概率与数理统计
概率论与数理统计
概率论与数理统计概率论与数理统计是现代数学中非常重要的分支之一,它们在自然科学、社会科学,以及工程技术等领域都有广泛的应用。
在生物学,物理学,化学等领域,常常需要采用概率论和数理统计的方法,来研究和分析现象。
这篇文章将要探讨概率论和数理统计的一些基本概念和方法,并介绍它们在现实生活中的应用。
一、概率论概率论是一门研究随机现象及其规律的数学学科。
它的基本思想是通过建立数学模型,来描述随机事件的概率分布及其规律。
随机事件指某一次试验中可能发生或不发生的事情,例如掷骰子、抛硬币、抽扑克牌等,这些事件的结果是随机的,因此需要采用概率论的方法来研究。
1.概率和概率分布概率是指某一事件发生的可能性,用一个数值来表示。
在概率论中,对于某一特定随机事件,概率的大小常常用P(A)来表示,其中A是这个事件。
例如,抛一枚硬币,正面朝上的概率是0.5,用数学语言可以表示为P(正面)=0.5,反面朝上的概率也是0.5,即P(反面)=0.5。
概率分布是指某个随机事件的各种结果的概率分布情况。
在一次试验中,随机事件可能会有多个结果,即样本空间。
概率分布用来描述每个结果的概率大小。
例如,抛一枚硬币的样本空间是{正面,反面},正面和反面各占1/2的概率。
2.条件概率和独立事件条件概率是指在已知某个事件发生的情况下,某个随机事件会发生的概率。
条件概率的计算方法一般采用贝叶斯公式,例如给定事件A,以及事件B,P(A|B)表示在B发生的情况下,A 发生的概率,则条件概率可以表示为:P(A|B) = P(AB)/P(B)其中AB表示事件A和事件B同时发生的概率,P(B)表示事件B发生的概率。
独立事件是指某个随机事件的发生不会对另一个随机事件的发生产生影响。
如果事件A、B是独立事件,则可以表示为P(A|B) = P(A),P(B|A) = P(B),即A和B的概率相互独立,并不受对方的影响。
3.期望值和方差期望值是统计学中一个非常重要的概念,用来描述一个随机变量的总体平均数。
概率论与数理统计(完整版)
例3. 某接待站在某一周曾接待过12次来访, 且都是在周二 和周四来访. 问是否可以推断接待时间是有规定的?
注
实际推断原理:“小概率事件在一次试 验中实际上是不可能发生的”.
18
二、几何定义:
定义若对于一随机试验 ,每个样本点出现是等可能的 ,
样本空间所含的样本点个数为无穷多个 ,且具有非 零的 ,有限的几何度量 ,即 0m(),则称这一随机 试验是一几何概型的 .
(一) 样本空间:
定义 随机试验E的所有可能结果组成的集合称为 E的样 本空间, 记为S. 样本空间的元素称为样本点,用表示.
样本空间的分类:
1.离散样本空间:样本点为有限个或可列个. 例 E1,E2等. 2.无穷样本空间:样本点在区间或区域内取值. 例 灯泡的寿命{t|t≥0}.
5
(二) 随机事件
A 2,A 2 A 3, A 1A 2, A 1 A 2, A 1A 2A 3, A 1A 2 A 2A 3 A 1A 3.
14
§3. 概率的概念 一. 古典定义:
等可能概型的两个特点:
(1) 样本空间中的元素只有有限个;
(2) 试验中每个基本事件发生的可能性相同.
例如:掷一颗骰子,观察出现的点数.
概率论与数理统计
第一章 概率论的基本概念 前言
1. 确定性现象和不确定性现象. 2. 随机现象: 在个别试验中其结果呈现出不确定性, 在 大量重复试验中其结果又具有统计规律性. 3. 概率与数理统计的广泛应用.
2
§1.随机试验
我们将对自然现象的一次观察或进行一次科学试验 称为试验。
举例:
E1: 抛一枚硬币,观察正(H)反(T) 面 的情 况. E2: 将一枚硬币抛三次,观察正反面出现的情况.
概率论与数理统计公式整理(超全免费版)
「 ef(x) w0,其中 0,则称随机变量X 服从参数为X 的分布函数为1xe, xF(x)'0,x<0。
记住积分公式:x ne xdx n!指数分布的指数分布如果二维随机向量(X, Y)的所有可能取值为至多可列个有序对(x,y),则称为离散型随机(1)联合分离散型布设=(X,Y)的所有可能取值为(X i,y j)(i,j 1,2,),且事件{ =(X i,y j)}的概率为P ij,,称P{(X,Y) (X i,y j)} P j(i,j 1,2,)为=(X,Y)的分布律或称为X和Y的联合分布律。
联合分布有时也用下面的概率分布表来表示:这里P ij具有下面两个性质(1)P ij>0 (i,j=1,2,…);(2)P j 1.i j(1)大数定律X 切比雪夫大数定律设随机变量冶,X2,…相互独立,均具有有限方差,且被同一常数C所界:D (X i) <C(i=1,2,…),则对于任意的正数£,有limnPLx,丄n i 1 n° E(X i)i 11特殊情形: 若X1,X2,…具有相同的数学期望 E (X)=「则上式成为lim Pn1n X i大数定辛钦大数定律1.设卩是n次独立试验中事件A发生的次数,p是事件A在每次试验中发生的概率,则对于任意的正数£,有limn伯努利大数定律说明,当试验次数小,即limn这就以严格的数学形式描述了频率的稳定性。
很大时,事件1.A发生的频率与概率有较大判别的可能性很0.设X1, X2,…,Xi,…是相互独立同分布的随机变量序列,且 E ( X n) =g,则对于任意的正数£有lim Pn1 nX in i 11.(2)中心极限定理2X N(,)n 格定理设随机变量X1,X2,…相互独立,服从同一分布,且具有相同的数学期望和方差:E(X k) ,D(X k) 0(k 1,2, ),则随机变量的分布函数F n(x)对任意的实数X,Y nnX k nk 1X k nlim F n(x) limn n此定理也称为独立同分布的中心极限定理。
概率论与数理统计教程
1.1 随机事件和样本空间
一、随机现象 二、随机试验 三、样本空间 样本点 四、随机事件的概念 五、随机事件的关系
一、随机试验
1.必然现象(确定) 2.偶然现象(不确定)随机
说明: 1.随机现象揭示了条件和结果之间的非确定性联系 ,
其数量关系无法用函数加以描述. 2.随机现象在一次观察中出现什么结果具有偶然性,
1、包含关系 若事件 A 出现, 必然导致 B 出现 则称事件 B 包含事件 A,记作B A 或 A B.
特别地 若事件A包含事件B,而且事件B包含 事件A, 则称事件A与事件B相等,记作 A=B.
2.两事件的和与并
“二事件 A, B至少发生一个”也是一个事件, 称为事件 A 与事件B的和事件.记作A B,显然 A B {e | e A或e B}.
若事件 A 、B 满足 A B 且 AB .
则称 A 与B 为互逆(或对立)事件. A 的逆记
作 A.
事件间的运算规律
设 A, B, C 为事件, 则有
(1) 交换律 A B B A, AB BA. ( AB)C A(BC).
(2) 结合律 ( A B) C A (B C),
实例 抛掷一枚骰子, 观察出现的点数。 试验中,骰子“出现1点”, “出现2 点”, … ,“出现6点”, “点数不大于4”, “点 数为偶数” 等都为随机事件.
五、随机事件的关系及运算
(1)、随机事件间的关系
设试验 E 的样本空间为 , 而 A, B, Ak (k 1,2,)是 的子集.
推广:
N元情形
n
推广 称 Ak 为n个事件 A1, A2 ,, An 的积事件,
k 1
即A1, A2 ,, An同时发生;
概率论与数理统计公式整理(超全免费版)
(1)排列组合公式
Pmn
m!
从 m 个人中挑出 n 个人进行排列的可能数。
(m n)!
C
n m
m!
从 m 个人中挑出 n 个人进行组合的可能数。
n!(m n)!
(2)加法和乘法原理
(3)一些常见排列 (4)随机试验和随机事
件
(5)基本事件、样本空 间和事件
加法原理(两种方法均能完成此事):m+n 某件事由两种方法来完成,第一种方法可由 m 种方法完成,第二种方法可由 n 种方法来完成,则这件事
A、B 中至少有一个发生的事件:A B,或者 A+B。
(6)事件的关系与运算
属于 A 而不属于 B 的部分所构成的事件,称为 A 与 B 的差,记为 A-B,也可表示为 A-AB 或者 AB ,
它表示 A 发生而 B 不发生的事件。
A、B 同时发生:A B,或者 AB。A B=?,则表示 A 与 B 不可能同时发生,称事件 A 与事件 B 互不
它们是 的子集。 为必然事件,?为不可能事件。
不可能事件(?)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率 为 1,而概率为 1 的事件也不一定是必然事件。 ①关系:
如果事件 A 的组成部分也是事件 B 的组成部分,(A 发生必有事件 B 发生): A B 如果同时有 A B , B A ,则称事件 A 与事件 B 等价,或称 A 等于 B:A=B。
P(X=xk)=pk,k=1,2,…,
则称上式为离散型随机变量 X 的概率分布或分布律。有时也用分布列的形式给出:
X
| x1, x2,, xk,
概率论与数理统计完整ppt课件
在化学领域,概率论与数理统计被用于研究化学反应的速率和化 学物质的分布,如化学反应动力学、量子化学计算等。
生物
在生物学中,概率论与数理统计用于研究生物现象的变异和分布, 如遗传学、生态学、流行病学等。
在工程中的应用
通信工程
01
概率论与数理统计在通信工程中用于信道容量、误码率、调制
解调等方面的研究。
边缘分布
对于n维随机变量(X_1,...,X_n),在概 率论中,分别定义了X_1的边缘分布 、...、X_n的边缘分布。
04
数理统计基础
样本与抽样分布
01
02
03
总体与样本
总体是包含所有可能数据 的数据集合,样本是总体 的一个随机子集。
抽样方法
包括简单随机抽样、分层 抽样、系统抽样等。
样本分布
描述样本数据的分布情况 ,如均值、中位数、标准 差等。
参数估计与置信区间
参数估计
利用样本数据估计总体的 未知参数,如均值、方差 等。
点估计
用样本统计量作为总体参 数的估计值。
置信区间
给出总体参数的一个估计 区间,表示对总体的参数 有一个可信的估计范围。
假设检验与方差分析
假设检验
通过样本数据对总体参数提出 假设,然后根据假设进行检验
01
定义
设E是一个随机试验,X,Y是定义在E上,取值分别为实数的随机变量
。称有序实数对(X,Y)为一个二维随机变量。
02
分布函数
设(X,Y)是一个二维随机变量,对于任意实数x,y,二元函数
F(x,y)=P({X<=x,Y<=y})称为二维随机变量(X,Y)的分布函数。
03
边缘分布
对于二维随机变量(X,Y),在概率论中,分别定义了X的边缘分布和Y的
概率论与数理统计
概率论与数理统计本篇笔记内容主要整理自笔者的教材——《概率论与数理统计》(第四版),作者为盛骤、试式千、潘承毅等人 ,高等教育出版社出版。
一、概率论的基本概念1. 什么是概率?描述性定义:随机事件A发生的可能性的大小的度量(非负值),称为事件A发生的概率。
公理化定义:在随机试验的样本空间的每一个事件A,都对应一个实数值P(A),如果函数P( · )满足下列条件:非负性:规范性:S是必然事件,有P(S) = 1;可列可加性:设A1,A2,...,是两两不相容的事件(即i≠j时,AiAj = ∅),有P(A1∪A2∪...∪An) = P(A1) + P(A2) + ... + P(An)不相容事件的并的概率 等于 这些事件的概率的和。
2. 古典概型有什么特点?随机试验的样本空间只包含有限个元素;随机试验中的每个基本事件发生的可能性都相同。
3. 几何概型有什么特点?样本空间 是一个可度量的有界区域;有无限个基本事件,每个基本事件发生的可能性都一样,即样本点落入 的某一个可度量子区域S可能性与S的几何度量成正比,而与S的位置及形状无关。
4. 什么是条件概率?在已知事件A发生的情况下事件B发生的概率为条件概率P(A|B),公式有5. 什么是全概率公式?有一些时候事件B的概率不容易直接求,可以通过计算给B在各个条件下Ai发生的概率P(B| · ),来研究B发生的概率。
6. 什么是贝叶斯公式?解释一下“先验”和“后验”的概念(按照课本的思路)通过已知信息B来修正A发生的概率(即后验概率),可以通过先验概率P(A)以及AB之间的关系来研究。
举个例子:假设由多年的统计数据可以知道某种疾病的发病率,有一种检测试剂的准确率为99%,即=99%,同时有=5%会误报(检测没有病的病人为阳性),可以通过全概率公式计算试剂表现为阳性的概率。
根据这些信息,就可以计算一个病人在这种试剂检测为阳性的情况下患病的概率7. 什么叫做事件相互独立?P(AB) = P(A)P(B)即一个事件的发生,不会影响另一个事件的发生。
概率论与数理统计知识点总结(超详细版)
概率论与数理统计知识点总结(超详细版)eik则有P(A)=k/n,其中n为样本空间中元素的个数。
在概率论中,样本空间和随机事件是基本概念。
如果事件A发生必然导致事件B发生,则称事件B包含事件A,记作A⊂B。
当A和B中至少有一个发生时,称A∪B为事件A和事件B的和事件。
当A和B同时发生时,称A∩B为事件A和事件B的积事件。
当A发生、B不发生时,称A-B为事件A和事件B的差事件。
如果A和B互不相容,即A∩B=∅,则称A和B是互不相容的,或互斥的,基本事件是两两互不相容的。
如果A∪B=S且A∩B=∅,则称事件A和事件B互为逆事件,又称事件A和事件B互为对立事件。
在概率论中,还有一些运算规则。
交换律指A∪B=B∪A,A∩B=B∩A;结合律指(A∪B)∪C=A∪(B∪C),(A∩B)∩C=A∩(B∩C);分配律指A∪(B∩C)=(A∪B)∩(A∪C),A∩(B∪C)=(A∩B)∪(A∩C);德摩根律指A∪B=A∩B,A∩B=A∪B。
频率与概率是概率论的重要概念。
在相同的条件下,进行了n次试验,在这n次试验中,事件A发生的次数n A称为事件A发生的频数,比值nAn称为事件A发生的频率。
概率指对于随机试验E的每一事件A赋予一个实数P(A),称为事件的概率。
概率P(A)满足非负性,即对于每一个事件A,0≤P(A)≤1;规范性,即对于必然事件S,P(S)=1;可列可加性,即设A1,A2,…,An是两两互不相容的事件,则有P(∪Ai)=∑P(Ai)(n可以取∞)。
概率还有一些重要性质,包括P(∅)=0,P(∪Ai)=∑P(Ai)(n可以取∞),如果A⊂B,则P(B-A)=P(B)-P(A),P(A)≤1,P(A)=1-P(A'),以及P(A∪B)=P(A)+P(B)-P(A∩B)。
等可能概型又称为古典概型,是指试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同。
如果事件A 包含k个基本事件,即A={e1}∪{e2}∪…∪{ek},则有P(A)=k/n,其中n为样本空间中元素的个数。
概率论与数理统计总结
第一章随机事件与概率第一节随机事件及其运算1、随机现象:在一定条件下,并不总是出现相同结果的现象2、样本空间:随机现象的一切可能基本结果组成的集合,记为Ω={ω},其中ω表示基本结果,又称为样本点。
3、随机事件:随机现象的某些样本点组成的集合常用大写字母A、B、C等表示,Ω表示必然事件,∅表示不可能事件.4、随机变量:用来表示随机现象结果的变量,常用大写字母X、Y、Z等表示。
5、时间的表示有多种:(1)用集合表示,这是最基本形式(2)用准确的语言表示(3)用等号或不等号把随机变量于某些实属联结起来表示6、事件的关系(1)包含关系:如果属于A的样本点必属于事件B,即事件 A 发生必然导致事件B发生,则称A被包含于B,记为A⊂B;(2)相等关系:若A⊂B且B⊃A,则称事件A与事件B相等,记为A=B。
(3)互不相容:如果A∩B=∅,即A与B不能同时发生,则称A与B互不相容7、事件运算(1)事件A与B的并:事件A与事件B至少有一个发生,记为 A∪B。
(2)事件A与B的交:事件A与事件B同时发生,记为A∩ B或AB。
(3)事件A对B的差:事件A发生而事件B不发生,记为 A-B。
用交并补可以表示为。
(4)对立事件:事件A的对立事件(逆事件),即“A不发生”,记为.对立事件的性质:。
8、事件运算性质:设A,B,C为事件,则有(1)交换律:A∪B=B∪A,AB=BA(2)结合律:A∪(B∪C)=(A∪B)∪C=A∪B∪C A(BC)=(AB)C=ABC(3)分配律:A∪(B∩C)=(A∪B)∩(A∪C)、A(B∪C)=(A∩B)∪(A∩C)= AB∪AC(4)棣莫弗公式(对偶法则):9、事件域:含有必然事件Ω,并关于对立运算和可列并运算都封闭的事件类ξ称为事件域,又称为σ代数。
具体说,事件域ξ满足:(1)Ω∈ξ;(2)若A∈ξ,则对立事件∈ξ;(3)若A n∈ξ,n=1,2,···,则可列并ξ。
概率论与数理统计最简单讲解
概率论与数理统计最简单讲解1 简介概率论是研究随机现象和概率规律的数学分支,一般分为经典概率、几何概率和统计概率。
数理统计是一个应用概率论于实际问题的统计学分支,主要研究样本及其分布、估计和假设检验等内容。
2 概率论的基本概念概率是指某件事情发生的可能性大小,用数字表示。
0表示不可能发生,1表示肯定发生,0~1之间的数字表示可能性大小。
概率分为主观概率和客观概率。
主观概率是指根据经验、知识、直觉等主观因素来判断某件事情发生的可能性大小。
而客观概率则是通过实验、统计等客观方法来计算某件事情发生的可能性大小。
3 经典概率和几何概率经典概率适用于“随机事件有限且等可能”的情形,如掷骰子,扑克牌等。
设事件A发生的可能性为P(A),则概率公式为:P(A)=有利样本数/总样本数。
几何概率适用于具有可度量性的随机现象,如从一个圆环上随机抽取有色球的概率,可以通过求圆环表面积和有色球的面积比来计算概率。
4 统计概率和条件概率统计概率是指基于概率分布函数,用频率的稳定性代替概率来计算随机事件发生的可能性大小。
条件概率指已知事件B发生的前提下,事件A发生的概率大小。
条件概率公式为:P(A|B)=P(AB)/P(B)。
5 数理统计的基本概念数据分为总体和样本两类。
总体是指研究对象的全体。
样本是指从总体中选出的一部分观测值。
统计量是从样本数据得到的量,通常用统计量来描述总体的某些特征。
6 样本分布样本的分布会受到样本容量、总体分布和抽样方式等因素的影响。
常见的样本分布有正态分布、t分布、F分布等。
其中正态分布是最重要的一种样本分布,因为它在自然界和社会方面都普遍存在。
7 参数估计参数估计是指通过样本数据来推断总体参数的值。
根据点估计和区间估计两种方式,可以计算出总体平均数、标准差、比例等各类参数的值。
8 假设检验假设检验是指将总体分布的某个特性提出一个假设,并利用样本数据来检验该假设的正确性。
假设检验包括两类错误:一类是将假设的否定但事实上是正确的,称为第一类错误;另一类是将假设的接受但事实上是错误的,称为第二类错误。
概率论与数理统计知识点总结
(3)一些常见排列
重复排列和非重复排列(有序)
对立事件(至少有一个)
顺序问题
(4)随机试验和随机事件
如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。
乘法公式:
更一般地,对事件A1,A2,…An,若P(A1A2…An-1)>0,则有
… …… … 。
(14)独立性
①两个事件的独立性
设事件 、 满足 ,则称事件 、 是相互独立的。
若事件 、 相互独立,且 ,则有
若事件 、 相互独立,则可得到 与 、 与 、 与 也都相互独立。
必然事件 和不可能事件?与任何事件都相互独立。
设离散型随机变量 的可能取值为Xk(k=1,2,…)且取各个值的概率,即事件(X=Xk)的概率为
P(X=xk)=pk,k=1,2,…,
则称上式为离散型随机变量 的概率分布或分布律。有时也用分布列的形式给出:
。
显然分布律应满足下列条件:
(1) , , (2) 。
(2)连续型随机变量的分布密度
设 是随机变量 的分布函数,若存在非负函数 ,对任意实数 ,有
, ,
其中 、 为常数,则称随机变量 服从参数为 、 的正态分布或高斯(Gauss)分布,记为 。
具有如下性质:
1° 的图形是关于 对称的;
2°当 时, 为最大值;
若 ,则 的分布函数为
参数 、 时的正态分布称为标准正态分布,记为 ,其密度函数记为
, ,
分布函数为
。
(完整版)概率论与数理统计知识点总结(免费超详细版)
《概率论与数理统计》第一章 概率论的基本概念§2.样本空间、随机事件1.事件间的关系 B A ⊂则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生B }x x x { ∈∈=⋃或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ⋃发生B }x x x { ∈∈=⋂且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ⋂发生B }x x x { ∉∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生φ=⋂B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的且S =⋃B A φ=⋂B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件2.运算规则 交换律A B B A A B B A ⋂=⋂⋃=⋃结合律)()( )()(C B A C B A C B A C B A ⋂=⋂⋃⋃=⋃⋃ 分配律 )()B (C A A C B A ⋃⋂⋃=⋂⋃)( ))(()( C A B A C B A ⋂⋂=⋃⋂ 徳摩根律B A B A A B A ⋃=⋂⋂=⋃ B —§3.频率与概率定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值n n A 称为事件A 发生的频率概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率 1.概率)(A P 满足下列条件:(1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P(3)可列可加性:设n A A A ,,,21 是两两互不相容的事件,有∑===nk kn k kA P A P 11)()( (n 可以取∞)2.概率的一些重要性质: (i ) 0)(=φP(ii )若n A A A ,,,21 是两两互不相容的事件,则有∑===nk kn k kA P A P 11)()((n 可以取∞)(iii )设A ,B 是两个事件若B A ⊂,则)()()(A P B P A B P -=-,)A ()B (P P ≥ (iv )对于任意事件A ,1)(≤A P(v ))(1)(A P A P -= (逆事件的概率)(vi )对于任意事件A ,B 有)()()()(AB P B P A P B A P -+=⋃§4等可能概型(古典概型)等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同 若事件A包含k个基本事件,即}{}{}{2]1k i i i e e e A =,里个不同的数,则有中某,是,,k k n 2,1i i i ,21 ()中基本事件的总数包含的基本事件数S }{)(1j A n k e P A P kj i ===∑= §5.条件概率(1) 定义:设A,B 是两个事件,且0)(>A P ,称)()()|(A P AB P A B P =为事件A 发生的条件下事件B 发生的条件概率(2) 条件概率符合概率定义中的三个条件1。
概率论与数理统计公式大全
概率论与数理统计公式大全一、概率论的常用公式:1.概率的公式:对于事件A,其概率表示为P(A),满足0≤P(A)≤1。
2.加法公式:对于两个互斥事件A和B,其概率表示为P(A∪B),满足P(A∪B)=P(A)+P(B)。
3.减法公式:对于事件A和B,其概率表示为P(A∩B),满足P(A∩B)=P(A)-P(A∪B)。
4.乘法公式:对于两个独立事件A和B,其概率表示为P(A∩B),满足P(A∩B)=P(A)某P(B)。
5.条件概率公式:对于事件A和B,其条件概率表示为P(A,B),满足P(A,B)=P(A∩B)/P(B)。
6.全概率公式:对于一组互斥事件B1,B2,...,Bn,以及事件A,有P(A)=∑(P(A,Bi)某P(Bi))。
7.贝叶斯公式:对于一组互斥事件B1,B2,...,Bn,以及事件A,有P(Bi,A)=P(A,Bi)某P(Bi)/(∑(P(A,Bj)某P(Bj))。
二、数理统计的常用公式:1.均值公式:对于一组数据某1,某2,...,某n,其均值表示为μ=∑(某i)/n。
2.方差公式:对于一组数据某1,某2,...,某n,其方差表示为σ^2=∑((某i-μ)^2)/n。
3.标准差公式:对于一组数据某1,某2,...,某n,其标准差表示为σ=√(σ^2)。
4. 协方差公式:对于两组数据某1,某2,...,某n 和 y1,y2,...,yn,其协方差表示为 Cov(某,y) = ∑((某i - μ某) 某 (yi - μy)) / n。
5. 相关系数公式:对于两组数据某1,某2,...,某n 和 y1,y2,...,yn,其相关系数表示为 r = Cov(某,y) / (σ某某σy)。
6.正态分布的概率计算:对于满足正态分布的一组数据某1,某2,...,某n,可以利用标准正态分布表或计算工具来计算概率P(X≤某)或P(X>某)。
7.置信区间公式:对于一组数据某1,某2,...,某n,其均值μ和置信水平α,可以计算置信区间为某̄±Z(α/2)某(σ/√n)。
概率论与数理统计ppt课件
称这种试验为等可能概型(或古典概型)。
*
例1:一袋中有8个球,其中3个为红球,5个为黄球,设摸到每一球的可能性相等,从袋中不放回摸两球, 记A={恰是一红一黄},求P(A). 解:
(注:当L>m或L<0时,记 )
例2:有N件产品,其中D件是次品,从中不放 回的取n件, 记Ak={恰有k件次品},求P(Ak). 解:
*
第四章 随机变量的数字特征 4.1 数学期望 4.2 方差 4.3 协方差及相关系数 4.4 矩、协方差矩阵 第五章 大数定律和中心极限定理 5.1 大数定律 5.2 中心极限定理 第六章 数理统计的基本概念 6.1 总体和样本 6.2 常用的分布
*
第七章 参数估计 7.1 参数的点估计 7.2 估计量的评选标准 7.3 区间估计 第八章 假设检验 8.1 假设检验 8.2 正态总体均值的假设检验 8.3 正态总体方差的假设检验 8.4 置信区间与假设检验之间的关系 8.5 样本容量的选取 8.6 分布拟合检验 8.7 秩和检验 第九章 方差分析及回归分析 9.1 单因素试验的方差分析 9.2 双因素试验的方差分析 9.3 一元线性回归 9.4 多元线性回归
解: 设 Ai={ 这人第i次通过考核 },i=1,2,3 A={ 这人通过考核 },
亦可:
*
例:从52张牌中任取2张,采用(1)放回抽样,(2)不放 回抽样,求恰是“一红一黑”的概率。
利用乘法公式
与 不相容
(1)若为放回抽样:
(2)若为不放回抽样:
解: 设 Ai={第i次取到红牌},i=1,2 B={取2张恰是一红一黑}
①
②
①
1 2 N
①
②
1 2 N
……
概率论与数理统计
概率论与数理统计第一章 随机事件及其概率 一.随机事件1. 随机事件的相关概论2. 事件之间的相互关系 二.随机事件的概率 1. 概率的公理定义 2. 概率的性质3. 概率的古典概率,几何概率,条件概率的相关定义及会求相关的题目 三.概率的计算公式加法公式,乘法公式,全概率公式,贝叶斯公式 四.事件的独立性1. P (AB )=P (A )P (B )可扩充到n 个事件相互独立2. n 重伯努利概型的公式(二项概率公式) 相关题型:1. 设随机事件,A B 满足()()P AB P AB ,且()P A p ,则()P B __________.2.已知1()()()4P A P B P C ,()0,P AB 1()()16P AC P BC ,则事件,,A B C 全不发生的概率为____________.3. 一批产品共有10件正品和2件次品,任意抽取两次,每次抽一个,抽出后不放回,则第二次抽出的是次品的概率 ______________.4. 某种仪器由三个部件组装而成,假设各部件质量互不影响且它们的优质品率分别为0.8,0.7与0.9,已知如果三个部件都是优质品,则组装后仪器一定合格;如果有一个部件不是优质品,则组装后的仪器不合格率为0.2;如果有两个部件不合格,则仪器的不合格率为0.6;如果三个部件都不是优质品,则组装仪器的不合格率为0.9.则仪器的不合格率为______________;如果已发现一台仪器不合格,则它有____________个部件不是优质品的概率最大.5. 某人向同一目标独立重复射击,每次射击命中目标的概率为(01)p p ,则此人第4次射击恰好第2次命中目标的概率为____________. 6.在区间(0,1)中随机取两个数,则两数之差的绝对值小于12的概率_____________. 7.在电炉上安装了4个温控器,其显示温度的误差是随机的,在使用过程中,只要有两个温控器显示的温度不低于临界温度0t ,电炉就断电,以E 表示“电炉断电”,而(1)(2)(3)(4)T T T T 为4个温控器显示的按递增顺序排列的温度值,则事件E 等于_____________.8.设3次独立试验中,事件A 出现的概率相等,若已知A 至少出现一次的概率等于1927,则事件A 在一次试验中出现的概率为___________.9.设工厂A 和工厂B 的产品的次品率分别为1%和2%,现从由A 和B 的产品分别占60%和40%的一批产品中随机地抽取一件,发现是次品,求该产品属于A 生产的概率。
概率论与数理统计超全公式总结
~
χ 2 (n −1)
X − µ ~ t(n −1) s/ n
两个正态总体的方差之比
S12
σ
2 1
/ S22
/
σ
2 2
~F (n1 −1,n2 −1)第六章 点估计:参数的估计值为一个常数 矩估计 最大似然估计
n
Π Π n
L = f (xi ;θ )
i =1
L = p(xi ;θ )
i =1
似然函数
均值的区间估计——大样本结果
⎛ ⎜
x
±
zα
/2
⎝
σ⎞ ⎟
n⎠
x — 样本均值 σ — 标准差(通常未知,可用样本标准差s代替) n — 样本容量(大样本要求n > 50) zα /2 — 正态分布的分位点
正态总体方差的区间估计 两个正态总体均值差的置信区间 大样本或正态小样本且方差已知
( ) ⎛
⎜ ⎜
S 2 — 样本方差
χ2 α /2
— 卡方分布的分位点
Z=
p − p0
p0 — —总体比例
p0 (1− p0 ) / n p — —样本比例
单正态总体均值的 t 检验
t = X − µ0 S/ n
单正态总体方差的卡方检验
χ 2 = (n −1)S 2
σ
2 0
拒绝域
双边检验
χ2
≥
χα2 / 2或χ 2
k
∑∑ E(X)= xipij
ij
E( X ) = ∫ ∫ xf (x, y)dxdy
不相关不一定独立 第四章
正态分布 X ~ N (µ,σ 2 )
∑∑ E(XY) = xi yj pij
ij
概率论与数理统计(完整版)
实用文档
4
§2. 样本空间与随机事件
(一) 样本空间:
定义 随机试验E的所有可能结果组成的集合称为 E的 样本空间, 记为S. 样本空间的元素称为样本点,用表 示.
样本空间的分类:
1.离散样本空间:样本点为有限个或可列个. 例 E21,.E无2等穷.样本空间:样本点在区间或区域内取值. 例 灯泡的寿命{t|t≥0}.
可列个事件A1 , A2 ,的和事件记为 Ak .
k 1
3.积事件: 事件A B={x|x A 且 x B}称A与
B的积,即事件A与A B同时发生. A B 可简记为AB.
类似地,
事件
SA K
为可列B 个事件A1,
A2,
...的积事件.
k 1
(2)A B
A B
(3)A B
实用文档S
9
4.差事件:
交换律: A B B A;A B B A.
结合律: A (B C) (A B) C ; A (B C) (A B) C.
分配律: A (B C) (A B) (A C); A (B C) (A B) (A C).
对偶律: A B A B;
概率论与数理统计
实用文档
第一章 概率论的基本概
念
前言
1. 确定性现象和不确定性现象.
2. 随机现象: 在个别试验中其结果呈现出不确定性, 在大量重复试验中其结果又具有统计规律性.
3. 概率与数理统计的广泛应用.
实用文档
2
§1.随机试验
我们将对自然现象的一次观察或进行一次科学试验 称为试验。
举例:
E1: 抛一枚硬币,观察正(H)反(T) 面 的情 况. E2: 将一枚硬币抛三次,观察正反面出现的情况.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率,亦称“或然率”,它是反映随机事件出现的可能性(likelihood)大小。
随机事件是指在相同条件下,可能出现也可能不出现的事件。
例如,从一批有正品和次品的商品中,随意抽取一件,“抽得的是正品”就是一个随机事件。
设对某一随机现象进行了n次试验与观察,其中A事件出现了m次,即其出现的频率为m/n。
经过大量反复试验,常有m/n越来越接近于某个确定的常数(此论断证明详见伯努利大数定律)。
该常数即为事件A出现的概率,常用P (A) 表示。
数理统计是数学的一个分支,分为描述统计和推断统计。
它以概率论为基础,研究大量随机现象的统计规律性。
描述统计的任务是搜集资料,进行整理、分组,编制次数分配表,绘制次数分配曲线,计算各种特征指标,以描述资料分布的集中趋势、离中趋势和次数分布的偏斜度等。
推断统计是在描述统计的基础上,根据样本资料归纳出的规律性,对总体进行推断和预测。
需要熟练的运用重积分才能学概率论,而重积分又是高等数学中比较高级的东西,也就是说要把《高等数学》基本上完全掌握才行。
高中知识加高等数学中的微积分就可以解决。
还涉及一些和函数有关基本概念,连续,单调性,之后看教材就可以自学了,主要是抓住模型,和常用分布等。
概率与统计的一些概念和简单的方法,早期主要用于赌博和人口统计模型。
随着人类的社会实践,人们需要了解各种不确定现象中隐含的必然规律性。