海瑞克φ8800mm土压平衡盾构机参数书

海瑞克φ8800mm土压平衡盾构机参数书
海瑞克φ8800mm土压平衡盾构机参数书

海瑞克φ8800mm土压平衡盾构机参数书讲解

TABLE OF CONTENTS TECHNICAL DATA E D I T I O N 09/2010V E R S I O N 001S -591/592 G U A N G D O N G I N T E R C I T Y R A I L W A Y L O T 3I I - 1 D O C U M E N T : 7686-001 II. Technical Data 1. Tunnel boring machine general. . . . . . . . . . . . . . . . . . . . . . . . . .II - 3 1.1Tunnel boring machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II - 31.2Tunnel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II - 31.3Segments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II - 4 2. Shield general . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .II - 5 2.1Steel construction shield . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II - 52.2Tailskin articulation cylinder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II - 52.3Advance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II - 52.4Man lock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II - 62.5Screw conveyor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II - 6 3. Cutting wheel general. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .II - 7 3.1Steel construction cutting wheel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II - 7 4. Drive general . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .II - 8

土压平衡盾构机技术规格及要求

土压平衡盾构机技术规格及要求 1.土压平衡盾构机(以下简称盾构机)技术要求的说明 1.1盾构机技术要求以南昌轨道交通工程、周边环境及地质条件要求,兼顾满足南昌轨道交通其他线路区间、周边环境及地质条件要求及各项施工条件。 1.2本技术要求为南昌轨道交通3号线盾构区间掘进的盾构机最低技术规格和施工要求。 1.3本技术要求对盾构机部件结构不作具体的规定,但其必须满足本标准对盾构机所需的功能、性能、配置等要求。 1.4本技术要求仅限于主要部件、总成、系统的功能、性能、配置等,未描述部分应自动满足南昌轨道交通3号线工程、周边环境及地质条件。 2.新机技术规格要求 2.1整机 盾构机技术规格必须满足南昌轨道交通3号线工程、周边环境及地质条件要求,兼顾满足南昌轨道交通其他线路区间、周边环境及地质条件要求及各项施工条件。 盾构机的各项安全性能指标必须满足国家及南昌地区相关安全使用和施工规范要求。 盾构机应满足南昌地铁三号线管片规格:外径Φ6000mm,内径Φ5400mm,宽度1200/1500mm,纵向螺栓分度36°。 盾构机最大推进速度应≤80mm/min。 盾构机最小掘进转弯半径应≤250m;适用隧道纵向坡度应≥±45‰。 盾构机最大工作压力应≥0.5Mpa。 盾构机主要部件及总成使用寿命应≥10km或10000小时。 盾构机主要部件应采用世界知名厂商品牌及产品。 盾构机主要结构件材料应采用国内知名厂商品牌及产品。 2.2刀盘 2.2.1基本结构 刀盘支腿数量≥4个,≤6个。 宜采用复合式刀盘,刀盘开口率应≥30%。 复合式刀盘滚刀的安装刀座宜采用单楔块方式。软岩刀具的安装可采用螺栓紧固或销轴安装方式。

盾构机结构详解

盾构机技术讲座 一.盾构机结构(EPB总体结构图) 盾构是一个具备多种功能于一体的综合性隧洞开挖设备,它集和了盾构施工过程中的开挖、出土、支护、注浆、导向等全部的功能,目前,盾构机已成为地下交通工程及隧道建设施工的首选设备被广泛使用。其优点如下: 1. 不受地面交通、河道、航运、季节、气候等条件的影响。 2. 能够经济合理地保证隧道安全施工。 3. 盾构的掘进、出土、衬砌、拼装等可实行自动化、智能化和施工运输控制信息化。 4. 掘进速度较快,效率较高,施工劳动强度较低。 5. 地面环境不受盾构施工的干扰。 其缺点为: 1. 盾构机械造价较高。 2. 在饱和含水的松软地层中施工地表沉陷风险大。 3. 隧道曲线半径过小或埋深较浅时难度较大。 4. 设备的转移、运输、安装及场地布置等较复杂。 盾构作为一种保护人体和设备的护体,其外形(断面形状)随所建的工程要求不同有圆形、双圆形、三圆形、矩形、马蹄形、半圆形等。(如:人行道方形能最大限度的利用空间、过水洞马蹄形符合流体力学、公路隧道半圆形利用下玄跑车)。而因圆形断面受力好、圆形盾构设备制造相对简单及成本相对低廉,绝大部分盾构还是采用传统的圆形。 为适应各种不同类型土质及盾构机工作方式的不同,盾构机可分为三种类型、四种模式:

三种类型: (1)软土盾构机; (2)硬岩盾构机; (3)混合型盾构机。 四种模式: (4)开胸式; (5)半开胸式(半闭胸式、欠土压平衡式); (6)闭胸式(土压平衡式); (7)气压式。 软土盾构机适应于未固结成岩的软土、某些半固结成岩及全风化和强风化围岩。刀盘只安装刮刀,无需滚刀。 硬岩盾构机适应于硬岩且围岩层较致密完整,只安装滚刀,不需要刮刀。 混合盾构机适应于以上两种情况,适应更为复杂多变的复合地层。可同时安装滚刀和刮刀。 气压盾构是在加气压状态下的施工模式,即可用于泥水加压式盾构机,也可用于土压平衡式盾构机。

海瑞克土压平衡式盾构机分析

海瑞克土压平衡式盾构机分析 盾构机的工作原理 1.盾构机的掘进 液压马达驱动刀盘旋转,同时开启盾构机推进油缸,将盾构机向前推进,随着推进油缸的向前推进,刀盘持续旋转,被切削下来的碴土充满泥土仓,此时开动螺旋输送机将切削下来的渣土排送到皮带输送机上,后由皮带输送机运输至渣土车的土箱中,再通过竖井运至地面。 2.掘进中控制排土量与排土速度 当泥土仓和螺旋输送机中的碴土积累到一定数量时,开挖面被切下的渣土经刀槽进入泥土仓的阻力增大,当泥土仓的土压与开挖面的土压力和地下水的水压力相平衡时,开挖面就能保持稳定,开挖面对应的地面部分也不致坍坍或隆起,这时只要保持从螺旋输送机和泥土仓中输送出去的渣土量与切削下来的流人泥土仓中的渣土量相平衡时,开挖工作就能顺利进行。 3.管片拼装 盾构机掘进一环的距离后,拼装机操作手操作拼装机拼装单层衬砌管片,使隧道—次成型。 盾构机的组成及各组成部分在施工中的作用 盾构机的最大直径为6.28m,总长65m,其中盾体长8.5m,后配套设备长56.5m,总重量约406t,总配置功率1577kW,最大掘进扭矩5300kN?m,最大推进力为36400kN,最陕掘进速度可达8cm/min。盾构机主要由9大部分组成,他们分别是盾体、刀盘驱动、双室气闸、管片拼装机、排土机构、后配套装置、电气系统和辅助设备。 1.盾体 盾体主要包括前盾、中盾和尾盾三部分,这三部分都是管状简体,其外径是6.25m。 前盾和与之焊在一起的承压隔板用来支撑刀盘驱动,同时使泥土仓与后面的工作空间相隔离,推力油缸的压力可通过承压隔板作用到开挖面上,以起到支撑和稳定开挖面的作用。承压隔板上在不同高度处安装有五个土压传感器,可以用来探测泥土仓中不同高度的土压力。 前盾的后边是中盾,中盾和前盾通过法兰以螺栓连接,中盾内侧的周边位置装有30个推进油缸,推进油缸杆上安有塑料撑靴,撑靴顶推在后面已安装好的管片上,通过控制油缸杆向后

海瑞克土压平衡盾构机结构分析

海瑞克土压平衡式盾构机结构分析 [2008-08-07] 关键字:盾构机结构分析 承担修建深圳地铁—期工程第七标段(华强至岗厦区间内径为5.4m的双线隧道)的施工任务,根据施工地段地层自立条件差,地下水较丰富的特点,购进了两台德国海瑞克公司生产的世界上最先进的土压平衡式盾构机。这两台盾构机都由西门子公司的S7-PLC自动控制系统控制,配备了机电一体化的液压驱动系统、同步注浆设备、泡沫设备、膨润土设备及SLS-T隧道激光导向设备,并可在地面监控室对盾构机的掘进进行实时监控。 本文将就盾构机的工作原理、盾构机的组成、及各组成部分的功能结合实际施工情况做一简要阐述。 盾构机的工作原理 1.盾构机的掘进 液压马达驱动刀盘旋转,同时开启盾构机推进油缸,将盾构机向前推进,随着推进油缸的向前推进,刀盘持续旋转,被切削下来的碴土充满泥土仓,此时开动螺旋输送机将切削下来的渣土排送到皮带输送机上,后由皮带输送机运输至渣土车的土箱中,再通过竖井运至地面。 2.掘进中控制排土量与排土速度 当泥土仓和螺旋输送机中的碴土积累到一定数量时,开挖面被切下的渣土经刀槽进入泥土仓的阻力增大,当泥土仓的土压与开挖面的土压力和地下水的水压力相平衡时,开挖面就能保持稳定,开挖面对应的地面部分也不致坍坍或隆起,这时只要保持从螺旋输送机和泥土仓中输送出去的渣土量与切削下来的流人泥土仓中的渣土量相平衡时,开挖工作就能顺利进行。 3.管片拼装 盾构机掘进一环的距离后,拼装机操作手操作拼装机拼装单层衬砌管片,使隧道—次成型。 盾构机的组成及各组成部分在施工中的作用 盾构机的最大直径为6.28m,总长65m,其中盾体长8.5m,后配套设备长56.5m,总重量约406t,总配置功率1577kW,最大掘进扭矩5300kN&#82 26;m,最大推进力为36400kN,最陕掘进速度可达8cm/min。盾构机主要由9大部分组成,他们分别是盾体、刀盘驱动、双室气闸、管片拼装机、排土

土压平衡盾构机工作原理.

土压平衡盾构机流体输送控制系统工作原理 何於琏 (中铁隧道股份公司河南新乡 453000 摘 要流体输送系统用于盾构机的润滑、密封、填充以及碴土改良 , 是盾构机中的重要系统。本文介绍了流体输送系统的组成 , 并简明叙述了衬砌背后注浆控制系统、碴土改良控制系统、主轴承油脂密封润滑控制系统、盾尾密封油脂注入控制系统的工作原理。关键词流体输送 非传动介质控制系统原理 W orki n g Pri n c i ple of Control Syste m of Flui d Conveyi n g Syste m s of EPB Shi eld Machi n es HE Yu 2lian (China R ail w ay Tunnel S tock Co . , L td . , X ingxiang 453000, Henan, China Abstract:Fluid conveying syste m, which is app lied in the lubricati on, sealing, backfilling and conditi oning of EP B shield machines, is one of the i m portant syste m s of EP B shield This compositi on of the fluid conveying syste m and the working p rinci p les of contr ol syste of ment lining, gr ound conditi oning syste m, main bearing grease sealing and grease injecti on syste m. Key words:fluid conveying; non 2transit; p le

海瑞克盾构机基本参数

海瑞克土压6.3m盾构基本参数 名称技术参数备注 管片设计 外径6米 内径5.4米 管片宽度1.5米 数量5+1 盾体 前体 6.25x6.25x2.9米86.5吨 中体 6.24x6.24x2.58米80吨 前盾数量1个 中盾数量1个 直径6.25米不计耐磨堆焊层 长度(前体和中体) 4.68米螺栓连接并带密封盾构类型土压平衡 300米 盾构最小水平转弯 半径 最大工作压力3BAR 土压传感器(数量) 5个 气闸连接法兰1个 1个 螺旋输送机连接法 兰 盾尾 6.23x6.23x3.61米30吨 盾尾数量1个 型式绞接 长度3.61米 密封3排钢丝刷 注浆口4个DN50,单管 推进油缸液压 数量30个10组双缸+10组单缸分组数量4组 推力34 210KN 最大300BAR 行程2米 工作压力300BAR 伸出速度80mm/min 所有油缸 绞接油缸 类型被动式 数量14个 行程150 mm 刀盘 6.28x6.25x2.6米65吨 数量1个 形式装配有滚刀式 直径6.28米

旋转方向左/右 刀具配置4把17寸中心双刃滚刀,32把17寸单刃滚刀,28把齿刀(250 mm 宽),8组边刮刀(1组两把)。 8个 刀盘上泡沫喷嘴数 量 中心回转体1个 刀盘驱动 数量1个 形式液压驱动 液压马达数量9个 额定转矩6000KNm 最大脱困扭矩7150KNm 转速0~4.5转/分 功率945KW 3x315KW 主轴承形式固定式 人闸 数量1个 形式双仓 直径1.6米 工作压力3BAR 测试压力4.5BAR 额定人数(容纳)3+2 主仓/副仓 管片安装器 管片安装器及行走 5.0x4.0x3.8米22吨 梁 数量1个 形式中心回转式 抓紧系统机械式 自由度6个 旋转角度+/—200度比例控制 管片宽度1.2/1.5米 纵向移动行程2米比例控制 控制装置无线、有线控制 螺旋输送机 形式双螺旋转、有轴式 1号螺旋输送机13.4x1.2x1.4米23吨 长度13.4米 直径800mm 功率160KW 最大扭矩198 KNm 拖困扭矩225 KNm 转速1~22转/分无级调速 285方/时100%充满时 最大出土量(理论 值)

海瑞克盾构机技术说明

目录 隧道掘进机的技术说明 5.1 概述 (3) 5.2 功能(EPB盾构) (4) 5.2.1 土料挖掘 / 推进 (5) 5.2.2 控制 (6) 5.2.3 管环拼装周期 (7) 5.3 技术数据/总览 (8) 5.4 操作步骤 (16) 5.4.1 进入开挖室 (16) 5.4.2 人行气闸 (19) 准备和注意事项 (19) 加压 (21) 加压步骤 (22) 加压图 (24) 通过通道室加压(加压附加人员) (26) 附加人员加压图 (27) 卸压 (28) 卸压步骤: (29) 卸压图 (31) 对一个人员的紧急卸压图 (33) 紧急情况下,通道室和主室内应分别采取的措施 (36) 紧急情况卡卡样 (37) 5.4.3 将开挖工具送入压力室 (39) 5.4.4 拼装管环 (40) 5.4.5 回填 (42) 通过尾部机壳进行回填 (42) 灌浆泵的工作原理 (43) 5.4.6 压缩空气供给 (45) 工业用空气 (45) 压缩空气调节 (46) 5.4.7 发泡设备说明 (47) 安装设计 (47) 设备功能 (48)

高压聚合物系统 (48) 5.5 隧道掘进机各部件 (49) 5.5.1 盾构 (50) 概述 (50) 前部盾构 (50) 中间盾构 (51) 尾部机壳 (51) 推力缸 (51) 盾构关节油缸 (52) 5.5.2 人行气闸 (53) 5.5.3 刀盘驱动装置 (55) 原理 (55) 旋转工作机构系统,主轴承 (55) 齿轮润滑 (55) 密封系统 (56) 5.5.4 拼装机 (57) 技术说明 (57) 支架梁 (57) 行走机架 (58) 旋转机架 (58) 带抓取头的横向行走装置 (59) 旋转机架的动力提供 (60) 安全设备 (60) 5.5.5 螺旋输送机 (61) 一般说明 (61) 伸缩缸 (61) 前部闸阀 (61) 前部闸阀 (62) 驱动装置 / 密封系统 (63) 安全装置 (63) 5.5.6 后援装置 (64) 一般说明 (64) 桥 (65) 龙门架1 (66) 龙门架2 (67) 龙门架3 (69) 龙门架4 (70) 龙门架5 (72)

盾构机操作及参数控制

盾构机操作及参数控制 目前,住总集团大多采用德国海瑞克盾构机、日本小松及日立盾构机,现就其小松盾构机操作情况及参数控制作如下总结: 1 开机前准备 1) 检查延伸水管、电缆连接是否正常; 2) 检查供电是否正常; 3) 检查循环水压力是否正常; 4) 检查滤清器是否正常; 5) 检查皮带输送机、皮带是否正常; 6) 检查空压机运行是否正常; 7) 检查油箱油位是否正常; 8) 检查脂系统油位是否正常; 9) 检查泡沫原液液位是否正常; 10)检查注浆系统是否已准备好并运行正常; 11)检查后配套轨道是否正常; 12)检查出碴系统是否已准备就绪; 13)检查盾构操作面板状态:开机前应使螺旋输送机前门应处于开启状态,螺旋输送机的螺杆应伸出,管片安装模式应无效,无其它报警指示; 14)检查测量导向系统是否工作正常; 若以上检查存在问题,首先处理或解决问题,然后再准备开机。 15)请示技术负责人并记录有关盾构掘进所需要的相关参数,如掘进模式,土仓保持压力,线路数据,注浆压力等; 16)请示设备机修负责人并记录有关盾构掘进的设备参数; 17)若需要则根据技术负责人和设备机修负责人的指令修改盾构参数; 2 开机 1)确认外循环水已供应,启动内循环水泵; 2)确认空压机冷却水阀门处于打开状态,启动空压机; 3)根据工程要求选择盾尾油脂密封的控制模式,即选择采用行程控制还是采用压力控制模式;

4)在“报警系统”界面,检查是否存在当前错误报警,若有,首先处理; 5)将面版的螺旋输送机转速调节旋扭、刀盘转速调节旋扭、推进油缸压力调节旋扭、盾构推进速度旋扭等调至最小位; 6)启动前后液压泵站冷却循环泵,并注意泵启动是否正常,包括其启动声音及振动情况等。以下每一个泵启动情况均需注意其启动情况; 7)依次启动润滑脂泵(EP2)、齿轮油泵、HBW 泵、内循环水泵; 8)依次启动推进泵及辅助泵; 9)选择手动或半自动或自动方式启动泡沫系统; 10)启动盾尾油脂密封泵,并选择自动位;至此,盾构的动力部分已启动完毕,下面根据不同的工序进一步进行说明。 3掘进 1)启动皮带输送机 2)启动刀盘 根据测量系统面版上显示的盾构目前旋转状态选择盾构旋向按钮,一般选择能够纠正盾构转向的旋转方向; 选择刀盘启动按扭,当启动绿色按钮常亮后。并慢慢右旋刀盘转速控制旋钮,使刀盘转速逐渐稳定在 2rpm 左右。严禁旋转旋钮过快,以免造成过大机械冲击,损机械设备。此时注意主驱动扭矩变化,若因扭矩过高而使刀盘启动停止,则先把电位器旋钮左旋至最小再重新启动; 3)启动螺旋输送机 慢慢开启螺旋输送机的后门; 启动螺旋输送机按钮,并逐渐增大螺旋输送机的转速; 4)按下推进按钮,并根据 ZED 屏幕上指示的盾构姿态调整四组油缸的压力至适当的值,并逐渐增大推进系统的整体推进速度; 5)至此盾构开始掘进; 4土仓压力调整 1)如果开挖地层自稳定性较好采用敞开式掘进,则不用调正压力,以较大开挖速度为原则; 2) 如果开挖地层有一定的自稳性而采用半敞开式掘进,则注意调节螺旋输送机的转速,使土仓内保持一定的渣土量,一般约保持 2/3左右的渣土。

土压平衡式盾构机的组成及工作原理

土压平衡式盾构机的组成及工作原理 随着科学技术日新月异的发展,新事物不断涌现,盾构机的出现虽然有一定时间,但是,盾构机集成了很多现代科技。大型PLC,各种性能优良的液压泵,各种先进的控制理念都体现在了盾构机上。我们要去学习和了解它,从而去创新和改造它。 现代盾构掘进机集光、机、电、液、传感、信息技术于一体,具有开挖切削土体、输送土碴、拼装隧道衬砌、测量导向纠偏等功能。 盾构机挖掘主要靠刀盘切削来完成,不同地质刀盘通常配备有不同数量的切刀或滚刀。为了确保切刀的耐久性,要选择与土质相适应的切刀形状。刀刃材料通常是以钨碳化合物为主烧结超硬合金。切刀要合理排列以达到能切削整个掌子面的目的。地层为岩石或地层中存在大块卵石情况下,安装滚刀是必不可少的,盾构机掘进时刀盘旋转的同时启动推进千斤顶将刀盘压紧岩层,刀盘上的滚刀一边滚动一边破岩,刀盘旋转推力使得滚刀不断滚动前进,从而对整个掌子面的岩石开挖。刀盘上有仿形刀装置,此装置为液压缸驱动,由切削刀,液压油缸构成,在必要时(如纠偏,转弯)进行盾体外周超挖或余掘。主驱动系统有两个变量柱塞泵(分别有两个315KW电机,电机分别由两个软启动器驱动),8个液压马达(用来驱动刀盘),补油泵(75KW电机驱动),控制泵,恒功率阀块,HBV油脂系统,轴承润滑系统,冷却水系 统组成。 1.启动控制泵,缓慢调节控制泵的切断阀(顺时针增大压力),泵输出压力逐步升高,控制泵的安全压力设定为8.0Mpa。2. 启

动补油泵,再缓慢调节溢流阀,溢流阀压力升至 2.0Mpa。 锁紧补油泵旁路溢流阀和换油流量调节溢流阀锁紧螺母; 3. 启动冷却水泵(主驱动有8 个液压马达,每个液压马达带一个减速器,用来冷却减速器,)。4.启动润滑油脂系统,HBV系统,齿轮油系统)4.硬件上强制给PLC—个启动信号(不需要启主驱泵)。选择刀盘旋转方向(即主泵上三位四通换向阀得电情况两个泵需一致),观察两个主泵斜盘变化,变化正常后再按正常程序启动主泵。 5. 调节主驱动恒功率控制模块比例溢流阀(该比例溢流阀是一个型号为VT3000力士乐放大板,放大板使能端接了一个中间继电器常开触点,刀盘启动条件满足完全满足时,这个PLC有相应的Q点输出,中间继电器常开触点闭合,放大板正常工作,通过电位计(0-10v 直流电压)来控制放大板的输出从而控制斜盘斜率,控制泵的排量。 螺旋输送机作用是出渣和调节土仓土压力,螺旋叶片从土仓下部伸入土仓中取土,将渣土输送到输送机后腹部,通过出土闸门卸在皮带输送机上。土压平衡模式掘进时,推进速度一定时,通过调节出土闸门开启度和螺旋机转速变化来实现对土仓内土仓压力的调节,保证隧道开挖面的稳定性。螺旋输送机排土口有两个由液压缸控制的出土闸门,通过它控制螺旋输送机排土量,开启油缸上安装有行程传感器,根据掘进速度在操作盘上任意控制闸门开启度,随时调节排土量实现土塞效应,形成良好的排土 止水效果,土压平衡模式掘进时,可起到调节土仓土压力作用。螺旋轴采用驱动端固定,一端浮动支撑形式,取土端外壳焊接耐磨合金条,螺

盾构选型及参数计算方法

盾构选型及参数计算方法 1.1、序言 盾构是一种专门用于隧道工程的大型高科技综合施工设备,它具有一个可以移动的钢结构外壳(盾壳),盾构内装有开挖、排土、拼装和推进等机械装置,进行土层开挖、碴土排运、衬砌拼装和盾构推进等系列操作,使隧道结构施工一次完成。它具有开挖快、优质、安全、经济、有利于环境保护和降低劳动强度的优点,从松散软土、淤泥到硬岩都可应用,在相同条件下,其掘进速度为常规钻爆法的4~10倍。较长地下工程的工期对经济效益和生态环境等方面有着重大影响,而且隧道工程掘进工作面又常常受到很多限制,面对进度、安全、环保、效益等这些问题,使用盾构机无疑是最好的选择。些外,对修建穿越江、湖、海底和沼泽地域隧道,采用盾构法施工,也具有十分明显的技术和经济优势。 采用盾构法施工,盾构的选型及配置是隧道施工中关键环节之一,盾构选型应根据工程地质水文情况、工期、经济性、环境保护、安全等综合考虑。盾构的选型及配置是一种综合性技术,涉及地质、工程、机械、电气及控制等方面。 1.2盾构机选型主要原则 1.2.1盾构的选型依据 盾构选型主要应考虑以下几个因素: 1)工程地质、水文条件及施工场地大小。 2)业主招标文件中的要求。

3)管片设计尺寸与分块角度。 4)盾构的先进性、适应性与经济性。 5)盾构机厂家的信誉与业绩。 6)盾构机能否按期到达现场。 1.2.2 盾构的型式 1)敞开式型盾构 敞开式型盾构是指盾构内施工人员可以直接和开挖面土层接触,对开挖面工况进行观察,直接排除开挖面发生的故障。这种盾构适用于能自立和较稳定的土层施工,对不稳定的土层一般要辅以气压或降水,使土层保持稳定,以防止开挖面坍塌。有人工开挖盾构、半机械开挖盾构、机械开挖盾构。 2)部分敞开式型盾构 部分敞开式型盾构是在盾构切口环在正面安装挤压胸板或网格切削装置,支护开挖面土层,即形成挤压盾构或网格盾构,施工人员可以直接观察开挖面土层工况,开挖土体通过网格孔或挤压胸板闸门进入盾构。根据以往大量工程经验,通常都将挤压胸板和网格切削装置组合在一起安装在盾构上,形成网格挤压盾构。这种盾构适用于不能自立、流动性在的松软粘性土层、尤其是对隧道沿线地面变形无严格要求的工程。当盾构采用网格开挖时,应将安装在网格后面的挤压胸板部分或大部分拆除,利用网格孔对土层的摩擦力或粘结力对开挖面土层进行支护,当盾构向前推进时(一般是盾构穿越江湖、海底或沼泽地区),应将挤压胸板装上,盾构向前推进时,可将土体全部

直径614m复合式土压平衡盾构电气系统设计研究

【提要】:结合工程实践,研究复合式盾构电气系统,从供配电、盾构控制、检测仪器、数据采集等方面分析系统特点。 【关键词】:复合式盾构电气监控特点 Abstract: Incorporating engineering practices, this paper studies electrical system from analyses of system characteristics of power supply and distribution, shield control, testing instrumentation, data acquisition on Compound Shield EPBM. Keywords:Compound Shield, shield, electrical monitoring features. 1 概述 φ6.14m复合式土压平衡盾构(简称复合式盾构)是隧道股份为广州市地铁总公司建造地铁2号线新研制开发的。盾构需穿越软土、硬土(岩土)及复合土等多种土层,并穿越珠江,掘进距离约1.7km。原用于1号线施工的进口泥水平衡盾构已不能满足施工需要;而另一台进口土压平衡盾构,在1号线施工结束时已损坏,为适应2号线的施工,必须对该泥水平衡盾构作彻底的改造。 复合式盾构既要适用于软土土层的施工工况,又要适应硬土、复合土(软、硬土混合)土层的掘进工况。它采用全断面切削布置的滚刀和割刀组合的互交型刀盘来开挖岩土,当工作面岩土稳定时,可以在土压不平衡状态下进行掘进;当遇软土和复杂地层时,则在土压平衡状态下进行掘进,以确保工程安全和质量。复合式盾构在软土层施工,其平衡机理是与一般土压平衡盾构一致的,均使充满切削土的密封舱土压保持在设定值上,求得盾构开挖面的稳定;而显著不同的是复合式盾构具有更大的切削岩土能力和更复杂的控制功能,因而刀盘的动力要大大增加,并具有多种控制模式。然而泥水平衡盾构的掘进机理是与土压平衡盾构完全不同的,它是靠泥水动态平衡来达到开挖面的稳定,以泥水输送和泥水处理来排土;其构造和设备配置也完全不同,以盾构的设备配置为例,土压平衡盾构要增加螺旋机、皮带机及其它辅助设备,故将泥水平衡盾构改制成土压平衡盾构是有一定难度的,要改制成复合式土压平衡盾构就更难。 2 原泥水平衡盾构概况 在广州现场勘查到盾构已解体成刀盘、切口环、支承环、拼装机、整圆器等部件(散件)堆放在露天仓库。盾构一共有7节台车,控制室设在1号台车,动力设备分布在2号~6号台车,低压配电柜安装在7号台车。盾构本体主要电气设备有:控制台、高压柜、低压柜、电容器柜、仪表柜;电动机14台;传感器14只(套);遥控装置1套;电磁阀80余只;1套PLC(主机A3NCPU,输入/输出模块30块);现场的按钮盒、限位若干(遗失和损坏较多)。 独立的泥水输送系统由日本大平洋公司设计制作,在盾构中有切换阀、EV阀、排泥泵、控制柜(箱)、泥泵流量计和密度计等。PLC自成系统,有1个主站和4个从站,主站和从站靠ME信号传送器进行通信。 3 计研究的难点 (1)开发复合式盾构需从研究盾构工作机理出发,在深入研究控制模式和施工管理方式后,再进行电气系统的设计研究。 (2)改制旧泥水盾构,设计时缺乏原盾构完整的技术资料。在缺少所需的系统原理图、传感器、仪表、PLC等技术资料的情况下,必需对原进口电气设备作深入的消化和研究,掌握基本的技术性能和参数,为改制设计提供必需的资料。

盾构机参数

随着地下空间的开发,盾构技术已广泛地应用于地铁、隧道、市政管道等工程领域。在我国的各项施工中,盾构机的种类越来越多,其中土压平衡式盾构机在上海、南京、广州等地铁施工中有着较为出色的表现,笔者以日本小松公司Φ6340盾构机为例,结合施工中的一点经验与理解,对其控制原理和参数设置等做简要总结。 控制原理 土压平衡式盾构机的土压控制是PID自动调节控制,切削刀盘切下的弃土进入土仓,形成土压,土压超过预先设定值时,土仓门打开,部分弃土通过螺旋机排出土仓,从而保持土仓内土压平衡,土仓内的土压反作用于挖掘面,防止地层的坍塌。 土压的平衡控制是通过装在盾构机土仓隔壁上的土压计对掘进中的土压进行实时监视,土压计监测到的数值传送到PLC,PLC计算出测量值与设定值之间的差值E,通过PID 控制,自动调整螺旋机转速,使E值趋向于零,当E值大于零时,PLC发出指令,增加螺旋机转速,提高出土量直至土仓内土压重新达到新的平衡状态,反之当E值小于零时,PLC 会降低螺旋机转速,以减少偏差。以保持土仓内土压平衡,使盾构机正常掘进。 主要参数 抽样周期:PID 演算处理的时间间隔,周期越短,动作越连续,但增加了单位时间的处理次数,因此PID以外的控制变慢,不需要细微变动时,可延长周期。 过滤系数:用来除去输入模拟值上的高频成分,数值越大,则过滤效果越强,系统反应也就越迟钝。 比例常数P:为了提高系统灵敏度,使土压保持在一定范围,把计测值与设定值的差值E 乘以一个系数,所得结果再与目标值相比较,这个系数就是比例常数P,P 值越大,调控效果越好。 积分时间I:系统引入比例常数后,PLC调控螺旋机的输出操作量mv=P*E, 也就是偏差被放大了P倍,这样当系统产生偏差时,可能会使螺旋机转速突然增大或减小了许多,形成超调现象,于是又反过来调整,这就引起螺旋机转速忽大忽小,形成振荡。为了消除振荡,引入积分环节,使操作量mv 在积分时间内逐渐完成,即螺旋机转速平稳变化,直到消除偏差。积分时间越小,调控效果越好。 微分时间:根据偏差变化率de/dt 的大小,提前给出一个相应的调节动作,从而缩短了调节时间,可以克服因积分时间太长而使恢复滞后的缺点。 参数设定 参数设置分为两步,第一步是在设备组装完毕,无负荷的状态下进行的一次调试,第二步是在掘进开始,土层稳定后,根据土层状况和操作习惯进行的微调。 1、无负荷调试 (1)比例系数P,首先不执行 I和D,I调至数值上限,D设定为 0,这样系统只执行比例动作P,变动土压目标值,制造约0.01 - 0.03Mpa 的系统偏差,接下来逐渐增大 P 值,使螺旋机转速逐渐增大,当 P 值上升到一定值时,螺旋机的旋转速度会出现大幅度地反复升降,即系统形成振荡,我们把出现振荡时P 值的 85% - 90% 设定为系统的比例系数。 (2)积分时间I,比例系数确定后,调节积分时间I,变动土压目标值,制造一个系统偏差,观察螺旋机回转速度以怎样的速度变化,继续加一定的偏差时,系统向偏差减小的方向增加或减小操作量,操作量的变化程度随积分时间I的变化而变化,此时可以根据操作人员的操作习惯来确定积分时间,一般来说,I在数值上为P值的70% 左右。 (3)微分时间D,在盾构机PID 控制中,管理对象是土仓内的土压,如果掘进速度一定,则土压与切削土量减排土量之差的时间累积成正比,另一方面,系统的控制对象是螺旋机转速,而螺旋机转速同单位时间的排土量成正比,这样从系统输入来看,系统的输出是

海瑞克盾构机电气系统概述

海瑞克盾构机电气系统概述

————————————————————————————————作者:————————————————————————————————日期:

海瑞克盾构机电气控制系统概述 李剑祥 (中铁六局集团有限公司深圳地铁2号线项目部广东深圳 518056) 摘要:对海瑞克土压平衡盾构机电气控制系统进行概述,并分别对其配电系统、可编程控制系统和计算机控制及数据采集分析系统三个部分的设计进行总结,以加深对其整个电气控制系统原理的理解。 关键词:电气系统配电系统可编程控制系统计算机控制及数据采集分析系统 0 海瑞克盾构机电气系统简介 盾构机是一种集机械、液压、电气和自动化控制于一体、专用于地下隧道工程开挖的技术密集型重大工程装备,其技术先进、结构庞大。如果把机械部分比喻成人的四肢,那么液压系统比喻成人的血液系统,则电气控制系统就是人的神经系统。当前盾构机电气控制系统均采用世界上最先进、可靠的技术以保证系统稳定可靠地运行。海瑞克盾构机电气控制系统分为配电系统、可编程控制系统和计算机控制及数据采集分析系统三个部分。下面对该三个部分进行介绍。 1 配电系统 盾构施工是参考工厂式的流程化作业施工,盾构机的配电系统设计原则也是参照工厂供配电原理设计的。配电系统分为高压系统和低压系统,其用电设备列表如下: 序号用电设备设备容量备注 1 刀盘驱动945kW 2 超挖刀7.5kW 3 推进系统75kW 4 管片安装机45kW 5 螺旋输送机250kW 6 皮带输送机22kW 7 注浆泵30kW 8 砂浆储存罐的搅拌器7.5kW 9 液压油过滤泵11kW 10 主轴承润滑4kW 11 管片吊机2x2kW 12 排水泵12kW 13 冷却水系统7.5kW 14 二次通风机11kW 15 空压机110kW

土压平衡式盾构机原理

本文主要介绍的是海瑞克公司生产的土压平衡式盾构机的工作原理,组成部分及各组成部分在施工中的应用。 0引言 我单位承担修建深圳地铁—期工程第七标段华强至岗厦区间内径为5.4m的双线隧道的施工任务,根据施工地段地层自立条件差,地下水较丰富的特点,购进了两台德国海瑞克公司生产的世界上最先进的土压平衡式盾构机。这两台盾构机都由西门子公司的S7-PLC自动控制系统控制,配备了机电一体化的液压驱动系统、同步注浆设备、泡沫设备、膨润土设备及SLS-T隧道激光导向设备,并可在地面监控室对盾构机的掘进进行实时监控。本文将就盾构机的工作原理、盾构机的组成、及各组成部分的功能结合实际施工情况做一简要阐述。 1 盾构机的工作原理 1.1盾构机的掘进 液压马达驱动刀盘旋转,同时开启盾构机推进油缸,将盾构机向前推进,随着推进油缸的向前推进,刀盘持续旋转,被切削下来的碴土充满泥土仓,此时开动螺旋输送机将切削下来的渣土排送到皮带输送机上,后由皮带输送机运输至渣土车的土箱中,再通过竖井运至地面。 1.2掘进中控制排土量与排土速度 当泥土仓和螺旋输送机中的碴土积累到一定数量时,开挖面被切下的渣土经刀槽进入泥土仓的阻力增大,当泥土仓的土压与开挖面的土压力和地下水的水压力相平衡时,开挖面就能保持稳定,开挖面对应的地面部分也不致坍坍或隆起,这时只要保持从螺旋输送机和泥土仓中输送出去的渣土量与切削下来的流人泥土仓中的渣土量相平衡时,开挖工作就能顺利进行。 1.3管片拼装 盾构机掘进一环的距离后,拼装机操作手操作拼装机拼装单层衬砌管片,使隧道—次成型。 2 盾构机的组成及各组成部分在施工中的作用 盾构机的最大直径为6.28m,总长65m,其中盾体长8.5m,后配套设备长56.5m,总重量约406t,总配置功率1 577kW,最大掘进扭矩5 300kN·m,最大推进力为36400kN,最陕掘进速度可达8cm/min。盾构机主要由9大部分组成,他们分别是盾休、刀盘驱动、双室气闸、管片拼装机、排土机构、后配套装置、电气系统和辅助设备。 2.1盾体 盾体主要包括前盾、中盾和尾盾三部分,这三部分都是管状简体,其外径是6.25m。 前盾和与之焊在一起的承压隔板用来支撑刀盘驱动,同时使泥土仓与后面的工作空间相隔离,推力油缸的压力可通过承压隔板作用到开挖面上,以起到支撑和稳定开挖面的作用。承

盾构机司机操作流程及参数控制

盾构机操作流程及参数控制1开机前准备 1) 检查延伸水管、电缆连接是否正常; 2) 检查供电是否正常; 3) 检查循环水压力是否正常; 4) 检查滤清器是否正常; 5) 检查皮带输送机、皮带是否正常; 6) 检查空压机运行是否正常; 7) 检查油箱油位是否正常; 8) 检查脂系统油位是否正常; 9) 检查泡沫原液液位是否正常; 10)检查注浆系统是否已准备好并运行正常; 11)检查后配套轨道是否正常; 12)检查出碴系统是否已准备就绪; 13)检查盾构操作面板状态:开机前应使螺旋输送机前门应处于开启状态,螺旋输送机的螺杆应伸出,管片安装模式应无效,无其它报警指示; 14)检查ZED导向系统是否工作正常; 若以上检查存在问题,首先处理或解决问题,然后再准备开机。 15)请示土木工程师并记录有关盾构掘进所需要的相关参数,如掘进模式(敞开式、半敞开式或土压平衡式等),土仓保持压力,线路数据,注浆压力等; 16)请示机械工程师并记录有关盾构掘进的设备参数; 17)若需要则根据土木工程师和机械工程师的指令修改盾构参数; 2 开机 1)确认外循环水已供应,启动内循环水泵; 2)确认空压机冷却水阀门处于打开状态,启动空压机; 3)根据工程要求选择盾尾油脂密封的控制模式,即选择采用行程控制还是采用压力控制模式; 4)在“报警系统”界面,检查是否存在当前错误报警,若有,首先处理;

5)将面版的螺旋输送机转速调节旋扭、刀盘转速调节旋扭、推进油缸压力调节旋扭、盾构推进速度旋扭等调至最小位; 6)启动前后液压泵站冷却循环泵,并注意泵启动是否正常,包括其启动声音及振动情况等。以下每一个泵启动情况均需注意其启动情况; 7)依次启动润滑脂泵(EP2)、齿轮油泵、HBW 泵、内循环水泵; 8)依次启动推进泵及辅助泵; 9)选择手动或半自动或自动方式启动泡沫系统; 10)启动盾尾油脂密封泵,并选择自动位;至此,盾构的动力部分已启动完毕,下面根据不同的工序进一步进行说明。 3掘进 1)启动皮带输送机 2)启动刀盘 ?根据ZED 面版上显示的盾构目前旋转状态选择盾构旋向按钮,一般选择能够纠正盾构转向的旋转方向; ?选择刀盘启动按扭,当启动绿色按钮常亮后。并慢慢右旋刀盘转速控制旋钮,使刀盘转速逐渐稳定在2rpm 左右。严禁旋转旋钮过快,以免造成过大机械冲击,损机械设备。此时注意主驱动扭矩变化,若因扭矩过高而使刀盘启动停止,则先把电位器旋钮左旋至最小再重新启动; 3)启动螺旋输送机 ?慢慢开启螺旋输送机的后门; ?启动螺旋输送机按钮,并逐渐增大螺旋输送机的转速; 4)按下推进按钮,并根据ZED 屏幕上指示的盾构姿态调整四组油缸的压力至适当的值,并逐渐增大推进系统的整体推进速度; 5)至此盾构开始掘进; 4土仓压力调整 1)如果开挖地层自稳定性较好采用敞开式掘进,则不用调正压力,以较大开挖速度为原则;

复合式土压平衡盾构机常见故障分析及处理办法

龙源期刊网 https://www.360docs.net/doc/1618925597.html, 复合式土压平衡盾构机常见故障分析及处理办法 作者:张海涛 来源:《城市建设理论研究》2012年第33期 【摘要】盾构机在隧道施工中运用广泛,其安全、高效、经济、环保的优点非常显著,因此,盾构机在隧道施工中的扮演着非常重要的角色。本文主要研究了复合式土压平衡盾构机常见的故障,并提出了相应的解决办法。 【关键词】复合式土压平衡盾构机;常见故障;分析 中图分类号:U226.8+1 文献标识码:A 文章编号: 引言 随着我国城市地铁建设的快速发展,盾构工法凭借其对地面、地下环境影响小、掘进速度快、地表沉降小等优势,成为目前城市地铁区间建设和隧道施工的主要施工工法。复合式盾构机得到了非常广泛的运用,然而,在复合式盾构机得施工使用过程中,常常会出现各种故障,严重影响了盾构机的使用效率,拖慢工程的施工进度,甚至在一定程度上影响了施工质量。因此,对复合式盾构机常见故障进行分析及处理的现实意义重大。 复合式盾构机的工作原理如下:通过旋转的刀盘切削前方的土层,油缸推进刀盘实现掘进,同时使土体从刀盘开口处进入并充满土仓,在油缸的推力下仓内土体保持一定的压力用来平衡前方的土压力和水压力,通过添加外加剂并搅拌土体使其具有适宜的流动性和不透水性,然后在基本保持土压平衡的条件下,从螺旋输送机排除土体。成洞后由管片拼装机拼管片来支撑洞体,同时对盾尾与洞体的缝隙注浆填充,最后实现设计的线路和其结构尺寸要求。 一、复合式土压平衡盾构机常见故障分析 盾构施工中往往遇到各种复杂的地层,变化性比较大。由于地质条件的复杂性.决定了盾构机刀盘的配置及刀具的选用将非常关键.刀具的配置和选用直接影响到刀具使用的寿命,盾构机刀具配置、维修和管理是盾构施工设备管理的重要内容。在复合式土压平衡盾构机的施工使用过程中,作为盾构机主要部件的刀盘最容易出现各种故障,以下详细分析: 1.1刀盘常见故障及原因分析 盾构机的刀盘根据地层的差异,分为三类:软岩刀盘、硬岩刀盘和复合刀盘。软岩刀盘适用于未固结成岩的软土地层和某些全风化或强风化的软岩地层,硬岩刀盘适用于硬岩地层,复

盾构机掘进技术(基础)(含参数)

盾构机掘进技术培训总结 一、掘进参数的选择 1、掘进参数的选择依据:①地质情况判断②盾构机当前姿态③地面监测结果反馈④盾构机状况; 地质情况的判断依据:①地质资料及补勘资料②掘进参数变化③渣土状态。 也就是说,盾构机目前要在什么样的地层中施工,是硬岩、软岩、沙层,还是断层等;目前盾构机的中心线是不是与隧道设计中心线相吻合,有偏差,怎样的偏差?地表面是不是有沉降?沉降了多少?建筑物是否有影响?盾构机目前的刀具状况怎样的?各系统是不是完好?等等 由于盾构机的可操作性很强,掘进参数的选择不能一概而定,需根据不同的实际情况选择相应的掘进参数。如:在地质条件较破碎的地质情况下应采用低速掘进,但刀具磨损较快时,应考率调整刀盘准速和掘进速度已获得最佳的贯入度;又如:盾构机栽头且偏离中线较大时,应考虑蛇行纠偏,防止过急纠偏造成管片开裂、错台或渗水等问题;所以掘进中一定要根据现场实际情况,灵活正确地选择掘进参数。 2、影响掘进的主要参数:掘进模式、土仓压力、刀盘扭矩、刀盘转速、推进力、推进速度、螺旋输送机扭矩、铰接油缸的行程、泡沫注入率等 二、掘进模式的选择 1、土压平衡式盾构机的掘进有三种模式:①敞开模式②半敞开模式③土压平衡模式 采取何种掘进模式关键在于地层的自稳性和地下水含量决定的。 a 、敞开模式 该模式适用于能够自稳、地下水少的地层。该掘进模式类似于TBM掘进,盾构机切削下来的碴土进入土仓内即刻被螺旋输送机排出,土仓内仅有极少量的碴土,土仓基本处于清空状态,掘进中刀盘所受反扭力较小。由于土仓内压力为大气压,故不能支撑开挖面地层和防止地下水渗入。

b 、半敞开模式 半敞开式有的又称为局部气压模式,该掘进模式适用于具有一定自稳能力和地下水压力不太高的地层。其防止地下水渗入的效果主要取决于压缩空气的压力。掘进中土仓内的碴土未充满土仓,尚有一定的空间,通过向土仓内输入压缩空气与碴土共同支撑开挖面和防止地下水渗入。 c 、土压平衡模式 该掘进模式适用于不能稳定的软土和富水地层。土压平衡模式是将刀盘切削下来的碴土充满土仓,并通过推进操作产生与土压力和水压力相平衡的土仓压力来稳定开挖面地层和防止地下水的渗入。该掘进模式主要通过控制盾构推进速度和螺旋输送机的排土量来产生压力,并通过测量土仓内土压力来随时调整、控制盾构推进速度和螺旋输送机转速。在该掘进模式下,刀盘所受的反扭力较大。 2、土压平衡的建立 通过对掘进速度、出土速度的控制实现盾构机的土仓压力与掌子面的土压和水压平衡防止地层坍塌。 即掌子面的压力控制因素:①盾构机的掘进速度②螺旋输送机的转速③螺旋输送机的开度

相关文档
最新文档