概率论与数理统计 数理统计基础

合集下载

概率论与数理统计

概率论与数理统计

28
概率的性质
1 P( ) 0
2

A, B互斥(即AB )
P( A U B) P( A) P( B)
一般地,
Ai Aj (i, j 1, 2,L n, i j )
P UAi P( Ai ). i 1 i 1
29
问题:如何对随机现象进行研究?
5
§1.1.1 随机试验
对随机现象进行的观察或试验称为随机试验,简称为 试验。 随机试验的三个特点:
1.可以在相同条件下重复进行; 2.试验结果不止一个,且可以预知一切 可能的结果的取值范围; 3.试验前不能确定会出现哪一个结果。
6
§1.1.2
样本空间与随机事件
在下图中,用Ω表示一个试验的所有可能的
15
Ω A
A
6. 对立(互逆)的事件:如果 AB= , , 且AB=,则称A与B为互逆事件,记作 B= A
如果A,B是任意两事件,则有
AA ,
A A ,
A B AB,
A A.
3) A B A ( B A)
注意对立事件与互斥的区别.
16
7.完备事件组 若事件A1,A2,„An为两两互不相容的事件, 并且
P(C) [P( AC) P(BC) P( ABC)]
0.3 (0.08 0.05 0.03) 0.2
35
1 例 设 A、B 为两个随机事件 ,且已知 P A , 4 1 P B , 就下列三种情况求概率 P BA . 2
1 A 与 B 互斥 ;
用不同的记号,可写为 (A+B)C=AC+BC (AB)+C=(A+C)(B+C)

《概率统计》课内容简介与学习方法

《概率统计》课内容简介与学习方法

《概率统计》课内容简介与学习方法《概率统计》是一门应用数学课程,在统计学和概率论的基础上,研究统计现象中的规律和规则。

这门课程主要包括概率论和数理统计两个方面的内容。

概率论研究随机现象的概率规律,数理统计则从已知的样本数据出发,推断总体的一些特征。

通过学习《概率统计》,学生可以掌握概率统计的基本理论和方法,培养分析和解决实际问题的能力。

1.概率论基础:概率论的基本概念,如样本空间、事件、概率等;概率的计算方法,包括排列组合、条件概率、贝叶斯公式等;随机变量及其分布,包括离散随机变量、连续随机变量等。

2.大数定律:大数定律研究随机事件的频率,通过样本数量的增加,随机事件的频率将收敛于它的概率;大数定律的常见形式有强大数定律和弱大数定律。

3.中心极限定理:中心极限定理研究随机变量和的分布,当样本容量足够大时,随机变量的和可以近似服从正态分布;中心极限定理的常见形式有切比雪夫不等式、林德伯格-莱维中心极限定理等。

4.数理统计基础:数理统计是根据样本数据推断总体特征的一门学科;包括参数估计和假设检验两个核心内容;参数估计研究如何根据样本数据估计总体的未知参数;假设检验研究如何根据样本数据判断总体参数的假设是否成立。

除了以上核心内容外,课程还会介绍一些基本的统计描述方法和统计推断方法,如多元统计分析、回归分析、时间序列分析等。

在学习《概率统计》时,可以采用以下学习方法:1.确定学习目标:明确掌握该课程的基本概念、原理和应用方法为目标,为学习提供方向。

2.认真听讲:课堂听讲是获取知识的重要途径,要认真听讲,理解教授的讲解内容,并及时记下关键点。

3.参考教材:针对每一章节的内容,可参考教材对其中的重点进行深入学习,对于理解困难的部分,可以适当寻求他人帮助。

4.做习题:习题是学习的重要环节,通过做习题可以巩固理论知识,提高解题能力。

建议先做一些基础练习题,再逐步挑战难度较大的题目。

5.制定学习计划:学习《概率统计》需要一定的时间和精力,制定一个合理的学习计划,合理安排时间,有助于提高学习效率。

概率论与数理统计-基础知识

概率论与数理统计-基础知识

P( B) P( Ai ) P( B | Ai )
i 1
n
并且要推测“原 因”时,一般使 用逆概公式。
贝叶斯公式: P( A j | B) P( Aj ) P( B | A j ) ( P( B) 0) n (逆概公式) P( Ai ) P( B | Ai )
i 1
对于事件A,B,若P(AB)=P(A)P(B)则称事件A ,B相互独立.
总结: X~ B(1,p) B(n,p) P() U(a,b) EX p np (a+b)/2
DX p(1-p) np(1-p)Biblioteka (a-b)2/12 2
方差的性质 1.设C是常数,则 D(C)=0. 2.设C是常数,则 D(CX)=C2D(X). 3.设X,Y为随机变量,则 D(XY)=D(X)+D(Y)2E[(X-EX)(Y - EY)] =D(X)+D(Y)2[E(XY)-E(X)E(Y) ]. 特别:(1)若Y为常数b,则 D(X+b)=D(X) (2)若X,Y相互独立,则 D(XY)=D(X)+D(Y). 推广:若X1,X2, … ,Xn 相互独立,则有 D(X1X2… Xn)=D(X1)+D(X2)+…+D(Xn)
3.泊松分布:P(X=k)=ke-/k!,(k=0,1,…),记作P()
分布函数 设 X 是一个随机变量,x 是任意实数,函数 F(x)= P(X≤x) 称为 X 的分布函数,也记作FX(x). 分布函数的性质
1. 0≤F(x)≤1; 3. F(x)是单调不减的;
2. F(-∞)=0,F(+∞)=1 ;
随机事件间的关系 1.包含:AB(B发生则A发生) 2.相等:A=B(B发生当且仅当A发生) 3.和(并)事件:AB(A、B至少发生一个) 4.积(交)事件:AB(A、B都发生) 5.差事件:A-B=A-AB=AB 6.互斥事件(互不相容):AB= 7.对立事件:AB=,AB=,此时A=B,B=A. 8.完备事件组:样本空间的一个划分。

概率论与数理统计ppt课件

概率论与数理统计ppt课件

04
理解基本概念和原理
做大量练习题,培养解题能力
05
06
阅读相关书籍和论文,拓宽知识面
02
概率论基础
概率的基本概念
试验
一个具有有限个或无限个 可能结果的随机试验。
事件
试验中的某些结果的总称 。
概率
衡量事件发生可能性的数 值,通常表示为0到1之间 的实数。
必然事件
概率等于1的事件。
不可能事件
概率等于0的事件。
01 点估计
用样本统计量估计总体参数,如用样本均值估计 总体均值。
02 区间估计
给出总体参数的估计区间,如95%置信区间。
03 估计量的性质
无偏性、有效性和一致性。
假设检验
假设检验的基本思想
先假设总体参数具有某种 特性,然后通过样本信息 来判断这个假设是否合理 。
双侧检验
当需要判断两个假设是否 相等时,如总体均值是否 等于某个值。
连续型随机变量
取值无限的随机变 量。
方差
衡量随机变量取值 分散程度的数值。
03
数理统计基础
总体与样本
总体
研究对象的全体。
抽样方法
简单随机抽样、分层抽样、系统抽样等。
样本
从总体中随机抽取的一部分个体,用于估 计和推断总体的特性。
样本大小
样本中包含的个体数量,需要根据研究目 的和资源来确定。
参数估计
单因素方差分析
单因素方差分析的定义
单因素方差分析是方差分析的一种形式,它只涉及一个实验因素。通过对不同组的均值进行比 较,可以确定这个因素对实验结果的影响是否显著。
单因素方差分析的步骤
单因素方差分析通常包括以下步骤:首先,对实验数据进行分组;其次,计算每组的均值;接 着,计算总的均值和总的变异性;然后,计算组间变异性和组内变异性;最后,通过比较这两 种变异,得出因素的显著性。

概率论与数理统计 第5章

概率论与数理统计 第5章
i 1 4 i 2 2 i i 1
n
n
性质2.(分布可加性):若X~2(n1),Y~2(n2),X与 Y独立,则
X + Y~2(n1+n2 )
3、2分布表及有关计算
(1)构成 P{2(n)>λ}=α,已知n, α可查表求得λ; (2)有关计算P 2 (n) 2 (n) 称为上侧α分位数
例5.1 设 X ~ N ( , 2 ) (X1,X2,…,Xn)为X的一个样本,
求(X1,X2,…,Xn)的密度。 解 (X1,X2,…,Xn)为X的一个样本,故
X i ~ N ( , 2 )
n
i 1,2,, n
f ( x1 , x2 ,, xn ) f ( xi )
16 2

i 1,2,,16
2 1 16 2 2 P ( X i ) P 8 2 (16) 16 2 16 i 1
2—分布的密度函数f(y)曲线
n/2 1 f ( y) 2 ( n / 2) y 0,
n y 1 2 2
e , y0 y0
2 例5.4 X ~ N ( , ) (X1,X2,X3)为X的一个样本
X 1 X 2 X 3 的分布。 求


(n)为整体记号
2
2 (n) 2 2 查表得 0 ( 25 ) 34 . 382 10) 18.307 .1 0.05 (
1 当n充分大时,近似有 (n ) (u 2n - 1) 2 2
2
练习1. P(2(n)<s)=1-p ∵P(2(n) < s)=1- P(2(n) s )=1-p ∴ P(2(n) s )=p 2 s p (n) 练习2. P(2(11)>s)=0.05,求s

概率论与数理统计基础知识

概率论与数理统计基础知识
一、个体、母体与子样 在统计分析中,构成研究对象的每一个最基本的单位称为个体。
进行统计分析,通常是从母体中随机地选择一部分样品,称为子样(又称样本)。用它来代 表母体进行观察、研究、检验、分析,取得数据后加以整理,得出结论
例如,我们可将一个编号水泥看成是母体,每一包水泥看成是个体,通过随机取样(连续取 样或从20个以上不同部位取样),所取出的12kg检验样品可称为子样,通过检验分析,即可 判断该编号水泥(母体)的质量状况。
实例2 随机变量 X 为“测量某零件尺寸时的测量 误差”.
则 X 的取值范围为 (a, b) .
定义
设 E 是随机试验, 它的样本空间是 S {e}. 如 果对于每一个 e S , 有一个实数 X (e) 与之对应, 这样就得到一个定义在 S 上的单值实值函数 X (e), 称 X (e) 为随机变量.
如果事件A发生必然导致事件B发生,即A的每个样本点都是B的样本点,则称 B包含A,记作 A B .从事件的集合表示看,事件B包含事件A就是样本空间的 子集B包含子集A 等对,任记何为事A件=AB,,总即有,AA与 B含有如相果同A 的 B样本,点同时B A ,则称事件A和事件B相
事件的互斥
如果事件A和B不可能同时发生,即A与B没有公共样本点,则称A与B是互斥 的(Mutually Exclusive)或互不相容的,换句话说,两个事件A与B互斥就是 样本空间两个子集A与B不相交
四、数据统计特征数
算术平均值 我们从总体抽了一个样本(子样),得到一批数据X1、X2、X3……Xn在处理这批数据时,经常
用算术平均值X来代表这个总体的平均水平。统计中称这个算术平均值为“样平均值”。 中位数 把数据按大小顺序排列,排在正中间的一个数即为中位数。当数据的个数n为奇数时,中位数就

概率论与数理统计基本概念

概率论与数理统计基本概念

概率论与数理统计基本概念
概率论与数理统计是研究事件发生的可能性,以及由此衍生的结果
的一门学科。

它可以帮助人们提高分析和预测能力。

可以帮助我们了
解自然界及其客观原理,以及把握当代社会经济实体及其活动。

一、概率概念:
1. 随机事件:指事件发生以来,在所有结果中,用概率值去衡量其发
生的可能性,及其各个单一结果的概率分布情况;
2. 概率:是用来衡量某一随机事件发生的可能性的数值,可以给出这
个事件发生的可能性大小;
3. 概率分布:是某一随机变量及其可能取值之间发生关系的一种描述;
二、数理统计概念:
1、统计:是指对数据进行定量描述,尝试从数据中获得解释性的统计
特征;
2、变量:是指以数值形式表示的某类事物,是研究目标内容分析的一
种实际基础;
3、统计分布:是给定一组数据,通过统计手段,计算出变量的概率分
布情况,及其可能的变化规律;
4、极限定理:是一种概率论的定理,旨在探讨一个系统在重复抽样下,抽样结果的收敛情况;
5、数据描述:是指对数据的描述,可以让人简单明了地理解数据,及
其特征和趋势;
6、统计推断:是指根据统计样本信息,以概率结果作为有效依据,做
出关于总体参数情况的推断;
7、回归分析:是指建立一条回归函数模型,以描述解释变量对被解释
变量的影响;
8、判别分析:是指构建一个准确的模型,能够根据输入的观测值来准
确地判断属于哪一类人或物;
9、聚类分析:是指将一组数据进行分类,从而揭示内部数据间的关系,辅助决策;
10、卡方检验:是指判断某一种统计判断是否证实对某一总体分布结
果的检验,从而决定是否接受或拒绝假设。

概率论与数理统计基础知识

概率论与数理统计基础知识

从集合的角度看

B
A

事件是由某些样本点所构成的一个集合.一个事件发 生,当且仅当属于该事件的样本点之一出现.由此可 见,样本空间Ω作为一个事件是必然事件,空集Ø作 为一个事件是不可能事件,仅含一个样本点的事件称 为基本事件.
2. 几点说明
⑴ 随机事件可简称为事件, 并以大写英文字母
A, B, C,
基本事件 实例
由一个样本点组成的单点集.
“出现1点”, “出现2点”, … , “出现6点”.
必然事件 随机试验中必然会出现的结果. 实例 上述试验中 “点数不大于6” 就是必然事件. 不可能事件 随机试验中不可能出现的结果. 实例 上述试验中 “点数大于6” 就是不可能事件. 必然事件的对立面是不可能事件,不可能事 件的对立面是必然事件,它们互称为对立事件.
说明 1. 随机试验简称为试验, 是一个广泛的术语.它包 括各种各样的科学实验, 也包括对客观事物进行的 “调查”、“观察”或 “测量” 等. 2. 随机试验通常用 E 来表示. 实例 “抛掷一枚硬币,观 察正面,反面出现的情况”.
分析 (1) 试验可以在相同的条件下重复地进行; (2) 试验的所有可能结果: 字面、花面; (3) 进行一次试验之前不能 确定哪一个结果会出现. 故为随机试验.
将下列事件均表示为样本空间的子集. (1) 试验 E2 中(将一枚硬币连抛三次,考虑正反 面出现的情况),随机事件: A=“至少出现一个正面” B=“三 次出现同一面” C=“恰好出现一次正面” (2) 试验 E6 中(在一批灯泡中任取一只,测试其 寿命),D=“灯泡寿命不超过1000小时”
(1)由S2= {HHH, HHT, HTH, THH,HTT,THT, TTH,TTT}; 故: A={HHH, HHT, HTH, THH,HTT,THT, TTH}; B={HHH,TTT} C={HTT,THT,TTH} (2) D={x: x<1000(小时)}。

研究生数理统计

研究生数理统计

研究生数理统计数理统计是数学和统计学的交叉学科,主要研究通过数学方法对统计问题进行建模和分析的科学方法。

数理统计作为一门重要的科学研究方法,具有广泛的应用领域和重要的理论价值。

数理统计的研究内容主要包括:1. 概率论和数理统计基础:概率论和数理统计是数理统计的理论基础。

概率论主要研究随机事件发生的概率和随机变量的分布规律,为数理统计提供了数学工具和方法。

数理统计则将概率论的方法应用到具体的统计问题中,如参数估计、假设检验、回归与相关等。

2. 统计推断:统计推断是数理统计的核心内容,主要研究如何通过样本数据推断总体特征。

经典统计推断方法包括点估计和区间估计,通过样本数据推断总体参数的点估计是数理统计的基本问题。

区间估计则提供了对总体参数估计的不确定性程度的度量。

3. 统计模型:统计模型是数理统计的重要工具,用于描述和分析实际问题中的统计关系。

常用的统计模型有线性回归模型、混合模型、时间序列模型等。

通过对统计模型的建立和参数估计,可以对实际问题进行分析和预测。

4. 多元统计分析:多元统计分析是数理统计的扩展领域,主要研究多个变量之间的关系和数据集的模式。

常用的多元统计分析方法有主成分分析、聚类分析、判别分析等,通过这些方法可以对高维数据进行降维和分类。

5. 实际应用:数理统计方法在各个学科领域都有广泛的应用。

在生物医学领域,数理统计可以用于生物数据的分析和生物实验的设计;在金融领域,数理统计可以用于金融市场的波动性研究和风险管理;在工程领域,数理统计可以用于产品质量控制和工程实验的优化。

总体来说,数理统计作为一门重要的科学研究方法,在理论和应用上都有重要的价值。

通过数理统计的研究,可以提高数据分析和决策的准确性和科学性,对推动科学研究和实际应用都具有重要意义。

概率论与数理统计最简单讲解

概率论与数理统计最简单讲解

概率论与数理统计最简单讲解1 简介概率论是研究随机现象和概率规律的数学分支,一般分为经典概率、几何概率和统计概率。

数理统计是一个应用概率论于实际问题的统计学分支,主要研究样本及其分布、估计和假设检验等内容。

2 概率论的基本概念概率是指某件事情发生的可能性大小,用数字表示。

0表示不可能发生,1表示肯定发生,0~1之间的数字表示可能性大小。

概率分为主观概率和客观概率。

主观概率是指根据经验、知识、直觉等主观因素来判断某件事情发生的可能性大小。

而客观概率则是通过实验、统计等客观方法来计算某件事情发生的可能性大小。

3 经典概率和几何概率经典概率适用于“随机事件有限且等可能”的情形,如掷骰子,扑克牌等。

设事件A发生的可能性为P(A),则概率公式为:P(A)=有利样本数/总样本数。

几何概率适用于具有可度量性的随机现象,如从一个圆环上随机抽取有色球的概率,可以通过求圆环表面积和有色球的面积比来计算概率。

4 统计概率和条件概率统计概率是指基于概率分布函数,用频率的稳定性代替概率来计算随机事件发生的可能性大小。

条件概率指已知事件B发生的前提下,事件A发生的概率大小。

条件概率公式为:P(A|B)=P(AB)/P(B)。

5 数理统计的基本概念数据分为总体和样本两类。

总体是指研究对象的全体。

样本是指从总体中选出的一部分观测值。

统计量是从样本数据得到的量,通常用统计量来描述总体的某些特征。

6 样本分布样本的分布会受到样本容量、总体分布和抽样方式等因素的影响。

常见的样本分布有正态分布、t分布、F分布等。

其中正态分布是最重要的一种样本分布,因为它在自然界和社会方面都普遍存在。

7 参数估计参数估计是指通过样本数据来推断总体参数的值。

根据点估计和区间估计两种方式,可以计算出总体平均数、标准差、比例等各类参数的值。

8 假设检验假设检验是指将总体分布的某个特性提出一个假设,并利用样本数据来检验该假设的正确性。

假设检验包括两类错误:一类是将假设的否定但事实上是正确的,称为第一类错误;另一类是将假设的接受但事实上是错误的,称为第二类错误。

概率论与数理统计基础公式大全

概率论与数理统计基础公式大全
当x2>x1时,有F〔x2,y〕≥F(x1,y);当y2>y1时,有F(x,y2) ≥F(x,y1);
〔3〕F〔x,y〕分别对x和y是右连续的,即
〔4〕
〔5〕对于
.
〔4〕离散型与连续型的关系
〔5〕边缘分布
离散型
X的边缘分布为

Y的边缘分布为

连续型
X的边缘分布密度为
Y的边缘分布密度为
〔6〕条件分布
离散型
在X=xi的条件下,Y取值的条件分布为
在Y=yj的条件下,X取值的条件分布为
连续型
在Y=y的条件下,X的条件分布密度为

在X=x的条件下,Y的条件分布密度为
〔7〕独立性
一般型
F(X,Y)=FX(x)FY(y)
离散型=fX(x)fY(y)
直接判断,充要条件:
①可别离变量
②正概率密度区间为矩形
记为〔X,Y〕~N〔
由边缘密度的计算公式,可以推出二维正态分布的两个边缘分布仍为正态分布,
即X~N〔
但是假设X~N〔 ,(X,Y)未必是二维正态分布。
〔10〕函数分布
Z=X+Y
根据定义计算:
对于连续型,fZ(z)=
两个独立的正态分布的和仍为正态分布〔 〕。
n个相互独立的正态分布的线性组合,仍服从正态分布。

指数分布
,
0, ,
其中 ,那么称随机变量X服从参数为 的指数分布。
X的分布函数为
,
x<0。
记住积分公式:
正态分布
设随机变量 的密度函数为
, ,
其中 、 为常数,那么称随机变量 服从参数为 、 的正态分布或高斯〔Gauss〕分布,记为 。

概率论和数理统计(第三学期)第7章数理统计的基本概念

概率论和数理统计(第三学期)第7章数理统计的基本概念

n i1
i
1 n
n
Ei
i1
D
D 1 n
n i 1
i
1 n2
n
Di
i 1
2
n
2
S~ 1 n
n i 1
i
2
1 n
n i 1
i2 2i
2
1 n
n
i2
i 1
2
n
i
i 1
n
2
1 n
n
i2
i 1
2
2
2
1 n
n
i2
i 1
2
E S~2
E
1 n
n
i2
i 1
23
.209
2
2 0.95
20

10
.851
当自由度n 45时,可用下面近似公式去求2 n:
x2 n
1 2
u
2
2n 1
例3

2 0.05
60 .

2 0.05
60
1 2
u0.05
2
2 60 1
1 1.645
2
119 78.798
2
3、t分布的上侧分位点
对于给定的α(0<α<1),使
2
e
xi 2 2
2
(2
) e 2
n 2
1
2 2
n i1
xi 2
在数理统计中,总体的分布往往是未知的,需 要通过样本找到一个分布来近似代替总体分布。
§7.3 分布的估计
频率分布 例 某炼钢厂生产的钢由于各种因素的影响,各炉
钢的含硅量可以看作是一个随机变量,现记录了 120炉钢的含硅量百分数,求出这个样本的频数分 布与频率分布。

概率论数理统计基础知识第五章

概率论数理统计基础知识第五章

C
]
(A)Y ~ 2 (n). (B)Y ~ 2 (n 1). (C)Y ~ F (n,1). (D)Y ~ F (1, n).
【例】设 随机变量X和Y都服从标准正态分布,则[ C ]
(A)X+Y服从正态分布.
2 2 2
(B)X2 +Y2服从 2分布. Y
2
2 X (C)X 和Y 都服从 分布. (D)
(X ) ~ t ( n 1) S n
客、考点 10,正态总体的抽样分布
33/33
34/33
35/33
【例】设总体 X ~ N (0,1),X 1 , X 2 , X1 X 2
2 2 X3 X4
, X n 是简单随机
2 X i. i 4 n
样本 , 试问下列统计量服从什么分布? (1 ) ; (2 ) n 1X1
记:F分布是两个卡方分布的商
2. F 分布的上侧分位数
设 F ~ F (k1 , k2 ) ,对于给定的 a (0,1) ,称满足条件
P{F Fa (k1 , k2 )}

Fa ( k1 ,k2 )
f F ( x)dx a
的数 Fa (k1 , k2 ) 为F 分布的上侧a 分位数。
服从F分布.
§5.5 正态总体统计量的分布
一、单个正态总体情形 总体
X ~ N ( , 2 ) ,样本 X1 , X 2 , , Xn ,
1 n 样本均值 X X i n i 1
n 1 2 样本方差 S 2 ( X X ) i n 1 i 1
1. 定理1 若设总体X~N(μ,σ2), 则统计量
有一约束条件
(X
i 1

概率论与数理统计课件:数理统计基础知识

概率论与数理统计课件:数理统计基础知识

数理统计基础知识
首页 返回 退出
6.1.1 总体
§6.1 总体和随机样本
总体:研究对象的全部可能观察值叫做总体. 个体:组成全体的每个观察值叫做个体.
如:考察某校学生的身高
总体:该校的所有学生的身高 个体:每个学生的身高
数理统计基础知识
首页 返回 退出
实际问题中,要研究的是有关对象的各种数量指标. 总体可以用一个随机变量及其分布来描述.
首页 返回 退出
由于抽样的目的是为了对总体进行统计推断, 为了使抽取的样本能很好地反映总体的信息,必 须考虑抽样方法.
最常用的一种抽样方法叫作“简单随机抽样” 它要求抽取的样本满足下面两点: 1. 代表性: X1,X2,…,Xn中每一个与所考察 的总体有相同的分布.
2. 独立性: X1,X2,…,Xn是相互独立的随机变量.
从一批产品中抽5件,检验产品是否合格.
数理统计基础知识
样本容量为5
首页 返回 退出
样本是随机变量.
抽到哪5辆是随机的
容量为n的样本可以看作n维随机变量(X1,X2,…,Xn).
但是,一旦取定一组样本,得到的是n个具体的数 (x1,x2,…,xn),称为样本的一次观察值,简称样本值 .
数理统计基础知识
总体的指标 如体重、身高、寿命等 是随机变量X 个体的指标 如体重、身高、寿命等 是随机变量X 的一个取值
常用随机变量的记号或用其分布函数表示总体.
如:总体X或总体F X
数理统计基础知识
首页 返回 退出
有限总体 总体
无限总体
1.考察某校大一新生(共2000人)的身高. 有限总体
2.观测某地每天最高气温. 无限总体 3.某厂生产的所有电视显像管的寿命. 无限总体

《概率论与数理统计》教学

《概率论与数理统计》教学

《概率论与数理统计》教学
《概率论与数理统计》是一门介绍概率论和数理统计基本原理和工具的课程。

该课程旨在培养学生对随机事件和数据的分析能力,使他们能够运用统计学方法进行实际问题的解决。

在《概率论与数理统计》课程中,学生将学习以下内容:
1. 概率论基础:包括概率的定义、基本性质、概率分布、随机变量和概率密度函数等。

2. 随机变量及其分布:介绍离散型和连续型随机变量及其概率分布,如二项分布、泊松分布、正态分布等。

3. 多维随机变量和联合分布:学习多维随机变量的概率函数、分布函数和边缘分布,以及相关系数和协方差的概念。

4. 数理统计基础:包括样本与总体、统计量、参数估计、假设检验等内容。

5. 统计推断:介绍点估计和区间估计的方法,以及假设检验的原理和步骤。

6. 回归与相关分析:学习线性回归和相关系数的定义和计算方法,并了解其应用领域。

在教学过程中,教师一般会通过理论讲解、示例分析和实际问题求解等方法,帮助学生理解和掌握相关知识和技巧。

同时,
还会引导学生进行数理统计的实际应用和实验设计,培养他们的数据分析和解决实际问题的能力。

通过学习《概率论与数理统计》,学生可以掌握基本的概率论和数理统计知识,具备分析和解决实际问题的能力,为其在统计学、经济学、金融学等领域的学习和工作打下坚实的基础。

概率论与数理统计-第五章

概率论与数理统计-第五章

【数理统计简史】
1. 近代统计学时期
18 世纪末到 19 世纪,是近代统计学时期.这一 时期的重大成就是大数定律和概率论被引入统计 学.之后最小二乘法、误差理论和正态分布理论 等相继成为统计学的重要内容.这一时期有两大 学派:数理统计学派和社会统计学派.
【数理统计简史】 数理统计学派始于19世纪中叶,代表人物是比 利时的凯特莱( A.Quetelet , 1796-1874 ),著有 《概率论书简》《社会物理学》等,他主张用研 究自然科学的方法研究社会现象,正式把概率论 引入统计学,并最先用大数定律证明了社会生活 中随机现象的规律性,提出了误差理论.凯特莱 的贡献,使统计学的发展进入个了一个新的阶 段.
i =1 36
1 2 2 3 2 2 2 2 D( X ) = E ( X ) − E ( X ) = ( 0 + 1 + 2 + 3 ) − 4 2 5 = 4
2
二、样本与抽样 由于X1,X2,...,X36均与总体X同分布,且相互独 立,所以,Y的均值和方差分别为
E (Y ) = E ( ∑ X i ) = 36 E ( X ) = 54,
【数理统计简史】 18世纪到 19世纪初期,高斯从描述天文观测的 误差而引进正态分布,并使用最小二乘法作为估 计方法,是近代数理统计学发展初期的重大事件, 对社会发展有很大的影响.
【数理统计简史】 用正态分布描述观测数据的应用是如此普遍,以 至 在 19 世 纪 相 当 长 的 时 期 内 , 包 括 高 尔 顿 ( Galton )在内的一些学者,认为这个分布可用 于描述几乎是一切常见的数据.直到现在,有关 正态分布的统计方法,仍占据着常用统计方法中 很重要的一部分.最小二乘法方面的工作,在 20 世纪初以来,经过一些学者的发展,如今成了数 理统计学中的主要方法.

概率论与数理统计知识点总结

概率论与数理统计知识点总结

概率论与数理统计知识点总结1. 概率论基础- 随机事件:一个事件是随机的,如果它可能发生也可能不发生。

- 样本空间:所有可能事件发生的集合。

- 事件的概率:事件发生的可能性的度量,满足0≤P(A)≤1。

- 条件概率:在另一个事件发生的条件下,一个事件发生的概率。

- 贝叶斯定理:描述了随机事件A和B的条件概率和边缘概率之间的关系。

- 独立事件:两个事件A和B是独立的,如果P(A∩B) = P(A)P(B)。

- 互斥事件:两个事件A和B是互斥的,如果它们不能同时发生,即P(A∩B) = 0。

2. 随机变量及其分布- 随机变量:将随机事件映射到实数的函数。

- 离散随机变量:取值为有限或可数无限的随机变量。

- 连续随机变量:可以在某个区间内取任意值的随机变量。

- 概率分布函数:描述随机变量取值的概率。

- 概率密度函数:连续随机变量的概率分布函数的导数。

- 累积分布函数:随机变量取小于或等于某个值的概率。

- 期望值:随机变量的长期平均值。

- 方差:衡量随机变量取值的离散程度。

3. 多维随机变量及其分布- 联合分布:描述两个或多个随机变量同时取特定值的概率。

- 边缘分布:通过联合分布求得的单个随机变量的分布。

- 条件分布:给定一个随机变量的值时,另一个随机变量的分布。

- 协方差:衡量两个随机变量之间的线性关系。

- 相关系数:协方差标准化后的值,表示变量间的线性相关程度。

4. 大数定律和中心极限定理- 大数定律:随着试验次数的增加,样本均值以概率1收敛于总体均值。

- 中心极限定理:独立同分布的随机变量之和,在适当的标准化后,其分布趋近于正态分布。

5. 数理统计基础- 样本:从总体中抽取的一部分个体。

- 总体:研究对象的全体。

- 参数估计:用样本统计量来估计总体参数。

- 点估计:给出总体参数的一个具体估计值。

- 区间估计:给出一个包含总体参数可能值的区间。

- 假设检验:对总体分布的某些假设进行检验。

- 显著性水平:拒绝正确假设的最大概率。

概率论与数理统计第五章

概率论与数理统计第五章

第 ×× 次课 2学时本次课教学重点:常用的统计量 本次课教学难点:总体,简单随机样本,统计量的概念。

本次课教学内容:第五章 数理统计的基础知识 第一节 数理统计的基本概念 教学组织: 一、引言在前五章中我们学习了概率论的基本内容,因为随机变量及其所伴随的概率分布全面描述了随机现象的统计规律性,所以在概率论的许多问题中,概率分布通常都是已知的,或者假设是已知的,而一切计算与推理都是在此基础上得出来的。

然而,实际情况往往并非如此。

一个随机现象所服从的分布概型可能完全不知道,或者只知道其概型而不知其分布函数中所含的参数。

例如,某工厂生产的灯泡的寿命服从什么分布是不知道的。

再如,某厂生产的一件产品是合格品还是不合格品,我们知道它服从两点分布,但其参数p 却不知道。

那么怎样才能知道一个随机现象的分布或其参数呢?这就是数理统计所要解决的一个首要问题。

为了获得灯泡的寿命分布,我们从所有的灯泡中抽出一部分进行观察与测试以取得相关信息,从而做出推断。

由于观察和测试是随机现象,依据有限个观察与测试对整体所做出的推断不可能绝对准确,这个不确定性我们用概率来表达。

数理统计学的基本问题就是依据观测或试验所取得的有限信息对整体做出推断,每个推断必须伴有一定的概率来表明其可靠程度。

这种伴有一定概率的推断称为统计推断。

二、总体与随机样本 1、总体在数理统计中,我们往往研究有关对象的某一数量指标(如灯泡的寿命这一数量指标)。

为此,考虑与这一数量指标相联系的随机试验,对这一数量指标进行试验或观察。

我们把研究对象的全体所构成的一个集合称为总体,总体中的每个对象称为个体。

总体中所包含的个体的个数称为总体的容量。

容量有限的总体称为有限总体,容量无限的总体称为无限总体。

例如,考察某批灯泡的质量,如这一批灯泡共有5000只,每个灯泡的寿命是一个可能的观察值,是一个个体。

所有5000只灯泡的寿命是一个有限总体。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例 2(133.例 4)设总体 X 服从标准正态分
布, X1, X2, , Xn 是来自总体 X 的一个简单随 机样本, 试问统计量
Y
n 5
1
5 i 1
X
2 i
服从何种分布?
n
X
2 i
,
i6
n5
• 某学院今年将扩招硕士,预计招硕士新生 100人,按入学考试成绩录取,现有1000人 报名,可认为考试成绩X服从正态分布,经 往年报考成绩数据估算,X~N(350,400).那 么该学院今年应如何确定录取分数线?
• 设X1,X2,…,Xn为来自总体X的一个样 本,g( X1,X2,…,Xn )是一个不含任何未 知参数的连续函数,称g(X1,X2,…,Xn) 为统计量。
统计量是样本的函数,也是随机变量,具有 概率分布。把统计量的概率分布称为抽样 分布。
概率论与数理统计
Review
设(X1,X2,…,Xn)为来自总体X的简单随机样本。
P{| X | u /2}
(uP0P.0{{5/XX2 )1uu0//22.或 2}05XP{0X.u97/52u} /2}
2uP0{.02X5 1.9u6 / 2} 2(u / 2 ) 2(1 (u /2 ))
(u /2 ) 1 2
概率论与数理统计
n0(.10 x4
概率论与数理统O计1 2
1
23 4
e
x2 2
dx
5678
1)
9 10
n(3 1)
11 1213 14 15
y2n
例 1(131.例 2)设 X1, , X6 是来自总体 N(0,1) 的样本, 又设
Y (X1 X2 X3)2 (X4 X5 X6)2
试求常数 C, 使CY 服从 2 分布.
2] / 2)
n n n1/ 2 n2/ 2
1
2
x n1 2
1
n1 n2
(n1x n2 ) 2
0,
,x 0
x0
F f (x)
若 F ~ F(n1, n2) , 则
1 F
~
F (10,50)
F (n2, n1)
F (10,4)
若 Z ~ t(n) , 则 Z 2 ~ F(1, n)
x
O
1.0
2.0
概率论与数理统计
t
设 X ~ N(0,1), Y ~ 2 (n) ,且 X ,Y 相互独立,令
t X Y /n
称 服t 从自由度为 的 分布n,记为t
t ~ t (n).
t
f
(x)
Γ[(n 1) / 2]
n Γ (n / 2)
1+
x2 n
(n1) / 2
,
x
随着自由度的增加曲 线越来越趋近
f ( x) N (0,1) t (9)
2 ~ 2(n).
2
Y12
Y22
Y2 n2

2 1 取
~n个f独(2y立()n同1)理分),,解则布122为22n可/E~2独(Γ1的22立(22n~变()n/N化22()的)2n,0(r,且y,.n1vn1D)个/2(数1n12er22,相.))vy互/22X2独,21y立,nX, 则20,,
1.样本均值:
X
1 n
n i 1
Xi
常用于估计总体分布的均值,或 检验有关总体分布均值的假设。
2.样本方差:
S2
1 n 1
n i 1
(Xi
X )2
ቤተ መጻሕፍቲ ባይዱ
用于估计总体分布的方差。式中的n-1称为S2的自由度(式中含有
独立变量的个数),S称为样本标准差,又称为标准误。
3.样本矩: K 阶原点矩:
Ak
1 n
n i 1
X
k i
(k 1, 2,) A1 X
K 阶中心矩:
Bk
1 n
n
(Xi X )k
i1
(k 1, 2,L )
B2
n 1 n
s2
s2
概率论与数理统计
2
设 X1, X2 ,, Xn 是来自总体
X ~ N( 0 ,1) 的样本,令
2
X12
X
2 2
Xn2
称 服2从自由度为 的 分布n,记为 2
概率论与数理统计
分位数:设随机变量 X 的分布函数为 F(x), 对给定的实数 , (0 1) ,若实数 F 满足
P{X F }
则称 F 为随机变量 X 分布的水平 的上侧分 位数。 若实数 T /2 满足
P{| X | T /2}
则称为随机变量 X 分布的水平的双侧分位数。
概率论与数理统计
Xn
则 X1与2 2 X22X12 XX22 n21 Xn2 同0分布 ,,于是
y0

Γ设D(Ez(()i222))0~xziEXn200011..e.(1142322Din000nxi1(d)fXXXx(,y22iiin222)2))(nz21n1,in2n0D14,)E(Xk2(X,n2X~n1k12i,2)Y且)6212(nn1i{nY11nE22D2,n(2X1(122X14,i)随)着重,Y[nn自心E2i2kkn2由向1()相1X度右互12的下独)n增方]立2加移}, 曲动线
例 3(129.例 1)设 0.05, 求标准正态分 布的水平 0.05 的上侧分位数和双侧分位数.
解 P{X u }
1 P{X u }
1 (u )
(u ) 1
(u0.05 ) 1 0.05 0.95 u0.05 1.645
概率论与数理统计
例 3(129.例 1)设 0.05, 求标准正态分 布的水平 0.05 的上侧分位数和双侧分位数.
N ( 0,1 )
t (2)
概率论与数理统计
5 4 3 2 1 O 1 2 3 4 5
x
F
设 U ~ 2 (n1), V ~ 2 (n2 ) ,且 U ,V 相互独立,令
称 F服从自由度为
F
U /n1 V /n2
的 (n分1布, n,2)记为 F
F ~ F (n1, n2).
F
f
(x)
Γ[(n1 n2 ) / Γ (n1/ 2)Γ (n2
概率论与数理统计
Review
• 为使样本具有充分的代表性,常进行简单 随机抽样,即要求: 样本有随机性:总体中每个个体入选的机会
相等,即每个样品与总体同分布; 样本有独立性:每次抽样的结果不影响其它
各次抽样的结果,即相互独立。 简单随机抽样得到的样本称为简单随机样本。
概率论与数理统计
Review
Review
• 统计学认为,总体就是一个随机变量X,它 的分布称为总体分布。数理统计的基本问 题就是推断总体的分布。
从总体X中抽取部分个体,称为抽样,即是 对X进行若干次观测,得到的就是n个随机变 量X1,X2,…, Xn ,称为样本,其中n为样本容 量,样本中的个体称为样品,样本观测值称 为样本值。
相关文档
最新文档