单片机多级菜单编程实现
msp430单片机12864二级菜单
#include <msp430x14x.h>#define uchar unsigned char#define uint unsigned int#define LCD_data P5DIR=0XFF //数据口输出#define LCD_CMDOUT P3DIR|=0xe0 //P3口的高三位设置为输出#define LCD_RS_LOW P3OUT &= ~BIT7 //RS=0#define LCD_RS_HIGH P3OUT |=BIT7 //RS=1#define LCD_RW_LOW P3OUT &= ~BIT6 //RW=0#define LCD_RW_HIGH P3OUT |=BIT6 //RW=1#define LCD_EN_LOW P3OUT &= ~BIT5 //EN=0#define LCD_EN_HIGH P3OUT |=BIT5 //EN=1uchar k=0,flag=0,flag1=0;uchar dis1_[] = {"系统初始化. "};uchar dis2_[] = {"系统初始化.. "};uchar dis3_[] = {"系统初始化... "};uchar dis4_[] = {" 按选择键开始! "};uchar dis1[] = {"手1:手机设定"}; //一级菜单1uchar dis2[] = {"机2:管理器"}; //一级菜单2uchar dis3[] = {"菜3:通话"}; //一级菜单3uchar dis4[] = {"单4:信息功能"}; //一级菜单5uchar dis5[] = {"手5:文件管理"}; //一级菜单7uchar dis6[] = {"机6:通讯录"}; //一级菜单8uchar dis7[] = {"菜"}; //一级菜单8uchar dis8[] = {"单"}; //一级菜单8uchar dis1_1[] = {"手1:时间和日期"}; //一级菜单1下的子菜单1 uchar dis2_1[] = {"机2:语言"}; //一级菜单1下的子菜单2 uchar dis3_1[] = {"设3:语音控制"}; //一级菜单1下的子菜单3 uchar dis4_1[] = {"定4:关闭无线电"}; //一级菜单1下的子菜单4uchar dis1_2[] = {"管1:闹铃"}; //一级菜单2下的子菜单1 uchar dis2_2[] = {"理2:视频电话"}; //一级菜单2下的子菜单2 uchar dis3_2[] = {"器3:日历"}; //一级菜单2下的子菜单3 uchar dis4_2[] = {" 4:任务"}; //一级菜单2下的子菜单4uchar dis1_3[] = {"通1:全部"}; //一级菜单3下的子菜单1 uchar dis2_3[] = {"话2:已接来电"}; //一级菜单3下的子菜单2 uchar dis3_3[] = {" 3:未接来电"}; //一级菜单3下的子菜单3 uchar dis4_3[] = {" 4:已拨电话"}; //一级菜单3下的子菜单4uchar dis1_4[] = {"信1:编写新信息"}; //一级菜单4下的子菜单1uchar dis2_4[] = {"息2:收件箱"}; //一级菜单4下的子菜单2uchar dis3_4[] = {"功3:电子邮件"}; //一级菜单4下的子菜单3uchar dis4_4[] = {"能4:草稿箱"}; //一级菜单4下的子菜单4uchar dis1_5[] = {"文1:相册"}; //一级菜单5下的子菜单1uchar dis2_5[] = {"件2:音乐"}; //一级菜单5下的子菜单2uchar dis3_5[] = {"管3:视频"}; //一级菜单5下的子菜单3uchar dis4_5[] = {"理4:图片"}; //一级菜单5下的子菜单4uchar dis1_6[] = {"通1:快速拨号"}; //一级菜单6下的子菜单1uchar dis2_6[] = {"讯2: 我的名片"}; //一级菜单6下的子菜单2uchar dis3_6[] = {"录3: 组群"}; //一级菜单6下的子菜单3uchar dis4_6[] = {" 4:特定号码"}; //一级菜单6下的子菜单4void delay_1ms(uint x){uint i,j;for(j=0;j<x;j++)for(i=0;i<113;i++);}void write_cmd(uchar cmd)//写指令数据到LCD :RS=L,RW=L,E=高脉冲,D0-D7=指令码{LCD_RS_LOW ;LCD_RW_LOW ;LCD_EN_LOW ;P5OUT = cmd;delay_1ms(1);LCD_EN_HIGH;delay_1ms(1);LCD_EN_LOW;}void write_dat(uchar dat)//写显示数据到LCD :RS=H,RW=L,E=高脉冲,D0-D7=数据。
单片机汇编语言下LCD多级菜单的一种实现方法
单片机汇编语言下LCD多级菜单的一种实现方法万方数据万方数据单片机汇编语言下LCD多级菜单的一种实现方法作者:高璇作者单位:安徽理工大学电气与信息工程学院,安徽,淮南,232001;中煤北京煤矿机械有限责任公司设备动力部,中国,北京,102400 刊名:科技信息英文刊名:SCIENCE & TECHNOLOGY INFORMATION年,卷(期):2010,(31)被引用次数:0次参考文献(3条)1.ST7920控制器系列中文字库液晶模块中文说明书 20052.STC89C51RC/RD+系列单片机器件手册 20033.蔡美琴MCS-51系列单片机系统及其应用 2005相似文献(10条)1.会议论文宋晓辉.叶桦.丁昊基于单片机的多级菜单实现方法改进2007介绍了一种在C语言环境下,基于单片机的多级菜单实现方法.该方法从菜单的功能结构发,在程序设计中做了几点改进.首先对菜单数据项和功能函数各自进行独立设计,通过在数据结构中增加按键有效标志、字符串指针、存储器地址以及与复用相关的元素,实现了两者源代码空间的有效分离,从而大大提高了程序的可维护性;其次引入菜单项复用的思想,简化了程序结构.该设计的多级菜单在自动售货机的服务模式的实际应用表明,此改进方法使菜单设计变得更为简单方便,软件通用性更高,维护更容易.2.期刊论文陆铮.罗嘉单片机C语言下LCD多级菜单的一种实现方法-工矿自动化2006(1)介绍了在C语言环境下,在LCD液晶显示屏上实现多级嵌套菜单的一种简便方法,提出了一个结构紧凑、实用的程序模型.3.期刊论文宋晓辉.叶桦.丁昊.Song Xiaohui.Ye Hua.Ding Hao基于单片机的多级菜单实现方法改进-东南大学学报(自然科学版)2007,37(z1)介绍了一种在C语言环境下,基于单片机的多级菜单实现方法.该方法从菜单的功能结构发,在程序设计中做了几点改进.首先对菜单数据项和功能函数各自进行独立设计,通过在数据结构中增加按键有效标志、字符串指针、存储器地址以及与复用相关的元素,实现了两者源代码空间的有效分离,从而大大提高了程序的可维护性;其次引入菜单项复用的思想,简化了程序结构.该设计的多级菜单在自动售货机的服务模式的实际应用表明,此改进方法使菜单设计变得更为简单方便,软件通用性更高,维护更容易.4.期刊论文唐炜.卢道华.顾金凤单片机系统中液晶显示多级菜单的软硬件设计-华东船舶工业学院学报(自然科学版)2003,17(1) 以8031单片机控制GXM-12864液晶显示器为例,通过建立小字库,结合具体实例介绍了实现多级菜单显示的方法.当菜单显示内容改变时,只需修改相应参数,而不修改程序.文中提及的硬件电路和软件设计通用性较强,具有更一般的实际意义.5.期刊论文汪高勇.宋毅恒.尚举邦.WANG Gao-yong.SONG Yi-heng.SHANG Ju-bang C51与单片机系统多级菜单的模块化设计-光电技术应用2009,24(2)介绍了一种基于单片机系统的多级菜单模块化编程方法.该方法从模块化的角度将菜单编程简单地划分为共用键盘处理和菜单模块两部分,使得菜单具有通用的模块化结构,方便了菜单的加载与卸载,增强了C51语言在单片机系统人机接口的设计,软件结构清晰,维护方便.6.期刊论文朱青.张兴敢.柏业超.ZHU Qing.ZHANG Xing-gan.BAIYe-chao一种多功能水情自动测报系统设计-现代电子技术2011,34(3) 为满足当前水情数据测报的要求,设计实现了一种多功能水情自动测报系统.该系统基于PIC16F887单片机、GSM模块,可接收多种形式的传感器信号,并存储在大容量的FLASH存储器中,同时通过GSM模块发送水情数据和报警信息.另外,该系统借助LCD液晶显示屏可显示多级中文菜单,方便控制和查询.该系统的功耗低,体积小,功能扩展性强,经过多次测试,操作方便,工作可靠,在水情自动测报领域具有很大的推广价值.7.期刊论文王运良.张建忠.程明.WANG Yun-liang.ZHANG Jian-zhong.CHENG Ming基于ATmega16L单片机的中文菜单显示技术-江苏电器2006(1)针对目前电力测量仪表广泛使用中文液晶显示器的趋势,介绍一种由ATmega16L单片机和液晶MSC-G12864组成的多级中文菜单滚动显示系统,应用结果证明该实现方法简单,系统易于扩展和维护.描述了硬件电路的结构,详细分析了多级菜单软件的实现方法,包括中英文字符的存储,菜单项的构成以及整个菜单的滚动显示,给出了部分程序清单.8.期刊论文李敏通.张战国.LI Mintong.ZHANG Zhanguo一种建立单片机应用系统菜单的新方法-计算机工程2006,32(16) 提出了一种用一维线性数组实现树形拓扑结构多级菜单的方法,并用C51语言编程验证了这种方法的可行性.该方法对存储资源的利用效率高,逻辑关系清晰,且菜单的建立和修改方便,适合在单片机应用系统中使用.9.期刊论文基于单片机实现的实用汉字液晶显示设计方法-硅谷2009(19)介绍一种在多级菜单界面设计上非常简单实用的采用C51语言实现液晶显示的方法;同时介绍自定义字库和硬件汉字库的设计方法和应用.10.期刊论文陈国鹏.Chen Guopeng基于PIC18F6622的人机界面设计-工业控制计算机2009,22(9)介绍了如何使用PIC单片机PIC18F6622和液晶模块MTG-S32240进行显示控制系统的设计,分析了其硬件平台的设计要点,给出了清晰的人机界面软件设计架构,介绍了其中最主要的多级菜单的设计方法.设计的显示控制系统在实际系统中运行稳定可靠,证明了设计方法的正确性.本文链接:/doc/887e05f29e31433239689316.html /Periodical_kjxx201031057.aspx授权使用:南华大学(nhdx),授权号:af1513e4-a30e-4369-9f7f-9f1000acb2e6下载时间:2011年6月28日。
一种易于移植的单片机液晶显示多级菜单设计
一种易于移植的单片机液晶显示多级菜单设计王勇【摘要】LCD display as a human-computer interaction is very popular in various application situations of embedded microcontroller systems. However, general LCD display menu design is a little bit complicated, and does not have the portability, therefore the complexity in development and system maintenance and the cost are increased. In this paper we introduce the window and message mechanisms of Windows Operating System, and design a multilevel menu. The core of the menu is a universal window engine which does not depend on specific hardware and the content of menu. Research and application show that the menu design has the characters of simple structure, easy to use, little resource consumption, portable and so on. In the end of the paper we present an application example running in the FYD12864 LCD module.%在单片机嵌入式系统的许多应用场合均采用液晶显示器作为人机交互的方式,然而通常的液晶显示菜单设计较为复杂,且基本不具备可移植性,从而增加了开发、维护的复杂性和成本.引入Windows系统下的窗口和消息机制,设计一个多级菜单,该菜单的核心部分是一个不依赖具体硬件和菜单内容的通用的窗口引擎.研究和应用表明,该菜单设计具有结构简单、使用方便、占用资源少以及易于移植等特点.最后给出一个在FYD12864液晶模块上使用此方法的应用案例.【期刊名称】《计算机应用与软件》【年(卷),期】2011(028)012【总页数】6页(P263-268)【关键词】单片机;液晶显示;菜单;窗口引擎【作者】王勇【作者单位】电子科技大学四川成都610054东莞电子科技大学电子信息工程研究院广东东莞523808【正文语种】中文【中图分类】TP3110 引言单片机系统,特别是8位单片机系统通常可用资源较少,速度相对较慢,一般不适合部署操作系统,更谈不上图形引擎了。
51单片机多任务的原理及其实现
51单片机多任务操作系统的原理与实现51单片机多任务操作系统的原理与实现-- 一个超轻量级的操作系统前言想了很久,要不要写这篇文章最后觉得对操作系统感兴趣的人还是很多,写吧.我不一定能造出玉,但我可以抛出砖.包括我在内的很多人都对51使用操作系统呈悲观态度,因为51的片上资源太少.但对于很多要求不高的系统来说,使用操作系统可以使代码变得更直观,易于维护,所以在51上仍有操作系统的生存机会.流行的uCos,Tiny51等,其实都不适合在2051这样的片子上用,占资源较多,唯有自已动手,以不变应万变,才能让51也有操作系统可用.这篇贴子的目的,是教会大家如何现场写一个OS,而不是给大家提供一个OS版本.提供的所有代码,也都是示例代码,所以不要因为它没什么功能就说LAJI之类的话.如果把功能写全了,一来估计你也不想看了,二来也失去灵活性没有价值了.下面的贴一个示例出来,可以清楚的看到,OS本身只有不到10行源代码,编译后的目标代码60字节,任务切换消耗为20个机器周期.相比之下,KEIL内嵌的TINY51目标代码为800字节,切换消耗100~700周期.唯一不足之处是,每个任务要占用掉十几字节的堆栈,所以任务数不能太多,用在128B内存的51里有点难度,但对于52来说问题不大.这套代码在36M主频的STC12C4052上实测,切换任务仅需2uS.#include <>#define MAX_TASKS 2 须和实际任务数一至#define MAX_TASK_DEP 12 低不得少于2个,保守值为12.unsigned char idata task_stack[MAX_TASKS][MAX_TASK_DEP];unsigned char task_id; 指定的函数(参数1)装入指定(参数2)的任务槽中.如果该槽中原来就有任务,则原任务丢失,但系统本身不会发生错误.void task_load(unsigned int fn, unsigned char tid){task_sp[tid] = task_stack[tid] + 1;task_stack[tid][0] = (unsigned int)fn & 0xff;task_stack[tid][1] = (unsigned int)fn >> 8;}用该宏后,将永不返回.#define os_start(tid) {task_id = tid,SP = task_sp[tid];return;}/*======================以下为测试代码======================*/void task1(){static unsigned char i;while(1){i++;task_switch(); 么是操作系统?人脑比较容易接受"类比"这种表达方式,我就用"公交系统"来类比"操作系统"吧.当我们要解决一个问题的时候,是用某种处理手段去完成它,这就是我们常说的"方法",计算机里叫"程序"(有时候也可以叫它"算法").以出行为例,当我们要从A地走到B地的时候,可以走着去,也可以飞着去,可以走直线,也可以绕弯路,只要能从A地到B地,都叫作方法.这种从A地到B的需求,相当于计算机里的"任务",而实现从A地到B地的方法,叫作"任务处理流程"很显然,这些走法中,并不是每种都合理,有些傻子都会采用的,有些是傻子都不采会用的.用计算机的话来说就是,有的任务处理流程好,有的任务处理流程好,有的处理流程差.可以归纳出这么几种真正算得上方法的方法:有些走法比较快速,适合于赶时间的人;有些走法比较省事,适合于懒人;有些走法比较便宜,适合于穷人.用计算机的话说就是,有些省CPU,有些流程简单,有些对系统资源要求低.现在我们可以看到一个问题:如果全世界所有的资源给你一个人用(单任务独占全部资源),那最适合你需求的方法就是好方法.但事实上要外出的人很多,例如10个人(10个任务),却只有1辆车(1套资源),这叫作"资源争用".如果每个人都要使用最适合他需求的方法,那司机就只好给他们一人跑一趟了,而在任一时刻里,车上只有一个乘客.这叫作"顺序执行",我们可以看到这种方法对系统资源的浪费是严重的.如果我们没有法力将1台车变成10台车来送这10个人,就只好制定一些机制和约定,让1台车看起来像10台车,来解决这个问题的办法想必大家都知道,那就是制定公交线路.最简单的办法是将所有旅客需要走的起点与终点串成一条线,车在这条线上开,乘客则自已决定上下车.这就是最简单的公交线路.它很差劲,但起码解决客人们对车争用.对应到计算机里,就是把所有任务的代码混在一起执行.这样做既不优异雅,也没效率,于是司机想了个办法,把这些客户叫到一起商量,将所有客人出行的起点与终点罗列出来,统计这些线路的使用频度,然后制定出公交线路:有些路线可以合并起来成为一条线路,而那些不能合并的路线,则另行开辟行车车次,这叫作"任务定义".另外,对于人多路线,车次排多点,时间上也优先安排,这叫作"任务优先级".经过这样的安排后,虽然仍只有一辆车,但运载能力却大多了.这套车次/路线的按排,就是一套"公交系统".哈,知道什么叫操作系统了吧它也就是这么样的一种约定.操作系统:我们先回过头归纳一下:汽车系统资源.主要指的是CPU,当然还有其它,比如内存,定时器,中断源等.客户出行任务正在走的路线进程一个一个的运送旅客顺序执行同时运送所有旅客多任务并行按不同的使用频度制定路线并优先跑较繁忙的路线任务优先级计算机内有各种资源,单从硬件上说,就有CPU,内存,定时器,中断源,I/O端口等.而且还会派生出来很多软件资源,例如消息池.操作系统的存在,就是为了让这些资源能被合理地分配.最后我们来总结一下,所谓操作系统,以我们目前权宜的理解就是:为"解决计算机资源争用而制定出的一种约定".二.51上的操作系统对于一个操作系统来说,最重要的莫过于并行多任务.在这里要澄清一下,不要拿当年的DOS来说事,时代不同了.况且当年IBM和小比尔着急将PC搬上市,所以才抄袭PLM(好象是叫这个名吧记不太清)搞了个今天看来很"粗制滥造"的DOS出来.看看当时真正的操作系统---UNIX,它还在纸上时就已经是多任务的了.对于我们PC来说,要实现多任务并不是什么问题,但换到MCU却很头痛:1.系统资源少在PC上,CPU主频以G为单位,内存以GB为单位,而MCU的主频通常只有十几M,内存则是Byts.在这么少的资源上同时运行多个任务,就意味着操作系统必须尽可能的少占用硬件资源.2.任务实时性要求高PC并不需要太关心实时性,因为PC上几乎所有的实时任务都被专门的硬件所接管,例如所有的声卡网卡显示上都内置有DSP以及大量的缓存.CPU只需坐在那里指手划脚告诉这些板卡如何应付实时信息就行了.而MCU不同,实时信息是靠CPU来处理的,缓存也非常有限,甚至没有缓存.一旦信息到达,CPU必须在极短的时间内响应,否则信息就会丢失.就拿串口通信来举例,在标准的PC架构里,巨大的内存允许将信息保存足够长的时间.而对于MCU来说内存有限,例如51仅有128字节内存,还要扣除掉寄存器组占用掉的8~32个字节,所以通常都仅用几个字节来缓冲.当然,你可以将数据的接收与处理的过程合并,但对于一个操作系统来说,不推荐这么做.假定以115200bps通信速率向MCU传数据,则每个字节的传送时间约为9uS,假定缓存为8字节,则串口处理任务必须在70uS内响应.这两个问题都指向了同一种解决思路:操作系统必须轻量轻量再轻量,最好是不占资源(那当然是做梦啦).可用于MCU的操作系统很多,但适合51(这里的51专指无扩展内存的51)几乎没有.前阵子见过一个"圈圈操作系统",那是我所见过的操作系统里最轻量的,但仍有改进的余地.很多人认为,51根本不适合使用操作系统.其实我对这种说法并不完全接受,否则也没有这篇文章了.我的看法是,51不适合采用"通用操作系统".所谓通用操作系统就是,不论你是什么样的应用需求,也不管你用什么芯片,只要你是51,通通用同一个操作系统.这种想法对于PC来说没问题,对于嵌入式来说也不错,对AVR来说还凑合,而对于51这种"贫穷型"的MCU来说,不行.怎样行量体裁衣,现场根据需求构建一个操作系统出来!看到这里,估计很多人要翻白眼了,大体上两种:1.操作系统那么复杂,说造就造,当自已是神了2.操作系统那么复杂,现场造一个会不会出BUG哈哈,看清楚了问题出在"复杂"上面,如果操作系统不复杂,问题不就解决了事实上,很多人对操作系统的理解是片面的,操作系统不一定要做得很复杂很全面,就算仅个多任务并行管理能力,你也可以称它操作系统.只要你对多任务并行的原理有所了解,就不难现场写一个出来,而一旦你做到了这一点,为各任务间安排通信约定,使之发展成一个为你的应用系统量身定做的操作系统也就不难了.为了加深对操作系统的理解,可以看一看<<演变>>这份PPT,让你充分了解一个并行多任务是如何一步步从顺序流程演变过来的.里面还提到了很多人都在用的"状态机",你会发现操作系统跟状态机从原理上其实是多么相似.会用状态机写程序,都能写出操作系统.三.我的第一个操作系统直接进入主题,先贴一个操作系统的示范出来.大家可以看到,原来操作系统可以做得么简单.当然,这里要申明一下,这玩意儿其实算不上真正的操作系统,它除了并行多任务并行外根本没有别的功能.但凡事都从简单开始,搞懂了它,就能根据应用需求,将它扩展成一个真正的操作系统.好了,代码来了.将下面的代码直接放到KEIL里编译,在每个task()函数的"task_switch();"那里打上断点,就可以看到它们的确是"同时"在执行的.#include <>#define MAX_TASKS 2 须和实际任务数一至#define MAX_TASK_DEP 12 低不得少于2个,保守值为12.unsigned char idata task_stack[MAX_TASKS][MAX_TASK_DEP];unsigned char task_id; 指定的函数(参数1)装入指定(参数2)的任务槽中.如果该槽中原来就有任务,则原任务丢失,但系统本身不会发生错误.void task_load(unsigned int fn, unsigned char tid){task_sp[tid] = task_stack[tid] + 1;task_stack[tid][0] = (unsigned int)fn & 0xff;task_stack[tid][1] = (unsigned int)fn >> 8;}用该宏后,将永不返回.#define os_start(tid) {task_id = tid,SP = task_sp[tid];return;}/*==================以下为测试代码=====================*/void task1(){static unsigned char i;while(1){i++;task_switch();现在来看看这个多任务系统的原理:这个多任务系统准确来说,叫作"协同式多任务".所谓"协同式",指的是当一个任务持续运行而不释放资源时,其它任务是没有任何机会和方式获得运行机会,除非该任务主动释放CPU.在本例里,释放CPU是靠task_switch()来完成的.task_switch()函数是一个很特殊的函数,我们可以称它为"任务切换器".要清楚任务是如何切换的,首先要回顾一下堆栈的相关知识.有个很简单的问题,因为它太简单了,所以相信大家都没留意过:我们知道,不论是CALL还是JMP,都是将当前的程序流打断,请问CALL和JMP的区别是什么你会说:CALL可以RET,JMP不行.没错,但原因是啥呢为啥CALL过去的就可以用RET跳回来,JMP过去的就不能用RET来跳回呢很显然,CALL通过某种方法保存了打断前的某些信息,而在返回断点前执行的RET指令,就是用于取回这些信息.不用多说,大家都知道,"某些信息"就是PC指针,而"某种方法"就是压栈.很幸运,在51里,堆栈及堆栈指针都是可被任意修改的,只要你不怕死.那么假如在执行RET前将堆栈修改一下会如何往下看:当程序执行CALL后,在子程序里将堆栈刚才压入的断点地址清除掉,并将一个函数的地址压入,那么执行完RET后,程序就跳到这个函数去了.事实上,只要我们在RET前将堆栈改掉,就能将程序跳到任务地方去,而不限于CALL里压入的地址.重点来了......首先我们得为每个任务单独开一块内存,这块内存专用于作为对应的任务的堆栈,想将CPU交给哪个任务,只需将栈指针指向谁内存块就行了.接下来我们构造一个这样的函数:当任务调用该函数时,将当前的堆栈指针保存一个变量里,并换上另一个任务的堆栈指针.这就是任务调度器了.OK了,现在我们只要正确的填充好这几个堆栈的原始内容,再调用这个函数,这个任务调度就能运行起来了.那么这几个堆栈里的原始内容是哪里来的呢这就是"任务装载"函数要干的事了.在启动任务调度前将各个任务函数的入口地址放在上面所说的"任务专用的内存块"里就行了!对了,顺便说一下,这个"任务专用的内存块"叫作"私栈",私栈的意思就是说,每个任务的堆栈都是私有的,每个任务都有一个自已的堆栈.话都说到这份上了,相信大家也明白要怎么做了:1.分配若干个内存块,每个内存块为若干字节:这里所说的"若干个内存块"就是私栈,要想同时运行几少个任务就得分配多少块.而"每个子内存块若干字节"就是栈深.记住,每调一层子程序需要2字节.如果不考虑中断,4层调用深度,也就是8字节栈深应该差不多了.unsigned char idata task_stack[MAX_TASKS][MAX_TASK_DEP]当然,还有件事不能忘,就是堆指针的保存处.不然光有堆栈怎么知道应该从哪个地址取数据啊unsigned char idata task_sp[MAX_TASKS]上面两项用于装任务信息的区域,我们给它个概念叫"任务槽".有些人叫它"任务堆",我觉得还是"槽"比较直观对了,还有任务号.不然怎么知道当前运行的是哪个任务呢unsigned char task_id当前运行存放在1号槽的任务时,这个值就是1,运行2号槽的任务时,这个值就是2....2.构造任务调度函函数:void task_switch(){task_sp[task_id] = SP;}3.装载任务:将各任务的函数地址的低字节和高字节分别入在task_stack[任务号][0]和task_stack[任务号][1]中:为了便于使用,写一个函数: task_load(函数名, 任务号)void task_load(unsigned int fn, unsigned char tid){task_sp[tid] = task_stack[tid] + 1;task_stack[tid][0] = (unsigned int)fn & 0xff;task_stack[tid][1] = (unsigned int)fn >> 8;}4.启动任务调度器:将栈指针指向任意一个任务的私栈,执行RET指令.注意,这可很有学问的哦,没玩过堆栈的人脑子有点转不弯:这一RET,RET到哪去了嘿嘿,别忘了在RET前已经将堆栈指针指向一个函数的入口了.你别把RET看成RET,你把它看成是另一种类型的JMP就好理解了.SP = task_sp[任务号];return;做完这4件事后,任务"并行"执行就开始了.你可以象写普通函数一个写任务函数,只需(目前可以这么说)注意在适当的时候(例如以前调延时的地方)调用一下task_switch(),以让出CPU控制权给别的任务就行了.最后说下效率问题.这个多任务系统的开销是每次切换消耗20个机器周期(CALL和RET都算在内了),贵吗不算贵,对于很多用状态机方式实现的多任务系统来说,其实效率还没这么高--- case switch和if()可不像你想像中那么便宜.关于内存的消耗我要说的是,当然不能否认这种多任务机制的确很占内存.但建议大家不要老盯着编译器下面的那行字"DATA = XXXbyte".那个值没意义,堆栈没算进去.关于比较省内存多任务机制,我将来会说到.概括来说,这个多任务系统适用于实时性要求较高而内存需求不大的应用场合,我在运行于36M主频的STC12C4052上实测了一把,切换一个任务不到3微秒.下回我们讲讲用KEIL写多任务函数时要注意的事项.下下回我们讲讲如何增强这个多任务系统,跑步进入操作系统时代.四.用KEIL写多任务系统的技巧与注意事项C51编译器很多,KEIL是其中比较流行的一种.我列出的所有例子都必须在KEIL 中使用.为何不是因为KEIL好所以用它(当然它的确很棒),而是因为这里面用到了KEIL的一些特性,如果换到其它编译器下,通过编译的倒不是问题,但运行起来可能是堆栈错位,上下文丢失等各种要命的错误,因为每种编译器的特性并不相同.所以在这里先说清楚这一点.但是,我开头已经说了,这套帖子的主要目的是阐述原理,只要你能把这几个例子消化掉,那么也能够自已动手写出适合其它编译器的OS.好了,说说KEIL的特性吧,先看下面的函数:sbit sigl = P1^7;void func1(){register char data i;i = 5;do{sigl = !sigl;}while(--i);}你会说,这个函数没什么特别的嘛!呵呵,别着急,你将它编译了,然后展开汇编代码再看看:193: void func1(){194: register char data i;195: i = 5;C:0x00C3 7F05 MOV R7,#0x05196: do{197: sigl = !sigl;C:0x00C5 B297 CPL sigl198: }while(--i);C:0x00C7 DFFC DJNZ R7,C:00C5199: }C:0x00C9 22 RET看清楚了没这个函数里用到了R7,却没有对R7进行保护!有人会跳起来了:这有什么值得奇怪的,因为上层函数里没用到R7啊.呵呵,你说的没错,但只说对了一半:事实上,KEIL编译器里作了约定,在调子函数前会尽可能释放掉所有寄存器.通常性况下,除了中断函数外,其它函数里都可以任意修改所有寄存器而无需先压栈保护(其实并不是这样,但现在暂时这样认为,饭要一口一口吃嘛,我很快会说到的).这个特性有什么用呢有!当我们调用任务切换函数时,要保护的对象里可以把所有的寄存器排除掉了,就是说,只需要保护堆栈即可!现在我们回过头来看看之前例子里的任务切换函数:void task_switch(){task_sp[task_id] = SP;}看到没,一个寄存器也没保护,展开汇编看看,的确没保护寄存器.好了,现在要给大家泼冷水了,看下面两个函数:void func1(){register char data i;i = 5;do{sigl = !sigl;}while(--i);}void func2(){register char data i;i = 5;do{func1();}while(--i);}父函数fun2()里调用func1(),展开汇编代码看看: 193: void func1(){194: register char data i;195: i = 5;C:0x00C3 7F05 MOV R7,#0x05 196: do{197: sigl = !sigl; C:0x00C5 B297 CPL sigl 198: }while(--i);C:0x00C7 DFFC DJNZ R7,C:00C5 199: }C:0x00C9 22 RET200: void func2(){201: register char data i;202: i = 5;C:0x00CA 7E05 MOV R6,#0x05 203: do{204: func1();C:0x00CC 11C3 ACALL func1(C:00C3) 205: }while(--i);C:0x00CE DEFC DJNZ R6,C:00CC206: }C:0x00D0 22 RET看清楚没函数func2()里的变量使用了寄存器R6,而在func1和func2里都没保护.听到这里,你可能又要跳一跳了:func1()里并没有用到R6,干嘛要保护没错,但编译器是怎么知道func1()没用到R6的呢是从调用关系里推测出来的.一点都没错,KEIL会根据函数间的直接调用关系为各函数分配寄存器,既不用保护,又不会冲突,KEIL好棒哦!!等一下,先别高兴,换到多任务的环境里再试试:void func1(){register char data i;i = 5;do{sigl = !sigl;}while(--i);}void func2(){register char data i;i = 5;do{sigl = !sigl;}while(--i);}展开汇编代码看看:193: void func1(){194: register char data i;195: i = 5;C:0x00C3 7F05 MOV R7,#0x05 196: do{197: sigl = !sigl; C:0x00C5 B297 CPL sigl 198: }while(--i);C:0x00C7 DFFC DJNZ R7,C:00C5 199: }C:0x00C9 22 RET200: void func2(){201: register char data i;202: i = 5;C:0x00CA 7F05 MOV R7,#0x05203: do{204: sigl = !sigl;C:0x00CC B297 CPL sigl205: }while(--i);C:0x00CE DFFC DJNZ R7,C:00CC206: }C:0x00D0 22 RET看到了吧哈哈,这回神仙也算不出来了.因为两个函数没有了直接调用的关系,所以编译器认为它们之间不会产生冲突,结果分配了一对互相冲突的寄存器,当任务从func1()切换到func2()时,func1()中的寄存器内容就给破坏掉了.大家可以试着去编译一下下面的程序:sbit sigl = P1^7;void func1(){register char data i;i = 5;do{sigl = !sigl;task_switch();} while (--i);}void func2(){register char data i;i = 5;do{sigl = !sigl;task_switch();}while(--i);}我们这里只是示例,所以仍可以通过手工分配不同的寄存器避免寄存器冲突,但在真实的应用中,由于任务间的切换是非常随机的,我们无法预知某个时刻哪个寄存器不会冲突,所以分配不同寄存器的方法不可取.那么,要怎么办呢这样就行了:sbit sigl = P1^7;void func1(){static char data i;while(1){i = 5;do{sigl = !sigl;task_switch();}while(--i);}}void func2(){static char data i;while(1){i = 5;do{sigl = !sigl;task_switch();}while(--i);}}将两个函数中的变量通通改成静态就行了.还可以这么做:sbit sigl = P1^7;void func1(){register char data i;while(1){i = 5;do{sigl = !sigl;}while(--i);task_switch();}}void func2(){register char data i;while(1){i = 5;do{sigl = !sigl;}while(--i);task_switch();}}即,在变量的作用域内不切换任务,等变量用完了,再切换任务.此时虽然两个任务仍然会互相破坏对方的寄存器内容,但对方已经不关心寄存器里的内容了.以上所说的,就是"变量覆盖"的问题.现在我们系统地说说关于"变量覆盖".变量分两种,一种是全局变量,一种是局部变量(在这里,寄存器变量算到局部变量里).对于全局变量,每个变量都会分配到单独的地址.而对于局部变量,KEIL会做一个"覆盖优化",即没有直接调用关系的函数的变量共用空间.由于不是同时使用,所以不会冲突,这对内存小的51来说,是好事.但现在我们进入多任务的世界了,这就意味着两个没有直接调用关系的函数其实是并列执行的,空间不能共用了.怎么办呢一种笨办法是关掉覆盖优化功能.呵呵,的确很笨.比较简单易行一个解决办法是,不关闭覆盖优化,但将那些在作用域内需要跨越任务(换句话说就是在变量用完前会调用task_switch()函数的)变量通通改成静态(static)即可.这里要对初学者提一下,"静态"你可以理解为"全局",因为它的地址空间一直保留,但它又不是全局,它只能在定义它的那个花括号对{}里访问.静态变量有个副作用,就是即使函数退出了,仍会占着内存.所以写任务函数的时候,尽量在变量作用域结束后才切换任务,除非这个变量的作用域很长(时间上长),会影响到其它任务的实时性.只有在这种情况下才考虑在变量作用域内跨越任务,并将变量申明为静态.事实上,只要编程思路比较清析,很少有变量需要跨越任务的.就是说,静态变量并不多.说完了"覆盖"我们再说说"重入".所谓重入,就是一个函数在同一时刻有两个不同的进程复本.对初学者来说可能不好理解,我举个例子吧:有一个函数在主程序会被调用,在中断里也会被调用,假如正当在主程序里调用时,中断发生了,会发生什么情况void func1(){static char data i;i = 5;do{sigl = !sigl;}while(--i);}假定func1()正执行到i=3时,中断发生,一旦中断调用到func1()时,i的值就被破坏了,当中断结束后,i == 0.以上说的是在传统的单任务系统中,所以重入的机率不是很大.但在多任务系统中,很容易发生重入,看下面的例子:void func1()....delay();....}void func2(){....delay();....}void delay(){static unsigned char i;申明为static会发生重入问题.麻烦啊for(i=0;i<10;i++)task_switch();两个并行执行的任务都调用了delay(),这就叫重入.问题在于重入后的两个复本都依赖变量i来控制循环,而该变量跨越了任务,这样,两个任务都会修改i值了.重入只能以防为主,就是说尽量不要让重入发生,比如将代码改成下面的样子:#define delay() {static unsigned char i; for(i=0;i<10;i++)task_switch();}void func1(){....delay();....}void func2(){....delay();....用宏来代替函数,就意味着每个调用处都是一个独立的代码复本,那么两个delay实际使用的内存地址也就不同了,重入问题消失.但这种方法带来的问题是,每调用一次delay(),都会产生一个delay的目标代码,如果delay的代码很多,那就会造成大量的rom空间占用.有其它办法没本人所知有限,只有最后一招了:void delay() reentrant{unsigned char i;for(i=0;i<10;i++)task_switch();}加入reentrant申明后,该函数就可以支持重入.但小心使用,申明为重入后,函数效率极低!最后附带说下中断.因为没太多可说的,就不单独开章了.中断跟普通的写法没什么区别,只不过在目前所示例的多任务系统里因为有堆栈的压力,所以要使用using来减少对堆栈的使用(顺便提下,也不要调用子函数,同样是为了减轻堆栈压力)用using,必须用#pragma NOAREGS关闭掉绝对寄存器访问,如果中断里非要调用函数,连同函数也要放在#pragma NOAREGS的作用域内.如例所示:#pragma SAVE#pragma NOAREGS 是说,如果你在不用中断时任务栈深定为8的话,现在就要定为8+4 = 12了.另外说句废话,中断里处理的事一定要少,做个标记就行了,剩下的事交给对应的任务去处理.现在小结一下:切换任务时要保证没有寄存器跨越任务,否则产生任务间寄存器覆盖. 使用静态变量解决切换任务时要保证没有变量跨越任务,否则产生任务间地址空间(变量)覆盖. 使用静态变量解决两个不同的任务不要调用同时调用同一个函数,否则产生重入覆盖. 使用重入申明解决。
单片机C语言下LCD多级菜单的一种实现方法
单片机C语言下LCD多级菜单的一种实现方法(转)2012-1-10 00:45阅读(1)单片机菜单程序#include#include#define SIZE_OF_KEYBD_MENU 20 //菜单长度uchar KeyFuncIndex=0;//uchar KeyFuncIndexNew=0;void (*KeyFuncPtr)(); //按键功能指针typedef struct{uchar KeyStateIndex; //当前状态索引号uchar KeyDnState; //按下"向下"键时转向的状态索引号uchar KeyUpState; //按下"向上"键时转向的状态索引号uchar KeyCrState; //按下"回车"键时转向的状态索引号void (*CurrentOperate)(); //当前状态应该执行的功能操作} KbdTabStruct;KbdTabStruct code KeyTab[SIZE_OF_KEYBD_MENU]={{ 0, 0, 0, 1,(*DummyJob)},//顶层{ 1, 2, 0, 3,(*DspUserInfo)},//第二层{ 2, 1, 1, 9,(*DspServiceInfo)}, //第二层{ 3, 0, 0, 1,(*DspVoltInfo)},//第三层>>DspUserInfo的展开{ 4, 0, 0, 1,(*DspCurrInfo)},//第三层>>DspUserInfo的展开{ 5, 0, 0, 1,(*DspFreqInfo)},//第三层>>DspUserInfo的展开{ 6, 0, 0, 1,(*DspCableInfo)},//第三层>>DspUserInfo的展开...........{ 9, 0, 0, 1,(*DspSetVoltLevel)}//第三层>>DspServiceInfo的展开..........};void GetKeyInput(void){uchar KeyValue;KeyValue=P1&0x07; //去掉高5bitdelay(50000);switch(KeyValue){case 1: //回车键,找出新的菜单状态编号{KeyFuncIndex=KeyTab[KeyFuncIndex].KeyCrState;break;}case 2: //向上键,找出新的菜单状态编号{KeyFuncIndex=KeyTab[KeyFuncIndex].KeyUpState; break;}case 4: //向下键,找出新的菜单状态编号{KeyFuncIndex=KeyTab[KeyFuncIndex].KeyDnState; break;}default: //按键错误的处理......break;}KeyFuncPtr=KeyTab[KeyFuncIndex].CurrentOperate; (*KeyFuncPtr)();//执行当前按键的操作}//其中KeyTab的设计颇费尽心机。
基于STM32单片机LCD多级菜单的设计
基于STM32单片机LCD多级菜单的设计摘要本设计介绍了以ARM内核嵌入式处理器STM32为控制核心,辅以低功耗的液晶模块MFG240160-3-A,以及相应的按键控制电路,实现了LCD多级菜单的设计。
在本系统中,侧重点在于LCD的显示上,因此此系统的硬件结构很简单,侧重点在于软件架构及程序的编写上,该系统程序量大,函数封装多,关于实时时钟信息、波形存储信息都留有相应的软件接口,以便与其它模块正确的相连接。
本系统硬件电路简单,但显示信息丰富,可以移植到各种便携式的电子产品上去,为电子产品的显示界面的设计提供了一个新的思路。
关键词 STM32单片机;LCD多级菜单;低功耗;Base on STM32 Microprocessor LCD modules in the multi-level menu display systemAbstractThis design describes to STM32 embedded processor based on ARM core for control, coupled with low power consumption of LCD module MFG240160-3-A as well as the corresponding keys control circuitry, enabling multi-level menu design of LCD. In this system, the focus is on the LCD display, so this system hardware structure is very simple, the emphasis lies in software architectures and applications, the system capacity, function encapsulates the information about the real-time clock, waveform stored information will have the appropriate software interface so that correct with other modules that you are connecting to. This system is simple, but the display information-rich, portable to avariety of portable electronic products, for electronic product display interface design provides a new train of thought.Keywords: STM32; LCD multi-level menu; low-power;目录摘要(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((I Abstract(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((( ((II 前言 ............................................................... 4 1方案设计 (5)1.1 设计方案概述 (5)1.2 电路介绍 (5)2 器件介绍 (9)2.1 STM32简介 (9)2.2 MFG240160-3-A LCD介绍 (13)3 软件设计 (16)3.1 STM32单片机的初始化 (16)3.2 液晶屏的初始化 (20)3.3 数据的传输 (20)3.4 字模的提取 (21)3.5 菜单框架的设计 (23)3.6 字模库的建立 (25)3.7 函数库的封装 (25)3.8 菜单标记 (26)3.9 时钟信息的显示 (27)3.10 波形的显示 (28)4 结论 (30)参考文献 (31)致谢 ............................................ 错误~未定义书签。
51单片机实现多级液晶显示中文菜单
51单片机实现多级液晶显示中文菜单【摘要】以AT89C51单片机控制使用比较普遍的YM12864液晶显示器为基础,介绍了一种采用分页原理实现多级中文菜单操作的方法。
给出了YM12864主要技术参数、显示特性和核心的程序。
设计的中文菜单具有一定的通用性,只需更改其中的菜单项即可将此设计应用到家电、仪器仪表等设备上,为操作者提供友好方便的中文操作界面。
【关键词】单片机;分页;YM12864液晶;中文菜单一、引言目前小型的显示器主要有LCD和LED,LED显示器只能显示数字和有限个英文字符,不能显示汉字,显示内容不直观,操作人员只能根据约定格式了解显示内容。
而LCD则可显示各种汉字和图形,尤其能实现中文菜单显示,为操作者提供方便友好的操作界面,并且功耗低,因此LCD得到广泛应用。
而现在市面上带中文字库的LCD比比皆是,价格适中,且大部分具有与MCU统一的标准接口,为使用LCD实现中文菜单操作提供了很大的方便。
相信更多的电子产品在提升性能的同时,设计更加人性化的中文菜单交互界面,将会使产品具有更广阔的前景。
二、YM12864液晶显示模块简介YM12864汉字图形点阵液晶显示模块,可显示汉字及图形,内置8192个中文汉字(16X16点阵)、128个字符(8X16点阵)及64X256点阵显示RAM (GDRAM)。
主要技术参数和显示特性:电源:VDD 3.3V~+5V(内置升压电路,无需负压)显示内容:128列×64行与MCU接口:8位或4位并行/3位串行多种软件功能:光标显示、画面移位、自定义字符、睡眠模式等。
其引脚功能为通用20脚LCD接口,用户指令集也为通用128*64LCD用户指令集,相关资料很容易获取。
因其内置中文字库,省去了自己造字库的工作量,而只需写入相应的汉字和字符内码即可显示所需要的汉字和字符,这在许多程序开发软件中很容易实现,如:WA VE、KEIL等。
所以使用带中文字库的LCD来实现中文菜单操会更加简便。
(完整版)单片机多级菜单编程实现
单片机多级菜单编程实现单片机多级菜单编程实现(ZT)建立一个树状的菜单结构,用链表实现链表中包含:1、指向同级左右菜单和指向父菜单、子菜单的四个菜单结构体指针;2、进入该菜单时需要执行的初始化函数指针3、退出该菜单时需要执行的结束函数指针4、该菜单内的按键处理函数指针数组的指针操作菜单模块需要的按键操作有:左、右、确认、退出。
采用这种办法,可以方便的添加或删减菜单。
并且只需要在其头文件中修改初始变量就可以实现,完全无须修改C文件中的任何函数。
具体结构定义我的定义,做个参考:#define MENU_HLP_EN //菜单帮助信息使能typedef struct{void (*pMenuTaskInit)(void); //指向菜单任务初始化函数的指针void (*pMenuTaskEnd)(void); //指向菜单任务结束函数的指针}MENU_TASK_TYP;typedef struct MenuTyp{INT8U *MenuName; //菜单名称字符串WORK_MOD WorkMod; //工作状态编号MENU_TASK_TYP *pMenuTask; //指向菜单任务的指针void (**pTaskKeyDeal)(void); //指向菜单任务按键处理函数数组的指针#ifdef MENU_HLP_ENINT8U *MenuHlp; //菜单帮助字符串#endifstruct MenuTyp *pParent; //指向上层菜单的指针struct MenuTyp *pChild; //指向子菜单的指针struct MenuTyp *pRight; //指向右菜单的指针struct MenuTyp *pLeft; //指向左菜单的指针}MENU_TYP;我根据网上的资料做的一个菜单:/****************菜单数据结构**********************/struct KeyTabStruct{uint8 MenuIndex; //当前状态索引号uint8 MaxItems; //本级菜单最大条目数uint8 ShowLevel; //菜单显示内容uint8 PressOk; //按下"回车"键时转向的状态索引号uint8 PressEsc; //按下"返回"键时转向的状态索引号uint8 PressDown; //按下"向下"键时转向的状态索引号uint8 PressUp; //按下"向上"键时转向的状态索引号void (*CurrentOperate)(); //当前状态应该执行的功能操作};uint8 MenuID; //菜单ID号uint8 MenuNextID; //下级菜单ID号//CurMenuID=本菜单ID//MaxMenuItem=同级菜单最大项数//OkMenuID=子菜单层所对应的菜单ID,ID=999为菜单已经到底了//EscMenuID=父菜单层所对应的菜单ID,ID=999为菜单已经到顶了//DownMenuID=弟菜单层所对应的菜单ID,ID=999为菜单是独生子//UpMenuID=兄菜单层所对应的菜单ID,ID=999为菜单是独生子//CurFunction=本菜单所对应的菜单函数指针const struct KeyTabStruct KeyTab[MAX_KEYTABSTRUCT_NUM]={//CurMenuID, axMenuItem, MenuShowLevel, OkMenuID, EscMenuID, DownMenuID, UpMenuID, CurFunction{MENU_EDIT, 0, 0, MENU_DATA_VIEW, MENU_NO, MENU_NO, MENU_NO, *MenuEdit},{MENU_DATA_VIEW, 3, 1, MENU_DATA_VIEW_FIRE, MENU_EDIT, MENU_ SYS_EDIT, MENU_PRINT_DATA,*MenuEdit},{MENU_DATA_VIEW_FIRE, 5, MENU_NO, MENU_NO, MENU_DATA_VIEW, MENU_DATA_VIEW_TROUBLE, MENU_STEP_FOLLOW, *MenuDataViewIn}, {MENU_DATA_VIEW_TROUBLE, 5, MENU_NO, MENU_NO, MENU_DATA_VI EW, MENU_DATA_VIEW_REPEAT, MENU_DATA_VIEW_FIRE, *MenuDataVie wIn},{MENU_DATA_VIEW_REPEAT, 5, MENU_NO,MENU_NO, MENU_DATA_VIEW, MENU_FACE_CHECK,MENU_DATA_VIEW_TROUBLE, *MenuDataViewIn},{MENU_FACE_CHECK, 5, MENU_NO,MENU_NO, MENU_DATA_VIEW, MENU_STEP_FOLLOW,MENU_DATA_VIEW_REPEAT, *MenuFaceCheck},{MENU_STEP_FOLLOW, 5, MENU_NO,MENU_NO, MENU_DATA_VIEW, MENU_DATA_VIEW_FIRE, MENU_FACE_CH ECK,*MenuStepFollow},{MENU_SYS_EDIT, 3,2, MENU_SUM_SET, MENU_EDIT,MENU_PRINT_DATA, MENU_DATA_VIEW, *MenuEdit},{MENU_SUM_SET, 6, MENU_NO,MENU_NO, MENU_SYS_EDIT, MENU_EDIT_INSULATE,MENU_TIME_SET, *MenuSumSet},{MENU_EDIT_INSULATE, 6, MENU_NO,MENU_NO, MENU_SYS_EDIT, MENU_EDIT_HZ, MENU_SUM_SET,*MenuEditInsulate},{MENU_EDIT_HZ, 6, MENU_NO,MENU_NO, MENU_SYS_EDIT, MENU_LD_CONTROL,MENU_EDIT_INSULATE, *MenuEditHZ},{MENU_LD_CONTROL, 6,MENU_NO, MENU_NO, MENU_SYS_EDIT, MENU_LD_DELAY,MENU_EDIT_HZ, *MenuLDControl},{MENU_LD_DELAY, 6,MENU_NO, MENU_NO, MENU_SYS_EDIT, MENU_TIME_SET,MENU_LD_CONTROL, *MenuLDDelay},{MENU_TIME_SET, 6, MENU_NO,MENU_NO, MENU_SYS_EDIT, MENU_SUM_SET, MENU_LD_DELAY,*MenuTimeSet},{MENU_PRINT_DATA, 3, 3,MENU_PRINT_DATA_FIRE, MENU_EDIT, MENU_DATA_VIEW,MENU_SYS_EDIT, *MenuEdit},{MENU_PRINT_DATA_FIRE, 4,MENU_NO, MENU_NO, MENU_PRINT_DATA,MENU_PRINT_DATA_TROUBLE, MENU_PRINT_SET, *MenuPrintDataIn}, {MENU_PRINT_DATA_TROUBLE, 4, MENU_NO,MENU_NO, MENU_PRINT_DATA, MENU_PRINTER_CHECK,MENU_PRINT_DATA_FIRE, *MenuPrintDataIn},{MENU_PRINTER_CHECK, 4, MENU_NO,MENU_NO, MENU_PRINT_DATA, MENU_PRINT_SET,MENU_PRINT_DATA_TROUBLE, *MenuPrintDataIn},{MENU_PRINT_SET, 4, MENU_NO,MENU_NO, MENU_PRINT_DATA, MENU_PRINT_DATA_FIRE,MENU_PRINTER_CHECK, *MenuPrintSet},};/**************************************编程菜单显示数据******************************/const struct MenuDispData MenuEditShow[][MENU_MAX] = {{{MENU_NO , 0, 0, "选择: 消音→退出"}, //主菜单{MENU_DATA_VIEW , 1, 6, "⒈数据查看"},{MENU_SYS_EDIT , 2, 6, "⒉系统编程"},{MENU_PRINT_DATA , 3, 6, "⒊数据打印"}},{{MENU_NO , 0, 0, "数据查看: 消音→退出"}, //数据查看{MENU_DATA_VIEW_FIRE , 1, 4, "⒈火警"},{MENU_DATA_VIEW_TROUBLE, 2, 4, "⒉故障"},{MENU_DATA_VIEW_REPEAT , 3, 4, "⒊重码"},{MENU_FACE_CHECK , 1,12, "⒋面板检测"},{MENU_STEP_FOLLOW , 2,12, "⒌单步跟踪"}},{{MENU_NO , 0, 0, "系统编程: 消音→退出"}, //系统编程{MENU_SUM_SET , 1, 0, "⒈容量设置"},{MENU_EDIT_INSULATE , 2, 0, "⒉隔离点"},{MENU_EDIT_HZ , 3, 0, "⒊汉字描述"},{MENU_LD_CONTROL , 1,12, "⒋联动控制"},{MENU_LD_DELAY , 2,12, "⒌模块延时"},{MENU_TIME_SET , 3,12, "⒍时钟调整"}},{{MENU_NO , 0, 0, "数据打印: 消音→退出"}, //数据打印{MENU_PRINT_DATA_FIRE , 1, 0, "⒈火警数据"},{MENU_PRINT_DATA_TROUBLE,2, 0, "⒉故障数据"},{MENU_PRINTER_CHECK , 3, 0, "⒊打印机自检"},{MENU_PRINT_SET , 1,12, "⒋打印设置"}},};/***********************************等待按键******************** **************/void WaitKey(void){uint32 time;time = RTCFlag;WhichKey = KEY_NONE;while(!EscFlag){if(RTCFlag - time >= EDIT_TIME)EscFlag = TRUE;if(WhichKey != KEY_NONE){KeySound(300); //按键音return;}}}/*********************************显示多级菜单**********************************/void MenuEdit(){uint32 i,j=0;uint32 oldid;j = KeyTab[MenuID].ShowLevel;if(WhichKey == KEY_ESC || WhichKey == KEY_OK){ClearScreen();for(i=0;i<KeyTab[MenuNextID].MaxItems+1;i++) ShowString(MenuEditShow[j][i].Lin,MenuEditShow[j] [i].Column,MenuEditShow[j][i].Pdata,0); //初始化显示oldid =0;//没有原先选择的项}else{if(WhichKey == KEY_UP)oldid = KeyTab[MenuNextID].PressDown;elseoldid = KeyTab[MenuNextID].PressUp;//指示原先的项}for(i=1;i<KeyTab[MenuNextID].MaxItems+1;i++){if(MenuEditShow[j][i].Id == oldid)ShowString(MenuEditShow[j][i].Lin,MenuEditShow[j][i].Column,MenuEditShow[j][i].Pdata,0); //正常显示原先的项else{if(MenuEditShow[j][i].Id == MenuNextID)ShowString(MenuEditShow[j][i].Lin,MenuEditShow[j][i].Column,MenuEditShow[j][i].Pdata,1); //反显当前选择的项}}WhichKey = KEY_NONE;}/******************************系统编程************************* ******/uint32 Edit(void){struct KeyTabStruct NowKeyTab; //指示当前的菜单值uint32 escflag = FALSE;ResetFlag = FALSE;ChangeFlag = FALSE;EscFlag = FALSE;MenuID = MENU_EDIT;NowKeyTab = KeyTab[MenuID];MenuNextID = NowKeyTab.PressOk;(*NowKeyTab.CurrentOperate)(); //显示主菜单do{if(WhichKey == KEY_NONE)WaitKey(); //等待按键switch(WhichKey){case KEY_ESC : if(NowKeyTab.PressEsc != MENU_NO) {MenuID =NowKeyTab.PressEsc;MenuNextID =NowKeyTab.MenuIndex;NowKeyTab = KeyTab[MenuID];NowKeyTab.PressOk =MenuNextID;(*NowKeyTab.CurrentOperate)(); //显示当前菜单}elseescflag =TRUE; //退出编程状态break;case KEY_OK : if(NowKeyTab.PressOk != MENU_NO) {MenuID =NowKeyTab.PressOk;NowKeyTab = KeyTab[MenuID];MenuNextID =NowKeyTab.PressOk;}(*NowKeyTab.CurrentOperate)(); //执行当前按键的操作break;case KEY_UP : if((MenuNextID != MENU_NO) && (KeyTab[MenuNextID].PressUp != MENU_NO)){NowKeyTab.PressOk =KeyTab[MenuNextID].PressUp;MenuNextID = KeyTab[MenuNextID].PressUp;(*NowKeyTab.CurrentOperate)(); //执行当前按键的操作}break;case KEY_DOWN: if((MenuNextID != MENU_NO) && (KeyTab[MenuNextID].PressDown != MENU_NO)){NowKeyTab.PressOk =KeyTab[MenuNextID].PressDown;MenuNextID = KeyTab[MenuNextID].PressDown;(*NowKeyTab.CurrentOperate)(); //执行当前按键的操作}break;case KEY_RESET: ResetFlag = TRUE;break;default : break;}}while(!ResetFlag && !EscFlag && !escflag);if(ChangeFlag && !EscFlag && !ResetFlag) EditDataChange();if(ResetFlag)return SYS_RESET;else{return 0;}}关于这个菜单的说明:1.我用的是ARM处理器,所以51的时候把const改成code,uint32改成unsign ed char。
51单片机实现多级液晶显示中文菜单共5页word资料
51单片机实现多级液晶显示中文菜单一、引言目前小型的显示器主要有LCD和LED,LED显示器只能显示数字和有限个英文字符,不能显示汉字,显示内容不直观,操作人员只能根据约定格式了解显示内容。
而LCD则可显示各种汉字和图形,尤其能实现中文菜单显示,为操作者提供方便友好的操作界面,并且功耗低,因此LCD得到广泛应用。
而现在市面上带中文字库的LCD比比皆是,价格适中,且大部分具有与MCU统一的标准接口,为使用LCD实现中文菜单操作提供了很大的方便。
相信更多的电子产品在提升性能的同时,设计更加人性化的中文菜单交互界面,将会使产品具有更广阔的前景。
二、YM12864液晶显示模块简介YM12864汉字图形点阵液晶显示模块,可显示汉字及图形,内置8192个中文汉字(16X16点阵)、128个字符(8X16点阵)及64X256点阵显示RAM(GDRAM)。
主要技术参数和显示特性:电源:VDD 3.3V~+5V(内置升压电路,无需负压)显示内容:128列×64行与MCU接口:8位或4位并行/3位串行多种软件功能:光标显示、画面移位、自定义字符、睡眠模式等。
其引脚功能为通用20脚LCD接口,用户指令集也为通用128*64LCD 用户指令集,相关资料很容易获取。
因其内置中文字库,省去了自己造字库的工作量,而只需写入相应的汉字和字符内码即可显示所需要的汉字和字符,这在许多程序开发软件中很容易实现,如:WAVE、KEIL等。
所以使用带中文字库的LCD来实现中文菜单操会更加简便。
三、原理分析通常的人机交互界面有两种方式,选择菜单和输入参数,为了便于分析,本文使用三级树状菜单结构,如图1所示,来阐述中文菜单的显示原理。
因YM12864满屏能显示四行、每行八个汉字,故将四个选择或参数输入菜单项编为一页,不足一页的补空格。
补空格的目的是为了归一化操作,可大大简化程序。
每一个菜单、参数输入、空格都为固定的八个汉字空间。
图1中顶级菜单1、顶级菜单2、顶级参数输入3、顶级4构成一级菜单,四个菜单项为一页同时显示在液晶屏幕上;一级菜单1-1、一级菜单1-2、一级参数输入1-3、一级空格1-4构成了顶级菜单1下的二级菜单,也组成一页同时显示在液晶屏幕上,三级菜单也是如此。
u8g2多级菜单原理
u8g2多级菜单原理u8g2是一款优秀的、高度可定制的微型图形库,适用于嵌入式系统和其他资源有限的平台。
它提供了许多功能强大的绘图函数,方便开发者进行图形界面的设计和实现。
其中,多级菜单是u8g2库中的一个重要功能,它可以帮助开发者设计复杂的菜单系统。
多级菜单的原理主要包括以下几个方面:菜单结构的定义、菜单项的创建和显示、菜单项的选择和操作。
首先,菜单结构的定义是多级菜单的基础。
开发者可以通过定义一组嵌套的菜单项来构建一个菜单树结构。
每个菜单项都包含一个名称和相应的操作函数,用于响应用户的选择和操作。
菜单项还可以有子菜单,从而构成多级菜单的结构。
可以用类似下面的代码定义一个简单的菜单结构:```typedef struct{const char *name; //菜单项名称void (*action)(void); //菜单项操作函数struct MenuItem *submenu; //子菜单} MenuItem;```其次,菜单项的创建和显示是实现多级菜单的关键。
在u8g2库中,可以使用绘图函数来创建和显示菜单项。
开发者可以根据菜单结构逐级创建菜单项,并使用u8g2库提供的函数进行绘制。
例如,可以使用`u8g2_DrawStr()`函数绘制菜单项的名称,使用`u8g2_DrawFrame()`函数绘制菜单项的边框等。
同时,还可以使用`u8g2_SendBuffer()`函数将绘制的菜单项显示在屏幕上。
可以用类似下面的代码创建和显示一个简单的菜单项:```void drawMenuItem(const char *name, bool selected){if(selected){u8g2_DrawBox(0, 0, 128, 16);u8g2_SetDrawColor(0);}else{u8g2_DrawFrame(0, 0, 128, 16);u8g2_SetDrawColor(1);}u8g2_DrawStr(2, 12, name);}void drawMenu(const MenuItem *menu, int selectedItem) {for(int i = 0; i < menuCount; i++){drawMenuItem(menu[i].name, i == selectedItem);}u8g2_SendBuffer();}```最后,菜单项的选择和操作是多级菜单的核心功能。
菜单
case(VK_ENTER):
returnቤተ መጻሕፍቲ ባይዱ1);
break;
case(VK_UP):
return(2);
break;
case(VK_DOWN):
return(3);
break;
}
}
unsigned char Change_Value(unsigned char temp2)
TMenu * pMenu = (TMenu *)arg;
char key;
if (pMenu) {
key = pMenu->EventArg;
OnSelectMainMenu(key - '1');
DrawMenu(pMenu);
}
return 0;
}
void InitMenu()
case 0:
TextOut(0, 1, "室内调整开始 ");
tempin=Change_Value(tempin);
TextOut(0, 1, "室内调整完毕");
Delay_1(300000);
break;
case 1:
TextOut(0, 1, "室外调整开始 ");
tempout=Change_Value(tempout);
uchar keycrstate ; / / 按下“回车”键时转向的状态索引号
uchar keybackstate ; / / 按下“退回”键时转向的状态索引号
void ( 3 currentoperate) ( ) ; / / 当前状态应该执行的
单片机汇编语言下LCD多级菜单的一种实现方法
口相连 。S 7 2 T 9 0包 含 基本 指 令集 和 扩 展 指 令 集 , 于 篇 幅 这 里 不 作 介 L D i: C L E A 4 MS; 光 标 的 画 面 初 始 限 C jN l L A LD L Y 0 带 绍 , 细 功 能 可查 阅 S 7 2 详 T 9 0中文 使 用 手 册 。 MOV H A. 30
魁射》0 肆m s
,
1 硬 件 设 计
11 单 片机 选 型 . S C 9 5 RD 是 宏 晶 公 司 生 产 的 低 电 压 、 高 性 能 的 单 片 机 , T 8C 8 + 与 MC 一 1产 品 指 令 系 统 完 全兼 容 。工 作 频率 在 0 一 0 z之 间 可 选 , S5 Hz 8MH
为 了 使 L D 正 常 工 作 ,在 系 统 上 电 时 必 须 对 S 7 2 C T 9 0进 行 初 始 化 . 程 如 图 2所 示 流
匕 警殳 j
疆霹 阡 薨
I
’
xR£S r 瓿 一 > 蹴
拄髓字 0 f Cj l - I
越 稚 1 0 ¥ u 0
f 摘 要 】 文 介 绍 了通 过 汇编 语 言在 L D 液 晶 显 示屏 上 实 现 多级 嵌 套 菜 单 的 一 种 方 法 , 出 了一 个 结 构 紧凑 、 本 C 给 实用 的 程 序 模 型 。 【 键 词 】 片机 ; 关 单 多级 菜单 ;T 9 0 S 7 2
O 引 言 近 年 来 , 单 片 机 系 统 中 L D 的 使 用 越 来 越 普 及 , 使 得 在 基 于 在 C 这
单片机多任务编程方法介绍
单片机多任务编程方法介绍--Edan Lee(Email:*******************:284622554)前言从事单片机学习和工作已有多年,多年下来对单片机开发有一点自己的认识。
想将自己的积累和大家分享。
应该对初学者有一点帮助。
还有很多不足的地方,欢迎来函探讨。
因为文学功底不行所以直接进入主题。
主体内容本文的主要目的是介绍在没有操作系统的多任务编程方法。
所有例子都以51单片机为基础。
内容编排1、多任务简介2、任务分拆3、软件定时器4、系统架构5、例子多任务简介对于单片机的多任务就是CPU处理多个任务。
但是在同一个时间CPU只能处理一个任务。
在处理多任务的时候其实就是将CPU分时复用。
具体是在一个时间内处理一个任务,在接下来的时间里处理另一个任务。
这个时间一般很短,在操作系统里就是指时间片。
单片机因为资源少的原因很少会带操作系统来工作。
但是可以从多任务的基本原本出发模拟操作系统的多任务。
为了一个任务不会独占CPU,就将任务分成N个小任务。
划分原则是在任务需要等待的地方划分。
每次运行到这个任务的时候,CPU只执行其中的一个或者多个小任务。
任务分拆在一个LED闪烁的小程序中原理是点亮LED,延时,关闭LED,延时,循环。
#define LEDOn() LED_Port = 0;#define LEDOff() LED_Port = 1;sbit LED_Port = P1^0;/*不精确延时*/void Delay(unsigned int t){while(--t);}/*LED闪烁处理*/void LEDFlash(void){LEDOn();Delay(1000);LEDOff();Delay(1000);}/*主函数*/void main(void){LEDFlash();}上例中的LED闪烁处理函数可以用一个进程控制器(变量)将其分成四个部分。
void LEDFlash(void){static unsigned char step = 0; /*进程控制器*/switch(step){case 0:LEDOn();step++;break;case 1:Delay(1000);step++;break;case 2:LEDOff();step++;break;case 3:Delay(1000);step = 0;break;}}上例对于这个小程序来说变得复杂了点。
单片机菜单程序设计
单片机菜单程序设计一、引言单片机是一种集成电路,具有微处理器、内存、输入/输出接口等功能模块的芯片。
它广泛应用于各种电子设备中,如家电、汽车电子、工业控制等领域。
而单片机菜单程序设计是利用单片机的功能实现一个具有菜单界面的程序,使用户能够通过菜单选择功能,并进行相应的操作。
本文将介绍单片机菜单程序设计的基本原理和实现方法。
二、菜单程序设计的基本原理菜单程序设计的基本原理是通过使用单片机的输入/输出接口,结合按键和显示屏等外部设备,实现菜单的显示和选择。
具体包括以下几个步骤:1. 初始化:包括对单片机和外部设备的初始化操作,如设置输入/输出引脚、初始化显示屏等。
2. 菜单显示:通过控制显示屏显示菜单的选项,包括菜单标题和各个选项的名称。
3. 按键检测:利用单片机的输入引脚检测按键的状态,判断用户是否按下了某个按键。
4. 选项选择:根据用户按下的按键,判断用户选择了哪个菜单选项。
5. 功能实现:根据用户选择的菜单选项,执行相应的功能操作。
6. 返回菜单:功能操作完成后,返回上一级菜单或回到主菜单。
三、菜单程序设计的实现方法菜单程序设计可以采用多种实现方法,常用的有层级菜单和状态机两种。
1. 层级菜单:层级菜单是通过多级菜单选项的嵌套实现的。
每个菜单选项可以再包含子菜单,用户通过按键选择菜单选项,进入下一级子菜单或执行相应的功能操作。
2. 状态机:状态机是通过定义不同的状态和状态转移条件实现的。
每个菜单选项可以对应一个状态,用户通过按键触发状态转移,实现不同功能的切换。
实现菜单程序时,需要注意以下几点:1. 菜单的设计要简洁明了,选项名称要清晰易懂,避免歧义。
2. 菜单的显示要美观大方,可以使用不同字体、颜色和布局等方式进行设计。
3. 按键的检测要准确可靠,避免误触发或按键失灵的情况。
4. 功能操作要严谨可靠,避免因程序错误导致系统崩溃或数据丢失。
5. 菜单的返回要灵活方便,用户可以随时返回上一级菜单或回到主菜单。
基于单片机的门禁系统多级菜单设计
基于单片机的门禁系统多级菜单设计王清珍;董健;杨宇【摘要】为了在无线办公门禁系统中实现通过LCD12864显示屏分屏显示多项内容,采用单片机C语言程序设计了多级菜单,应用结构体数组成员的定义,借助按键来改变菜单项的索引号,进行内容的分屏显示及菜单项之间的切换。
在多项显示时,同一屏上显示项处于同一级,涉及的变量少,索引号级数少,系统开支就小。
设计简化,按键实时性好,界面简单,操作方便。
%In order to realize the split screen display of multiterm contents on LCD12864 display screen in the wireless of⁃fice access control system,the multi⁃level menu was designedby means of a C language program of single chip microcomputer. The definition of the structural body array members is used,and the split screen display of multiterm contents and switching be⁃tween menu items are performed with the help of buttons to change the index number of menu items. Split screen display switching between content and menu items is adopted to simplify the design. The system has the advantages of simple design,good real⁃time performance and simple interface,and is easy to operate.【期刊名称】《现代电子技术》【年(卷),期】2015(000)012【总页数】4页(P55-57,61)【关键词】LCD12864;多级菜单;结构体数组成员;切换机制【作者】王清珍;董健;杨宇【作者单位】郑州科技学院信息工程学院,河南郑州 450064;郑州科技学院信息工程学院,河南郑州 450064;郑州科技学院信息工程学院,河南郑州 450064【正文语种】中文【中图分类】TN911-34;TP368.2在门禁系统中采用的显示设备是LCD12864,此设备在系统中仅显示少量的提示信息,能够满足系统显示需求,但是受显屏显示区域的限制,要显示多项内容,需要分屏显示,在显示的内容之间有上下级和平行级关系,这就需要在显示屏上显示多级操作菜单,每一级菜单都有一些菜单项和对应的按键操作,以及响应各种操作而执行的后续处理程序。
一种单片机多级菜单的模块化设计方法
一种单片机多级菜单的模块化设计方法引言在单片机设计中,往往需要在显示屏上显示多级操作菜单,每级菜单都有一些菜单项和对应的按键操作,以及为响应各种操作而执行的后续处理程序。
参考文献以函数指针为结构元素,把整个菜单结构拉伸成一个结构数组,内部包含了全部菜单项。
这种方法没有将菜单项数据与功能函数分开设计,而把菜单项数据写在功能函数中,当菜单项数据需要改变时,必须修改功能函数,这在很大程度上限制了程序的通用性,不利于程序的维护。
参考文献在前者的基础上略加改进,在原结构体中增加了菜单项显示文字和按键复用标识,这使得结构体较为庞大,且菜单项的文字内容非常固定,保存在EEPROM 中,无法灵活改变显示内容和位置。
参考文献引入Windows 系统下的窗口和消息机制实现多级菜单设计,该方法需要维护堆栈、消息队列和窗口定时器等,设计过于复杂。
本文旨在提供一个轻量级的单片机多级菜单实现方法,以较少的系统资源消耗和简单方便的方法完成菜单设计。
考虑到菜单程序需要具备3 个基本要素:一是每个菜单窗口要显示的内容;二是每个窗口对应的按键定义与响应;三是窗口内菜单项之间切换和窗口之间的切换机制。
因此,将菜单分为菜单窗口模块和键盘处理模块两部分,独立进行设计。
1 菜单窗口模块设计菜单窗口模块主要功能是按照菜单窗口切换机制,实时完成窗口的显示控制。
1.1 菜单窗口切换机制菜单窗口切换机制包括两点:一是不同窗口之间切换效果的实现;二是窗口内的同级菜单项之间滚动切换效果的实现。
为实现上述功能,定义了两个结构体MenuState 和MenuItems。
MenuState 定义如下:MenuState 是一个与窗口跳转和窗口显示有关的结构体数组,用于全局调度各窗口之间的切换。
其中,CurIndex 是窗口的索引值,用来标识当前窗口。
UpIndex、DnIndex、BackIndex 用来标识当有上页、下页、返回按键操作时,。
单片机多级菜单编程实现
单片机多级菜单编程实现单片机多级菜单编程实现(ZT)建立一个树状的菜单结构,用链表实现链表中包含:1、指向同级左右菜单和指向父菜单、子菜单的四个菜单结构体指针;2、进入该菜单时需要执行的初始化函数指针3、退出该菜单时需要执行的结束函数指针4、该菜单内的按键处理函数指针数组的指针操作菜单模块需要的按键操作有:左、右、确认、退出。
采用这种办法,可以方便的添加或删减菜单。
并且只需要在其头文件中修改初始变量就可以实现,完全无须修改C文件中的任何函数。
具体结构定义我的定义,做个参考:#define MENU_HLP_EN //菜单帮助信息使能typedef struct{void (*pMenuTaskInit)(void); //指向菜单任务初始化函数的指针void (*pMenuTaskEnd)(void); //指向菜单任务结束函数的指针}MENU_TASK_TYP;typedef struct MenuTyp{INT8U *MenuName; //菜单名称字符串WORK_MOD WorkMod; //工作状态编号MENU_TASK_TYP *pMenuTask; //指向菜单任务的指针void (**pTaskKeyDeal)(void); //指向菜单任务按键处理函数数组的指针#ifdef MENU_HLP_ENINT8U *MenuHlp; //菜单帮助字符串#endifstruct MenuTyp *pParent; //指向上层菜单的指针struct MenuTyp *pChild; //指向子菜单的指针struct MenuTyp *pRight; //指向右菜单的指针struct MenuTyp *pLeft; //指向左菜单的指针}MENU_TYP;我根据网上的资料做的一个菜单:/****************菜单数据结构**********************/struct KeyTabStruct{uint8 MenuIndex; //当前状态索引号uint8 MaxItems; //本级菜单最大条目数uint8 ShowLevel; //菜单显示内容uint8 PressOk; //按下"回车"键时转向的状态索引号uint8 PressEsc; //按下"返回"键时转向的状态索引号uint8 PressDown; //按下"向下"键时转向的状态索引号uint8 PressUp; //按下"向上"键时转向的状态索引号void (*CurrentOperate)(); //当前状态应该执行的功能操作};uint8 MenuID; //菜单ID号uint8 MenuNextID; //下级菜单ID号//CurMenuID=本菜单ID//MaxMenuItem=同级菜单最大项数//OkMenuID=子菜单层所对应的菜单ID,ID=999为菜单已经到底了//EscMenuID=父菜单层所对应的菜单ID,ID=999为菜单已经到顶了//DownMenuID=弟菜单层所对应的菜单ID,ID=999为菜单是独生子//UpMenuID=兄菜单层所对应的菜单ID,ID=999为菜单是独生子//CurFunction=本菜单所对应的菜单函数指针const struct KeyTabStruct KeyTab[MAX_KEYTABSTRUCT_NUM]={//CurMenuID, axMenuItem, MenuShowLevel, OkMenuID, EscMenuID, DownMenuID, UpMenuID, CurFunction{MENU_EDIT, 0, 0, MENU_DATA_VIEW, MENU_NO, MENU_NO, MENU_NO, *MenuEdit},{MENU_DATA_VIEW, 3, 1, MENU_DATA_VIEW_FIRE, MENU_EDIT, MENU_ SYS_EDIT, MENU_PRINT_DATA,*MenuEdit},{MENU_DATA_VIEW_FIRE, 5, MENU_NO, MENU_NO, MENU_DATA_VIEW, MENU_DATA_VIEW_TROUBLE, MENU_STEP_FOLLOW, *MenuDataViewIn}, {MENU_DATA_VIEW_TROUBLE, 5, MENU_NO, MENU_NO, MENU_DATA_VI EW, MENU_DATA_VIEW_REPEAT, MENU_DATA_VIEW_FIRE, *MenuDataVie wIn},{MENU_DATA_VIEW_REPEAT, 5, MENU_NO,MENU_NO, MENU_DATA_VIEW, MENU_FACE_CHECK,MENU_DATA_VIEW_TROUBLE, *MenuDataViewIn},{MENU_FACE_CHECK, 5, MENU_NO,MENU_NO, MENU_DATA_VIEW, MENU_STEP_FOLLOW,MENU_DATA_VIEW_REPEAT, *MenuFaceCheck},{MENU_STEP_FOLLOW, 5, MENU_NO,MENU_NO, MENU_DATA_VIEW, MENU_DATA_VIEW_FIRE, MENU_FACE_CH ECK,*MenuStepFollow},{MENU_SYS_EDIT, 3,2, MENU_SUM_SET, MENU_EDIT,MENU_PRINT_DATA, MENU_DATA_VIEW, *MenuEdit},{MENU_SUM_SET, 6, MENU_NO,MENU_NO, MENU_SYS_EDIT, MENU_EDIT_INSULATE,MENU_TIME_SET, *MenuSumSet},{MENU_EDIT_INSULATE, 6, MENU_NO,MENU_NO, MENU_SYS_EDIT, MENU_EDIT_HZ, MENU_SUM_SET,*MenuEditInsulate},{MENU_EDIT_HZ, 6, MENU_NO,MENU_NO, MENU_SYS_EDIT, MENU_LD_CONTROL,MENU_EDIT_INSULATE, *MenuEditHZ},{MENU_LD_CONTROL, 6,MENU_NO, MENU_NO, MENU_SYS_EDIT, MENU_LD_DELAY,MENU_EDIT_HZ, *MenuLDControl},{MENU_LD_DELAY, 6,MENU_NO, MENU_NO, MENU_SYS_EDIT, MENU_TIME_SET,MENU_LD_CONTROL, *MenuLDDelay},{MENU_TIME_SET, 6, MENU_NO,MENU_NO, MENU_SYS_EDIT, MENU_SUM_SET, MENU_LD_DELAY,*MenuTimeSet},{MENU_PRINT_DATA, 3, 3,MENU_PRINT_DATA_FIRE, MENU_EDIT, MENU_DATA_VIEW,MENU_SYS_EDIT, *MenuEdit},{MENU_PRINT_DATA_FIRE, 4,MENU_NO, MENU_NO, MENU_PRINT_DATA,MENU_PRINT_DATA_TROUBLE, MENU_PRINT_SET, *MenuPrintDataIn}, {MENU_PRINT_DATA_TROUBLE, 4, MENU_NO,MENU_NO, MENU_PRINT_DATA, MENU_PRINTER_CHECK,MENU_PRINT_DATA_FIRE, *MenuPrintDataIn},{MENU_PRINTER_CHECK, 4, MENU_NO,MENU_NO, MENU_PRINT_DATA, MENU_PRINT_SET,MENU_PRINT_DATA_TROUBLE, *MenuPrintDataIn},{MENU_PRINT_SET, 4, MENU_NO,MENU_NO, MENU_PRINT_DATA, MENU_PRINT_DATA_FIRE,MENU_PRINTER_CHECK, *MenuPrintSet},};/**************************************编程菜单显示数据******************************/const struct MenuDispData MenuEditShow[][MENU_MAX] = {{{MENU_NO , 0, 0, "选择: 消音→退出"}, //主菜单{MENU_DATA_VIEW , 1, 6, "⒈数据查看"},{MENU_SYS_EDIT , 2, 6, "⒉系统编程"},{MENU_PRINT_DATA , 3, 6, "⒊数据打印"}},{{MENU_NO , 0, 0, "数据查看: 消音→退出"}, //数据查看{MENU_DATA_VIEW_FIRE , 1, 4, "⒈火警"},{MENU_DATA_VIEW_TROUBLE, 2, 4, "⒉故障"},{MENU_DATA_VIEW_REPEAT , 3, 4, "⒊重码"},{MENU_FACE_CHECK , 1,12, "⒋面板检测"},{MENU_STEP_FOLLOW , 2,12, "⒌单步跟踪"}},{{MENU_NO , 0, 0, "系统编程: 消音→退出"}, //系统编程{MENU_SUM_SET , 1, 0, "⒈容量设置"},{MENU_EDIT_INSULATE , 2, 0, "⒉隔离点"},{MENU_EDIT_HZ , 3, 0, "⒊汉字描述"},{MENU_LD_CONTROL , 1,12, "⒋联动控制"},{MENU_LD_DELAY , 2,12, "⒌模块延时"},{MENU_TIME_SET , 3,12, "⒍时钟调整"}},{{MENU_NO , 0, 0, "数据打印: 消音→退出"}, //数据打印{MENU_PRINT_DATA_FIRE , 1, 0, "⒈火警数据"},{MENU_PRINT_DATA_TROUBLE,2, 0, "⒉故障数据"},{MENU_PRINTER_CHECK , 3, 0, "⒊打印机自检"},{MENU_PRINT_SET , 1,12, "⒋打印设置"}},};/***********************************等待按键******************** **************/void WaitKey(void){uint32 time;time = RTCFlag;WhichKey = KEY_NONE;while(!EscFlag){if(RTCFlag - time >= EDIT_TIME)EscFlag = TRUE;if(WhichKey != KEY_NONE){KeySound(300); //按键音return;}}}/*********************************显示多级菜单**********************************/void MenuEdit(){uint32 i,j=0;uint32 oldid;j = KeyTab[MenuID].ShowLevel;if(WhichKey == KEY_ESC || WhichKey == KEY_OK){ClearScreen();for(i=0;i<KeyTab[MenuNextID].MaxItems+1;i++) ShowString(MenuEditShow[j][i].Lin,MenuEditShow[j] [i].Column,MenuEditShow[j][i].Pdata,0); //初始化显示oldid =0;//没有原先选择的项}else{if(WhichKey == KEY_UP)oldid = KeyTab[MenuNextID].PressDown;elseoldid = KeyTab[MenuNextID].PressUp;//指示原先的项}for(i=1;i<KeyTab[MenuNextID].MaxItems+1;i++){if(MenuEditShow[j][i].Id == oldid)ShowString(MenuEditShow[j][i].Lin,MenuEditShow[j][i].Column,MenuEditShow[j][i].Pdata,0); //正常显示原先的项else{if(MenuEditShow[j][i].Id == MenuNextID)ShowString(MenuEditShow[j][i].Lin,MenuEditShow[j][i].Column,MenuEditShow[j][i].Pdata,1); //反显当前选择的项}}WhichKey = KEY_NONE;}/******************************系统编程************************* ******/uint32 Edit(void){struct KeyTabStruct NowKeyTab; //指示当前的菜单值uint32 escflag = FALSE;ResetFlag = FALSE;ChangeFlag = FALSE;EscFlag = FALSE;MenuID = MENU_EDIT;NowKeyTab = KeyTab[MenuID];MenuNextID = NowKeyTab.PressOk;(*NowKeyTab.CurrentOperate)(); //显示主菜单do{if(WhichKey == KEY_NONE)WaitKey(); //等待按键switch(WhichKey){case KEY_ESC : if(NowKeyTab.PressEsc != MENU_NO) {MenuID =NowKeyTab.PressEsc;MenuNextID =NowKeyTab.MenuIndex;NowKeyTab = KeyTab[MenuID];NowKeyTab.PressOk =MenuNextID;(*NowKeyTab.CurrentOperate)(); //显示当前菜单}elseescflag =TRUE; //退出编程状态break;case KEY_OK : if(NowKeyTab.PressOk != MENU_NO) {MenuID =NowKeyTab.PressOk;NowKeyTab = KeyTab[MenuID];MenuNextID =NowKeyTab.PressOk;}(*NowKeyTab.CurrentOperate)(); //执行当前按键的操作break;case KEY_UP : if((MenuNextID != MENU_NO) && (KeyTab[MenuNextID].PressUp != MENU_NO)){NowKeyTab.PressOk =KeyTab[MenuNextID].PressUp;MenuNextID = KeyTab[MenuNextID].PressUp;(*NowKeyTab.CurrentOperate)(); //执行当前按键的操作}break;case KEY_DOWN: if((MenuNextID != MENU_NO) && (KeyTab[MenuNextID].PressDown != MENU_NO)){NowKeyTab.PressOk =KeyTab[MenuNextID].PressDown;MenuNextID = KeyTab[MenuNextID].PressDown;(*NowKeyTab.CurrentOperate)(); //执行当前按键的操作}break;case KEY_RESET: ResetFlag = TRUE;break;default : break;}}while(!ResetFlag && !EscFlag && !escflag);if(ChangeFlag && !EscFlag && !ResetFlag) EditDataChange();if(ResetFlag)return SYS_RESET;else{return 0;}}关于这个菜单的说明:1.我用的是ARM处理器,所以51的时候把const改成code,uint32改成unsign ed char。
单片机汇编语言下LCD多级菜单的一种实现方法
单片机汇编语言下LCD多级菜单的一种实现方法
高璇
【期刊名称】《科技信息》
【年(卷),期】2010(000)031
【摘要】本文介绍了通过汇编语言在LCD液晶显示屏上实现多级嵌套菜单的一种方法,给出了一个结构紧凑、实用的程序模型.
【总页数】2页(P75-76)
【作者】高璇
【作者单位】安徽理工大学电气与信息工程学院,安徽,淮南,232001;中煤北京煤矿机械有限责任公司设备动力部,中国,北京,102400
【正文语种】中文
【中图分类】TP3
【相关文献】
1.一种单片机多级菜单的模块化设计方法
2.KeilC下LCD多级菜单在智能微压仪中的实现
3.单片机C语言下LCD多级菜单的一种实现方法
4.基于单片机的多级菜单实现方法改进
5.基于单片机的多级菜单实现方法改进
因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单片机多级菜单编程实现单片机多级菜单编程实现(ZT)建立一个树状的菜单结构,用链表实现链表中包含:1、指向同级左右菜单和指向父菜单、子菜单的四个菜单结构体指针;2、进入该菜单时需要执行的初始化函数指针3、退出该菜单时需要执行的结束函数指针4、该菜单内的按键处理函数指针数组的指针操作菜单模块需要的按键操作有:左、右、确认、退出。
采用这种办法,可以方便的添加或删减菜单。
并且只需要在其头文件中修改初始变量就可以实现,完全无须修改C文件中的任何函数。
具体结构定义我的定义,做个参考:#define MENU_HLP_EN //菜单帮助信息使能typedef struct{void (*pMenuTaskInit)(void); //指向菜单任务初始化函数的指针void (*pMenuTaskEnd)(void); //指向菜单任务结束函数的指针}MENU_TASK_TYP;typedef struct MenuTyp{INT8U *MenuName; //菜单名称字符串WORK_MOD WorkMod; //工作状态编号MENU_TASK_TYP *pMenuTask; //指向菜单任务的指针void (**pTaskKeyDeal)(void); //指向菜单任务按键处理函数数组的指针#ifdef MENU_HLP_ENINT8U *MenuHlp; //菜单帮助字符串#endifstruct MenuTyp *pParent; //指向上层菜单的指针struct MenuTyp *pChild; //指向子菜单的指针struct MenuTyp *pRight; //指向右菜单的指针struct MenuTyp *pLeft; //指向左菜单的指针}MENU_TYP;我根据网上的资料做的一个菜单:/****************菜单数据结构**********************/struct KeyTabStruct{uint8 MenuIndex; //当前状态索引号uint8 MaxItems; //本级菜单最大条目数uint8 ShowLevel; //菜单显示内容uint8 PressOk; //按下"回车"键时转向的状态索引号uint8 PressEsc; //按下"返回"键时转向的状态索引号uint8 PressDown; //按下"向下"键时转向的状态索引号uint8 PressUp; //按下"向上"键时转向的状态索引号void (*CurrentOperate)(); //当前状态应该执行的功能操作};uint8 MenuID; //菜单ID号uint8 MenuNextID; //下级菜单ID号//CurMenuID=本菜单ID//MaxMenuItem=同级菜单最大项数//OkMenuID=子菜单层所对应的菜单ID,ID=999为菜单已经到底了//EscMenuID=父菜单层所对应的菜单ID,ID=999为菜单已经到顶了//DownMenuID=弟菜单层所对应的菜单ID,ID=999为菜单是独生子//UpMenuID=兄菜单层所对应的菜单ID,ID=999为菜单是独生子//CurFunction=本菜单所对应的菜单函数指针const struct KeyTabStruct KeyTab[MAX_KEYTABSTRUCT_NUM]={//CurMenuID, axMenuItem, MenuShowLevel, OkMenuID, EscMenuID, DownMenuID, UpMenuID, CurFunction{MENU_EDIT, 0, 0, MENU_DATA_VIEW, MENU_NO, MENU_NO, MENU_NO, *MenuEdit},{MENU_DATA_VIEW, 3, 1, MENU_DATA_VIEW_FIRE, MENU_EDIT, MENU_ SYS_EDIT, MENU_PRINT_DATA,*MenuEdit},{MENU_DATA_VIEW_FIRE, 5, MENU_NO, MENU_NO, MENU_DATA_VIEW, MENU_DATA_VIEW_TROUBLE, MENU_STEP_FOLLOW, *MenuDataViewIn}, {MENU_DATA_VIEW_TROUBLE, 5, MENU_NO, MENU_NO, MENU_DATA_VI EW, MENU_DATA_VIEW_REPEAT, MENU_DATA_VIEW_FIRE, *MenuDataVie wIn},{MENU_DATA_VIEW_REPEAT, 5, MENU_NO,MENU_NO, MENU_DATA_VIEW, MENU_FACE_CHECK,MENU_DATA_VIEW_TROUBLE, *MenuDataViewIn},{MENU_FACE_CHECK, 5, MENU_NO,MENU_NO, MENU_DATA_VIEW, MENU_STEP_FOLLOW,MENU_DATA_VIEW_REPEAT, *MenuFaceCheck},{MENU_STEP_FOLLOW, 5, MENU_NO,MENU_NO, MENU_DATA_VIEW, MENU_DATA_VIEW_FIRE, MENU_FACE_CH ECK,*MenuStepFollow},{MENU_SYS_EDIT, 3,2, MENU_SUM_SET, MENU_EDIT,MENU_PRINT_DATA, MENU_DATA_VIEW, *MenuEdit},{MENU_SUM_SET, 6, MENU_NO,MENU_NO, MENU_SYS_EDIT, MENU_EDIT_INSULATE,MENU_TIME_SET, *MenuSumSet},{MENU_EDIT_INSULATE, 6, MENU_NO,MENU_NO, MENU_SYS_EDIT, MENU_EDIT_HZ, MENU_SUM_SET,*MenuEditInsulate},{MENU_EDIT_HZ, 6, MENU_NO,MENU_NO, MENU_SYS_EDIT, MENU_LD_CONTROL,MENU_EDIT_INSULATE, *MenuEditHZ},{MENU_LD_CONTROL, 6,MENU_NO, MENU_NO, MENU_SYS_EDIT, MENU_LD_DELAY,MENU_EDIT_HZ, *MenuLDControl},{MENU_LD_DELAY, 6,MENU_NO, MENU_NO, MENU_SYS_EDIT, MENU_TIME_SET,MENU_LD_CONTROL, *MenuLDDelay},{MENU_TIME_SET, 6, MENU_NO,MENU_NO, MENU_SYS_EDIT, MENU_SUM_SET, MENU_LD_DELAY,*MenuTimeSet},{MENU_PRINT_DATA, 3, 3,MENU_PRINT_DATA_FIRE, MENU_EDIT, MENU_DATA_VIEW,MENU_SYS_EDIT, *MenuEdit},{MENU_PRINT_DATA_FIRE, 4,MENU_NO, MENU_NO, MENU_PRINT_DATA,MENU_PRINT_DATA_TROUBLE, MENU_PRINT_SET, *MenuPrintDataIn}, {MENU_PRINT_DATA_TROUBLE, 4, MENU_NO,MENU_NO, MENU_PRINT_DATA, MENU_PRINTER_CHECK,MENU_PRINT_DATA_FIRE, *MenuPrintDataIn},{MENU_PRINTER_CHECK, 4, MENU_NO,MENU_NO, MENU_PRINT_DATA, MENU_PRINT_SET,MENU_PRINT_DATA_TROUBLE, *MenuPrintDataIn},{MENU_PRINT_SET, 4, MENU_NO,MENU_NO, MENU_PRINT_DATA, MENU_PRINT_DATA_FIRE,MENU_PRINTER_CHECK, *MenuPrintSet},};/**************************************编程菜单显示数据******************************/const struct MenuDispData MenuEditShow[][MENU_MAX] = {{{MENU_NO , 0, 0, "选择: 消音→退出"}, //主菜单{MENU_DATA_VIEW , 1, 6, "⒈数据查看"},{MENU_SYS_EDIT , 2, 6, "⒉系统编程"},{MENU_PRINT_DATA , 3, 6, "⒊数据打印"}},{{MENU_NO , 0, 0, "数据查看: 消音→退出"}, //数据查看{MENU_DATA_VIEW_FIRE , 1, 4, "⒈火警"},{MENU_DATA_VIEW_TROUBLE, 2, 4, "⒉故障"},{MENU_DATA_VIEW_REPEAT , 3, 4, "⒊重码"},{MENU_FACE_CHECK , 1,12, "⒋面板检测"},{MENU_STEP_FOLLOW , 2,12, "⒌单步跟踪"}},{{MENU_NO , 0, 0, "系统编程: 消音→退出"}, //系统编程{MENU_SUM_SET , 1, 0, "⒈容量设置"},{MENU_EDIT_INSULATE , 2, 0, "⒉隔离点"},{MENU_EDIT_HZ , 3, 0, "⒊汉字描述"},{MENU_LD_CONTROL , 1,12, "⒋联动控制"},{MENU_LD_DELAY , 2,12, "⒌模块延时"},{MENU_TIME_SET , 3,12, "⒍时钟调整"}},{{MENU_NO , 0, 0, "数据打印: 消音→退出"}, //数据打印{MENU_PRINT_DATA_FIRE , 1, 0, "⒈火警数据"},{MENU_PRINT_DATA_TROUBLE,2, 0, "⒉故障数据"},{MENU_PRINTER_CHECK , 3, 0, "⒊打印机自检"},{MENU_PRINT_SET , 1,12, "⒋打印设置"}},};/***********************************等待按键******************** **************/void WaitKey(void){uint32 time;time = RTCFlag;WhichKey = KEY_NONE;while(!EscFlag){if(RTCFlag - time >= EDIT_TIME)EscFlag = TRUE;if(WhichKey != KEY_NONE){KeySound(300); //按键音return;}}}/*********************************显示多级菜单**********************************/void MenuEdit(){uint32 i,j=0;uint32 oldid;j = KeyTab[MenuID].ShowLevel;if(WhichKey == KEY_ESC || WhichKey == KEY_OK){ClearScreen();for(i=0;i<KeyTab[MenuNextID].MaxItems+1;i++) ShowString(MenuEditShow[j][i].Lin,MenuEditShow[j] [i].Column,MenuEditShow[j][i].Pdata,0); //初始化显示oldid =0;//没有原先选择的项}else{if(WhichKey == KEY_UP)oldid = KeyTab[MenuNextID].PressDown;elseoldid = KeyTab[MenuNextID].PressUp;//指示原先的项}for(i=1;i<KeyTab[MenuNextID].MaxItems+1;i++){if(MenuEditShow[j][i].Id == oldid)ShowString(MenuEditShow[j][i].Lin,MenuEditShow[j][i].Column,MenuEditShow[j][i].Pdata,0); //正常显示原先的项else{if(MenuEditShow[j][i].Id == MenuNextID)ShowString(MenuEditShow[j][i].Lin,MenuEditShow[j][i].Column,MenuEditShow[j][i].Pdata,1); //反显当前选择的项}}WhichKey = KEY_NONE;}/******************************系统编程************************* ******/uint32 Edit(void){struct KeyTabStruct NowKeyTab; //指示当前的菜单值uint32 escflag = FALSE;ResetFlag = FALSE;ChangeFlag = FALSE;EscFlag = FALSE;MenuID = MENU_EDIT;NowKeyTab = KeyTab[MenuID];MenuNextID = NowKeyTab.PressOk;(*NowKeyTab.CurrentOperate)(); //显示主菜单do{if(WhichKey == KEY_NONE)WaitKey(); //等待按键switch(WhichKey){case KEY_ESC : if(NowKeyTab.PressEsc != MENU_NO) {MenuID =NowKeyTab.PressEsc;MenuNextID =NowKeyTab.MenuIndex;NowKeyTab = KeyTab[MenuID];NowKeyTab.PressOk =MenuNextID;(*NowKeyTab.CurrentOperate)(); //显示当前菜单}elseescflag =TRUE; //退出编程状态break;case KEY_OK : if(NowKeyTab.PressOk != MENU_NO) {MenuID =NowKeyTab.PressOk;NowKeyTab = KeyTab[MenuID];MenuNextID =NowKeyTab.PressOk;}(*NowKeyTab.CurrentOperate)(); //执行当前按键的操作break;case KEY_UP : if((MenuNextID != MENU_NO) && (KeyTab[MenuNextID].PressUp != MENU_NO)){NowKeyTab.PressOk =KeyTab[MenuNextID].PressUp;MenuNextID = KeyTab[MenuNextID].PressUp;(*NowKeyTab.CurrentOperate)(); //执行当前按键的操作}break;case KEY_DOWN: if((MenuNextID != MENU_NO) && (KeyTab[MenuNextID].PressDown != MENU_NO)){NowKeyTab.PressOk =KeyTab[MenuNextID].PressDown;MenuNextID = KeyTab[MenuNextID].PressDown;(*NowKeyTab.CurrentOperate)(); //执行当前按键的操作}break;case KEY_RESET: ResetFlag = TRUE;break;default : break;}}while(!ResetFlag && !EscFlag && !escflag);if(ChangeFlag && !EscFlag && !ResetFlag) EditDataChange();if(ResetFlag)return SYS_RESET;else{return 0;}}关于这个菜单的说明:1.我用的是ARM处理器,所以51的时候把const改成code,uint32改成unsign ed char。