有理数除法的理解和运用能力。

2. 练习作业:(1)检查学生完成的练习题,评价其运算能力和理解程度;(2)关注学生在练习中出现的问题,进行针对性的指导。

五、教学拓展1. 对比有理数除法和无理数除法的异同;2. 探讨有理数除法在实际生活中的应用;3. 引导学生进行有理数除法的拓展研究,如探索复杂数系的除法规律等。

六、教学策略1. 案例分析:通过分析实际案例,让学生了解有理数除法在生活中的应用,提高学生学习的兴趣和积极性。

《有理数的除法》教案(精选9篇)

《有理数的除法》教案(精选9篇)

《有理数的除法》教案《有理数的除法》教案(精选9篇)教案是教师为顺利而有效地开展教学活动,根据课程标准,教学大纲和教科书要求及学生的实际情况,以课时或课题为单位,对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书。

下面是小编整理的《有理数的除法》教案,欢迎大家分享。

《有理数的除法》教案篇1学习目标1. 理解除法的意义,理解除法是乘法的逆运算,理解倒数的意义,掌握有理数的除法法则.2. 熟练地进行有理数的除法运算;3. 借助有理数乘法知识,通过归纳、类比等方法获得有理数的除法法则.重点有理数的除法法则难点理解商的符号及其绝对值与被除数和除数的关系教学过程一、自主学习(一)、自学课文(二)、导学练习1. 小明从家里到学校,每分钟走50米,共走了20分钟,问小明家离学校有多远?放学时,小明仍然以每分钟50米的速度回家,应该走多少分钟?从上面这个例子你可以发现,有理数除法与有理数乘法之间满足怎样的关系?2.请找出下列有理数的倒数-4 3 -8 - -1 -3.53.比较大小:8(-4)_______8 (-15)3_______(-15)(-1 )(-2) (-1 )(- )计算:(1)(-15)(-3)= (2)(-12)(- )=(3)(-8)(- )= (4)0(- )=通过比较、计算,你能归纳出有理数的除法法则吗?有理数的除法法则:(或换一种表达方法为):用字母表示除法法则:4.课本第35页练习题(三)自学疑难摘要:组长检查等级:组长签名:二、合作探究例1 计算:(1)(-18)6 (2) (- )(3) (4)-3.5 (- )注意:乘除混合运算该怎么做呢?例2化简下列分数:(1) (2)请思考:商的符号及绝对值同被除数和除数有什么关系?三、展示提升1、每个同学自主完成二中的练习后先在小组内交流讨论。

2、每个组根据分配的任务把自己组的结论板书到黑板上准备展示。

3、每个组在展示的过程中其他组的同学认真听作好补充和提问。

人教版七年级数学上册1.4.2《有理数的除法》教学设计

人教版七年级数学上册1.4.2《有理数的除法》教学设计

人教版七年级数学上册1.4.2《有理数的除法》教学设计一. 教材分析《有理数的除法》是人教版七年级数学上册1.4.2的内容,本节课主要让学生掌握有理数除法的基本运算方法,理解有理数除法的概念,并能够应用有理数除法解决实际问题。

教材通过例题和练习题的形式,引导学生掌握有理数除法的运算规则,并能够进行熟练计算。

二. 学情分析七年级的学生已经掌握了有理数的基本概念和加减乘运算,但对除法运算的理解和应用还不够熟练。

因此,在教学过程中,需要引导学生理解有理数除法的本质,通过实例演示和练习,让学生逐渐掌握有理数除法的运算方法。

三. 教学目标1.理解有理数除法的概念,掌握有理数除法的运算规则。

2.能够进行有理数除法的熟练计算。

3.能够应用有理数除法解决实际问题。

四. 教学重难点1.教学重点:有理数除法的运算规则,有理数除法的计算方法。

2.教学难点:理解有理数除法的本质,解决实际问题时如何运用有理数除法。

五. 教学方法1.实例教学:通过具体的例子,让学生理解有理数除法的运算规则。

2.练习法:通过大量的练习题,让学生熟练掌握有理数除法的计算方法。

3.问题解决法:引导学生运用有理数除法解决实际问题,提高学生的应用能力。

六. 教学准备1.教学PPT:制作有关有理数除法的PPT,包括定义、规则、例题和练习题等。

2.练习题:准备一些有关有理数除法的练习题,用于课堂练习和课后作业。

3.教学工具:黑板、粉笔、投影仪等。

七. 教学过程1.导入(5分钟)教师通过一个实际问题引入本节课的主题,例如:“小明有5个苹果,他想把这5个苹果平均分给他的5个朋友,每个朋友能分到几个苹果?”让学生思考并回答问题,引导学生理解有理数除法的概念。

2.呈现(10分钟)教师通过PPT展示有理数除法的定义和运算规则,让学生了解有理数除法的基本概念。

然后,通过一些具体的例子,讲解有理数除法的运算方法,让学生掌握有理数除法的计算规则。

3.操练(10分钟)教师给出一些练习题,让学生独立完成。

人教版七年级数学上册:1.4.2《有理数的除法》教学设计3

人教版七年级数学上册:1.4.2《有理数的除法》教学设计3

人教版七年级数学上册:1.4.2《有理数的除法》教学设计3一. 教材分析人教版七年级数学上册1.4.2《有理数的除法》是学生在掌握了有理数的加法、减法、乘法的基础上进行学习的,是有理数运算法则的重要组成部分。

本节内容主要介绍有理数的除法运算方法,通过实例让学生理解有理数除法的基本概念和运算规则,培养学生运用有理数解决实际问题的能力。

二. 学情分析七年级的学生已经掌握了有理数的加法、减法、乘法,具备了一定的数学基础。

但是,对于有理数的除法,学生可能存在一些认知上的困难,如除以一个负数、除以零等问题。

因此,在教学过程中,教师需要结合学生的实际情况,通过具体实例,引导学生理解并掌握有理数除法的运算规则。

三. 教学目标1.让学生掌握有理数除法的基本概念和运算规则。

2.培养学生运用有理数解决实际问题的能力。

3.提高学生逻辑思维能力和团队协作能力。

四. 教学重难点1.教学重点:有理数除法的基本概念和运算规则。

2.教学难点:除以一个负数、除以零等特殊情况的处理。

五. 教学方法1.采用问题驱动法,引导学生主动探究有理数除法的运算规则。

2.运用实例分析法,通过具体实例让学生理解有理数除法的运算方法。

3.采用小组合作学习法,培养学生的团队协作能力和逻辑思维能力。

六. 教学准备1.准备相关课件和教学素材。

2.准备计时器,用于记录每个环节的时间。

3.准备练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾已学过的有理数加法、减法、乘法知识,为新课的学习做好铺垫。

2.呈现(10分钟)教师通过课件展示有理数除法的基本概念和运算规则,让学生初步了解有理数除法。

3.操练(15分钟)教师提出一些有关有理数除法的问题,让学生分组讨论并解决问题。

如:–2÷3等于多少?–-5÷2等于多少?–0÷3等于多少?学生通过小组合作,共同探讨这些问题,总结出有理数除法的运算规则。

4.巩固(10分钟)教师针对本节课的内容,设计一些练习题,让学生独立完成。

人教版数学七年级上册1.2《有理数的除法》教学设计3

人教版数学七年级上册1.2《有理数的除法》教学设计3

人教版数学七年级上册1.2《有理数的除法》教学设计3一. 教材分析《有理数的除法》是人教版数学七年级上册第一章第二节的内容,本节内容是在学生已经掌握了有理数的加法、减法、乘法的基础上进行学习的。

有理数的除法是数学中基本的运算之一,它在日常生活和工农业生产中有着广泛的应用。

本节内容主要让学生了解有理数除法的基本法则,并能正确进行计算。

二. 学情分析七年级的学生已经具备了一定的数学基础,对有理数的加法、减法、乘法有一定的了解。

但是,学生在学习有理数的除法时,可能会对负数的除法产生困惑。

因此,在教学过程中,教师需要引导学生理解有理数除法的基本法则,并通过大量的练习让学生熟练掌握。

三. 教学目标1.理解有理数除法的基本法则,能正确进行有理数的除法计算。

2.培养学生的逻辑思维能力和解决问题的能力。

3.提高学生对数学的兴趣,增强学生的自信心。

四. 教学重难点1.教学重点:有理数除法的基本法则和计算方法。

2.教学难点:理解负数除法的过程和计算方法。

五. 教学方法1.采用问题驱动法,引导学生通过思考和探索来理解有理数除法的基本法则。

2.使用案例分析法,通过具体的例子让学生理解负数除法的计算方法。

3.采用练习法,让学生在实践中巩固所学知识,提高计算能力。

六. 教学准备1.准备相关的教学案例和练习题,以便在课堂上进行讲解和练习。

2.准备课件,以便在课堂上进行演示和讲解。

七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾之前学过的有理数的加法、减法、乘法,为新课的学习做好铺垫。

2.呈现(15分钟)教师通过课件展示有理数除法的基本法则,并用具体的例子进行讲解。

例如,教师可以讲解一个正数除以一个正数、一个负数除以一个正数、一个正数除以一个负数、一个负数除以一个负数的情况。

3.操练(15分钟)教师让学生在课堂上进行相关的除法计算练习,并及时给予指导和反馈。

教师可以设置不同难度的题目,让学生逐步提高计算能力。

4.巩固(10分钟)教师通过提问方式检查学生对有理数除法的基本法则和计算方法的掌握情况,并对学生的错误进行纠正。

有理数的除法教学设计

有理数的除法教学设计

有理数的除法教学设计一、教学目标•理解有理数的除法运算规则;•能够在计算中正确运用有理数的除法运算;•学会简化有理数的除法运算结果。

二、教学准备•教师:准备有理数除法的示例题目和相关教材;•学生:准备纸和笔。

三、教学内容和步骤1. 引入•教师可以通过提问的方式引入本节课的教学内容,例如:“请举个例子,让我们回顾一下什么是有理数除法?”2. 有理数的除法运算规则讲解•教师通过示例题目和详细的讲解,向学生介绍有理数的除法运算规则。

重点讲解以下几个方面:–除法的定义:将一个数分成若干个相等的部分,其中每一份叫做除以的数;–正数除以正数、负数除以负数、正数除以负数和负数除以正数的结果;–0除以有理数的结果;–有理数的除法运算中,除数和被除数的相反数之间的关系。

3. 理解有理数除法的步骤•教师通过多个示例题目,引导学生理解有理数除法的步骤。

包括以下几个步骤:–如果除数和被除数有一个是0,则除法的结果为0;–先判断除数和被除数的正负关系;–分别计算除数和被除数的绝对值的商;–当除数和被除数的符号相同时,商的符号为正,否则为负。

4. 有理数除法的实际应用•教师通过实际情境和实际问题,让学生应用有理数的除法进行解决。

例如:“如果远亲给你的零花钱是-20元,你准备每天花3元,请问你能支撑多少天?”让学生运用除法运算规则解决该问题。

5. 简化有理数的除法运算结果•教师教授学生如何简化有理数除法的结果。

包括以下几个方面:–化简除法分数的约法:将分子和分母同时除以公约数,得到最简形式;–除法运算结果的最简形式。

6. 练习和巩固•教师提供一系列有理数除法的练习题目,让学生独立完成,并及时纠正错误,巩固所学知识。

四、教学小结•教师对本节课所讲的有理数除法运算规则和步骤进行总结,巩固学生的学习成果。

五、课后作业•教师布置相关的课后作业,要求学生练习有理数的除法运算,并通过撰写总结或解答问题等方式巩固所学的知识。

以上就是本节课《有理数的除法教学设计》的内容,通过本节课的教学,相信学生能够加深对有理数除法运算规则的理解,并能够在实际问题中应用所学的知识进行运算。

人教版七年级数学上册:1.4.2《有理数的除法》教学设计1

人教版七年级数学上册:1.4.2《有理数的除法》教学设计1

人教版七年级数学上册:1.4.2《有理数的除法》教学设计1一. 教材分析《有理数的除法》是人教版七年级数学上册第一章第四节的一部分,主要内容包括有理数的除法运算和除法法则。

本节课的内容是学生在学习了有理数的加减乘法的基础上进行学习的,是对前面所学知识的进一步拓展和延伸。

教材通过具体的例子和练习题,使学生掌握有理数除法的基本运算方法,并能够灵活运用。

二. 学情分析七年级的学生已经掌握了有理数的加减乘法运算,具备了一定的数学基础。

但是,对于有理数的除法,学生可能还存在一些困惑和疑问。

因此,在教学过程中,教师需要结合学生的实际情况,通过具体的例子和练习题,引导学生理解和掌握有理数的除法运算。

三. 教学目标1.理解有理数除法的概念和意义。

2.掌握有理数除法的运算方法。

3.能够正确进行有理数除法的计算。

4.能够运用有理数除法解决实际问题。

四. 教学重难点1.教学重点:有理数除法的运算方法。

2.教学难点:理解有理数除法的概念和意义,以及如何运用有理数除法解决实际问题。

五. 教学方法采用讲授法和练习法进行教学。

通过讲解和示范,使学生理解和掌握有理数除法的运算方法。

通过练习题的训练,使学生巩固所学知识,并能够灵活运用。

六. 教学准备1.教材和教学参考书。

2.投影仪和幻灯片。

3.练习题和答案。

七. 教学过程1.导入(5分钟)通过提问的方式,引导学生回顾已学的有理数的加减乘法运算,为新课的学习做好铺垫。

2.呈现(10分钟)教师通过讲解和示范,向学生介绍有理数的除法运算,让学生理解有理数除法的概念和意义,并掌握有理数除法的运算方法。

3.操练(10分钟)学生根据教师所给的例子,进行有理数除法的计算。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)学生独立完成教师布置的练习题,教师检查学生的答案,并及时给予指导和纠正。

5.拓展(10分钟)教师通过给出一些实际问题,让学生运用有理数除法进行解决。

教师引导学生思考和讨论,拓展学生的思维。

(完整版)有理数的除法教案

(完整版)有理数的除法教案

(完整版)有理数的除法教案
有理数的除法教案
目标
通过本课教学,学生将能够掌握有理数的除法运算,并能够灵
活运用于实际问题中。

教学步骤
第一步:引入
1. 准备一个简单的实际问题,例如:小明买了8只相同的苹果,他想将这些苹果平均分给他的4个朋友,每个人分到几只苹果?
2. 通过这个问题引入有理数的除法运算。

第二步:讲解有理数的除法
1. 有理数的除法是指将一个有理数除以另一个有理数的运算。

2. 讲解如何进行有理数的除法运算:
- 当除数和被除数都是整数时,可以按照整数的除法运算规则
进行计算。

- 当除数和被除数其中有一个或两个为分数时,先将分数转化为整数,然后按照整数的除法运算规则进行计算。

第三步:演示示例题目
1. 演示几个例子,让学生掌握有理数的除法运算方法和技巧。

2. 每个示例题目都可以通过实际问题引入,以增加学生的兴趣和理解度。

第四步:练和巩固
1. 分发练题给学生,让他们自己完成。

2. 收集练题并进行批改,及时给予学生反馈。

第五步:拓展应用
1. 提供一些拓展应用题目,让学生能够将有理数的除法运用到实际生活中。

2. 鼓励学生提出自己的问题,并与同学进行讨论。

总结
1. 对本节课的内容进行总结,强调有理数的除法运算的重要性和灵活应用性。

2. 鼓励学生多加练,巩固所学知识。

学校名称:XXX学校
班级:X年级X班
教师:XXX
日期:XXXX年XX月XX日。

有理数除法说课稿(通用6篇)

有理数除法说课稿(通用6篇)

有理数除法说课稿(通用6篇)有理数除法说课稿1一、说教材1、教材的地位及作用。

有理数的运算是本章的重点,是学好后续内容的重要前提。

本节课是在学习了有理数乘法的基础上进行的,是熟练进行有理数运算的必备知识,它与有理数的其它运算形成了一个完整的知识体系。

整节内容渗透了从一般到特殊、化未知到已知、用已知求新知的数学思想方法。

通过本节学习让学生感受数学学习的乐趣,体验数学思维的力量,发展学生自主创新的意识。

2、教学目标。

根据学生已有的认知基础及本课教材的地位及作用,依据课程标准,我确定本节课的教学目标为:(1)知识技能方面:理解有理数除法的意义,熟练掌握有理数除法法则,会求有理数的倒数,会进行有理数的除法运算。

(2)过程与方法方面:通过有理数除法法则的导出及运算,让学生体会转化思想,感知数学知识的普遍性、相互转化性。

(3)情感态度方面:通过生生合作,使学生体会在解决问题中与他人合作的重要性,通过积极参与教学活动,让学生充分体验问题的探索过程,培养学生的探究意识,激发学生学好数学的热情。

3、教学重点、难点在整个知识系统中,学生能够熟练地进行有理数的运算是很重要的,因此本节课的教学重点确定为熟练进行有理数的除法运算。

勤思、善思,是学好数学的必要条件。

本节内容是在有理数乘法的基础上进行的,有理数的除法可以利用乘法进行,基于此,教科书中给出了两种法则,对初一学生来说,理解这两种法则有一定的难度,因此,本节课的教学难点定为:理解有理数的除法法则。

二、说教法为了突出重点、突破难点,使学生能达到本节设定的教学目标,我采用的教学方法是:针对初一学生的思维依赖性强,思维活跃,但抽象概括能力相对较弱的特点,本节课充分借助多媒体来增强直观效果。

运用“自学—辅导”模式,遵循“面向全体,尊重主体”的教学理念,采用“先学后教,当堂训练”的课堂教学结构,把教学过程化为学生自学、大胆猜想、合作交流、归纳总结的过程,使课堂教学遵循从生动、直观到抽象思维的认识规律。

有理数的除法 优秀教学设计(教案)

有理数的除法  优秀教学设计(教案)

生答:
b
师问 3:这里的 a,b 表示任何数吗? 生答: b 0
总结:有理数的除法法则
a

b

a

1 b

b

0

3.课堂总结 知识梳理:掌握有理数除法运算的两种方式,理解它们的适用范围,会统一乘法运算。 重难点归纳:能熟练、灵活地采用两种方法进行有理数的除法运算。
思路点拨:将带分数化为假分数后即可进行除法运算。
1 答案:﹣ 5 。
2 (5)计算:8 15 ÷(﹣2)=_____
知识点:有理数的除法。
122
1
61
解题过程:解:原式= 15 ×(﹣ 2 )=﹣ 15 。
思路点拨:根据除以-个数等于乘以这个数的倒数,可得答案。
61 答案:﹣ 15 。
3 1 1 81 (6)计算: 3 9 = 。
2.预习自测 1
(1)计算:10+2÷ 3 ×(﹣2)
知识点:有理数的混合运算. 解题过程:解:原式=10+2×3×(﹣2)=10﹣12=﹣2. 思路点拨:原式先计算乘除运算,再计算加减运算即可得到结果. 答案:﹣2.
(2)计算:

知识点:有理数的除法.
解题过程:解:
=

思路点拨:把除法变为乘法,再按照乘法的分配律进行计算.
1 (-1 4 )÷(-2)
1
1
(-1 4 )×(- 2 )
师生活动:小组合作完成上面题目的填空,探讨并归纳出有理数的除法法则。
师问 1:结合小学所学的除法法则,你发现了什么?
生答:除以一个数,等于乘这个数的倒数。
师问 2:小学所学的除法法则在有理数范围仍然适用,你能用字母表示吗?

人教版七年级数学上册:1.4.2《有理数的除法》教学设计

人教版七年级数学上册:1.4.2《有理数的除法》教学设计

人教版七年级数学上册:1.4.2《有理数的除法》教学设计一. 教材分析人教版七年级数学上册1.4.2《有理数的除法》是学生在学习了有理数的加减乘除运算后,进一步学习有理数除法运算的章节。

本节内容通过实例引入有理数的除法运算,让学生掌握有理数除法的基本法则,理解除法的运算律,为后续学习更高级的数学知识打下基础。

二. 学情分析七年级的学生已经掌握了有理数的加减乘运算,对数学运算有一定的认识。

但在除法运算方面,可能还存在对除法运算的理解不够深入,对除以负数、零除以任何非零数等特殊情况的处理不够熟练的问题。

因此,在教学过程中,需要针对这些问题进行讲解和操练。

三. 教学目标1.让学生掌握有理数除法的基本法则。

2.让学生理解除法的运算律。

3.培养学生解决实际问题的能力。

四. 教学重难点1.有理数除法的基本法则。

2.除法的运算律。

3.特殊情况的处理。

五. 教学方法采用问题驱动法、案例教学法、分组合作法、引导发现法等多种教学方法,引导学生通过自主学习、合作交流,掌握有理数的除法运算。

六. 教学准备1.PPT课件2.教学案例3.分组合作学习材料七. 教学过程1.导入(5分钟)利用PPT课件展示生活中的除法实例,如分配物品、计算利率等,引导学生回顾除法的概念,为新课的学习做好铺垫。

2.呈现(10分钟)通过PPT课件,介绍有理数除法的基本法则,如除以正数、除以负数、零除以任何非零数等。

同时,解释除法的运算律,让学生初步理解有理数除法的运算规则。

3.操练(10分钟)让学生分组合作,解决一些有关有理数除法的问题。

教师在这个过程中,要及时引导学生,解答他们遇到的问题,帮助他们掌握有理数除法的运算方法。

4.巩固(10分钟)教师通过PPT课件,给出一些有关有理数除法的练习题,让学生独立完成。

然后,教师选取一些学生的作业进行讲解,加深学生对有理数除法的理解。

5.拓展(10分钟)教师引导学生运用有理数除法解决实际问题,如计算购物时的折扣、计算利息等。

人教版数学七年级上册1.4.2《有理数的除法(1)》教学设计1

人教版数学七年级上册1.4.2《有理数的除法(1)》教学设计1

人教版数学七年级上册1.4.2《有理数的除法(1)》教学设计1一. 教材分析《有理数的除法(1)》是人教版数学七年级上册的教学内容,本节课主要让学生掌握有理数除法的基本运算方法,理解有理数除法的运算规律,培养学生解决实际问题的能力。

教材通过引入日常生活中的一些实例,让学生感受有理数除法的实际意义,进而引导学生探究有理数除法的运算方法。

二. 学情分析学生在七年级上册已经学习了有理数的加法、减法、乘法,对有理数的基本运算有了初步了解。

但学生在解决实际问题时,往往不能灵活运用有理数运算规律。

因此,在教学过程中,教师需要关注学生的认知水平,引导学生将实际问题转化为有理数除法运算问题,并通过实例让学生感受有理数除法的运算规律。

三. 教学目标1.知识与技能:使学生掌握有理数除法的基本运算方法,理解有理数除法的运算规律。

2.过程与方法:培养学生解决实际问题的能力,提高学生运用有理数除法解决生活中的问题。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生积极思考、合作探究的精神。

四. 教学重难点1.教学重点:有理数除法的基本运算方法。

2.教学难点:理解有理数除法的运算规律,解决实际问题。

五. 教学方法1.情境教学法:通过引入日常生活中的一些实例,让学生感受有理数除法的实际意义。

2.引导发现法:教师引导学生观察、分析实例,发现有理数除法的运算规律。

3.合作学习法:学生分组讨论,共同解决问题,提高学生合作能力。

六. 教学准备1.教学课件:制作课件,展示实例和教学内容。

2.教学素材:准备一些实际问题,用于引导学生解决。

3.教学工具:黑板、粉笔、投影仪等。

七. 教学过程1.导入(5分钟)利用课件展示日常生活中的一些实例,如购物时找零、制作食品时配料等,引导学生感受有理数除法的实际意义。

2.呈现(10分钟)教师通过讲解,向学生介绍有理数除法的基本运算方法,如“同号两数相除,异号两数相除”等。

同时,引导学生观察实例,发现有理数除法的运算规律。

1.4.2有理数的除法(第一课时)(教学设计)七年级数学上册(人教版)

1.4.2有理数的除法(第一课时)(教学设计)七年级数学上册(人教版)

有理数的除法(第一课时)教学设计一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》七年级上册(以下统称“教材”)第一章“有理数”1.4.2 有理数的除法(第一课时),内容包括:有理数的除法法则、运用法则进行有理数的除法及乘除混合运算.2.内容解析有理数的运算是本章的重点,是学好后续内容的重要前提.本节课是在学习了有理数乘法的基础上进行的,是熟练进行有理数运算的必备知识,它与有理数的其它运算形成了一个完整的知识体系.有理数的除法是乘法的逆运算,与有理数的减法法则的得出过程类似,也与小学讨论除法运算的过程一致.通过把除法运算转化为有理数的乘法(已有知识)来进行解释,进而得出有理数的除法的运算法则,体现了数学知识之间的密切联系,和方法的同一性,进一步说明乘法与除法的关系,除法法则本质上是把除法转化为乘法来运算.与有理数乘法运算类似,除法也是“先定符号,再求绝对值”.在学习了有理数的乘法、除法运算法则的基础上,进行有理数的乘除混合运算,最主要的是解决运算顺序的问题.这一顺序与小学所学的乘除混合运算顺序是一致的.基于以上分析,确定本节课的教学重点为:理解除法法则,体验除法与乘法的转化关系.二、目标和目标解析1.目标(1)认识有理数的除法,经历除法的运算过程.(运算能力)(2)理解除法法则,体验除法与乘法的转化关系.(转化思想)(3)掌握有理数的除法及乘除混合运算.(运算能力)2.目标解析本节课是在学习了有理数乘法的基础上进行的,是熟练进行有理数运算的必备知识,与有理数的其他运算形成了一个完整的知识体系.因此本节课以学生熟悉的生活情境入手,得出除法运算,然后结合有理数乘法的知识来解释有理数的除法结果的准确性,整节内容渗透了从一般到特殊、化未知到已知、用已知求新知的数学思想方法.通过本节课的学习,让学生感受数学学习的乐趣,体验数学思维的力量,发展学生自主创新的意识.三、教学问题诊断分析对有理数除法法则的探索,要经历从具体的例子进行观察比较,归纳出规律的过程,具体的例子是根据除法是乘法的逆运算,以及已经掌握的乘法运算写出来的,但不是教师给出式子,由学生去计算,再观察特点,而是由学生根据以上想法自己写出算式,因而对学生来说有一定的困难.有理数运算与以前学过的运算的一个重要区别就是多了一个符号问题,虽然学习有理数的除法之前,学生在有理数的加法、减法、乘法中已经多次遇到符号问题,有了处理符号问题的基础,但进行有理数除法时需对除法法则的两种不同形式进行选择,特别是进行有理数乘除混合运算时还要注意运算顺序及运算律的使用,有可能分散注意力,而忽视符号问题.符号问题是一个易错点,对有些学生来说也是一个难点.基于以上分析,确定本节课的教学难点为:有理数除法法则的探索,进行有理数除法及乘除混合运算时的符号问题.四、教学过程设计(一)复习回顾1.倒数的定义你还记得吗?乘积是1的两个数互为倒数.2.你能很快地说出下列各数的倒数吗?(二)自学导航情境一:小明从家里到学校,每分钟走70米,共走了20分钟,问小明家离学校有多远?70×20=1400(米)放学后,小明仍然以每分钟70米的速度回家,应该走多少分钟才会到家?1400÷70=20(分)情境二:经统计,某商场一年共亏损3.6万元,那么该商场平均每月亏损多少万元?规定盈利为正,亏损为负. 则列式为:(3.6)÷12=?这个式子应该怎样计算呢?思考:怎样计算8÷(4)呢?因为 ___×(4)=8所以 8÷(4)=___ …………①另一方面,我们有 8×( )=2 …………② 于是有 8÷(4)=8×( ) ………③③式表明,一个数除以4可以转化为乘______来进行,即一个数除以4,等于_________________. 换其他数的除法进行类似讨论,是否仍有除以a(a ≠0)可以转化为乘1a ?6÷2=____,6×12=____; 12÷(3)=____,12×(13)=____; 10÷(5)=____,10×(15)=____;72÷9=_____,72×19=_____.思考:上面各组数计算结果你能得到有理数的除法法则吗? 【归纳】有理数除法法则(一)除以一个不等于0的数,等于乘这个数的倒数. a ÷b =a ·b1(b ≠0)利用上面的除法法则计算下列各题:(1)54÷(9);(2)27÷3;(3)0÷(7); (4)24÷(6). 解:(1)54÷(9)=54×( 19)=6;(2)27÷3=27×13=9; (3)0÷(7)=0×( 17)=0; (4)24÷(6)=24×( 16)=4. 思考:从上面我们能发现商的符号有什么规律? 【归纳】有理数除法法则(二)两数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数,都得0. (三)考点解析 例1.计算:(1)(144)÷(6); (2)(0.75)÷0.75; (3)(12)÷35; (4)0÷(212).分析:在进行有理数除法运算时,能够整除的就选择法则二,不能够整除的就选择用法则一. 解:(1)原式=144÷6=24; (2)原式=(0.75÷0.75)=1; (3)原式=(12)×53=20; (4)原式=0.【迁移应用】1.若ab >0,则一定有( )A.a >0且b >0B.a <0且b <0C.a,b 同正或同负D.a,b 正一负 2.两个数的积是29,其中一个是-16,则,一个是_______.3.计算:(1)(1.2)÷0.4; (2)6÷(13); (3)1÷(5); (4)(229)÷(113); (5)(213)÷(116).解:(1)原式=(1.2÷0.4)=3; (2)原式=6×(3)=18; (3)原式=1×(15)=15; (4)原式=229×311=23; (5)原式=73×67=2.例2.化简下列分数: (1)−16−4; (2)39−15; (3)−25; (4)−120.8; (5)−9−51.解:(1) −16−4=(16)÷(4)=4; (2)39−15=39÷(15)=39×(115)=135;(3) 0−25=0÷(25)=0; (4) −120.8=(12)÷0.8=(12)×54=15; (5) −9−51 =[(9)÷(51)]=(9÷51)=317. 【迁移应用】1.下列分数化简结果为13的是( )A.−618 B.6−18 C.−6−18 D.−1862.化简下列分数: (1)−217; (2) 4−12; (3) −6−14; (4) −82.4.解:(1)−217=(21)÷7=3; (2)4−12=13;(3) −6−14=6÷(14)=6×(4)=24; (4) −82.4 =82.4 =8024 =103.例3.计算:(1)(2)÷5×15; (2)178÷(10)×313÷(334); (3)(23)×(178)÷0.25; (4)(7)÷[(73)÷7].解:(1)原式=2×15×15 =225; (2)原式=158×210×103×415=16;(3)原式=23×158÷14=23×158×4=5;(4)原式=(7)÷[(73)×17]=(7)÷(13)=(7)×(3)=21.【迁移应用】 计算:(1)(65)×(14)÷(12); (2)27÷(145)×59÷(36); (3)(6)÷[(0.25)÷56]; (4)(81)×49÷(214)÷(8). 解:(1)原式=65×14×112=140; (2)原式=27×59×59×136=25108;(3)原式=(6)÷(14×65) =(6)÷(310)=6×103=20;(4)原式=81×49×49×18=2.例4.计算: (2)÷(15+ 431635)解:原式的倒数=(12+431635)÷(130) =(12+431635)×(30)=12×(30)+43×(30)16×(30)35×(30) =1540+5+18 =32. 则(130)÷(12+ 431635)=132【迁移应用】1.用简便方法计算:99989÷(119).解: 99989÷(119)=(100019)×910=900110=899910. 2.计算:(142)÷(16 314 + 23 27).解:原式的倒数=(16314+2327)÷(142)=(16314+2327)×(42)=16×(42)314×(42)+23×(42)27×(42)=7+928+12 =14. 则(142)÷(16314+ 2327)=114例5.【分类讨论思想】已知a ,b ,c 为三个不等于0的数,且满足abc >0,a+b+c <0,求|a |a+|b |b+|c |c的值.解:因为abc >0,所以a ,b ,c 中负因数的个数为偶数,即为0或2. 又a+b+c <0,所以a ,b ,c 中必有负数. 所以a ,b ,c 中有两个负数,一个正数.假设a 为正数,b ,c 为负数,则|a|=a ,|b|=b ,|c|=c. 所以|a |a+|b |b+|c |c=a a+−b b+−cc=1+(1)+(1)=1.【迁移应用】1.若|x |x =1,则x____0;若|x |x =1,则x____0. 2.若有理数a ,b 满足ab <0,则|a |a +b|b |的值为_____. 3.已知有理数a ,b ,c 满足|a |a +|b |b +|c |c =1,则abc|abc |=_____. 4.已知有理数a ,b 满足ab ≠0,则|a |a +|b |b 的值为( ) A.±2 B.±1 C.±2或0 D.±1或0 【解析】因为ab ≠0,所以分四种情况: ①a >0,b <0,此时原式=11=0; ②a >0,b >0,此时原式=1+1=2; ③a <0,b <0,此时原式=11=2; ④a <0,b >0,此时原式=1+1=0. 故选C.(六)小结梳理五、教学反思。

2.8有理数的除法(教案)

2.8有理数的除法(教案)
五、教学反思
在今天的课堂中,我发现学生们对有理数除法的概念和运算规则的理解程度有所不同。通过导入生活中的实际问题,大多数学生能够很快地被吸引到课堂中来,表现出对学习内容的兴趣。然而,我也注意到,一些学生在异号相除的符号判断上存在困难,这是我们需要重点关注的难点。
在讲授过程中,我尽量使用了简单明了的语言和具体的例子来解释有理数除法的规则,希望这样能够帮助学生更好地理解。同时,通过小组讨论和实验操作,学生们有了实际操作的机会,这有助于他们将理论知识与实际应用结合起来。看到他们在讨论中积极思考、互相交流,我觉得这样的教学方式还是很有成效的。
三、教学难点与重点
1.教学重点
-有理数除法法则:同号得正,异号得负,并将除法转化为乘法进行计算。
-运用有理数除法解决实际问题,如速度、比例等。
-除数为零的情况,理解除以零没有意义。
-重点举例:计算-6 ÷ 2,解释为何结果为-3,而不是3。
2.教学难点
-理解并熟练运用有理数除法法则,特别是异号相除结果的符号判断。
3.重点难点解析:在讲授过程中,我会特别强调同号得正、异号得负的法则以及除法与乘法之间的转化。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与有理数除法相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示有理数除法的基本原理。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了有理数除法的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对有理数除法的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。

七年级数学教案:有理数的除法

七年级数学教案:有理数的除法

七年级数学教案:有理数的除法七年级数学教案:有理数的除法(精选12篇)作为一位兢兢业业的人民教师,就难以避免地要准备教案,借助教案可以有效提升自己的教学能力。

那么教案应该怎么写才合适呢?下面是小编为大家整理的七年级数学教案:有理数的除法,希望能够帮助到大家。

七年级数学教案:有理数的除法1学习目标:1、学会用计算器进行有理数的除法运算.2、掌握有理数的混合运算顺序.3、通过探究、练习,养成良好的学习习惯学习重点:有理数的混合运算学习难点:运算顺序的确定与性质符号的处理教学方法:观察、类比、对比、归纳教学过程一、学前准备1、计算1)(—0.0318)÷(—1.4)2)2+(—8)÷2二、探究新知1、由上面的问题1,计算方便吗?想过别的方法吗?2、由上面的问题2,你的计算方法是先算法,再算法。

3、结合问题1,阅读课本P36—P37页内容(带计算器的同学跟着操作、练习)4、结合问题2,你先猜想,有理数的混合运算顺序应该是?5、阅读P36,并动手做做三、新知应用1、计算1)、18—6÷(—2)×2)11+(—22)—3×(—11)3)(—0.1)÷×(—100)2、师生小结四、回顾与反思请你回顾本节课所学习的主要内容3页五、自我检测1、选择题1)若两个有理数的和与它们的积都是正数,则这两个数()A.都是正数B.是符号相同的非零数C.都是负数D.都是非负数2)下列说法正确的是()A.负数没有倒数B.正数的'倒数比自身小C.任何有理数都有倒数D.-1的倒数是-13)关于0,下列说法不正确的是()A.0有相反数B.0有绝对值C.0有倒数D.0是绝对值和相反数都相等的数4)下列运算结果不一定为负数的是()A.异号两数相乘B.异号两数相除C.异号两数相加D.奇数个负因数的乘积5)下列运算有错误的是()A.÷(-3)=3×(-3)B.C.8-(-2)=8+2D.2-7=(+2)+(-7)6)下列运算正确的是()A.;B.0-2=-2;C.;D.(-2)÷(-4)=22、计算1)6—(—12)÷(—3)2)3×(—4)+(—28)÷73)(—48)÷8—(—25)×(—6)4)六、作业1、P39第7题(4、5、7、8)、第8题2、选做题:P39第10、11、12、1314、15题七年级数学教案:有理数的除法2一、素质教育目标(一)知识教学点1.了解有理数除法的定义。

最新人教版《有理数的除法》教学设计教案(第1课时)

最新人教版《有理数的除法》教学设计教案(第1课时)

第一章有理数1.4 有理数的乘除法1.4.2 有理数的除法第1课时一、教学目标【知识与技能】掌握有理数除法法则,会进行有理数的除法运算以及分数的化简.【过程与方法】通过学习有理数除法法则,体会转化思想,会将乘除混合运算统一为乘法运算.【情感态度与价值观】培养学生勇于探索积极思考的良好学习习惯.二、课型新授课三、课时第1课时,共2课时。

四、教学重难点【教学重点】正确应用法则进行有理数的除法运算.【教学难点】灵活运用有理数除法的两种法则.五、课前准备教师:课件、直尺、倒数图片等。

学生:三角尺、练习本、铅笔、圆珠笔或钢笔。

六、教学过程(一)导入新课根据实验测定,高度每增加1km,气温大概下降6℃. 某登山运动员攀登某高峰的途中发回信息,报告他所在高度的温度是-15℃,当时地面气温为3℃. 请问你能确定登山运动员所在的位置高度吗?(出示课件2)(二)探索新知1.师生互动,探究有理数的除法法则(出示课件4)教师问1:小明从家里到学校,每分钟走50米,共走了20分钟,问小明家离学校有多远?学生回答:50×20=100.教师问2:放学时,小明仍然以每分钟50米的速度回家,应该走多少分钟?学生回答:100 ÷50=20.教师问3:从上面这个例子你可以发现,有理数除法与有理数乘法之间满足怎样的关系?学生回答:有理数除法与有理数乘法互为逆运算.教师问4:引入负数后,如何计算有理数的除法呢?以8÷(-4)为例.(出示课件5)师生共同讨论后解答如下:根据除法意义,这就是要求一个数,使它与-4相乘得8.因为(-2)×(-4)=8所以8÷(-4)=-2 ①另外,我们知道,8×(-14)=-2 ②由①、②得8÷(-4)=8×(-14)③③式表明,一个数除以-4可以转化为乘以-14来进行,即一个数除以-4,℃等于乘以-4的倒数-14.教师问5:对于其他的数是不是也可以呢?请完成下面的题目:(出示课件6)学生回答:中间组由上到下答案依次为:-2,-6,45,-8;右边组由上到下答案依次为:-2,-6,45,-8;教师问6:上面各组数计算结果有什么关系?由此你能得到有理数的除法法则了吗?学生回答:上面各组数计算结果相等,有理数的除法可以转化为乘法进行计算.教师问7:观察下列两组式子,你能找到它们的共同点吗?(出示课件7)学生回答:除以一个数等于乘以它的倒数.教师问8:除数能为0吗?学生回答:不能为0.教师问9:换其他数的除法进行类似讨论,是否仍有除以a(a≠0)可以转化为乘以1a呢?[例如(-10)÷(-0.4)]学生做题后回答:仍然可以.总结点拨: 从而得出有理数除法法则:(出示课件8)除以一个不等于0的数,等于乘以这个数的倒数.这个法则也可以表示成:a÷b=a·1b(b≠0), 其中a 、b 表示任意有理数(b≠0)教师问10:利用上面的除法法则计算下列各题.(出示课件9)(1)(–54)÷ (–9); (2)(–27) ÷3;(3)0 ÷ (–7); (4)(–24) ÷(–6).学生回答:(1)6;(2)-9;(3)0;(4)4教师问11:从上面我们能发现商的符号有什么规律?学生回答:同号得正,异号得负.总结点拨:(出示课件10)两数相除,同号得正,异号得负,并把绝对值相除.零除以任何一个不等于零的数,都得零.教师问12:到现在为止我们有了两个除法法则,那么两个法则是不是都可以用于解决两数相除呢?(出示课件11)师生共同解答如下:1. 两个法则都可以用来求两个有理数相除.2. 如果两数相除,能够整除的就选择法则二,不能够整除的就选择用法则一.例1:计算:(出示课件12)(1)(–36) ÷ 9;(2)(-1225)÷(-35) .师生共同解答如下:解:(1)(–36) ÷ 9= –(36×19 )= –4;(2)例2:化简下列各式:(出示课件14)(1) −123 ;(2)−45−12 . 师生共同解答如下:解:(1)(2)例3:计算:(出示课件)(1) (2) 师生共同解答如下:解:(1)原式=12557 ÷5=(125+57)×15=125×15+57×15=25+17=2517点拨:如果有带分数,可以将带分数写成整数部分和分数部分的和,利用分配律进行运算,更加简便.(2)原式=52×85×14= 1点拨:将小数化为分数.总结点拨:1. 有理数除法化为有理数乘法以后,可以利用有理数乘法的运算律简化运算.2. 乘除混合运算往往先将除法化为乘法,然后确定积的符号,最后求出结果(乘除混合运算按从左到右的顺序进行计算).(三)课堂练习(出示课件19-22)1. (–21) ÷7的结果是( )A .3B .–3C .13 D. –132. 计算:(–12) ÷ 3=_______.3. 填空:(1)若a ,b 互为相反数,且a ≠ b ,则a b =________;(2)当a < 0时,|a |a =_______;(3)若 a>b ,a b <0,则a ,b 的符号分别是__________. (4)若–3x=12,则x =_____.4.若|2x +6|+|3−y |=0,则x y =_________.5. (1)计算(- 45)÷(- 2) ;(2)计算-0.5÷78×(- 54);(3)计算(-7)÷(- 32)÷(- 75)参考答案:1.B2.-43.(1)-1;(2)-1;(3)a>0,b<0;(4)-44.-1 解析:由题意得,|2x +6|+|3−y |=0,解得x=-3,y=3,所以x y =−33=-1.5.解:(1)原式=45×12=25(2)原式=12×87×54=57(3)原式=-7×23×57=-103(四)课堂小结今天我们学了哪些内容:除以一个不等于0的数,等于乘以这个数的倒数.两数相除,同号得正,异号得负,并把绝对值相除.零除以任何一个不等于零的数,都得零.(五)课前预习预习下节课(1.4.2)36页到37页的相关内容。

人教版七年级数学上册:1.4.2 《有理数的除法》教学设计

人教版七年级数学上册:1.4.2 《有理数的除法》教学设计

人教版七年级数学上册:1.4.2 《有理数的除法》教学设计一. 教材分析人教版七年级数学上册1.4.2《有理数的除法》是学生在掌握了有理数的概念、加法、减法、乘法的基础上进行学习的。

本节课主要介绍了有理数的除法运算,通过实例让学生理解有理数除法的运算方法,并能够熟练地进行计算。

教材通过简单的例子引入有理数除法,然后逐步引导学生理解和掌握有理数除法的运算规则,最后通过大量的练习使学生熟练掌握有理数除法的运算方法。

二. 学情分析七年级的学生已经掌握了有理数的概念、加法、减法、乘法,对数学运算有一定的认识和理解。

但是,由于有理数除法与整数除法在运算规则上有很大的不同,学生可能会感到困惑。

因此,在教学过程中,教师需要通过实例和练习,让学生理解和掌握有理数除法的运算规则。

三. 教学目标1.理解有理数除法的概念和运算规则。

2.能够熟练地进行有理数除法的计算。

3.能够解决实际问题,运用有理数除法解决生活中的问题。

四. 教学重难点1.有理数除法的运算规则。

2.有理数除法计算的准确性。

五. 教学方法1.实例教学:通过具体的例子,让学生理解和掌握有理数除法的运算规则。

2.练习法:通过大量的练习,使学生熟练掌握有理数除法的运算方法。

3.问题解决法:引导学生运用有理数除法解决实际问题,提高学生的应用能力。

六. 教学准备1.教学课件:制作课件,展示有理数除法的运算规则和实例。

2.练习题:准备适量的练习题,用于课堂练习和巩固。

七. 教学过程1.导入(5分钟)利用实例引入有理数除法,如:计算2/3÷4/3,引导学生思考如何进行计算。

2.呈现(10分钟)讲解有理数除法的运算规则,如:同号相除为正,异号相除为负;除以一个数等于乘这个数的倒数。

并通过课件展示实例,让学生理解和掌握有理数除法的运算方法。

3.操练(10分钟)让学生进行有理数除法的计算练习,教师巡回指导,及时纠正错误。

4.巩固(10分钟)让学生解答一些有关有理数除法的实际问题,如:小华有2/3千克苹果,平均分给4个小朋友,每个小朋友分得多少千克?5.拓展(10分钟)引导学生思考:有理数除法在实际生活中有哪些应用?让学生举例说明,进一步拓宽学生的视野。

初中数学初一数学上册《有理数的除法》教案、教学设计

初中数学初一数学上册《有理数的除法》教案、教学设计
(二)过程与方法
1.通过小组合作、讨论交流等形式,引导学生探索有理数除法的运算规律,培养学生主动探究、合作学习的能力。
2.设计多样化的练习题,让学生在实际操作中掌握有理数除法的运算方法,提高解决问题的能力。
3.引导学生总结有理数除法的运算技巧,培养学生的归纳总结能力。
4.结合生活实际,设计具有情境性的问题,让学生在实际情境中感受数学的魅力,提高学生运用数学知识解决实际问题的能力。
3.演示讲解,突破难点
针对学生在探究过程中遇到的难点,如负数的处理方法、运算定律的应用等,教师进行针对性讲解,帮助学生理解和掌握。
4.巩固练习,分层提高
设计不同难度的练习题,让学生在课堂练习中巩固所学知识。针对学生的个体差异,实施分层教学,使每位学生都能在原有基础具有情境性的问题,让学生在实际情境中运用有理数除法知识解决问题,提高学生的问题解决能力和数学思维。
二、学情分析
初一学生在学习有理数除法之前,已经掌握了有理数的加、减、乘法运算,具备了一定的运算基础。但在实际操作中,学生可能会对有理数除法的运算规律和运算方法产生困惑,对除法与乘法、加减法之间的关系理解不够深入。此外,学生在解决实际问题时,可能难以将数学知识灵活运用到具体情境中。因此,在教学过程中,教师应关注以下方面:
5.注重培养学生的合作意识和团队精神,鼓励学生在小组讨论中积极参与,相互学习,共同提高。
三、教学重难点和教学设想
(一)教学重点
1.有理数除法的运算规律和运算方法。
2.有理数除法与乘法、加减法之间的关系。
3.应用有理数除法解决实际问题。
(二)教学难点
1.理解除法运算中负数的处理方法。
2.灵活运用运算定律简化有理数除法计算过程。
接着,我会让学生尝试用他们已知的数学知识来解决这个新问题。在学生尝试解答的过程中,我会引导他们发现,除法实际上是一种乘法的逆运算。通过这个导入过程,学生不仅能够感受到数学与生活的紧密联系,还能够激发他们对新知识的探索欲望。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有理数的除法
教学内容:
教科书第58—61页,2.10有理数的除法。

教学目的和要求:
1.使学生理解有理数倒数的意义。

2.使学生掌握有理数的除法法则,能够熟练地进行除法运算。

3.培养学生观察、归纳、概括及运算能力。

教学重点和难点:
重点:有理数除法法则。

难点:(1)商的符号的确定;(2)0不能作除数的理解。

教学工具和方法:
工具:应用投影仪,投影片。

方法:分层次教学,讲授、练习相结合。

教学过程:
一、复习引入:
1.叙述有理数乘法法则。

2.叙述有理数乘法的运算律。

3.计算:
①(―6)×21
②()()()31
18163
15.0⨯-⨯⨯-⨯- ③(―3)×(+7)―9×(―6)
④⎪⎪⎭⎫
⎝⎛÷54256
二、讲授新课:
1.师生共同研究有理数除法法则:
①问题:
“一个数与2的乘积是-6,这个数是几?”你能否回答?这个问题写成算式有两种:
2×( ?)=-6, (乘法算式) 也就是 (-6)÷2=( ?) (除法算式)
由2×(-3)=-6,我们有(-6)÷2=-3。

另外,我们还知道: (-6)×21
=-3。

所以,(-6)÷2=(-6)×21。

这表明除法可以转化为乘法来进行。

②探索: 填空:
8÷(-2)=8×( ); 6÷(-3)=6×( ); -6÷( )=-6×31
; -6÷( )=-6×32。

③总结:让学生总结倒数的概念、除法法则。

倒数的概念:乘积是1
例如,2与21、(23-)与(3
2-)分别互为倒数。

这样,对有理数除法,一般有 有理数除法则:除以一个数等于乘上这个数的倒数. 注意:0不能作除数.
2.例题:
例1: (1) ()618÷-; (2) ⎪⎪⎭⎫ ⎝⎛-÷⎪⎪⎭⎫ ⎝⎛-5251; (3) ⎪⎭
⎫ ⎝⎛-÷54256。

解:①原式=()()3618618-=÷-=÷-;
②原式=2
125515251=⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-; ③原式=
1034525654256-=⎪⎭⎫ ⎝⎛-⨯=⎪⎭⎫ ⎝⎛-÷。

3.探讨总结出有理数除法类似有理数乘法的法则:
因为除法可化为乘法,所以有理数的除法有与乘法类似的法则:
两数相除,同号得正,异号得负,并把绝对值相除.
0除以任何一个不等于0的数,都得0.
4.例题:
例2:化简下列分数:(1)
312-; (2) 1624--。

解:(1)原式=()()43123123
12-=÷-=÷-=-; (2)原式=()()2
11162416241624=÷=-÷-=--。

例3:计算:
(1) (―53)÷(―23
); (2) ()67624-÷⎪⎭⎫ ⎝⎛-; (3)⎪⎭⎫ ⎝⎛-⨯÷-43875.3。

解;(1) 原式=53÷23=53×3253)×(―32)=52; (2)原式=()7
76762467624⎪⎭⎫ ⎝⎛+=-÷⎪⎭⎫ ⎝⎛-(3)原式=3782743875.3⨯⨯=⎪⎭⎫ ⎝⎛-⨯÷-
5.课堂练习:
课本:P60:1,2,3。

课本:P61:5。

三、课堂小结:
1.指导学生看书,重点是除法法则。

2.引导学生归纳有理数除法的一般步骤:(1)确定商的符号;(2)把除数化为它的倒数;
(3)利用乘法计算结果。

四、课堂作业:课本:P57:4。

板书设计:
教学后记:
“数学教学是数学活动的教学”。

我们进行数学教学,不能只给学生讲结论,因为任何数学理论总是伴随着一定的数学活动,应该暴露数学活动过程。

也只有在数学活动的教学中,学生学习的主动性,才能得以发挥。

这一节课,从有理数除法问题的产生,到有理数除法法则的形成,以及归纳人有理数除法的解题步骤等,不是简单地告诉学生结论和方法,然后进行大量的重复性练习,而是在教师的指导下,让学生自己去思索、判断,自己得出结论,从而达到培养学生观察、归纳、概括能力的目的。

相关文档
最新文档